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Abstract 

Gait recognition based on video data has gained popularity in both surveillance and 

clinical contexts due to its unique ability to identify individuals based on walking 

patterns. Unlike other biometrics like fingerprints or facial recognition, gait works 

effectively from a distance, does not need user cooperation, handles low-quality 

videos, remains reliable when body traits are hidden, and is hard to imitate. Gait 

recognition uses either model-free or model-based methods. Model-free approaches 

rely on image-based features, while model-based methods focus on biomechanical 

features like joint kinematics. Model-based methods are easier to understand, view- 

and scale-invariant, and less affected by background noise, but they have greater 

computational complexity. Identifying the most relevant gait features is essential to 

reduce this load. This work proposes a model-based, marker-less method for gait 

recognition driven by biomechanical features. To reduce computational complexity, 

features were selected automatically from a wide range of parameters from the 

literature, covering various domains and modalities. The study involved fifteen 

healthy subjects walking at three different speeds along a 5m indoor walkway, 

recorded by three RGB cameras. Joint centres were tracked semi-automatically 

using MoveNet, a deep-learning pose estimator. Stride segmentation was 

automatically performed to extract gait features stride-by-stride, including both 

time-domain and frequency-domain features. Features were ranked using the 

minimum redundancy maximum relevance algorithm, and those scoring below 

0.001 were excluded, resulting in 19 features, including kinematic, frequency 

parameters, and correlation indices. Then, top-down wrapper feature selection was 

applied using seven classification models: (i) Decision Tree, (ii) Discriminant 
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Analysis, (iii) Ensemble Classifier, (iv) ECOC, (v) k-NN, (vi) Naïve Bayes, and 

(vii) Neural Networks. Classification accuracy was assessed via 5-fold cross-

validation, and the best feature set was chosen for each model. Hyperparameters 

were tuned by grid-search and 5-fold cross-validation, and the best-performing 

configuration was selected for each model. Finally, models were evaluated on 

unseen data, with recall, precision, and F1-score metrics calculated for the entire 

dataset and each walking speed. The ECOC model achieved the highest F1-score 

(78.71%), followed by k-NN (73.40%), while Decision Tree performed poorly 

(39.86%) due to overfitting, sensitivity to small changes, and reliance on single-

feature splits, limiting its ability to capture complex gait patterns. Other models' F1-

scores were 69.58% (Discriminant Analysis), 64.15% (Ensemble Classifier), 

62.08% (Naïve Bayes), and 66.19% (Neural Networks). Although this method 

performed lower than previous studies, likely due to dataset homogeneity, the 

identified feature subsets provide a strong basis for discriminating individuals from 

their gait. Performance could improve with a larger, more diverse dataset and varied 

gait patterns. This study contributes to the development of biomechanically driven 

gait recognition with potential applications in clinical assessment and video 

surveillance. 
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1 Introduction 

1.1 Motivation and general introduction 

Biometrics is defined as “the science of establishing the identity of an individual, 

based on his/her inherent physical and behavioural traits” [1]. Nowadays biometric 

systems become increasingly vital for security and identification, and traditional 

methods like fingerprint and facial recognition have significant limitations. 

Fingerprints can be altered or obscured due to wear or injuries, and facial 

recognition systems struggle with variations in lighting, angle, and expression. 

Moreover, both methods are vulnerable to attacks [2], such as the use of artificial 

fingerprints or 3D-printed masks, and the rise of Deepfake technology poses further 

risks by creating convincing fake identities. These vulnerabilities highlight the need 

to explore alternative biometric modalities that offer greater security and resilience.  

Gait recognition, which identifies individuals based on their unique walking 

patterns, presents a promising solution. Gait has several distinct properties that 

make it a robust biometric trait: it is difficult to disguise or replicate, can be captured 

at a distance and with simple instrumentation, and does not require active 

participation from the subject. Additionally, gait remains consistent over time and 

is less affected by external factors like clothing or environment [3]. Moreover, gait 

recognition holds significant potential in healthcare [4]. The ability to monitor and 

analyse gait patterns remotely through video-based systems can be precious for 

early diagnosis of neurodegenerative diseases, such as Parkinson’s or Alzheimer’s, 

where changes in gait are often early indicators. Furthermore, video-based gait 

analysis can be used in rehabilitation to track patient progress and tailor treatment 

plans more effectively, providing a non-invasive method to monitor recovery in 

real-time.  
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With advancements in technology, automatic video-based gait recognition has 

emerged as a sophisticated method for leveraging this biometric. This thesis is 

motivated by the limitations of traditional biometric systems and seeks to 

investigate gait recognition as a potential alternative. By exploiting the distinct and 

stable characteristics of an individual's gait, this method could provide a more 

secure and reliable means of identification, while also opening new opportunities 

for healthcare applications. 

1.2 Aim of the work and challenges 

The aim of this study is to develop a model-based approach that leverages 

biomechanical features for the automatic recognition of gait patterns, using a multi-

camera, marker-less system. A key challenge of this work is to design a method that 

is not only effective with marker-less systems but also adaptable or directly 

integrable to marker-based setups, and capable of being further developed for 

medical purposes. This adaptability ensures the method’s applicability across 

different technologies and environments, while paving the way for its use in 

healthcare, such as in the diagnosis and monitoring of gait-related disorders. 

1.3 Thesis Outline 

Chapter 2 provides an in-depth analysis of gait cycle, covering its basic notions 

and taxonomy. Then, the chapter provides a general overview of gait analysis 

focusing on key gait parameters, such as spatio-temporal parameters and joint 

kinematics, it explores gait measurement technologies and the role of machine 

learning in gait studies. At the end, the chapter reviews the various systems used for 

capturing motion data, including marker-based and marker-less systems, and their 

respective advantages and limitations. 



3 
 

Chapter 3 outlines the data collection process, and the experimental setup and 

protocol. 

Chapter 4 details the methods used in this thesis, beginning with the detection of 

joint centres and the gait cycle segmentation. It then covers feature extraction, 

including both time-domain and frequency-domain features, and the process of 

feature selection. The chapter also describes the classification models used in the 

study and the evaluation metrics employed to assess their performance. 

Chapter 5 displays the results obtained with the implemented methods focusing on 

classification performance. 

Chapter 6 discusses the results as well as the limitations of the study. 

Chapter 7 sums up the main achievements of the thesis and provides 

recommendations for future research. 
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2 Background 

This chapter introduces the fundamental concepts of gait and gait analysis, 

establishing the terminology and foundational ideas that will be explored in the 

subsequent chapters. 

2.1 Gait cycle 

Gait cycle (GC) is defined as the sequence of events/movements between two 

consecutive contacts of the same foot with the ground. It is considered the 

fundamental unit of gait [5].  

2.1.1 Basic notions 

The crucial distinction between gait and walking must be noted since gait is referred 

to as the process of walking but is defined as the individualistic way of walking [6]. 

According to Perry [7], gait is not just a basic function but a complex, coordinated 

activity that reflects the overall health and function of the musculoskeletal and 

nervous systems. The alternating and repeated use of the lower limbs moves the 

body forward while also ensuring stable support. Human movement is facilitated 

through a highly coordinated interaction among the bones, muscles, ligaments, and 

joints within the musculoskeletal system, which is regulated by the nervous system. 

The central nervous system sends commands to the musculoskeletal system through 

the peripheral nervous system, enabling the generation of forces necessary for 

movement and the performance of daily activities. 

The body can be divided into two functional units with respect to gait: the 

locomotive unit and the passenger unit. The locomotive unit, including the pelvis 

and lower limbs, uses 11 joints and 57 muscles to support and move the body 

forward. It serves four main functions: propulsion, stability, impact absorption, and 
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energy conservation. The passenger unit, comprising the head, arms, and trunk 

(sometimes referred to as HAT1), accounts for 70% of body weight and maintains 

postural integrity. Its alignment influences lower limb muscle activity, while its 

mass is key to postural stability. 

2.1.2 Taxonomy of gait 

The foot-to-ground contact is the easiest to detect, so it is considered as the 

beginning of the gait cycle. This event is commonly known as initial contact (IC). 

The gait cycle is typically divided into two primary phases: stance and swing 

(Figure 2.1.2.1). The stance phase begins with the IC and accounts for 

approximately 60% of the gait cycle. Conversely, the swing phase, which 

constitutes about 40% of the gait cycle, starts with the toe off and refers to the period 

the foot is lifted off the ground and moves forward. 

 

Figure 2.1.2.1: The two main phases of gait according to Perry [7]. 

At the start and end of the cycle, both feet contact the ground, so this period is 

known as double support. In contrast, during the middle of the stance phase, only 

one foot is in contact with the ground, which is referred to as single support (Figure 

2.1.2.2). 

 
1 Head, Arms, Trunk. 
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Figure 2.1.2.2: Illustration of the single and double support stages. 

The gait cycle is also referred to as stride and can be considered as the sequence of 

two steps (Figure 2.1.2.3). A stride begins with the initial contact of one foot and 

ends with the next initial contact of the same foot. So, if the stride starts with a right 

step, it will be ended by a left step.  

 

Figure 2.1.2.3: Relationship between steps and stride.  

According to Perry [7], the gait cycle is further divided into a total of 8 sub-phases 

(Figure 2.1.2.4). The stance phase consists in five sub-phases: 

1) Initial contact (heel strike): 0 – 2 % GC 

This phase marks the instant when the foot contacts the ground and starts 

the first part of double support, where both feet are touching the ground. Its 

primary purpose is to establish ground contact and initiate the acceptance of 
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body weight. During this phase, the ground reaction force shifts behind the 

ankle joint, causing the foot to rotate in a clockwise direction. 

2) Loading response (foot float): 2 – 10 % GC 

This phase starts with initial contact and continues until the contralateral 

foot leaves the ground. The foot continues to accept weight and absorb 

shock by rolling into pronation (first “rocker”).  

3) Midstance: 10 – 30 % GC 

This phase begins when the opposite foot leaves the ground and continues 

until the heel of the current foot lifts off. The second rocker mechanism is 

observed during midstance, where the tibia rotates over the ankle joint and 

moves up and over the talus. The intrinsic muscles of the foot and the tibialis 

posterior work to support the medial longitudinal arch. 

4) Terminal stance (heel off): 30 – 50 % GC 

This phase begins when the heel leaves the floor and continues until the 

contralateral foot contacts the ground. In addition to single limb support and 

stability, this event serves to propel the body forward. The bodyweight is 

distributed across the metatarsal heads. During terminal stance, the third and 

final rocker mechanism is activated as the foot undergoes plantar flexion 

over a stable forefoot, particularly at the metatarsophalangeal joints. 

5) Pre-swing (toe off): 50 – 60 % GC 

This phase starts when the opposite foot contacts the ground and lasts until 

the current foot leaves the ground. It provides the final burst of propulsion 

as the toes lift off. During pre-swing, the weight shifts from one foot to the 

other, with both feet contacting the ground during this period, in contrast to 

the single support phase that predominates in other intervals. 
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The swing phase consists in three sub-phases: 

1) Initial swing: 60 – 75 % GC 

This sub-phase begins when the foot lifts off the ground and continues until 

it aligns with the opposite ankle. Its primary purpose is to move the limb 

forward and shorten its length to ensure adequate foot clearance. 

2) Mid-swing: 75 – 87 % GC 

Mid-swing starts when the ankle and foot of the swing leg align and extends 

until the tibia of the swing leg becomes vertical. Like the initial swing, this 

phase is focused on advancing the limb and shortening its length to facilitate 

foot clearance. 

3) Terminal swing: 87 – 100 % GC 

Terminal swing begins when the swing leg's tibia is vertical and concludes 

with the initial contact of the foot. During this phase, the pelvis continues to 

flex due to the inertia of the leg, with minimal muscular contribution 

involved.  

 

Figure 2.1.2.4: Gait cycle sub-phases. Picture from [8]. 

2.2 Gait analysis 

Gait analysis is a systematic way of identifying any variations in the gait pattern 

and trying to find out the reasons associated with it and how they can affect the 
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human walking [6]. The goal of gait analysis is the quantification of factors that 

control the functionality of lower limbs. 

2.2.1 Gait parameters 

To study gait in detail, a quantitative analysis can be performed, providing 

information about spatio-temporal parameters, kinematics, and dynamics of 

walking during the gait cycle. For the purposes of this thesis, the focus will be on 

spatio-temporal parameters and kinematic parameters. 

2.2.1.1 Spatio-temporal parameters of gait 

Spatio-temporal parameters exploit gait repeatability, as they are related to phases 

of the gait cycle that are supposed to occur repeatedly. These parameters are 

essential for quantitatively assessing an individual's motor function as they provide 

a numerical description of the key events in gait.  

The gait parameters can be divided into temporal and spatial [9]. A brief description 

of the main parameters is reported below. 

Spatial parameters include: 

• Stride length: Distance between successive points of IC of the same foot. 

• Step length: Distance between successive points of IC of the one foot and 

the opposite foot. 

• Step width: Lateral distance between the heels of the left and right feet. It is 

typically measured from the midpoint of one foot to the midpoint of the 

opposite foot as they make contact with the ground.  
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Figure 2.2.1.1.1: Representation of spatial gait parameters. Picture from [8]. 

Temporal parameters include:  

• Stride time: Duration of the stride. 

• Step time: Duration of the step. 

• Cadence: The number of steps per unit time. 

2.2.1.2 Joint kinematics 

Joint kinematics focus on the study of the relative motion between two consecutive 

segments of the human body. This includes analysing the various components of 

joint motion, including direction, range, and quality of movement. In gait analysis, 

joint kinematics helps assessing how joints work during different activities.  

The Standardization and Terminology Committee of the International Society of 

Biomechanics recommends the use of the Joint Coordinates System (JCS) proposed 

by Grood and Suntay in 1983 for the knee [10]. There are two guidelines that 

provide standard definitions for the JCS specifically for the shoulder, elbow, wrist, 

and hand [11] and for the hip, ankle, and spine  [12]. According to [10], the JCS is 

defined starting from two cartesian coordinate systems (CCS) which are two body-

fixed axes, e1 and e3, and one “floating” axis e2, which is mutually perpendicular to 

them. 

o Shoulder joint: Connects the clavicle, the scapula, and the humerus and 

consists of several joints, including the glenohumeral joint (GH), 
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scapulothoracic (ST) joint, acromioclavicular joint (AC), and sternoclavicular 

joint (SC).   

