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Abstract
Fatigue life calculation is crucial for those structures that are applied into a
severe dynamic environment, also characterized by high level of randomness.
Some commercial software, as Ansys and Comsol, have already built-in tools
for random vibration fatigue calculation but Abaqus CAE does not. Hence, this
thesis fills this gap, developing a plug-in tool integrated into Abaqus CAE to
perform multi-axial fatigue analysis of metal components subjected to random
vibration loading.

Since this loading is characteristic of high cycle fatigue, first a random
stress analysis is perform in Abaqus CAE and then the tool is applied as a
post-processor. The literary review suggests some frequency domain methods
extremely more efficient compared to time-domain approaches. Thus, they are
implemented by Python scripting and incorporated into an Abaqus’s Graphic
User Interface.

The tool, which can be applied to study random vibration with Gaussian
distribution and zero mean, was first validated studying a simple L-plate. The
hotspot identification and the maximum damage accumulated were compared
against the results obtained with the commercial software Simulia Fe-Safe.
Then, a real application case was analyzed and the fatigue effect of the
background random vibrations were studied for a cable connectors bracket
mounted on a helicopter. Satisfying results were obtained for both cases and
they allowed to explore the accuracy and limitations of the tool developed.

Moreover, the study permitted to give some suggestion of future works
on this field which include non-isotropic materials, critical plane methods,
transient random vibration loading and non-Gaussian processes.

The tool showed promising results on the hot-spot identification and
damage calculation especially for in-phase loading. Hence, it can be an useful
tool for the analysis of random vibration fatigue in Abaqus CAE but further
improvements are required in case of out-of-phase loading.
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Sommario
Il calcolo della vita a fatica è cruciale per quelle struttire che si

trovano a operare in ambienti dinamici severi, sopprattutto se cratterizzati da
sollecitazioni casuali. Alcuni software commerciali, come Ansys e Comsol,
possiedono già dei specifici tool per il calcolo della vita a fatica dovuta alle
vibrazioni random. Tuttavia, Abaqus CAE ne è spovvisto. Questa tesi cerca
quindi di colmare questa mancanza, sviluppando un tool, integarto in Abaqus
CAE, che fornisca analisi a fatica multiassiali, per componenti metallici
soggetti a vibrazioni random. Questo tipo di sollecitazione è tipico della fatica
ad alto numero di cicli e quindi, inizialmente, un’ analisi degli stress random
viene eseguita in Abaqus CAE. Successivamente il tool viene utilizzato per
post-processare gli stress ricavati. L’analisi letteraria ha suggerito alcuni
metodi nel dominio delle frequenze necessari al calcolo del danno accumulato.
Questi metodi sono stati implementati nel tool per mezzo di codici Python e
poi incorporati all’interno dell’interfaccia grafica di Abaqus.

Il tool, applicato allo studio di vibrazioni random con distribuzione
gaussiana e media nulla, è statao inizialmente validato studuiando una pista
ad L. L’identificazione dell’ hot-spot ed il massimo danno accumulato sono
stati quindi confrontati con i risultati ottenuti tramite il software commerciale
Simulia Fe-Safe. In fine, un’applicazione reale è satata analizzata. In
particolare, gli effetti della fatica, dovuta alle vibrazini random di fondo, sono
stati studati per un supporto montato su un elicottero. Soddisfacenti risultati
sono stati ottenuti per entrambi i casi e hanno permesso quindi di studiare
l’accuratezza e le limitazioni del tool.

Lo studio ha permesso poi di fornire alcuni suggerimenti per lavori futuri
in questo campo. Questi spaziano dai materiali non isotropici ai metodi basati
sul piano critico oppure dalle vibrazioni random transitirie ai processi non
Gaussiani.

Per qaunto riguarda l’identificazione dell’ hot-spot ed il calcolo del danno,
il tool sviluppato ha mostrato risultati promettenti, specialmente nel caso
di sollecitazioni in fase. Si dimostra quindi essere uno strumento utile per
l’analisi della vita a fatica con l’impiego di Abaqus CAE. Tuttavia, esso
necessita di ulteriori miglioramenti per lo studio di sollecitazioni fuori fase.

Parole chiave
Abaqus, Fatica, Vibrazioni Random, Python, Metodi Spettrali
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Chapter 1

Introduction

Fatigue is one of the main criteria that engineers have to face when high
level of structural reliability has to be guarantee. In different fields of
engineering as aerospace, automotive, offshore, marine, wind or railway,
many components are subjected to complex fatigue loading during in-service
conditions. Examples can be the loads inducted by a rough road on vehicles
traveling at different speeds, the loads generated by the wind on wind turbines
due to meteorological variations, the loads experienced by aircraft due to jet
noise, the white noise on helicopters, or the wave loads in offshore platforms
under different sea states. Mostly when the environment excites the resonant
frequencies of the structure through a random input, the study of the dynamic
response of the structure becomes essential. Moreover, a good prediction on
the damage accumulation due to the environmental loading permits to detect
the weak spots and achieve a good structural reliability. For these reasons, the
random excitation could significantly decrease the life span of the structure
and hence is important to prevent possible catastrophic consequences. In order
to achieve a high level of structural confidence, fatigue life calculations must
be made at several stages, from the design to the development process, as
shown by figure 1.1. It is well known that fatigue test are exceptionally time
consuming and when it comes to random vibrations, the variable amplitude
and multiaxiality of the loading make them more complex. Thus, cumulative
damage calculations are helpful for structural integrity assessment of metallic
components, preventing unexpected failures and reducing the amount of test
needed.

Especially in the last decades, computer-aided design and analysis became
essential on the design of components in all the engineering fields. During
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Figure 1.1: Fatigue within the product development process

the years there has been an increasing growth in the use of advanced
simulation and calculation approaches using Finite Elements Analysis. So,
also fatigue damage calculations of structures subjected to random vibrations
are addressed trough Finite Element Method (FEM) analysis. In particular,
for linear systems, frequency domain approach are preferred to time domain
approach, when they deal with random vibrations, because they can shorten
the computation time considerably. Therefore, fatigue life calculation methods
based on frequency domain information of a random loading are now well
established and available in many commercial software as nCode DesignLife,
Simulia Fe-Safe, CAE fatigue, LS-DYNA, FEMFAT or Ansys Random
Vibration Fatigue.

Abaqus CAE is a well-known and largely used commercial software for
FEM Analysis, used by many industries. It permits numerous different types
of simulation and analysis, by incorporating also pre and post processing tools.
However, Abaqus CAE lack in the fatigue field and a tool for random vibration
fatigue is completely missing. However, it is sometimes preferred to other
software for its capability on supporting scripted operation and Graphical User
Interface (GUI) customization. For this reason, this thesis takes advantage of
this and it fills the gap on random vibration fatigue by developing a plug-
in tool in Abaqus CAE for multi-axial random fatigue analysis of metal
components. In particular, a python script has been written and used as kernel
for a custom application realised using the Abaqus’ Really Simple GUI (RSG)
dialog builder. It permitted to create a GUI dialog box connected to the script
which can be used as post-processing tool.

This research will delve into how fatigue due to multi-axial random
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vibrations can be treated and analysed on metal components, with main focus
on spectral methods. A literary review on research articles about spectral
methods for multi-axial random vibration fatigue and detailed documentation
of available software for random vibration analysis permitted to gain insight
about methods that are already well establish. The study allowed to understand
the methods suitable and consistent with the random vibration analysis in
Abaqus CAE. Once the tool has been developed and validated against the
Simulia Fe-Safe, a real component has been studied. The thesis will explain
the challenges to address the problem with an Abaqus CAE plug-in tool and
finally, it will give some insight on future works on this filed.

1.1 Context
Fatigue is a failure mechanism of particular interest in many fields of
engineering. It is unpredictable and can take place at stress levels significantly
below the ultimate strength of the material. Repetitive cycle loads move locally
the dislocations contained in the material which cause the formation and grow
of small fatigue cracks. The merging of these cracks leads to the fatigue
failure of the component. Thus, understand how the damage is accumulated
during the operational life of the structure is of primary importance to prevent
unexpected failure and guarantee sufficient structural reliability.

There are many different way to classify all the different type of loads that
engineering components experience during their life. Since this research deal
with random loading, a convenient way to classify a process is shown in Fig.
1.2.

Figure 1.2: Classification of deterministic and random processes [1]

This classification may appear quite general but actually, it differentiates
two completely different type of analysis. Deterministic loads are well known
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and defined, so they can be simulated in a model or replicated in a test.
Random processes, instead, are more easily defined in a statistical sense,
since the structure’s response can not be predicted in advance. Moreover, the
randomness is typical of the excitation, not of the structure which is known
and it is not subjected to random variations of its properties. Therefore, the
loading behaviour is more clearly defined through statistical parameters. This
changes substantially the prospective of analysis, through the introduction
of the probability theory. Hence, mathematical theory of random vibration
becomes essential to achieve realistic modeling of the structural dynamic.

Lifetime prediction and reliability assessment for engineering components
under in-service conditions, where the external load shows an invariably
irregular and random nature, are obviously a critical issue. A careful analysis
is inevitably needed in order to avoid unexpected failure during in-service
condition and to predict the lifetime. These goals can be achieved in different
ways. One way is by testing in a lab, replicating the loading by the use
of shakers. However, intensive test campaigns could be expensive and
time consuming, hence they are avoided or limited to validation/certification
purposes. A preferred way to study components subjected to random
vibration is by simulations. In particular, several commercial Computer-aided
Engineering (CAE) software are capable of handling random vibration fatigue
calculation. Through a finite element model of the structure it is possible
to calculate the dynamic response and considering the stress-life approach,
from the stress at each node it is possible to perform the fatigue analysis.
However, all of them can accomplish this analysis in two ways: the time
domain approach or the spectral method based on the Power Spectral Density
(PSD) of the load inputs, as shown in Fig. 1.3 and 1.4.

Even if the first one is the straightforward method that can be easily
implemented, the second one has demonstrated to have exceptional features
in terms of computational time, especially when it comes to complex models
with large number of elements. For this reason, spectral methods are widely
used by many industries to address the problem of random vibration fatigue
calculation.

Considering a linear response of the structure, if the load is random
also the stress response is random and hence the probability theory can be
used to estimate the fatigue damage accumulated in the component. This is
the principle underlying the spectral methods for random vibration fatigue.
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Figure 1.3:
Time domain
approach[2] Figure 1.4: Frequency domain approaches [2]

They use statistical parameters resulting from the stress PSDs to calculate the
probability distribution of the stress history. Even if in the case of narrow band
excitation, there is an exact formulation of the PSD proposed by Bendat [3].
In the case of wide-band excitation, an exact formulation of the Probability
Density Function (PDF) of the stress history does not exist and a wide range
of spectral methods can be found in literature. They differ in the correction
factor to the Bendat’s narrow-band PDFs of the stress history. Many other
empirical formulations of the PDF has been proposed by different authors
during the years [2]. The best results have been obtained by Dirlik and
Tovo-Benasciutti [4]. These two methods have demonstrated to reach better
results for both, narrow-band and broad-band excitation, compared to the
others methods. Thus, they are widely used in all commercial software that
use spectral methods. For this reason, this project will focus on these three
methods for the probability distribution of the stress history: Bendat, Dirlik
and Tovo-Benasciutti.

However, engineering components under in-service conditions often
experience complex multi-axial stress with random amplitudes. The project
wants to investigate, in particular, the effect of multi-axial random vibrations
and the methods described above are defined only for the uni-axial stress state
(one PSD not a matrix of PSDs and Cross-Spectral Densitys (CSDs)). Hence,
there is a need for some criteria to translate the multi-axial stress state to an
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equivalent uni-axial. In particular, two criteria have been implemented and
studied. The first was the Equivalent Von Mises proposed by Preumont [5] and
the second was the Equivalent Laimatre [6]. These two methods, developed
exactly to address this problem, are widely used due to the simplicity of
their formulation. In fact, a typical assumption for the PDF is that the stress
distribution has to be Gaussian. In the uni-axial case, this is achieved by
considering a Gaussian distributed random load and linear behaviour of the
structure. Consequently, both methods are based on a linear combination
of the stress PSD to maintain the propriety of Gaussian distribution also
on the equivalent PSD. Moreover, a third method based on stress-invariant,
called Projection by Projection [7], has been introduced. Instead of a linear
combination of the PSDs, it projects them into uncorrelated spaces, it uses the
uni-axial methods and then sum the effect of each projected stress.

In addition, a wide range of multi-axial criteria in the time-domain are
available in literature for fatigue life estimation. However, only a few of them
were specifically reformulated in the frequency-domain, due to the complexity
to translate them in statistical parameters based on spectral quantities. These
methods based on stress-invariant (e.g., Sines, Crossland, Matsubara) [8] [9]
[10] are substantially different from the others, since they do not require any
formulations of PDF of the stress history. Instead, the necessary statistical
parameters are directly formulated from the matrix of PSDs.

Fatigue strength assessment in metallic structures can be carried out with
reference to infinite life (fatigue limit) or finite life (fatigue strength as a
function of the number of loading cycles, and S-N curves described by either
Basquin equation in the High-Cycle Fatigue (HCF)) [11]. This is the main
difference between the two categories of methods developed. The firsts, which
make use of PDFs, are finite life criteria and belong to the damage tolerant
fatigue philosophy. The second type, instead, are infinite life criteria and
belong to the safe life fatigue philosophy. The firsts are used to determine the
life of the components, so they assumes that the stress levels experienced by the
structure can be above the Fatigue limit. The seconds are used to understand
how far (below) the stress levels are from the fatigue limit.

Many commercial software adopt also critical plane criteria suitable for
multi-axial random vibration to determine the equivalent uni-axial PSD. In
particular two methods have been studied, the Matake [9] criteria for the
infinite life and the Carpinteri-Sapgnoli [12] for the finite life. However, they
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are known to be computationally expensive, hence their implementation will
be left as future work and they will be only presented for completeness.

With regard to finite life approach, in other to reduce the complexity of
the study, it was adopted the linear damage rule (Miner’s rule) and the S-
N curve of the material is represented by the Basquin equation. In order to
consider also stress levels under the fatigue limit, which can contribute to the
propagation of the crack, an extended 2-slope S-N curve following the Haibach
criteria [13] was adopted as suggested by recommendations [14] Moreover,
the standardized test used to determine the Basquin constants representing the
Wöhler curve of the material are uni-axial and usually they are characterized
by only axial or only torsional stress. To consider the coupling between the
two stress, the modified S-N curve following the Susmel [15] model has been
implemented.

A simple L-plate subjected to random vibration, found on literature, was
used to validated of the different criteria against the results obtained by the
commercial software Fe-Safe. Moreover, It permitted to compare the different
methods in terms of hot-spot identification and in terms of accuracy. Then the
Projection by Projection method and the Crossland method have been chosen
to study the damage on a bracket mounted on a helicopter and subjected to
the background random vibrations. The vibration spectrum in a helicopter
is characterized by the combination of a random low-level background and
strong peaks superimposed representing the rotors harmonics and hence, for
this reason, it is usually called Sine-on-Random spectrum. Thus, the damage
caused on the bracket by the random variation is analyzed considering the
acceleration PSD defined by the standard MIL-STD-810F [16].

Finally, the usage of the RSG dialog builder to create the plug-in developed
as post-processor to Abaqus CAE is discussed and the developed GUI dialog
box is presented. In particular, Python codes are used to integrate and develop
the methods into the plug-in tool in Abaqus CAE. Thus, a GUI into Abaqus
CAE which performs mutli-axial random vibration analysis was created.

1.2 Purpose and Goals
The main focus of the thesis is on spectral methods for random vibration
fatigue of metal structures. As mentioned previously, Abaqus CAE can handle
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a lot of simulations and is largely used by many industries. Unfortunately, it
lack in a fatigue calculation tool and especially for random vibration loading.
However, it permits to address random analysis and to calculate the resulting
stress PSDs, hence a plug-in tool that works as post-processor seems to be a
valid option to fill this gap. Therefore, the purpose of the thesis is to develop
a plug-in tool for Abaqus CAE which calculates the damage, and hence the
fatigue life, of components subjected to multi-axial random vibration, by
using the frequency-domain approach. The aim of the tool is to handle the
calculation totally on Abaqus CAE, without the need of other software, which
may involve problem in the files compatibility or the need of other licenses.

The goal of developing a plug-in tool for random vibration fatigue in
Abaqus CAE has been divided into the following four sub-goals:

1. Overview on random processes and structural dynamics for random
vibration

2. Overview on existing multi-axial criteria in frequency domain for
fatigue purposes

3. Development of the tool by Python scripting and validation against Fe-
Safe results

4. Study of a real application

Through these goals, the thesis aims to achieve an appropriate knowledge
on random loading in the field of structural dynamics. Moreover, it has the
purpose to delve into suitable multi-axial fatigue criteria and spectral methods.
Finally, it will explore the possibility of fulfill the gap of Abaqus CAE in
fatigue simulation by Python scripting and it will discuss the manage of large
database of results created by Abaqus CAE.

1.3 Delimitations
Some simplifications are needed in order to reduce the complexity of the
problem. These assumptions limit the project and mainly can affect the
result of the study. In particular, the structure is considered to have a
linear behaviour (small deformations) and the material is considered isotropic
and homogeneous. In order to consider only the HCF region and adopt
the stress-life approach, the loading is considered relatively small and not
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reaching the yield stress of the material. Effects of temperature, corrosion,
inclusions or defects are neglect, as the surface roughness is not taken into
account. Notch factors, stress concentration factors and critical distance are
not considered in this study. As well as fracture mechanics is not considered.
Most of the existing spectral methods assume, as a simplifying hypothesis,
that the design random loadings are Gaussian, hence, also this study is
limited to random stationary ergodic processes with zero mean and Gaussian
distribution. Hence, mid stress correction are not considered. Moreover,
only equivalent uni-axial stress and stress-invariant criteria are implemented.
The critical-plane criteria are presented but not developed, due to the long
computational time that they require.

