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Abstract

HYQ1D (Hypersonic Quasi-1-Dimensional): A Numerical Simulation Tool for Hy-
personic Internal Flow Characterization is a research code developed to investigate
and catalog hypersonic wind tunnels, with a strong emphasis on modeling the free
piston-driven mechanism and thermochemical effects.

It incorporates various physical models, ranging from ideal gas approximations
to thermal and chemical non-equilibrium physics. Different numerical methods are
presented for time integration and spatial discretization, spanning from first-order
to high-order formulations, as well as several approximated Riemann solvers. The
code can account for chemical and thermodynamic non-equilibrium through its
internal formulation or by relying on PLATO thermochemical libraries [1].

The potential of the HYQ1D code lies in its modularity; the computational
domain can be divided into different sections, with each section utilizing different
numerical methods. All sections are linked through boundary conditions, advancing
together in time, making this code an efficient tool for simulating wind tunnel
facilities, which typically consist of various sections, each with distinct specific
characteristics.

In this work, the HYQ1D code and the free-piston model are extensively tested
to verify their capabilities in matching the physics of free-piston-driven hypersonic
wind tunnels.
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Introduction

This work aims to develop a tool, HYQ1D (Hypersonic Quasi-1-Dimensional),
for performing fluid dynamic simulations in the hypersonic flow regime. Unlike
subsonic and supersonic regimes, hypersonic flow lacks a strict definition in terms
of Mach number. However, we can consider a flow to be hypersonic when certain
distinctive physical phenomena begin to occur with significant frequency.

In hypersonic flows, the kinetic energy of the fluid is substantially higher than
in other regimes due to the elevated Mach numbers. When the fluid encounters an
obstacle, this kinetic energy is converted into internal energy, leading to extremely
high temperatures. These temperatures, in turn, trigger significant chemical
reaction rates between the fluid species. Another notable aspect is the excitation
of additional energetic degrees of freedom, which, at normal temperatures, would
contain negligible amounts of energy. These two aspects are closely correlated, each
influencing the other [2, 3].

Given the exotic phenomena described in the general hypersonic regime, great
attention must be paid to the physical and computational models. Since this flow
regime is not very common, commercial codes typically do not account effectively
for all these phenomena, leading to the development of research codes for specific
scenarios like this one.

This type of flow is typical, for example, in hypersonic wind tunnels. Therefore,
the quasi-one-dimensional code was designed specifically to further investigate and
analyze these facilities. A strong emphasis was placed on free-driven piston wind
tunnels, for which a specific free-piston model was developed. Various research
codes exist to simulate these facilities partially or completely in Lagrangian form [4,
5, 6], but this work focuses on a tool capable of capturing all hypersonic phenomena,
along with the free-piston effects, within an Eulerian framework that can simulate
the entire wind tunnel.

The wind tunnels primarily used for designing and testing the code were the
T4 wind tunnel at Queensland University [7] and the DLR-HEG tunnel [8, 9].
However, numerous other facilities use free-piston drivers to compress gas, such as
JAXA-HIEST [10], Caltech-T5 [11], Purdue-HYPULSE [12], and others.

1



Chapter 1

Hypersonic flow regime

To start the description of the HYQ1D development, an initial overview of the main
physical aspects of hypersonic flow, such as chemical and thermal non-equilibrium,
is provided.

1.1 Chemical reacting flow

1.1.1 Damköhler number
When dealing with chemically reacting flows, the Damköhler number [13, 14] is a
valuable tool for quantifying how quickly a gas reaches its equilibrium composition
at a given temperature. It is defined as:

Dm = τf

τc

where τf represents the characteristic time of the fluid, which can be approximated
by L

V∞
, with L as the reference length and V∞ the free-stream velocity.

τc represents the characteristic time for chemistry and is taken as the fastest
characteristic time among all reactions in the chosen chemical model.

This definition of the Damköhler number describes whether we are closer to a
situation of chemical equilibrium where reactions occur instantaneously (i.e., when
τc ≪ τf) or a frozen equilibrium case, where chemical reactions are essentially
halted because they don’t have time to occur (i.e., when τc ≫ τf ). In between lies
the non-equilibrium case, where the rates of chemical reactions and fluid convection
dynamics are of the same order of magnitude, meaning no approximations can be
made.

In this work, the focus will be on non-equilibrium chemistry, as the other cases
are special instances of this more general condition. Thus, the implementation

2



Hypersonic flow regime

will follow the most appropriate approach for hypersonic simulations under various
conditions.

1.1.2 Chemical non-equilibrium model

As previously mentioned, in a fluid mixture, when the temperature becomes
sufficiently high, as in hypersonic applications, the chemical reaction rates become
non-negligible. To understand this, we need to consider a single chemical reaction,
which tends toward equilibrium between the forward and backward rates at a
specific temperature. This temperature acts as the key factor in determining
whether the reactants or products are more stable under given conditions. In
non-equilibrium flows, a sudden temperature change shifts this equilibrium between
reactants and products, but this shift is not instantaneous; there is a time-dependent
change in the concentration of the species involved.

To predict this mechanism, it is necessary to evaluate the time evolution of
species concentrations by modeling the mass production terms, ωs = ∂ρi

∂t
|ch, for

each species. An independent conservation equation (Equation 1.1) must be solved
to calculate the amount of the s-th species at each step within the domain under
consideration.

∂ρs

∂t
+ ∇ · (ρsv) = ω̇s s ∈ [1, .., Ns] (1.1)

Following the model shown in Refs. [15], a similar approach will be presented,
although other models are also equivalent [3, 16]. To evaluate this term, each
contribution must account for both the production and destruction of the s-th
species in all r-th reactions, weighted by the stoichiometric coefficient of the
species under consideration, as shown in Equations 1.2. The total reaction rates,
Rf,r and Rb,r, are calculated based on the species characteristics, concentrations,
stoichiometric coefficients, and the reaction rate coefficients, kf,r or kb,r. These
coefficients are modeled using an Arrhenius-type law, which is driven by the so-
called rate-controlling temperature. In the case of thermodynamic equilibrium,
this temperature coincides with the unique temperature of the system, whereas in
thermodynamic non-equilibrium, it becomes a function of the various temperatures
considered in the model.

3



Hypersonic flow regime

ω̇s = Ms

NrØ
r=1

(βs,r − αs,r)(Rf,r − Rb,r)

Rf,r = 1000
C
kf,r

NsÙ
s=1

3
0.001 ρs

Ms

4αs,r
D

Rb,r = 1000
C
kb,r

NsÙ
s=1

3
0.001 ρs

Ms

4βs,r
D

kf,r = Cf,rT
nf,r
q exp

A
−Ef,r

kTq

B

kb,r = Cb,rT
nb,r
q exp

A
−Eb,r

kTq

B

(1.2)

To complete the chemical model formulation, it is necessary to choose an
appropriate kinetic model. This involves selecting the list of species and reactions
that are most relevant for the application under consideration. It is important to
note that in reality, a vast number of reactions occur between the selected species,
but under the given conditions, the reaction rates of many of these are negligible.
In this work, the considered species are [N2, O2, NO, N , O, He, Ar], as they are
the most significant species observed and formed in hypersonic wind tunnel tests.

Regarding He and Ar, these noble gases do not chemically react with other
gases; they can only collide with them. However, as explained later in this work,
the inviscid hypothesis is considered. Therefore, if He and Ar are initially separated
from the other gases, they will remain separated throughout the integration time,
and thus they are not included in the kinetic model.

The kinetic model selected is partially based on the Dunn and Kang kinetic
model, as reported in Table 1.1, where all the necessary constants for Equations
1.2 are listed.

r Reaction Cf,r nf,r
Ef,r

k
Cb,r nb,r

Eb,r

k

1 O2 + M ↔ 2O + M (M = N, NO) 3.60E+18 -1.00 5.950E+04 3.00E+15 -0.50 0.000E+00
2 O2 + O ↔ 2O + O 9.00E+19 -1.00 5.950E+04 7.50E+16 -0.50 0.000E+00
3 O2 + O2 ↔ 2O + O2 3.24E+19 -1.00 5.950E+04 2.70E+16 -0.50 0.000E+00
4 O2 + N2 ↔ 2O + N2 7.20E+18 -1.00 5.950E+04 6.00E+15 -0.50 0.000E+00
5 N2 + M ↔ 2N + M (M = O, NO, O2) 1.90E+17 -0.50 1.130E+05 1.10E+16 -0.50 0.000E+00
6 N2 + N ↔ 2N + N 4.08E+22 -1.50 1.130E+05 2.27E+21 -1.50 0.000E+00
7 N2 + N2 ↔ 2N + N2 4.70E+17 -0.50 1.130E+05 2.72E+16 -0.50 0.000E+00
8 NO + M ↔ N + O + M (M = O2, N2) 3.90E+20 -1.50 7.550E+04 1.00E+20 -1.50 0.000E+00
9 NO + M ↔ N + O + M (M = O, N, NO) 7.80E+21 -1.50 7.550E+04 2.00E+21 -1.50 0.000E+00
10 NO + O ↔ O2 + N 3.20E+09 1.00 1.970E+04 1.30E+10 1.00 3.580E+03
11 N2 + O ↔ NO + N 7.00E+13 0.00 3.800E+04 1.56E+13 0.00 0.000E+00

Table 1.1: Part of the Dunn and Kang kinetic model [15]
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Hypersonic flow regime

1.2 Thermodynamical properties of high enthalpy
gas

As explained earlier, in highly energetic flows, some of the energy within a particle
can be stored in various energetic degrees of freedom apart from the translational
and rotational ones, which are typically activated at low temperatures. As the
temperature and thus the internal energy of the particle increase, other degrees of
freedom become excited. Specifically, vibrational and electronic degrees of freedom
become energetically significant as the temperature rises [17].

Classical thermodynamics does not accurately predict the energy contribution
of these degrees of freedom because it assumes continuous energy levels for each
degree of freedom. However, quantum mechanics has demonstrated that energy
levels are discrete, and transitioning between them requires a specific quantum
of energy. By incorporating the probabilistic nature of these degrees of freedom,
simple relationships can be derived to model these energy levels [18, 19].

With this in mind, we can observe in equation 1.3 that the internal energy of a
species includes a term for each energetic degree of freedom we aim to model.

es = etr
s + erot

s + evib
s + eel

s + e0
s (1.3)

where e0
s is the internal energy at 0 K, representing the zero-point energy for

each degree of freedom.
Evaluating this energy can be challenging; however, understanding that in

thermofluid dynamic conservation laws we are generally concerned with the variation
of energy, a common convention is to consider the enthalpy of formation of a species
at zero-point instead of the internal energy [20]. This approach is valid because:

e0
p − e0

r = (∆hf )0
p − (∆hf )0

r (1.4)

The variation in zero-point energy during a reaction is equal to the variation in the
heat of formation at absolute zero. Unlike the internal energy at 0K, this value can
be more easily calculated as it represents the amount of energy required to bring
the particle to that state at 0 K, and it is usually tabulated.

As regards the other energy contributions, from quantum mechanics derivations,
we have the following equilibrium relations [21, 3]:

• etr
s = 3

2R∗
sTtr

è
J

Kg

é
energy associated with the translational degree of

freedom of the particle

• erot
s = L

2 R∗
sTtr

è
J

Kg

é
energy associated with the rotational degree of freedom

of the particle.
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Hypersonic flow regime

• ev
s = R∗

sΘvs

e
Θvs
Tvs −1

è
J

Kg

é
energy associated with the vibrational degree of freedom

of the particle, modeled using the harmonic oscillator assumption to describe
the vibrational degree of freedom [18, 22]

• eel
s this is not considered in this work, but formulations are available from

quantum mechanics considerations [18]

Where L is the rotational number of degrees of freedom of the s-th species.

1.2.1 Thermodynamical non-equilibrium flow
A gas can be defined as being in thermal equilibrium if its energetic degrees of
freedom can be approximated as being in equilibrium, meaning Ttr = Trot = Tv = Tel

[15]. In our case, we aim to establish a physical model capable of describing
hypersonic flows, where rapid temperature changes with very steep gradients are
present, and the maximum values are sufficient to certainly excite the vibrational
degrees of freedom. Given these characteristics of the flow under consideration, a
more general non-equilibrium approach was adopted. However, two assumptions
are made:

• The translational and rotational energy degrees of freedom were considered
fully excited, consistent with the chosen application. This allows us to use the
previously mentioned relations and assume Ttr = Trot (hereafter referred to as
Ttr)

• As mentioned earlier, electronic energy is not considered. The electronic degree
of freedom, which is significantly excited at much higher temperatures than
the other energy degrees of freedom, could play an important role in some
extreme applications. In such cases, careful attention must be given to the
reliability of the model described here.

In non-equilibrium flows, an additional conservation equation must be included
in the model for each energy mode assumed to be out of equilibrium. In this case,
one equation was considered for each species with vibrational degrees of freedom.

In these equations the left hand side account for the convection of the vibrational
energy of the s-th species and the source term arising from the so-called vibrational
relaxation.

When a sudden change in internal energy occurs, the rotational-translational and
vibrational degrees of freedom are excited differently, resulting in non-equilibrium
conditions. The particles in the system gradually exchange energy between the
degrees of freedom through collisions, driving the system toward equilibrium.