- JCS and motion for the SC joint (Figure 2.2.1.2.1): the e1 and e3 are fixed 

to the thorax and to the clavicle, respectively. These two body-fixed axes 

coincide with the Y-axis of the thorax CCS and the Z-axis of the clavicle 

CCS, respectively. The body-fixed axis e1 corresponds to the motion of 

retraction or protraction; the body-fixed axis e3 corresponds to the motion 

of rotation of the clavicle, and the floating axis e2 corresponds to the motion 

elevation or depression of the clavicle. 

 

Figure 2.2.1.2.1: Clavicle coordinate system and definition of SC motions. 

- JCS and motion for the AC joint (Figure 2.2.1.2.2):  the e1 and e3 are fixed 

to the clavicle and to the scapula, respectively. The two body-fixed axes 

coincide with the Y-axis of the clavicle CCS and the Z-axis of the scapula 

CCS, respectively. The body-fixed axis e1 corresponds to the motion of 

retraction or protraction of the AC; the body-fixed axis e3 corresponds to 

the motion of rotation of the AC, and the floating axis e2 corresponds to the 

motion AC-lateral or AC-medial rotation. 
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Figure 2.2.1.2.2: Scapula coordinate system and definition of AC motion. 

- JSC and motion for the GH joint (Figure 2.2.1.2.3): Since e1 and e3 start in 

the same direction, the standard Grood and Suntay (floating axis) equations 

cannot be used. Instead, a Euler decomposition is used to find the 

corresponding angles [11]. The e1 and e2 are fixed to the scapula and to the 

humerus, respectively. The two body-fixed axes coincide with the Y-axis of 

the scapula CCS and the X-axis of the humerus CCS, respectively. The 

body-fixed axis e1 corresponds to the motion of flexion/extension of the 

GH; the body-fixed axis e2 corresponds to the motion of negative elevation 

(abduction/adduction) of the GH, and the axis e3 corresponds to the GH-

axial rotation, endo- or internal-rotation and exo- or external-rotation. 

 

Figure 2.2.1.2.3: Humerus coordinate system and definition of the GH motions. 

- JSC and motion for the ST joint: the e1 and e3 are fixed to the thorax and to 

the scapula, respectively. The two body-fixed axes coincide with the Y-axis 
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of the thorax CCS and the Z-axis of the scapula CCS, respectively. The 

body-fixed axis e1 corresponds to the motion of retraction or protraction of 

the scapula; the body-fixed axis e3 corresponds to the motion of anterior of 

posterior rotation of the scapula, and the floating axis e2 corresponds to the 

lateral or medial rotation of the scapula. 

o Elbow joint: Connects the arm (humerus) and the forearm (radio and ulna), 

and consists of 3 joints, including the GH joint, the humeroulnar joint, and the 

radioulnar joint. 

- JCS and motion for the GH joint: the e1 and e3 are fixed to the humerus and 

to the forearm, respectively. The two body-fixed axes coincide with the Z-

axis of the humerus CCS and the Y-axis of the forearm CCS, respectively. 

The body-fixed axis e1 corresponds to the motion of flexion and 

hyperextension of the GH; the body-fixed axis e3 corresponds to the motion 

of axial rotation of the forearm (pronation and supination), and the floating 

axis e2 corresponds to the rotated X-axis of the forearm CCS and its motion 

is a passive response to the elbow flexion/extension.  

- JCS and motion for the humeroulnar joint: the e1 and e3 are fixed to the 

proximal segment (humerus) and to the distal segment (ulna), respectively. 

The two body-fixed axes coincide with the Z-axis of the humerus CCS and 

the Y-axis of the ulnar CCS, respectively. The body-fixed axis e1 

corresponds to the motion of flexion and hyperextension of the humerus; 

the body-fixed axis e3 corresponds to the motion of axial rotation of the 

ulna, and the floating axis e2 forms the so call carrying angle, the angle 

between the longitudinal axis of the ulna and the plane perpendicular to the 

flexion/extension axis. 
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- JCS and motion for the radioulnar joint: the e1 and e3 are fixed to the 

proximal segment (ulna) and to the distal segment (radio), respectively. The 

axis e2 is the rotated Z-axis of the radius CCS. The two body-fixed axes 

coincide with the X-axis of the ulnar CCS and the Y-axis of the radius CCS, 

respectively. The body-fixed axis e1 corresponds to the orientation of the 

pro/supination axis relative to the ulna; the body-fixed axis e3 corresponds 

to the pro/supination of the radius with respect to the ulna, and the floating 

axis e2 corresponds to the abduction/adduction of the radius. 

o Wrist joint: Connects the distal end of the radius and the carpal bones. It 

includes the midcarpal joint, which is the articulation between the proximal and 

distal rows of the carpal bones, the carpometacarpal joints, and the intercarpal 

joints.  

- JCS and motion for the interphalangeal, metacarpophalangeal, intercarpal, 

radiocarpal, and carpometacarpal joints: The e1 and e3 are fixed to the 

proximal (radius) and distal segment (carpal bones), respectively. The two 

body-fixed axes coincide with the Z-axis of the proximal segment CCS and 

the Y-axis of the distal segment CCS, respectively. The flexion/extension 

motion occurs on the body-fixed axis e1, while the pronation/supination 

motion occurs on the body-fixed axis e3. The floating axis e2 corresponds 

to the abduction/adduction motion, or radial or ulnar deviation. 

- JCS and motion for the radioulnar joint: The radius and ulna may diverge 

slightly in the neutral posture, known as neutral forearm rotation. With the 

elbow flexed at 90 degrees, this position aligns the thumb with the shoulder. 

In the standard anatomical position, the radius is supinated relative to the 

ulna. An intermediate coordinate system is proposed by [11]. This system's 
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origin is at the radius's origin and aligns with the ulnar CCS in neutral 

forearm rotation. It is used to describe the radius's motion relative to the 

ulna. The e1 and e3 are fixed to the ulna and to the intermediate radial CCS, 

respectively. The two body-fixed axes coincide with the Y-axis of the 

intermediate radial CCS and the Z-axis of the intermediate radial CCS, 

respectively. The supination or pronation motion occurs on the body-fixed 

axis e1, while the flexion/extension motion occurs on the body-fixed axis 

e3. The floating axis e2 corresponds to the radial-ulnar deviation.  

o Hip joint: Connects the acetabulum of the pelvis and the head of femur. The 

e1 and e3 body-fixed axes of the JCS coincide with the Z-axis of the pelvic CCS 

and Y-axis of the right (or left) femur CCS, respectively. The body-fixed axis 

e1 corresponds to the motion of flexion/extension, the body-fixed axis e3 

corresponds to the motion of internal-external rotation, and the floating axis e2 

corresponds to the abduction/adduction motion. 

The motion of flexion/extension occurs in the sagittal plane. 

o Knee joint: Connects the femur and the tibia bones and consists in tibiofemoral 

and patellofemoral joints. The body-fixed axis e1 coincides with the X-axis of 

the femoral CCS and corresponds to the motion of flexion-extension and it is 

also perpendicular to the femoral sagittal plane. The body-fixed axis e3 

coincides with the Z-axis of the tibial CCS and corresponds to the internal-

external rotation of the tibia, and the floating axis e2 corresponds to the 

adduction-abduction motion. 

2.2.2 Instrumented measurements of gait parameters 

Modern gait analysis heavily depends on the use of instrumented tools to obtain 

objective and accurate measurements of walking patterns and their variability [13].  
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Usually, different sensing modalities are used to collect the gait data which are 

categorized into two groups: vision-based and sensor-based [14]. Vision-based 

techniques for gait analysis utilize cameras to gather gait data, with cameras 

positioned at appropriate heights. These methods can be divided into two 

categories: marker-based and marker-less approaches. On the other hand, sensor-

based techniques use two different types of sensing modalities to collect the gait 

data: wearable sensors and non-wearable sensors (Figure 2.2.2.1). Wearable 

systems use body-worn sensors, while non-wearable systems prioritize comfort of 

the individual and often employ force sensors installed on the floor. 

 

Figure 2.2.2.1: Overview of different instrumented tools for gait analysis by [14]. 

In this project a vision-based system with a marker-less approach is used to perform 

gait recognition (see Data collection). 

2.2.2.1.1 Video-based systems 

Video-based systems are widely used in gait analysis due to their non-invasive 

nature and flexibility in capturing human movement. These systems typically use 

cameras to record a person's gait, which is then analysed to extract key features, 

such as spatio-temporal parameters and joint angles. They work by either tracking 

specific markers placed on the body, like reflective tapes or Light-Emitting Diode 

(LED) markers, or by using marker-less approaches that rely on image features such 

as shape, colour, and motion to identify and analyse gait patterns. The former are 
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the opto-electronic systems (Figure 2.2.2.1.1), also referred to as optical Motion 

Capture (MOCAP) systems or stereophotogrammetry, in which the subject’s 

motion is recorded by a set of visible or infrared (IR) light cameras; then, the 

resulting 2D digital images are processed to obtain 3D trajectories of markers 

placed on the subject’s body [15]. The optical systems employed can be either 

passive, such as Vicon, or active, like Optotrak. Passive markers generally consist 

of spherical balls coated with a retroreflective material that reflects IR light from 

MOCAP system cameras. This use of IR light minimizes interference from visible 

light thanks to an IR pass filter placed over the camera lens. On the other hand, 

active markers are equipped with infrared LEDs located on body segments. Only 

one LED is illuminated at a time, which makes the identification of markers in the 

images more accurate. Due to their accuracy and reliability, stereophotogrammetry 

is considered as the gold standard (GS) for gait analysis; nevertheless, optical 

motion tracking systems are expensive, they need specialized laboratories, long 

calibration times, and long patient preparation. 

The alternative is the marker-less systems, which use a standard video recording to 

capture movement without requiring markers to identify body positions and 

orientations, making them suitable also for surveillance applications, unlike 

marker-based systems. One of the most challenging and difficult steps is the video 

acquisition and representation of human movement. For these reasons, specific 

systems are required to capture the images. Nowadays, two main marker-less 

systems are used in MOCAP. The first one uses standard video cameras, while the 

second system relies on depth cameras, which use technologies like stereo vision 

or time-of-flight to capture both RGB and depth data. Both systems can be 

implemented using either single camera or multi-cameras for data collection. Once 
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data are collected, pose estimation algorithms are used to detect and extract joint 

centres from images. These algorithms often employ deep learning techniques and 

are trained on large datasets with manually labelled key points [16]. These 

algorithms perform mathematical calculations on each image using, for instance, 

Convolutional Neural Networks (CNNs). A CNN is composed of multiple layers 

where each layer’s output is the next layer’s input. This architecture allows the 

network to progressively refine and interpret the image data to accurately estimate 

body poses.  Prominent pose estimation algorithms include OpenPose and MoveNet 

[17]. 

There are many cameras on the market, i.e. Azure Kinect DK, Vicon Nexus, Intel 

RealSense D435 that differ in terms of acquisition and reconstruction of the image.  
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Figure 2.2.2.1.1: Illustration of an opto-electronic system [15]. 

2.2.2.1.2 Other technologies for gait analysis 

Non-optical systems include a large variety of instrumentations, in general based 

on inertial, electromagnetic, electromechanical or acoustic principles. As said 

before, sensor-based technologies use two types of sensing modalities to capture 

gait data: wearable sensors and non-wearable sensors.  

Below is a brief overview of some of the sensor-based systems currently in use.  

• Force platforms: Devices that detect the ground reaction force (GRF) 

beneath the foot in three directions, vertical, anterior-posterior, and medial-

lateral, and deliver a current or voltage proportional to the detected pressure 
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[18] (Figure 2.2.2.2.1). They provide detailed information about the 

direction and point of application of the resultant reaction force. They are 

typically rectangular-shaped and sized between 40 cm and 60 cm and can 

provide accurate gait temporal parameters such as ICs.   

 

Figure 2.2.2.2.1: 3D force platform with the direction of the measurable forces and moments [19]. 

• Pressure insoles: Specialized footwear components designed to measure 

and analyse pressure distribution across the soles of the feet (Figure 

2.2.2.2.2). These insoles are equipped with sensors that capture various data 

related to the forces exerted on different areas of the foot while walking, 

running, or standing. Sensors are typically embedded in a flexible plastic 

substrate to adhere to the foot shape. Pressure insoles can collect real-time 

data while the user is moving or standing. 
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Figure 2.2.2.2.2: Illustration of a pressure insole with 16 sensing elements [20]. 

• Instrumented mat: Device used to measure and analyse various aspects of 

foot pressure and gait dynamics. This mat is embedded with sensors and 

electronics to capture detailed data about the forces and pressure distribution 

exerted by the feet on different areas of the mat’s surface. They offer the 

possibility of measuring temporal and spatial parameters, but they are very 

bulky and not easily portable, so that they cannot be used in outside 

laboratory settings. 

• Magneto Inertial Measurement Units (MIMUs): wearable devices 

composed by orthogonally mounted tri-axis sensors: a gyroscope which 

measures the angular rate, an accelerometer which measures the linear and 

gravity acceleration, a magnetometer which measures the magnetic field. 

They are small and lightweight, making them easy to attach to various parts 

of the body. Moreover, they can transmit data wirelessly to a computer or 

mobile device for analysis, allowing for real-time monitoring and feedback. 

The gyroscope suffers from drift over time and the magnetometer is highly 
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affected by the ferromagnetic distortions due to the Earth’s magnetic field 

[21]. 

2.2.3 Role of machine learning in gait studies 

Machine learning (ML), a branch of artificial intelligence, involves developing 

algorithms that can learn from data and make predictions or decisions without being 

explicitly programmed. ML algorithms can be used to classify and recognize 

individuals based on their unique walking patterns. Specifically, in gait analysis ML 

is employed to model a biomechanical system by establishing the relationship 

between input data and outputs [22]. Typically, data pre-processing is necessary. 

The input data consists of raw, multidimensional arrays of size defined by the 

number of observations × the number of data features. The output of the model 

suggests a classification of gait events, activities, or disorders. ML evaluation 

models use an iterative mechanism by means of which the selection of input data is 

divided into training (TRS), validation (VS), and test sets (TS). The model is trained 

using a TRS and validated on a VS to prevent overfitting and perform 

hyperparameters tuning. Finally, the model is tested on unseen TS data, which was 

not used during the training phase. If the model achieves the desired accuracy, the 

process concludes. If not, the model's hyperparameters are adjusted, and the model 

is re-trained and re-evaluated iteratively until a suitable accuracy is reached. 

The most used techniques include supervised learning, unsupervised 

learning, and reinforcement learning [22]. 