1.4 Structure of the thesis
Chapter 2 presents relevant analytical information about Random Vibration
Fatigue using spectral methods. The chapter is divided into different sections.
Firstly, the random processes and their statistical proprieties will be treated,
then the FEM modal analysis and its application simulate the dynamic
response of the structure subjected to random vibrations will be discussed
in 2.2. The different multi-axial criteria for fatigue assessment adopted will
be presented in section 2.3. The section 2.4 will treat the PDFs and their
connection to the rain-flow counting method in the time domain. Finally, a
section 2.5 is dedicated to the material properties definition and in particular
to the S-N curve necessary for the fatigue calculation.
Chapter 3 presents the method used to develop the plug-in in Abaqus CAE.
In particular, an overview on Abaqus CAE is reported in 3.1. Section 3.2 is
dedicated to the study of random vibration fatigue with Fe-Safe and section 3.3
presents the development of the fatigue tool, focusing on the python scripting
and the data handling.
Chapter 4 will present the two case studies used to validate the tool. The first
one, in section 4.1, is L-plate which is described and analyzed with all the
methods integrated. Then, in section 4.2, a real application of the plug-in is
studied and a bracket is presented and analysed considering the Projection by
Projection and the Crossland methods.
Chapter 5 presents a comparison between the fatigue calculation obtained with
the fatigue tool in Abaqus CAE and the results obtained with Fe-Safe. In
particular, the section 5.1.1 concerns the L-plate of the first case study and
section 5.1.2 concerns the bracket.
Finally, the last chapter 6 will present some conclusion on the results obtained
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with the tool and its application in section 6.1. Some further comments are
presented in section 6.2 which contains some suggestion for future works on
this field.
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Chapter 2

Background

This chapter intends to give some insight on the basic knowledge necessary to
understand the work done more easily. It will present the main topics treated
by the project. In particular, it will cover the properties of random processes
and their statistical features. It will go through the FEM modeling for random
vibrations with a focus on modal superposition method. Then, the properties
of the fatigue criteria implemented will be presented. A special section
is dedicated to the rain-flow counting methods and the PDF. Finally, the
material properties will be described in terms of fatigue behaviours necessary
to address the random vibration fatigue calculation.

2.1 Random processes
A random variable is defined as a quantity whose instantaneous value cannot
be predicted. The first mathematical analysis of random vibrations was carried
out by A.Einstein studying the Brownian movement [17] in 1905 but only the
works of S.O. Rice [18], in the 1940s, founded the basis for many studies in
different fields of engineering.

The aim of a random process analysis is to define the probability of finding
certain events within the process signal itself. These events are, for examples,
peak values or the time that the signal exceeds a defined value.

By considering Fig. 2.1, the probability that the function l is in the interval
∆l is expressed mathematically as:

Prob[l < l(t) < ∆l] =
∑
i

ti
T

= p(l)∆l (2.1)
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Figure 2.1: Sample of random process [19]

Where, if ∆l is sufficiently small, the PDF p(·) is defined by:

p(l) = lim
∆l→ 0

[
lim
T→∞

(
1

T

∑
ti

∆l

)]
(2.2)

The majority of random vibrations encountered in the real environments,
thanks to the central limit theorem, can be represented by the Gaussian law.
The Rayleigh law, instead, is used especially to represent the properties of a
narrow-band Gaussian process. These two PDFs, largely deployed to study
random vibrations, are reported in the ”supporting material” chapter A.1.

In general, vibrations are oscillations of the mechanical system around
its equilibrium position. Since the arithmetic mean does not carry many
information, the mean value of the absolute value of the signal (Eq. 2.3) and
the Root Mean Squared (RMS) value (Eq. 2.4, where l2(t) is defined in Eq.
A.6) are preferred.

|l(t)| = 1

T

∫ T

0

|l(t)| dt (2.3)

lrms =

√
l2(t) (2.4)

The project deals with vibratory signals with zero mean called centered
which is a typical feature in measured vibrations. This condition can be
verified by comparing the standard deviation and the RMS of the signal.
In case of centered vibrations, they should be the same. The RMS is the
simplest statistical property to obtain and it provides useful insight on the
global severity of the vibration. However, it is not enough since it does not
indicate the energy distribution over the frequency domain. To overcome this,
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it is possible to look at centered moments of order n as defined by Eq. 2.5

µn = E[l(t)− l(t)]n = lim
T→∞

1

2T

∫ T

−T

[l(t)− l(t)]n dt (2.5)

In particular, the centered moment of order 2 is the variance, denoted by
s2l and defined by Eq. 2.6

s2l = E[(l − l)n] = l2(t)− l(t)
2

(2.6)

where sl is called the standard deviation. The centered moment of order
3, denoted by µ3, can be reduced by division by s3l defining µ′

3 as Eq. 2.7

µ′
3 =

E{[l(t)− l(t)]3}
s3l

(2.7)

µ′
3 is a measure of the symmetry of the probability density law p(l) with

regard to the mean l(t) and for this it is called skewness. As shown by Fig.
2.2, a Gaussian process has µ′

3 = 0. Instead, the curve presents a peak towards
the left if for µ′

3 < 0 and for µ′
3 > 0 , the peak of the curve is shifted towards

the right.

Figure 2.2: Probability densities with non-zero skewness [19]

The same can be done for the moment of order 4, defining the kurtosis by
Eq. 2.8.

µ′
4 =

E{[l(t)− l(t)]4}
s4l

(2.8)

In particular, the kurtosis permits to determine the flatness of the PDF and
measures the relevance of the distribution of values. µ′

4 = 3 is characteristic
of a normal process, µ′

4 < 3 characterizes a truncated signal or existence of a
sinusoidal component and µ′

4 > 3 defines the presence of peaks of high value
as shown by Fig. 2.3

Therefore, the skewness equals to zero and the kurtosis equals to three
permit to verifying that the signal follows a Gaussian value distribution.
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Figure 2.3: Kurtosis influence on probability density [19]

A strong variation of these parameters enables to detect the presence of
mechanical shocks or signal problems and in particular, kurtosis is very
sensitive to “abnormal” signal values.

Another fundamental parameter for random signals is the correlation. It
is a measure of the degree of similarity between two functions of the same
parameter, time generally. In the ”supporting material” chapter A.2 the auto-
correlation functionRl(τ) and cross-correlation functionRlu(τ) are defined in
the time domain. The following Fig. 2.4 shows some examples of signals and
their auto-correlation functions. As can be seen, ifRl(τ) tends slowly towards
zero, the changes in the random function are very slow and it might does not
converge at all as for the sinusoidal signal. Thus, Rl(τ) is a measurement of
the degree of randomness of the process.

Figure 2.4: Examples of autocorrelation functions [19]

Consequently, a random phenomenon is defined stationary if every
moment of all orders and all the correlations are invariable with time t. The
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benefit of this feature is that it is not necessary to record the signals for a long
period of time but, however, it must be long enough to subsequently enable a
significant frequency analysis.

A process is defined as ergodic if all the temporal averages exist and
have the same value as the corresponding ensemble averages calculated at an
arbitrary given moment. An ergodic process is thus necessarily stationary.
Typically, only few records are available from real tests and thus the temporal
averages are calculated with the assumption that the process is stationary
and ergodic. This makes it possible to perform the frequency analysis of a
short sample chosen over one signal record. Then, the statistical properties
are extended to the entire ensemble. A necessary and sufficient condition
such that a stationary random vibration l(t) is ergodic is that its correlation
function satisfies the condition in the following Eq. 2.9 where Rl(τ) is the
auto-correlation function calculated from the centered variable l(t)−m.

lim
T→∞

1

T

∫ T

0

(
1− τ

T

)
Rl(τ) dτ = 0 (2.9)

Stationarity and ergodicity should be checked before any analysis by
verifying that, in the time sample considered, the RMS value calculated using
a sliding mean varies little as a function of time. Anyway, due to experimental
records deficiency or to save time, these assumptions usually are made without
checking. However, the decision of the analysis method to use (frequency or
time domain) is based on the stationary or non-stationary behaviour of the
process and in particular, the calculation of the PSD only has meaning if the
signal is stationary. For example, as reported by [19], if several instrumented
flights are carried out, probably not the same RMS value will be obtained
for each sequence. All the conditions would have to be perfectly the same in
order for the process to be ergodic. In practice, the RMS value over the time
is evaluated for each record, as well as the skewness and kurtosis. By looking
at the first one, it is possible to define the temporal ranges in which the RMS
value does not change much and hence, where the process can be considered as
stationary. Each signal is then separated into sections representing a specific
phase of the flight, generating a particular vibratory environment and with
common characteristics from one flight to another. However, the RMS value
of these phases is often different from one flight to another (slightly different
weather conditions, etc.) and this represents the non-ergodicity of the process.
This variation can be considered: (i) by calculating the statistical PSD; (ii) by
applying an uncertainty’s coefficient.
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2.1.1 Random Vibration Properties in the Frequency
Domain

Fig. 2.5 shows an example of sine signal with constant amplitude and
frequency. How can be seen, all the properties of the signal in terms of peak
amplitude, number of cycle, zero cross, etc., result easy to determine for this
type of signal.

Figure 2.5: Example of Sine signal at 3 Hz

However, it can be more complex when the signal is composed by the
sum of more signals. As, for example, shown by Fig. 2.6 which shows the
signal resulting from the sum of two sine waves, one at 5 Hz and one at 3 Hz,
characterized by the same amplitude. The first one considers in-phase signals
and in the second one a delay of 45◦ is applied.

Figure 2.6: Examples of sum of Sine signals at 3 Hz and 5 Hz. First one with
in-phase signals and second one with 45◦ of phase shift
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Moreover, the calculation of the signal feature could be even more complex
in the case of random signal as in Fig. 2.7. In fact, all the periodic properties
are lost in this case and hence, studying the process by means of the frequency
domain and statistical properties is a convenient way, widely used, to address
this problem.

Figure 2.7: Example of random signal

The definition of PSDs and their properties provide a powerful tool to
enable the description of random vibrations and have many applications. In
this study, their use mainly concerns the definition of the excitation and the
calculation the statistical properties of the vibrations.

The Fourier transform of a non-periodic l(t) signal, having a finite total
energy,is given by the relationship Eq.2.10:

L(Ω) =

∫ ∞

−∞
l(t)e−iΩt dt (2.10)

It is a complex quantity, hence, in order to represent it graphically, it
is necessary to plot: (i) either the real and the imaginary part versus the
frequency; (ii) the amplitude and the phase versus the frequency. The
curve thus obtained is called the Fourier spectrum. In an indirect way, the
Fourier transform is thus used very often in the analysis of random vibrations.
However, the random signals are not of finite energy and hence, only the
Fourier transform of a sample of signal of duration T can be calculated by
assuming that this sample is representative of the whole phenomenon. Starting
from L(Ω), it is possible to return to the time domain signal by using the
inverse transform Eq. 2.11 .

l(t) =
1

2π

∫ ∞

−∞
L(Ω)eiΩt dΩ (2.11)
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The idea behind the PSD is to proceed with an average of the squares of the
amplitudes of Fourier transforms calculated for several signal samples. As said
before, the RMS value is often used as a severity criterion of the vibrations but
it has the disadvantage that it does not give any information of the distribution
over the frequencies, which is nevertheless very important. A solution to this
was proposed by Weiner: filtering the signal l(t) using a series of rectangular
filters of central frequency f and bandwidth∆f and calculating the RMS value
Lrms of the signal collected at the output of each filter. The curve obtained
represents Lrms with respect to f which is a description of the spectrum of
signal l(t) but the problem is that the spectrum so defined is not unique. In
fact, depending on the width ∆f the result will be different. Thus, to solve
this problem, the variations of L2

rms

∆f
with f is considered instead.

From the definition of the mean power of an excitation in vibration
mechanics reported in the ”supporting material” chapter A.3, according to
Parseval’s equality and with the Fourier transform it yields to:

Pm = lim
T→∞

2

T

∫ +∞

0

|LT (f)|2 df (2.12)

The above Eq. 2.12 gives the mean power contained in l(t) when all the
frequencies are considered. Considering a linear system and following the
equations reported in chapter A.3, the PSD is hence defined as the quantity
G(f) = lim∆f→∞

P (f,∆f)
∆f

.

The PSD G(f) can be written by Eq. 2.13 where lT (t,∆f) is the part of
the signal ranging between the frequencies f −∆f/2 and f +∆f/2.

G(f) = lim
∆f→0 T→∞

1

T∆f

∫ T

0

l2T (t,∆f) dt (2.13)

The function G(f) is always positive or zero whatever the frequency f .
The PSD defined by Eq. 2.13 ranges frequencies between 0 and ∞, which is
the practical case. Anyway, the most general definition is S(f) between −∞
and +∞ with S(−f) = S(f). The following Eq. 2.14 shows the relations
between these various definitions and it turns out that G(f) = 2S(f) and
G(f) = 2πGΩ(Ω):
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l2rms =

∫ +∞

−∞
S(f) df =

∫ +∞

0

G(f) df =

∫ +∞

0

GΩ(Ω) dΩ =

∫ +∞

−∞
SΩ(Ω) dΩ

(2.14)
The PSD of a vibration signal has for dimension the square of an

acceleration divided by a frequency, so it is expressed in (m/s2)2/Hz or in
g2/Hz. However, not only the Weiner method exist to address the definition of
the PSD of a stationary and ergodic process. The Shannon’s theorem helps to
determine the minimum sampling frequency to correctly represent the signal.
In fact, if the higher frequency is fmax Hz, the signal is completely determined
by its values at a series of points spaced 1

2fmax
seconds apart. This criteria is

sufficient to correctly calculate the RMS value of the signal and its PSD where
fNyquist = fsamp./2 is called Nyquist frequency. Three methods are mainly
used to calculate a PSD: (i) by using the auto-correlation function; (ii) by
signal filtering with ∆f wide filters and calculation of the RMS value of the
filtered signals as defined by Weiner; (iii) by using the Fourier transforms,
which is the most widely used method.

(i) The first method make use of the auto-correlation function. The PSD
is calculated by evaluating the correlation in the time domain and by carrying
out a Fourier transformation (Wiener-Khintchine method) Eq. 2.15

G(τ) = 4

∫ +∞

0

R(f)cos(2πfτ) df (2.15)

(ii) In the second method the the PSD is determined from the RMS value
of a filtered signal. Theoretical relation reported in the ”supporting material”
chapter ?? which assumes an infinite duration T and a zero analysis bandwidth
∆f , is replaced by the approximate relation 2.16 where l2∆f is the mean square
value of the sample of finite duration T , calculated at the output of a filter of
central frequency f and non-zero width ∆f

G(τ) =
1

T∆f

∫ T

0

R(f)l2∆f (f, t) dt =
l2∆f

∆f
(2.16)

(iii) The third method carries out the calculation of PSD starting from the
Fourier transform and considering the expressions above, it leads to Eq. 2.17:

Gll(f) = lim
T→∞

2

T
E[|L(f, T )|2] (2.17)
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Considering that the discrete Fourier Transform (FT) can be written as
L(m,T ) = T

N

∑N−1
j=0 lj exp(−i

2πjm
N

), hence the PSD becomes as stated in
Eq. 2.18 where 0 < m < M and lj = jδt

G(m,∆f) =
2

N
|
N−1∑
j=0

lj exp(−i
2πjm

N
) |2 (2.18)

Eq. 2.13 theoretically defines the PSD which is the method use for analog
calculations. However, in practice, this relation cannot be respected exactly
since the calculation ofG(f) would require an infinite integration time and an
infinitely narrow bandwidth. Thus, the PSD is ususally defined in a Fourier
series G(f) = limT→∞

a2i
2∆f

. The PSD expression of a signal l1 is hence
written as Eq. 2.19

Gl1l1(f) = lim
T→∞

2|L1(f)|2

T
= lim

T→∞

2L∗
1(f)L1(f)

T
(2.19)

Gl1l1(f) is called the Auto-Spectral Density (ASD) and L∗
1(f) is the

complex conjugate ofL1(f), the FT of l1. Similarly, the CSD of two vibrations
l1(t) and l2(t) is defined as the products L∗

1(f)L2(f), where L1 and L2 are the
FTs of l1(t) and l2(t) calculated between 0 and T over K blocks of points of
the two signals and thus by Eq. 2.20:

Gl1l2(f) = lim
T→∞

2L∗
1(f)L2(f)

T
(2.20)

Some examples of ASD and CSD of the singlas in Fig. 2.5, 2.6 and 2.7
are reported in the following Fig. 2.8

Differently from the ASD, which has real values, the CSD is a complex
quantity. As stated before, considering a stationary and ergodic random
process, the PSD can be determined from several samples of only one record.
A sample of this signal of duration T will be denoted by ilT (t) and its FT
iLT (f) Its PSD is iGT (f) =

2|iLT (f)|2
T

. By definition, the PSD of the random
process is, over time T , equal to Eq. 2.21

GT (f) =

∑n
i=1

iGT (f)

n
(2.21)

n being the number of functions il(t), for T infinite, G(f) =

limT→∞GT (f)
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(a) Example of PSD of sine signal in Fig.
2.5

(b) Example of PSD of the first signal in
Fig. 2.6

(c) Example of PSD of the first signal in
Fig. 2.7

(d) Example of amplitude CSD of the two
signals in Fig. 2.7

(e) Example of amplitude CSD of the sine
signal in Fig. 2.5 and the white noise in
Fig. 2.7

Figure 2.8: Examples of PSD and CSD of the signals in Fig. 2.5, 2.6 and 2.7

In particular, the response of a linear system is itself stationary and ergodic
if the excitation is itself a random stationary ergodic process. The “Wiener-
Khinchine relations” define the connection between the PSD and correlation
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function of a process and are reported in the ”supporting material” chapter
A.4. With these assumptions and relations, it is possible to obtain the PSD of
the response as Eq. 2.22:

Gu(f) = H∗(f)H(f)Gl(f) = |H(f)|2Gl(f) (2.22)

The same procedure is also applied to the cross-spectral densities CSDs.
This method is a useful tool applied to measure the Transfer Function (TF)
H(f) of a structure excited by random vibration. By applying a white noise
excitation of duration T to the component and measuring the response at a
point it is possible to determine the TF defined by the term to term ratio of
the input and output coefficients of the Fourier series. In chapter A.5, three
different definition of the TF are presented with different applications.

Finally, the FT method is the most used to determine the PSDs. In 1965,
J.W. Cooley and J. Tukey [20] developed a method called the Fast Fourier
Transform (FFT), making it possible to reduce considerably the calculation
time of the FT. Calculations of PSD are done today primarily using the FFT.

