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Abstract

The diminishing availability of Earth’s resources has catalyzed the emergence of
space mining as a burgeoning industry, with the recent success of missions like
OSIRIS-REx underscoring the viability of extracting valuable materials from Near-
Earth Asteroids (NEAs). This thesis presents an optimized trajectory framework
for asteroid mining missions, focusing on minimizing propellant consumption for
reaching these NEAs by means of an electric propulsion system and optimal
control theory. The selection process begins with a comprehensive evaluation of
potential asteroids, filtering those that are accessible through a Hohmann transfer
with a ∆V requirement below a specified threshold. This criterion ensures the
chosen asteroids have orbital parameters that closely align with the mission’s
departure conditions, originating from the Sun-Earth Lagrange Point L2. The
proposed mission architecture involves a mother-ship equipped to deploy up to two
probes, designed to initiate evaluation operations at asteroids with a Minimum
Orbital Intersection Distance (MOID) less than 500 000 km. The strategy for inter-
asteroid transfers includes the use of discontinuous impulsive ∆v maneuvers at
the flyby, not exceeding 1 km s−1, to efficiently navigate between target asteroids.
The complexity of gravitational interactions among the considered celestial bodies
permits nevertheless the utilization of an autonomous switching function based on
the bang-bang control, obviating the necessity for a priori specification of thrust
arcs to accomplish the intended rendezvous. For precise modeling of heliocentric
trajectories and the positions of celestial bodies, this study utilizes the JPL DE440
ephemeris. This high-fidelity model accounts for the gravitational influences of the
Sun and the Earth-Moon System.
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Chapter 1

Introduction

In a world where natural resources are growing scarcer by the day, humanity has
increasingly focused on the possibility of advancing space exploration as a means
to address this challenge. Asteroids are known to contain high quantities of rare
metals, such as platinum and gold, in addition to more common elements. Space
mining could not only meet the growing demand for these materials but also
become a lucrative new frontier, generating significant earnings for companies and
governments involved [1].

However, as of today, the techniques and infrastructure needed to conduct such
complex missions are still under development. Asteroid mining is a relatively
new concept, and only in recent years have companies and agencies made initial
attempts. In 2016, the National Aeronautics and Space Administration (NASA)
launched the first U.S. mission to collect a sample from the asteroid Bennu, Origins
Spetracl Interpretation Resource Identification and Security - Regolith Explorer
(OSIRIS-REx) [2], which was successfully returned in 2023. The mission then
proceeded to explore the asteroid Apophis without even landing. Additionally, in
2023, NASA initiated the Psyche mission [3], aiming to explore a unique metal-rich
asteroid of the same name, which may be the core of an early planet. Asteroid
mining could also support scientific research and provide water for future missions,
thanks to the presence of ice detected on some of these celestial bodies.

Of particular interest are Near-Earth Asteroids (NEAs), which are easily acces-
sible due to their proximity to Earth. These NEAs can be reached by performing
a series of fly-by maneuvers. To ensure the success of such missions, which aim
to approach these objects, it is crucial to consider the adopted method and mini-
mize propellant consumption. In the space industry, reducing propellant usage is
vital because it translates to the ability to reach greater distances and transport
more payload. Consequently, electrical propulsion is the preferred type for these
endeavors.
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Introduction

1.1 Near-Earth Asteroids
Near-Earth Objects (NEOs) are celestial bodies with dimensions ranging from a
few meters to tens of kilometers and their orbits around the Sun bring them in
proximity to Earth’s orbit. The majority of these objects are asteroids, so the term
NEAs will be used when referring to them. Depending on their size, NEAs can
pose a potential hazard to our planet, but they also represent a valuable source of
essential resources.

Currently, there are over 34 000 known NEAs, although this number is subject to
frequent changes due to their exposure to strong perturbations and the possibility
of impacting a planetary surface [4][5]. These objects can be classified based on
their dimensions or, as detailed below, by their orbital characteristics (Figure 1.1):

• Atiras: their orbits are contained inside the Earth’s one, having an aphelion
distance smaller than Earth’s perihelion distance;

• Atens: they cross Earth orbit with a smaller semi-major axis;

• Apollos: they cross Earth orbit with a bigger semi-major axis;

• Armos: their orbits are external to the Earth’s one, having an perihelion
distance greater than Earth’s aphelion distance;

Figure 1.1: NEAs orbital groups [6]

Finally, due to the low surface gravity of NEAs, moving along their surfaces
would necessitate only small amounts of energy, making the electrical propulsion
system the ideal candidate.

2



Introduction

1.2 Low-Thrust Propulsion
When defining a space mission, instead of estimating the total impulse, is better
to calculate the total difference in velocity ∆V required for its completion. This
quantity also features in the Tsiolkovsky equation, formulated in 1903, commonly
known as the rocket equation. This equation, credited to Russian scientist Kon-
stantin Tsiolkovsky, describes the motion of vehicles that follow the basic principle
of a rocket. By expelling part of its mass with high velocity, a rocket can apply
acceleration to itself and move due to the conservation of momentum [7]. The
equation relates the effective exhaust velocity c, specific impulse Isp, initial total
mass (including propellant) m0, and final total mass (without propellant) mf to
determine the necessary propellant mass for achieving a desired change in velocity:

mf

m0
= e− ∆V

c (1.1)

Since c is defined as the product of the specific impulse Isp and the gravitational
acceleration at sea level g0, and the propellant mass mp is obtained as the difference
between the final mass and the initial one, Equation 1.1 can be rewritten in the
form:

mp

m0
= 1 − e

− ∆V
Ispg0 (1.2)

The rocket equation plays a crucial role in space exploration, aiding engineers in
optimizing propellant usage and achieving mission objectives. By comprehending
the relationship between velocity change, propellant mass, and specific impulse, is
possible to design more efficient spacecraft for our cosmic endeavors. Specifically,
while ∆V represents the cost of reaching the mission goal, Isp defines thruster
efficiency: the higher it is, the less propellant is required. This concept is exemplified
by the term mp/m0, known as the propellant mass fraction, where it becomes
evident that increasing specific impulse corresponds to a lower propellant mass.
Hence, selecting the appropriate propulsion system is paramount.

Chemical propulsion operates through a chemical reaction in which fuel is
oxidized, resulting in the creation of hot gas that expands. Consequently, the thrust
generated is so substantial that maneuvers can be approximated as instantaneous
impulses. However, the trade-off lies in the relatively low specific impulse values,
averaging around 250 s ÷ 350 s, and reaching up to 450 s for liquid bipropellants.

On the other hand, electric propulsion relies on accelerating a mass through an
electrostatic or electromagnetic field to generate thrust. Energy for this type of
thruster can be supplied via solar panels or batteries and it consumes significantly
less propellant than its chemical counterpart. Although the thrust produced is
weaker, it compensates with a higher specific impulse, ranging from 200 s up to an

3
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impressive 5 000 s. Despite the longer execution time required for maneuvers (often
hours or even days), the superior Isp confirms the advantages of electric propulsion
in the realm of trajectory optimization.

1.3 Trajectory Optimization
Orbital trajectory optimization entails designing a spacecraft’s path to satisfy
specific constraints, such as initial and terminal conditions, while optimizing a
relevant quantity (for example minimizing fuel consumption or maximizing mission
performance). Additionally, considering the rocket equation, it becomes evident
that for every space mission, there exists an optimal value of specific impulse
that corresponds to the minimum total mass of the system. This relationship
arises because an increase in Isp leads to a decrease in propellant mass, but it also
necessitates a higher power source mass for electrical energy generation.

Impulsive trajectories, which use chemical propulsion, can be fully represented
with a small number of finite variables. However, low-thrust propulsors, which
provide continuous thrust, introduce an infinite-dimensional problem. To address
this complexity, it is crucial to define a model that simplifies the problem while
maintaining its accuracy. In summary, while impulsive trajectories are straightfor-
ward to describe, low-thrust missions require careful modeling to balance complexity
and precision.

This problem can be solved numerically implementing iterative procedures that
converge within a specified tolerance, integrating multiple sets of differential equa-
tions. Such nonlinear optimization methods require an accurate initial guess to
achieve convergence, which should be close to the optimal solution or at least a
feasible one. Therefore, it’s crucial to formulate assumptions about the desired solu-
tion’s structure. Is evident that solving complex trajectory optimization problems
requires a combination of numerical techniques, careful assumptions, and accurate
initial conditions [8][9].

This numerical approach can follow two paths: direct and indirect methods.

1.4 Indirect Methods
To solve a problem of infinite dimension, it is possible to apply both direct and
indirect methods. Direct methods are easier to implement but require a higher
number of variables, which can make them computationally expensive. However,
the model’s results are more robust and can provide a solution even without fully
understanding the problem or its boundary conditions. Nevertheless, the solutions
obtained through direct methods may suffer from limited accuracy and require
further corrections.
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On the other hand, indirect methods require fewer variables and are therefore
faster. It is possible to find accurate optimal solutions or, at the very least, obtain
additional tools for their search. Typically, for their resolution, an augmented
yet simplified problem is created. To ensure convergence, it is crucial to define
the necessary conditions based on the specific problem at hand. Consequently,
these conditions must be established on a case-by-case basis, necessitating a deep
understanding of the involved phenomena [10][11][12].

1.5 Mission Definition
With all these elements, it is possible to define the mission presented here.

The mission begins at Lagrange Point L2. The first step involves creating a
database of potential asteroids by filtering the Jet Propulsion Laboratory (JPL)
one to select NEAs that meet specific conditions, which will be discussed later.

The proposed architecture includes a mothership weighing 550 kg, equipped
with two probes, each weighing 25 kg, designed to evaluate the composition of the
target asteroids.

The strategy for inter-asteroid transfers involves using discontinuous impulsive
∆V maneuvers during two flybys, with a maximum magnitude of 1 km s−1, to
efficiently navigate between target asteroids. Despite the complex gravitational
interactions among the celestial bodies considered, an autonomous switching func-
tion based on bang-bang control can be employed. This approach eliminates the
need for a priori specification of thrust arcs to achieve the desired rendezvous. For
precise modeling of heliocentric trajectories and the positions of celestial bodies,
this study relies on the Jet Propulsion Laboratory Development Ephemeris (JPL
DE440) ephemeris.

Given the problem’s complexity, an heliocentric Two-Body Problem (TBP) is
used, where the two bodies are the Sun and the mothership, as the asteroid’s
gravity field is negligible.

5



Chapter 2

Dynamic Model

To perform an analysis of the optimization problem, it is essential to define the
implemented dynamic model. Dynamic models are simplified representations of real-
world problems, retaining their essential properties while discarding non-essential
ones, and describe how a system evolves over time [13].

To achieve this, a fundamental understanding of orbital mechanics is necessary
in order to derive the equations of motion defining the model.

2.1 Orbital Mechanics
Celestial mechanics involves the study of the motion of natural celestial bodies,
such as planets and stars. Orbital mechanics extends this concept to include the
motion of artificial bodies, like spacecraft and satellites, influenced by gravity and
other forces in the space environment. Its primary focus is on analyzing orbital
trajectories and planning orbital maneuvers based on Newton’s and Kepler’s laws
[14][15].

2.1.1 N-Body Problem
In celestial mechanics, the N-Body Problem (NBP) describes the absolute motion
of celestial bodies in an inertial Reference System (RS) with respect to fixed stars,
meaning so far away that they appear immobile.

Under the assumption of point masses and considering only the gravitational
attraction forces between the planets, it is possible to obtain the equations of
motion for each mass, denoted as mi. This results in a system of N vectorial (or
3N scalar) coupled second-order differential equations that, unfortunately, can only
be solved numerically and not analytically. However, is possible to simplify it by
focusing on the relative motion of celestial bodies rather than their absolute one.

6



Dynamic Model

Figure 2.1: N-body problem [16]

For instance, considering their motion relative to the Sun results in the Restricted
N-Body Problem (RNBP). When only two bodies are involved, the problem reduces
to the TBP, for which an analytical solution exists.