 

- Supervised learning: This learning approach requires labelled data. The 

input data is an array of features vector, also called predictors, associated 

to their corresponding label. During training, the learning algorithm infers 
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a function by mapping the training data instance to its corresponding label 

[23]. During training, the model adjusts its parameters to minimize the 

difference between its predictions and the actual labels. Such purpose is 

typically referred to as regression, for continuous outputs, or classification, 

for discrete outputs. In the framework of gait studies, many supervised 

algorithms have been explored: 

I. Support Vector Machine (SVM): SVM has a good potential for 

generalization, even for small datasets, and stability. SVM is based 

on the principle of optimally separating data using hyperplanes and 

can efficiently perform classification tasks even when the data is 

not linearly separable by using kernels. Kernels transform the 

original feature space into a higher-dimensional space.  Although it 

was originally designed to binary classification problems, it can be 

adapted to multi-class classification as well [14]. 

II. k-Nearest Neighbor (k-NN): The k-NN is the simplest and easy to 

implement classification tool which estimates the distance between 

the testing instance and picks the nearest k training vectors for 

average computation. Despite their simplicity in implementation, k-

NNs are computationally expensive in classifying a test instance 

when the training size is large as it requires the estimation of the 

distance between k-nearest neighbors [14]. 

III. Decision Tree (DT): DT is a structure that is used to divide a data 

set containing many records into smaller sets by applying a series 

of decision rules [23], however, they usually fail when the degree 

of task complexity becomes too critical. 
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IV. Random forest (RF): RF is an ensemble of DTs; it builds multiple 

DTs and combines their results to improve overall performance. 

Each tree in the forest votes for a class, and the class with the most 

votes is chosen as the final prediction (Majority Voting). 

V. Artificial Neural Networks (ANN): ANNs are inspired by the 

structure and function of the human brain. They are designed to 

recognize patterns, learn from data, and make decisions or 

predictions based on input data. Training of ANNs use different 

variants of the backpropagation algorithm [22]. 

VI. Naïve Bayes: This classification aims to determine the class of 

presented data to the system by a series of calculations defined 

according to the probability principles [23]. It is based on Bayes' 

Theorem with the “naïve” assumption that the features in a dataset 

are independent of each other, given the class label. 

- Unsupervised learning: Also referred to as clustering, this learning 

process uses unlabelled data. The algorithm is expected to make self-

discoveries designing the relation between various inputs to assess an 

output [22]. Most of the clustering techniques focus on the distance 

between all vector features. Such approaches were less explored in gait 

studies as it is a tedious job to properly identify the learning targets and 

manage a great amount of feature vectors. Therefore, where the relationship 

between different outcomes is ambiguous, certain techniques can be 

employed. For the use of large data sets, it is useful to combine 

classification with some methods for dimensional reduction [22]. 
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- Reinforcement learning: This is the learning process based on data where 

the learning algorithm learns to act in an environment (training data) to 

maximize some notion of cumulative reward [23]. 

2.3 Gait recognition 

Gait recognition, otherwise known as gait signature, is the recognition of some 

salient property, e.g., identity, style of walk, or pathology, based on the coordinated, 

cyclic motions that result in human locomotion [24]. The objective of gait 

recognition is to identify the discriminative features that differentiate people 

according to their style of walking. Gait has proven to be a well-recognized 

biometric modality, enabling the identification of individuals through their unique 

walking style [25]. It is important to stress that the way people walk is a strong 

correlate of their identity, with several studies confirming that both humans and 

machines can recognize individuals just by their gait [26]. The early studies of 

human gait in medical diagnosis and psychological analysis [27], [28], [29] reveal 

that human gait has 24 different components, making it unique to each individual 

when all factors are considered [30].  

Gait recognition can be applied in several fields for different purposes:  

• Surveillance and security: Used for monitoring individuals in a crowd, 

tracking suspects, and verifying identities for access control. 

• Medical applications: In health care, gait recognition aids in diagnosing 

diseases related to gait such as Parkinson’s disease, orthopedic conditions, 

cerebral palsy, and stroke. In rehabilitation, it helps to monitor and analyse 

gait movement patterns of these patients such as stride length, step length, 

stance and swing phase to assess whether improvement has taken place.  
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• Biometrics: Used as a biometric identifier, similarly to fingerprints or facial 

recognition. 

To recognize individuals, the gait recognition system must extract gait features from 

raw data collected during acquisitions (see Section 2.2.2), following a generic 

framework that consists of stages including data acquisition, feature representation, 

dimension reduction or feature selection, and classification [31] (Figure 2.3.1). 

 

Figure 2.3.1: Framework of gait recognition by [31]. 

2.3.1 Current state of the art 

Feature representation (Figure 2.3.1) is the first step for feature extraction. For 

video-based gait recognition, gait features are typically categorized into two main 

approaches: model-based approaches and model-free approaches (also known as 

appearance-based). 

2.3.1.1 Model-based systems 

In model-based systems, gait signatures are derived by modelling or tracking of 

body components (such as limbs, legs, arms, and thighs), which are employed for 

identification or verification of an individual. Model-based approaches can be 

divided into two categories: pose-based and sensor-based [18]. Both categories use 

a framework that relies on a stick-figure model to represent the human body. They 

use static and/or dynamic features that include, stride and cadence, distances of 

human body parts, length of body parts, height and joint angles between sets of 

rigid parts or from motion capture data. Model-based methods are easy to 

understand and are view-invariant, scale invariant and are not affected by 

background cluttering and noise, leading to more efficient representations. 
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However, these methods are usually more complex and computational expensive 

than model-free approaches, as it involves calculating key points in each frame. 

The evolution of model-based gait recognition methods has been marked by several 

key contributions over the years. The first model-based feature representation 

approach is proposed by BenAbdelkader et al. [32], as they modelled the human 

body using two structural stride parameters, stride length and cadence, from the gait 

video for recognizing individuals. Bouchrika et al. [33] proposed a motion model 

using the elliptic Fourier descriptors to extract features from human joints and used 

them for person identification. To study and verify the importance of arm motion 

for recognition, Tafazzoli and Safabakhsh [34] proposed a model-based method for 

gait recognition based on the leg and arm movement. To create a model based on 

the movement of body parts, they employed active contour and Hough transform 

using anatomical facts. Yoo et al. [35] introduced a back-propagation neural 

network for automated gait recognition. Their method involved extracting nine 

body coordinates from silhouette images to form a 2D stick figure. Ten features 

were then derived from these figures and used by the neural network for 

recognition. To tackle view angle variation problem of 2D video-based gait 

recognition, Wang et al. [36] used second-generation Kinect V2 tool to create 3D 

skeleton-based gait database. Static and dynamic features were extracted for 

recognition of the person. Zhao et al. [37] proposed an approach based on 3D gait 

recognition. In this work 3D human model is created on video sequences taken from 

multiple cameras. Two feature sets are generated, static feature set including the 

length of key segments, and a dynamic feature set including motion trajectories of 

lower limb for recognition. In recent years, the ongoing advancements in model-

based gait recognition reflect a trend towards integrating deep learning, multi-view 
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approaches, and real-time processing to enhance recognition performance and 

applicability. Liao et al. [38] proposed a pose-based model-based gait recognition 

method in which they used a CNN model to extract features. Bari and Gavrilova 

[39] proposed a new architecture designed using deep learning neural network for 

a highly accurate and robust Kinect-based gait recognition. 

2.3.1.2 Model-free systems 

In model-free gait recognition methods, no prior geometric model of the human 

body is formed. Instead, the focus is on the shape or movement characteristics of 

the human body's silhouettes. A silhouette is a solid shape and single black-coloured 

image of a person. Features are extracted directly from the binary outline of the gait, 

making the approach insensitive to colour and texture. The typical framework for a 

model-free approach involves several steps: detecting the subject in the captured 

video, removing the background using techniques like minimum or maximum 

filters, or histogram filtering, extracting the silhouette, and then applying classifiers 

for recognition [18]. This method is computationally less demanding compared to 

model-based approaches and is generally unaffected by the quality of the silhouette. 

However, while effective, model-free methods tend to be less robust to changes in 

viewpoint, appearance (such as different clothing, carried objects, or types of 

shoes), and scale. 

In the last few decades, many model-free feature representation methods have been 

developed. Bobick and Davis [40] propose the motion-energy image (MEI) and 

motion-history image (MHI) to convert the temporal sequence of silhouettes to a 

2D signal template. Han and Bhanu [41] employ the idea of MEI and propose the 

Gait Energy Image (GEI) for individual recognition for the first time. Liu and Zheng 

[42] introduced another gait representation method named Gait History Image 
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(GHI). Then, they compared GHI with GEI and several other temporal templates. 

Kale et al. [43] extracted the silhouette width of each image row from five key 

frames in a video sequence and modelled this with a Hidden Markov Model 

(HMM). Later, Kale et al. [27] combine the entire silhouette and the width of outer 

contour silhouette as gait features. Recently, Sheth et al. [44] proposed a CNN 

model with 8 layers to extract gait features from GEIs. Alsaggaf et al. [45] 

employed a Cycle Generative Adversarial Networks (CCGANs) approach to 

recognize individuals by their gait patterns without the need for additional support. 

Their method converts a distorted GEI caused by various factors into a normal GEI. 

In Guo et al. study [46], a Gabor filter is used to extract gait features from GEIs, 

since it can extract features of different directions and scales. A linear discriminant 

analysis (LDA) is used to tackle the problem that the feature dimension restricts the 

process. Finally, the improved local coupled extreme learning machine based on 

particle swarm optimization is used for the classification process of the extracted 

features of the gait. 

This thesis proposes a model-based, marker-less method for gait recognition. The 

marker-less approach is chosen for its suitability in surveillance applications, while 

a model-based method is endorsed for being easy to understand, view- and scale-

invariant, and less affected by background noise.  
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3 Data collection 

This chapter describes the process of data collection, offering an explanation of the 

systems employed during the experiments. It includes a detailed account of subject 

selection, the setup, and the experimental protocol designed to capture the required 

data.  

3.1 Experimental Setup 

For the thesis purposes, the experimental setup (Figure 3.1.1) included: 

- a green carpet, approximately 5 meters long and 1.45 meters wide.  

- two Azure Kinect sensors (Microsoft Corporation), positioned laterally, 

about 2 meters from the midpoint line of the carpet, at a height of 

approximately 1.1 meters. 

- one Vicon VUE camera (Vicon Motion Systems Ltd). The camera is placed 

3 meters from the end of the carpet at a height of about 1 meter. 

Both types of RGB cameras are sensitive to visible light, allowing them to function 

without the need for infrared markers. Here are some specifications: 

o Azure Kinect DK: This device captures visual data using a 12MP RGB 

camera that has a frame rate of 30 frames per second, and a resolution of 

1280 x 720. It is well-suited for capturing detailed visual information with 

accurate colour representation [47]. 

o Vicon camera:  This device captures visual data using a 2.1MP RGB 

camera and has a higher frame rate of 60 frames per seconds, and a 

resolution of 1920 x 1080 [48].  
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Figure 3.1.1: The experimental setup in the laboratory of the Polytechnic of Turin with a) Azure Kinect sensors, 

b) Vicon VUE camera, and c) green carpet. 

3.2 Experimental protocol 

Fifteen healthy subjects (Table 3.2.1) were chosen to be studied in three different 

walking speed conditions. 
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Subject 
Gender 

(M/F) 

Age 

(y.o.) 

Height 

(cm) 

Weight 

(kg) 

Shoe size 

(EU) 

Waist 

width (cm) 

0 M 24 179 70 46 32.5 

1 F 26 173 58 39 26 

2 F 28 170 70 39 26 

3 F 24 165 52 39 28.5 

4 M 33 180 77 43 31 

5 M 22 187 74 44 29 

6 M 26 184 77 43 29 

7 M 26 178 73 43.5 29 

8 F 26 172 62 40 25 

9 F 26 155 49 36 23 

10 F 25 165 58 36 22 

11 M 23 176 79 42 30 

12 F 23 168 57 38 25 

13 F 26 170 63 39 26 

14 M 30 180 80 45 27 

Mean 53% (F) 25,9 173,5 66,6 40,6 26,8 

Std. dev. - 2,8 8,4 10,2 3,2 2,7 

Table 3.2.1: Summary of participants recruited for acquisitions. 

Each subject performed four tasks, called Tests. Each test is composed of ten 

repetitions, called Trials. Hereafter each test is briefly described. 
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1. Standing (Test 0): Before starting the trials, each subject was asked to stand 

still for at least 2s in front of each one of the cameras. During the acquisition, 

the subject was asked to keep his arms along his hips. Such Test allows the 

extraction of the anthropometric parameters for each subject. 

2. Walk at comfortable speed (Test 1): The participant walked at his own 

comfortable pace along a straight 5-meter path. Such Test is repeated 10 

times (Trials). 

3. Walk at slower speed (Test 2): The participant walked at a slower pace 

than his comfortable pace along a straight 5-meter path. Such Test is 

repeated 10 times (Trials). 

4. Walk at faster speed (Test 3): The participant walked as fast as he could 

along a straight 5-meter path. Such Test is repeated 10 times (Trials). 

Participants were requested to wear shorts and a skinny T-shirt, and they were 

instructed to walk along the midpoint line of the green carpet towards the Vicon 

RGB camera. 
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4 Methods 

As mentioned in the previous chapters, the aim of this thesis was to develop a 

biomechanically driven marker-less method based on multiple RGB cameras for 

recognizing people by their gait. In particular, the proposed method consists of 

several phases as illustrated in the block diagram below (Figure 4.1). 

 

Figure 4.1: General overview of the proposed method for people recognition by their gait. 

All the steps of the method were performed using MATLAB (MATLAB version 

R2022b. Natick, MA: The MathWorks, Inc., 2022) except for joint centres 

detection, which was performed using Python (version 3.11). 

4.1 MoveNet 

Developed by Google in Python in 2021, MoveNet is a bottom-up estimation 

model, which means that it first detects the human joints of all persons, and then 

assemble these joints into poses for each person using heatmaps [49]. Human joints 
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are referred to as keypoints. The model was trained on healthy subjects using COCO 

dataset [50] and another Google’s internal dataset called Active. COCO dataset is 

the standard benchmark dataset for detection, while Active was produced by 

labelling keypoints (using COCO’s standard 17 keypoints) on fitness and dance 

videos from YouTube. The seventeen keypoints include the nose, eyes, ears, 

shoulders, elbows, wrists, hips, knees, and ankles on both sides of the body. 

The MoveNet architecture (Figure 4.1.1) uses a bottom-up approach for human 

pose estimation, detecting 17 keypoints through heatmaps. Its backbone is 

MobileNetV2 combined with a Feature Pyramid Network for high-resolution 

outputs. The architecture includes four prediction heads: a person center heatmap, 

keypoint regression, keypoint heatmap, and a 2D offset field, all processed in 

parallel. Heatmaps contain confidence levels for each joint: once a person center 

heatmap is prepared to identify each person, the location with the highest score is 

selected [51]. MoveNet can identify up to six skeletons in an image, predicting 

seventeen keypoints for each skeleton.  