2.1.2 Statistical properties of random process
The works of S.O. Rice [18] and of S.H. Crandall founded the basis for
the analysis of the statistical properties of a random signal l(t). A broad-
band process is a random stationary process whose PSD G(f) has significant
values in a frequency band. A uniform PSD G(f) = G0 representing the
wide-band process is specifically called white noise and it assumes to have
a uniform density over all frequencies. However, it is a theoretical concept,
physically unrealizable (area under the curve would be infinite and hence
infinite RMS value). Furthermore, a model widely used in the calculations are
the band-limited white noises spectra which approximate many natural random
processes. A narrow-band process, instead, is a random stationary process
whose PSD has significant values only in one frequency band. In this case,
the signal has a function of time l(t) similar to a sine function of frequency
f0 , with amplitude and phase varying randomly. Anyway, this second type
of vibratory signals are characterized by only one peak between two zero
crossings. The distribution of the instantaneous values for the majority of
random vibrations encountered in the real environment can be represented by
the Gaussian law. With the assumption of Gaussian process, it is possible to
calculate fromG(f)many statistical properties using the theory of probability.
Defined ta the time spent in the interval da, between a and a+dawith l̇(t) = b
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is: p(a,b)dadb
ta

=| b | p(a, b)da. The average total number of crossings of the
threshold a, per unit time, for all the possible values of l̇(t) is written by Eq.
2.23 called ”Rice formula”, where n+

a =|
∫ +∞
0

p(l, l̇), dlḋl |l=a

na =

∫ +∞

−∞
| b | p(a, b) db = 2n+

a (2.23)

The only assumption made is of stationary process. Obviously for a =

0 n0 = 2n+
0 =

∫ +∞
−∞ | b | p(a, b) db In the case of Gaussian distributed

acceleration (0, lrms ), the parameters are defined by Eq. 2.24 and 2.25:

na =
1

π

l̇rms

lrms

e
− a2

2l2rms (2.24)

n0 =
1

π

l̇rms

lrms

(2.25)

Since l2rms =
∫ +∞
0

G(Ω), dΩ = R(0) and l̇2rms =
∫ +∞
0

Ω2G(Ω), dΩ =

−R′′(0)[−R2(0)] this results in Eq. 2.26

na = 2n+
a =

1

π

[∫ +∞
0

Ω2G(Ω), dΩ∫ +∞
0

G(Ω), dΩ

] 1
2

e
− a2

2l2rms (2.26)

Instead, the quantity n+
0 is the expected frequency i.e., the frequency at

which energy is most concentrated in the spectrum.

n0 = 2n+
0 = 2

[∫ +∞
0

f 2G(f), df∫ +∞
0

G(f), df

] 1
2

(2.27)

Threshold level crossing curves give, depending on the threshold a, the
number of crossings of this threshold with positive slope. These curves can
be plotted:(i) either from the time history signal by effective counting of the
crossings with positive slope over a duration T . For a given signal, the result
is deterministic;(ii) or from the PSD of the vibration, by supposing that the
distribution of the instantaneous values of the signal follows a Gaussian law
with zero mean. The expected value of the number of threshold crossings a
over the duration T is hence determined by Eq. 2.28.

N+
a = n+

a T = n+
0 Te

− a2

2l2rms (2.28)



24 | Background

The knowledge ofG(f)makes it possible to calculate n+
0 and lrms and then

to plot N+
a as a function of the threshold value a. In practice, a is generally

represented with respect to N+
a . For N+

a = 1 a0 is, on average, the strongest
value of the signal observed over a duration T is Eq. 2.29

n0 = lrms

√
2ln(n+

0 )T (2.29)

As demonstrated, many important statistical properties of the signal
considered, either excitation or response, can be obtained directly from the
PSD G(Ω) and in particular the from their spectral moments. Defined the
random signal l(t) , the moment of order n is the quantity determined by Eq.
2.30

Mn = E

{[
dn/2l(t)

dtn/2

]2}
= lim

T→∞

1

2T

∫ +T

−T

[
dn/2l(t)

dtn/2

]2
dt (2.30)

The moment of order zero is the square of the RMS value lrms Eq. 2.31
and 2.32

M0 = E[l(t)2] = lim
T→∞

1

2T

∫ +T

−T

l(t)2 dt = l(t)2 = l2rms (2.31)

M0 = R(0) =

∫ ∞

0

G(Ω) dΩ =

∫ ∞

0

G(f) df (2.32)

The moment of order two is equal to Eq. 2.33 and 2.34

M2 = E

[
(
dl

dt
)2
]
= lim

T→∞

1

2T

∫ +T

−T

l(t)2 dt = l̇(t)2 (2.33)

M2 = −R̈(0) =
∫ ∞

0

Ω2G(Ω) dΩ = (2π)2
∫ ∞

0

f 2G(f) df = l̇2rms (2.34)

Moreover, the moment of order four is equal to Eq. 2.35

M4 = R(4)(0) =

∫ ∞

0

Ω4G(Ω) dΩ = (2π)4
∫ ∞

0

f 4G(f) df = l̈2rms (2.35)

More generally, the nth moment can be defined as Eq. 2.36 where Mn are the
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moments of the PSD G(Ω).

Mn =

∫ ∞

0

ΩnG(Ω) dΩ = (2π)n
∫ ∞

0

fnG(f) df = l̈2rms (2.36)

Finally, can be easily derived from the preceding relations that:

n+
0 =

1

2π
(
M2

M0

)
1
2 (2.37)

n+
a = n+

0 e
− a2

2M0 (2.38)

However, some authors defineMn =
∫∞
0
fnG(f) df which leads to n+

0 =

(M2

M0
)
1
2

To calculate the fatigue damage, it is extremely useful to know also the
vibration’s average number of peaks per unit time, occurring between two
close levels a and a + da, as well as the average total number of peaks per
unit time. Considering that the average number of minima per unit time of
a Gaussian random signal is equal to the average number the maxima per
unit time, the distributions of the minima and maxima being symmetric. A
maximum occurs when the velocity (derivative of the signal) cancels out with
negative acceleration (second derivative of signal). This remark permits to
consider the joint probability density between the processes l(t), l̇(t), l̈(t) to
describe the verage number of peaks per unit time of l(t). The assumption is
that l(t) is derivable twice.

S.O. Rice [18] showed that, if p(a, b, c), is the probability density so that
l(t), l̇(t), l̈(t) respectively lie between a and a+ da, b and b+ db, c and c+ dc,
the average number the maxima located between levels a and a + da in the
time interval t, t+ dt is Eq. 2.39:

νa = −dtda
∫ 0

−∞
cp(a, 0, c) dc (2.39)

where, for a Gaussian signal as well as for its first and second derivatives

p(a, 0, c) = (2π)−3/2 |M |−1/2 e−
µ11a

2+µ33c
2+2µ13ac

2|M| and with

∥M ∥=

∥∥∥∥∥∥
l2rms 0 −l̇2rms

0 l̇2rms 0

−l̇2rms 0 l̈2rms

∥∥∥∥∥∥ (2.40)
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where l2rms =M0, l̇2rms =M2 and l̈2rms =M4. The determinant |M | (alaways
positive) is written as Eq, 2.41

|M |=M0M2M4(1− r2) (2.41)

where r is an important parameter called the irregularity factor and determined
by Eq. 2.42

r =
l̇2rms

lrmsl̈rms

=
M2√
M0M4

(2.42)

The irregularity factor can vary in the interval [0, 1] according to Cauchy-
Schwarz’s inequality. It follows that, the average number of maxima per
second is defined as νa = n+

p q(a)dadt and n+
p can be also written:

n+
p =

1

2π

√
M4

M2

(2.43)

The probability density of maxima per unit time of a Gaussian signal whose
amplitude lies between a and a+ da is thus :

q(a) =

√
1− r2

lrms

√
2π
e
− a2

2l2rms(1−r2) +
ra

2l2rms

[1 + erf(
ar

lrms

√
2(1− r2)

)] (2.44)

where erf(·) is the error function. The statistical distribution of the minima
follows the same law. The probability density q(a) is thus the weighted sum
of a Gaussian law and Rayleigh’s law, with coefficient functions of parameter
r.

The irregularity factor r is defined as the ratio between the average number
of zero crossings per unit time with positive slope and the average number of
positive and negative maxima per unit time: r = M2√

M0M4
=

n+
0

n+
p

The parameter
r helps to measure of the width of the noise. In fact, for a broadband process,
the number of maxima is much higher than the number of zeros and in this
case r = 0. For broadband process, the probability density of the peaks then
tends towards to a Gaussian law. When the number of passages through zero
is equal to the number of peaks, r is equal to 1 and this is the case of narrow-
band signal, for which q(a) tends towards a Rayleigh’s law. Thus, the value of
the parameter r depends on the PSD through the parameters n0 and np (or the
momentsM0 , M2 andM4 ). Fig. 2.9 (from [21]) shows the variations of q(a)
for different values of the irregularity factor r, from 0 to 1.
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Figure 2.9: Probability distribution of peaks by varying the regularity factor r
[21]

In the case of a centered narrow-band normal process (r ≈ 1), the average
of highest peaks, according to A.G. Davenport, is u0 =

∫∞
−∞ ue−ν dν where

u = 2ln(n+
0 T ) − 2ln(ν). For large values of Np , M.S. Longuet-Higgins

showed that an asymptotic expression can be used:

u0 ≈
√

2ln(n+
0 T ) +

ϵ√
2ln(n+

0 T )
(2.45)

where ϵ is the Euler’s constant equal to 0.57721566490. For a wide-band noise
(r ̸= 1), D.E. Cartwright and M.S. Longuet-Higgins showed that the average
value of the largest peak in a sample of Np peaks is equal to

u0 ≈
√
2ln(rNp) +

ϵ√
2ln(rNp)

(2.46)

and for large Np , it is a decreasing function of r. When the spectrum widens,
the average value of the highest peak decreases. When r → 0 (Gaussian case),
the previous expression can no longer be used and the quantity rNp becoming
small compared to 1.
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2.2 Finite Element Model
Random vibrations excite simultaneously all the frequencies of a structure
and in contrast to sinusoidal functions, they are made up of a continuous
range of frequencies. The amplitude of the signal and its phase vary with
respect to time in a random fashion. Thus, the random vibrations are also
called noise [19]. In particular, the study concerns random stationary ergodic
processes with zero mean and Gaussian distribution. They can be simulated
by modal superposition technique with FEMs analysis. Random analysis in
Finite Element (FE) software have the modal superposition technique as the
basis for the harmonic response analysis. Considering a linear behavior of
the component, they are scaled and combined to the input PSDs to get the
dynamic response and the stress PSDs. Thus, before the random or harmonic
analysis, the modal analysis is essential to understand the dynamic behaviour
of the structure. Furthermore, the Steady-State Dynamics (SSD) analysis and
the random analysis will be discussed in the following sections. However,
the second one can be an useful shortcut in terms of user-friendliness to
address the random vibration fatigue analysis, although Abaqus CAE has
demonstrated to have some limitation.

Once the FEM model of the component is defined, the structural dynamic
analysis has to be performed in order to derive the dynamic stress responses.
The idea behind the FEM approach is to use the discrete Multi-Degree-Of-
Freedom (MDOF) system to represent such structural components. In the case
of dynamic force excitations, the general equilibrium equation of the MDOF
system is:

Mü(t) + Cu̇(t) +Ku(t) = F (t) (2.47)

whereM , K, and C are the structural mass, stiffness, and damping
matrices, respectively. Moreover, u(t) denotes the absolute displacement
vector of the MDOF system and F (t) represents the input force excitation
vector. To move to the modal superposition approach, the physical coordinate
vector u(t) can be linked with the modal coordinate vector q(t) by the modal
decomposition

u(t) = Φq(t) (2.48)

where Φ is the displacement modal shape matrix, which is composed of
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the eigenvectors obtained by natural frequency analysis. Using the modal
decomposition, Eq. 2.47 can be rewritten as:

ΦTMΦq̈(t) + ΦTCΦq̇(t) + ΦTKΦq(t) = ΦTF (t) (2.49)

where the symbol T represents the transpose operation. Moving to the
frequency domain Eq. 2.49 turns into:

(−ω2ΦTMΦ + jωΦTCΦ + ΦTKΦ)q(ω) = ΦTF (ω) (2.50)

where ω is the pulsation. Assuming that the MDOF system has a
proportional damping model, Eq.2.50 is decoupled as:

(−ω2mr + jωcr + kr)qr(ω) = fr(ω) (2.51)

where mr,kr,cr, and fr denote the rth modal mass, modal stiffness, modal
damping, and modal force excitation, respectively. Thus, once the modal
responses are computed, the physical responses can be obtained using the
modal superposition technique which permit to represent easily all the physical
responses of the structure. In particular, the displacement Frequency Response
Functions (FRFs) matrix Hd(ω) of the MDOF system under force excitations
is computed as follows:

Hd(ω) =
N∑
r=1

ΦrΦ
T
r

kr − ω2mr + jωcr
(2.52)

where N denotes the number of degrees of freedom of the MDOF system
and Φr denotes the rth column vector of the displacement modal shape matrix
Φ The dynamic stress responses of the MDOF system, essential for the fatigue
analysis, are obtained by:

σs(t) = Φsq(t) =
N∑
r=1

Φs
rqr(t) (2.53)

where σs(t) is the stress vector process and Φs is the stress modal shape
matrix. qr(t) and Φs

r are the rth modal coordinate of the modal coordinate
vector q(t) and the rth column vector of the stress modal shape matrix Φs ,
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respectively. The stress FRF matrix Hs(ω) of the MDOF system under force
excitations can be calculated as:

Hs(ω) =
N∑
r=1

Φs
rΦ

T
r

kr − ω2mr + jωcr
(2.54)

However, in the random vibrations environment, the exitation is an
acceleration base in form of PSD. Consequently, the stress FRF matrixHs(ω)

in Eq.2.54 cannot be directly used and the equilibrium equations Eq. 2.47 has
to be modified to take into account the case of acceleration base excitations.
It can be written as:

Mv̈(t) + Cv̇(t) +Kv(t) = −MTẅ(t) (2.55)

where v(t) = u(t) − Tw(t) is the relative displacement vector and ẅ(t)
denotes the acceleration random base excitation vector, respectively, and T
denotes a constant TF matrix. Therefore, in the case of acceleration random
base excitations, the stress FRF matrix Has(ω) turns into:

Has(ω) = −Hs(ω)MT (2.56)

In the FE software, the stress FRF matrix Has(ω) of the MDOF system is
determined trough the frequency response analysis. The relationship between
the one-sided response stress PSD matrix, Gs(f), and the one-sided PSD
matrix of the random excitation, Ga(f), can be described by the following
expression

Gs(f) = H∗
as(f)Ga(f)H

T
as(f)MT (2.57)

where Has(f) = Has(ω/2π) and the symbol ∗ represents the complex
conjugate operation. For a random stress vector process σs(t) =

[σxx(t), σyy(t), σzz(t), σxy(t), σyz(t), σzx(t)]
T , the corresponding one-sided

stress PSD matrix, Gs(f), is given as follows

Gs(f) =

∥∥∥∥∥∥∥
G11(f) . . . G16(f)

... . . . ...
G61(f) . . . G66(f)

∥∥∥∥∥∥∥ (2.58)
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In order to describe the degree of proportionality between stress components,
a stress covariance matrix, Cv, can be introduced as follows:

Cv =

∥∥∥∥∥∥∥
C11 . . . C16

... . . . ...
C61 . . . C66

∥∥∥∥∥∥∥ (2.59)

where the diagonal term Cii and the non-diagonal term Cij(i ̸= j) denote
the variance of the stress component and the covariance between the stress
components, respectively. More precisely, those diagonal and non-diagonal
terms in covariance matrix Cv can be computed as follow

Cii = V ar(si(t)) =

∫ ∞

0

Gii(f) df (2.60)

Cij = Cov(si(t), sj(t)) =

∫ ∞

0

Real[Gij(f)] df (2.61)

Finally, correlation coefficient can be used to quantify the stress component
non-proportionality. Such a coefficient rcorr,ij can be defined as follow:

rcorr,ij =
| Cij |√
CiiCjj

(2.62)

2.2.1 Modal Analysis
Since the vibration fatigue analysis is carried out using a FE model of the
structure, it is crucial to create an accurate FE model of the structure. Thus,
before studying the response of the structure to random vibration is important
to verify the correctness of the model. This can be done by comparing the
natural frequencies obtained from experiments and numerical analysis in order
to coincide with an acceptable tolerance. Moreover, the mesh quality has
to be checked and a mesh convergence analysis must be performed in order
to obtain a reliable model for fatigue calculations. Sometimes, some modes
are difficult to extract experimentally, due to their low participation factors,
especially for high frequencies. A numerical FE modal analysis is performed,
using the Lanczos method, to determine the eigenvalues and eigenfrequencies
of the structure. Since the dynamic response of a structure can be more easily
defined using the mode superposition technique, a classic frequency analysis is
thus first performed prior to the vibration fatigue analysis to obtain the natural
frequencies and the corresponding mode shapes of the structure. Calculating
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the natural frequencies of the structure, it is also possible to understand if the
random vibrations are particularly dangerous for the component and hence,
it allows to obtain a first insight on the severity of the loading. The closer
the load frequencies are to the system resonant frequencies the stronger the
dynamic response is. If the highest load frequency is lower than one third of
the first system resonant frequency then a pseudo-static solution is acceptable
and a random vibration analysis loses sense.

In the modal superposition technique, the problem is projected onto the
eigenmodes of the system, which are first extracted from the undamped system,
permits to save a lot of calculation time without lose the accuracy. The natural
frequencies are obtained from the well known eigensystem Mü(t) +Cu̇(t) +

Ku(t) = 0 The natural modes obtained are then linearly combined and used
as basis to represent the dynamic steady-state response of the structure to
harmonic excitation. This because the eigenmodes represent a orthogonal
base across the mass and stiffness matrices. Obviously, the result is more
accurate as the number of eigenmodes extracted is increased. The number of
eigenfrequencies and eigenmodes necessary to correctly represent the dynamic
behavior of the component with a good accuracy should be decided case-by-
case. However, analysing the participation factors obtained by the frequency
analysis, it is possible to determine the modes with most influence. As general
rule, the minimum number of modes to extract should be take as the minimum
for which at least 90% of the mass of the structure contributes to all degree of
freedom.