2.1.2 Two-Body Problem
In 1609, Johannes Kepler published three laws regulating the motion of planets in
the solar system. These laws are valid for a TBP:

• Kepler’s First Law: The orbits of the planets are ellipsis, with the Sun at one
focus;

• Kepler’s Second Law: The line joining a planet to the Sun sweeps out equal
areas in equal times as the planet travels around the ellipse;

• Kepler’s Third Law: The ratio of the squares of the periods of revolution for
two planets is equal to the ratio of the cubes of their semimajor axes.

The orbits described by Kepler’s laws are therefor referred to as Keplerian orbits.

Newton’s Universal Gravitational Law

Newton’s universal law of gravitation states that two bodies are mutually attracted
to each other with a force that is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them:

F⃗ = −G
mM

r2
r⃗

r
(2.1)

In this equation, G = 6.670 × 10−11 N m2 kg−2 represents the universal gravi-
tational constant, while the product GM can be expressed as the gravitational

7
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constant µ, which depends on the major body. By rearranging Equation 2.1, is
possible to derive the equation of motion:

¨⃗r = − µ

r3 r⃗ (2.2)

Finally, its integration allows to obtain the trajectory equation for the TBP:

r = h2/µ

1 + B
µ

cosν
(2.3)

The term h indicates the angular momentum, B is a constant and ν the true
anomaly, which is the angle between B⃗ and r⃗.

2.1.3 Invariants of the Motion
An invariant of motion is a physical quantity that remains unchanged during
such motion. In the context of space trajectories, is possible to identify two key
invariants: mechanical energy and angular momentum.

Conservation of the Mechanical Energy

The equation describing the mechanical energy characteristics of a certain orbit is
derived from the equation of motion:

Em = v2

2 − µ

r
= cost (2.4)

The first term represents the kinetic energy, while the second represents the
potential energy. This quantity remains constant during an orbit, meaning that if
one term increases, the other necessarily decreases. Usually, the periapsis of an
orbit is characterized by a lower radius and a higher velocity. Therefore, in this
position, the kinetic energy is higher while the potential energy is lower. Conversely,
the opposite holds true for the apoapsis.

Conservation of the Angular Momentum

From the equation of motion, it is also possible to obtain the angular momentum:

|⃗h| = rvcos(φ)ŵ = cost (2.5)

Where φ is the flight path angle. This vector is perpendicular to the plane of
velocity and remains constant. As a result, the trajectory of the body will remain
in a plane, indicating planar motion.

8
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2.1.4 Conics
Kepler’s first law states that the orbits of the planets are ellipsis, which are a
particular type of conic section. Within these geometric figures, is possible to
identify a crucial constant, denoted by the symbol e, known as the eccentricity:

r

d
= cost = e (2.6)

The eccentricity indicates how elongated or flattened an ellipse is. It is defined
by the ratio between r, which is the distance between the main focus F and a
point on the ellipse, and d, the distance between the same point and a reference
axis. Depending on its value the orbit will result in a perfect circle, an ellipse, a
parabola or an hyperbola. The ellipse is characterized by two foci F and F ′, a
semimajor axis a and a semiminor axis b. The periapsis is the point closest to the
main focus while the apoapsis is the farthest. The radii indicating these two points
are determined geometrically:

rP = a(1 − e)
rA = a(1 + e)

(2.7)

The semilatus rectum p is defined as the point located at a true anomaly of
90°. True anomaly represents the angle indicating the position of the planet with
respect to the Sun, starting from the periapsis:

p = a(1 − e2) = h2

µ
(2.8)

Therefor, by recalling Equation 2.3 and performing the necessary substitutions, it
is possible to derive the conic equation that corresponds to the trajectory equation:

r = a(1 − e2)
1 + ecosν

= p

1 + ecosν
(2.9)

In Table 2.1, the characteristics of the main conics are reported:

Em e a
Circle < 0 = 0 > 0
Ellipse < 0 < 1 > 0

Parabola = 0 = 1 ∞
Hyperbola > 0 > 1 > 1

Table 2.1: Conics and their main characteristics

9
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Orbital Period

Having defined the different types of conics, is now possible to determine the time
required to travel along one in its entirety. From Kepler’s second law:

dA

dt
= cost (2.10)

Is possible to obtain Kepler’s third law, which is non other than the orbital
period:

T = 2π

ó
a3

µ
(2.11)

The term a not only represents the semi-major axis, but also the mean distance
given by a = rP +rA

2 .

2.1.5 Reference Systems
To study a dynamic problem, it is essential to determine the most suitable RS.
The following systems are typically non-inertial but, with certain considerations
and conditions, can be treated as inertial. To establish a RS, is necessary to define
several fundamental parameters:

• Origin: the point from which measurements are taken;

• Fundamental plane (x − y): the primary coordinate plane in which the system
operates;

• Principal direction: the main axis along which motion occurs;

• Direction of the normal to the plane x − y (z > 0): the axis perpendicular to
the x − y plane, usually pointing upward.

It’s important to note that all systems considered here are right-handed, which
simplifies determining the last axis, y.

Ecliptic-Heliocentric System

As the name suggests, the heliocentric system places the Sun as its origin and the
fundamental plane is the ecliptic, the Earth’s orbital plane around the Sun.

The principal axis x is defined by the intersection of the ecliptic and the equatorial
plane during the vernal equinox (around March 21). The positive direction of the
z axis points toward the north hemisphere, containing the North Star (Polaris).
Finally, the y axis is determined by the right-hand rule.
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Figure 2.2: Ecliptic-Heliocentric system [17]

Equatorial-Geocentric System

In the geocentric system, the origin is located on Earth and the fundamental
plane is represented by the equatorial plane, which is perpendicular to the planet’s
rotation axis. The principal axis, denoted as x, is determined by the intersection
of the equatorial plane with the ecliptic plane. Therefor, this axis corresponds to
the one used in the heliocentric system. The positive direction of the z axis is also
the same, pointing toward the north hemisphere and Polaris.

Figure 2.3: Equatorial-Geocentric system [18]

It’s important to note that the geocentric system does not rotate with Earth.
Figure 2.3 also includes the right ascension α and the declination δ, which are
essential angles used in the celestial sphere to locate the position vector of satellites.
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Perifocal System

The perifocal system is the most convenient to describe the motion of a smaller
body orbiting a larger one.

Figure 2.4: Perifocal system [19]

It centers around the focus of the orbit and the fundamental plane is the
orbital one. The unit vector p̂ points towards the periapsis, while q̂ towards the
semilatus retum. Unit vector ŵ completes the triad and represents the angular
momentum vector, being perpendicular to the plane. In summary, the perifocal
system simplifies orbital motion by reducing it from three dimensions to two
dimensions, making computations easier. It’s particularly useful for elliptical orbits,
where the coordinate system aligns with the eccentricity vector.

Classical Keplerian Parameters

In orbital mechanics, every existing orbit is uniquely described by six orbital
elements, known as the Classical Keplerian Parameters (CKP). Two of these
parameters define the size and shape of the ellipse, two more determine the
orientation of the orbital plane and the remaining two specify the position of the
orbiting body.

Some of these elements have been previously discussed, but here is a compre-
hensive description:

• Semi-major axis (α): this parameter represents half the distance between the
apoapsis (farthest point from the central body) and the periapsis (closest point
to the central body). It effectively indicates the size of the elliptical orbit;

• Eccentricity (e): eccentricity describes the shape of the ellipse. A value of 0
corresponds to a perfect circle, while higher values indicate elongation. For
instance, highly eccentric orbits resemble stretched ellipses;
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Figure 2.5: Classical Keplerian Parameters [20]

• Longitude of the ascending node (Ω): this element orients the node line n̂,
which represents the intersection of the orbital plane with the equatorial plane.
It is the imaginary line where the orbit transitions from the positive semi-axis
to the negative. The point where the orbit crosses the equatorial plane from
south to north is called the ascending node;

• Inclination (i): inclination indicates the tilt of the orbit relative to the Z axis.
If i = 0, the orbit lies in the equatorial plane. A value of 90° corresponds to a
polar orbit (where the orbit passes over the poles), while 0° < i < 180° covers
all other inclinations;

• Argument of periapsis (ω): the argument of periapsis specifies the angular
position of the periapsis relative to the node line;

• True anomaly (ν): the true anomaly represents the angular position of the
orbiting body from the periapsis. It provides information about the current
position along the orbit.

Changing Coordinates

When dealing with different reference frames, it’s essential to understand how to
switch between them. This operation is known as a change of basis, and it involves
applying a rotation matrix to transition from one reference frame to another.
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Let’s focus on transitioning from a perifocal RS (p̂, q̂, ŵ) to the geocentric frame
(Î, Ĵ , K̂) by applying three rotations successively. Euler angles provide a convenient
way to express these rotations, making the change of basis more manageable for
various orbital problems:

• Rotation of Ω around K̂:

LT
1 =

 Î n̂ Ĵ n̂ 0
Îm̂ Ĵm̂ 0
0 0 1

 =

 cos(Ω) sin(Ω) 0
−sin(Ω) cos(Ω) 0

0 0 1

 (2.12)

• Rotation of i around n̂:

LT
2 =

1 0 0
0 m̂î K̂m̂

0 m̂ŵ K̂m̂

 =

1 0 0
0 cos(i) sin(i)
0 −sin(i) cos(i)

 (2.13)

• Rotation of ω around ŵ:

LT
3 =

p̂n̂ p̂̂i 0
q̂n̂ q̂î 0
0 0 1

 =

 cos(ω) sin(ω) 0
−sin(ω) cos(ω) 0

0 0 1

 (2.14)

As a consequence, the rotation from Î, Ĵ , K̂ to p̂, q̂, ŵ is:

r⃗pqw = LT
3 LT

2 LT
1 r⃗IJK = LT r⃗IJK (2.15)

Since rotation matrices are orthogonal, their inverse is equal to their transpose.
Therefor, to switch from p̂, q̂, ŵ to Î, Ĵ , K̂, it is sufficient to remember this
characteristic:

r⃗IJK = L1L2L3r⃗pqw = Lr⃗pqw (2.16)

In other words, when dealing with orthogonal rotation matrices, the inverse
operation is simply achieved by transposing the matrix. This property simplifies
the process of changing coordinate systems and ensures consistency in the transfor-
mation. Understanding these fundamental concepts is essential for working with
different reference frames in celestial mechanics.
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2.1.6 JPL DE440
When facing a spacecraft navigation problem, it is crucial to gather as much
information as possible about every celestial body involved in the mission. The
JPL has developed a series of mathematical models that represent the positions,
velocities, and accelerations of major Solar System bodies [21]. Among these
models, the JPL DE440 stands out for its precision. Although there is also a less
accurate model called JPL DE441, it covers a much longer period. However, since
the mission described in this thesis does not require such extended time coverage,
the more precise JPL DE440 model is the preferred choice [22].

2.1.7 Characteristic Velocities
Before delving into the concept of orbital maneuvers, it is essential to define three
critical velocities known as characteristic velocities.

Circular Velocity

Circular velocity refers to the spacecraft’s velocity along a circular orbit. Its value
can be obtained by recalling the energy equation:

Eg = v2
c

2 − µ

r
= − µ

2a
(2.17)

Taking into account that, in a circular orbit, r = a:

v2
c

2 = µ

a
− µ

2a
= µ

2r
(2.18)

As a result:

vc =
ò

µ

r
(2.19)

It’s immediately evident that an increasing radius corresponds to a decreasing
circular velocity.

Escape Velocity

Escape velocity is the speed that a spacecraft must reach to break free from a
planet’s gravitational pull. In other words, it’s the velocity needed for a secondary
body to move infinitely far away from the main body with zero velocity, denoted
as v∞ = 0. As seen for the circular velocity, it is possible to obtain its value using
the energy equation:
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Eg = v2
E

2 − µ

rBO

= 0
2 − µ

r∞
= − µ

2a
(2.20)

The burnout point corresponds to the position where the impulse is applied.
On the left side of Equation 2.20, the energy is associated with the spacecraft’s
initial orbit, while on the right side, it relates to the infinite distance the spacecraft
aims to achieve. Consequently, it results that a → ∞, indicating that the transfer
trajectory is parabolic. Considering this:

v2
E

2 − µ

rBO

= 0 (2.21)

Therefor:

vE =
√

2
ó

µ

r∞
=

√
2vc (2.22)

It turns out that the escape velocity is equal to the circular velocity multiplied
by a factor of

√
2.