MoveNet has two variants: Lightning and Thunder. The former can be used for 

applications that require speed and the latter for applications that require accuracy. 

The two models differ in input size and depth multiplier. In terms of input, 

Lightning receives a video or an image of a fixed size (192×192) and three channels 

and employs 1.0 depth multiplier. In contrast, Thunder receives an input of the size 

256×256 and three channels and employs 1.75 depth multiplier. The depth 

multiplier changes the number of channels of the input video/image, which 

generally adopts the red-green-blue (RGB) format. Yet feature maps can also be 

regarded as one channel in each layer. Meanwhile, Thunder has 1.75 times more 

layers for deep learning than Lightning [52].  
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MoveNet is hosted on Tensorflow-Hub, an open repository of trained ML models 

exploitable for fine-tuning. 

 

 

Figure 4.1.1: MoveNet architecture from [51]. 

4.2 Joint centres detection 

The first step of the proposed method involved the extraction of human keypoints. 

This required a pose estimation algorithm. Among the various available algorithms, 

MoveNet was chosen for its superior accuracy in identifying keypoints and ease of 

use. In this thesis, the Lightning variant was chosen for its efficiency [53].  

To enhance precision, the method involved merging the six detected skeletons. The 

confidence levels for each keypoint across the six skeletons were analysed, and the 

keypoints with the highest confidence levels were selected. Once all keypoints were 

detected, the algorithm assembled these joints into complete poses for each person. 

The final output was a set of coordinates corresponding to the selected keypoints. 

However, some limitations were noted during its application. Since MoveNet was 

trained specifically on the frontal plane, errors occurred with images acquired on 
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the sagittal plane. Additionally, frontal plane acquisitions were sometimes affected 

by errors when the subject moved close the frontal RGB camera or due to laboratory 

lighting and objects in the background that could not be removed from the 

environment.  

For this reason, manual labelling was performed. The first steps differ for sagittal 

and frontal plane. For the sagittal plane, before manually identifying wrong 

keypoints, the distance between adjacent keypoints was computed for each frame 

(e.g., the distance between shoulder and elbow). The average distance between 

adjacent keypoints was then calculated and each distance value was compared to 

the corresponding mean value ± the interquartile range. Keypoints that had a 

distance value higher than their corresponding average value were removed. Once 

all the distances have been examined, a linear interpolation was computed to handle 

the missing values. 

An additional control was performed by plotting each keypoint individually to 

verify their accuracy (Figure 4.2.1). Corrections were applied exclusively to the 

keypoints on the same side as the acquisition plane.  
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Figure 4.2.1: MATLAB interface for adjusting manually the wrong keypoint. In title there is the subject’s ID, 

the trial number and which keypoint the user must adjust. 

New keypoint coordinates were organized in a MATLAB struct which was then 

saved as .json file. 

For the frontal plane, where MoveNet performs more effectively, wrong keypoints 

were identified directly from the images provided by MoveNet. Keypoints were 

manually inserted and organized in a MATLAB struct which was then saved as .json 

file. 

4.3 Gait cycle segmentation 

Once all the keypoints were adjusted, the next step was to segment the gait cycle 

into individual strides by identifying two consecutive foot contacts with the ground. 
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The number of strides identified varied depending on the subject and on the speed 

at which the subject walked.  

4.3.1 Sagittal plane 

The heel strikes identification on the sagittal plane was based on the ankle’s 

coordinates captured during walking [54]. For this purpose, the derivative of the 

ankle coordinates was computed to capture the rate of change in position. A 4th order 

Butterworth filter was applied to the ankle derivatives to remove noise and smooth 

the data. The cutoff frequency for the filter was set to 5 Hz. If the data corresponded 

to the left side, the filtered derivative was inverted to standardize the detection 

process. A threshold was defined to detect the stance phase of the gait, that 

happened when the derivative was below this threshold. Continuous regions where 

the derivative remains below the threshold were identified, indicating the foot was 

in contact with the ground. ICs were extracted from the stance phases. These points 

corresponded to the frames where the heel strike occurred. Spurious initial contact 

points were removed based on the temporal distance between consecutive points to 

ensure only valid strides were identified. In case the last contact point was not 

automatically selected, it was manually identified.  

4.3.2 Frontal plane 

Heel strikes on the frontal plane were manually identified. The choice was to select 

the same heel contacts identified on the sagittal plane, ensuring consistency in the 

identification process across different planes. 

4.4 Features for gait recognition 

After segmenting the gait cycle, a comprehensive set of gait features was calculated 

for each stride of each trial. Specifically, 48 gait features were derived from the 
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sagittal plane and 57 gait features were extracted from the frontal plane, resulting 

in a total of 105 gait features per stride for each trial. These features included time-

domain features, cross-correlation between limbs, synchrony and asymmetry 

indices, and frequency-domain features. Some features were extracted both from 

the frontal and sagittal plane, while others were specific to one plane. 

4.4.1 Time-domain features 

According to [55] and [56], some of the most relevant biomechanical parameters 

used for gait analysis in a healthy adult population are spatio-temporal features and 

joint angles. 

4.4.1.1 Spatio-temporal parameters 

Spatio-temporal parameters used in the present study included stride length, stride 

duration and stride velocity. These were calculated by taking the ICs identified 

through gait cycle segmentation (see Section 4.3.1) as input. The stride length was 

computed as the Euclidean distance between two consecutive ICs of the same foot. 

The stride duration was determined by dividing the number of frames occurring 

between two consecutive ICs of the same foot by the camera’s sampling rate. 

Finally, the stride velocity was calculated as the stride length divided by the stride 

duration. Additionally, parameters were normalized by the subject’s leg length to 

account for anthropometric differences between subjects. 

ICs identification was crucial for determining the total number of strides per trial 

since each subsequent feature was computed stride-by-stride. 

Step length was computed as the Euclidean distance between the ICs of the 

contralateral ankles, right to left for a right step and vice versa for a left step. Step 

duration was determined by the absolute difference between the frame numbers 

corresponding to these two contralateral ICs divided by the camera’s sampling rate. 
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Again, parameters are normalized by the subject’s leg length to account for 

anthropometric differences between subjects. 

For calculating stride length, stride duration and stride velocity on the frontal plane, 

the same low-pass Butterworth filter is applied (see in Section 4.3.1) to the ankle 

and hip coordinates to remove high-frequency noise. The hip and ankle x-

coordinates were normalized by the shoulder distance, while the y-coordinates were 

normalized by the subject’s height. Depending on the IC side, stride lengths, 

durations, and velocities for both left and right strides using the filtered and 

normalized ankle coordinates and IC events are computed. Stride length was 

calculated as the Euclidean distance between the ankle positions at two consecutive 

IC events; stride duration was calculated as the difference of the frame numbers 

corresponding to the two consecutive IC events divided by the camera’s sampling 

rate and stride velocity was calculated by dividing the stride length by the stride 

duration. Stride length and velocity were normalized by the subject's average leg 

length to account for individual differences in leg length. 

4.4.1.2 Joint angles estimation 

4.4.1.2.1 Sagittal plane 

On the sagittal plane, the head inclination, the trunk flexion, the hip and knee angles 

were estimated for each stride. For left strides, joint coordinates of the left side of 

acquisition were used, and vice versa for right strides. 

The joint angle trajectories throughout the gait cycle were computed as follows: 
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o The head inclination angle was calculated as the supplementary angle 

relative to the angle formed by the SHOULDER-HIP normalized vector a1 

(trunk axis) and the EAR-SHOULDER normalized vector a2 (head axis). 

𝑎1 =  
𝑆𝐻𝑂𝑈𝐿𝐷𝐸𝑅 − 𝐻𝐼𝑃

|𝑆𝐻𝑂𝑈𝐿𝐷𝐸𝑅 − 𝐻𝐼𝑃|
 (1) 

𝑎2 =  
𝐸𝐴𝑅 − 𝑆𝐻𝑂𝑈𝐿𝐷𝐸𝑅

|𝐸𝐴𝑅 − 𝑆𝐻𝑂𝑈𝐿𝐷𝐸𝑅|
 (2) 

𝜃ℎ𝑒𝑎𝑑 = 180° − cos−1(−𝑎1 ∙ 𝑎2) (3) 

o The trunk flexion angle was calculated as the inclination between the 

vertical axis a0 = [1 0 0] and the trunk axis. 

𝜃𝑡𝑟𝑢𝑛𝑘 = cos−1(𝑎0 ∙ 𝑎1) (4) 

The elbow angle was calculated as the inclination between the SHOULDER-

ELBOW normalized vector a3 (upper arm axis) and the WRIST-ELBOW 

normalized vector a4 (forearm axis). 

𝑎3 =
𝑆𝐻𝑂𝑈𝐿𝐷𝐸𝑅 − 𝐸𝐿𝐵𝑂𝑊

|𝑆𝐻𝑂𝑈𝐿𝐷𝐸𝑅 − 𝐸𝐿𝐵𝑂𝑊|
 (5) 

𝑎4 =
𝑊𝑅𝐼𝑆𝑇 − 𝐸𝐿𝐵𝑂𝑊

|𝑊𝑅𝐼𝑆𝑇 − 𝐸𝐿𝐵𝑂𝑊|
 (6) 

𝜃𝑒𝑙𝑏𝑜𝑤 = cos−1(𝑎4 ∙ 𝑎3) (7) 
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o The hip angle was calculated as 90 degrees minus the thigh angle. The 

thigh angle was computed as the inclination between the hip and the knee. 

𝛼𝑡ℎ𝑖𝑔ℎ = tan−1 (−
ℎ𝑖𝑝𝑦 − 𝑘𝑛𝑒𝑒𝑦

ℎ𝑖𝑝𝑥 − 𝑘𝑛𝑒𝑒𝑥
) (8) 

where ℎ𝑖𝑝𝑦 and ℎ𝑖𝑝𝑥 represent the y- and x-coordinate of the hip, 

respectively, and 𝑘𝑛𝑒𝑒𝑦 and 𝑘𝑛𝑒𝑒𝑥 represent the y- and x-coordinate of the 

knee, respectively. 

The thigh angle was converted from radiant to degree. 

o The knee angle was calculated as the difference between the thigh and 

shank angles. The shank angle was computed as the inclination between 

the knee and the ankle. 

𝛼𝑠ℎ𝑎𝑛𝑘 = tan−1 (−
𝑎𝑛𝑘𝑙𝑒𝑦 − 𝑘𝑛𝑒𝑒𝑦

𝑎𝑛𝑘𝑙𝑒𝑥 − 𝑘𝑛𝑒𝑒𝑥
) (9) 

where 𝑎𝑛𝑘𝑙𝑒𝑦 and 𝑎𝑛𝑘𝑙𝑒𝑥 represent the y- and x-coordinate of the ankle, 

respectively, and 𝑘𝑛𝑒𝑒𝑦 and 𝑘𝑛𝑒𝑒𝑥 represent the y- and x-coordinate of the 

knee, respectively. 

After converting from radiant to degrees, the knee angle was computed: 

𝜃𝑘𝑛𝑒𝑒 = 𝛼𝑡ℎ𝑖𝑔ℎ − 𝛼𝑠ℎ𝑎𝑛𝑘 (10) 

Each stride was made of a different number of frames, so the resulting angles were 

referred to the percentage of the gait cycle (0-100%) through spline interpolation. 



44 
 

The kinematic curve was then filtered by applying a 4th-order Butterworth filter 

with a cutoff frequency of 5 Hz. For each stride, the interquartile range (IQR) of 

each angle was calculated, as shown below. 

𝐼𝑄𝑅 =  𝑄3 − 𝑄1 (11) 

where Q1 represents the first quartile (25th percentile) of the angles and Q3 

represents the third quartile (75th percentile) of the angles. 

Additionally, according to [57], the arm swing angle was another typical feature of 

human walking. This feature was computed processing the kinematic data of 

shoulder, wrist and hip to determine the swing angle, its velocity and sway 

characteristics over a specified number of frames. 

First, the wrist, hip, and shoulder coordinates were adjusted relative to the 

shoulder's starting position. The wrist velocity was then calculated and its 95th 

percentile was determined for both x and y coordinates. To determine the anterior 

and posterior sway, the distance between the wrist and hip along the y-axis was 

calculated. This distance was then filtered to remove noise by applying a 4th order 

Butterworth filter with a cutoff frequency of 5 Hz.  

Anterior and posterior swing phases were identified based on the sign of the 

distance: for right strides, anterior sway occurs when the distance is greater than 

zero, while posterior sway when the distance is less than zero. For left strides, the 

conditions were reversed. Indices marking the start and end of these phases were 

determined, allowing the sway angles at key points to be computed as the dot 

product between a1 and a2, which were the HIP-SHOULDER and WRIST-

SHOULDER normalized vectors, respectively. The total arm swing angle over the 

gait cycle was then interpolated.  
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Next, the angular velocity of the swing angle was calculated and its 95th percentile 

was determined. The peaks of the anterior and posterior sway angles were identified 

and averaged. Finally, the total arm swing angle was calculated by summing the 

maximum anterior and posterior sway angles. 

4.4.1.2.2 Frontal plane  

On the frontal plane, the head inclination, the trunk oscillation, the pelvis inclination 

and both the right and left elbow, shoulder, hip and knee angles were estimated for 

each stride. The joint angle trajectories throughout the gait cycle were computed as 

follows: 

o The head inclination angle was calculated as the inclination between the 

trunk axis a13 and the vector from the midpoint of the shoulders (MPSH) 

to the nose a4. The trunk axis was defined as the vector between the MPSH 

and the midpoint of the hip (MPP). 

𝑎4 =
𝑀𝑃𝑆𝐻 − 𝑁𝑂𝑆𝐸

|𝑀𝑃𝑆𝐻 − 𝑁𝑂𝑆𝐸|
 (12) 

𝑎13 =
𝑀𝑃𝑆𝐻 − 𝑀𝑃𝑃

|𝑀𝑃𝑆𝐻 − 𝑀𝑃𝑃|
 (13) 

𝜃ℎ𝑒𝑎𝑑 = cos−1(𝑎13 ∙ (−𝑎4)) (14) 

o The trunk oscillation angle was calculated as the inclination between the 

vertical axis [0 1 0] a2 and trunk axis a13. 

𝜃𝑡𝑟𝑢𝑛𝑘 = cos−1(−𝑎13 ∙ 𝑎2) (15) 
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o The right elbow angle was calculated as the inclination between the right 

upper arm and the right forearm.  