This process is modeled by the previously mentioned relaxation term on the
right-hand side of Equation 1.5.
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Hypersonic flow regime

∂(ρev
s)

∂t
+ ∇ · (ρev

sv) = ρ
ev,eq

s − ev
s

τV −T
s

, s = 1, Nv (1.5)

Analyzing the relaxation term, we observe that the driving force is precisely the
difference between the vibrational energy and its value under equilibrium conditions
(calculated using the previously shown relation with T = Ttr), scaled by a relaxation
time that indicates how quickly the vibrational mode of the s-th species relaxes.

Regarding the vibrational relaxation time, it is just one of the possible relaxation
processes between different energy degrees of freedom, but it is the only one
considered in this work. It models the energy exchange through particle collisions
within the vibrational degree of freedom [23, 24].

Equation 1.6 shows how the relaxation time for a single species is derived from
the relaxation times corresponding to the interactions of that particular species.

τV-T
s = 1

MqNs
j=1

qj

τV-T
s,j

. (1.6)

where the relaxation time τi,j is modeled according to [25, 26], where it is divided
into two contributions. The first models the relaxation time, and the second is
a correction for high-temperature conditions, which extend the time for elastic
collisions to occur, avoiding underestimation of τi,j.

Finally, in our model, regarding energy conservation, we have one equation
that conserves the total energy of the system (internal + kinetic energy) and Nv

equations for vibrational energy conservation, shown in Equation 1.5. The total
energy is represented as:

E = ρe = ρ

I
NsØ
s=1

Ys

1
etr

s + erot
s + evib

s + eel
s + (∆hf )0

s

2J
+ ρ

1
2(u2 + v2 + w2)

= ρ

I
NsØ
s=1

Ys

A
3
2RsT + Lrot

s

2 RsT + evib
s + eel

s + (∆hf )0
s

BJ
+ 1

2

C
(ρu)2 + (ρv)2 + (ρw)2

ρ

D(1.7)
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Chapter 2

Hypersonic wind tunnels

Hypersonic and supersonic aerodynamic wind tunnels are composed of several
components, each designed to accelerate the flow from an initial quiescent state
to the desired conditions in the test section. Different hypersonic wind tunnels
exist, each conceived to study specific physical phenomena or to offer particular
operational and experimental advantages. Here, an overview of some of the principal
hypersonic wind tunnel architectures is provided [27].

• Free-Piston Driven Wind Tunnels: A high-pressure reservoir acting on a
free-moving piston compresses the driver gas, creating a very high-enthalpy
condition that feeds the shock tube and, subsequently, the nozzle [28].

• Arc-Heated Wind Tunnels: The gas is heated and dissociated by an electric
arc, and the resulting gas is then expanded in a nozzle [29].

• Detonation-Driven Wind Tunnels: The process starts with a detonation
that creates the high-enthalpy condition, which feeds a shock tube and then a
nozzle in succession [30].

• Blowdown Wind Tunnels: Driven by the pressure differential created
between a high-pressure condition upstream and a very low-pressure condition
downstream [31].

In general, a hypersonic tunnel consists of several preliminary steps, listed above,
to reach very high enthalpy conditions in the gas, which is then expanded in a
nozzle.

Regarding Free-Piston Wind Tunnels, on which this work focuses, they are
divided into three main components. The first is the compression tube, which
serves to pressurize the flow. The second part is the shock tube, where the high-
pressure flow from the compression stage interacts with a low-pressure region,

8



Hypersonic wind tunnels

generating a shock wave that travels along the tube. This shock wave compresses
and accelerates the gas toward the nozzle.

The nozzle is the third fundamental part. The gas, arriving with very high
energy in terms of temperature and pressure, is expanded in the nozzle to reach
the desired Mach number in the test section, which is located at the nozzle’s exit.

To further investigate and catalog this type of facility, HYQ1D, a quasi-one-
dimensional finite volume code, was developed, with a strong emphasis on the
modeling of free-piston driven wind tunnels. The code was tested with several test
cases from some of the main Free-Piston Wind Tunnels, as detailed in sections 9.3
and 10, using QU-T4 and DLR-HEG test cases.

9



Chapter 3

HYQ1D: Hypersonic
Quasi-1-Dimensional

3.1 Introduction
The HYQ1D (Hypersonic Quasi-1-Dimensional) is a research code designed to simu-
late internal hypersonic aerodynamics. One of its closest applications is simulating
the internal flow in hypersonic wind tunnels, characterizing all components of the
facility. To better accommodate this purpose, the code was designed to be modular.
In the discretization of the computational domain, different sections can be defined,
and for each section, the user can choose different types of spatial or temporal
discretization or flux evaluation methods. Each section communicates with others
through boundary conditions, which the user can decide to either isolate or permit
communication between sections. Additionally, there is the option to integrate a
free piston via a free piston model developed in this work (Chapter 5) or to select
a diaphragm connection between sections, which bursts at a specific pressure.

3.2 Physical Model and Discretization

3.2.1 Equation Derivation
In this section, the physical model and its discretization in the software are presented.
As mentioned in Chapter 1, viscosity is generally neglected in this work, but certain
effects are considered through the source term in the governing equations as showed
in Section 3.2.2.

The model development begins with the Euler equations for 3D inviscid fluids
in their differential form, as shown in Equation 3.1 [32].
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∂ρ

∂t
+ ∇ · (ρv) = 0

∂ρv
∂t

+ ∇ · (ρvv + pI) = 0
∂E

∂t
+ ∇ · [v(E + p)] = 0

(3.1)

With these equations in mind, we now consider that we are dealing with a
multicomponent flow. Therefore, there is a need for a mass conservation equation
for each gas present in the flow. Additionally, since the flow is chemically reactive,
a chemical source term must be included. This leads us to use Equation 1.1,
presented in Section 1.1.2.

Another important aspect to consider is the thermodynamic framework outlined
in Section 1.2.1, where Equation 1.5 introduces an additional set of equations to
account for the conservation of vibrational energy for each species with vibrational
degrees of freedom.

∂ρs

∂t
+ ∇ · (ρsv) = ω̇s s ∈ [1, .., Ns]

∂ρv
∂t

+ ∇ · (ρvv + pI) = 0
∂E

∂t
+ ∇ · [v(E + p)] = 0

∂(ρev
s)

∂t
+ ∇ · (ρev

sv) = ρ
ev,eq

s − ev
s

τV −T
s

, s ∈ [1, .., Nv]

(3.2)

The following equation of state and definitions are included to close the system:

• Partial density definition: ρs = Ysρ ; ρ = q
s ρs.

• Ideal gas law: p = ρRT ; ps = ρsRT
MMs

.

• Internal energy definition in Equation 1.4 and total energy definition in
Equation 1.7.

At this stage, it is important to understand which type of discretization will be
used. When dealing with finite differences, the starting point for discretization is
the differential form of the equations, whereas for finite volume discretization, the
integral form of the equations is required. Considering that the code developed in
this work implements a finite volume discretization, we integrate the equations 3.2
in the volume and, by applying Gauss’ theorem, we obtain the integral form as
shown in Equations 3.3.
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∂

∂t

Ú
Ω

ρs dV +
Ú

∂Ω
(ρsv) · n dS =

Ú
Ω

ω̇s dV s ∈ [1, .., Ns]
∂

∂t

Ú
Ω

ρv dV +
Ú

∂Ω
(ρvv + pI) · n dS = 0

∂

∂t

Ú
Ω

E dV +
Ú

∂Ω
[v(ρE + p)] · n dS = 0

∂

∂t

Ú
Ω

ρev
s dV +

Ú
∂Ω

(ρev
sv) · n dS =

Ú
Ω

ρ
ev,eq

s − ev
s

τV −T
s

dV s ∈ [1, .., Nv]

(3.3)

As the aim of this work is to simulate internal flow in elongated geometries,
typically with circular cross-sectional areas, the equations are simplified into a
quasi one-dimensional form. This means a one-dimensional form that allows for
variations in the cross-sectional area along the x-coordinate.

By considering the control volume shown in Figure 3.1 and applying the no-slip
condition on the lateral surface, the Equations 3.4 are derived.

Figure 3.1: Control volume in quasi 1D approximation.

∂

∂t

Ú
x

ρsA dx + |ρsuA|x2
x1

=
Ú

x
ω̇sA dx s ∈ [1, .., Ns]

∂

∂t

Ú
x

ρuA dx + |(ρuu + p)A|x2
x1

=
Ú

SL

p nL dSL

∂

∂t

Ú
x

EA dx + |u(E + p)A|x2
x1

= 0
∂

∂t

Ú
x

ρev
sA dx + |ρev

suA|x2
x1

=
Ú

x
ρ

ev,eq
s − ev

s

τV −T
s

A dx s ∈ [1, .., Nv]

(3.4)

At this stage, we introduce a discretization of the x-coordinate into N cells with
width ∆x and define the following:

• The vector U, in Equation 3.5, as the integral average of the conservative
variables over ∆x, referred to as the conservative variable.
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• The vector F, as shown in Equation 3.6 , referred to as the fluxes.

• The vector S, in Equation 3.7, as the integral average of the right-hand side
term, multiplied by ∆x, referred to as the source term.

U =


1

∆x

s x2(t)
x1(t) ρsA dx s ∈ [1, .., Ns]

1
∆x

s x2
x1

ρuA dx
1

∆x

s x2
x1

EA dx
1

∆x

s x2
x1

ρev
sA dx s ∈ [1, .., Nv]

 (3.5)

F =


ρsuA s ∈ [1, .., Ns]

(ρuu + p)A
(E + p) uA

ρev
suA s ∈ [1, .., Nv]

 (3.6)

S =


s

x ω̇sA dx s ∈ [1, .., Ns]s
SL

p nL dSL

0s
x ρ ev,eq

s −ev
s

τV −T
s

A dx s ∈ [1, .., Nv]

 (3.7)

Now, introducing the convention where j represents the cell center and j ± 1
2

denotes the cell faces, and assuming ∆x remains constant over time, we can express
the conservative discretized equations in space in a more compact form, as shown
in Equation 3.8 [33].

dUj

dt
= − 1

∆x

1
Fj+ 1

2
− Fj− 1

2

2
− 1

∆x
Sj (3.8)

The final step is to discretize the equations in time. The type of discretization
will determine the accuracy of the time integration. In this work, only explicit time
integration is considered, and the method used for the time discretization will be
discussed in Section 4.1.

3.2.2 Viscous losses treatment
In this work, viscous effects are not directly considered in the conservation equations;
however, some of them are modeled by source terms added to the equations,
following the approach explained in [4, 34].

A force was added to the left-hand side of the momentum equation to account
for the friction force exerted by the wall on the fluid (Fwall), and a second force
was included to account for losses due to rapid area changes (Floss). This leads to
the final form of the equation, as shown in Equation 3.9.
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∂

∂t

Ú
x

ρsA dx + |ρsuA|x2
x1

=
Ú

x
ω̇sA dx s ∈ [1, .., Ns]

∂

∂t

Ú
x

ρuA dx + |(ρuu + p)A|x2
x1

=
Ú

SL

p nL dSL + Fwall + Floss

∂

∂t

Ú
x

EA dx + |u(E + p)A|x2
x1

= 0
∂

∂t

Ú
x

ρev
sA dx + |ρev

suA|x2
x1

=
Ú

x
ρ

ev,eq
s − ev

s

τV −T
s

A dx s ∈ [1, .., Nv]

(3.9)

with the redefinition of the source term S that becomes 3.10:

S =


s

x ω̇sA dx s ∈ [1, .., Ns]s
SL

p nL dSL + Fwall + Floss

0s
x ρ ev,eq

s −ev
s

τV −T
s

A dx s ∈ [1, .., Nv]

 (3.10)

Fwall treatment

Here a complete model is provided to calculate the contribution of Fwall:

Fwall = τ π D
1
xj+ 1

2
− xj− 1

2

2
where τ is modeled as stated in the Darcy formula, and D is the diameter of

the circular section of the geometry.

D = 2
3

A

π

41/2

τ0 = −ρfu|u|
8

The friction factor f is the Darcy-Weisbach factor and is calculated according to
the following correlations:

f = 64
Λ Re

, Re < 2000

f = 0.032
Λ

3
Re

2000

40.3187
, 2000 ≤ Re ≤ 4000

f = 1
Λ [1.8 log10(Re) − 1.5147]−2 , Re > 4000
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Re = ρ∗D|u|
µ∗

where the Reynolds number is evaluated at the condition that corresponds to
the conditions at the Eckert reference temperature.(T ∗).

T ∗ = T + 0.5(Tw − T ) + 0.22(Taw − T )

ρ∗ = ρT

T ∗

Taw = ΛT

Λ = 1 + (γ − 1)
2 r M2

Where r is the recovery factor which is taken:

r =
√

Pr, Re < 2000

r = Pr
1
3 Re ≥ 2000

Floss treatment

Here a complete model is provided to calculate the contribution of Floss:

Floss = ∆Ploss

Lloss

1
A

1
xj+ 1

2
− xj− 1

2

2

∆Ploss = −KL
1
2ρu|u|

where KL is the loss coefficient, and for an abrupt area change, it is taken to be
equal to 0.25, according to [4, 34].