Hyperbolic Excess Velocity

Differently from escape velocity, the hyperbolic excess velocity is the speed that a
spacecraft needs to achieve in order to move infinitely far away from the main body,
escaping its sphere of influence, while maintaining a residual velocity different from
zero, meaning v∞ /= 0. Considering the energy equation one more time:

Eg = v2
BO

2 − µ

rBO

= v2
∞
2 − µ

r∞
= − µ

2a
(2.23)

The term µ/r∞ is null, therefor:

v∞ =
ò

−µ

a
(2.24)

Consequently, given that v∞ must be positive, the semi-major axis must be
negative, indicating a hyperbolic transfer.

2.1.8 Orbital Maneuvers
An orbital maneuver involves applying an impulsive thrust to alter the spacecraft’s
velocity (∆V ). These maneuvers serve two main purposes: compensating for
perturbations (such as gravitational effects) and modifying the orbit’s characteristics.
Here, a concise definition is provided, categorizing the different types of maneuvers
based on the number of impulses required:
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• One-Impulse Maneuvers

– Periapsis/Apoapsis Adjustment: it involves changing the altitude of the
spacecraft’s orbit by applying thrust at either the periapsis or apoapsis;

– Abscissa Rotation: by applying thrust at one of the two points where the
old and new ellipses intersect, the spacecraft can change its line of apsides,
which is the imaginary line connecting the periapsis and apoapsis;

– Change of Plane: this maneuver involves altering the inclination of the
spacecraft’s orbit by applying thrust at either the Equator or the apoapsis,
which are the most convenient points for executing this maneuver. By
doing so, the spacecraft can transition from its current orbital plane to a
different one;

– Combined Maneuver: a combination of the above maneuvers, often used
for complex orbital adjustments.

• Two-Impulse Maneuvers

– Orbit Phasing: used to synchronize the orbits of two spacecraft. The first
impulse adjusts the period, and the second aligns the phases;

– Transfer: a transfer between two circular orbit. The first impulse raises
(or lowers) the spacecraft to a higher (or lower) orbit and the second
circularizes it, ensuring it becomes a stable circular path;

– Hohmann Transfer: a particular transfer that minimize the ∆V ;
– Hohmann Transfer (out of plane): similar to the standard Hohmann

transfer but performed in a different orbital plane.

• Three-Impulse Maneuvers

– Bi-elliptic Transfer: a more efficient but complex transfer between two
circular orbits. The spacecraft first raises its orbit significantly, then
performs a second burn to lower it into the target orbit;

– Bi-parabolic Transfer: an even more efficient transfer, similar to the bi-
elliptic but using parabolic orbits. It’s important to note that achieving
a true parabolic orbit (where r = ∞) is practically impossible due to
real-world constraints. The concept serves as a theoretical model rather
than a practical maneuver;

– Change of Plane: achieves a change in inclination by applying thrust at
three different points in the orbit.

Each mission may employ a combination of these maneuvers to optimize fuel
usage and achieve mission objectives. A prime example of this are interplanetary
missions, which will be discussed in a subsequent paragraph. For the purpose of
this thesis, a more detailed explanation of Hohmann transfers is also necessary.
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Hohmann Transfer

A transfer between circular orbits allows a spacecraft to transition from an initial
orbit with a radius of a1 to a final orbit with a radius of a2. To achieve this, under
the hypothesis that a2 > a1, the spacecraft receives a first impulse to increase its
altitude. It then follows an elliptical transfer orbit until it reaches the final one.
Once there, the spacecraft receives a second impulse to decrease its altitude and
circularize the final orbit. As a result, the transfer orbit takes the form of an ellipse
that intersects both the initial and final orbits.

A Hohmann transfer, as described by Walter Hohmann in his 1925 book The
Attainability of Heavenly Bodies [23], is a specific type of orbital maneuver that
minimizes the required ∆V . It achieves this by applying the first impulse at the
periapsis of the elliptical transfer orbit and the second impulse at the apoapsis. As
depicted in Figure 2.6, the change in velocity aligns with the spacecraft’s velocity
vector.

The energy of the transfer orbit is:

EgH = v2
1
2 − µ

a1
= v2

2
2 − µ

a2
= − µ

2aH

= − µ

r1 + r2
(2.25)

Knowing the values of the semi-major axis, is easy to obtain the two velocities:

v2
1 = 2µ

3 1
r1

− 1
r1 + r2

4
= v2

c1

3 2r2

r1 + r2

4
→ v1 > vc1

v2
2 = 2µ

3 1
r2

− 1
r1 + r2

4
= v2

c2

3 2r1

r1 + r2

4
→ v2 < vc2

(2.26)

Therefor:

∆V1 = v1 − vc1

∆V2 = vc2 − v2
(2.27)

Consequently, is possible to obtain both the total ∆VH spent and the transfer
period:

∆VH = ∆V1 + ∆V2 (2.28)

TH = τH

2 = π

öõõôa3
H

µ
(2.29)

To determine the transfer period, it is sufficient to halve the total time spent
traveling along the ellipse.
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Figure 2.6: Hohmann transfer [24]

2.1.9 Interplanetary Missions
An interplanetary transfer is a maneuver conducted to reach a different planet from
the starting one. It is a crucial concept that enables deep-space exploration and must
account for all the perturbations that could affect the spacecraft. Interplanetary
transfers operate based on the method of patched conics, and the mission can be
divided into three segments:

• Departure Phase: a maneuver conducted to exit the sphere of influence of the
starting planet;

• Heliocentric Phase: typically involves a Hohmann transfer within the sphere
of influence of the Sun;

• Arrival Phase: a maneuver conducted to enter the sphere of influence of the
destination planet.

The term sphere of influence has been mentioned several times and, in the
following paragraph, a definitive definition will be provided.

Patched-Conics Method

The patched-conics method is a technique used in celestial mechanics to analyze the
motion of a spacecraft as it travels through space, particularly when encountering

19



Dynamic Model

multiple celestial bodies. Each celestial body has a region around it where its
gravitational pull dominates over other nearby bodies. This region is called the
sphere of influence and, within, the gravitational force from that body significantly
affects the spacecraft’s trajectory [15].

Let’s consider two planets as celestial bodies: a larger one of mass m1 and a
smaller one of mass m2. The radius r2 that characterizes the minor body’s sphere
of influence is:

r2 =
3

m2

m1

42.5
r12 (2.30)

This radius is determined by the balance between the gravitational forces from
both bodies. Beyond it, the smaller planet’s gravitational pull becomes negligible
compared to the larger planet. On the other hand, inside this radius, the smaller
planet’s gravitational effects are significant.

In summary, as a spacecraft travels through space, it encounters various celestial
bodies along its path. The patched-conics method simplifies this complex scenario
by dividing the spacecraft’s trajectory into segments, each corresponding to a
specific sphere of influence. As the spacecraft moves from one sphere of influence
to another, its motion is analyzed separately for each segment.

Launch Window

When designing an interplanetary mission, minimizing propellant consumption is
crucial. The most effective approach to achieve this goal is by implementing a
Hohmann transfer during the heliocentric phase. However, for this transfer to be
feasible, it is essential to adhere to the correct launch window. A launch window
represents a specific time period during which the mission must be initiated to
optimize the transfer’s duration and minimize propellant usage [25].

To better explain this concept, let’s consider an interplanetary transfer between
two planets: Earth and Mars. These planets are respectively represented in blue
and red in Figure 2.7. The angle γ1 indicates the angular distance between Earth’s
and Mars’s initial positions, while γ2 represents the angular distance between
Earth’s and Mars’s final positions. Earth’s initial position at time t1 and Mars’s
final position at time t2 are known. To determine the remaining unknown positions,
is necessary to calculate the angular velocities of the planets. These velocities are
defined as the rate of change of angle over an entire orbit, corresponding to their
orbital periods:

nE = 2π

TE

nM = 2π

TM

(2.31)
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Since this is a Hohmann transfer, the mean distance aH , which can be calculated
as the average of Earth’s and Mars’s orbital radii, is known. Therefor:

∆TH = TH

2 = π

öõõôa3
H

µS

(2.32)

The spacecraft travels only half of the transfer orbit. Additionally, the Sun’s
gravitational parameter, denoted as µS, is considered for the calculations. With
this information, is possible to determine the phases of the planets, which represent
the angular distance they have traveled along their orbits during this interval:

fE = nE∆TH

fM = nM∆TH

(2.33)

Consequently, the launch window is defined as:

γ1 = ∆νT O − fM (2.34)
Where, in the case of a Hohmann transfer:

∆νT O = ∆νH = π (2.35)

Figure 2.7: Interplanetary phasing [26]

If the launch window is missed, there are two potential strategies to consider:
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• Waiting for a sinodic period Ts

The synodic period is the time required for the same launch window to recur.
This occurs when the faster celestial body (the inner planet) laps the slower
one (the outer planet) twice. In the Earth-Mars case:

nT Ts − nMTs = 2π (2.36)

Therefor:

Ts = 2π

nT − nM

(2.37)

• Utilizing a different transfer orbit
If a different transfer orbit is used, it is necessary to optimize the ∆νT O in
order to reduce the losses due to misalignment and gravitational force.

Heliocentric Phase

When designing an interplanetary mission, the initial step involves studying the
heliocentric phase to estimate the required v∞, meaning the hyperbolic excess
velocity, and dimension the departure and arrival hyperbolas. Let’s denote V as the
velocity relative to the Sun and v as the velocity relative to the orbit. The problem
constraints include the initial transfer velocity V1, the final transfer velocity V2, and
the final alignment angle φ2. While φ1 is set to zero, indicating no misalignment
during departure, φ2 is nonzero due to the limited launch window: even a slight
delay can lead to a less-than-ideal approach to the arrival planet, resulting in
misalignment upon arrival.

There are two possibilities for a transfer, depending on whether the target
celestial body is an inner or outer planet:

• Inner Planet
Let’s consider a hypothetical transfer from Earth to Venus. In this case, the
maneuver involves lowering the periapsis, which means that V1 < VT . As a
consequence:

V2 > V1

V2 > VV

(2.38)

Knowing the semi-major axis of the transfer, it is possible to use the energy
equation to estimate the required velocities:
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Eg = V 2
1
2 − µS

rT

= V 2
2
2 − µS

rV

= − µS

2aH

= − µS

rT + rV

V1 = VT

ñ
2rV

rT +rV
< VT

V2 = VV

ñ
2rT

rT +rV
> VV

(2.39)
On the other hand, the momentum allows the calculation of φ2:

h = V1rT = V2rV cos(φ2) → φ2 = arccos
3

V1rT

V2rV

4
(2.40)

• Outer Planet
Let’s now consider a hypothetical transfer from Earth to Mars. In this case,
the maneuver involves raising the periapsis, which means that V1 > VT . As a
consequence:

V2 < V1

V2 < VM

(2.41)

Knowing the semi-major axis of the transfer, it is possible to use the energy
equation to estimate the required velocities:

Eg = V 2
1
2 − µS

rT

= V 2
2
2 − µS

rM

= − µS

2aH

= − µS

rT + rM

V1 = VT

ñ
2rM

rT +rM
> VT

V2 = VM

ñ
2rT

rT +rM
< VM

(2.42)
Again, the momentum allows the calculation of φ2:

h = V1rT = V2rMcos(φ2) → φ2 = arccos
3

V1rT

V2rM

4
(2.43)

Departing Phase

Having obtained the initial transfer velocity, V1, during the heliocentric phase, it is
now possible to evaluate the departure phase. To escape the sphere of influence of
the starting planet, a non-null hyperbolic excess velocity is necessary. Consequently,
the spacecraft will follow a hyperbolic trajectory. In simpler terms, the spacecraft
begins the mission by orbiting the starting planet with a circular velocity. Then,
a first ∆v1 maneuver propels it to a starting hyperbolic transfer velocity, vp, at
the periapsis. Finally, the spacecraft exits the sphere of influence with a relative
velocity, v∞, which, when combined with the celestial body’s velocity, equals the
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known V1. Therefore, it is possible to use this last data to calculate the initial
velocity backward.