The upper arm was the RIGHT SHOULDER (RS) - RIGHT ELBOW (RE) 

normalized vector a3 and the forearm was the RIGHT WRIST (RW) - 

RIGHT ELBOW (RE) normalized vector a8.  

𝑎3 =
𝑅𝑆 − 𝑅𝐸

|𝑅𝑆 − 𝑅𝐸|
 (16) 

𝑎8 =
𝑅𝑊 − 𝑅𝐸

|𝑅𝑊 − 𝑅𝐸|
 (17) 

𝜃𝑒𝑙𝑏𝑜𝑤𝑅
=  cos−1(𝑎3 ∙ 𝑎8) (18) 

o The right shoulder angle was calculated as the inclination between RS – 

LEFT SHOULDER (LS) normalized vector a10 and the right upper arm a3. 

𝑎10 =  
𝑅𝑆 − 𝐿𝑆

|𝑅𝑆 − 𝐿𝑆|
 (19) 

𝜃𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑅
= cos−1(𝑎10 ∙ 𝑎3) (20) 

o The pelvis inclination angle was defined as the RIGHT HIP (RH) – LEFT 

HIP (LH) normalized vector a5 and the horizontal axis [1 0 0] a6. 

𝑎5 =
𝑅𝐻 − 𝐿𝐻

|𝑅𝐻 − 𝐿𝐻|
 (21) 

𝜃𝑝𝑒𝑙𝑣𝑖𝑠 = cos−1(𝑎6 ∙ 𝑎5) (22) 
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o The right hip angle was calculated as the inclination between the LH – RH 

normalized vector a11 and the RH – RIGHT KNEE (RK) normalized vector 

a15.  

𝑎11 =
𝐿𝐻 − 𝑅𝐻

|𝐿𝐻 − 𝑅𝐻|
 (23) 

𝑎15 =
𝑅𝐻 − 𝑅𝐾

|𝑅𝐻 − 𝑅𝐾|
 (24) 

𝜃ℎ𝑖𝑝𝑅
= cos−1(𝑎11 ∙ (−𝑎15)) (25) 

o The right knee angle was calculated as the inclination between a15 and the 

ANKLE R (ANKR) – RK normalized vector a16. 

𝑎16 =
𝐴𝑁𝐾𝑅 − 𝑅𝐾

|𝐴𝑁𝐾𝑅 − 𝑅𝐾|
 (26) 

𝜃𝑘𝑛𝑒𝑒 = cos−1(𝑎15 ∙ 𝑎16) (27) 

The same computations were performed for the left-side angles. 

Since each stride contained a different number of frames, the resulting angles were 

normalized to a percentage of the gait cycle (0-100%) using spline interpolation. 

Subsequently, the kinematic curve was filtered using a 4th order Butterworth filter 

with a cutoff frequency of 5 Hz. For each stride, the IQR of each angle was 

calculated, as shown in Equation (11). 

4.4.1.3 Cross-correlation between limbs 

During gait, the movements of limbs are not independent but are synchronized in a 

unique, individual-specific manner. To capture this synchronization, cross-

correlation analysis was performed between various limb angle pairs such as the 

shoulder and hip, shoulder and elbow, neck and hip, shoulder to shoulder, and hip 

to knee, both on sagittal and frontal plane. This was done by extracting three key 
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parameters from the cross-correlation between these angles: the maximum value in 

the cross-correlation sequence and its corresponding index, the lag at which this 

maximum value occurred, and the value of the cross-correlation at zero lag, which 

was determined by indexing into the centre of the cross-correlation sequence. 

4.4.1.4 Synchrony and symmetry indices 

According to [58], four coefficients are commonly used to measure symmetry: ratio 

index, symmetry index, gait asymmetry and symmetry angle.  

In this thesis, the gait asymmetry (GA) index was used to evaluate symmetry 

between the steps. Specifically, on the sagittal plane, the GA was calculated 

between the right and left steps of both the acquisition sides, with the right side 

chosen for analysis due to its higher significance. The equation for GA is GA: 

𝐺𝐴 (%) =  ln (
𝑋𝑅

𝑋𝐿
) ∗ 100 (28) 

where 𝑋𝑅 and 𝑋𝐿 are the values of the right and left steps, respectively. 

According to [57], the absolute symmetry angle (ASA) was used to evaluate the 

asymmetry between right and left limbs. ASA determines the asymmetry between 

right and left step lengths, step durations, and anterior sways.  

The equation for ASA is (29): 

𝐴𝑆𝐴 (%) =  |
45° − tan−1 (

𝑋𝑀𝑂𝑅𝐸

𝑋𝐿𝐸𝑆𝑆
)

90°
| ∗ 100 (29) 

where 𝑋𝑀𝑂𝑅𝐸 and 𝑋𝐿𝐸𝑆𝑆 are the parameter values associated with the major and 

minor step lengths, step durations, and anterior sways. 

Considering the frontal plane, the synchrony between the right arm and the left leg 

and the left arm and the right leg was evaluated using the synchrony index (SI). 
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The SI was measured through the Pearson’s correlation coefficient ρ [57] using the 

function corrcoeff.m. The formula for ρ is (30): 

𝜌(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (30) 

where X and Y are the arm segment, calculated as the Euclidean distance between 

the right/left shoulder and right/left wrist, and the leg segment, calculated as the 

Euclidean distance between the left/right hip and the left/right ankle, respectively.  

4.4.2 Frequency-domain features 

To enhance discriminative power between subjects in gait recognition, specific 

frequency domain features were evaluated for different joints in both the sagittal 

and frontal planes. These features included the dominant frequency, peak 

amplitude, and full-width at half maximum (FWHM). The evaluation was 

conducted for both the x and y coordinates of the wrist in the sagittal plane and the 

head and pelvis in the frontal plane. Additionally, the wrist amplitude was evaluated 

in the frontal plane. 

• Dominant Frequency: the primary frequency at which the movement occurs. 

• Peak Amplitude: the maximum amplitude of the dominant frequency, 

indicating the intensity of the movement. 

• Full-Width at Half Maximum (FWHM): the width of the frequency band at 

half of the peak amplitude, providing insight into the variability of the 

movement frequency. 

First, the Power Spectral Density (PSD) of both x and y coordinate trajectories of 

the wrist, head, and pelvis was calculated using Welch’s method (pwelch.m). A 

Hamming window (hamming.m) equal to the length of the trajectory was applied to 

reduce spectral leakage when performing the Fourier transform. The overlap was 
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set to 0, meaning that no overlap was used between segments, and the number of 

FFT points (NFFT) was set to twice the length of the input trajectory to improve 

the frequency resolution in the PSD estimate. Then, the PSD and the corresponding 

frequency values were used to determine the dominant frequency, the peak 

amplitude, and the FWHM of the peak using the function findpeaks.m. 

These features were evaluated on each trial.  

On the sagittal plane, the wrist coordinates (both x and y) were referred to the 

shoulder coordinates. This transformation aligned the wrist movements with respect 

to the shoulder position, providing a more standardized measurement of wrist 

movement.  

On the frontal plane, the coordinates of the head and pelvis were scaled with respect 

to the trunk axis, aligning these measurements along the body’s central axis. Then, 

the x coordinate was normalized to the subject’s shoulder distance: this 

normalization adjusts for variations in shoulder width between individuals, 

ensuring that the measurement of lateral movements was comparable across 

subjects. The y coordinate was normalized to the subject’s height: this 

normalization accounts for differences in individual height, providing a 

standardized measurement of vertical displacement. 

Similarly to the head and pelvis, first the right and left wrists were scaled with 

respect to the right and left shoulders, then the x and y coordinates of the wrists 

were normalized with respect to the subject’s shoulder distance and height, 

respectively. This ensured that the amplitude of wrists movements was comparable 

across different body sizes and proportions. 
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Additionally, the attenuation coefficient in decibels (dB) between the IQR of the 

head and hip [59] was evaluated stride-by-stride, using the equation (31): 

𝑟 = 20 ∗ log (
𝐼𝑄𝑅ℎ𝑒𝑎𝑑

𝐼𝑄𝑅ℎ𝑖𝑝
) (31) 

4.5 Dataset partitioning 

The following paragraph outlines the steps for the construction of the dataset. The 

data used for training and validating the models consisted of the features previously 

mentioned (see Section 4.4), extracted from 15 participants (see Table 3.2.1) during 

the acquisitions under three different walking conditions (see 3.2). To standardize 

data acquisitions and allow subjects to adjust to the test task, the first three trials of 

each test were rejected for every subject. The dataset was divided into a construction 

set (CS) and a test set (TS). The construction set was used to train and validate the 

models, while the test set was reserved for evaluating the trained model and 

assessing its generalization capabilities. For each walking condition, 5 trials are 

assigned to the CS, while 2 trials are assigned to the TS. By doing so, both the 

construction and test sets included data of all the participants in the dataset.  

To ensure consistency and comparability, the construction set was normalized 

through z-score normalization, which involved transforming the data to have a 

mean of zero and a standard deviation of one. The z-score formula is (32): 

z =  
𝑥 − μ

σ
 (32) 

where 𝑥 is the original feature value, μ is the mean of the feature values in the 

construction set, and σ is the standard deviation of the feature values in the 

construction set. The test set was then normalized using the mean and standard 

deviation obtained from the construction set.  
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Furthermore, at each training stage, the construction set was further split according 

to a 5-folds cross-validation into a training set (TRS) for model training and a 

validation set (VS) to prevent data overfitting during training (Figure 4.5.1). Details 

about the partitioning of the CS will be provided in Section 4.7.1. 

 

Figure 4.5.1: The pie chart represents the partitioning of the dataset into CS and TS with their respective 

percentages relative to the entire dataset. 

4.6 Exploratory data analysis and cleaning 

Exploratory data analysis was performed to visualize and analyse the final dataset 

before its partitioning. Initially, the dataset was visualized using boxplots and 

histograms to identify potential outliers (Figure 4.6.1). Following this, subject-

specific outlier cleaning was conducted using MATLAB's Clean Outlier Data tool 

(Figure 4.6.2). This tool employs statistical techniques to identify and remove data 

points that deviate significantly from the rest of the dataset. It allows customization 

of both the cleaning and detection methods. In this case, the fill outliers (nearest 

value) cleaning method was used, where outliers were replaced with the nearest 

non-outlier value. The quartiles method, with a threshold of 0.5, was applied for 

Construction Set
71,55%

Test Set
28,45%

DATASET PARTITION

Construction Set Test Set
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outlier detection, identifying and adjusting data points that fall outside this specified 

range.  

 

Figure 4.6.1: Example of boxplot for some features of the sagittal plane. 

 

Figure 4.6.2: MATLAB interface of the Clean Outlier Data tool on the left. The circle highlights where the user 

can select the variable to visualize and analyse. On the right, the plot of the variable (IQR of the head on the 

frontal plane) along with its identified outliers (x) and the values used to replace the outliers marked as orange 

dots. Grey lines represent the outlier thresholds of the detection method. 

Additionally, a manual review of all outliers for each subject was conducted to 

verify that they were correctly categorized as outliers due to acquisition or labelling 

errors. If it was determined that the value was influenced by the subject's walking 

style or speed, the value was not replaced. 
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4.7 Feature selection 

Feature selection involves choosing a subset of features from the input data. In this 

thesis, due to the large number of features, identifying the most relevant ones was 

crucial for reducing the algorithm's computational complexity. This process can be 

done in two ways: forward (bottom-up) or backward (top-down). In forward 

selection, features are added one by one in an iterative manner until the optimal set 

of features is identified. In backward selection, the process starts with all features, 

and features are removed iteratively until the optimal subset is determined. For this 

work, a backward selection approach was used with a wrapper feature selection 

method. Wrapper feature selection is a method where different subsets of features 

are evaluated based on the performance of the model, in this case through a top-

down approach that starts with the full set of features and iteratively removes the 

least relevant ones [60]. In particular, features were selected wrapping seven 

classification models: Decision Tree, Discriminant Analysis, Ensemble Classifier, 

Error-Correcting Output Codes (ECOC), k-Nearest Neighbors (k-NN), Naïve 

Bayes Classifier, and Neural Networks. 

4.7.1 Feature selection protocol 

Initially, the Minimum Redundancy Maximum Relevance (mRMR) algorithm was 

used to rank the features of the dataset [60]. The mRMR method prioritizes features 

that are highly relevant to the target variable (maximum relevance) while 

minimizing redundancy among the features (minimum redundancy). After features 

were ranked by the mRMR algorithm, a preliminary feature selection was 

performed by excluding features with mRMR score lower than 0.001, resulting in 

a subset of 19 features (Figure 4.7.1.1).  
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Figure 4.7.1.1: The drop in score between features. Features with a score lower than 0.001 are excluded. 

Then, top-down wrapper feature selection was performed with the specified 

classification models (see Section 4.7).  

At each iteration of the wrapper, cross-validation was performed to ensure 

robustness. The dataset was iteratively divided into training and validation sets, 

with 4 trials used for training and 1 trial for validation. The classification models 

were trained on data of the TRS, and their performance was assessed on the VS in 

terms of accuracy (see Section 4.9). Once completed all the five iterations of the 

cross-validation, the performance achieved by the model at that iteration of the 

wrapper was represented by the average accuracy on the VS. During each iteration 

of the wrapper, the feature set was adjusted by removing features. The algorithm 

stopped when the relative difference in accuracy between consecutive iterations was 

below a set tolerance of 0.001% or until the feature set included only one feature. 

For each model, the selected feature set was the one achieving the highest accuracy. 
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4.7.2 Selected features 

Table 4.7.2.1 provides a list of the 19 features selected through the mRMR feature 

selection process, along with their reference plane and domain, and corresponding 

score. 

Feature Plane Domain Score 

Wrist amplitude (x coordinate) Sagittal Frequency 0.3836 

IQR elbow R Frontal Time 0.3702 

Wrist FWHM (x coordinate) Sagittal Frequency 0.3687 

Cross correlation in 0 shoulder-shoulder Sagittal Time 0.3012 

Wrist R amplitude (y coordinate) Frontal Frequency 0.0140 

IQR head Sagittal Time 0.0045 

95th wrist R velocity (x coordinate) Sagittal Frequency 0.0032 

Wrist L amplitude (x coordinate) Frontal Frequency 0.0030 

Wrist L amplitude (y coordinate) Frontal Frequency 0.0018 

Head max frequency (x coordinate) Frontal Frequency 0.0018 

Cross correlation in 0 hip-knee Sagittal Time 0.0017 

Wrist L velocity (x coordinate) Sagittal Frequency 0.0015 

IQR elbow L Frontal Time 0.0014 

ASA swing Sagittal Time 0.0013 

Swing angle R Sagittal Time 0.0012 

Wrist max frequency (y coordinate) Sagittal Frequency 0.0012 

IQR shoulder L Frontal Time 0.0012 

IQR elbow Sagittal Time 0.0012 
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Feature Plane Domain Score 

IQR knee Sagittal Time 0.0010 

Table 4.7.2.1: List of the 19 selected features with their plane and score. L = left; R = right. Out of the 19 

features, there is a predominance of features belonging to the sagittal plane (12 out of 19) and the time-domain 

(10 out of 19). 