3.3 Fluxes determination
As shown in Equation 3.8, by integrating the conservative equation, we can obtain
the value of the conservative variable at the cell center, making the approximation
that the integral average coincides with the cell center value.

It is simple to understand that in a finite volume discretization, all the emphasis
is on how to calculate the fluxes. Because, as mentioned, after the integration, we
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only have values at the cell center; however, to calculate the fluxes, we need the
fluid dynamic variables at the cell interfaces.

In order to determine the fluid dynamic variables at the cell interfaces, we must
reconstruct the solution that we have at the cell center to recreate the function’s
trend up to the cell edge.

The type of reconstruction used determines the spatial order of the discretization.
In Section 4.2, constant and a particular case of fifth-order reconstruction will be
discussed.

After the reconstruction, we encounter a key moment in the flux determination
process. At this stage, we will have, for example, a reconstructed function in cell
j and another in cell j + 1. Each of these functions will yield a different value at
the cell interfacej + 1

2 . We can denote these two values respectively as U
j+ 1

2
− and

U
j+ 1

2
+ , as explained is showed in figure 3.2.

Figure 3.2: Interface reconstruction discontinuity

To chose the right flux on the interface, in applications where the convective
term is dominant in the equations, such as hypersonic flow, it is important to
respect the physics of the problem to ensure stability. Specifically, it is crucial to
understand the source of the information that arrives at that interface in the real
physical problem. This approach is known as the upwind approach [35, 36, 37, 38].

3.3.1 Riemann problem
To calculate the correct flux value at the cell interface, one method is to solve
a Riemann problem [39], which involves understanding how the discontinuities
created by the reconstruction will evolve while respecting the proper propagation
of information along the system.

This is the approach used in the family of methods known as Godunov methods
[40], which this work will follow.

When a discontinuity in the solution is present at the cell interface, a Riemann
problem arises. One possible configuration is shown in Figure 3.3.
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Figure 3.3: Possible wave configuration in a Riemann problem.

Resolving a Riemann problem means calculating the value of the fluid dynamic
variable on the left and right sides of the contact surface generated by the problem
and understanding in which zone the interface is situated . This is done by knowing
the condition on the left of the first wave (in our case, F (U

j+ 1
2

−)) and on the right
of the third wave (in our case, F (U

j+ 1
2

+)). Here, F (U) represents the flux vector
calculated at the condition U . The methods for calculating this will be detailed in
Section 3.3.2.

In hyperbolic equations, such as those we are dealing with, information travels
in the form of waves. In fluid dynamic problems, these waves can be expansions
(first or third family waves), shocks (first or third family waves), or contact surface
waves (second family waves).

It is possible to determine mathematically the exact solution of a Riemann
problem (which will not be detailed here); however, this approach is usually com-
putationally expensive and more unstable than solving the problem approximately,
often leading to errors that are generally negligible.

Various approximate Riemann solvers have been developed, and in Section 4.3.2,
one of them will be detailed. The basic principle relies on making assumptions
about the wave configuration. For example, a very common Riemann solver is
the Osher method [41], which treats the waves of the first and third families as
expansion waves.

3.3.2 Flux Variables from the Fluid Dynamic Variables

When solving the simple Euler equation in Equation 3.1, an algebraic relation
(shown in 3.11) can be derived to calculate the flux function F (U) in terms of the
conservative variables. Unfortunately, this relation can only be derived in the case
of thermally and calorically perfect gases.
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F1 = U2

F2 = U2
2

U1

33 − γ

2

4
+ U3(γ − 1)

F3 = U2

U1

C
U3γ − 1

2
U2

2
U2

1
(γ − 1)

D (3.11)

In our case, the gas specific heat, and consequently the specific heat ratio, varies
with temperature. Therefore, in order to calculate the flux function, it is necessary
to determine the temperature separately. This is the most critical step in Section
3.4, where the derivation of fluid dynamic variables from conservative variables is
detailed in the developed model.

Once the fluid dynamic variables are calculated, it is straightforward to compute
the flux function using the definition in Equation 3.6.

3.4 Fluid dynamic variable calculation
In this section, the calculation of all fluid dynamic variables is presented, starting
from the primitive variables and progressing to the derived ones.

3.4.1 Calculation of Primitive Variables
The calculation of the considered primitive variables is presented below:

U ′ =


ρs s ∈ [1, .., Ns]

u
e

ev
s s ∈ [1, .., Nv]

 (3.12)

ρs = U [s]
A

s ∈ [1, .., Ns]

Where U[s] represents the s-th variable of the vector U introduced in Equation
3.5; For convenience, the total density is also computed.

ρ =
NsØ
s=1

ρs

Now, the velocity can be easily calculated as:

u = U [QDM ]
ρA
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where U[QDM] corresponds to the momentum component as defined in Equation
3.5. The internal energy e is computed as:

e = U [E]
ρA

− 1
2

A
U [QDM ]

ρA

B2

where U[E] corresponds to the total energy component as defined in Equation
3.5.

ev
s = U [E + s]

ρA
s ∈ [1, .., Nv]

3.4.2 Derived variables calculation
Ys = ρs

ρ
s ∈ [1, .., Ns]

Xs =
Ys

MMsq
s

Ys

MMs

s ∈ [1, .., Ns]

MM =
NsØ
s=1

XsMMs

R∗ = R

MM

We now arrive at a crucial step in the implementation of the fluid dynamic vari-
ables calculation in this model: the temperature is calculated differently compared
to the predefined model. In Sections 3.4.2, 3.4.2, and 3.4.2, the calculation method
for all possible settings used in the current discretization will be detailed.

To calculate the specific heat at constant volume for individual species, NASA
polynomials are used. In cases where the system is in thermodynamic non-
equilibrium, these values are evaluated at Tvs [15, 42]; otherwise, they are calculated
at the standard system temperature.

The specific heat for the mixture is given by:

cv =
NsØ
i=1

cvsXs

When chemical reactions are activated, the species production or depletion rate
ω̇s is calculated using the model presented in Section 1.1.2.

For the determination of Tq the Park model [15, 25, 26], as shown in Equation
3.13, is used if thermodynamic non-equilibrium is considered. Otherwise, Tq = Ttr:

Tq =
ñ

TvTtr (3.13)

19



HYQ1D: Hypersonic Quasi-1-Dimensional

Finally, if thermodynamic non-equilibrium is considered, it is necessary to
calculate the relaxation time for each vibrational energy component. The detailed
method for this calculation is provided in Section 1.2.1.

Calorically and Thermally Perfect Gas

In the approximation of a calorically perfect gas, the specific heat is constant,
and the relationship between internal energy and temperature becomes algebraic:
e = cvT

In this case, since the specific heat is constant, it is an input for the calculation.
From the definition above, the temperature can be calculated.

(In this simplified approximation, the vibrational conservation equations are not
solved, and thermodynamic non-equilibrium is not accounted for.)

Calorically Non-Perfect Gas

When dealing with a calorically non-perfect gas, the definition of specific heat to
be used is the more general one: cv = de

dT

In this approximation, the specific heat is a function of temperature, so at this
stage we do not have both cv and T ; the former is a function of the latter.

To calculate the temperature, starting from this definition, a Newton-Raphson-
like method [43, 44] is used. For each iteration, the specific heat at constant volume
and the internal energy are calculated using the NASA 9-coefficient polynomials
[20], based on the temperature of that iteration.

(In this simplified approximation, the vibrational conservation equations are not
solved, and thermodynamic non-equilibrium is not considered.)

Gas in Thermodynamic Non-Equilibrium

The case of a gas in thermodynamic non-equilibrium is the most general one, as it
accounts for different temperatures in the system, whose calculation will be detailed
here.

First, we calculate the translational-rotational temperature of the system, Ttr.
To do this, we need to invert the internal energy definition, which is part of Equation
1.7, arriving at the explicit relation in Equation 3.14.

Ttr =
e −qNs

s=1 Ys

1
evib

s + (∆hf )0
s

2
qNs

s=1 Ys

1
3
2R∗

s + Ls

2 R∗
s

2 (3.14)

Now, we can proceed to calculate the vibrational temperature for each vibrational
energy considered in the system. This can be done easily using the model presented
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in Section 1.2.1. A simple relationship exists at each instant between ev
s and Tvs ,

as shown in Equation 3.15

Tvs = Θvs

ln R∗
sΘvs

ev
s

+ 1
(3.15)

If only one vibrational temperature is considered for the trigger temperature Tq

defined in Equation1.2 temperature definition, this specific temperature must be
computed. To calculate this temperature, we begin with the definition of the total
vibrational energy in Equation 3.16 and invert this more complicated equation [3].

Ev =
NvØ
s=1

ρs
R

Ms

Θvs

eΘvs/Tv − 1 (3.16)

In this work, to calculate the "total" Tv and invert the equation 3.16 , an iterative
Newton-Raphson-like method [43, 44] was used. The algorithm is based on iterating
Equation 3.18 until convergence on Tv is reached. This equation is derived from
Equation 3.17 , where the total vibrational energy is known, isolating one of the
s-th vibrational energies on the right-hand side and the others on the left side.

ρ1
R

M1

Θv1

eΘv1/T k+1
v − 1

= Ev −
NvØ
s=2

ρs
R

Ms

Θvs

eΘvs/T k
v − 1 (3.17)

T k+1
v = Θv1

ln


Ev−

qNv
s=2 ρsR∗

s
Θvs

eΘvs/T k
v −1

ρ1R∗
1Θv1

−1

+ 1


(3.18)

Where Tk+1 and Tk are successive steps in the iterative method.

3.5 ∆t calculation
A critical step in the explicit CFD code to ensure stability is the appropriate choice
of ∆t for integrating the conservative equations. The general idea for explicit
integration is to resolve all physical phenomena over time.

In the model presented in Section 3.2, different physical mechanisms are present,
each with a specific characteristic time to resolve the phenomena. In this model,
the physical phenomena include convection, viscous losses, chemical reactions, and
vibrational relaxation.

For the first mechanism, to respect the independence domain in the integration,
we must satisfy the Courant–Friedrichs–Lewy (CFL) condition, which in this case
is imposed as:

∆t = CFL
∆x

Smax
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where Smax is the maximum wave propagation speed, Smax = max(a + |u|) [45].
As regards the other three expressed phenomena, they are accounted for in the

equation through the source term S defined in 3.10. These phenomena make the
equation become stiff for time integration because the source term often becomes
larger than the conservative variables and the fluxes. This leads to rapid instability
in the integration if ∆t is not tuned properly.In this work, this tuning is based on
the principle of keeping the factor ∆tS

∆c
smaller than the conservative variable of

a quantity K; this way, we prevent the previously explained situation and ensure
stability. The ∆t will result in:

∆t = U∆x

SK

where S and U refer to the components linked to the considered phenomenon.
By properly tuning the factor K based on the speed of the physical phenom-

ena and experience in the simulation, we obtain an estimation of ∆t for each
phenomenon. Finally, we calculate ∆t as:

∆t = min

A
CFL

∆x

Smax

,
U∆x

SKviscosity

,
U∆x

SKchemistry

,
U∆x

SKvibrational

B

A more precise model for the estimation can be obtained by calculating the
Jacobian matrix for the system and defining the time step, ∆t, accordingly. A
more detailed procedure for chemical phenomena is provided in [46].

3.6 Boundary Condition Management
Here, a brief overview will be provided on how boundary conditions are imposed in
this code and on some types of boundary conditions that are implemented.

In particular, as explained in Section 3.1, the software is designed to be modular,
so each module has its own boundary conditions, which can generally be Neumann or
Dirichlet [35] type boundary conditions, or wall boundary conditions that simulate
the presence of a boundary at the last or first cell interface in the module where
it is set. This is implemented by solving a half Riemann problem, where the wall
coincides with the contact surface and, obviously, has zero velocity.

For example, considering a wall condition to be imposed on the right side of
the domain, knowing the condition at the left of the first family wave from the
reconstruction in the left-hand cell, we can calculate the condition between this
wave and the contact surface, which corresponds to the condition on the wall
surface. Once this condition is calculated, it is straightforward to apply the flux
functions to the fluid dynamic variables and impose the correct fluxes to simulate
a wall interface.
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Furthermore, two particular conditions can be imposed in this code: an open
condition and a diaphragm burst.

The open condition is a unique feature of this code, as it connects the cells of
different modules in the code’s spatial discretization at each time step, treating
them as linked. This approach allows them to be integrated together.

Figure 3.4: Control volume in quasi 1D approximation.

The condition is imposed by appropriately copying the conservative variables
at the modules interfaces. Figure 3.4 graphically illustrates how this condition is
imposed.

Regarding the diaphragm modeling, they are modeled through a wall boundary
condition until the pressure differential exerted on them is less than a specified
burst pressure. After this threshold is reached, they suddenly transition to an open
boundary condition.
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Chapter 4

HYQ1D: Numerical
Methods

In this chapter, several numerical methods and techniques implemented in the
HYQ1D code will be illustrated, focusing first on time integration and then on
spatial reconstruction and flux evaluation.