The departure phase changes depending if the target celestial body is an inner
or outer planet:

• Inner Planet
To reach an inner planet, the spacecraft must exit the sphere of influence of the
starting planet, let’s suppose Earth, with an optimal hyperbolic excess velocity,
denoted as v∞. This velocity should be parallel to the starting planet’s one,
VT , and satisfy the condition v∞ = V1 − VT . This maneuver is commonly
referred to as a back-door exit, being v∞ opposite to VT .

Figure 2.8: Departure from an inner planet [26]

• Outer Planet
To reach an outer planet, the spacecraft’s hyperbolic excess velocity v∞ must
be parallel to the planet’s velocity VT and have the same direction. Initially,
the spacecraft is in a circular parking orbit with a velocity of vc =

ñ
µT

rc
. At

periapsis, a propulsion impulse is applied to transition the orbit from circular
to hyperbolic, initiating the escape maneuver:

vp = vc + ∆v1 (2.44)

To find the unknown value ∆v1, let’s consider the parallel vectors V1, VT and
v∞, which satisfy the condition V1 = VT +v∞. By utilizing the energy equation
in the context of hyperbolic escape, it is possible to determine the semi-major
axis of such a trajectory:
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Eg = v2
∞
2 − µT

r∞
→ a = − µT

v2
∞

(2.45)

If the energy equation is expressed with respect to the periapsis, it is also
possible to determine the periapsis velocity vp:

Eg =
v2

p

2 − µT

rc

= v2
∞
2 → vp =

ñ
2v2

c + v2
∞ (2.46)

Therefor:

∆v1 = vp − vc (2.47)

In simpler terms, by first solving the heliocentric phase, the velocity V1 becomes
a known quantity. Then, working backwards, is possible to determine the
initial impulse required to initiate the mission.

Figure 2.9: Departure from an outer planet [26]

It’s worth noting that the transfer could also be parabolic, but in that case, the
hyperbolic excess velocity would be zero. Consequently, a second impulse at
the asymptotic distance r∞ would be necessary to achieve the desired velocity
V1. However, opting for a two-impulse maneuver like this would result in
higher propellant consumption, making the hyperbolic transfer the preferred
choice.
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Arrival Phase

In the arrival phase, the spacecraft enters the sphere of influence of the target
planet with a hyperbolic excess velocity v∞. From the heliocentric phase, the values
for V2 and φ2 are obtained, which will now be used to determine the parameters of
the final orbit.

• Inner Planet
When a spacecraft approaches an inner planet, it will follow it, since it is
faster. This implies that the spacecraft’s velocity, denoted as V2, is greater
than the velocity of the celestial body. The relative velocity of the spacecraft
with respect to the planet, in module, is then given by:

v2 =
ñ

V 2
2 + V 2

V − 2V2VV cos(φ2) (2.48)

The energy will be:

Eg = v2
2
2 − µV

r∞
= −µV

2a
→ a = −µV

v2
(2.49)

From the momentum, a new quantity dm is found:

|⃗h| = r2v2sin
3

π

2 − α
4

(2.50)

In Equation 2.50, the term r2 represents the sphere of influence and α is the
angle between this radius and dm. This last quantity is called the missing
distance. To ensure that the spacecraft does not impact the planet’s surface,
the condition dm > B must be respected. Here, B is the impact parameter,
which corresponds to the missing distance when the periapsis radius is equal
to the planet’s one (rP = RV ).

• Outer Planet
When a spacecraft approaches an inner planet, it will anticipate it, since it is
slower.

FlyBy

When approaching a celestial body, the condition dm > B must be satisfied. If it
is, three scenarios can arise:

• Capture: the spacecraft is drawn into the celestial body’s sphere of influence
and begins to follow a circular orbit around it;
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Figure 2.10: Arrival to an inner planet [26]

Figure 2.11: Arrival to an outer planet [26]

• Trailing-side flyby: the spacecraft performs a maneuver behind the celestial
body, gaining velocity;

• Leading-side flyby: the spacecraft performs a maneuver in front of the celestial
body, losing velocity.
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Flyby is a maneuver employed in interplanetary missions. During a flyby, a
spacecraft approaches a planet or moon and utilizes its gravity to modify its
trajectory. In simpler terms, it can either gain speed or alter its direction.

• Trailing-side Flyby
By performing a trailing-side flyby, the spacecraft can increase its trajectory’s
energy as it exits the celestial body’s sphere of influence, all without relying
on its propulsors.
When examining Figure 2.12, it becomes evident that v∞,1 and v∞,2, the
relative velocities of the orbit, share the same magnitude but differ in direction.
By recalling the momentum equation, it is possible to demonstrate its increase:

h1 = V s
1 r1cos(α1)

h2 = V s
2 r2cos(α2)

(2.51)

As a result of this maneuver, V2 > V1 and α2 < α1. Therefor, cos(α2) > cos(α1)
and, as a consequence, h2 > h1.

Figure 2.12: Trailing-side flyby [26]
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• Leading-side Flyby
On the other hand, by performing a trailing-side flyby, the spacecraft can
decrease its trajectory’s energy, without using its propulsors. Again, by
recalling the momentum equation, it is possible to demonstrate its decrease.

Figure 2.13: Leading-side flyby [26]

2.1.10 Lagrangian Points
Lagrangian points, named after Joseph-Louis Lagrange, are equilibrium points
resulting from the interaction of the gravitational fields of two major bodies, of
masses m1 > m2. Due to their unique properties, a third, smaller object, m, can
remain stationary at these points with minimal propellant consumption [27].

Usually, the model used to describe these points is the Circular Restricted
Three-Body Problem (CR3BP). This simplified model assumes that the orbits of
the two major bodies are circular around their common center of mass and that
the third body has a negligible mass compared to the other two. In such system,
the equation of motion for the smaller body is:

¨⃗r + ω⃗ ∧ (ω⃗ ∧ r⃗) + 2ω⃗ ∧ ˙⃗r = 1
m

(F⃗1 + F⃗2) (2.52)
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The terms on the left of Equation 2.52 represents the inertial, centripetal and
Coriolis forces, while the terms on the right represent the forces applied by m1 and
m2 on m. This equation can be rewritten in its three-component, non-dimensional
form: 

ξ′′ − ξ − 2η′ = −(1 − µ) ξ+µ
ρ3

1
− µ ξ−(1−µ)

ρ3
2

η′′ − η + 2ξ′ = −(1 − µ) η
ρ3

1
− µ η

ρ3
2

ζ ′′ = −(1 − µ) ζ
ρ3

1
− µ ζ

ρ3
2

(2.53)

Where µ = m2
M

is not a gravitational parameter, with M = m1 + m2, and
{ξ, η, ζ}T are the non-dimensional coordinates. Such equation can be solved
numerically by converting it into a system of six Ordinary Differential Equations
(ODEs) in six variables x = {ξ′, η′, ζ ′, ξ′′, η′′, ζ ′′}T , which form the state vector.

To find the Lagrangian, or equilibrium, points, the components of relative
velocity {ξ′, η′, ζ ′}T and acceleration {ξ′′, η′′, ζ ′′}T must be nullify, so that every
body stationed there remains motionless with respect to the reference frame. As
shown in Figure 2.14, there exist five such points for any combination of two major
bodies.

Figure 2.14: Lagrangian point in a Sun-Earth system [12]

To find their coordinates, it is necessary to define a potential function U and
derive it with respect to the three non-dimensional coordinates. Therefor, starting
from:

U = 1 − µ

ρ1
+ µ

ρ2
+ 1

2(ξ2 + η2) (2.54)
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The following system is obtained:
∂U
∂ξ

= ξ′′ − 2η′

∂U
∂η

= η′′ + 2ξ′

∂U
∂ζ

= ζ ′′
(2.55)

By setting these derivatives to zero, the coordinates of the Lagrangian points
can be determined, which lie on the ξ̂ − η̂ plane since the last equation is satisfied
by imposing ζ = 0. In the Sun-Earth system, these Lagrangian points are:

• By imposing η = ζ = 0:

– L1
Known as the cis-Earth point, it lies on the line connecting the two major
celestial bodies, before the smaller one. At the L1 point, the object’s
orbital period matches Earth’s:ξ − (1 − µ) ξ+µ

ρ3
1

− µ ξ−(1−µ)
ρ3

2
= 0

ρ1 + ρ2 = 1
→ ρ2 ≈ 3

ò
µ

3 (2.56)

– L2
Known as the trans-Earth point, it lies on the line connecting the two
major celestial bodies, beyond the smaller one. Similar to L1, the object’s
orbital period at L2 matches Earth’s:ξ − (1 − µ) ξ+µ

ρ3
1

− µ ξ−(1−µ)
ρ3

2
= 0

ρ1 − ρ2 = 1
→ ρ2 ≈ 3

ò
µ

3 (2.57)

– L3
Known as the trans-Sun point, it lies on the line connecting the two major
celestial bodies, before the larger one. At the L3 point, the object’s orbital
period also matches Earth’s:ξ − (1 − µ) ξ+µ

ρ3
1

− µ ξ−(1−µ)
ρ3

2
= 0

ρ2 − ρ1 = 1
→ ρ2 ≈ 2 → ρ1 ≈ 1 (2.58)

• By imposing ρ1 = ρ2 = 1:

– L4 and L5
Known as the equilateral points, these are the only stable Lagrangian
points, provided the mass ratio of the two bodies is sufficiently large:
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ξ − (1 − µ) ξ+µ
ρ3

1
− µ ξ−(1−µ)

ρ3
2

= 0
η − (1 − µ) η

ρ3
1

− µ η)
ρ3

2
= 0

→

ξ = 1
2 − µ

η = ±
√

3
2

(2.59)

While, as mentioned, L4 and L5 are stable Lagrangian points, L1, L2 and L3
are unstable, since even a small perturbation can cause an object to move away
from them.

2.2 Equations of Motion

To describe the state evolution of a spacecraft, it is necessary to integrate a set
of ODEs over time. These equations describe the spacecraft’s changes in position,
velocity, and mass:

dr⃗

dt
= V⃗

dV⃗

dt
= g⃗ + T⃗

m
+ L⃗

m
+ D⃗

m
+ a⃗p

dm

dt
= −T

c

(2.60)

In the second equation, T⃗ , L⃗ and D⃗ represent thrust, lift and drag respectively,
while a⃗p the perturbations. Since the studied orbits are interplanetary transfers,
the mission is located far from Earth’s atmosphere, making the lift and drag terms
negligible. The problem uses an heliocentric model, so the term g⃗ represents
the gravitational acceleration generated by the central body, which is the Sun.
Additionally, this mission does not consider the effects of perturbations, also making
the term a⃗p negligible.

Finally, the last equation represents the loss of mass due to the propulsive
phases.

2.2.1 Equations of Motion in Cartesian Coordinates

The equations of motion, as presented in Equation 2.60, can be reformulated in
Cartesian coordinates. This involves considering the Cartesian components of
position and velocity, denoted as r⃗ = {x, y, z}T and V⃗ = {Vx, Vy, Vz}T :
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dx

dt
= Vx

dy

dt
= Vy

dz

dt
= Vz

dVx

dt
= − µ

r3/2 x + T⃗

m

λVx

λV

dVy

dt
= − µ

r3/2 y + T⃗

m

λVy

λV

dVz

dt
= − µ

r3/2 z + T⃗

m

λVz

λV

dm

dt
= −T

c

(2.61)

The term λV represents the magnitude of the prime vector λ⃗V = {λVx , λVy , λVz},
which contains the costates of the velocity components.
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Chapter 3

Mathematics and Code
Implementation

3.1 Asteroids Selection

The initial step in defining this mission involves creating a database of all reachable
asteroids. These asteroids are categorized into two groups: numbered and non-
numbered. Numbered asteroids have well-defined physical characteristics and orbital
parameters, whereas non-numbered asteroids have a certain degree of uncertainty
due to the limited number of observations and available data [28][29]. Despite
this, both categories are considered in this thesis, assuming the accuracy of the
information provided by the JPL database [30]. This database was consulted in
April 2024, filtering for NEAs that meet specific orbital conditions, as detailed in
Table 3.1. These parameters were established to ensure the asteroid’s orbit is close
to Earth’s and to guarantee a Minimum Orbital Intersection Distance (MOID) of
less than 500 000 km.