The optimal subset of features could vary depending on the classification model 

used in the wrapper feature selection process. Initially, all models were trained with 

the complete set of 19 features. Through the wrapper feature selection, each model 

iteratively identified the most relevant subset of features, leading to different 

accuracies. Below, Table 4.7.2.2 shows the best feature set identified for each 

model, along with the corresponding accuracy achieved. 

Model MATLAB function Feature subset Accuracy 

Decision tree fitctree 1 43,77% 

Discriminant Analysis 

Classifier 
fitcdiscr 1 61,53% 

ECOC fitcecoc 1 67,43% 

Ensemble classifier fitcensemble 2 56,06% 

k-NN fitcknn 1 62,99% 

Naive Bayes Classifier fitcnb 1 58,44% 

Neural Networks fitcnet 1 55,84% 

Table 4.7.2.2: List of the classification models with their MATLAB function used, the corresponding feature 

subset that achieved the highest accuracy, and the accuracy percentage. The feature subset is denoted as "1" if 

the highest accuracy was achieved using all 19 features. If fewer features were sufficient to achieve the best 

accuracy, the subset is labelled accordingly. 

For the feature selection stage, hyperparameters of the models were set empirically 

by choosing reasonable values, corresponding to the default parameters as reported 

in the documentation of the employed MATLAB routines (Table 4.7.2.2). 
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4.8 Hyperparameters tuning 

Hyperparameters are the parameters set before the training process begins and 

remain unchanged during training. They can be automatically or manually adjusted 

during the tuning phase to enhance the model's performance. 

After evaluating the performance of all models with default parameters, 

hyperparameters were tuned using a grid-search protocol combined with 5-fold 

cross-validation. Grid search is a methodical approach to hyperparameter tuning in 

machine learning models [61]. This method systematically explores multiple 

combinations of model parameters to identify the optimal set. It involves defining 

a parameter grid that outlines all possible parameter combinations to be tested and 

determining an appropriate method for evaluating model performance for each 

combination.  

The hyperparameter tuning process utilized the feature subsets selected in the 

previous stage, ensuring that each model was optimized for performance based on 

the most relevant features identified during feature selection. In the following, a 

description of the hyperparameters tested for each model is provided [61], grouped 

by model type. 

* Decision Tree: 

Tested hyperparameters:  

- Split criterion: 'gdi', 'twoing', 'deviance'. Criteria that measure the 

quality of a split. Gdi stands for Gini’s Diversity Index; twoing refers 

to the Twoing rule; deviance is often used in classification tasks as a 

measure of impurity. 
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- Maximum Number of Splits: 2, 4, 8, 16, 32, 64, 128. This parameter 

controls the depth of the tree; a higher number of splits allows for 

more complex trees.  

- Minimum Leaf Size: from 2 to 10. This parameter sets the smallest 

number of observations allowed in any leaf (final decision node) of 

the tree. 

Optimal hyperparameters configuration:  

➢ Maximum number of splits = 128 

➢ Minimum leaf size = 4 

➢ Criterion = 'deviance' 

* Discriminant Analysis:  

Tested hyperparameters: 

- Discriminant type: 'linear', 'diaglinear' (diagonal linear), 

'pseudolinear', 'quadratic', 'diagquadratic' (diagonal quadratic), 

'pseudoquadratic'. The discriminant type determines how the 

decision boundary is computed based on the distribution of classes. 

- Gamma: from 0 to 1, values linearly spaced (only for ‘linear’ 

discriminant). It controls the regularization strength. 

Optimal hyperparameters configuration:  

➢ Discriminant type: ‘pseudoquadratic’ 

* ECOC: ECOC models were implemented using the Support Vector 

Machine (SVM) template and categorized based on the kernel function 

(linear, radial basis function (RBF), polynomial) for ease of 

computation. Additionally, the Ensemble template was also 

implemented. 
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▪ ECOC with Linear Kernel 

Tested hyperparameters: 

▪ Regularization Parameter: 1, 10, 50. This parameter controls 

the trade-off between achieving a low error on the training 

data and minimizing the model complexity to avoid 

overfitting. 

▪ Coding Methods: 'onevsone', 'denserandom', 'onevsall', 

'ordinal', 'sparserandom'. Coding methods determine how 

binary classifiers are combined to solve multiclass problems. 

Optimal hyperparameters configuration: 

➢ Regularization Parameter: 1 

➢ Coding Method: 'onevsone' 

▪ ECOC with RBF Kernel 

Tested hyperparameters: 

▪ Regularization Parameter: 1, 10, 50. 

▪ Coding Methods: 'onevsone', 'denserandom', 'onevsall', 

'ordinal', 'sparserandom'. 

▪ Kernel scale: 5, 10, 50, 100, 500, 1000. The kernel scale 

affects the spread of the radial basis function (RBF), 

influencing the smoothness of the decision boundary. 

Optimal hyperparameters configuration: 

➢ Regularization Parameter: 10 

➢ Coding Method: 'onevsall' 

➢ Kernel scale: 5 
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▪ ECOC with Polynomial Kernel 

Tested hyperparameters: 

▪ Regularization Parameter: 1, 10, 50. 

▪ Coding Methods: 'onevsone', 'denserandom', 'onevsall', 

'ordinal', 'sparserandom'. 

▪ Polynomial degree: ranged from 2 to 10. This degree 

determines the flexibility of the decision boundary in 

polynomial kernel-based SVM models. 

Optimal hyperparameters configuration:  

➢ Regularization Parameter: 1 

➢ Coding Method: ‘sparserandom’ 

➢ Polynomial degree: 2 

▪ ECOC with Ensemble Template 

Tested hyperparameters: 

▪ Methods: ‘Bag’ (bagging), ‘AdaBoostM1’ (adaptive 

boosting). 

▪ Number of learners: 50, 100, 150, 200. This refers to the 

number of base models (learners) in the ensemble. 

▪ Coding Methods: 'onevsone', 'denserandom', 'onevsall', 

'ordinal', 'sparserandom'. 

Optimal hyperparameters configuration: 

➢ Method: ‘Bag’ 

➢ Number of Learners: 100 

➢ Coding Method: ‘denserandom’ 
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* Ensemble: 

Tested hyperparameters: 

- Aggregation methods: ‘Bag’ (bootstrap aggregating), 

‘AdaBoostM2’ (Adaptive Boosting). 

- Maximum Number of Splits: 1, 71, 141, 211, 281, 351, 421, 491, 561, 

631, 701. 

- Learning rate: 0.1. This parameter determines the contribution of 

each model in the ensemble. 

Optimal hyperparameters configuration:  

➢ Aggregation method = ‘Bag’ 

➢ Maximum number of splits = 141 

* k-NN: 

Tested hyperparameters: 

- k (number of neighbors): ranged from 1 to 30. The value of k 

determines the number of nearest neighbors considered when 

classifying a new data point. 

- Distance metrics: 'cityblock' (Manhattan distance), 'chebychev' 

(maximum coordinate difference), 'correlation' (correlation-based 

distance), 'cosine', 'euclidean', 'hamming', 'jaccard', 

'mahalanobis', 'minkowski', 'seuclidean', 'spearman'. Different 

metrics to measure distance between data points. 

Optimal hyperparameters configuration:  

➢ k = 5 

➢ Distance metric = ‘cityblock’, this distance sums the absolute 

differences across all dimensions. 
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* Naïve Bayes Classifier: 

Tested hyperparameters: 

- Distributions: 'kernel', 'mvmn' (multinomial), 'normal'. 

- Kernel functions: 'box', 'epanechnikov', 'normal', 'triangle' (only 

for ‘kernel’ distribution). These kernel functions determine the shape 

of the curve used to estimate the probability distribution of the data. 

Optimal hyperparameters configuration:  

➢ Distribution = ‘normal’, it assumes data follows a Gaussian 

distribution. 

* Neural Network: 

Tested hyperparameters: 

- Activation functions: 'relu', 'tanh', 'sigmoid', 'none'. 

- Hidden layers size: [10 0 0], [10 10 0], [10 10 10]. The hidden layer 

configuration determines the complexity of the neural network 

model. The first configuration consists of one hidden layer of 10 

neurons, the second configuration two hidden layers of 10 neurons 

each, and the third configuration three hidden layers of 10 neurons 

each. 

- Learning rate: from 0 to 423.73, where these values are obtained by 

dividing the range from 10-5 to 105 by the length of the construction 

set. This parameter controls how much the model's weights are 

adjusted with respect to the loss gradient. 
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Optimal hyperparameters configuration:  

➢ Activation function = ‘relu’ 

➢ Hidden layer size = 2 layers with 10 neurons each 

➢  Learning rate = 1.34*10-4. 

For each above-mentioned model, a custom function was created to perform 

hyperparameter optimization. These functions returned a MATLAB structure 

containing the best model identified during the optimization process, the optimal 

hyperparameter configuration, and the highest accuracy achieved.  

4.9 Testing methodology and metrics 

In the following Section, the methodology employed to test the developed models, 

and the metrics used to measure their performance are presented. 

For each model tested on the TRS, VS, or TS, a confusion matrix (CM) was 

generated. The CM is a cross table that records the number of occurrences between 

two raters: the true classification and the predicted classification. Each column of 

the matrix corresponds to instances of the actual classes, while each row represents 

the instances of the predicted classes, or vice-versa. The CM is crucial for deriving 

key performance metrics, such as accuracy, precision, recall, and F1-score, 

providing in-depth insights into the model's effectiveness across multiple classes. 

The classes are consistently arranged across both rows and columns, so correctly 

classified instances align along the main diagonal from the top left to the bottom 

right. These diagonal elements indicate where the true and predicted classifications 

match, indicating agreement between the two (Figure 4.9.1). 
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Figure 4.9.1: Illustration of a CM for multiclass classification problem, generated using the ECOC model with 

a RBF kernel. The total sum of all elements in the matrix equals the number of observations used in the 

classification task. 

The trained models were evaluated on unseen test data (TS), with the CM serving 

as the basis for calculating several useful evaluation metrics. The performance of 

the models was quantified using four key metrics: accuracy, F1-score, precision and 

recall [62]. In a multiclass setting, these metrics are often computed for each class 

individually, and then averaged to provide overall performance metrics. Two 

common averaging methods are: 

- Macro-Averaging: Calculates the metrics for each class independently and 

then takes the average, giving equal weight to each class. 

- Weighted-Averaging: Computes the metrics for each class and takes a 

weighted average, where the weights are based on the number of instances 

in each class. 

In this thesis, the macro-averaging method was used.  
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Before describing these evaluation metrics, some definitions are necessary: 

 Correctly Classified instances (CC): The diagonal elements of the CM, 

corresponding to the correct predictions for the i-th class. 

 Misclassified instances (MC): The sum of the elements in the column of the 

i-th class, excluding the diagonal element, representing instances that were 

incorrectly classify as the i-th class. 

 False Positives (FP): The sum of the elements in the rows of the i-th class, 

excluding the diagonal element, representing instances of the i-th class that 

were incorrectly predicted as other classes. 

1. Accuracy: Accuracy is defined as the proportion of correctly predicted 

instances among the total instances. Specifically, it measures the ratio of the 

number of correctly classified instances to the total number of instances across 

all classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝐶𝐶𝑖

𝑁
𝑖=1

∑ (𝐶𝐶𝑖 + 𝑀𝐶𝑖 + 𝐹𝑃𝑖)𝑁
𝑖=1

 (33) 

where N is the total number of classes, equal to 15. 

2. Precision: Precision is the ratio of correctly predicted instances of the i-th class 

to the total instances predicted as the i-th class. It measures the accuracy of the 

positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 (%) =
𝐶𝐶𝑖

𝐶𝐶𝑖 + 𝐹𝑃𝑖
∗ 100 (34) 
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3. Recall: Otherwise known as sensitivity, it is the ratio of correctly predicted 

instances of i-th class to the total instances that belong to the i-th class. It 

measures the model's ability to identify all relevant instances of a class. 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 (%) =
𝐶𝐶𝑖

𝐶𝐶𝑖 + 𝑀𝐶𝑖
∗ 100 (35) 

Since this is a multiclass classification task and all the classes must be considered, 

Macro Average Precision and Recall were computed as the arithmetic mean of the 

metrics for individual classes.  

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =  
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑁
𝑖=1

𝑁
 (36) 

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑎𝑙𝑙 (%) =  
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑁
𝑖=1

𝑁
 (37) 

where N is the total number of classes, equal to 15.  

The F1-score with macro-averaging was used to evaluate the models’ overall 

performance across all classes. 

4. F1-score: The F1-score is the harmonic mean of Macro Average Precision and 

Recall, providing a single metric that balances the two.  

𝐹1𝑠𝑐𝑜𝑟𝑒 (%) =  2 ∗
(𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑎𝑙𝑙)
  (38) 

These metrics have been computed for each CM, resulting in 12 sets of evaluation 

metrics being collected. 

 

  



68 
 

5 Results 

In this chapter, the results of the testing stage are presented (see Section 4.9). 

5.1 Classification performance 

For each model, the optimal hyperparameters configuration (see Section 4.8) was 

selected based on the highest accuracy achieved on the VS. Additionally, TRS 

accuracy was assessed to determine if models’ performance was influenced by 

overfitting. As described in Section 4.9, accuracy, recall, precision and F1-score 

were calculated to evaluate the performance for each model. The values for these 

evaluation metrics are presented in Table 5.1.1.  