4.1 Time integration
In Chapter 3.2.1, we explained how to discretize the spatial integrals. However,
with equation 3.8, the process was halted before performing time integration of
the complete conservation laws. In this section, we will continue from that point,
illustrating how those integrals are discretized using the chosen time integration
scheme.

4.1.1 First order approximation
Integrating equation 3.8 in time and discretizing it with a time step ∆t, we obtain:

Ú t+∆t

t

∂Uj

∂t
dt = −

Ú t+∆t

t

1
∆x

1
Fj+ 1

2
− Fj− 1

2

2
dt −

Ú t+∆t

t

1
∆x

Sj dt (4.1)

Now, by applying the Leibniz approach, we can eliminate the time differentials
on the left-hand side. Using the fundamental theorem of calculus, this term can be
easily integrated, resulting in the following form:

UN+1
j = UN

j −
Ú t+∆t

t

1
∆x

1
Fj+ 1

2
− Fj− 1

2

2
dt −

Ú t+∆t

t

1
∆x

Sj dt (4.2)
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The superscripts N + 1 and N refer to the evaluation of the respective quantity
at times t + ∆t and t, representing two consecutive steps in the integration process.

Up to this point, no approximations have been made in the time integration.
However, at this stage, we must decide how to discretize the time integral of the
flux and source term functions.

The simplest approach was chosen here: the functions under the integral sign
are considered constant within the time step and equal to their value at time t.
This allows us to factor them out of the integral, leading to the following discretized
form [35]:

UN+1
j = UN

j − ∆t

∆x

1
Fj+ 1

2
− Fj− 1

2

2
− ∆t

∆x
Sj (4.3)

Since the integrands in the time integrals were assumed to be constant in the
discretization, this results in a first-order accuracy in the integral approximation
and, consequently, a first-order accuracy in the time discretization.

4.1.2 RK3-SSP (Runge-Kutta 3 - Strong Stability Preserv-
ing)

Here, a completely different and more sophisticated approach will be introduced
compared to the previous section.

Runge-Kutta (RK) methods are a generalized family of methods for integrating
differential equations in time.

In this context, a three-step Runge-Kutta method is employed, which essentially
divides the time integration into three sub-steps. This increases the order of
accuracy of the time discretization to third order.

Specifically, the TVD-RK3 method is used, as presented by Chi-Wang Shu and
Stanley Osher in [47]. As mentioned, this scheme is total variation diminishing
(TVD), making it particularly effective for simulating fluxes prone to instability,
such as those considered in this work.

The method is formally summarized by the integration steps shown in Equa-
tion4.4 [47, 48].

u(1) = un + ∆tL(un),

u(2) = 3
4un + 1

4u(1) + 1
4∆tL(u(1)),

un+1 = 1
3un + 2

3u(2) + 2
3∆tL(u(2)).

(4.4)

In our case, u represents the conservative variable U , and the operator L(u)
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corresponds to the right-hand side of equation 3.8, specifically:

L(u) = − 1
∆x

1
Fj+ 1

2
− Fj− 1

2

2
− 1

∆x
Sj

This method, due to its advantageous characteristics, is widely used, and further
optimizations and variations have been proposed, such as an implicit version of the
current scheme [49].

4.1.3 Strang Splitting
Since the HYQ1D code is generally designed to handle chemical and thermodynamic
non-equilibrium, as previously mentioned, the source term S makes the integration
stiff, particularly due to the presence of source terms in the species conservation
equations and the vibrational energy conservation equations. One technique to
manage stiff equations while reducing computational cost is to apply a time splitting
method [50].

Let f(U) represent the stiff part of the right-hand side of the compact equation
3.8, and g(U) the non-stiff part. This type of method essentially handles the time
integration in different steps, first integrating equation 3.8 with only the stiff part
and then with only the non-stiff part of the right-hand side.

In this work, specifically, the Strang Splitting method [51] was chosen for the
implementation in the code, with its steps summarized in equation 4.5.

dU∗

dt
= f(U∗), U∗(0) = U(t), on

C
0,

∆t

2

D
,

dU∗∗

dt
= g(U∗∗), U∗∗(0) = U∗

A
∆t

2

B
, on [0, ∆t] ,

dU∗∗∗

dt
= f(U∗∗∗), U∗∗∗

A
∆t

2

B
= U∗∗(∆t), on

C
∆t

2 , ∆t

D
,

U(t + ∆t) = U∗∗∗(∆t).

(4.5)

As shown, the method consists of first integrating the equations considering the
stiff part for a time step of ∆t

2 , then integrating only the non-stiff part for a full
∆t, and finally performing another integration of the stiff part for ∆t

2 .
This approach results in a reduced error in the integration of the stiff part

compared to other methods organized in only two steps.

4.2 Spatial Reconstruction
In the finite volume method, the integration of the conservation laws only allows
for the calculation of the cell-averaged value of the conservative variables, typically
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associated with the cell center. However, physically, the conservative variable
exhibits a specific variation within the cell. This chapter focuses on how this
variation is reconstructed, proposing two approaches: constant reconstruction and
WENO (Weighted Essentially Non-Oscillatory) reconstruction.

4.2.1 Constant Reconstruction
Constant reconstruction is the simplest method; it assumes that the conservative
variables remain constant within the cell, with a value equal to the cell-averaged
value. This approach results in a first-order accuracy in the spatial discretization.

4.2.2 WENO (Weighted Essentially Non Oscillatory)
The second scheme implemented in the HYQ1D code is a Weighted Essentially
Non-Oscillatory (WENO) scheme, specifically the version illustrated in [52], but
really useful reference to implement the scheme are also [53, 54]. The WENO
scheme is based on Essentially Non-Oscillatory (ENO) schemes and employs a
weighting mechanism to reconstruct a polynomial of fifth-order accuracy (in the
case considered) from three ENO reconstructions.

Using u as the representative value for reconstruction, equation 4.6 presents the
three ENO reconstructions along with the corresponding stencils used.

u
(1)
j+1/2 = 1

3 ūj−2 − 7
6 ūj−1 + 11

6 ūj on {Ij−2; Ij−1; Ij}

u
(2)
j+1/2 = −1

6 ūj−1 + 5
6 ūj + 1

3 ūj+1 on {Ij−1; Ij; Ij+1}

u
(3)
j+1/2 = 1

3 ūj + 5
6 ūj+1 − 1

6 ūj+2 on {Ij; Ij+1; Ij+2}

(4.6)

The calculation of the weights to combine these three polynomials begins with
determining the so-called smoothness indicator, which measures the relative smooth-
ness of the variable being reconstructed on the selected stencil. The expression for
the smoothness indicator is presented in Equation 4.7.

β1 = 13
12 (ūj−2 − 2ūj−1 + ūj)2 + 1

4 (ūj−2 − 4ūj−1 + 3ūj)2

β2 = 13
12 (ūj−1 − 2ūj + ūj+1)2 + 1

4 (ūj−1 − ūj+1)2

β3 = 13
12 (ūj − 2ūj+1 + ūj+2)2 + 1

4 (3ūj − 4ūj+1 + ūj+2)2

(4.7)

Now we can define the nonlinear weights as follows:
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wi = αi

α1 + α2 + α3
where :

αi = γi

(ϵ + βi)2 , i = 1, 2, 3 and γ1 = 1
10 , γ2 = 3

5 , γ3 = 3
10

(4.8)

With all the elements established, the WENO reconstructed polynomial can be
defined in equation 4.9, resulting in a fifth-order approximation defined over the
five-cell stencil {Ij−2; Ij−1; Ij; Ij+1; Ij+2}.

uj+1/2 = w1u
(1)
j+1/2 + w2u

(2)
j+1/2 + w3u

(3)
j+1/2 (4.9)

It is important to emphasize that the nonlinear weights are defined to adaptively
avoid including oscillations; therefore, in the polynomial definition presented in
equation 4.9, nonsmooth ENO stencils will be excluded. Due to this mechanism,
when the reconstruction is applied in the presence of discontinuities, the order of
accuracy decreases, at most to third order.

Further improvements and considerations can be made to the WENO scheme
to enhance its performance, as demonstrated in [55]. However, these aspects are
not addressed in this work.

4.3 Flux evaluation
As illustrated in section 3.3 , a crucial aspect of a finite volume algorithm is
flux determination. In the HYQ1D code, the choice between the left and right
reconstructed variables or fluxes (as illustrated in Figure 3.2) can be made using
various methods. In the following, L and R in the subscript will indicate the left
and right positions with respect to the cell interface.

4.3.1 Lax-Wendroff
The first method presented is the Lax-Wendroff method (Equation 4.10), which
is discussed separately from the others because it is a non-upwind method. It is
linearly stable up to a CFL number of unity for the model hyperbolic equation, and
it is second-order accurate in both space and time; however, it is non-monotone
and therefore prone to oscillations in the solution [56]. This method is typically
used in the code without previously reconstructing the variables in the cells.

Fj+ 1
2

= F (Uj+ 1
2
), Uj+ 1

2
= 1

2
1
Un

j + Un
j+1

2
− 1

2
∆t

∆x

è
F (Un

j+1) − F (Un
j )
é

(4.10)
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4.3.2 Approximate Riemann Solver
This section presents the methods that incorporate flux choices based on the
estimation of characteristic wave velocities. All of these methods are monotonic
schemes.

For all the proposed approximate Riemann solvers, no extensions are made to
the simple case of the Euler equations. The homogeneous part of the additional
equations introduced by chemistry and vibrational relaxation adds more waves
to the system however, all these waves share the velocity of the contact surface
wave (the second family of waves). While extensions of the solver could be made
to better account for multicomponent gases, such improvements are not considered
in this work.

Rusanov

The Rusanov method, presented in Equation 4.11 [57], is one of the simplest
approximate Riemann solvers formulated. It is based on the two-wave formulation
of the HLL method, where the velocity of the left wave (−S+) and the velocity of
the right wave (S+) are taken equal to the following defined velocity S+.

S+ = max {|uL| + aL, |uR| + aR|}

Fi+ 1
2

= 1
2 (FL + FR) − 1

2S+ (UR − UL) (4.11)

Lax-Friedrichs

Starting from the approach of the Rusanov method [57] and defining S+ as the
maximum wave speed present at a given time according to the CFL condition,
S+ = Sn

max = Cfl∆x

∆t
, we arrive at the Lax-Friedrichs method, as reported in equation

4.12 [58].

Fj+ 1
2

= 1
2
è
F (Un

j ) + F (Un
j+1)

é
− 1

2
∆x

∆t

1
Un

j+1 − Un
j

2
(4.12)

HLLC

A more sophisticated, yet still approximate, Riemann solver is the HLLC solver.
This method is more comprehensive because it considers a three-wave approximation
that travels with velocities SL, S∗, and SR, making it suitable for the Euler equations.
The solver applies Rankine–Hugoniot conditions across each of the waves and, in
the implemented variant, enforces the exact condition of equal pressure across the
contact surface.
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The main steps of the HLLC method are outlined below, referring to the Variant
1 HLLC scheme presented in [59]:

• Pressure estimation

p∗ = max(0, ppvrs), ppvrs = 1
2 (pL + pR) − 1

2(uR − uL)ρ̄ā (4.13)

where ρ̄ = 1
2(ρL + ρR), ā = 1

2(aL + aR)

• Wave speed estimation

SL = uL − aLqL, SR = uR + aRqR (4.14)

where qK =
1 se p∗ ≤ pKè

1 + γ+1
2γ

1
p∗
pK

− 1
2é1/2

se p∗ > pK

S∗ = pR − pL + ρLuL(SL − uL) − ρRuR(SR − uR)
ρL(SL − uL) − ρR(SR − uR) (4.15)

• Flux evaluation

Fhllc
i+ 1

2
=


FL se 0 ≤ SL

F∗L se SL ≤ 0 ≤ S∗

F∗R se S∗ ≤ 0 ≤ SR

FR se 0 ≥ SR

(4.16)

where F∗K = S∗(SKUK − FK) + SK (pK + ρL(SK − uK)(S∗ − uK)) D∗

SK − S∗

and D∗ = [0, A, 0, 0, AS∗]T

The vector D was multiplied by the area A of the cell because the area
is included in the definitions of U and F, as the formulation is quasi one-
dimensional rather than strictly one-dimensional.
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Chapter 5

Free Piston model

5.1 Introduction
Various models have been developed to simulate a free piston-driven shock tunnel,
often employing a Lagrangian approach to track piston movement along the com-
pression tube [4, 5, 6]. In this study, we develop a free piston model that integrates
with the Eulerian formulation, eliminating the need for a Lagrangian approach,
allowing all facilities to be simulated with the same code, as demonstrated in
section 9.3.

A free-driven piston is a key component for compressing and generating the
high-energy/enthalpy conditions required in hypersonic facilities.

In the context of a finite volume method, the presence of an external object
moving through the domain presents challenges, especially when aiming for a
globally conservative formulation and a global control domain that does not change
in size over time.

To overcome these difficulties, the piston was modeled as an interface with no
spatial extension. This interface moves through the computational finite volume
cells, splitting any cell it passes through into two sub-cells. A sub-grid model was
developed to represent the piston’s behavior within a specific cell, with two main
objectives: to simulate the piston’s dynamics and to capture the fluid behavior
within the standard finite volume cells.