Value
Semi-major axis (a) 0.97 ÷ 1.031 au

Eccentricity (e) < 0.1
Inclination (i) < 2°

Table 3.1: Orbital conditions for the asteroids selection

In the second step, a two-impulse Hohmann transfer from Earth was considered
to estimate the necessary ∆V , adhering to the condition of a maximum magnitude
of 1 km s−1. Given the need for a plane change, a combined maneuver was employed:
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∆V =
ñ

∆V 2
1 + ∆V 2

2 − 2V1V2 cos(α∆i) (3.1)

The term α represents the fraction of the plane change performed during the
first impulse, with the remainder executed during the second one. This approach
reduces propellant usage, as the maneuver occurs farther from the central body
and its gravitational pull. To ensure that 90% of the inclination change is always
performed away from the Sun, an α = 0.9 was used for asteroids closer to the Sun
than Earth, and α = 0.1 for those further away.

Out of the twenty remaining asteroids, ranked from the lowest to the highest
estimated ∆V , the first two were selected for this mission. Their parameters are
listed in Table 3.2.

a [au] e i [°] Ω [°] ω [°] ∆V [kms−1]
2000 SG344 0.9773 0.0668 0.11 191.76 275.51 0.3512
2013 BS45 0.9915 0.0838 0.77 83.4 150.74 0.4405

Table 3.2: Orbital parameters of the chosen asteroids

Therefor, the mission begins at L2, where the mothership, carrying two probes,
travels to the first asteroid, 2000 SG344. The first probe is then released on its
surface and the mission continues to the second asteroid, 2013 BS45, where the
remaining probe is also deployed.

3.2 Chosen Values
To define the orbital parameters of the starting point, L2, it is important to evaluate
its distance from Earth, ρ2, as shown in Equation 2.57. In the Sun-Earth system,
the value of µ is defined as:

µ = µE

µS + µE

(3.2)

Given that ρ2 ≈ 1.5 × 106 km, the orbital parameters of L2 are the same as
Earth’s, except for the semi-major axis, which accounts for this additional distance,
as detailed in Table 3.3.

a [km] e i [°] Ω [°] ω [°]
L2 1.496 × 108 + ρ2 0.017 0 348.74 19.06

Table 3.3: Orbital parameters of L2
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It is also important to note that the trans-Earth point moves in accordance with
Earth, remaining aligned with both the planet and the Sun. Therefore, its initial
velocity has been determined proportionally, based on Earth’s.

The spacecraft has a total mass of 600 kg, with each probe weighting 25 kg.
These values were chosen based on the studies Asteroid Reconnaissance Probes
(ARProbes) and Geophysical Reconaissance Asteroid Surface Probe (GRASP)
[31][32]. All the spacecraft’s characteristic values are detailed in Table 3.4.

Total mass [kg] Probe mass [kg] Thrust [N] Isp [s]
600 25 0.1 3000

Table 3.4: Spacecraft’s characteristics

3.2.1 Non-dimensionalizing Values
In such complex scenarios, it is easy to encounter different orders of magnitude, as
seen in the Sun-Earth and Earth-L2 distances. To avoid numerical problems due to
these disparities, every implemented value must be non-dimensionalized using the
appropriate quantity. Consequently, in the code used for resolving the trajectory
optimization problem, a series of non-dimensionalizing values has been considered:

LAdim = dSE

mAdim = msc

µAdim = µSun

(3.3)

Here, dSE is the Sun-Earth distance, equal to 1 au = 1.496 × 108 km, msc =
600 kg the spacecraft mass and µSun = 1.327 122 × 1011 km3 s−2 the gravitational
parameter of the Sun. Any other non-dimensionalizing value result from a combi-
nation of these three:

VAdim =
ó

µAdim

LAdim

tAdim = LAdim

VAdim

(3.4)

Due to the very low inclination values of the targeted orbits, the length along the
third axis is several orders of magnitude lower than the other two. To compensate
for this difference, the non-dimensionalizing length for the z-axis has been multiplied
by sin(2°). It is also important to note that, from this point forward, vectors will
be presented in boldface to simplify the notation.
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3.3 Differential Corrector
The scope of this thesis is to optimize interplanetary trajectories to ensure minimal
propellant usage. Given the initial and final non-dimensional states, X̃(τ0) and
X̃(τf ), it is possible to determine a path between the two. By selecting a reasonable
initial guess for the initial state and integrating it over a specified duration, adjusting
its initial parameters, the solution is found when the integrated final state closely
matches the desired one. However, this approach lacks insight into how changes to
the initial values affect the convergence, whether they improve or worsen it.

A more effective approach is the implementation of a Two Point Boundary
Value Problem (TPBVP), which will be discussed later. The key concept is the
understanding of how the initial state should be corrected in order to produce the
desired final one, providing essential theoretical insights regarding the evolution
over time of the associated state.

The discrepancy between the desired X̃∗(τf ) and the actual final state X̃(τf),
can be expressed as:

δX̃(τf ) = X̃(X̃(τ0), τf ) − X̃∗(X̃∗(τ0), τf ) (3.5)

The aim of the Differential Corrector (DC) is the elimination of such discrepancy.
Therefor, it should exist a specific correction in the initial state, denoted as δX̃(τ0),
able to produce the desired initial state:

X̃∗(τ0) = X̃(τ0) + δX̃(τ0) (3.6)

Therefor, Equation 3.5 can be expanded and linearized in the form:

δX̃(τf ) = X̃(X̃(τ0), τf ) − X̃∗(X̃∗(τ0), τf )
= X̃(X̃(τ0) + δX̃(τ0), τf ) − X̃∗(X̃∗(τ0), τf )

= ∂X̃(τf )
∂X̃(τ0)

δX̃(τ0)

= Φ̃(τf , τ0)δX̃(τ0)

(3.7)

Based on the discrepancy obtained in the final state, this equation allows the
calculation of the necessary correction to apply to the initial state. The term
Φ̃(τf , τ0) represents the State Transition Matrix (STM), which encapsulates the
relationship between the partial derivatives of the final state variables and those
of the initial state, thereby creating a linear mapping between the initial and
final states. Such matrix can be expressed in its non-dimensional, extended form,
considering a generic instant τ instead of the final time τf :
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Φ̃(τ, τ0) =



∂x

∂x0

∂x

∂y0

∂x

∂z0

∂x

∂ẋ0

∂x

∂ẏ0

∂x

∂ż0
∂y

∂x0

∂y

∂y0

∂y

∂z0

∂y

∂ẋ0

∂y

∂ẏ0

∂y

∂ż0
∂z

∂x0

∂z

∂y0

∂z

∂z0

∂z

∂ẋ0

∂z

∂ẏ0

∂z

∂ż0
∂ẋ

∂x0

∂ẋ

∂y0

∂ẋ

∂z0

∂ẋ

∂ẋ0

∂ẋ

∂ẏ0

∂ẋ

∂ż0
∂ẏ

∂x0

∂ẏ

∂y0

∂ẏ

∂z0

∂ẏ

∂ẋ0

∂ẏ

∂ẏ0

∂ẏ

∂ż0
∂ż

∂x0

∂ż

∂y0

∂ż

∂z0

∂ż

∂ẋ0

∂ż

∂ẏ0

∂ż

∂ż0



=

 Φ̃XX Φ̃XV

Φ̃V X Φ̃V V

 (3.8)

The subscript 0 indicates the initial time τ0, while the generic time τ has been
omitted in the numerator for clarity reasons. This is a 6x6 matrix composed of
four 3x3 sub-matrices, where X and V represent, respectively, the position and
velocity components. The STM, also known as the sensitivity matrix, measures
how variations in the initial state affect the final one. Consequently, both the
STM and the trajectory evolve over time in the same manner, with this evolution
described by its own 36 ODEs:

˙̃Φ(τ, τ0) = d

dτ
Φ̃(τ, τ0) = d

dτ

A
∂X̃

∂X̃0

B

= ∂

∂X̃0

A
dX̃

dτ

B

= ∂ ˙̃X
∂X̃

∂X̃

∂X̃0

= Ã(τ)Φ̃(τ, τ0)

(3.9)

Where, to avoid burdening the notation, the shortenings X̃f ≜ X̃(X̃(τ0), τf)
and X̃0 ≜ X̃(τ0) have been introduced. The evolution of the STM is, therefore,
described by itself and the Jacobian matrix Ã(τ), which contains all the first-order
partial derivatives of a vector-valued function.

3.4 Single-shooting Procedure
As anticipated, this thesis implements a single-shooting procedure. This method
involves adjusting certain initial conditions to achieve a specified set of end con-
ditions, forming a TPBVP. It is a recursive method that iteratively targets the
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desired final state while updating the initial conditions at each step, continuously
checking for and correcting any undesired terminal deviations. It is important
to note that not all initial quantities may be allowed to vary; some may need to
remain fixed. Conversely, not all terminal quantities may be fixed; some may need
to vary [33].

Therefor, the free-variable vector X̃0 ∈ Rn×1 may include state elements such
as positions and velocities, and is expressed as follows:

X̃0 = {X1, X2, ..., Xn}T (3.10)

The constraint vector, on the other hand, targets the desired final quantities.
As a consequence, the differences between actual and desired final states are
encapsulated in the complete constraint vector χ(X̃f ) ∈ Rm×1, in the form:

χ(X̃f ) = {χ1, χ2, ..., χm}T =



x − x∗

y − y∗

z − z∗

ẋ − ẋ∗

ẏ − ẏ∗

ż − ż∗


(3.11)

The purpose of the correction method is, therefor, to search for a specific initial
state X̃∗

0 able to satisfy all the constraints, such that χ(X̃∗
f ) = 0. To determine

how variations in the free-variable vector affect the constraint vector, a first-order
Taylor expansion is performed. Thus, for a generic new variable state vector X̃,
the constraint vector can be defined as:

χ(X̃) = χ(X̃0) + ∂χ(X̃0)
∂X̃

(X̃ − X̃0) (3.12)

In this equation, the Jacobian matrix J̃(χ(X̃0), X̃) ∈ Rm×n is included once
again. This matrix, as previously anticipated, is composed of the partial derivatives
of the constraints with respect to the forward-in-time free-variable vector quantities:

∂χ(X̃0)
∂X̃

= J̃(χ(X̃0), X̃) =



∂χ1

∂X̃1

∂χ1

∂X̃2
· · · ∂χ1

∂X̃n

∂χ2

∂X̃1

∂χ2

∂X̃2
· · · ∂χ2

∂X̃n

... ... . . . ...
∂χm

∂X̃1

∂χm

∂X̃2
· · · ∂χm

∂X̃n


(3.13)
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The Taylor expansion, as shown in Equation 3.12, can be expressed iteratively,
where each subsequent step r + 1 depends on the previous r-th one:

χ(X̃r+1) = χ(X̃r) + ∂χ(X̃r)
∂X̃r+1

(X̃r+1 − X̃r) (3.14)

Introducing the abbreviations χr ≜ χ(X̃r) and J̃(χr) ≜ J̃(χ(X̃r), X̃r+1), if a
solution exist, then χr+1 = 0 and the iterative solution takes the form:

χr + [J̃(χr)](X̃r+1 − X̃r) = 0 (3.15)
By manipulating Equation 3.15, it is possible to isolate the initial state guess

for the new iteration:

X̃r+1 = X̃r − [J̃(χr)]−1χr (3.16)
This expression, which ensures the next solution is as close as possible to the

initial guess X̃r among the infinite possibilities, holds true if the number of variables
equals the number of constraints, meaning n = m. However, if there are more
variables than constraints, with n > m, Equation 3.16 takes the form:

X̃r+1 = X̃r − [J̃(χr)]T [J̃(χr)J̃(χr)T ]−1χr (3.17)
Finally, a relaxation parameter, denoted as kR, can be introduced to facilitate

convergence, allowing for smaller corrections to be performed at each iteration.
Therefore, these iterative methods take the following form:X̃r+1 = X̃r − kR[J̃(χr)]−1χr if n = m

X̃r+1 = X̃r − kR[J̃(χr)]T [J̃(χr)J̃(χr)T ]−1χr if n > m
(3.18)

In this thesis’s mission scenario, the number of variables and constraints is equal,
so the first equation is used. The targeted orbit is defined by its CKP, with both
the true anomaly (ν) and the mission duration (time of flight, tof) fixed. This
approach ensures that not only the desired orbit is achieved, but also the exact
position of the selected asteroid at the correct time. Conversely, if both parameters
were left free, the orbit could be reached with minimal propellant usage by selecting
the most convenient values for ν and tof . However, this would not account for the
actual position of the asteroid, necessitating an additional phasing maneuver.