Moreover, it is really important to correctly represent the structural
damping in the FE model, since the damage is non-linearly related to the
difference in damping. A damped vibration system dissipates energy trough
friction, heat or sound. In real structures, the damping mechanism can be of
different forms and usually more than one form can be present simultaneously.
Harmonic modal analysis can be used directly to solve the forced vibration
equation of motion Eq. 2.47, however four damping models can be used in
modal superposition procedures. A frequently used model to represent the
the damping matrix [C] is the proportional damping, also called Rayleigh
damping. The damping matrix is written as linear combination of the mass
matrix [M ] and the stiffness matrix [K], [C] = α[M ] + β[K], where α and
β are constants. A second model is represented as fraction of the critical
damping. The damping for each eigenmode can be specified or otherwise, a
fraction of the critical damping can be considered for each specified frequency.
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Critical damping is defined as ccr = 2
√
mk wherem is the mass of the system

and k is the stiffness of the system. A third model is the composite modal
damping. A damping factor is defined for each material in the model, as a
fraction of critical damping. These factors are then combined into a damping
factor for each mode. The last model is the structural damping which assumes
that the damping forces are proportional to the forces caused by stressing of
the structure and are opposed to the velocity. Therefore, this form of damping
can be used only when the displacement and velocity are exactly 90◦ out of
phase. Thus, it can be applied only when the excitation is purely sinusoidal,
as in SSD analysis. The damping forces are then FD = isI where FD are
the damping forces, i =

√
−1, s is the user-defined structural damping factor,

and I are the forces caused by stressing of the structure. However, structural
damping can be defined only for mode-based SSD analysis.

2.2.2 Dynamic Analysis for random vibrations
Once the FE model is constructed and verified with experiments. Usually the
input excitation are obtained for example from flight tests or are provided by
the regulations. To find the stress response of the system to the input excitation
necessary for the fatigue calculation, the system is assumed to behave linearly.
The response function can be then found by multiplying the input load with
the square of the TF:

PSDresponse =| TF |2 PSDinput (2.63)

In order to obtain the TF by means of FE software, an Harmonic Response
Analysis needs to be performed with unit gravity base excitation input. The
analysis permits to obtain the stress tensor at each frequency. Since in the
most general case, the structures are characterized by a multi-axial stress
state, there is a need for a method to combine the stresses. To address this
problem several multi-axial stress criteria described in the next section can
be adopted. Once theTF is obtained, the stress PSD it is easily obtained by
Eq. 2.63. The stress PSD include both the input loading and the system’s
dynamic behavior. It holds very important statistical parameters for fatigue
calculation with spectral methods. A stationary ergodic random load is
characterized in the frequency domain by its PSD. This frequency spectrum
contains all the statistical information characterizing the random load and it
allows to estimate the expected in-service load cycle distribution and fatigue
damage. In addition, in many cases, spectral methods are more convenient
since sometimes problems are already defined in the frequency-domain [22]
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(frequency spectra of wind, sea waves or the roughness of the road) or
the frequency spectrum can be found into regulations, as for example test
specification, as the MIL-STD 810 standards for the aviation industry. The
calculated response frequency spectrum it is used to address the calculation of
the fatigue damage through its statistical properties and PDFs. [4] [23]

2.2.2.1 Frequency Response Functions

Following the previous sections, the FT is the basis for the frequency domain
analysis where the signal is rewritten as a sum of simple sine and cosine
functions and the frequency content is exposed. Following Eq. 2.63, if a
component can be modeled as a linear system, its response is represented by
the FRF which translates the input x(f) into the output y(f), as represented
by figure 2.10

Figure 2.10: Transfer Function

FEM are often employed to determine the FRFs and as described above,
for non-deterministic loading (as random vibrations), the best way to represent
them is by means of PSDs. The PSD at a discrete frequency can be related
to the Fourier coefficients by Gx(fk) = 2TX∗

kXk where X∗ is the complex
conjugate of X and G is the PSD function. Similarly, the CSD functions can
also be derived:Gyx(fk) = 2TY ∗

k Xk and Gxy(fk) = 2TX∗
kYk. Hence, the

FRFs are complex functions, represented by real and imaginary components
or magnitude and phase angle pairs. The Harmonic Response Analysis is used
to find the transmissibility plots, i.e., the TF at each node of the structure.
To do this, an unit g base excitation input is applied to the structure. The
frequency range is the same as the frequency rage of the excitation. It is
important to correctly define the damping ratios of each mode, especially if
the resonant frequency are exited. The modal superposition harmonic analysis
combines the modal results with the modal participation factors to compose
the FRFs. The methodology is straightforward, fast and efficient in terms of
data storage. The stress PSDs are composed by ASDs which correspond to the
diagonal terms (PSDij with i = j) and the CSDs which correspond to the out
of diagonal components (PSDij with i ̸= j). ASDs and CSDs components
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are complex numbers but ASDs possess only a real part. The CSDs describe
the relationship between loading channels i.e., the correlation.
For example, the commercial software Abaqus can be used to carry out the
modal analysis and SSD modal analysis. A mesh convergence test and a mesh
quality check are performed during the modal analysis since they can affect the
results of the subsequent SSD modal analysis and hence the fatigue analysis.
However, since Abaqus lack in the fatigue analysis, the results, including
the mode shapes and their TFs, are transferred to another software, as Fe-
safe. Fe-safe linearly combines the TFs with the input load PSD to obtain the
stress PSD, of each element in the FE model, needed to address the fatigue
calculation.

2.2.2.2 Random Analysis

Random vibration analyses are performed frequently and in practical cases by
means of commercial FE codes. The most common analyses are those wherein
the ASDs (and sometimes CSDs) of stationary excitation random processes
are specified, and then the response ASDs and CSDs are computed. As
described above, the FRFs characterize the structure and they can be derived
from an applied harmonic input by means of measurements or FEMs. The
SSD analysis is an extension of FRF function where the steady state response
of a structure is determined considering an harmonic excitation spectrum i.e.,
the input excitation can be a complex variable and both the amplitude and the
phase angle of the excitation are considered. Random Vibration analysis is
similar to the Harmonic Response Analysis, in fact, it adopts the same strategy
to obtain the dynamic response of the structure. The only difference is that
instead of applying a unit g base excitation input, the complete input PSD of
the excitation is applied. Considering that the structrure behaves linearly, the
solver takes advantage of the harmonic response analysis and linearly combine
the response with the input PSD, in order to obtain the stress PSDs, for each
element in the FE model. These stress PSDs are then directly employed for
the fatigue calculation.

2.3 Multi-axial Criteria for Fatigue Analysis
Engineering components under in-service conditions often experience com-
plex multi-axial stress with random amplitudes. A wide range of multi-
axial criteria in the time-domain are available in literature for fatigue life
estimation. However, the amount of methods specifically reformulated in
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the frequency-domain remain quite scarce due to the complexity to translate
them in statistical parameters based on spectral quantities. Fatigue strength
assessment in metallic structures can be carried out with reference to infinite
life (fatigue limit) or finite life (fatigue strength as a function of the number
of loading cycles, and S-N curves described by either Basquin’s equation for
HCF).

Traditionally, fatigue can be studied with two different approaches: strain-
life approach, typical of Low-Cycle Fatigue (LCF) (below 103 − 104 cycles),
which considers plastic deformations in region of high stress and stress-life
approach, typical of HCF. This second approach is adopted in this study,
since considering a linear behaviour of the structure, the random loading is
characteristic of HCF, with low stress levels, far below the yield stress, and
relatively high number of cycles. How described above, FEM software permits
to easily discretize the component studied into elements and calculate the
stress response at each node of the structure. The stress-life approach results,
hence, the most appropriate for random vibration loading and by using the
stress PSD tensor, the fatigue damage of each element can be obtained through
fatigue analysis.

Differently from sinusoidal loading or narrow-band loading, in broad-
band loading conditions, as random vibrations, the definition of a cycle is
not obvious and a criterion must be used to identify the cycles [11]. The most
efficient counting method in time domain is the rain-flow method. However,
the explicit correlation between the PSD of a random process and the PDF
of cycles counted by the rain-flow method is not known analytically and a
exact solution exist only for narrow band process. This fact results from the
complexity of cycle extraction rules which define the rainflow algorithm, that
make the relationship between the rainflow cycle distribution and the PDFs
too complicated. However, the approximate solutions found by Dirlik [24]
and Tovo-Benasciutti [25], through fitting techniques, are widely used in many
sectors and they have demonstrated to achieve better results compared to other
methods that employ a correction factor to the narrow-band method. For
these reasons, the Bendat narrow-band method [3] and the Dirlik and Tovo-
Benasciutti methods will be studied in this thesis. The other type of criteria
investigated are the infinite-life criteria. In particular, the Crossland [9] [5],
Matsubara [10] and Sines [8] criteria, that do not employ counting methods,
will be investigated and compared to the others. These fatigue criteria are
based on stress invariant and they were developed in the frequency domain
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from the same criteria previously defined in the time domain. A brief review
on the critical plane methods will be covered but they will be left as future
work on this filed, since the lower computational time of the other methods
has determined their preference [26]

2.3.1 Fatigue-limit criteria
Finite-life methods belong to the damage tolerant approach and they are based
on the classical Wöhler curve. Most of them are based on the definition of
an equivalent uni-axial stress, as the equivalent Von Mises stress. Hence,
to deal with realistic fatigue loading, there is a need for multi-axial criteria,
reliable cycle counting methods as well as damage accumulations rules.
The use of equivalent uni-axial loading to represent complex multi-axial
stress states permitted to use spectral methods in frequency-domain for uni-
axial variable amplitude fatigue. Three different methods (Equivalent Von
Mises, Equivalent Lemaitre and Projection by Projection) are presented and
developed into the plug-in tool.

2.3.1.1 Equivalent Von Mieses

It is assumed that the fatigue damage under multi-axial loading can be
predicted by calculating an equivalent uni-axial stress on which the classical
uni-axial random fatigue theory is applied. Preumont and Piefort (1994) [5]
presented a method for determination of the PSD of the equivalent stress using
the Huber-Mises-Hencky hypothesis. To present the method, the case of the
plane stress state is considered. Under this condition, the equivalent stress
takes the form

σ2
eq = σ2

xx + σ2
yy − σxxσyy + 3σ2

xy = σTQMσ = tr{QM [σσT ]} (2.64)

After defining the vector of stress tensor components σ = [σxx, σyy, σxy]
T

where

QM =

∥∥∥∥∥∥
1 −0.5 0

−0.5 1 0

0 0 3

∥∥∥∥∥∥ (2.65)

is the matrix of coefficients for the Huber-Mises-Hencky equivalent stress
under the plane stress state and tr{. . . } is the trace operator. The quadratic
nature of the relationship between Von Mises stress and stress components
implies several problems: (i) the Von Mises stress is not Gaussian, nor zero
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mean, (ii) it is always positive and does not reduce itself to the applied
alternating stress in the simple uni-axial case and (iii) its frequency content
is not consistent with that of the stress components. These problems can be
overcome moving in the frequency domain and in particular:

E[σ2
eq] = σTQMσ = tr{QME[σσ

T ]} (2.66)

Thus, the obtained formula presents the mean-square value of the reduced
stress. The mean-square value can be also determined directly from the matrix
of PSDs of the stress tensor

E[σ2
eq] =

∫ ∞

0

Geq(f) df =

∫ ∞

0

tr{QMGσ(f) df (2.67)

where Gσ(f) is the matrix of ASDs and CSDs of the stress vector σ. On the
basis of the preceding formulae, Preumont and Piefort [9] postulated a method
for determination of PSD of the equivalent stress directly from the matrix of
PSD of the stress vector:

Geq(f) = tr{QMGσ(f) (2.68)

This criterion can be related only to materials for which the coefficients of
inclination of Wöhler’s curves for tension-compression and torsion are equal
and the fatigue characteristics of the material satisfy the following equality
σaN =

√
3τaN , where σaN and τaN are amplitudes read out from Wöhler’s

curves for a constant number of cycles. Determining the reduced PSD using
Eq. 2.68, the interactions between the stress components σxx and σxy as well
as σyy and σxy are not taken into account because of the zeros in the coefficient
matrix QM which is the second downside property of this method.

2.3.1.2 Equivalent Lemaitre

Ge, Sun and Zhou in [6] proposed a novel multi-axial frequency domain
method based on stress invariant, considering the effect of hydrostatic stress.
It is based on the equivalent Lemaitre stress and multiaxial S–N curve, in
order to estimate the fatigue life under multi-axial random loading. A new
formula for the stress invariant that includes the effect of hydrostatic stress
was proposed. The equivalent stress defined by Lemaitre and Desmorat [27]
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in damage mechanics is:

σ∗
eq = σeq

[
2

3
(1 + ν) + 3(1− 2ν)

(
σm
σeq

)2
]1/2

(2.69)

where ν is the Poisson’s ratio of the material, σeq is the Von Mises stress and
σm is hydrostatic stress. Following the same procedure as the equivalent Von
Mises stress, the equivalent Lemaitre stress in frequency domain can be written
as:

Geq(f) = tr{Q∗Gσ(f) (2.70)

where Q∗ is defined as Eq. 2.71 where, if the Poisson’s ratio is 0.5, the
equivalent stress becomes equivalent to the equivalent Von Mises.

Q∗ =

∥∥∥∥∥∥∥∥∥∥∥∥

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

∥∥∥∥∥∥∥∥∥∥∥∥
(2.71)

Moreover, to predict the fatigue life in the multi-axial case, a reference S–N
curve is used. In particular, the materials’ fatigue life under multi-axial cyclic
loading can be represented by a new S–N curve which keeps a linear relation
in the logarithmic graph between the equivalent Lemaitre stress amplitude σeq
and the number of cycles to failureN , as shown described in the section 2.5.1.
The reference S–N curve can be obtained from the fully-reversed axial and
torsional loading by linear interpolation using a parameter ρ. A statistical
expression of ρ in frequency domain is:

ρ =
3σ̂m
σ̂eq

=
3
√
M0,m

M0,eq

(2.72)

where σm and σeq can be calculated from the 0th spectral moment of PSD in
frequency domain as showed by Eq. 2.72. The reference S–N curve is then
obtained following the method proposed by Susmel and Lazzarin [15] and
described in 2.5.1.



40 | Background

2.3.2 Infinite-life criteria
The second type of criteria are called infinite-life criteria and they belong to the
safe-life approach. They are used to understand the risk of fatigue problem and
hence if the stress levels are critical or not. Endurance limit has its common
accepted definition is the stress level leading to the initiation of macroscopic
crack, which is usually observed after aboutNe = 107 cycles. The extension of
this concept to multiaxial stress states implies a separation of the stress space
into two parts, the unsafe one and the safe one. The safe part contains the origin
and is bounded by a closed surface defined by the fatigue criterion. The stress
tensor σij(t) at a location in the structure is a periodic function of time and
a fatigue criterion can be defined as a function g such that: g(σij(t)) < 1 for
t ∈ [0, T ]. If the inequality is satisfied at every point of the structure, no fatigue
cracks will initiate before Ne. Many fatigue criteria have been developed over
the past decades. Some of these criteria are based on global approach using
stress invariants such as the hydro-static pressure and the Von Mises stress.
Most of the existing multi-axial fatigue limit criteria are formalized as a linear
combination of a generalized shear stress amplitudeCa and a normal stressN :

Ca + kN ≤ λ (2.73)

where k e λ are material constants. The main difference among all the different
criteria is how the shear and normal stress terms are defined. In critical plane
criteria (e.g., Findley, Matake, Carpinteri-Spagnoli) Ca and N represent the
shear and the normal stresses calculated on the critical plane, while in stress-
invariant based criteria (e.g., Sines, Crossland, Matsubara)Ca is the amplitude
of the square root of the second invariant of the stress deviator, while N is
the hydro-static stress. The combination of shear an normal stresses defines
a loading path Ψ. It can be closed (e.g., for periodic loading) or entangled
(e.g., for random loading). Thus, as shown by Fig. 2.11, if the loading path
Ψ remains under the line defined by the infinite-life criteria, it means that
no fatigue cracks will occur and the loading path is in the safe region (A).
Otherwise, if the loading path cross the line, it switch into the unsafe region
(B) and hence, a fatigue crack might initiate and grow.

2.3.3 Sterss-invariant criteria
This type of multi-axial criteria is based on the second invariant of the deviator
stress tensor. Crossland’s criterion is one of the most known and it has
been first reformulated in frequency-domain by Preumont [9], by adopting the
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Figure 2.11: Representation of the safe and unsafe regions for the safe-life
criteria

same statistical definition of Minimum Circumscribed Circle (MCC) method
used for Matake’s criterion. Lately, another stress invariants multi-axial
criterion has been proposed and it is called ”Projection-by-Projection”, since
the damage of the stress path d(ψ) is computed by summing-up the damage
values of stress projections ψi in a ”principal reference frame” of maximum
variance. Differently from Crossland’s criterion, this method belongs to the
finite-life approach and it provides a closed form analytical expression to
compute the fatigue damage of multi-axial stress, which depends on the uni-
axial spectral method used to estimate damage d(ψ) for each projection. There
are common parameters used among the different stress invariants criteria.
These are: the stress deviator related to the second stress tensor invariant and
the hydrostatic pressure related to the first stress tensor invariant. The stress
deviator can be calculated by means of the Equivalent Von Mises stress method
proposed by Preumont and Piefort [5] Eq. 2.68. The PSD of equivalent stress
is computed using full spatial PSD matrix and the Von Mises coefficient matrix
of the form:

QM =

∥∥∥∥∥∥∥∥∥∥∥∥

1 −0.5 −0.5 0 0 0

−0.5 1 −0.5 0 0 0

−0.5 −0.5 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

∥∥∥∥∥∥∥∥∥∥∥∥
(2.74)

The PSD of the stress deviator can be obtained from the PSD of Von Mises
stress Gsd(f) =

GeqMH(f)√
3

. Similarly, the Hydrostatic pressure can be
computed using the same methodology for Equivalent Von Mises stress, Eq.
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2.68, following the formula:

GeqH(f) = tr{QhGσ(f)} (2.75)

where

Qh =
1

9

∥∥∥∥∥∥∥∥∥∥∥∥

1 1 1 0 0 0

1 1 1 0 0 0

1 −1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥
(2.76)

The first stress tensor invariant is directly related to the hydrostatic pressure
GI(f) = 9Geqh(f)

2.3.3.1 Projection by Projection

In 2008 Cristofori proposed a method to determine the damage based on the
second invariant of the stress-tensor deviator and in 2011 it was reformulated
for the frequency domain. The stress invariant Sinv = [S1, S2, S3, S4, S5]

T

is defined in the E5 Euclidean space (the deviatoric five-dimensional space
of Ilyushin) according to S1 =

√
3
2
σxx, S2 = 1

2
(σyy − σzz), S3 = σxy, S4 =

σxz, S5 = σyz where σ = [σxx, σyy, σzz, σxy, σxz, σyz]
T are the components

of the stress-deviator tensor, defined together with the hydrostatic stress sh:
s = σ + Ish where I is the identity matrix. The essence of the method is
the transformation of the CSD matrix Sinv = sinvs

T
inv into the sub-space of

eigenvectors of the stress invariant covariance matrix C ′. For this purpose, the
eigenvectors U of C ′ are obtained, which can be used to transform C ′ into a
diagonal matrix C ′

0

C =

∥∥∥∥∥∥∥
σ2
xx,xx . . . σ2

xx,yz
... . . . ...