5.2 Sub-grid piston model
To achieve the previously stated goals, a sub-grid model was developed. This model
is based on the splitting of a cell into two sub-cells at the piston interface (shown
in Fig. 5.1).
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Figure 5.1: Cell splitting originating from the piston interface.

The two sub-cells originating from this cell splitting result have one interface
moving at the piston velocity (one of them interfaces being the piston interface).

To describe the fluid dynamics of the two sub-cells using a conservative formu-
lation, a new set of Euler equations extended to the case of control volumes in
motion with a generic velocity were derived in Section 5.2.1.

The other goal, reproducing the piston dynamics, is achieved based on mechanical
considerations. We are describing a freely driven piston, so its motion is determined
by the forces acting on it. Refer to the free body diagram in Fig. 5.2, which is
presented in the context of d’Alembert’s principle.

Figure 5.2: Free body diagram.

Fpres − Ffri − Fbra = mpap (5.1)

where Ffri = µF⊥ ; Fpres = (pPL
− pPR

)AP .

Considering that the piston area (AP ), friction coefficient (µ), and brake force
(Fbra) are characteristic parameters of the specific facilities, in order to evaluate the
piston acceleration, we need to know the pressure at the piston faces. In this context,
they represent a cell interface for the sub-grid cell. By integrating the conservation
law derived in Section 5.2.1, we obtain the conservative variables at the cell centers
and from them, the primitive variables at the cell centers. However, we need
the pressure on the cell interface, which was achieved by solving a half-Riemann
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problem, on the reconstructed variable, on the piston faces (set-up and resolution
process explained in Section 5.2.2). Once the pressure differential on the piston
is obtained, we have all the necessary information to calculate the acceleration of
this component at the current time step (tN).

To close the equation in Section 5.2.2 and to evaluate the piston’s kinematics
and its position at time tN+1 = tN + ∆t, we need to calculate the new position
(xP

N+1).
Starting from the definition of acceleration, a = dV

dt
, and using a first-order

forward finite difference approximation, we can express:

aN = V N+1 − V N

∆tNEW

(5.2)

Following the same approach, we can express V N+1 and V N using the definition
of velocity, V = dx

dt
. By applying a backward discretization, we arrive at Equation

5.3:

aN =
xN+1−xN

∆tNEW
− xN −xN−1

∆tOLD

∆tNEW

(5.3)

where ∆tOLD = tN − tN−1 and ∆tNEW = tN+1 − tN .
The equation now derived, along with Equation 5.2, are expressed in therm of

xN+1 and V N+1 in Equations 5.4-5.5 , thus closing the model and fully capturing
the piston’s kinematic behavior.

V N+1 = aN∆tNEW + V N (5.4)

xN+1 = aN∆t2
NEW + xN(1 + ∆tNEW

∆tOLD

) − xN−1 ∆tNEW

∆tOLD

(5.5)

Up to this point, the model allows us to track both the piston and the fluid
behavior within a specific cell. However, when the piston moves too close to a
cell boundary, certain issues arise. If this model would be used with an explicit
time integration approach, we must satisfy the Courant–Friedrichs–Lewy (CFL)
condition, which in this case is imposed as:

∆t = CFL
∆x

Smax

where Smax is the maximum wave propagation speed, Smax = max(a + |u|).

It becomes evident that as the piston moves, it reduces the size of the sub-cell in
the direction of motion while expanding the size of the other sub-cell. The sub-cell
that decreases in size requires, according to the CFL condition, a progressively
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smaller time step. As ∆xsub−cell → 0 , this leads to ∆t → 0, eventually causing the
code to stall.

To overcome these difficulties, a local remeshing mechanism (explained in Section
5.2.3) was developed to retain ∆xPL,R

above a certain minimum trigger value, ∆xtrig,
with the aim of making this model applicable in a CFD code using explicit time
integration.

5.2.1 Quasi 1D Euler equation for control volume deforming
with a generic velocity

Here, the derivation is presented only for the Euler equations because they affect
the time derivative of the conservative laws. Therefore, the derivation remains
unchanged even if source terms are added to the set of equations under consideration.
Similarly, no difference will be found between the derivation of the continuity
equation and the conservation balance for the i-th species in a multicomponent
fluid model, so only the first one was showed.

Starting from the differential conservative form of the Euler equations presented
and derived in [32]:

∂ρ

∂t
+ ∇ · (ρv) = 0 (Balance of mass) (5.6)

∂(ρv)
∂t

+ ∇ · (ρvv + pI) = 0 (Balance of momentum) (5.7)

∂(E)
∂t

+ ∇ · ((E + p)v) = 0 (Balance of energy) (5.8)

where E is the total energy per unit volume
è

J
m3

é
: E = ρ

1
1
2 |v|2 + e

2
, with e

being the specific internal energy
è

J
Kg

é
.

We can integrate the presented equations on a generic control volume Ω moving
with a generic velocity (eventually different from the fluid velocity).

Ú
Ω(t)

∂ρ

∂t
dV +

j
∂Ω(t)

ρv · n dS = 0 (Balance of mass) (5.9)Ú
Ω(t)

∂(ρv)
∂t

dV +
j

∂Ω(t)
(ρvv + pI) · n dS = 0 (Balance of momentum) (5.10)Ú

Ω(t)

∂ (E)
∂t

dV +
j

∂Ω(t)
((E + p)v) · n dS = 0 (Balance of energy) (5.11)

From this formulation, it is clear that the motion and shape changes of the
control volume do not allow the integration operation to be interchanged with the
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temporal derivative. To address this, the Reynolds transport theorem ([60]), as
reported in Eq. 5.12, was used.

d

dt

Ú
Ω(t)

f(x, t) dV =
Ú

Ω(t)

∂f(x, t)
∂t

dV +
j

∂Ω(t)
f(x, t)dx

dt
· n dS = 0 (5.12)

where f(x, t) is the vector or scalar function to be integrated, which in our case
will be ρ, ρv, or E. Here, x is the coordinate of a point within the control volume,
and the temporal derivative of x will be denoted as VV.

The derivation procedure is the same for each equation; thus, only the derivation
of the energy equation is detailed.

Starting from Equation 5.11, we can add and subtract at left hand side the
following term:

i
∂Ω(t) EVV · n dS. Now apply the Reynolds transport theorem we

arrive at the form:

d

dt

Ú
Ω(t)

E dV +
j

∂Ω(t)
(E(v − VV) + pv) · n dS = 0

With the complete integral 3D set of equations which, in accordance with
[61]-[62],became:

d

dt

Ú
Ω(t)

ρ dV +
j

∂Ω(t)
ρ(v − VV) · n dS = 0 (Balance of mass) (5.13)

d

dt

Ú
Ω(t)

ρv dV +
j

∂Ω(t)
(ρv(v − VV) + pI) · n dS = 0 (Balance of momentum) (5.14)

d

dt

Ú
Ω(t)

E dV +
j

∂Ω(t)
(E(v − VV) + pv) · n dS = 0 (Balance of energy) (5.15)

d

dt

Ú
Ω(t)

ρ dV +
j

∂Ω(t)
ρ(v − VV) · n dS = 0 (Balance of mass) (5.16)

d

dt

Ú
Ω(t)

ρv dV +
j

∂Ω(t)
(ρv(v − VV) + pI) · n dS = 0 (Balance of momentum) (5.17)

d

dt

Ú
Ω(t)

E dV +
j

∂Ω(t)
(E(v − VV) + pv) · n dS = 0 (Balance of energy) (5.18)

Now, the resulting equations are simplified in the case of a quasi-1D approxima-
tion, which means the control volume can change its area, and the fluid properties
vary only in the x-direction.

In the following consideration to pass from 3D equation to quasi 1D ones we
will use the general control volume showed in Figure 3.1.
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We can rewrite the fluxes in each equation expliciting the surface integrals on
each surface of the considered control volume and consider the volume differential
as: dV = dAdx. In compact form we have:

d

dt

Ú
Ω(t)

ρ dAdx +
Ú

S1,2,L(t)
ρ(v − VV) · n1,2,L dS = 0 (Balance of mass)

(5.19)
d

dt

Ú
Ω(t)

ρv dAdx +
Ú

S1,2,L(t)
(ρv(v − VV) + pI) · n1,2,L dS = 0 (Balance of momentum)

(5.20)
d

dt

Ú
Ω(t)

E dAdx +
Ú

S1,2,L(t)
(E(v − VV) + pv) · n1,2,L dS = 0 (Balance of energy)

(5.21)

Now we can integrate on the area the first integral in the equations and for the
second integral we can applying the scalar product and do the surface integrals
arriving at the quasi 1D form of the starting equations.

d

dt

Ú
x(t)

ρA dx = −|ρ(v − VV )A|x2(t)
x1(t) (Balance of mass)

(5.22)
d

dt

Ú
x(t)

ρvA dx = −|(ρv(v − VV ) + p)A|x2(t)
x1(t) − p|A|x2(t)

x1(t) (Balance of momentum)

(5.23)
d

dt

Ú
x(t)

EA dx = −| (E(v − VV ) + pv) A|x2(t)
x1(t) (Balance of energy)

(5.24)

where v and Vv represent the x-component of the fluid velocity and the control
volume velocity, respectively, and a linear area variation is considered within the
cell.

To integrate the obtained equation in time, it is necessary to determine how
to evaluate the time integrals on the right-hand side. This choice will define the
time scheme of the employed method. The simplest approach is to assume that
the fluxes remain constant during the integration, which corresponds to using an
explicit first-order time discretization.

In the context of the control volume method, where j denotes the cell center and
j ± 1

2 represents the cell interfaces, we now present Equation 5.25, which we aimed
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to derive and is used in the model described in this manuscript. This equation
differs slightly from the one presented in [61], as no approximation is made to
avoid having the control volume dimension at tN+1 on the right-hand side. This is
because, by expressing the piston coordinate law as shown in Equation 5.5, the
resulting calculation remains explicit.

UN+1
j = UN

j

∆xN

∆xN+1 − ∆t

∆xN+1

1
F N

j+ 1
2

− F N
j− 1

2

2
− ∆t

∆xN+1 SN
j (5.25)

where UN
j =


1

∆xN

s x2(t)
x1(t) ρA dx

1
∆xN

s x2(t)
x1(t) ρvA dx

1
∆xN

s x2(t)
x1(t) EA dx

, F N
j± 1

2
=


|ρ(v − VV )A|N

j± 1
2

|(ρv(v − VV ) + p)A|N
j± 1

2
| (E(v − VV ) + pv) A|N

j± 1
2


and SN

j =

 0
pj(Aj+ 1

2
− Aj− 1

2
)

0

.

5.2.2 Riemann problem on the piston faces
To compute the fluid dynamic variables at the piston interface, a half Riemann
problem was solved. The piston interface imposes its velocity on the adjacent fluid,
and this boundary condition was enforced by aligning the piston interface with the
second family wave, which travels with the fluid’s Eulerian velocity and arises from
the flow discontinuity.

In more detail, we consider the case of the piston moving to the right, focusing
on the fluid on its left side (the other cases are treated symmetrically).

Figure 5.3: Half Riemann problem representation.

Figure 5.3 illustrates the problem setup, where the second family wave coincides
with the piston face, dividing the phase plane into two regions. In this case, the
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left reconstruction from the cell center of the piston semi-cell to the wall represents
the state on the left of the first family wave. With this known state and the piston
interface velocity, calculated using Eq. 5.2, an appropriate Riemann solver can
determine the pressure and other fluid dynamic variables in the zone between the
first and second family waves, which coincide with the fluid dynamic variables at
the piston face.

5.2.3 Local remeshing mechanism

As previously mentioned, in the context of explicit time discretization, a remeshing
mechanism is necessary to overcome the issue of decreasing size in one of the two
sub-cells. The purpose of this section is to present a remeshing mechanism capable
of retaining ∆xPL,R

above a certain minimum value, ∆xtrig.

The routine consists of two primary remeshing phases. Initially, it locally adjusts
the mesh where the small-width problem occurs. The second phase, after a certain
spatial margin from the critical condition, restores the original mesh.

The two steps of the routine are discussed with the representation of the first
step shown in 5.5 and the second in 5.4. In the illustrations, the piston interface is
displayed in red, and the mechanism is demonstrated with the piston moving from
left to right. The case of opposite velocity exhibits a completely mirrored mode of
operation.

1. First remeshing phase The routine begins when the calculated piston position
from equation 5.3 does not guarantee the minimal value of ∆xPL,R

. Math-
ematically, this condition is expressed as ∆xPL

≤ ∆xtrig (as shown in the
upper part of figure 5.4). At this point, the routine resizes the right cell to
incorporate the piston interface, ensuring that the distance between the piston
interface and the neighboring cell interfaces is greater than ∆xtrig (condition
illustrated in the lower part of figure 5.4). The remeshed cell dimension
became: ∆xRL,R

= ∆x ∓ 2∆xtrig.
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Figure 5.4: First remeshing phase.