Model Set 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Decision Tree 

TRS 

VS 

TS 

71,88 

44,62 

40,07 

72,75 

40,19 

40,31 

71,18 

37,16 

39,42 

71,95 

38,86 

39,86 

Discriminant 

Analysis 

TRS 

VS 

TS 

90,08 

63,12 

67,00 

90,64 

64,33 

72,85 

89,89 

62,06 

66,59 

90,26 

63,17 

69,58 

ECOC with 

Ensemble 

template 

TRS 

VS 

TS 

94,77 

75,61 

76,09 

94,95 

74,35 

77,56 

94,66 

73,42 

75,56 

94,80 

73,88 

76,55 

ECOC with 

linear kernel 

TRS 

VS 

TS 

89,68 

67,44 

70,37 

88,25 

68,76 

70,62 

89,53 

69,28 

70,39 

89,65 

69,02 

70,50 
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Model Set 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

ECOC with 

polynomial 

kernel 

TRS 

VS 

TS 

94,37 

69,07 

71,72 

94,35 

71,44 

73,43 

94,32 

71,35 

71,40 

94,33 

71,39 

72,40 

ECOC with 

RBF kernel 

TRS 

VS 

TS 

93,83 

76,42 

78,11 

94,08 

76,96 

79,65 

93,82 

74,99 

77,80 

93,95 

75,96 

78,71 

Ensemble 

TRS 

VS 

TS 

93,30 

69,43 

67,00 

93,76 

67,27 

64,09 

93,75 

66,45 

64,21 

93,76 

66,86 

64,15 

k-NN 

TRS 

VS 

TS 

81,92 

67,56 

72,39 

83,58 

71,88 

74,81 

81,64 

69,47 

72,04 

82,60 

70,66 

73,40 

Naïve Bayes 

Classifier 

TRS 

VS 

TS 

68,94 

58,44 

59,93 

71,37 

61,72 

64,42 

68,61 

58,82 

59,90 

69,96 

60,24 

62,08 

Neural 

Network 

TRS 

VS 

TS 

75,50 

67,02 

65,99 

75,42 

67,85 

66,71 

75,25 

67,34 

65,68 

75,33 

67,59 

66,19 

Table 5.1.1:Values of the adopted classification metrics for the subjects’ classification task obtained by each 

model on the complete dataset. 

For each model, the values of each metric over the three datasets are aggregated 

to derive the standard deviation values. These values are used to draw a bar diagram 

to allow a faster comparison between the performance of different models (Figure 

5.1.1).  
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Figure 5.1.1: Bar diagram that sums up the classification performance of the models on the complete dataset. 

The bars display the TS values ± standard deviation of the TRS, VS and TS. Each set of bars represents the 

corresponding metric values for each of the 10 models.  

To assess whether the models performed consistently across individual subjects, an 

analysis of the recognition percentages for each model on a per-subject basis was 

performed. This analysis revealed notable variations in recognition performance 

among subjects, indicating that the models did not perform identically across all 

individuals. Figure 5.1.2 illustrates the recognition performance of all models for 

each subject. To allow a better comprehension of the performance, Figure 5.1.3 

shows the average recognition percentages of all models for each subject. 
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Figure 5.1.2: Performance of each model across different subjects. Each group of bars denotes the values of 

the corresponding percentages for each of the ten classification models.  

 

 

Figure 5.1.3: Averaged recognition performance in percentage across different subjects. Each bar represents 

the average value between models for each subject. 
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The study was also conducted on each of the three speeds to evaluate how the 

models performed depending on the speed range.  

Table 5.1.2,  Table 5.1.3, and Table 5.1.4 represent the values of accuracy, precision, 

recall, and F1-score obtained for normal speed, slow speed, and fast speed datasets 

respectively. 

Normal speed 

Model Set 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

Decision 

Tree 

TRS 

VS 

TS 

76,58 

41,04 

31,25 

80,27 

24,67 

33,24 

76,63 

23,89 

31,07 

78,40 

24,27 

32,12 

Discriminant 

Analysis 

TRS 

VS 

TS 

85,27 

73,95 

72,92 

87,16 

73,97 

76,75 

85,31 

73,89 

72,71 

86,23 

73,93 

74,68 

ECOC with 

Ensemble 

template 

TRS 

VS 

TS 

56,49 

75,07 

73,96 

59,88 

66,11 

76,83 

55,84 

68,33 

74,48 

57,78 

67,20 

75,64 

ECOC with 

linear kernel 

TRS 

VS 

TS 

85,26 

69,07 

76,04 

86,91 

57,41 

77,77 

84,76 

58,33 

76,64 

85,82 

57,87 

77,20 

ECOC with 

polynomial 

kernel 

TRS 

VS 

TS 

94,79 

68,29 

75,00 

95,63 

75,78 

80,95 

94,6 

73,89 

75,71 

95,11 

74,82 

78,24 
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Normal speed 

Model Set 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

ECOC with 

RBF kernel 

TRS 

VS 

TS 

86,13 

72,92 

86,46 

88,10 

55,44 

89,55 

85,78 

58,33 

86,44 

86,92 

56,85 

87,97 

Ensemble 

TRS 

VS 

TS 

93,05 

64,72 

65,62 

93,34 

55,39 

68,09 

92,62 

60,00 

67,32 

93,47 

57,60 

67,70 

k-NN 

TRS 

VS 

TS 

73,59 

71,72 

73,96 

77,18 

61,78 

78,30 

73,22 

67,78 

75,03 

75,15 

64,64 

76,63 

Naïve Bayes 

Classifier 

TRS 

VS 

TS 

91,33 

72,61 

59,38 

92,02 

72,89 

60,93 

92,14 

71,11 

58,92 

91,61 

71,99 

59,91 

Neural 

Network 

TRS 

VS 

TS 

87,43 

70,82 

73,96 

89,23 

63,33 

73,08 

87,17 

67,22 

73,67 

88,18 

65,22 

73,37 

Table 5.1.2: Values of the adopted classification metrics for the subjects’ classification task obtained by each 

model considering only normal speed range. 

For each model, the values of each metric over the three datasets are aggregated to 

calculate the standard deviation values. These values are used to draw a bar diagram 

to allow a faster comparison between the performance of different models (Figure 

5.1.4).  
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Figure 5.1.4: Bar diagram that sums up the classification performance of the models for the normal speed 

range. The bars display the TS values ± standard deviation of the TRS, VS and TS. Each set of bars represents 

the corresponding metric values for each of the 10 models. 

Similarly to the analysis conducted on the complete dataset, to assess whether the 

models performed consistently across individual subjects, the recognition 

percentages for each model were evaluated on a per-subject basis. This analysis 

revealed notable variations in recognition performance among subjects, indicating 

that the models did not perform identically across all individuals. Figure 5.1.5 

illustrates the recognition performance of all models for each subject. For a faster 

comprehension, Figure 5.1.6 shows the average recognition percentage of all 

models for each subject. 
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Figure 5.1.5: Performance of each model across different subjects for the normal speed range. Each group of 

bars denotes the values of the corresponding percentages for each of the ten classification models.  

 

 

Figure 5.1.6: Averaged recognition performance in percentage across different subjects for the normal speed 

range. Each bar represents the average value between models for each subject. 
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Slow speed 

Model Set 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

Decision 

Tree 

TRS 

VS 

TS 

73,30 

47,64 

43,11 

81,47 

61,16 

42,28 

78,6 

54,11 

42,6 

80,01 

57,42 

42,44 

Discriminant 

Analysis 

TRS 

VS 

TS 

82,79 

74,24 

64,12 

85,1 

82,03 

73,49 

82,53 

78,89 

64,17 

83,79 

80,43 

68,51 

ECOC with 

Ensemble 

template 

TRS 

VS 

TS 

59,84 

72,48 

76,34 

67,32 

74,06 

74,52 

59,98 

69,22 

74,81 

63,44 

71,56 

74,66 

ECOC with 

linear kernel 

TRS 

VS 

TS 

89,91 

71,59 

71,76 

90,66 

82,13 

74,4 

89,48 

75,78 

72,07 

90,07 

78,83 

73,22 

ECOC with 

polynomial 

kernel 

TRS 

VS 

TS 

93,48 

65,69 

69,47 

93,85 

74,06 

72,31 

93,55 

67,22 

68,47 

93,7 

70,48 

70,34 

ECOC with 

RBF kernel 

TRS 

VS 

TS 

94,07 

74,53 

71,76 

94,77 

83,65 

74,08 

94,14 

79,44 

71,45 

94,46 

81,49 

72,74 
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Slow speed 

Model Set 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

Ensemble 

TRS 

VS 

TS 

92,29 

62,10 

69,47 

92,69 

62,81 

73,41 

92,2 

60,22 

68,82 

92,44 

61,49 

71,04 

k-NN 

TRS 

VS 

TS 

73,89 

69,48 

67,94 

79,15 

75,58 

74,48 

72,44 

74,22 

66,8 

75,62 

74,89 

70,43 

Naïve Bayes 

Classifier 

TRS 

VS 

TS 

85,46 

62,68 

65,65 

87,26 

66,38 

74,33 

85,51 

61,78 

65,18 

86,38 

63,99 

69,46 

Neural 

Network 

TRS 

VS 

TS 

93,77 

72,42 

64,12 

94,27 

76,02 

67,96 

93,67 

71,89 

63,81 

93,97 

73,89 

65,82 

Table 5.1.3: Values of the adopted classification metrics for the subjects’ classification task obtained by each 

model considering only slow speed range. 

Figure 5.1.7 displays the bar chart with the standard deviation values obtained from 

aggregating each evaluation metric over the three datasets for each model. 
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Figure 5.1.7: Bar diagram that sums up the classification performance of the models for the slow speed 

range. The bars display the TS values ± standard deviation of the TRS, VS and TS. Each set of bars represents 

the corresponding metric values for each of the 10 models. 

In this instance as well, the recognition percentages for each model were evaluated 

on a per-subject basis. This analysis revealed notable variations in recognition 

performance among subjects, indicating that the models did not perform identically 

across all individuals. Figure 5.1.8 illustrates the recognition performance of all 

models for each subject. For a faster comprehension, Figure 5.1.9 shows the 

average recognition percentage of all models for each subject. 
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Figure 5.1.8: Performance of each model across different subjects for the slow speed range. Each group of bars 

denotes the values of the corresponding percentages for each of the ten classification models.  

 

 

Figure 5.1.9: Averaged recognition performance in percentage across different subjects for the slow speed 

range. Each bar represents the average value between models for each subject. 

  



80 
 

Fast speed 

Model Set 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

Decision 

Tree 

TRS 

VS 

TS 

77,64 

57,97 

45,71 

78,69 

54,22 

46,93 

76,96 

61,11 

42,89 

77,81 

57,46 

44,82 

Discriminant 

Analysis 

TRS 

VS 

TS 

89,93 

74,49 

64,29 

90,28 

77,78 

67,11 

89,45 

77,78 

61,56 

89,86 

77,78 

64,21 

ECOC with 

Ensemble 

template 

TRS 

VS 

TS 

46,18 

75,74 

78,57 

56,94 

83,89 

74,02 

45,29 

83,33 

76,11 

50,45 

83,61 

75,05 

ECOC with 

linear kernel 

TRS 

VS 

TS 

89,89 

66,20 

60,00 

90,12 

44,44 

53,24 

89,69 

50,00 

57,44 

89,9 

47,06 

55,26 

ECOC with 

polynomial 

kernel 

TRS 

VS 

TS 

94,38 

69,49 

71,43 

94,79 

67,22 

74,13 

94,27 

67,78 

68,78 

94,53 

67,50 

71,35 

ECOC with 

RBF kernel 

TRS 

VS 

TS 

94,38 

73,36 

78,57 

94,54 

65,00 

81,03 

94,38 

67,78 

76,33 

94,46 

66,36 

78,61 
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Fast speed 

Model Set 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

Ensemble 

TRS 

VS 

TS 

93,63 

78,53 

64,29 

97,26 

82,33 

59,92 

96,47 

80,00 

62,00 

96,86 

81,15 

60,94 

k-NN 

TRS 

VS 

TS 

95,50 

77,02 

78,57 

95,35 

75,56 

76,10 

95,18 

74,44 

77,78 

95,27 

75,00 

76,93 

Naïve Bayes 

Classifier 

TRS 

VS 

TS 

87,66 

57,84 

50,00 

88,42 

39,89 

51,26 

87,03 

47,78 

48,00 

87,72 

43,48 

49,58 

Neural 

Network 

TRS 

VS 

TS 

92,69 

67,99 

58,57 

93,11 

56,67 

61,77 

92,31 

58,89 

56,33 

92,71 

57,76 

58,93 

Table 5.1.4: Values of the adopted classification metrics for the subjects’ classification task obtained by each 

model considering only fast speed range. 

Figure 5.1.10 illustrates the bar charts with the standard deviation values resulting 

from the aggregation of each evaluation metric over the three datasets for each 

model.   
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Figure 5.1.10: Bar diagram that sums up the classification performance of the models for the fast speed range. 

The bars display the TS values ± standard deviation of the TRS, VS and TS. Each set of bars represents the 

corresponding metric values for each of the 10 models. 

To assess whether the models performed consistently across individual subjects, the 

recognition percentages for each model were evaluated on a per-subject basis. This 

analysis revealed notable variations in recognition performance among subjects, 

indicating that the models did not perform identically across all individuals. Figure 

5.1.11 illustrates the recognition performance of all models for each subject. To 

allow a better comprehension, Figure 5.1.12 shows the averaged recognition 

percentages for each model over the fifteen subjects. 
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Figure 5.1.11: Performance of each model across different subjects for the fast speed range. Each group of 

bars denotes the values of the corresponding percentages for each of the ten classification models.  

 

 

Figure 5.1.12: Averaged recognition performance in percentage across different subjects for the fast speed 

range. Each bar represents the average value between models for each subject. 
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6 Discussions 

This work aimed at developing a model-based method using biomechanical 

domain-specific features through a multi-camera marker-less system for automatic 

gait recognition. Data were collected from fifteen young healthy subjects walking 

at three different speed ranges on both the sagittal and frontal planes, using two 

Azure Kinect sensors for right and left-side views, and one Vicon VUE camera for 

frontal views. The acquired data were processed to extract biomechanical features 

which were then used to train ten ML models with different TRS/VS combinations. 

Before training the models, the most relevant gait features were selected using the 

automatically using the mRMR. Initially the models were tested on the entire 

dataset, covering data across all three speed ranges. Then, they were evaluated 

separately on each speed range to assess model performance specific to each speed.  

6.1 Selected features and models’ feature subsets 

Table 4.7.2.1 reports the nineteen biomechanical features that were selected through 

the mRMR algorithm. The most relevant features included kinematics quantities, 

frequency parameters, and correlation indices. The features were categorized as 

follows: 2 associated with the head, 2 with the lower limbs, and 15 with the upper 

limbs, highlighting the significant role of the upper limbs in gait recognition tasks. 

Among these features, 10 belonged to the time domain and 9 to the frequency 

domain, demonstrating a balanced distribution between the two domains. 

Furthermore, there was a predominance of features related to the sagittal plane, with 

12 out of 19 features belonging within this plane. It could also be observed that the 

extracted symmetry indices were not particularly significant, as only ASA of the 

swing appeared among the 19 features. This was likely because the subjects 
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involved in the project are healthy; therefore, there were no substantial differences 

between one subject and another in terms of symmetry.  