σ2
yz,xx . . . σ2

yz,yz

∥∥∥∥∥∥∥ (2.77)

and C ′
0 = UTCU and are applied to the frequency-domain, stress-state

definition Ginv(ω), yielding the transformed matrix of Gu(ω) : Gu(ω) =

UTGinv(ω)U A group of five uncorrelated uni-axial processes Ψi(ω) is thus
defined. Each process is treated separately and the damages d(Ψi), calculated
using a chosen spectral moment method are then summed according to a
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quadratic damage-accumulation rule:

d(Ψ) = [
5∑

i=1

(d(Ψi))
2

kref ]
kref

2 (2.78)

where kref defines the slope of the reference S-N curve, derived from the
axial (JA,axi,kaxi) and torsion (JA,tor, ktor) S-N curves via the following
linear interpolation derived from the Susmel modified S-N curve (defined in
section 2.5.1), where the reference stress ratio is determined from the load
characteristics using:

ρref =
√
3

√
2M0,h√

2
∑5

i=1M0,i

(2.79)

As shown by Fig. 2.12, the method, by means of a rotation of the
reference system, fundamentally projects the loading into multiple completely
uncorrelated loading where the damage can be calculated for each projection
using the spectral methods for uni-axial loading. Finally, to determine the
damage of the whole loading, the quadratic combination is used considering
the modified S-N curve. The method has shown to provide highly accurate

Figure 2.12: Example of random loading pathΨ in two-dimensional deviatoric
space and its projections Ψ1 and Ψ2 [7]

estimates for constant amplitude multi-axial loadings regardless of the degree
of proportionality, and it is also equally applicable to variable amplitude multi-
axial loadings. The Projection by Projection (PbP) method then gives a simple
interpretation to the problem of cycle identification in variable amplitude
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multiaxial loadings, with a strong simplification in overall fatigue damage
evaluation. The theoretical framework behind the PbP method easily allowed
the formulation in frequency-domain. The frequency-domain PbP criteria
considers a 5-dimension Euclidean space of the path Ψ is mapped by the tip
of stress vector s(t). The loading path Ψ is first projected along the axes
of a principal reference frame S0 in the deviatoric space, which is located
by the eigenvectors U of covariance matrix C ′ of the deviator stress vector
s(t): C0 = UTC ′U . The projection of multi-dimensional path Ψ along fixed
directions results in a set of distinct uni-axial loading Ψp,i(t). The damage due
to each projection is then evaluated considering the uni-axial spectral method
as for the equivalent uni-axial PSD. A unique reference curve in a modified
Wöhler diagram, according to the Susmel method reported in the section 2.5.1,
is considered and the Palmgren–Miner linear accumulation rule ia adopted to
determine the damage intensity d(Ψp,i) for ith projected loading is calculated.
Finally, a quadratic accumulation rule applied to the damages d(Ψp,i) is used to
obtain the damage for the complete loading path Ψ. This above accumulation
rule was recognized to be appropriate by many authors, since it accounts for
the load non-proportionality, as well as it employs a non linear combination
rule to handle damaging events occurring at the same time instant on different
projected loading.

2.3.3.2 Crossland

One of the more widely used criteria for infinite-life fatigue calculation has
been proposed by Crossland. Comparison studies report that Crossland’s
criterion can be in error from -30% to +15% with respect to experiments. The
Crossland’s criterion in the time domain is written as√

J2,a + αMax[p(t)]

β
≤ 1 (2.80)

where
√
J2,a is the maximum amplitude of the second invariant of the stress

deviator defined following the MCC and p(t) is the hydrostatic pressure.
Max[·] stands for maximum value over the period [0, T ]. The following
figure, Fig. 2.13, shows an example of MCC and Minimum Circumscribed
Ellipse (MCE) definition for a random loading path. Both, the deterministic
defimition in the time domain and the statistical definition are represented. In
the frequency domain the contribution of the stress deviator can be obtained
from the Equivalent Von Mises stress process

√
J2,a ≃ νcσc/

√
3 where

σeq = {E[s2eq]}1/2 is the standard deviation and νc is the peak factor over
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Figure 2.13: Example of Minimum Circumscribed Circle (MCC) and
Minimum Circumscribed Ellipse (MCE) definitions for a random loading
path. The Expected Minimum Circumscribed Circle (EMCC) and Expected
Minimum Circumscribed Ellipse (EMCE) refer to the statistical definition in
the frequency domain [28]

the observation period and defined as the extreme value of the process
normalized with respect to the standard deviation. In the bidimensional case
the hydrostatic pressure p = (sx+ sy)/3 and henceMax[p(t)] ≃ νpσm where
νp is the peak factor of the hydrostatic pressure and σm is its standard deviation.
So, Pitoiset et al. [9] redefined the criterion proposed by Crossland as follows:

σeqF (2N1)/
√
3 + ασmF (N2)

β
≤ 1 (2.81)

where: σeq and 2N1 are the standard deviation and expected number of half-
cycles of the Equivalent Von Mises stress and N2 is the number of cycles of
the hydrostatic pressure; F (·)is the function for amplitude extremes according
Davenport, see Eq. 2.46;

α =
t1 − f1/

√
3

f1/3
(2.82)

β = t1 (2.83)

α and β are Crossland’s multi-axial fatigue criterion coefficients, respectively.

2.3.3.3 Matsubara

An other stress-invariant criterion similar to Crossland and that belongs to
the infinite-life approach is the Matsubara’s criterion for multi-axial fatigue
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damage, developed by Mastubara. The criterion is represented in Eq. 2.84
where α and β are constants related to material. f1 defines the fully reversed
axial fatigue limit and fm is the true fracture strength which is defined as
the fracture load divided by the actual final cross-sectional area. Matsubara
assumes that fm can be substituted by 1.84 times the tensile strength Rm ( fm
= 1.84 Rm). So, the Matsubara’s criterion is:√

J2,a + αSmax

β
≤ 1 (2.84)

α =
f1√
3

1

fm − f1
(2.85)

β =
f1√
3

fm
fm − f1

(2.86)

Matsubara’s criterion consists of two parameters that governs crack initiation:√
J2,a and initial crack growth Smax . The crack initiation parameter,

√
J2,a

, is the equivalent shear stress amplitude follows that in Li criterion which
is the same as that proposed by Crossland following the MCC criteria but
with different definition of

√
J2,a. In fact, the crack initiation parameter in

Matsubara’s criterion is dominated solely by the shear stress amplitude. Smax

is the parameter proposed by Matsubara which defines the crack growth. It
is considered to be controlled by the maximum of the stress intensity factor
range.The crack in stage II grows perpendicularly to the maximum principal
stress direction. Hence, Smax is defined as follows: among the cyclic normal
stresses on all the planes at a evaluate area, the cyclic normal stress with the
maximum stress range is selected.
Considering a structure with linear behaviour and subject to stationary ergodic
Gaussian loads. The Matsubara’s criterion can then be defined in the ferquency
domain by:

E[
√
J2,a] + αE_Smax

β
≤ 1 (2.87)

For zero mean stress value, E_Smax can be determined as follow: for each
normal stress, the mean value of the extreme of the Gaussian process over the
observation period T is calculated. The maximum of these mean values are
then estimated by applying the peak factor theory and it defines E_Smax. In
fact, since s(t) is a zero mean stationary Gaussian, random process, E_Smax
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can be obtained, according to Davenport, as:

E[max(sii)] ≃ σsii

√
2ln(Np(sii) +

0.5772√
2ln(Np(sii))

i = x, y, z (2.88)

Then, E_Smax obtained by applying

E_Smax = maxi(E[max(sii)]); i = x, y, z (2.89)

2.3.3.4 Sines

The main purpose of multi-axial fatigue criteria is to determine the location of
the critical point in a structure. As seen for the others stress-invariant criteria,
it can be assumed that the crack initiation is governed by the second invariant
of the deviator stress tensor. The same assumption is considered also in the
Sines criterion where J2,a is the second invariant of the deviator stress tensor.
The Sines criterion in the time domain is written as:√

J2,a + αE[p(t)]

β
≤ 1 (2.90)

Where p(t) is hydrostatic pressure which is determined by the normal stresses
components Sxx, Syy and Szz of the stress tensor Sij and α and β are constants
related with the material. For the Sines criterion, they are defined by the
endurance limit in alternating traction f1, the endurance limit in alternating
torsion t1 and the breaking strength Rm

p(t) =
1

3
(Sxx + Syy + Szz) (2.91)

α =
3t1(Rm + f1)

f1Rm

−
√
6 (2.92)

β = t1 (2.93)

As can be noted, the Crossland’s criterion need the calculation of maximum of
the hydrostatic pressure while the Sines criterion uses it’s mean, reducing the
calculation time. Moreover, the crack will not initiate before Ne repetitions of
the periodic random load of duration T if the average of the damage should
not exceed the fatigue limit. Thus, the Sines criterion is defined then by Eq.
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2.94 in the frequency domain:

E[
√
J2,a] + αE[p(t)]

β
≤ 1 (2.94)

To determine of the average of the shear stress amplitude E[
√
J2,a], Lambert

proposes a strategy of calculation of E[
√
J2,a]. This strategy is based on two

steps: the first one is to replace the number of up-crossings of level zeroN0 by
the number of maxima Np. This allow to considerate the width of the band.
For a proportional loading,

√
J2,a can be defined by:

√
J2,a =

√
1

6
[(Sxx,a − Syy,a)2 + (Syy,a − Szz,a)2 + (Szz,a − Sxx,a)2+

+6(Sxy,a − Syz,a − Sxz,a)2]

(2.95)

To facilitate the calculation of J2,a, the trasformation in the Euclidean space
(similar to the Projection by Projection approach in 2.3.3.1) is commonly used:√

J2,a =
√
D2

1,a +D2
2,a +D2

3,a +D2
4,a +D2

5,a (2.96)

D1,a =
√
3
2
(2
3
Sxx − 1

3
Syy − 1

3
Szz), S2 = 1

2
(Syy − Szz), S3 = Sxy, S4 =

Sxz, S5 = Syz. For a non-proportional load, the expression is not available.
For this reason, many approaches have been proposed in order to determinate√
J2,a. The same method used in the Matsubara’s criterion, proposed by Bin

li. With reference to Fig. 2.13, it considers the smallest ellipse of the semi-axes
R1 and R2 circumscribing the path of

√
J2,a to realize the non-proportional

loading. Thus,
√
J2,a is approached by

√
J2,a =

√
R2

1 +R2
2. To determine

the equivalent shear stress amplitude, the semi-axes R1, R2,R3,R4 and R5 of
the five-dimension ellipsoid circumscribed to the loading path of

√
J2,a are

considered and oriented in its principal directions.
√
J2,acan then be written

as well
√
J2,a =

√
R2

1 +R2
20 + R2

3 +R2
4 +R2

5. So, for a random load, the
estimation of J2,a consists in the estimation of the semi-axesRi. Thus, similar
to the Projection by Projection approach, this can be done by the analysis of
the principal components of the covariance matrix C ′ of the stress invariant
PSD in the Euclidean space Sinv. C ′ can also be defined from the covariance
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matrix of the stress Cv as follow: C ′ = PCvP
T with

P =

∥∥∥∥∥∥∥∥∥∥∥

√
3
3

−
√
3
6

−
√
3
6

0 0 0

0 1
2

−1
2

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥
(2.97)

C ′ is an even symmetric matrix. The diagonal terms of C ′ presents the
variance of each component. However, the terms out of diagonal presents the
variance between each component and in general, those terms are different
of zero. However, C ′ is not diagonal and as done in the Projection by
Projection approach, there is an orthonormal basis of eigenvectors U such
that C ′

0 = UC ′UT = diag(σ2
1, σ

2
2, σ

2
3, σ

2
4, σ

2
5, ) and the projected PSD are

ˆSinv = USinv so, according to Davenport

E[Ri] ≃ σi(

√
2ln(Np( ˆSinv)) +

0.5772√
2ln(Np( ˆSinv))

) (2.98)

For a random loading, it can be assumed that

E[
√
J2,a] ≈

√
E[R1]2 + E[R2]2 + E[R3]2 + E[R4]2 + E[R5]2 (2.99)

Thus, to evaluate the stresses covariance matrix, the covariance matrix C ′ has
to be determined as first step and then, the covariance matrix C ′

0 and the PSD
Sinv are obtained by the orthogonal transformation of the U matrix. Then, the
number of maximaNp calculated for each PSD of ˆSinv are needed to determine
the average of the shear stress amplitudeE[

√
J2,a]. Finally, the fatigue damage

is determined at each point of the structure using the Sines criterion in Eq.
2.94.

2.3.4 Critical plane criteria
The Critical plane criteria determine the equivalent stress Seq(ω) from the
combination of stress components on the critical plane. Three different criteria
exists for the critical plane approach, i.e., the maximum normal stress, the
maximum shear stress and the criterion of maximum normal-and-shear stress.
The equivalent stress Seq(ω) can be interpreted as the single output derived
by linear combination of six inputs corresponding to the components of the
stress matrix Ss(ω). Hence Seq(ω) = aSs(ω)a

T where a is a vector of the
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coefficients a suiting the respective multi-axial criterion [28]. These criteria
look at the plane where crack nucleation and propagation is likely to occur,
which depends on the specific definition of the critical plane criteria. The
shear stress on the critical plane is a vector τ(t) that describes a stress path Ψ.
As defined previously for the other methods, the definition of the amplitude
τa of the curve Ψ is non trivial and usually, the MCC or MCE criteria are
implemented. Hence, τa is defined by the radius or semi-axis of circumscribed
circle/ellipse. As seen for the stress-invariant criteria, statistical definition
of the MCC and MCE methods are a useful toll when random stresses are
analyzed in the frequency domain. For example, an expected radius E[R]
based on the ”maximum variance” concept is an intuitive measure of the
expected amplitude E[τa] = E[R] also on the critical plane. Then, the critical
plane can be defined as the plane with the maximum expected radius E[Ca] =

E[R]. The MCE concept can be used in order to take into account for non-
proportional stress paths. The estimations by the spectral definitions of MCC
and MCE only depend on the statistical properties of the multi-axial random
stress. Once the critical plane is defined, the resolved stress PSDs on the
critical plane are linearly combined to determine an equivalent uni-axial stress
PSD. These PSDs are combined by means of a function of direction cosines
ai defined by the critical plane. This approach is similar to the multi-axial
spectral methods based on the equivalent uni-axial PSD and subsequently, the
uni-axial spectral method can be applied to determine the damage for each
element of the model. An example of this type of methods is the Carpinteri-
Spagnoli method, presented in the following section. However, Preumont
[9] extended the Matake’s criterion, considering the spectral definition of
the MCC and defining also a critichal plane method within the infinite-life
approaches. The main difference between the stress-invariant methods and
the critical plane criteria, regardless the computational time, is that the stress-
invariant approach produce a result for element, (without considering the
orientation of the critical plane) while critical-plane methods produce different
results for different plane’s orientation. Experimentally has been found that the
critical-plane approach is better suited to proportional loads, when principal
axes are fixed, while the stress-invariant-based methods are better suited to
non-proportional loads where the principal axes rotate with time [9]

2.3.4.1 Matake

The spectral definition of MCC has been used by Preumont and Pitoiset et al.
[9] to reformulate in frequency-domain the critical plane criterion of Matake,
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which can be written as follow:

σ∗
1F (N

∗
1 )/

√
3 + ασ∗

nF (N
∗
2 )

β
≤ 1 (2.100)

where: σ∗
1 andN∗

1 are are standard deviation and number of cycles of the shear
stress on the critical plane; σ∗

n and N∗
2 are standard deviation and number

of cycles of normal stress on the critical plane; α = (2t1/f1) − 1 and
β = t1 are Matake’s multi-axial fatigue criterion coefficients, respectively.
The definition of the Matake criterion in the frequency domain following
the definition of the MCC is based on the concept of largest variance of the
shear stress to define the orientation of the critical plane. In other word, in
the presence of random loading, the plane experiencing the maximum shear
amplitude is replaced by the plane of largest variance of the shear stress.
Thus, the stress PSD is rotated by means of two angles since two angles are
needed for determining the normal to a material plane. A third angle is needed
to determine the orientation such that a diagonalized covariance matrix is
obtained. This direction permits to define the maximum of the variance of
the shear stress in the critical pane by using the expected value of extreme of a
Gaussian process through the Davenport’s formula Eq. 2.46. Once the critical
plane orientation is determined, the formulation of the Matake criterion yields
to Eq. 2.100.

2.3.4.2 Carpinteri-Spagnoli

Carpinteri et al. [12] [29] proposed a reformulation of the criterion in the
frequency domain:

Geq = Gw,w +

(
f1
t1

)
Gvw,vw (2.101)

where Gw,w is the PSD function of the normal stress σw, and Gvw,vw is the
PSD function of the shear stress τvw, both related to the critical plane. This
critical plane criteria is a multi-axial fatigue criterion which is an extension of
the criterion proposed by Susmel [15] [30] to the range of variable-amplitude
loading. Using the stress ratio ρref =

√
3σm√∑

i

√
J2,aij

2
defined in terms of

hydrostatic mean stress σm and the amplitude of the second invariants of the
stress deviator

√
J2,aij , the following equation Eq. 2.102 were proposed for

an equivalent value of the second stress invariant:√
J2aρref = (

√
J2aρ=−1 −

√
J2aρ=0)ρref +

√
J2aρ=0 (2.102)
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where
√
J2aρ=−1 and

√
J2aρ=0 are the fatigue limits expressed in terms of the

amplitude of the square root of the second invariant of the stress deviator under
fully-reversed uniaxial and torsional loading, respectively. The critical plane
is linked to averaged principal stress directions and for random loading, these
directions are obtained as follows.