2. Second remeshing phase Once the first phase is completed, the routine ac-
tivates the possibility to trigger the second remeshing phase. As the piston
continues its motion, it moves further away from the left interface of the cell
in which it is located, with ∆xPL

increasing, as shown in the upper part of
figure 5.5. Eventually, the piston reaches a position that would have been
acceptable for the previous mesh configuration, a condition mathematically
expressed as ∆xPL

> 3∆xtrig. When this condition is met, the trigger for the
second remeshing phase is activated, and the mesh is reshaped to its original
dimensions, as illustrated in the lower part of figure 5.5.

Figure 5.5: Second remeshing phase.

5.3 Standalone Piston simulation
Here, a stand-alone simulation isolating the behavior of the free piston model is
presented. The test setup consists of a tube with the free piston inside, with a
high-pressure condition on the left side of the piston and a low-pressure condition
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on the right side.

Figure 5.6: Contour map of the base-10 logarithm of pressure

Figure 5.7: Contour map of the density
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Figure 5.8: Contour map of the base-10 logarithm of temperature

In Figures 5.6,5.7 and 5.8, pressure, density, and temperature isolevel maps of
the time history solution are presented, with the piston track highlighted by a solid
blue line. It is visible how the pressure differential across the piston, shown in
Figure 5.9, causes the piston to move and accelerate. As the piston moves forward,
the gas behind it expands, while the gas in front of it compresses. Since the piston
is moving in subsonic conditions, compression waves are generated, which reach
the left wall and reflect back as expansion waves, and vice versa on the right side.
These waves are visible in the contour maps, as well as in Figure 5.9 and 5.11,
which shows the pressure on the left and right walls of the tunnel. At a certain
point, the gas on the right side reaches a pressure condition that causes the piston
to decelerate until the pressure differential becomes zero, after which the piston
begins to accelerate in the opposite direction.

To have a complete overview on the piston cinematic the pisto track and the
velocity are plotted in figrure 5.10.
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Figure 5.9: Pressure differential on the piston faces

Figure 5.10: Piston cinematic
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Figure 5.11: Pressure on the walls

43



Free Piston model

Figure 5.12: Pressure and density on the piston faces
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Chapter 6

PLATO: PLAsmas in
Thermodynamic
nOn-equilibrium [1]

PLATO (PLAsmas in Thermodynamic nOn-equilibrium) is a high-fidelity library
for the thermodynamics, transport, kinetics, and radiation of equilibrium and
non-equilibrium multi-component plasmas. Its source files are implemented in
Fortran 2003/2008 but can also be used in C and C++ codes, as is the case in this
work.

6.1 Library Description
The PLATO library is designed for local thermodynamic equilibrium/non-equilibrium
multi-component plasmas. It is intended to account for these local phenomena
in more complex codes, eliminating the need to implement the physics related to
non-equilibrium kinetic theory for dilute gases. This library can be used to handle
the source terms in the transport equations.

PLATO is highly versatile and offers a wide range of physical complexities, from
legacy multi-temperature models to grouping and/or collisional-radiative models. It
was developed and is widely used at the Center for Hypersonics and Entry Systems
Studies (CHESS) at the University of Illinois [63, 64].

Some of the built-in applications in the PLATO library include:

• box: This program simulates an isochoric, isothermal, or adiabatic chemical
reactor.

• shock: This program computes the inviscid non-equilibrium flow behind a
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normal shock wave.

• lagr: This program solves the governing equations in Lagrangian form.

Standalone examples are provided in Section 6.2.
In the HYQ1D code, the library can be used to calculate the chemical source

terms in the species conservation equations 1.1.

6.2 PLATO Stand-Alone Test
In this section, several stand-alone simulations are presented to demonstrate some
of the possible uses of PLATO.

6.2.1 Shock Test
Here, the PLATO shock application is tested. Two specific cases are shown, referred
to as the MAC 5.55 and MAC 10.15 conditions. These are candidate conditions
for wind tunnel comparison at the University of Queensland for the T4 reflected
shock tunnel and the X3 expansion tunnel [65]. Figure 6.1 displays the test case
setup for a typical PLATO input file.

Figure 6.1: Shock case simulation setup in a typical PLATO input file
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Figure 6.2: Pressure and density plots for the M5.55 condition

Figure 6.3: Temperature and molar fraction plots for the M5.55 condition

In Figure 6.2, the pressure and density solutions for the shock case are shown.
The classical shock jump is visible, and following this jump, further changes in
the fluid dynamic variables occur due to the advancement of chemical reactions
triggered by the high temperature and non-equilibrium phenomena caused by
the instantaneous translational-rotational temperature change. In Figure 6.3, the
temperatures and molar fractions are displayed. For the temperature, the classical
post-shock relaxation behavior is observed: the translational-rotational temperature
changes instantaneously and then relaxes towards the vibrational temperature,
transferring energy to this degree of freedom until they converge, leading to a new
thermodynamic equilibrium. For the molar fractions, the typical non-equilibrium
chemical phenomena are captured, with significant dissociation occurring, which
reaches equilibrium not instantaneously but after some distance.

For the MAC 10.15 case, the qualitative trends shown in Figures 6.4 and 6.5
are the same as those for the MAC 5.55 case, but they are amplified due to the
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Figure 6.4: Pressure and density plots for the M10.15 condition

Figure 6.5: Temperature and molar fraction plots for the M10.15 condition

higher Mach number. This leads to a stronger shock and more severe post-shock
conditions and phenomena.

6.2.2 Box test
Here, several tests using PLATO’s box application are reproduced. Specifically,
two different tests are performed: the first with the gas temperature equal to the
chemical bath temperature, and the second with the two temperatures initialized
differently, with the latter being higher than the former. By comparing these two
cases, the influence of thermally non-equilibrium phenomena, present only in the
second case, is highlighted. The results for the first case are shown on the left side
of the following figures, and the results for the second case are shown on the right.
Figure 6.6 provides the simulation settings for the box test, illustrating a typical
PLATO input file.
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(a) Tbath = T0 (b) Tbath /= T0

Figure 6.6: Isocoric case simulation setup in a typical PLATO input file

(a) Tbath = T0 (b) Tbath /= T0

Figure 6.7: Pressure plot comparison

In Figure 6.7 and 6.8, the pressure and temperature comparisons for the two
cases are provided. In the second case, where the bath’s temperature differs
from the initial system temperature, there is a noticeable jump in pressure and
translational-rotational temperature, with the vibrational temperature relaxing
after a few fractions of a second.

In Figure 6.9, the molar fraction comparisons are presented. It is evident from
the time axis that chemical reactions are significantly enhanced in the second case,
as the bath temperature transfers energy to the system.
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(a) Tbath = T0 (b) Tbath /= T0

Figure 6.8: Temperature plot comparison

(a) Tbath = T0 (b) Tbath /= T0

Figure 6.9: Molar fraction plot comparison

50



Chapter 7

HYQ1D: Software
architecture

This section provides a detailed overview of the HYQ1D architecture and code
organization. HYQ1D was written in C++ and extensively tested using GCC[66]
compilers on macOS[67] and Linux[68] operating systems.

The source code is organized into different routines, which are properly combined
based on user settings. The code’s outermost routines consist of seven main
components that execute the fundamental steps of a CFD code.

• time_integration_managing

• inspections

• fluid_dynamic_variable_calculation

• ∆t_calculation

• source_term_calculation

• spatial_reconstruction

• flux_evaluation

• time_history_storage
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Figure 7.1: Code organization

In Figure 7.1, the code organization is shown. The red arrows represent the
integration procedure, the blue arrows indicate the links between subroutines, and
the gray dashed arrows represent some notable algorithms within the routines.

7.1 time_integration_managing
This routine manages the time integration throughout the code and is based on
a Strang-Splitting approach, analyzed in Section 4.1.3, which can be extremely
useful when dealing with PDEs containing stiff source terms, such as in chemically
reacting fluids. This method allows for the separate integration of the non-stiff and
stiff parts of the PDE, providing significant computational cost relief in explicit
codes.

A flag, configurable in the settings file, can activate or deactivate the Strang-
Splitting logic. In the latter case, the PDE integration logic is reduced to the
(non-stiff) routine integration one. The time_integration_managing routine
arranges the integration using the following routines:

• PLATO_chemistry_integration

• conservation_laws_integration

• cell_center_boundary_condition_managment
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7.1.1 PLATO_chemistry_integration
This routine links HYQ1D with the applications and libraries of the PLATO
software, which are extensively described in Chapter 6, using the Strang-Splitting
logic. The PLATO software routines handle the integration of chemical source
terms.

After executing the PLATO source code, re-initialization of the fluid-dynamic
and integration variables is necessary to ensure compatibility with the HYQ1D
code.

7.1.2 conservation_laws_integration
In this routine, the integration of the non-stiff part of the conservation equations
(in the case of Strang-Splitting) or the entire conservation law (in other cases) is
carried out.

The routine is subdivided into two subroutines: the first manages the integration
of the conservation laws on the regular mesh, while the second, activated when the
free piston model is enabled (Chapter 5), calls the piston routine, which performs
the integration on the sub-cell mesh using the modified conservation laws presented
in Section 5.2.1.

The user can set the time integration discretization to either first-order, using a
constant time integration (Section 4.1.1), or third-order, employing a Runge-Kutta
3 Strong Stability Preserving algorithm (Section 4.1.2). In both cases, the time
integration is explicit.

7.1.3 cell_center_boundary_condition_managment
In this routine, all boundary conditions imposed through cell center values are
managed. Some examples include:

• open: Links two adjacent sections.

• Dirichlet: Specific conditions are imposed at the cell center.

7.2 inspections
This routine has two main objectives:

• Inspect the integration variables vector for potential code blow-up. If detected,
an error flag is activated to abort the code execution.
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• Calculate the difference between the current time step and the previous one
using the L2 norm of the difference between actual and precedent value of the
integration variables vector, checking for solution convergence (useful when
seeking a steady-state solution).

7.3 fluid_dynamic_variable_calculation
In this routine, all calculations of the relevant fluid-dynamic variables are performed
as showed in Section 3.4.

7.4 ∆t_calculation
In this routine, the estimation of ∆t is performed. In an explicit time integration
scheme, this is a fundamental step that must be handled carefully to ensure
numerical stability during time advancement (Section 3.5).

The ∆t management routine also calls the piston routine to account for the∆t
limitations imposed by the integration specified in the free piston model.

7.5 source_term_calculation
In this routine, all source terms, depending on the specific physical model selected
for the given section, are calculated. These include chemical, viscous loss, and
relaxation source terms (Section 3.10).

7.6 spatial_reconstruction
In this routine, spatial reconstruction is performed by calling the selected scheme
based on the user’s settings. More details on the implemented reconstruction
schemes can be found in Section 4.2.

7.7 flux_evaluation
In a finite volume discretization, the focus is on how to calculate the fluxes at the
cell interfaces, and this routine addresses that requirement.

This routine consists of two parts: interface_fluxes_calculation and
cell_interface_boundary_condition_management .
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7.7.1 interface_fluxes_calculation
Based on the settings used and the different numerical methods implemented, the
routine can utilize the Lax-Wendroff scheme (Section 4.3.1) or resolve the Riemann
problem at the interface using one of the implemented Riemann solvers: HLLC
(Section 4.3.2), Rusanov scheme (Section 4.3.2), or Lax-Friedrichs scheme (Section
4.3.2).

7.7.2 cell_interface_boundary_condition_management
In this section, all boundary conditions that involve fluxes or the imposition of
interface variables are established. Some of these boundary conditions may include:

• Wall: Simulates the presence of a wall at the domain’s boundary.

• Neumann: Imposes a specific flux value.

The routine also manages diaphragm rupture based on the wall value calculated
for the wall boundary condition.

7.8 time_history_storage
To optimize memory management, the code stores only the current time step
variables and a few variables from the previous step. This part of the code is
designed to store the variables at a specified frequency during time integration in a
file, providing a time history of the stored data.
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HYQ1D: Numerical results

In this section, several tests and numerical results obtained with HYQ1D will be
presented. These tests will assess the accuracy of the CFD code in comparison
to the exact solution for an ideal model case. Additionally, some test cases will
be modified to reflect hypersonic conditions, allowing for the evaluation of the
complete non-equilibrium model.

8.1 Shock Tube Tests
The accuracy and performance of the various numerical models implemented in the
code, as described in Section 4, will be tested and compared with exact solutions.
Five standard shock tube problems, taken from [69], are considered. Table 8.1 lists
the fluid dynamic conditions on the left and right sides of the initial discontinuity,
the position of the discontinuity, and the time of observation and plotting.

For each test, the left-hand plot will present a first-order approximation in
space and time, while the right-hand plot will display results using RK3-SSP for
time integration and WENO for spatial reconstruction. When convergent, the
Lax-Wendroff method, being a second-order approximation in both space and time,
will be included in both figures.

The spatial discretization consists of 100 cells, and the CFL number is taken as
large as possible for each case.

8.1.1 TEST 1

This test is a modified version of the Sod shock tube problem. Its solution consists of
a right-moving shock wave, a right-moving contact discontinuity, and a left-moving
sonic rarefaction wave.
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Test ρL uL pL ρR uR pR x0 t∗

1 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2
2 1.0 -2.0 0.4 1.0 2.0 0.4 0.5 0.15
3 1.0 0.0 1000.0 1.0 0.0 0.01 0.5 0.012
4 5.99924 19.5975 460.894 5.999242 -6.19633 46.0950 0.4 0.035
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01 0.8 0.012

Table 8.1: Test cases with initial conditions for ρ, u, and p on the left and right
states.