For most models, the feature subset that led to the highest accuracy through wrapper 

feature selection was the first one, which included all 19 features together. In 

contrast, the Ensemble classifier achieved the highest accuracy with the second 

feature subset, which considered the first 18 features (Table 4.7.2.2). 

6.2 Models’ performance 

Classification metrics provided a detailed measure of each model’s performance for 

complete dataset (Table 5.1.1) and each speed range (normal, Table 5.1.2; slow, 

Table 5.1.3; fast, Table 5.1.4).  

For all models trained on the complete dataset, accuracy was higher on the TRS 

compared to the values achieved when tested on unseen data of the TS, as expected. 

This difference highlights that the models successfully learned patterns from the 

training data, but they struggled to generalize effectively to unseen data, suggesting 

some degree of overfitting, especially in those models where the accuracy gap 

between TRS and TS data was significant. Additionally, precision and recall 

attained approximately the same percentages within the same model for both TRS 

and TS data. This consistency demonstrates that the models were able to manage 

the trade-off between precision (the ability to assign strides to the correct subject) 

and recall (the ability to identify all strides that belong to the same subject). 

Especially for ECOC models, precision and recall were closely aligned across TRS 

and TS, meaning that the models were not only accurate in identifying relevant 

instances but also effective at ensuring that all relevant instances are captured, even 

when faced with unseen data. ECOC with RBF kernel obtained the highest values 

on the TS (Figure 5.1.1), 78,1% accuracy and 78,7% F1-score, making it the top-
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performing model. Decision Tree achieved an accuracy value of 40% and a F1-

score of 39,86%, making it the worst-performing model overall. The poor 

performance of Decision Tree can be attributed to its tendency to overfit the training 

data, its sensitivity to small changes, and its reliance on single-feature splits, that 

limits its ability to capture complex gait patterns compared to ensemble methods 

such as ECOC that combine multiple features simultaneously. 

For models trained on the normal, slow, and fast speed datasets, performances were 

similar to the performances on the complete dataset. Accuracy was higher on the 

TRS compared to the values achieved when tested on unseen data, except for the 

ECOC with Ensemble template that obtained lower accuracy values on the TRS 

with respect to the values obtained on the TS, meaning that the model struggled 

during training phase, likely indicating a low capacity for capturing patterns in the 

training data.  ECOC with RBF kernel achieved the best values for accuracy and 

F1-score on the TS both for normal (86,46% and 87,97%, respectively) and fast 

speed ranges (78,57% and 78,61%, respectively); ECOC with Ensemble template 

reached the best values for accuracy and F1-score for slow speed range, 76,34% 

and 74,66% respectively. This suggests that while ECOC model is the most robust 

across all walking speeds, it benefits from the natural, consistent gait patterns 

observed at normal speed, whereas the variations and irregularities in slow and fast 

walking speeds reduce its performance. Across all the three walking speeds, 

Decision Tree was the worst model with accuracy and F1-score values always under 

45% on the TS, making it inappropriate for this type of task.  

In general, the models that performed better across all the three datasets also 

demonstrated a balance between precision and recall, demonstrating their ability to 

correctly classify subjects and capture relevant strides efficiently.  
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Bar chart in Figure 5.1.4 highlighted that ECOC with RBF kernel outperformed all 

other models in the normal speed range. For most models recall rates were lower 

compared to accuracy and precision. Figure 5.1.7 showed that all models, but 

Decision Tree, had performance around 70% in the slow speed range. Most models 

showed higher precision compared to recall, indicating that while they could 

accurately identify the positive class, they might miss some instances, particularly 

Naïve Bayes, which showed a precision spike but lower recall. Figure 5.1.10 

displayed models’ performance on the TS of the fast speed range, and it can be 

observed that these performances were less balanced across models with respect to 

the normal and slow speed datasets. ECOC with RBF kernel was the best performer, 

followed by k-NN with very near values. 

A thorough understanding of how each model processed subject-specific gait data 

was provided by the TS confusion matrix analysis of model performance across 

individual subjects. These results were represented through bar charts, one for each 

dataset. Each chart has a group of ten bars for each subject that denotes the values 

of the corresponding percentages for each of the ten classification models.  

For what concerns the complete dataset (Figure 5.1.2), the ECOC models, 

especially the one with RBF kernel (green bar) and Ensemble template (grey bar), 

consistently outperformed other models across most subjects. These models often 

reached performance around 90% on many subjects, demonstrating strong 

generalization across various subjects. The best performance was observed for 

subject 2 and subject 4, where almost all models performed well. For subject 2 the 

Ensemble method (blue bar) and ECOC with linear kernel (light blue bar) reached 

100% of recognition rate; for subject 4 the ECOC with the RBF kernel reached 

100% of recognition rate; for subject 5 the Ensemble method achieved 100% 
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recognition rate. However, for some subjects like 8, 11, and 14 performances 

dropped below 60% for most models, particularly subject 14 who was the most 

difficult to classify correctly for all models, included the top-performing ECOC 

models. Some subjects like 1, 5, 12, and 13 exhibited high variability in 

performance across models. While top performers like ECOC still performed well, 

other models like Decision Tree (yellow bar) struggled, with performance dropping 

significantly. For subjects 3, 7 and 11, most models struggled to reach 70%. In 

particular, Decision Tree never reached performance over 70% across all subjects, 

further confirming its unsuitability for this type of classification task. Figure 5.1.3 

represents the average recognition percentage of each model for each subject and 

helps in understanding that the models’ performance is deeply related to the fact 

that some subjects are less recognizable than others.  

The possible causes that led some models to achieve very low performance on 

specific subjects can be the presence of outliers, the homogeneity of gait 

characteristics among subjects, and the poor generalization ability of the models. 

Specifically, subject 14 represents a case where data variability was not well 

managed by the models. Simpler models, such as Decision Tree and Naïve Bayes, 

tend to suffer more from the presence of outliers, while more robust models, like 

ECOC and Ensemble methods, can handle such anomalies better due to their more 

complex structure, leading to better performance even in these cases. 

Another factor that could explain low performance on some subjects is the 

excessive homogeneity of gait characteristics among subjects in the dataset. If the 

data shows little variability between subjects, the models struggle to distinguish 

individuals correctly. For example, subjects like 3, 7, and 11 have the extracted gait 

characteristics too similar to those of other subjects, making it difficult for the 
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models to recognize significant differences. This problem is pronounced in simpler 

models like Decision Tree, but even more advanced models like Discriminant 

Analysis and k-NN showed significant performance drops in these cases, 

suggesting that the homogeneity of the data made it difficult for these algorithms to 

correctly separate subjects based on the extracted biometric features. For example, 

subject 3 was classified as subject 7 for 18 times, and as subject 10 for 16 times, 

while subject 7 was classified as subject 3 for 37 times in total across all models. 

Additionally, subject 11 was classified as subject 4 for 24 times, and as subject 3 

for 16 times in total across all models. This means that the models were not able to 

correctly distinguish between them. 

 The poor generalization ability is particularly evident for models like the 

Ensemble, which performed well on the training set but experienced a drastic drop 

when applied to unseen data. This drop can be linked to the model’s complexity, 

making it too specialized on training data and unable to generalize well on subjects 

with slightly different or more variable gait patterns. Models like Discriminant 

Analysis and k-NN also showed generalization difficulties for some subjects, 

especially with subjects 8, 11, and 14 where performance dropped significantly 

below 60%. 

Concerning the normal range of speed (Figure 5.1.5), models performed much 

better than the complete dataset on each subject as confirmed by the metric values 

obtained on this range of speed. ECOC models were the top performing in most 

subjects, followed by Discriminant Analysis and k-NN. Also in this case Decision 

Tree was the worst model, as it never correctly classified four out of fifteen subjects. 

Many models reached 100% recognition percentages for different subjects, for 

example, ECOC with linear kernel and Ensemble method perfectly classified 4 
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subjects; ECOC with RBF kernel achieved 100% recognition percentage for 8 

subjects; ECOC with polynomial kernel and ECOC with Ensemble template 

perfectly classified 5 subjects; Discriminant Analysis and k-NN perfectly classified 

3 subjects. Subjects 3, 7, 11 and 14 were never classified in their class for at least 

one model, in particular subjects 3 had a recognition percentage of 0% in three 

models (Decision Tree, Naïve Bayes Classifier, and Neural Networks), while 

subject 14 in two models (Decision Tree, and Naïve Bayes Classifier). These 

observations were confirmed by the bar chart in Figure 5.1.6, in which subjects 3, 

7, and 14 had an average recognition rate under 50%, while all other subjects were 

over 60%.  

Regarding the slow speed range (Figure 5.1.8), there was much more variability for 

each model across subjects. Also in this case, ECOC models were the ones that 

obtained the highest values in percentage of recognition among subjects except for 

subject 14, while Decision Tree was the worst model. Subject 4 obtained 100% of 

recognition percentage in each model, meaning that the models always 

distinguished his gait characteristics among the ones of other subjects on the slow 

speed. Additionally, subject 2 and subject 6 that were perfectly classified by six and 

four models, respectively. On average, models on this range of speed performed 

worse than the normal range of speed. As highlighted in Figure 5.1.9, only three out 

of fifteen subjects reached a recognition rate over 85%. Subjects 6 and 13 reached 

a recognition rate of 78,57% and 76,25%, respectively, while all the remaining 

subjects achieved a recognition rate under 66%, meaning that for most subjects, gait 

characteristics at slow speed were not easily generalizable across individuals. 

Referring to the fast speed range (Figure 5.1.11), there were less balance across 

models with respect to normal and slow speed datasets. Seven subjects were never 



91 
 

classified correctly at least one time. For example, subject 11 was never classified 

in his class for 6 times, meaning that his gait characteristics were not easily 

recognized by the models. The model that achieved the highest recognition rate for 

most subject was the k-NN, followed by ECOC with Ensemble template and ECOC 

with RBF kernel. Averaged recognition performance in percentage across subjects 

(Figure 5.1.12) showed that only a few subjects were correctly recognized from the 

models, since only subjects 2 and 12 reached a percentage over 90%. Other five 

subjects (3, 5, 6, 9, and 13) reached a percentage over 70%. The remaining eight 

subjects achieved a percentage under 70%. Subjects 1, 8, and 14 reached 

percentages around 35%.  

Differences in performance across speed datasets, in particular for slow and fast 

speeds, were certainly due to the presence of outliers and the poor generalization 

ability of the models, but at such unusual walking speeds for most of the subjects, 

their gait characteristics became similar and denatured, making it difficult for the 

models to generalize for each individual. In addition, depending on how slow or 

fast a subject walked in the tests, each subject was much more or much less 

represented in the datasets, respectively. This means that the models might 

specialized more on certain subjects with respect to others.  
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7 Conclusions 

7.1 Main findings 

The present study aimed to explore the potential for recognizing individuals through 

their unique gait patterns in an indoor environment. To this aim, a model-based 

method driven by biomechanical features using a multi-camera marker-less system 

for automatic gait recognition is developed. To reduce the computational cost of the 

model-based approach, features were selected automatically from a wide range of 

parameters from the literature, covering various domains and modalities. 

The study focuses on identifying the most relevant biomechanical features from 

marker-less video data to recognize people by their gait using different machine 

learning models.  

Fifteen healthy young subjects were involved in the study, walking at three self-

selected speed ranges on a 5-meter walkway in an indoor environment wearing a T-

shirt and shorts. Three RGB cameras, two Azure Kinect sensors and one Vicon VUE 

camera, were positioned laterally and frontally to the walkway to acquire data on 

the sagittal and frontal planes. 

The proposed pipeline is based on seven steps (see Section 4), starting from the 

semi-automatical joint centres tracking with MoveNet, a deep-learning pose 

estimator. Other steps concern automatic stride segmentation to allow a stride-by-

stride extraction of time-domain and frequency-domain features, outlier removals, 

features ranking with the mRMR algorithm, top-down wrapper feature selection 

with seven classification models, and models’ hyperparameters tuning by grid-

search and 5-folds cross-validation. 

The results show that the most relevant features derived from mRMR algorithm 

were nineteen, including kinematic quantities, frequency parameters, and 
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correlation indices. Fifteen out of the nineteen features belonged to the upper limbs 

with a balance between time- and frequency-domain. This finding is relevant 

because, in security applications, lower limbs can be easily hidden in crowds, 

whereas in clinical applications, such as Parkinson’s disease, studies have 

demonstrated that the disease progression is often followed by a loss of upper limbs 

coordination [57]. Selected features have demonstrated a potential in discriminating 

individuals from their gait, especially when subjects walked at a self-selected 

normal pace, meaning that if models were trained on more data of the same walking 

speed, they could potentially perform better. 

The model that demonstrated the best performance with the selected features was 

ECOC with RBF kernel for the overall dataset, and for both normal and fast speed 

datasets. The model that best performed for slow speed dataset was the ECOC with 

Ensemble template, meaning that the ECOC model is the most robust among the 

examined ML models for gait recognition tasks especially at normal walking speed 

where natural gait patterns were more consistent. ECOC models also demonstrated 

the precision-recall balance that is essential for reliable performance. Choosing 

robust models that can generalize well across different subjects and conditions is 

essential since some models’ performance was affected by poor generalization 

capabilities for certain subjects and overfitting. 

In conclusion, the identified feature subsets provide a strong basis for 

discriminating individuals from their gait with the ECOC model proving to be the 

most robust approach across different walking speeds. On the other hand, 

challenges such as overfitting, subject-specific performance variability, and 

decreased accuracy at both slow and fast speeds highlight the need for more 
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extensive training data and further models’ optimization. Overall, these findings 

provide a strong foundation for future improvements in gait recognition systems. 

7.2 Future works and related research 

In the future, the implementation of larger and more diverse datasets among 

subjects should be addressed. In addition, further research could explore advanced 

feature selection methods, considering more complex interactions between features. 

Concerning security applications, the method could be improved introducing gait 

covariates in the dataset, such as carrying conditions or clothing variations, and 

real-time conditions.  

This approach can be used in future studies to detect early-stage symptoms or subtle 

alterations in gait patterns that may signal disease onset, progression, or treatment 

response. Following surgery, an injury, or a stroke, patients' recovery can be tracked 

with the use of gait recognition devices. Clinicians can more accurately assess the 

success of rehabilitation programs and make necessary therapy adjustments by 

monitoring patients' gaits over time. It may be possible to create automated devices 

that offer real-time feedback on irregularities in gait, which would help patients and 

medical professionals optimize therapy.  
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