3.5 Implementation of the Code
All the concepts previously defined form the core of the Python code implemented
to solve the trajectory optimization problem presented here. The code is structured
into three main sections:
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• Adimensionalization: this section is dedicated to defining the non-dimensionalizing
parameters and their applications.

• Functions: this section defines the functions responsible for converting between
Keplerian and Cartesian states.

• Cartesian: this final section outlines all the initial and final conditions, as well
as the main functions. Of particular interest is the differential corrector func-
tion, which is paired with a precompiled C++ integrator using the Numbalsoda
library for its superior computational speed, stability and robustness [34]. This
combination simultaneously exploits the superior speed and efficiency of C++
and the user-friendly nature of Python.
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Chapter 4

Optimal Control Theory

Trajectory optimization and Optimal Control Theory (OCT) are often used inter-
changeably, even though they represent distinct techniques for solving Optimal
Control Problem (OCP). While the former aims to maximize or minimize a func-
tion and determine the associated variables, the latter is rooted in the Calculus
of Variations (CoV). OCT leverages small variations to identify the maximum or
minimum of a functional, that is to say a function of functions. Ultimately, OCT
determines the control input that optimizes the aforementioned functional [35][36].

CoV was initially developed by Leonhard Euler in 1733, and its name is derived
from his work Elementa Calculi Variationum. Over the subsequent years, other
influential mathematicians, including Lagrange, made significant contributions to
refining this theory. However, it was only in the 19th century that Karl Weierstrass
ultimately established a rigorous foundation for it [37][38][39].

OCT emerged around 1980, coinciding with the widespread adoption of digital
computers. Since then, it has continued to evolve into the theory we recognize
today [40].

4.1 Optimal Control Problem
An OCP seeks to maximize a specific merit index by determining the optimal
control law from the set of admissible ones, which must satisfy all constraints for a
trajectory that evolves within its dynamical model, transitioning from an initial
to a final state. Such dynamical problem can be expressed as a set of first-order
ODEs, in the general form:

ẋ(t) = f(x(t), u(t), t) (4.1)

These equations are function of a state vector x(t), a control vector u(t) and
an independent variable t, which represents the problem’s time-dependence. Let’s
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denote the number of state variables as n, where x(t) ∈ Rn, and the number of
control variables as m, where u(t) ∈ Rm.

In order to solve this problem, it is essential to define its boundary conditions. A
problem in which these conditions are specified using the initial and final states is
referred to as a TPBVP. In practical terms, these conditions are known as external
and are evaluated at the initial instant t0 and at the final one tf . A trajectory
problem may necessitate additional conditions related to intermediate time points,
and all these boundary conditions are collectively encapsulated within a constraint
vector:

χ(t) = f(x0, xf , t0, tf ) = 0 (4.2)

The OCP is evaluated using a merit index denoted by J . This index takes into
account the evolution over time of both the control and state vectors within the
interval spanning from the initial to the final time:

J = φ(x0, xf , t0, tf ) +
Ú tf

t0
[Φ(x(t), u(t), t)]dt (4.3)

For a dynamic system, the merit index J is entirely determined by the control
input u(t). The first function φ depends on the specific final state reached, while
the integral of the function Φ quantifies how the solution evolves over time to
reach the final state from the initial one. Notably, since J is a functional, this
optimization problem involves an unknown function rather than a simple variable.

From Equation 4.3, is possible to derive two distinct formulations: the Lagrange
formulation, where φ = 0, and the Mayer formulation, where Φ = 0. In this specific
case, it will be used the latter approach. To further simplify the problem, it is
necessary to introduce an augmented merit function J ∗ that quantifies how well the
constraints and state variables are satisfied. The rationale behind this approach lies
in the fact that solving a larger yet simplified problem is often easier than tackling
a smaller but more intricate one. This simplification involves introducing two new
quantities: the adjoint variables, contained in the adjoint vector λ(t) ∈ Rn, and
the Lagrange multipliers µ ∈ Rm. The augmented merit index is then expressed as
follows:

J ∗ = φ + µT χ +
Ú tf

t0
[Φ + λT (f − ẋ)]dt (4.4)

If the boundary conditions and state equations are satisfied, meaning that χ = 0
and f = ẋ, solving this augmented problem is equivalent to the resolution of the
non-augmented one, since J = J ∗. Within the integral, the time derivative of the
state vector ẋ appears, which is unknown. To eliminate it, is possible to rewrite
the term −λT ẋ by integrating by parts:
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Ú tf

t0
(−λT ẋ)dt = −λT

f xf + λT
0 x0 +

Ú tf

t0
(λ̇T x)dt (4.5)

Then, is possible to substitute Equation 4.5 in 4.4, obtaining:

J ∗ = φ + µT χ + (λT
0 x0 − λT

f xf ) +
Ú tf

t0
(Φ + λT f − λ̇T x)dt (4.6)

This final equation reveals a quantity that will prove useful later: the system’s
Hamiltonian, denoted as H, shown in Equation 4.7.

H ≜ Φ + λT f (4.7)

It is also possible to obtain the first-order derivative of the augmented merit
index. This derivative must be zero to ensure that the optimality conditions are
satisfied and that J ∗ remains stationary at the optimal point:

δJ ∗ =
A

∂φ

∂t0
+ µT ∂χ

∂t0
− H0

B
δt0+

+
A

∂φ

∂tf

+ µT ∂χ

∂tf

+ Hf

B
δtf+

+
A

∂φ

∂x0
+ µT ∂χ

∂x0
+ λT

0

B
δx0+

+
A

∂φ

∂xf

+ µT ∂χ

∂xf

− λT
f

B
δxf+

+
Ú tf

t0

CA
∂H
∂x

+ λ̇T

B
δx + ∂H

∂u
δu

D
dt, j = 1, . . . , np.

(4.8)

Each of the first four terms in Equation 4.8 is multiplied by a coefficient,
respectively δt0, δtf , δx0, δxf , δx and δu and their nullification can provide new
important equations:

• When δt0 = δtf = 0, two algebraic equations are produced, one at the initial
time and another at the final. These equations are referred to as transversality
conditions;

• When δx0 = δxf = 0, 2n algebraic equations are produced, one for each
state at the initial and final bounds. These equations are referred to as the
optimality conditions;

• When δx = δu = 0, n Euler-Lagrange ODEs are generated for the adjoint
variables, along with m algebraic equations for the control.
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4.1.1 Boundary Conditions for Optimality
When the multiplier coefficients δt0, δtf , δx0 and δxf are set to zero, a system of n
transversality equations and 2n optimality equations is obtained. These equations
collectively establish the boundary conditions for optimality:

∂φ

∂t0
+ µT ∂χ

∂t0
− H0 = 0 (4.9)

∂φ

∂tf

+ µT ∂χ

∂tf

+ Hf = 0 (4.10)

∂φ

∂x0
+ µT ∂χ

∂x0
− λT

0 = 0 (4.11)

∂φ

∂xf

+ µT ∂χ

∂xf

+ λT
f = 0 (4.12)

In the context of transversality equations, if time does not appear in the function
φ or in any constraint, then the Hamiltonian becomes zero, and the time becomes
an optimization variable. However, if time is constrained and appears in the term
χ, then the Hamiltonian remains unconstrained, and its value is influenced by the
optimization process.

In the context of optimality equations, similar behavior is observed. If a
state variable xi does not appear in the function φ or any of the constraints, its
corresponding adjoint variable λxi

becomes zero at the same point. However, if xi

is explicitly constrained, then λxi
remains unconstrained. These findings are more

effectively illustrated in Table 4.1.

Condition Result
Transversality t unconstrained H = 0

t constrained H free
Optimality xi unconstrained λxi

= 0
xi constrained λxi

free

Table 4.1: Rules for transversality and optimality conditions

4.1.2 Equations for Adjoint and Control Variables
As previously mentioned, from Equation 4.8, is possible to derive n Euler-Lagrange
ODEs and m algebraic equations that describe the evolution of adjoint variables
and controls over time. To obtain the ODEs, it is necessary to set the coefficient
δx to zero:
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dλ

dt
= −

A
∂H
∂x

BT

(4.13)

On the other hand, for the control, is necessary to nullify the coefficient δu:A
∂H
∂u

BT

= 0 (4.14)

Pontryagin’s Maximum Principle

In reference to Equation 4.14, generally, the control vector u may consist of one
or more elements that are subject to specified admissibility limits, denoted as U .
In this specific scenario, the focus will be solely on explicit constraints within the
range Umin ≤ u ≤ Umax. The Pontryagin’s Maximum Principle (PMP) states that
when explicit admissibility constraints are present, the optimal control u∗ for the
desired trajectory is the one that, at each point along the trajectory, maximizes
the Hamiltonian in that specific point. In the case of a minimization problem, the
same concept is referred to as the Pontryagin’s minimum Principle (PmP).

It is important to note that for this equation to remain valid, the Hamiltonian
H cannot be linear or affine with respect to the bounded control. Consequently, is
possible to identify two distinct cases:

∂H
∂ui

=
kui

if H affine wrt ui

f (ui) otherwise
(4.15)

In the first case, if H is affine with respect to the bounded control ui then, since
such control cannot appear explicitly, the only solution is for the constant kui

to be
null. The only alternative is to seek the remaining coefficients kui

provided from
the derivation: if kui

/= 0, then H is maximized by imposing ui = Uimax if kui
> 0,

or ui = Uimin if kui
< 0. Such condition is referred to as bang-bang control.

4.2 Multi-Point Optimal Control Problem
Until now, only a TPBVP has been considered, where the boundary conditions are
external. However, as previously mentioned, it is also possible to impose constraints
on internal points along the trajectory, resulting in a Multi-Point Optimal Control
Problem (MPOCP). In this case study, implementing such a problem would be
necessary because a few fly-bys occur along the trajectory. Consequently, the
trajectory could be divided into a number np of sub-intervals or arcs. These arcs
would facilitate simplified convergence and enhance the code’s robustness. Within
each arc, the variables remain continuous, but they may exhibit discontinuities
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at the junction points. Each j-th arc begins at a time t(j−1)+ and ends at t(j)− ,
spanning for an unknown duration ∆tj subject to optimization, as shown in Figure
4.1. Therefore, not every arc has the same duration, but this parameter depends
solely on the optimum solution. However, implementing such an application would
be challenging in this initial approach and, therefore, will be the focus of future
studies.