Figure 8.1: Pressure plots, 1◦ order vs 5◦ order reconstruction

Figure 8.2: Density plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.3: Velocity plots, 1◦ order vs 5◦ order reconstruction

Figure 8.4: R∗T plots, 1◦ order vs 5◦ order reconstruction

From the plots presented in this section, it is evident that the accuracy of the
solution improves with the accuracy of the Riemann solver for first order solution.
This is particularly noticeable when the HLLC solver is used, as it significantly
enhances the solution compared to other cases. When high order resolution is
used (RK3-SSP + WENO) all the Riemann problem tend to converge on the exact
solution, we can say that this high order reconstruction is the sensibility to the used
Rieamnn solver decrease. While the Lax-Wendroff method is more accurate than
all first-order approximations, it still exhibits some oscillatory behavior typical of
these schemes, as well as of high-order non monotonic approximations.

In general, it is visible how high-order schemes, such as RK3-SSP combined with
WENO, and the Lax-Wendroff method (when convergent) have a solution closer to
the exact one, with the first better than the latter. The shock wave is consistently
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well-captured, though slightly anticipated in some first-order approximations. It
should be noted that the accuracy of WENO, which is fifth order accurate on
smooth solutions can degrade in the presence of discontinuities to third order.

These observations apply to all five tests, though more detailed analysis is
provided for this particular case. Notably, the differences between high-order and
first-order schemes are most visible on expansion and contact surface, with the
latter which is typically the most challenging discontinuity to capture, as shown in
Figure 8.3.

8.1.2 TEST 2

Test 2 consists of two symmetric rarefaction waves and a trivial contact discontinuity.
The region between the left and right waves approaches vacuum, making this
problem an effective test for evaluating the performance of numerical methods in
low-density flows.

Figure 8.5: Pressure plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.6: Density plots, 1◦ order vs 5◦ order reconstruction

Figure 8.7: Velocity plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.8: R∗T plots, 1◦ order vs 5◦ order reconstruction

This test is the most challenging for all the numerical schemes, as seen in the
temperature plot, which highlights their limitations in this case. Neither the higher
order solution, laso if it iss better, reach a good approximation of the exact solution.
The Lax-Wendroff scheme fails to connverge, even with a low CFL number, likely
due to its lack of monotonicity. In contrast to the other tests, the Rusanov Riemann
solver provides the most accurate solution in this case for first order solution.

8.1.3 TEST 3

This test is designed to assess the robustness and accuracy of numerical methods.
Its solution consists of a strong shock wave with a Mach number of 198, a contact
surface, and a left-moving rarefaction wave.

Figure 8.9: Pressure plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.10: Density plots, 1◦ order vs 5◦ order reconstruction

Figure 8.11: Velocity plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.12: R∗T plots, 1◦ order vs 5◦ order reconstruction

The plots show that, in general, higher-order solutions capture the contact surface
and rarefaction wave more accurately, as seen in Figure 8.9. The Lax-Wendroff
scheme was unstable in this test case.

8.1.4 TEST 4

This test is also highly challenging, with a solution that consists of three strong
discontinuities moving to the right. From left to right, these are: a left-facing shock,
a contact discontinuity, and a shock wave.

Figure 8.13: Pressure plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.14: Density plots, 1◦ order vs 5◦ order reconstruction

Figure 8.15: Velocity plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.16: R∗T plots, 1◦ order vs 5◦ order reconstruction

Both shock waves are sharply captured by the HLLC Riemann solver, though
the contact discontinuity is less well-resolved. However, higher-order solutions
improve this aspect. The other solvers, in order of accuracy compared to the exact
solution, are Rusanov and Lax-Friedrichs, both of which show improvement with
higher-order reconstruction. The Lax-Wendroff scheme was unstable in this test
case.

8.1.5 TEST 5
Test 5 is specifically designed to evaluate the robustness of numerical methods,
with a primary focus on how well these methods resolve slowly moving contact
discontinuities. The exact solution for this test consists of a left-moving rarefaction
wave, a right-moving shock wave, and a stationary contact discontinuity.

Figure 8.17: Pressure plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.18: Density plots, 1◦ order vs 5◦ order reconstruction

Figure 8.19: Velocity plots, 1◦ order vs 5◦ order reconstruction
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Figure 8.20: R∗T plots, 1◦ order vs 5◦ order reconstruction

From this test, we can see that the HLLC solver resolves the slow contact
discontinuity quite accurately, with no major issues. However, it does slightly
diffuse the starting and ending points for both orders of accuracy considered. The
most challenging discontinuity to capture in this test appears to be the contact
surface, for which the higher-order reconstruction exhibits great improvment respect
to first order.

8.1.6 Modified TEST 1 for a standalone vibrational relax-
ation test

Beginning with TEST 1 in Table 8.1, the pressure was increased to achieve a
sufficiently high temperature that highlights the key aspects of the thermodynamic
non-equilibrium model. A modified test case was conducted with this objective.

Test ρL uL pL ρR uR pR x0 t∗

1 mod. 1.0 0.75 1000000 0.125 0.0 100000 0.4 0.00023

Table 8.2: Test case with initial conditions for ρ, u, and p on the left and right
states.

The gas used in the test is air, specifically composed of 21%O2 and 79%N2.
The chemistry is considered frozen to isolate the behavior of thermodynamic
relaxation phenomena. The simulation was performed using RK3-SSP and WENO
for time integration and spatial reconstruction, with HLLC as the Riemann solver.
To discretize the domain, 2000 cells were employed to accurately capture the
characteristic shape of the temperatures during relaxation after a shock wave. The
time step ∆t was estimated as described in Section 3.5.
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Figure 8.21: Vibrational relaxation standalone test case

In figure 8.21the exact solution for the ideal case (ideal and non-reactive gas in
thermodynamic equilibrium) is plotted first, followed by the temperatures calculated
in the test case. The order of the plotted temperatures is as follows: translational-
rotational temperature, vibrational temperature for each diatomic species (O2 and
N2), and finally the vibrational temperature defined from the total vibrational
energy.

It is evident that the plot of the numerical solution appears rescaled compared to
the ideal solution. This occurs because energy is redistributed among the different
degrees of freedom and is not solely stored in the translational-rotational energy,
which initially holds nearly all the energy after the shock. As the system "relaxes,"
it transfers a portion of the energy to the vibrational degrees of freedom, causing
the related temperature to increase as equilibrium is approached.

Furthermore, it is interesting to note, beyond the post-shock phenomenology,
that disequilibrium also begins during an expansion. When an expansion occurs,
energy is promptly converted from internal energy to kinetic energy. In this case,
the internal energy available for conversion consists of two parts: the translational-
rotational part, which responds instantaneously in this model, and the vibrational
part, which requires a specific "relaxation time."
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8.2 Nozzle test

In this section, the area variation capability of HYQ1D is tested by comparing its
results to the exact solutions for an ideal nozzle [70]. Further investigation into
real gas effects is conducted on one of the subsequent cases considered. The nozzle
shape analyzed is shown in Figure 8.22; it is a convergent-divergent nozzle.

Figure 8.22: Nozzle geometry

All simulations are performed using a computational model composed of RK3-
SSP for time integration, WENO for spatial reconstruction, and HLLC as the
Riemann solver. The spatial domain is discretized with 200 cells, and the CFL
number is set at 0.9. The gas used to initialize the solution is always air (21%O2
and 79%N2).

Regarding the boundary conditions, we consider two cases: subsonic inlet
with supersonic outlet, or subsonic inlet with subsonic outlet. According to the
characteristic theory [35], for a subsonic inlet, two conditions must be imposed
between T , ρ and p; for a subsonic outlet, only one condition is necessary; and for
a supersonic outlet, no conditions are needed.

8.2.1 Calorically and thermally perfect gas

Regarding the ideal gas model calculations, since a maximum of two conditions are
necessary between T , ρ and p, Table 8.3 presents the case conditions for pressure
and temperature imposed in the calculations as Dirichlet boundary conditions,
following the same order as the legend in Figure 8.23.
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Case pL [MPa] TL [K] pR [Mpa] TR [K]
1 1.300 2500 1.1032 2500
2 1.300 2500 1.0254 2500
3 1.300 2500 0.9000 2500
4 1.300 2500 0.5000 2500
5 1.300 2500 0.1000 2500

Table 8.3: Test case with conditions for p and T on the left and right boundary.

(a) Pressure (b) Temperature

(c) Mac number

Figure 8.23: Ideal nozzle flow solutions

In Figure 8.23, the ideal solution is plotted as a blue solid line, along with the
five different test cases listed in Table 8.3, which were obtained by decreasing the
ratio pe

p0
, where pe represents the exit pressure and p0 represents the inlet pressure.

It is evident that cases 2 and 5 match the analytical solution perfectly; however,
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the other cases also follow the theoretical trend, exhibiting a shock wave that
originates in the divergent section to adapt the exit pressure to the imposed
value. In the plot legend, r represents the pressure ratio that results in a perfectly
adapted subsonic outlet, while rp denotes the ratio that achieves a perfectly adapted
supersonic outlet.

8.2.2 Non-ideal gas physical models
In this section, comparisons between the solutions of progressively more accu-
rate physical models are presented. The case used is case 4 in Table 8.3, which
corresponds to the case with the strongest shock in Figure 8.23.

(a) (b)

(c) (d)

Figure 8.24: Real nozzle flow solutions

The first comparison is made in Figure 8.24 between the solutions obtained for
an ideal gas, a non-calorically perfect gas (cp(T )), a chemically non-equilibrium
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gas, a thermodynamically non-equilibrium gas, and a model incorporating both
thermodynamic and chemical non-equilibrium.

Since in the thermodynamic non-equilibrium case the system is not character-
ized by a single temperature, the chemical rate-controlling temperature (which
corresponds to the unique temperature in equilibrium and is presented in Equation
3.13) is showed here. A detailed overview of the different vibrational temperatures
is provided in Figure 8.25.

It is evident that the position of the shock changes slightly due to the different
gas conditions resulting from the various models used. A significant difference is
shown in subfigure "d", where the specific heat at constant volume (cv) is displayed.
Given the temperature, all the models present a cv that is completely different
from that of the ideal case.

Two major distinctions can be made between the cases with chemical reactions
and those with thermodynamically non-equilibrium. The presence of chemical
reactions drastically decreases cv due to the formation of O, N and NO , which
are lighter and have different cv values. This behavior is more pronounced in
the case of chemical and thermodynamic non-equilibrium than in the case with
only chemical reactions, as shown in Figure 8.26 thermal non equilibrium strongly
enhance chemical reaction. This effect is due, in part, to a higher chemical-rate
controlling temperature.

In chemically reacting gases, the temperature is lower than in the non-calorically
perfect case because the chemical reactions considered are endothermic. When
thermal non-equilibrium is activated, the previous mechanism is mitigated by the
processes described in Section 8.1.6.

(a) thermo. non eq. only (b) chem. and therm. non eq.

Figure 8.25: Comparison of vibrational relaxation between frozen and non-
equilibrium chemistry cases
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Another important consideration can be highlighted with the comparison in Fig-
ure 8.25, which shows how, in the case of chemical non-equilibrium, the "relaxation
process is mitigated" compared to thermodynamic non-equilibrium. This mitigation
may be attributed to the chemical reactions, which absorb energy and result in a
less pronounced change in the translational-rotational temperature. Consequently,
the vibrational energies take less time to "relax".

(a) chem. non eq. only (b) chem. and therm. non eq.

Figure 8.26: Comparison of mass fractions between equilibrium and non-
equilibrium thermodynamics cases
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Chapter 9

UQ-T4 wind tunnel
simulation results

In this section, the HYQ1D code will be used to simulate various sections of the
UQ-T4 tunnel as well as the entire facility, comparing the results with the L1d
code results [34] and experimental measurements. The facility can be schematized
as shown in figure 9.10.

9.1 Shock Tube Only Test

In this section, we begin the analysis of the facility with a stand-alone shock tube
simulation, using the UQ-provided data as the initial condition, a Dirichlet boundary
condition on the left side, and a Wall boundary condition on the right, which
switches to a Neumann condition when the pressure exceeds the diaphragm burst
pressure. Various comparisons are presented using different models implemented in
the HYQ1D code.