Figure 2.14: Critical plane definition for the Carpinteri-Spagnoli criterion [29]

With reference to Fig. 2.14, for given values of the angles ϕ, θ, the PSD
function Gz′z′ = G3′3′ of the normal stress σz′ related to the general direction
z′ can be computed by means of n+

0 , which is the expected rate of zero up-
crossings of σz′ and which is determined according to Eq. 2.37. Therefore,
the total number of loading cycles over the observation period T isN1 = n+

0 T ,
and using the Davenport formula Eq. 2.46, the maximum value of the peaks
for σz′ can be determined. By varying the angles ϕ, θ ( 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤
π ), the direction z′ experiencing the maximum normal stress can be found
and the direction is regarded as the averaged principal direction 1̂, defined
by the angles Φ̂ and Θ̂. Then, the angle Ψ (rotation about axis 1̂) is made
to vary with the aim of determining the direction where the corresponding
shear stress component attains the maximum variance. This can be obtained
by maximizing the variance of the stress τy′z′ = S6′6′ that corresponds to
maximize the spectral moments of order 0 of the PSD functionG6′6′ . Thus, the
obtained direction y′ is regarded as the averaged principal direction 3̂. Once
the angles Φ̂, Θ̂ and Ψ̂, describing the plane 1̂3̂ of averaged maximum shear,
are defined, also the averaged principal direction 2̂ is defined (Fig. 2.14 (b)).
Finally, the normal to the critical plane is defined by an off-angle δ (clockwise
rotation) about the axis 2̂ [29]. Once the critical plane is determied, to reduce
the PSDs matrix to an equivalent un-axial PSD five successive rotations have
to be performed, considering directions u and v belonging to the critical plane
and w normal to the critical plane. (i) the angles Φ̂, Θ̂ and Ψ̂ ; (ii) the angle
δ ; (iii) the angle γ, which represents a counterclockwise rotation about the
w axis, so that the u axis defines the direction that maximizes the variance of
G6′6′ . After these five rotations, the PSDs G3′3′ = Gw,w and G6′6′ = Gvw,vw,
are determined and hence the equivalent PSD is computed following the linear
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combination:
Geq = Gw,w +

(
f1
t1

)
Gvw,vw (2.103)

2.4 Rain-flow counting and Probability Den-
sity Function

The first straightforward method to study random vibration fatigue is the
classical time domain approach which is usually based on cycle counting
schemes, as the rain-flow counting algorithm, and damage accumulation
models, as the linear damage rule. In the time domain analysis, the fatigue
damage of a random time history s(t) is determined in two steps. First of all, a
counting method, as the commonly used rain-flow counting method, is applied
to the process in order to identifying the fatigue cycles. Due to the randomness
of the process, the counted cycles have different amplitudes values and thus
they contribute to the damage in different proportion. Therefore, the damage
accumulation rule, as the linear Palmgren–Miner linear law, is applied in the
second step to account the damage of every counted cycle.

D =

N(T )∑
i

ni

Ni

(2.104)

This summation extends over the total number of cycles N(T ) counted in
s(t) to consider the whole process, where ni is the number the cycles with
amplitude si, which would cause a failure after Ni repetitions in a constant
amplitude test. Often, the relationship between stress amplitude si and cycles
to failure Ni is expressed by a straight line in a log–log diagram, through
the S-N curve represented by the Basquin’s law Nsb = K which is fitted to
experimental data by regression analysis. In the Palmgren–Miner rule, fatigue
failure is predicted to occur when damageD reaches a critical value of 1, even
though lower values are recommended in some design codes and regulations.
The summation in Eq. 2.104 assumes that the cycles counted in s(t) are
grouped into bins of ni cycles, all having the same amplitude si. Since s(t) is
a random variable, it follows that ni and si are both random variables. Thus,
due to the randomness of the loading, many stress time histories (simulated
or measured on real prototypes) are needed in order to obtain consistent
and reliable distributions of rain-flow cycles. Moreover, due to practical
implication, these cycles have to be extrapolated from short time recording
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and extended to the overall in-service life, by using adequate statistical
investigations. Moreover, it is also computationally costly to evaluate stresses
and the fatigue damage from time series data of long duration, especially
for complex models with large number of elements. Consequently, the most
common way to represent the dynamic response of the random loading input
is by spectral methods in the frequency domain using the PSD of the load [2].
Therefore, in the frequency domain the summation in Eq. 2.104 needs to be
reformulated in a probabilistic way.

D = nrfc

∫ +∞

0

1

N(s)
p(s) ds (2.105)

This equation is nothing more than the Palmgren–Miner rule in Eq. 2.104
extended to continuously distributed amplitudes. p(s) is the probability
distribution of the amplitudes of rain-flow cycles, nrfc is the number of
rain-flow cycles counted in T , and N(s) is the number of cycles to failure
at constant amplitude s. Eq. 2.105 can be solved in closed form if the
analytical expressions of p(s) is known but this occurs only when s(t) is
a narrow-band process. However, p(s) can be related to the properties of
the underlying spectrum. In particular, the stress range PDFs are based
on linear combination of Weibull distributions (one corresponding mainly
to small stress ranges and the other to large stress ranges) and a Rayleigh
distribution. These distributions are modified through parameters that are
based on the requirements that the shape of the PDF should agree with the
shape of the histogram obtained by the time-domain simulation and the rain-
flow counting procedure. However, the accuracy of the multi-axial spectral
method does not depend only on the equivalent stress adopted but it also
depends on the accuracy of the uni-axial spectral method used to estimate the
PDF distribution. Even if many spectral methods are available in literature,
different studies have confirmed that Dirlik and Tovo-Benasciutti uni-axial
spectral methods are exceptionally superior to others for wide-band spectrum
[4].

2.4.1 Rainflow counting method
A random loading process produces a large number of stress reversals and
these in turn cause fatigue damage. The magnitude of the stress ranges and the
corresponding number of cycles are of critical importance in determining the
fatigue damage. In the time domain, the number of cycles and corresponding
stress ranges are determined, in a deterministic way, using the rain-flow
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counting method. The details of the rain-flow algorithm have been described
by Wirsching and Shehata [31]. In brief, for each local peak u in a sample
time history l(t), the rain-flow algorithm will find a local trough v to form
a hysteresis loop, so that the stress range is S = u − v and it corresponds
to one cycle. In the frequency domain, the cycle courting is performed in a
statistical sense by means of the PDF derived by simulation. So, it assumes
that the number of cycles are equal to the number of peaks. Thus, under
stationary random loading, the expected number of cycles in time t is given
by E[N(t)] = νp t where N(t) is the total number of cycles in time t and νp
is the peak rate given by νp =

√
M4/M2. The stress ranges are hence defined

by the specific PDF deployed. The following figures (Fig. 2.15, 2.16 2.17)
represent the number of cycles and the corresponding stress ranges obtained
applying the rain-flow counting method to the signal represented in Fig. 2.5,
2.7 and 2.8c. In particular, Fig. 2.15 has only one bin since the sine signal 2.5
has constant amplitude.

Figure 2.15: Examples of rain-flow counting applied to the signal in Fig. 2.5

Fig. 2.16, which represent the rain-flow counting applied to the random
signal 2.7, has multiple bins with different amplitudes.

Figure 2.16: Examples of rain-flow counting applied to the signal in Fig. 2.7
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Fig. 2.17 also has different amplitudes but all the bins have same zero mean
since it is obtained from the PSD of the random signal 2.7 with the assumption
of stationary and ergodicity.

Figure 2.17: Examples of rain-flow counting applied to the PSD in Fig. 2.8c

2.4.2 Narrow-band method
In case of narrow-band process, peaks and valleys are placed symmetrically,
and each cycle is formed by pairing each peak to the adjacent valley which
corresponds also to the peak counting method. Consequently, each cycle
has zero mean and amplitude coincident with the peak value, following a
Rayleigh distribution. In a narrow-band process, the number of cycles counted
is also known, it being equal to the number of crossings of the mean value,
nrfc = n+

0 T which yields to the expression of the “narrow band” damage in
time interval T .

DNB =
n+
0 T

K
(
√
2M0)

bΓ(1 +
b

2
) (2.106)

in which Γ(·) is the gamma function. The expression is credited to Miles and
Bendat and it is restricted to a straight S-N line described by two parameters
of the Basquin’s law. In case of the S-N curve is not straight, Eq. 2.106
can be solved numerically, considering different Basquin’s constants. Even
if this result is an exact solution for narrow-band processes, the narrow-
band definition of the damage represents the upper limit for the wide-band
processes. Hence, applying it also to wide-band processes, it results to be a
conservative way to determine the damage of a wide-band processes.
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2.4.3 Wide-band methods
When the random process is no longer narrow-band, the previous formula
becomes too conservative. In a wide-band process, fatigue cycles cannot be
obtained by joining a peak with a symmetric valley, as done with the peak
counting method, because it would yield cycles with amplitudes larger than
those identified by the rain-flow counting method. However, the algorithm
of the rain-flow counting is too complex to determine, in closed form, the
expression of the PDF of amplitudes related to the bandwidth parameters of
the wide-band process. For this reason, in the literature, initially, the approach
followed was to introduce a correction factor less than unity, by which to
reduce the narrow-band damage. However, the only feasible way to calibrate
the damage correction factor was based on simulation results. Moreover, a
lot of methods have been developed since there is not a specific bandwidth
parameter that can be used to set this correction factor. The first spectral
method was proposed by Wirsching and Light,in 1980 [32], in which the
correction factor depends solely on the spectral parameter M2. After that,
other methods following the same idea were proposed and the correction
factors were refined by introducing the dependency on other bandwidth
parameters. However, the use of a correction factor for estimating the damage
of a wide-band process, has the drawback of not providing the PDF p(s)

of amplitudes of the cycles causing that damage. In fact, knowing p(s) it
permits to makes it possible to compute the fatigue damage not only for a
straight S-N line, but also for any smooth curve with continuous change of
slope, with or without endurance limit. Consequently, the PDF permits to
determine the cumulative spectra of rain-flow cycles and for these reasons,
the most widely used methods for wide-band processes are the Dirlik and the
Tovo-Benasciutti methods. They correlate the spectral properties of the stress
PSD to an amplitude PDF determined by simulations. They belong to the
category of approaches that provide an estimate of the amplitude PDF of rain-
flow cycles and they are illustrated in the following paragraphs.

2.4.3.1 Dirlik method

This method, developed due to the complexity to derive in a closed form the
distribution of rain-flow cycles from the PSD, is known to be a milestone
among spectral methods. A Monte Carlo approach was employed to generate
a sample stress history l(t) from the PSD G(f) using inverse FFT methods.
Subsequently, the rain-flow algorithm was applied on l(t) to extract the
cycles and the PDF of rain-flow counted ranges. This permitted to calculate
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the fatigue damage for any given material constants in an S-N curve. The
idea of the Monte Carlo approach is based on concept that the sample
average converges in probability towards the expected value if the sample size
increases. For this reason, it was important that the sample stress histories
used for the numerical simulations were sufficiently long in order to catch
also the rare events. In particular, the method was developed considering 70
PSDs of various shapes. The PSD were normalized so that all had the same
RMS value and the same expected rate of peaks νp (hence, the same number
of rain-flow cycles counted in a time interval). These two parameters were
kept fixed and the irregularity factor γ was made to vary by adjusting the
parameters defining the power spectrum shape. It corresponds to varying the
spectral moments of order zero, two, and four (M0, M2, M4). The rectangular
bimodal spectrum was used extensively because of its simplicity to assume a
wide range of values of the irregularity factor γ, having the same RMS value
and rate of peaks νp. In preliminary simulations trials, it was observed that
the mean frequency ω1 of the spectrum, i.e., its first order moment M1, also
has a role in changing the fatigue damage of a simulated time history. Thus„
42 out of 70 PSDs were shaped so as to have the same RMS value , rate of
peaks νp, irregularity factor γ but differentM1. Moreover, a normalized mean
frequency xm = ω1/νp was introduced, where xm = M1

M0

√
M2

M4
. Due to the low

disk capacity of computers available at that time, a single generated stress time
history had only 1024 points and hence the simulation procedure was repeated
20 times in order to obtain a sufficiently long record of stress time history.
Consequently, the fatigue cycles of this long record were extracted by means
of the rain-flow counting method in time domain. The probability distribution
of rain-flow ranges were finally calculated. This permitted to approximate the
PDF of rain-flow ranges as a mixture of three distributions: an exponential
function, a Rayleigh function with variable parameter and a standard Rayleigh
function. The full expression in terms of a normalized variable Z = r

2
√
M0

where r is the rain-flow range is:

pDK(Z) =
1

2
√
m0

[
D1

Q
e−

Z
Q +

D2Z

R2
e−

Z2

2R2 +D3Ze
−Z2

2 ] (2.107)

The coefficients D1, D2, D3 , R and Q are defined as D1 =
2(xm−α2

2)

1+α2 , D2 =
1−α2−D1+D2

1

1−R
, D3 = 1−D1 −D2, R =

α2−xm−D2
1

1−α2−D1+D2
1
, Q = 1.25 (α2−D3−D2R)

D1

The quantities D1, D2, D3 and R are the ”best fit” parameters that turned
out after minimizing the difference between the approximate PDF and the



Background | 59

range distribution obtained in the time-domain. The probability distribution
in Eq. 2.107 represents the link between the rain-flow counted ranges and
the PSD and it determines the PDF of rain-flow ranges needed for the life
estimations with any form of S-N data using the Miner’s rule. In the case of
single slope S-N line, Nsb = K, the substitution of pDK(Z) into Equation
Miner 2.105 returns a closed-form expression for the damage in time interval
T .

2.4.3.2 Tovo-Benasciutti method

The theory of this method was presented in 2005 [25]. For a stationary
Gaussian process, considering the the linear damage rule, the rain-flow
damage is always bounded between two damage values, i.e.,DRC ≤ DRFC ≤
D+ ≤ DNB where DRC is the damage given by the range-mean counting and
DNB is the damage provided by the Narrow-band method. Thus, the Tovo-
Benasciutti PDF is based on the fact that the amplitude PDF of rain-flow cycles
lies between these two limit distributions and it can be estimated by their linear
combination:

pTB(s,m) = wTBpLCC(s,m) + (1− wTB)pRC(s,m) (2.108)

wTB is a weight factor that defines the actual shape of rain-flow cycle
distribution. Unlike Dirlik, the Tovo-Benasciutti methods provides the
joint distribution of amplitudes and mean values of rain-flow cycles. The
two functions pLCC(s,m) and pRC(s,m) represent the amplitude–mean
distributions of the Level-Crossing Counting (LCC) and of the Range
Counting (RC) where the latter is only approximated. The same weighted sum
holds also for the probability distributions pTB(s), pLCC(s), pRC(s). Thus, the
damage become:

DTB = wTBDLCC+(1−wTB)DRC
∼= [wTB+(1−wTB)α

b−1
2 ]DNB (2.109)

The latter inequality takes advantage of the fact thatDLCC = DNB and that the
simple range counting damage is approximated as DRC

∼= αb−1
2 DNB . Hence,

the quantity [wTB + (1− wTB)α
b−1
2 ] can be interpreted as a correction factor

of the narrow-band damage. However, it has been demonstrated that the Tovo-
Benasciutti method has a theoretical basis. After the definition of the weighted
sum that links PDFs and damage values through wTB , a proper expression
for wTB has to be found to completely define the Tovo-Benasciutti method.
Theoretically, the parameter wTB is a function of the whole set of spectral and
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bandwidth parameters of the PSD of the random process. In the narrow-band
case, for example, the rain-flow distribution must converge to the Rayleigh
distribution (i.e., LCC function), which in turn requires that wTB ≃ 1 for
a narrow-band process, in which α1 and α2 both approach unity. Moreover,
many numerical simulations, following the approach described for the Dirlik
method, i.e., generating stress time histories from PSD of different shapes,
have been performed and the expression of wTB used today has finally been
developed:

w =
(α1 − α2)[1.112(1 + α1α2 − (α1 + α2))e

2.11α2 + (α1 − α2)]

(1− α2)2
(2.110)

Where α1 = M1√
M0M2

and α2 = M2√
M0M4

This expression is a result of a best
fitting on simulation results from PSD of various shapes. Moreover, as for the
Dirlik method, this formula assumes that the rain-flow probability distribution
is linked to four spectral moments, M0, M1, M2, and M4 which provide good
accuracy between frequency domain estimations and time domain simulation
results.

2.5 Material Properties and S-N curve
The multi-axial criteria and the spectral method are not enough to address
the random vibration fatigue calculation. The material properties of the
component is another fundamental characteristic needed to correctly estimate
the damage accumulation. Over the years, many models of the material
properties have been evolved, in particular related to the fatigue problem for
HCF. However, the properties of a metallic material are usually represented by
the S-N curve, also called Wöhler curve. The S-N curve is a graph representing
the relation between of the alternating stress versus the number of cycles
to failure for a given material, as represented by Fig. 2.18. Typically, the
stress ranges and the number of cycles are represented in a logarithmic scales.
Moreover, these curves are obtained by testing a metal specimen into the
testing machine where the specimen is subjected to a cyclic stress time history
until the failure is reached. Testing several specimens at different stress levels
and reporting the number of cycle to failure permits to develop the S-N curve
of the material. As can be seen in Fig. 2.18, the curve usually contain several
different areas: a plastic region (between A and B), an elastic region (between
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B and C) and an infinite life region (between C and D) typical of materials
like steel. In the graph, the ultimate strength stress is defined as the value that
causes a failure for one cycle. Moreover, the yield strength stress is the stress
level that divides the plastic and elastic region., corresponding to the stress
level at the point B.

Figure 2.18: Regions of S-N curve [11]

In the infinite life region, if the stress levels are below a certain level
called fatigue limit, an infinite number of cycles can be applied without
causing failure. Many non-ferrous metals, such as aluminum, do not exhibit
well-defined endurance limits, however sometimes a fatigue limit is defined
also for these material as the stress level for which the failure happen at a
number of cycles grater than 107 ÷ 108 cycles. In the elastic region, the
relationship between stress and strain remains linear and when a cycle is
applied and removed, the material returns to its original shape, without any
plastic deformation. This region is also called the HCF region, due to the high
number of stress cycles, at low amplitude. The slope of the S-N curve in elastic
region in the log-log chart can be represented by a line which is determined by
linear regression from the test’s results. In particular this line can be defined
by the Basquin’s equation

C = SbN (2.111)

where: ”b factor” governs the relationship between the stress level and the
number of cycles to failure and is the slope of the line, C is the Basquin’s
constant, S is the stress level and N is the corresponding number of cycles.
However, the tests needed to determine the S-N curve of a material are usually
performed in simplified experimental conditions, involving uni-axial stress
derived from pure torsion or pure axial loading. For example, it stands
out the approximation of the Equivalent Von Mises criterion, pointed out
in [25], which considers only the S-N line for normal stress in the fatigue
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damage calculation, neglecting the torsion fatigue properties. A simple way to
overcome this limitation is to use a ”reference S-N line” that is calibrated on
the S-N lines for both normal and shear stress in a so-called Modified Wöhler
Diagram, as presented by Susmel and Lazzarin [15]. This method permits to
take into account the multi-axial loading also into the material parameters.