Figure 4.1: Schematic representation of a MPBVP

In a Multi-Point Boundary Value Problem (MPBVP), the constraint vector
takes the form:

χ(x(j−1)+ , x(j)− , t(j−1)+ , t(j)−) = 0, j = 1, ..., np (4.16)

Having considered not only the external boundaries, but also the internal ones.
The merit index then J becomes:

J = φ
1
x(j−1)+ , x(j)−,, t(j−1)+ , t(j)−

2
+

npØ
j=1

Ú t(j)−

t(j−1)+

Φ(x(t), u(t), t)dt (4.17)

The augmented merit index J ∗ is again given by the sum of two terms: ϕ,
depending on the values assumed for each arc and the entire trajectory, and the
sum of integrals that quantify the evolution of the solution over time. However, in
this case, Φ specifically captures how the solution evolves arc-by-arc:

J ∗ = φ + µT χ +
npØ

j=1

Ú t(j)−

t(j−1)+

è
Φ + λT (f − ẋ)

é
dt (4.18)

Integrating by part, J ∗ becomes:
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J ∗ = φ+µT χ+
npØ

j=1

1
λT

(j−1)+x(j−1)+ − λT
(j)−x(j)−

2
+

npØ
j=1

Ú t(j)−

t(j−1)+

1
Φ + λT f − λ̇T x

2
dt

(4.19)
Again, is possible to obtain the first order differentiation δJ ∗ per each arc:

δJ ∗ =
A

∂φ

∂t(j−1)+

+ µT ∂χ

∂t(j−1)+

− H(j−1)+

B
δt(j−1)++

+
A

∂φ

∂t(j)−

+ µT ∂χ

∂t(j)−

+ H(j)−

B
δt(j)−+

+
A

∂φ

∂x(j−1)+

+ µT ∂χ

∂x(j−1)+

+ λT
(j−1)+

B
δx(j−1)++

+
A

∂φ

∂x(j)−

+ µT ∂χ

∂x(j)−

− λT
(j)−

B
δx(j)−+

+
npØ

j=1

Ú t(j)−

t(j−1)+

CA
∂H

∂x + λ̇

B
δx + ∂H

∂u
δu

D
dt, j = 1, . . . , np.

(4.20)

4.2.1 Boundary Conditions for Optimality and Equations
for Adjoint and Control Variables

In the context of the MPBVP, it is more convenient to express the optimality and
transversality conditions with respect to the j-th boundary itself. Consequently,
the values are specified immediately before and after them, instead of considering
the single arc:

∂φ

∂tj+

+ µT ∂χ

∂tj+

− Hj+ = 0, j = 0, . . . , np − 1 (4.21)

∂φ

∂tj−

+ µT ∂χ

∂tj−

+ Hj− = 0, j = 1, . . . , np (4.22)

∂φ

∂xj+

+ µT ∂χ

∂xj+

+ λT
j+ = 0, j = 0, . . . , np − 1 (4.23)

∂φ

∂xj−

+ µT ∂χ

∂xj−

− λT
j− = 0, j = 1, . . . , np (4.24)

On the contrary, the equations for the adjoint and control variables remain
unaltered.
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4.3 The Implemented Boundary Value Problem
The primary objective of this thesis is to optimize transfer trajectories within a
TBP, providing an accurate description of its dynamics. The two main challenges
in implementing a TPBVP are the inherent non-linearity of such a complex scenario
and the numerical issues that may arise from using the indirect method. Therefore,
it is of utmost importance to enhance the robustness of the code and mitigate the
high sensitivity to variations in the initial conditions.

To address this issue, the TPBVP is converted into an augmented version. The
new optimal initial state now includes both the previously defined one and the
adjoint vector:

y∗
0 = {(x∗

0)T (λ∗
0)T }T (4.25)

If found, this optimal initial state enables reaching the desired final condition,
y∗

f , while satisfying all boundary conditions. The chosen numerical method is the
single-shooting one, selected for its straightforward implementation, computational
efficiency and speed.

For the indirect method, the general form of the complete set of ODEs is:

ẏ = f(y(t), t) (4.26)
However, as previously mentioned, the problem may include some constant

values. Therefore, a new vector that accounts for them can be introduced:

z = {yT cT }T (4.27)
Where c is the vector of the aforementioned constants. Thus, the set of ODEs

becomes:

ż = dz

dt
= f(z(t), t) (4.28)

Where:

ẏ = dy

dt

ċ = dc

dt
= 0

(4.29)

The new complete set of boundary conditions is:

χ(z) = 0 (4.30)
To achieve the desired final conditions, the single-shooting method must deter-

mine the optimal initial state q∗
0 while ensuring that χ(q∗) = 0. To begin this
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iterative process, an initial guess vector, qr = z0, must be defined. Then, using a
first-order Taylor expansion, the boundary conditions at the next iteration can be
expressed as a function of the previous one:

χ(qr+1) = χ(qr) + ∂χ(qr)
∂qr+1

(qr+1 − qr) (4.31)

In this context, the Jacobian matrix is again present, indicating how small
changes in q affect the problem and, therefore, how to correct the guess after each
iteration. Introducing the notations χr = χ(qr) and J(χr) = J(χ(qr), qr+1), if a
solution exists, then χr+1 = 0, and the iterative solution takes the form:

χr + [J(χr)](qr+1 − qr) = 0 (4.32)

Consequently, for the next iteration:

qr+1 = qr − [J(χr)]−1χr (4.33)

Previously, the Jacobian matrix was computed using the introduction of a STM.
However, in this particular case, it is simply approximated using the forward
finite-difference methods as follows:

J(χr) = χ̃r − χr

∆ (4.34)

Where χ̃r represents the perturbation of each free-variable element of the vector
q and ∆ = 1 × 10−7.

Given the problem under analysis, it is evident that the current TPBVP is
governed by the following system:

ż = f(z(t), t) (4.35)

Its integration is conducted with the implementation of an implicit multi-step
numerical method with, based on the Adams-Moulton formulations, variable step
size and order [41][42].

Equation 4.33 holds true, in the form:

zr+1 = zr − k1[J(χr)]−1χr (4.36)

Here, k1 represents the relaxation parameter, first introduced in Chapter 3.
Typically, lower values of k1 are preferred for greater precision, such as for initial
guesses. As the solution approaches the optimal one, higher values of k1 can be
used.

Another step to enhance the robustness of the method is the application of a
control on the successive error relative to the previous one:
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Emax,r+1 < k2Emax,r (4.37)

Here, k2 is another relaxation parameter. Its purpose is to help the initial
step of the iterative process to converge, even if the first few steps increase the
maximum error while establishing the correct optimality direction. If the error
becomes too high and Equation 4.37 is not satisfied, a bisection method is applied
to the correction up to five times. If convergence is still not achieved, the process is
automatically stopped as it is unable to converge from the selected initial solution.

4.4 OCT for Spacecraft Trajectory Optimization
In this specific scenario, the system being optimized describes the dynamics of
a spacecraft performing an interplanetary transfer within a heliocentric TBP.
Therefore, from Equation 2.60, by omitting the terms related to perturbations, lift,
and drag, the following set of ODEs is obtained:

dr

dt
= V

dV

dt
= g + T

m
dm

dt
= −T

c

(4.38)

The purpose of applying OCT is to determine the control law u∗(t) that maxi-
mizes the spacecraft’s final mass after each maneuver. For the merit index, the
preferred formulation is the Mayer form, where Φ = 0. Therefore, the merit index
is simply the value of the final mass:

J = φ = mf (4.39)

The state vector consists of the orbit’s CKP and the mass m:

xk = {a, e, i, Ω, ω, ν, m}T (4.40)

Which can be converted in Cartesian coordinates:

xc = {x, y, z, Vx, Vy, Vz, m}T (4.41)

Additionally, each state variable is paired with its corresponding adjoint variable,
resulting in the augmented state vector:

y = {x, y, z, Vx, Vy, Vz, m, λx, λy, λz, λVx , λVy , λVz , λm}T (4.42)
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By recalling Equation 4.7 and applying Mayer formulation, is possible to derive
the Hamiltonian as shown in Equation 4.43.

H = λT f =
2nØ
i=1

λifi = λxVx + λyVy + λzVz

+ λVx

C
− µ

r3/2 x + T

m

λVx

λV

D

+ λVy

C
− µ

r3/2 y + T

m

λVy

λV

D

+ λVz

C
− µ

r3/2 z + T

m

λVz

λV

D

− λm
T

m

(4.43)

Here, λV refers to the prime vector as defined in Equation 2.61. Equation
4.43 can be expressed in a compact form by grouping all terms that multiply the
thrust-to-mass ratio into what is known as the switching function SF .

H = λT
x V + λT

V

3
−µ

x

r3/2

4
+ TSF (4.44)

Where:

SF = λT
V

m

T

T
− λm

c
(4.45)

The control vector u(t) consists of the magnitude of the thrust vector T and
its direction. According to the PMP, the optimal control u∗ that maximizes the
merit index for the trajectory also maximizes the Hamiltonian, which is linear with
respect to the control. This allows for the implementation of bang-bang control.
Consequently, when SF > 0, the thrust should be maximized (T = Tmax), and
when SF < 0, the thrust should be zero (T = 0). The switching between positive
and negative values of the switching function results in the presence of thrust and
coasting arcs.

Based on Lawden’s work, an important result regarding the thrust direction
can be derived: SF is maximized when the thrust is directed parallel to the primer
vector λV [43]. Consequently, the switching function can be expressed in its scalar
form as follows:

SF = λT
V

m
− λm

c
(4.46)
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The thrust direction is determined by an in-plane angle, αT , and an out-of-
plane angle, βT . Therefore, the thrust vector T can be decomposed into its three
components using these two angles:

T = T


cosαT cosβT

sinαT cosβT

sinβT

 (4.47)

The optimal values for these thrust angles are obtained by deriving the Hamil-
tonian with respect to the angles themselves:

∂H
∂αT

= −λVxsinαT + λVycosαT = 0

∂H
∂βT

= λVzcosβT − (λVxcosαT + λVysinαT )sinβT = 0
(4.48)

As a result, the optimal directions are reported in Equation 4.49.

cosαT cosβT = λVx

λV

sinαT cosβT = λVy

λV

sinβT = λVz

λV

(4.49)

Therefor, the optimal directions can be easily computed and the augmented
TPBVP is completely defined by finding the adjoint variables, via integration from
Equation 4.13.
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Results

The objective of this thesis is to optimize interplanetary transfers between NEAs
that satisfy specific orbital criteria. The mission commences at the Lagrangian
point L2, where the mother-ship initiates its first transfer to the asteroid 2000
SG344. Upon deploying the first probe on its surface, the mission continues to
the asteroid 2013 BS45, where the second probe is released. These transfers occur
within a heliocentric TBP framework

The goal of the optimization is to minimize propellant usage, which translates
to maximizing the spacecraft’s final mass, enabling the application of the PMP.
The potential trajectories are therefor analyzed using an indirect method within a
TPBVP, employing a bang-bang control law represented by the switching function.

Consequently, the state vector comprises the orbit’s CKP and the spacecraft’s
mass. The dynamics of the mother-ship during the interplanetary transfer are
described by a set of ODEs. The problem is augmented by introducing the
corresponding adjoint variables, and the merit index is implemented using the
Mayer formulation. The optimization problem, therefor, focuses on finding the
optimal costates that enable the spacecraft to adjust its trajectory, directing its
thrust in the preferred direction while meeting all imposed constraints. These
boundary conditions are defined by the initial and final states, as well as the
spacecraft and engine characteristics. The mission duration is fixed, and the target
orbit is achieved through the single-shooting procedure.

This optimization enables efficient navigation between NEAs, ensuring minimal
propellant usage and serving as a valuable tool for future mission designs.

5.1 Interplanetary Transfer from L2 to 2000 SG344
The first phase of the mission involves transferring from the starting point L2 to
the first asteroid, 2000 SG344, as detailed in Section 3.
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The initial and final CKP are known from their Ephemerides. However, to
define the precise starting and arrival points, it is necessary to determine their true
anomalies, ν. The departure is hypothesized to occur on the 24th January 2026,
with L2’s true anomaly being 19.058 2°. The arrival point is arbitrarily chosen at a
true anomaly of 120° for 2000 SG344. If the time of flight (tof) is left unrestricted,
the code converges on a solution that minimizes propellant consumption without
considering the asteroid’s actual position, necessitating a phasing maneuver later.
Therefore, it is crucial to impose a tof that accounts for the real position of 2000
SG344. The precise values considered for ν, the arrival date, and tof are provided
in Table 5.1.