9.1.1 Non-reactive Gas vs. Chemical Non-equilibrium

For the first comparison, shown in figure 9.1, we can see how the chemical model
drastically changes the results in terms of fluid dynamic variables for the tempera-
tures reached in the tube. Specifically, the temperature is much lower, in chemical
reactive case, because the reactions are endothermic. Therefore, it is crucial to
account for chemical reactions in the model.
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(a)

(b)

Figure 9.1: Non reactive gas vs chemical non equilibrium pressure and temperature
comparison

9.1.2 HYQ1D + PLATO Simulation: 5-Species Model vs.
11-Species Model

In this section, we present a comparison between the results obtained using a
chemical reaction model where the source terms are calculated with the PLATO
library. The comparison is made between a 5-species model (with no ionization
considered) and an 11-species model, which includes ions. This analysis aims to
determine whether the 5-species model is insufficiently accurate and if ionization
must be accounted for.
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(a)

(b)

(c)

Figure 9.2: Mass fractions, 5 species model
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(a)

(b)

(c)

Figure 9.3: Mass fractions, 11 species model, part 1
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(a)

(b)

(c)

Figure 9.4: Mass fractions, 11 species model, part 2
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In figure 9.2, the results for mass fractions in the 5-species model are presented,
and in figures 9.3 and 9.6, the results for the 11-species model are shown. It is clear
that the results are substantially the same, with the ions reaching the highest mass
fraction being NO+, which has a maximum mass fraction of 10−5—still very low.

9.1.3 HYQ1D vs. HYQ1D + PLATO

In this section, we compare the chemical non-equilibrium results obtained from the
5-species model in the self-implemented HYQ1D chemical model with the results
obtained by calculating the chemical source term using the PLATO library.

From figure 9.5, we can conclude that no substantial differences are noticeable in
the temperature and pressure contour plots. To better compare the two calculations,
the x-t plot was cut at t ≃ 0.007s, which is a time after the diaphragm burst when
the temperature is high enough to highlight any potential differences present in
the molar fraction plots.
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(a)

(b)

Figure 9.5: HYQ1D vs HYQ1D + PLATO, pressure and temperature comparison
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(a)

(b)

(c)

Figure 9.6: HYQ1D vs HYQ1D + PLATO, mass fraction comparison at t ≃ 0.007s
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In figure 9.6, the molar fractions are plotted at the time mentioned above. It
is evident that the two results are consistent with each other. We can highlight
a small difference in the plot where nitrogen atoms are present in the species. It
seems that the PLATO libraries overpredict the formation of NO compared to
the HYQ1D stand-alone model, while underpredicting N2 dissociation, leading to
differences in N and O2. This is probably due to more accurate chemical coefficients
used in the PLATO kinetic model. However, this leads to no substantial difference
in the temperature plot, which is one of the fluid dynamic variables most sensitive
to chemical phenomena.

9.2 Nozzle Only Test

In this section, we move forward in the UQ-T4 tunnel, analyzing the nozzle. The
nozzle shape shown in figure 9.7 was provided by the QU research group, which
works on the facility. Here, some comparisons are made between the various models
implemented in the code, as done in the previous section, including a comparison
with the data provided by QU.

Figure 9.7: UQ-T4 Nozzle geometry

9.2.1 HYQ1D + PLATO simulation, 5 species model vs.
11 species model

Here, a comparison was made using first a 5-species chemical model (without
ionization) and then an 11-species model (with ions). The PLATO libraries were
used to calculate the chemical source term in both cases.
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(a) (b)

(c) (d)

Figure 9.8: 5 species vs 11 species model comparison

In figure 9.8, the solution is plotted for pressure, temperature, velocity, and
mass fractions. The results from the two compared models are plotted alongside
the ideal nozzle solution and the data provided by UQ.

It is evident that the nozzle solution follows the expected trend of a subsonic
inlet and supersonic outlet in a convergent-divergent nozzle. The results differ
significantly from the ideal solution due to real gas effects, which are fundamental
at high temperatures. In the divergent part of the nozzle, it becomes clear that the
chemistry can be considered frozen due to the high Mach number of the flow. The
results from the two different mixtures are almost identical, with no substantial
differences, and both closely match the data provided by QU. Even better results
could likely be achieved by considering thermodynamic non-equilibrium as well.

9.2.2 HYQ1D vs. HYQ1D + PLATO
In this section, using a 5-species mixture, the results obtained with the stand-alone
HYQ1D chemistry are compared to those from a calculation where the chemical
source term is modeled using the PLATO libraries.
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(a) (b)

(c) (d)

Figure 9.9: HYQ1D vs HYQ1D + PLATO comparison

In figure 9.9, in addition to the general considerations made in the previous
section, we can observe that the two calculations follow the same trend, with
small differences, for example in the mass fractions, which are comparable to those
encountered in section 9.1.3. The stand-alone HYQ1D case shows better agreement
with the UQ-provided data, possibly because the PLATO library coefficients are
more accurate than those used in the UQ calculations. Probably, HYQ1D uses a
chemical model more similar to that employed in the UQ model.

9.3 UQ-T4 complete facility simulation
Here, the results and comparisons for the complete QU-T4 facility are presented,
representing the facility discretization as implemented in the code is presented in
Figure 9.10.

It is notable how from the logarithm (base 10) of pressure in Figure 9.12 and
9.11, all the peculiar characteristics of the QU-T4 functioning become apparent.
Taking into account the spatial distribution of the entire wind tunnel section, as
reported in Table 9.1, we can observe how the pressure differential across the piston
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Figure 9.10: Typical piston driven wind tunnel configuration.

I.C. : Yi [/] I.C. : p [kPa] I.C. : T [K] length [m] diameter [m]
Reservoir Air 5600 300 4.87 0.4414
Compression 0.9He-0.1Ar 115 300 26 0.229
Shok Tube Air 40 300 10 0.076
Nozzle Air 0.067 300 1 0.279

xposition [m] width [m] m [Kg] µ [/] pburst[MPa]
Piston 0.235 0.37 90.05 0.2
Diaphragm 1 26 60
Diaphragm 2 36 1

Table 9.1: UQ-T4 wind tunnel data [4]-[71]

(a) base 10 logarithm of pressure (b) temperature

Figure 9.11: x-t diagram showing wave phenomena for the data in table 9.1. Test
case without reactive chemistry model.

causes its movement and how this generates an expansion wave behind it and
a compression wave in front of it. These waves reflect on the left wall (for the
expansion wave) and on the first diaphragm (for the compression wave), and this
mechanism continues until the pressure becomes high enough to burst the first
diaphragm.

It is also notable that, at each area reduction—for example, from the reservoir
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(a) base 10 logarithm of pressure (b) temperature

Figure 9.12: x-t diagram showing wave phenomena for the data in table 9.1. Test
case with reactive chemistry model.

to the compression tube—there is a rapid expansion of the fluid, as expected. As
the piston approaches the first diaphragm, the fluid on its right side becomes
increasingly compressed, and at a certain point, the piston’s acceleration starts to
decrease, eventually becoming negative.

When the pressure is sufficient to burst the diaphragm, the piston is almost
stationary, experiencing high negative acceleration, which initiates a backward
motion. Once the diaphragm bursts, a shock wave appears at the interface between
the highly compressed gas in the compression tube and the gas in the shock tube.
This generates a very fast shock that reaches the second diaphragm in almost 2
ms, causing it to burst. The shock first reflects off the diaphragm, which instantly
ruptures due to the high fluid pressure, reaching its peak value, and initiating the
expansion into the convergent-divergent nozzle.

It is important to note an oscillation in the shock tube that begins after the
rupture of the first diaphragm and is convected forward until the reflected shock
clears it upon returning. This oscillation is likely the result of the instantaneous
contact between two completely different gases: the driver gas and the air filling
the shock tube. This issue appears to be a common problem, as it has been studied
in the literature, and a solution has been proposed using a modified form of the
AUSM solver [72, 73]. Implementing this solution will be the next step for the
HYQ1D code.

Looking at subfigure b in Figure 9.11 , it is evident that the temperature
resulting from the post-shock conditions in the shock tube massively triggers
chemical reactions, particularly when the shock impacts the second diaphragm,
so it is essential to consider the fluid chemical reactive (A comparison between
non reacting result and reacting fluid result could be done comparing, for example,
Figure 9.12 and Figure 9.11, results are substantially different from the shock tube
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and after).

(a) (b)

Figure 9.13: model comparisons with QU-T4 data

In Figure 9.13, a comparison is shown between the results obtained in this work
and those from the research code L1d [34] for the same test case.

On the left side, in subfigure a, overlaid on subfigure a of Figure 9.12 is the
piston midpoint trajectory calculated using the L1d code. The results from this
work seem to slightly anticipate the diaphragm burst compared to the Australian
ones, but overall, there is a good agreement and consistency between the two sets
of results.

On the right side, in subfigure b, a comparison of shock velocity is presented.
Using the first diaphragm rupture obtained in this work as a common reference
point, the position of the second diaphragm rupture is plotted on the x-t diagram
for two research codes, using different markers. In this way, the burst time of
the second diaphragm is directly related to the shock velocity. From the plotted
markers, we can observe that the result obtained in this work slightly delays the
second diaphragm rupture compared to the L1d code. This indicates that a slightly
lower shock velocity was predicted in this work. However, overall, the results appear
consistent with those from the previous comparison.

It is important to consider that the HYQ1D code is a quasi-one-dimensional
code, so it doesn’t account for 3D effects like separation and reattachment at abrupt
area changes in the facility. This leads to a systematic error in all the results, due
to the physics of the problem, which cannot be resolved by this approximation. In
this code, the area changes are smoothed to ensure stability and to qualitatively
mimic the fluid dynamic shape created by the recirculation bubbles that would
form in the 3D detached flow.
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DLR-HEG wind tunnel
simulation results

Here, the results and comparisons for the DLR-HEG facility are presented. The
facility was discretized in the same way as the QU-T4 facility, as illustrated in the
schematic in Figure 9.10. Regarding the reservoir, since the volume was known,
it was decided to discretize it as a cylinder preceding the compression tube, with
a length of 5 meters. The diameter was derived from this assumption and the
provided volume.

In this simulation, the nozzle was not considered due to insufficient data. The
remaining facility data are grouped in Table 10.1, with the black data taken from
the references cited in the table caption and the gray data being assumptions used
to run the test case.

I.C. : Yi [/] I.C. : p [kPa] I.C. : T [K] length [m] diameter/volume
Reservoir Air 5000 300 5 5 [m3]
Compression He 72.5 300 33 0.55 [m]
Shok Tube N2 23.8 300 17 0.15 [m]

xposition [m] m [Kg] pburst[MPa]
Piston 5 268
Diaphragm 1 38 49.3

Table 10.1: DLR-HEG wind tunnel data for shot51 [74, 75]

Here, we present only the results of the chemically reactive model because, as in
the previous case, the resulting temperature in the shock tube causes chemistry to
be massively triggered.

Figure 10.1 provides an overview of the wave phenomena. The physical descrip-
tion is qualitatively the same as that provided for the QU-T4 facility in section
9.
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Figure 10.1: x-t diagram showing wave phenomena for the data in table 10.1,
base 10 logarithm of pressure is shown. Test case with reactive chemistry model.

(a) (b)

Figure 10.2: model comparisons with DLR-HEG data

In Figure 10.2, two comparisons are made, as done for the QU-T4 facility in
Figure 9.13. All the data for the comparison are extrapolated from [74, 75]. The
first comparison, in subfigure a, focuses on the piston trajectory between the results
obtained in this study, two research codes (LC and PaCT ), and HEG measurements.
The plot clearly shows that the developed model produces results consistent with
the other methods used for comparison. Specifically, the results fall between those
of the two other codes and closely agree with the experimental measurements.

For the second comparison, in subfigure b, the results obtained in this work, the
LC results, and the experimental measurements for the shock front on an x-t plane
are shown. From this graph, we can see that the shock velocity predicted in this
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work is slightly closer to the experimental measurement than that predicted by the
LC code, though it remains faster than the experimental data. Further tuning of
the loss model may be required to improve the results. Overall, the results obtained
in this comparison are comparable to alternative code formulations and consistent
with them.
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Conclusion

The HYQ1D research code developed in this work includes a wide range of numer-
ical methods for time integration and spatial reconstruction, from first-order to
high-order methods. Additionally, various Riemann solvers are available for flux
evaluation. All the numerical methods were tested, and their solutions were verified
in section 8.1 using different tabulated 1D shock tube tests.

The area variation capabilities of the quasi-one-dimensional formulation were
verified in section 8.2, where the code was tested for convergence to the ideal nozzle
solution by varying the inlet/outlet pressure ratio. The chemical and thermal
non-equilibrium capabilities were also tested in this section, showing the expected
trends and results. The code was further extensively tested on the QU-T4 and
DLR-HEG facilities. Some tests on the former were performed using the chemical
non-equilibrium formulation and the PLATO library to calculate the chemical source
terms. The results showed good agreement, verifying the chemical non-equilibrium
capabilities in sections 9.1.3 and 9.9.

In conclusion, from the results reported in sections 9.3 and 10, an assessment
of the overall model’s accuracy and consistency was conducted. It was observed
that the overall results of the simulated facilities show good agreement with the
comparison data. Furthermore, when isolating the compression tube and focusing
on the free-piston behavior simulation, the comparison showed even better results.
The free-piston model developed in this work produced results comparable to
other models designed for the same purpose and closely matched experimental
measurements (section 10).

Therefore, we can conclude that the main objective of this work has been
achieved. The free-piston model developed, and the HYQ1D code in general, effec-
tively describe the physics of free-piston-driven hypersonic wind tunnels, showing
good agreement with experimental data and simulations from similar research
codes. However, further improvements could be made to the overall code, such as
incorporating the AUSM solver to avoid oscillations at the interface between gases
with completely different properties.
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