2.5.1 Modified S-N curve
Susmel and Lazzarin in [15] proposed a method to take into account the multi-
axial stress state into the material properties and in particular considering the
Basquin’s parameters representing the elastic region of HCF. The method
defines a new reference curve for an arbitrary multi-axial loading located by
a reference stress ratio ( as Eq. 2.113) which quantifies the proportionality
degree of multi-axial stress. It is evaluated in terms of the mean value of the
maximum hydrostatic pressure and the mean amplitude of all cycles counted in
ith projected processΨp,i(t). As showed by Fig. 2.19, a value ρ = 1 locates the
curve under pure axial loading so the curve will correspond to the S-N curve
for pure axial loading. Instead, for ρ = 0, it indicates pure torsion loading and
the reference curve will match with that. All other stress states are taken into
account considering the parameter ρ and by means of a linear combination of
the curves for pure axial loading and pure torsion loading.

In particular, JA is used to indicate a reference fatigue strength evaluated

Figure 2.19: Reference S-N lines determined as modified S-N curves [7]

at NA cycles in the modified Wöhler diagram, expressed in terms of the
amplitude of the square root of the second invariant of the stress deviator.
JAaxi and JAtor denote, respectively, the fatigue strength values under fully-
reversed axial and torsion loading. Denoting with σa and τa the reference
fatigue strength amplitudes at NA cycles for fully-reversed axial and torsion
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loading, respectively, it is straightforward to verify that JAaxi = σa/
√
3 and

JAtor = τa. Instead, symbols kaxi and ktor indicate the corresponding inverse
slopes of S-N curves. The calculated reference value ρ allows estimating the
fatigue strength JA,ref and the inverse slope kref of the reference S-N curve
by a linear interpolation as following:

JA,ref = JA,tor + ρref (JA,axi − JA,tor) (2.112)

kref = ktor + ρref (kaxi − ktor) (2.113)

Many non-ferrous metals do not exhibit well-defined endurance limits or
otherwise stress levels below the fatigue limit can contribute to the crack
propagation also in materials like steel, in case of multi-axial loading with
variable amplitudes. For these reasons, the recommendation of [14] is to
extend the reference line also above elastic region, after the knee point,
considering a different slope. In particular, in this new region, the damage
sum is determined by modifying the Wöhler-line according to Haibach, which
assumes the slope b of the line representing the elastic region after the knee
point as b′ = 2b − i, with i = 1 for wrought and i = 2for cast, welded or
sintered materials.

Figure 2.20: Bi-linear S-N fatigue-life curve with the Haibach assumptions
[13]

Fig. 2.20 represent a schematic of the modified S-N curve with the
extended region according to the Haibach assumptions. As can bee seen, the
S-N curve in this case becomes a curve with two slopes and the total damage
can be computed numerically taking into account the two different regions.
Furthermore, the damage sumDth that leads to failure is theoretically equal to
1.0, however, in most applications, a different allowable value is considered
in order to take into account the uncertainties of the loading definition, the
material properties and the FE model. So a safe margin is assumed and the
damage that leads to failure is usually recommended as Dal = 0.5 for non
welded components and Dal = 0.3 for welded components.
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Chapter 3

Method

The purpose of this chapter is to provide an overview of the research method
used in this thesis to address the random vibration fatigue calculation in
Abaqus CAE. In particular, an overview on important features of the data
handling of Abaqus CAE are presented in 3.1. Section 3.2 describes how
the estimation of the fatigue life can be determined without a plug-in tool in
Abaqus CAE. For this purpose, the post-processing of the results obtained
in Abaqus is carried out by Simulia Fe-Safe, since the support of other
commercial software is needed. This method was then used to validate the
results obtained by the plug-in developed. Section 3.3 details the method used
to determine the fatigue damage with the help of the plug-in tool. Hence,
the following section 3.3.1 describes the Abaqus CAE RSG module used
to developed the GUI application of the plug-in tool. Finally, section 3.3.2
deeps into the Random Vibration Fatigue plug-in tool developed, describing its
properties and functionalities, with reference to the methods and assumptions
described in the previous chapter 1.1.

3.1 Abaqus CAE
Abaqus is a commercial software package for FE analysis, released in 1978.
One of the main product is Abaqus CAE (Complete Abaqus Environment)
which permits both pre-pocessisng and post-processing operations. In
particular, it carries the modeling and analysis of mechanical components as
well as the visualization of the FE analysis result. One of the main advantage of
Abaqus is that it uses the open-source scripting language Python for scripting
and customization, making possible to easily create custom plug-in tools.
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Even if the general concept of FE analysis used in Abaqus is equivalent to
other CAE software, there are some specific definitions that are typical of
Abaqus and they have to be clarified in order to correctly understand the plug-
in function. In Abaqus CAE, ’Step’ refers to a specific phase of the simulation
and hence a specific analysis. This means that a ’Step’ is characterized by its
specific loads and boundary conditions as well as type of analysis. The results
of each ’Step’ are saved into different ’Frames’ corresponding to different time
periods of the analysis or in the case of the frequency domain analysis, they
refers to different frequencies. The results obtained from the Abaqus solver,
in terms of ’Filed output results’ or ’History output results’, are written into an
Output DataBase (ODB) file. The ODB file is a repository of data, including
all the variables defining the simulation and all the output variables defined by
the user. In particular, for each ’Frame’ corresponding to a specific ’Step’, the
ODB file saves the results calculated. For examples in case of stress output, it
writes the values obtained at each integration point, node or centroid of each
element. In Abaqus CAE the user can then extracts the desired results and
obtain graphs and plots from the data saved into the ODB file.

3.2 Analysis with Fe-Safe
To determine the fatigue damage accumulated in a component subjected to
random vibrations by means of Abaqus CAE, an external software is needed
since the calculation cannot be executed entirely in Abaqus CAE. For this
purpose, Simulia Fe-Safe is widely used by the industries. It handles fatigue
analysis of FE models and it directly suits with all major FE program as
Abaqus, ANSYS or Nastran. As shown in Fig. 3.1, the random vibration
analysis is performed in Abaqus CAE and the fatigue analysis, instead, is
carried out by Fe-Safe.

In addition, the figure highlights the sub-steps needed to correctly perform
the random vibration analysis in Anaqus CAE and to obtain the results
needed for the following fatigue analysis in Fe-Safe. Once the model is
completely defined and the modal analysis is performed to extract all the
necessary eigenfrequqncies, the TF at each node of the component has to
be determined. For this reason a SSD analysis with modal superposition
technique in performed. It permits, by applying a unit acceleration loading, to
determine the TF for each frequency, in terms of amplitude and phase. Then
Fe-Safe takes these TF in terms of generalized displacement (the amplitude
of the response in the corresponding mode) for all the modes extracted by
the modal analysis. Moreover, Fe-Safe requires an external file which defines
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Figure 3.1: Random Vibration Fatigue analysis by Fe-Safe

the PSD matrix of the loading (in terms of ASD and CSD defined by real
and imaginary part). Considering a linear behavior of the component, Fe-
Safe linearly combine the results from Abaqus with the input PSD, in order
to define the stress PSD matrix. The stress PSD is then used to perform the
fatigue analysis, following the stress analysis approach available in Fe-Safe to
address random vibration fatigue calculations. In case of multi-axial stresses,
Fe-Safe permits two type of multi-axial criteria. The first one is the equivalent
PSD defined by the Equivalent Von Mises method, as described in section
2.3.1.1. The second type of multi-axial criteria are the different definitions of
the critical plane criteria. However, these are presented but not investigated
since the critical plane criteria were not developed in the Abaqus’ plug-in
tool. In addition, Fe-Safe uses both Dirlik and the Tovo-Benasciutti spectral
methods to compute the PDF. The linear damage rule is adopted to determine
the whole damage for each element of the component. Finally, a contour plot
of the component representing the damage for each element can be saved on a
output file and then displayed in Abaqus CAE.

3.3 Analysis with Abaqus CAE Plug-in tool
Random Vibration Fatigue analysis by means of the Abaqus CAE Plug-in tool
takes advantage of the properties of the random analysis in Abaqus CAE. In
fact, the analysis step in this case are a bit different compared to the previous
approach, as shown by Fig. 3.2, in order to have a more user friendly tool
and minimize the steps’ definition. In fact, the random vibration analysis
performed in Abaqus is based on the SSD analysis but it permits to directly
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define the PSD of the loading and ehence to obtain the stress PSDs as output.
This means that it carries the linear combination between the response of
the structure and the loading PSD. However, the drawback of this analysis
is that Abaqus CAE calculates only the stress ASD (diagnoal terms of the
PSD matrix) and the stress CSD (out-of-diagnoal terms of the PSD matrix)
are missed. Missing the CSD means that the phase information are completely
lost and this can be significant in case of out-of-phase stresses. For this reason,
the tool try to fill this lack by approximating the CSD with the product of the
square routs of the corresponding ASD.

Figure 3.2: Random Vibration Fatigue analysis by plug-in tool in Abaqus CAE

Once the stress PSDs are defined, the plug-in tool, described in section
3.3.2, extract them from the Odb file of results generated by Abaqus CAE.
The tool, differently from Fe-Safe, permits both types of fatigue analysis
approaches. Following the finite-life approach, as Fe-Safe, the different multi-
axial criteria described in 2.3 can be applied. Moreover, the PDF has to be
selected as described in 2.4 and finally the material properties in terms of
Basquin’s constants of the S-N line have to be indicated. As reported in 2.5,
based on the case of analysis, the modified S-N curve can be used to take
into account of the multi-axial stress state into the material properties and the
damage sum can be extended below the fatigue limit following the Haibach
criteria. However, the tool handles also infinite-life criteria, as described
in 2.3.2. For these criteria, the spectral parameters are defined from the
spectral moments derived from the stress PSDs and the damage is calculated
based on the material properties and the selected criteria. Finally, for both
approaches, the tool permits to determine the whole damage for each element
of the component according to the selections done. It is saved in the same
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Odb file with the random vibrations results but into a new step. This permits
to open the Odb result’s file in Abaqus and visualize a contour plot of the
damage for the entire component. Moreover, the contour plot allows to easily
find the hot-spot of the structure and also have an insight on the estimated life
of the component due to the applied random vibrations.

3.3.1 Abaqus CAE RSG
The Abaqus plug-ins are used to customize Abaqus CAE in order to efficiently
address repetitive tasks of pre-processing or post-processing. In particular,
concerning the post-processing of results data, Abaqus plug-in tools are used
to implement specific feature not directly available in the software. There are
two types of plug-ins: (i) Kernel Plug-ins (ii) GUI Plug-ins. While a kernel
plug-in consists of functions written using the Abaqus Scripting Interface,an
extension of the Python programming language, a GUI plug-in is written using
the Abaqus GUI Toolkit. The GUI plug-in permits to easily create these
plug-in tools without expensive scripting effort by means of the RSG Dialog
Builder. The RSG Dialog Builder consists of two parts, the effective GUI
builder and the executing script in the kernel of Abaqus CAE (the script to
be executed). The RSG Dialog Builder contains commands that create an
interface (the GUI of the custom plug-in) which in turn send commands to
the kernel. The Abaqus GUI Toolkit, instead, is an extension of the FOX GUI
Toolkit. Thus, the RSG dialog builder is an alternative to using the Abaqus
GUI Toolkit commands and a text editor to create dialog boxes. In fact, the
RSG Dialog Builder plug-in enables to create dialog boxes and connect them
to kernel commands without writing any code. In the RSG Dialog Builder
it is possible to select items from a toolbox to add them to an empty dialog
box, editing their properties and creating a simple GUI for the specific task.
The RSG dialog builder provides access to a subset of the commands in the
Abaqus GUI Toolkit, but it requires no programming experience to produce a
working dialog box. The dialog boxes created, they become the new plug-ins
to Abaqus-CAE. However, this dialog boxes send a list of variables defied in
them based on the user selections to the kernel program. The Kernel is the
main part of the plug-in tool. It is a python program that contains all the tasks
that have to be performed and when it is executed, it produces the results of the
plug-in tool. This program is usually developed separately from the GUI and
then is integrated into the RSG dialog builder. For this reason, values name
and names of the variables have to match between the GUI and the kernel
program. Moreover, as explained in section 3.3.2, the kernel program usually



70 | Method

contains multiple function definitions, so special attention should be paid in
the definition of the main function which is firstly executed.

3.3.2 Fatigue plug-in tool
Using the Abaqus plugin RSG Dialog Builder the GUI of the random vibration
fatigue plug-in tool was created. The GUI is represented in the following Fig.
3.3

Figure 3.3: GUI of Random Vibration Fatigue plug-in tool in Abaqus CAE

To address the calculation without errors the following advice need to be
fulfilled.
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A An .Odb file has to be selected

B The correct name of the Random Analysis Step, saved into the .Odb file,
has to be typed

C A new name for the Random Vibration Fatigue Calculation has to be
entered

D The duration of the vibration corresponding to the PSD used in the
Random Analysis has to be digit

E A multiaxial criteria has to be selected. Equivalent Von Mises,
Equivalent Lemaitre and Projection by Projection belong to the fatigue-
limit criteria corresponding to the damage tolerant approach. Crossland,
Matsubara and Sines are infinite-life criteria that belong to the safe-life
approach.

F If a fatigue-limit criteria is selected, the Basquin’s constants (b and C),
related to the axial S-N curve of the component’s material, have to be
typed

G For any criteria, enter the strength limit of the material in Pa

H Selecting the Modified S-N curve the modified curve based on the
Susmel’s model is adopted

I If a infinite-life criteria is selected the axial fatigue limit of the material
has to be entered in Pa

J If a infinite-life criteria is selected the torsional fatigue limit of the
material has to be entered in Pa

K If a the Modified S-N curve option is selected, the reference number
of cycles (same for axial and torsional) has to be typed for the linear
interpolation

L If a the Modified S-N curve option is selected, the Basquin’s inverse
slope b corresponding to the torsional S-N curve has to be entered

M If a fatigue-limit criteria is selected, the PDF model has to be selected
between Narrow-band, Dirlik and Tovo-Benasciutti
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N If a fatigue-limit criteria is selected, the infinite life button has to be
selected to limit the calculation above the knee point. In orther to
consider also the stresses under the fatigue limit, the finite-life button
has to be selected and the double slope S-N curve with the Haibach’s
assumtions is considered.

The python code for the ’Random Vibration Fatigue Tool’ is explained
in the following pseudo-codes. As described above, the GUI is connected
to the ”main function” which handles the variables defined in the GUI and
checks the correctness of the user-defined parameters. Moreover, the ’main
function’ checks that all the required data were provided based on the multi-
axial criteria selected by the user, otherwise an error message is printed in
the Abaqus Message area. If all the values and settings of the ’Random
Vibration Fatigue GUI’ are filled in a correct manner, the ”main function”
runs the specific multi-axial criteria and spectral method with the gathered
parameters. Thus, the ”main function” and all the subsequent functions are
described in the following by means of pseudo-codes. The pseudo-codes
presents the algorithms with an high-level description and without strictly
following the rules of python scripting, in order to present the code in a simple
and understandable way. These pseudo-codes permit to display the logic and
the structure of the algorithm, allowing to easily provide its functionality.

Thus, the first function executed by the fatigue tool is the following ”main
function” and its pseudo-code can be seen below in 3.1.

Once that one of the multi-axial criteria is selected, the corresponding
function is executed. The following listings 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7
report the pseudo-codes corresponding to all the multiaxial criteria.

The methods are based on the spectral moments derived from the stress
PSD and hence a separate function, described in 3.8, is used to determine them.

Moreover, the fatigue-limit approches require the calculation of the PDFs
and hence the some statistical parameter are needed to define them. These
parameters are determied by the following code 3.9.

Once all the parameters are determine, the PDFs can be determined. The
following pseudo-codes 3.10, 3.11, 3.12 represent the function needed to
define the Narrow-band PDF, the Dirlik PDF and the Tovo-Benasciutti PDF.



Method | 73

Consequently, for the fatigue -limit approaches, the damage accumulation
rule is applied to calculate the total damage for each element. In particular the
linear Miner’s rule is adopted in the following code 3.13.

Finally, once the damage for each element is determined, the map of the
total damage is saved in a new step within the same Odb file where the results
of the random analysis are saved. This function is executed for all the methods,
fatigue-limit and infinite-life approaches, and it is described in the following
list 3.14.
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Algorithm 1: Main Function
Main feature: checks the user-defined parameters, extract the data from
the Odb file and select the fatigue function based on the user input
Inputs: odbName , RandomStep , FatigueStep, Time, MC, b, c, SL,
ModifiedSN, AFL, TFL, NCA, NCT, PDF, INF
1. Open the Odb file.
2. Check if the new steps name are correct and if the values provided are
suitable with the options selected.

If not, print an error message end stop the program.
3. Check if the torsional fatigue limit is provided but the modified S-N
curve is not selected.

If yes, print a warning message end the torsional fatigue limit is
ignored.
4. Extract the frames (frequencies) and the Poisson’s ratio of the material
from the ODB file.
5. Save the Basquin’s parameters, b and C from the user-input.
6. Extracts the stress PSDs data of each element from the Random
Vibration Analysis, considering the integration point with the higher
stress. The CSD are approximated.

If the model is made of shell elements, a 3x3 PSD matrix is
considered.

If the model is made of solid elements, a 6x6 PSD matrix is
considered.
7. The equivalent PSDs of the Equivalent Von Mises and Equivalent
Lemaitre methods are computed.
8. Submission of the data to the appropriate function based on the user
selection.