Date of Arrival ν [°] tof [days]
03rd Jun 2026 120.3086 131
22th May 2027 120.2334 483

Table 5.1: Chosen ν and tof for the arrival at 2000 SG344

For the first iteration, the minimum value of tof was selected, meaning a transfer
duration of 131 days. The resulting trajectory is illustrated in Figure 5.1.
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Figure 5.1: Plane View - 131 days

The starting point is located on the pink orbit, marked by a light-blue star, while
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the final point is on the magenta orbit, indicated by a turquoise star. This scenario
exemplifies non-convergence, as the trajectory does not terminate at the arrival
point. Although the mother-ship can reach the desired final position, the time of
flight is insufficient. Consequently, the SF remains consistently negative or, in an
alternative attempt, always positive as it tries to complete a full revolution around
the sun. However, due to the limited mission time, this maneuver is unfeasible.

The second instance when asteroid 2000 SG344 reaches a true anomaly of 120°
occurs 483 days after the initial departure date. Consequently, the tof has been
adjusted, setting the arrival date to 22th May 2027.

With a plausible mission time established, the next step is to define the adjoint
variables necessary to achieve the desired final state. As discussed in Section 4,
the state vector consists of the CKP expressed in Cartesian coordinates and the
spacecraft’s mass. Consequently, each component has a corresponding costate,
denoted as λ. Therefore, the initial guess vector includes three adjoint variables
for the mother-ship’s position (λx, λy and λz), three for its velocity (λVx , λVy and
λVz), and one for its mass (λm).

Since the goal of the optimization is to maximize the final mass, it is convenient
to set the initial value of its costate to λm = 1. To determine the correct values for
the remaining adjoint variables, it is crucial to understand their influence on the
resulting trajectory. Therefore, by applying Equation 4.13, is possible to derive the
n Euler-Lagrange equations for the costates:

dλx

dt
=
3

µ

r3/2 − 3µ

r5/2 x2
4

λVx − 3µ

r5/2 x(λVyy + λVzz)

dλy

dt
=
3

µ

r3/2 − 3µ

r5/2 y2
4

λVy − 3µ

r5/2 y(λVxx + λVzz)

dλz

dt
=
3

µ

r3/2 − 3µ

r5/2 z2
4

λVz − 3µ

r5/2 z(λVxx + λVyy)

dλVx

dt
= −λx

dλVy

dt
= −λy

dλVz

dt
= −λz

dλm

dt
= T

λV

m2

(5.1)

From Equation 5.1, it is clear that the derivatives of the prime vector components
depend on the position adjoint variables. Referring to Equation 4.46, since the
second term is fixed, only the first one can vary. Consequently, the value of the
switching function is linked to the prime vector itself. This implies that higher
values in the position components result in a higher λV , leading to a more positive
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SF and, therefore, longer thrust arcs.
Conversely, Equation 4.49 demonstrates how the initial velocity adjoint variables

affect the optimal thrust direction. As a result, higher values in these components
lead to greater angles diverging from the trajectory tangent, resulting in higher
values of α and β, and thus, showing a steering tendency.

Therefore, after implementing an initial guess for the optimal costates, it is
crucial to monitor the trajectory behavior to progressively adjust their values. By
following this strategy, convergence for the first segment of the mission was achieved
in 207 iterations, using the following initial guess:

λ = {0.3, 0.3, 0.3, 0.0015, 0.0015, 0.0015, 1}T (5.2)

This resulted in the optimal initial guess:

λopt ={−4.5786e − 01, 7.1732e − 01, −8.9854e − 02,

− 1.0274e + 00, −5.3346e − 01, −1.6516e − 02, 9.4008e − 01}T
(5.3)

By implementing λopt, convergence is achieved in 135 iterations, with the final
results illustrated through a series of diagrams.
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Figure 5.2: First Leg 2D View - 483 days
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Figure 5.2 illustrates the initial segment of the trajectory in a Cartesian 2D
view, clearly showing the arrival at the desired final position after 483 days. In
contrast, Figure 5.3 presents the same trajectory in a Cartesian 3D view, offering
a more comprehensive perspective. Notably, in this diagram, the z-axis is scaled
differently to enhance the visibility of the various inclinations.
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Figure 5.3: First Leg 3D View - 483 days

Figure 5.4 presents the CKP followed by the trajectory, enabling verification of
the initial and final values. Notably, the trends on the right side are of particular
interest. The SF depict three thrust arcs, while the mass trend indicates the
corresponding propellant consumption. Conversely, during the coasting arcs, the
total mass remains constant. Throughout the first thrust arc, the semi-major axis,
eccentricity, and inclination experience an initial increase. To achieve these results,
the thrust is directed with an initial negative value in both the in-plane angle
(β) and the out-of-plane angle (α), thereby propelling the spacecraft forward and
towards the higher inclination of the desired orbit. During the second and third
thrust arcs, the eccentricity and inclination increase again, while the semi-major
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axis decreases, aligning the final values with those of the first asteroid.
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Figure 5.4: First Leg - Trends over tof [days]

Once the initial convergence is achieved, obtaining new results for different
values of true anomaly and time of flight becomes straightforward. In other words,
if convergence is found for a specific value of ν and its corresponding tof , the
optimal initial guess obtained can be used to easily find a new solution for slightly
altered desired true anomaly and time of flight. This technique transforms the first
convergence into a key to access the entire final orbit and, the same procedure, can
also be applied to the starting one.

Suppose the mission objective has changed: instead of reaching asteroid 2000
SG344 at a true anomaly of 120.233 4° in 483 days, the new target is to reach it at
110.564 0° in 473 days. Utilizing the previously determined optimal initial guess,
as shown in Equation 5.3, convergence for the updated scenario is now achieved in
just 142 iterations, with the new λopt as follows:

λopt ={−5.2259e − 01, 7.4353e − 01, −1.1388e − 01,

− 1.1123e + 00, −5.3093e − 01, −3.6460e − 02, 9.3647e − 01}T
(5.4)

As a result, identifying the most efficient solution among all the options becomes
relatively straightforward.
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5.2 Interplanetary Transfer from 2000 SG344 to
2013 BS45

The second leg of the mission involves a transfer between the two selected aster-
oids, following the release of the first probe. Consequently, the initial point for
this maneuver aligns with the final one from the previous phase. This point is
automatically calculated by the code and reinserted, rather than being manually
input, to ensure continuity.

For the arrival point, various combinations of time of flight and true anomaly
ν were initially considered. However, due to a larger inclination difference in this
phase, the code faced challenges in achieving convergence. Consequently, the true
anomaly was selected to minimize the shift along the z-axis, settling on a value of
30°, where the two orbits nearly intersect. Table 5.2 shows the available arrival
dates.

Date of Arrival ν [°] tof [days]
27th Mar 2028 29.8856 311
23th Mar 2029 30.3139 671

Table 5.2: Chosen ν and tof for the arrival at 2013 BS45

Once again, the optimal initial guess was determined by monitoring the tra-
jectory’s evolution. Imposing the first hypothesized arrival date resulted in a
consistently positive SF , indicating that the final point couldn’t be reached within
the short time-frame. Therefore, the selected parameters were ν = 30.3139 with a
tof = 671. Convergence was achieved in 308 iterations using the following initial
guess:

λ = {0.28, 0.28, 0.28, 0.045, 0.045, 0.045, 1}T (5.5)

This resulted in the optimal initial guess:

λopt ={5.3568e − 01, 1.0760e + 00, 1.1021e − 01,

− 4.3459e − 01, 1.0359e + 00, −1.8466e − 01, 8.4039e − 01}T
(5.6)

Figures 5.5 and 5.6 illustrate the trajectory of the second leg in both 2D and
3D Cartesian views. The final point, marked by the blue star, is achieved in 671
days and, as previously noted, is situated near the intersection of the two orbits.
In order to reach the final destination, a complete revolution around the sun is
performed.
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Figure 5.5: Second Leg 2D View - 671 days
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Figure 5.6: Second Leg 3D View - 671 days
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Figure 5.7 illustrates a SF comprising four thrust arcs. The highest propellant
consumption occurs during the second and final arcs, where significant changes
in the semi-major axis, eccentricity, and inclination are executed. This maneu-
ver’s complexity demands more propellant than the previous mission segment, as
evidenced by the comparison of the two total mass plots.
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Figure 5.7: Second Leg - Trends over tof [days]

Upon reaching its final destination, the mother-ship releases the second probe,
marking the completion of the mission.

5.3 Complete Mission
With the mission’s individual segments now defined, it is possible to present it as a
whole. Table 5.3 provides a comprehensive summary of the selected departure and
arrival points, delving deeper into the details as seen in Tables 3.2 and 3.3.

Date a [au] e i [°] Ω [°] ω [°] ν [°]
L2 24th Jan 2026 1 + ρ2 0.017 0 348.74 19.06 19.0582

2000 SG344 22th May 2027 0.9773 0.0668 0.11 191.76 275.51 120.2334
2013 BS45 23th Mar 2029 0.9915 0.0838 0.77 83.4 150.74 30.3139

Table 5.3: Orbital parameters of the chosen asteroids

Figures 5.8 and 5.9 present the complete trajectory, with the second one high-
lighting both the thrust and coasting arcs.
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Figure 5.8: Trajectory 2D View

It is important to note that this thesis does not consider the time required for
the release of each probe. In a real mission, once the desired orbit is achieved, the
mother-ship would need to adjust its orientation and select the optimal moment to
release the probe onto the asteroid’s surface. The duration of this maneuver could
vary and is therefore the subject of future studies.

Figure 5.10 reveals a noticeable discontinuity in the results, particularly in the
trends of SF and m, attributed to the release of the first probe.

Finally, at the end of the mission, the spacecraft’s final mass is determined to
be 453 kg. With each probe weighing approximately 25 kg, this results in a total
propellant consumption of 97 kg.
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Chapter 6

Conclusions

The present thesis aims to optimize low-thrust interplanetary transfers between
selected asteroids. These celestial bodies harbor rare materials and essential
resources, such as water, which could be invaluable for long-distance missions. The
entire scenario was modeled using a heliocentric TBP.

In Chapter 4, the foundational principles of OCT were thoroughly analyzed,
identifying the indirect method as an ideal approach for solving the problem. This
method, while more challenging to implement, offers enhanced computational speed
and code robustness. Boundary conditions were imposed on the initial and final
states, leading to the implementation of a TPBVP. The combination of a single-
shooting procedure and a differential corrector was crucial in accurately targeting
the desired final state while updating the initial conditions. The chosen Mayer
formulation, along with the PMP, facilitated the implementation of bang-bang
control, alternating between thrusting and coasting arcs, and defined the optimal
thrust directions.

To validate these principles and their effectiveness in solving the proposed
problem, a Python code was developed and implemented. The primary goal was to
minimize propellant consumption, thereby maximizing the final spacecraft’s mass.
This was a time-fixed problem, focusing on finding the optimal solution for the
specific scenario. Achieving an absolute optimal solution will require implementing
a time-variable condition in future studies.

In conclusion, this thesis successfully achieved its objective by resolving the
analyzed OCP through the development of a robust and flexible tool.

6.1 Future Research
While the main objective has been successfully achieved, this work opens the door
to various future improvements.
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The dynamic model implementation involved a significant simplification by using
the TBP and considering only gravitational effects as perturbations. For a more
detailed analysis of a real-case scenario, future applications could incorporate more
complex dynamic models, such as the NBP, along with other existing perturbations.
Furthermore, the execution and duration of the deploying maneuver should be
thoroughly analyzed.

To enhance the code’s robustness and facilitate convergence, a MPBVP should
be implemented instead of a TPBVP, as the trajectory involves several fly-bys,
requiring additional boundary conditions at intermediate points. Consequently,
each arc would have a different duration, making the problem time-variable. This
approach would enable the propagation of bodies along their orbits, leading to a
solution that is both locally and globally optimal. In fact, allowing the code to
adjust both the start and end times would ensure convergence to the best possible
solution. However, achieving convergence in such a complex scenario would be
challenging. To simplify the user’s experience, the code should incorporate an
automatic initial guess generator.

These enhancements would transform the discussed Python code into an even
more powerful tool, capable of optimizing the most complex mission scenarios.
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