Equivalent Von Mises
Equivalent Lemaitre
Projection by Projection
Crossland
Matsubara
Sines

9. Submit the data to the ContourPlot function to create the new step with
the damage results

Table 3.1: Random Vibration Fatigue Tool - Main Function
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Algorithm 2: Equivalent Von Mieses Function
Main feature: compute the damage according to the PDF selected and the
feature of the S-N curve
Inputs: Time,AFL,SL,b,c, PDF, INF,gmises,fr,numElements,NCA
1. Calculate the spectral moments from the Equivalent PSDs using the
function SpectralMoments
2. Determine the statistical parameters from the spectral moments using
the function Parameters
3. Define the PDF by means of the corresponding function ( Narrow-band,
Dirlik or Tovo-Benasciutti) based on the user-selection
4. Return the damage calculated by the function called Damage to the
Main Function

Table 3.2: Random Vibration Fatigue Tool - Equivalent Von Mises Function

Algorithm 3: Equivalent Lemaitre Function
Main feature: compute the damage according to the PDF selected and the
feature of the S-N curve
Inputs: Time, AFL,SL,TFL,NCT,b,c, ModifiedSN,PDF, INF,glemaitre, gm
,fr,numElements,numFrames,deltaf,nu,NCA
1. Calculate the spectral moments from the Equivalent PSDs using the
function SpectralMoments
2. Determine the statistical parameters from the spectral moments using
the function Parameters
3. Define the PDF by means of the corresponding function ( Narrow-band,
Dirlik or Tovo-Benasciutti) based on the user-selection
4. In the modified S-N curve is selected, it determines the new Basquin’s
constants (krefandJA,ref ) based on the parameter ρ according to the
Susmel model
5. Return the damage calculated by the function called Damage to the
Main Function

Table 3.3: Random Vibration Fatigue Tool - Equivalent Lemaitre Function
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Algorithm 4: Projection by Projection Function
Main feature: compute the damage according to the PDF selected and the
feature of the S-N curve
Inputs: Time,AFL,SL,TFL,NCA,NCT,b,c, ModifiedSN, PDF,
INF,sPSD,fr,numElements,numFrames,deltaf,shell,solid
1. According to the type of element, it determines the covariance matrix
2. Project the covariance matrix in the Euclidean space
3. Determine the eigenvalue and eigenvector of the projected covariance
matrix
4. Project the PSDs using the eigenvectors basis and it determines the
spectral moments
5. Determine the statistical parameters from the spectral moments using
the function Parameters
6. Define the PDF by means of the corresponding function ( Narrow-band,
Dirlik or Tovo-Benasciutti) based on the user-selection
7. In the modified S-N curve is selected, it determines the new Basquin’s
constants (krefandJA,ref ) based on the parameter ρ according to the
Susmel model 8. Calculate the damage of each PDF of the projected stress
considering or not the extended S-N curve
9. Return the total damage, determined with the non-linear accumulation
rule, to the Main Function

Table 3.4: Random Vibration Fatigue Tool - Projection bu Projection Function

Algorithm 5: Crossland Function
Main feature: compute the damage according to the Crossland criterion
Inputs:Time,AFL,SL,sPSD,fr,numElements,numFrames,deltaf,shell,solid
1. Determine the material’s paramaters α and β according to the
Crossland definition
2. Determine the spectral moments from the Equivalent Von Mises PSD
and the hydrostatic PSD
3. Calculate the average number of picks np

4. Using the Davenport formula, it calculates the expected amplitude
extremes
5. Determine the maximum amplitude of the second invariant

√
J2,a,

following the MCC and the maximum expected value of hydrostatic
pressure Max[p(t)]
6. Return the damage to the Main Function determined with the
Crossland’s criterion

Table 3.5: Random Vibration Fatigue Tool - Crossland Function
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Algorithm 6: Matsubara Function
Main feature: compute the damage according to the Matsubara criterion
Inputs:Time, AFL,TFL,gmises,gm,fr,numElements,numFrames,deltaf
1. Determine the material’s paramaters α and β according to the
Matsubara definition
2. According to the type of element, it determines the covariance matrix
3. Project the covariance matrix in the Euclidean space
4. Determine the eigenvalue and eigenvector of the projected covariance
matrix
5. Project the PSDs using the eigenvectors basis and it determines the
spectral moments
6. Calculate the average number of picks np amd using the Davenport
formula, it calculates the expected amplitude extremes
7. Determine the maximum amplitude of the second invariant

√
J2,a,

following the MCE
8. Determine the spectral moments from the PSDs corresponding to the
normal stresses 9. Calculate the average number of picks np and using the
Davenport formula, it calculates the expected amplitude extremes
10. Determine the expected maximum of normal stress E_Smax

11. Return the damage to the Main Function determined with the
Matsubara’s criterion

Table 3.6: Random Vibration Fatigue Tool - Matsubara Function
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Algorithm 7: Sines Function
Main feature: compute the damage according to the Sines criterion
Inputs:Time,
AFL,TFL,SL,sPSD,fr,numElements,numFrames,deltaf,shell,solid
1. Determine the material’s paramaters α and β according to the Sines
definition
2. According to the type of element, it determines the covariance matrix
3. Project the covariance matrix in the Euclidean space
4. Determine the eigenvalue and eigenvector of the projected covariance
matrix
5. Project the PSDs using the eigenvectors basis and it determines the
spectral moments
6. Calculate the average number of picks np amd using the Davenport
formula, it calculates the expected amplitude extremes
7. Determine the maximum amplitude of the second invariant

√
J2,a,

following the MCE
8. Determine the spectral moments from the PSDs corresponding to the
hydrostatic PSD 9. Calculate the average number of picks np and using the
Davenport formula, it calculates the expected amplitude extremes
10. Determine the expected mean values E[p(t)]
11. Return the damage to the Main Function determined with the Sines’
criterion

Table 3.7: Random Vibration Fatigue Tool - Sines Function

Algorithm 8: SpectralMoments Function
Main feature: compute the spectral moments of order 0, 1, 2 and 4 of the
PSD
Inputs: PSD,fr,numElements
1. calculates the spectral momets of each orders by integration over the
frequency range

Table 3.8: Random Vibration Fatigue Tool - SpectralMoments Function



Method | 79

Algorithm 9: Parameters Function
Main feature: compute the statistical parametrs from the spectral
moments of order 0, 1, 2 and 4
Inputs: m0,m1,m2,m4, numElements
1. Calculate number of upword zero crossing per second n+

0

2. Calculate the number of peaks per second np

3. Determine the irregularity factor γ
4. Determine the root mean square rms
5. Calculate the mean frequency xm

Table 3.9: Random Vibration Fatigue Tool - Parameters Function

Algorithm 10: Narrow-band Function
Main feature: Compute the PDF for Narrow-band process
Inputs: m0,s,numElements
1. Determine the PDF of narrow-band process based on the Bendat’s
definition

Table 3.10: Random Vibration Fatigue Tool - Narrow-band Function

Algorithm 10: Dirlik Function
Main feature: Compute the Dirlik PDF for wide-band process
Inputs: Gamma, xm, m0, s,numElements
1. Compute the parameters D1, R,D2, D3, Q and Z
2. Determine the PDF of wide-band process based on the Dirlik’s
definition

Table 3.11: Random Vibration Fatigue Tool - Dirlik Function

Algorithm 11: Tovo-Benasciutti Function
Main feature: Compute the Tovo-Benasciuti PDF for wide-band process
Inputs: m0,m1,m2,Gamma,s,numElements
1. Compute the parameter α1 and the factor w
2. Determine the PDF of wide-band process based on the Tovo-Benasciuti
’s definition

Table 3.12: Random Vibration Fatigue Tool - Tovo-Benasciuti Function
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Algorithm 12: Damage Function
Main feature: Compute the total damage for each element
Inputs: eP ,c,b,numElements,s,ds,pdf, Time, INF, AFL, NCA
1. If the extended S-N curve is not selected, it linearly sums (Miner’s rule)
the damage defined accordingly with the PDF and the material parameters
until the fatigue limit
2. Otherwise, it linearly sums the damages (Miner’s rule), accordingly
with the PDF and the material parameters, until the fatigue limit and the
Haibach model is used under the knee point

Table 3.13: Random Vibration Fatigue Tool - Damage Function

Algorithm 13: ContourPlot Function
Main feature: Define a new step in the Odb file with the damage of each
element saved as filed output
Inputs: FatigueStep,damage,numElements,MC, PDF,myInstance,Odb
1. Define the new step
2. Define the new frame within the new step
3. Save the field output of Damage for each element in the new frame
4. Save and close the Odb file

Table 3.14: Random Vibration Fatigue Tool - Contourplot Function
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Chapter 4

Application

The validation of the Abaqus plug-in tool developed has been carried out
comparing the results obtained in two different case studies. Firstly, the L-
plate subjected to random vibrations studied by Preumont in [9] was used. This
case study was widely investigated by many authors with different approaches.
This made possible to compare the results in terms of hotspost definition
and the magnitude of the damage accumulated. Moreover, the same sample
has been also studied by using the commercial software Fe-Safe in other to
take into account different mesh of the structure. After that the PbP and the
Crossland approaches have been selected and the real component has been
tested. Hence the second case study compares the results of the plug-in tool
with the results obtained by Fe-Safe for a real application. In the following
subsections, the case study iis described in 4.1 and the case study iiconcerning
the real component is presented in 4.2.

4.1 Case study I: L-plate
The first case study is a simple geometry defined by Pitoiset and Preumont in
[9] and then adopted by many authors in literature to compare and validate
their results. The plate is represented in Fig. 4.1 where the dimensions are in
millimeters and its thickness is e = 0.8 mm. The plate is made of steel and
the material properties considered for the FE model are reported in table 4.1

Elastic Modulus Density Poisson’s Ratio
210GPa 7000Kg/m3 0.33

Table 4.1: Material properties of L-plate
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Figure 4.1: L-Plate Geometry [33]

As highlighted by Fig. 4.2, both ends of the plate are clamped and
subjected to a band-limited white noise acceleration in the z direction,
perpendicular to the plane of the plate. This white noise acceleration
is characterized by a PSD with constant amplitude of 25 (m/s2)2

Hz
over the

frequency specrtum between 0 Hz and 400 Hz. Moreover, the two supports
are subjected to random vibrations completely uncorrelated.

Figure 4.2: L-Plate - Case study I

The plate was discretized into a total number of 2694 linear quadrilateral
shell elements of type S4R. These elements have four nodes with six degrees
of freedom at each node. Before of the Harmonic analysis or the Random
analysis, the Modal analysis has been performed to extract the modal basis.
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The first ten eigenfrequencies and eigenmodes were determined corresponding
to: f1 = 27.64 Hz, f2 = 108.22 Hz, f3 = 128.19 Hz, f4 = 291.37 Hz, f5 =

296.39 Hz, f6 = 407.33 Hz, f7 = 489.94 Hz, f8 = 597.83 Hz, f9 = 668.82

Hz, f10 = 739.27 Hz. The first 5 modes are represented in the following figure
4.3

(a) First Mode (b) Second Mode

(c) Third Mode (d) Fourth Mode

(e) Fifth Mode

Figure 4.3: Normal modes

Then, the Random analysis was performed considering a modal damping
of 3.5% equal for each mode. Fig. 4.4 shows the stress PSDs obtained from
the Random Analysis, for the element in the center of the notched area, as
highlighted by Fig. 4.2. The unit for the stress PSD is Pa2

Hz
and the unit for the

frequencies is Hz.
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(a) PSD Gxx,xx (b) PSD Gyy,yy

(c) PSD Gxy,xy

Figure 4.4: Stress PSDs of the element in the middle of the notched area

4.2 Case study II: Bracket
In order to apply and validate the tool against a real component, a bracket with
aerospace application is studied. The geometry of the bracket is represented
in Fig. 4.5. It is obtained from an aluminium sheet with t = 1.0 mm thickness
and the material properties considered for the FE model are reported in table
4.2. The bracket finds application in the helicopters field and it is used to fix
three cable connectors to the structure. For this reason it is subjected to a
random vibration background which can cause a fatigue failure.

Elastic Modulus Density Poisson’s Ratio
70GPa 2700Kg/m3 0.33

Table 4.2: Material properties of bracket
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Figure 4.5: Bracket Geometry

The vibration spectrum in a helicopter is characterized by the combination
of two effects: a continuous wide-band low-level background and strong
narrow-band peaks superimposed. The narrow-band picks correspond to the
main and tail rotors rotation frequency (f1) and their harmonics (fn). However,
the vibration environment is defined also by a low-level random component
due to aerodynamic flow. Thus, the tool is applied to study the fatigue damage
caused by these random vibrations on the bracket. In particular, the standard
MIL-STD-810F [16] is considered to define the PSD of the random vibrations
and in particular, Fig. 4.6 represent the PSD of the acceleration applied to all
three orthogonal axis of the Cartesian system of reference. As highlighted
by Fig. 4.7a, the bracket is considered to be fixed to the main structure
of the helicopter through the six holes to the right. With reference to Fig.
4.6, the random acceleration PSD is characterized by a constant amplitude of
W1 = 0.02 g2

Hz
between 100 and 300 Hz, starting from W0 = 0.002 g2

Hz
at 10

Hz and ending at the same value at 2000Hz. Moreover, the random vibrations
transmitted by the six holes are considered completely uncorrelated.

Figure 4.6: Acceleration PSD representing the helicopter vibration
environment [16]
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In order to represent the mass of the cable connectors which are fixed to the
three bigger holes of the bracket, a concentrated mass of 0.3Kg is positioned
in the center of each hole and it is rigidly connected to all the nodes on the
perimeter of the hole. These concentrated masses, represented by the green
squares in Fig. 4.7b, permit to simplify the study of the component dynamic
behavior since the complete model of the connector it is not more needed.

(a) Bracket boundary conditions (b) Mass elements

Figure 4.7: Bracket’s model

The component has been discretized into a total number of 6356 linear
quadrilateral shell elements of type S4R which have four nodes with six
degrees of freedom at each node. As done for the L-plate, a Modal analysis
has been performed to extract the modal basis. The first ten eigenmodes were
determined and the cooresponding eigenfrequencies are reported on the table
4.3. The first 8 modes, which are within the helicopter frequency spectrum,
are represented in the following figure 4.8 and their contour plots refer to the
magnitude of the displacements.
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Mode Frequency [Hz]
1 20.65
2 90.43
3 128.3
4 234.9
5 308.5
6 1121.5
7 1542.5
8 1966.9
9 2720.3
10 3156.8

Table 4.3: First ten natural frequencies of the bracket
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(a) First Mode (b) Second Mode

(c) Third Mode (d) Fourth Mode

(e) Fifth Mode (f) Sixth Mode

(g) Seventh Mode (h) Eighth Mode

Figure 4.8: Normal modes

Then, in order to generate the stress PSDs needed for the fatigue analysis,
the Random analysis was performed considering a modal damping of 2.5%
for each mode and considering the acceleration PSD defined by the standard
MIL-STD-810F [16] from 10 Hz to 2000 Hz.
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Chapter 5

Results

This chapter presents, the results obtained, for both case studies, with the
random vibration fatigue tool developed and the Fe-Safe software. In
particular, the fatigue hotspot identification and the value of the maximum
damage accumulated are compared considering the results obtained with the
fatigue tool and the commercial software Fe-Safe. All different methods are
analysed for the fist case study and then only the Projection by Projection
method and the Crossland method are applied to the second case study.

5.1 Comparison between the Fatigue Tool
and Fe-Safe

5.1.1 L-Plate
Once the Modal analysis and the Random analysis with modal superposition
were performed, the Random Vibration Fatigue tool developed has been
applied to estimate the damage accumulated on the L-plate by these random
vibrations. The first purpose of this study was to validate the tool against the
results found in literature. Moreover, this case study permitted to compare
all the six multi-axial approaches with focus on the ability to determine the
right hotspot and an acceptable total damage. The following table 5.1 contains
the material properties used for the analysis. As mentioned before, these
properties are derived from the elastic region of the axial and torsional S-N
curves of the material. Moreover, the previous defined PSD is considered to
represent the a random vibration loading of 12 seconds.
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Axial Inverse Slope b 9.82
Axial Constant C [Pa] 4.0641 · 1088

Strength limit [Pa] 340 · 106
Axial Fatigue Limit [PA] 252 · 106

Torsional Fatigue Limit [Pa] 180 · 106
Reference Number of Cycles 1.28 · 106

Torsional Inverse Slope bt 9.0

Table 5.1: Fatigue Material Properties - Case Study I

The first approach investigated was the Equivalent Von Mises, considering
the Dirlik PDF and the fatigue limit, so the stresses under the knee point were
not considered damaging. The contour plot of the damage obtained for this
analysis is shown by the following figure 5.1 where the maximum damage
obtained is 5.31 · 10−4.

Figure 5.1: Equivalent Von Mises - Case study I

The same considerations about the Dirlik PDF and the fatigue limit were
made, then, for the Equivalent Lemaitre method. Without considering the
modified S-N curve, it differs to the Equivalent Von Mises only for the
Poisson’s ratio. Hence, for this reason, Fig. 5.2 shows the same map as the
case of Equivalent Von Mises and the results are almost the same, leading to
the maximum damage of 5.23 · 10−4.
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Figure 5.2: Equivalent Lemaitre - Case study I

The last fatigue-limit approach implemented is the Projection by
Projection method which presents a different map compared to the previous
spectral methods. With the same assumptions as before, Fig. 5.3 shows that
the maximum damage of 2.93 · 10−4 moves from the top right side of the hole
to the middle of the left side of the notch, even if the modified S-N curve is
not considered in this contour plot.

Figure 5.3: Projection by Projection - Case study I

Moving to the infinite-life approaches, the Crossland criterion was applied
to the L-Plate and Fig. 5.4 shows the contour plot obtained. The map is similar
to the Projection by Projection method but there is an effect of the Boudary
conditions. The maximum damage of 2.76, excluding the elements near the
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supports of the plate, moves to the middle of the left side of the notch where
it is 2.65. Moreover the maximum damage exceed the maximum value of 1 so
this means that the stresses obtained from the random vibrations exceed the
fatigue limit and hence are damaging. It turns out that the previous analysis
were correct since only the stresses above the knee point were considered.

(a) Complete model

(b) Without Boundary Conditions effects

Figure 5.4: Crossland - Case study I

Following the same approach, also the Matsubara criteria was applied. As
for the Crossland criterion, Fig. 5.5 shows that there is an influence of the
boundary conditions. In fact, as for Crossland, the maximum damage of 5.36
moves to the left side of the notch with a value of 4.67. However, the map
obtained is the same as the Crossland criterion and the Matsubara method
predicts even more damaging random vibrations.
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(a) Complete model

(b) Without Boundary Conditions effects

Figure 5.5: Matsubara - Case study I

The last method implemented is the Sines criteria, very similar to the
Crossland criterion. In fact, this feature is reflected on the map of damage,
as shown by Fig. 5.6 where the boundary effects were excluded and leading
to a maximum damage of 2.97.
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Figure 5.6: Sines - Case study I

Using the Tovo-Benasciutti’s PDF the results are very similat to the
Dirlik’s PDF. In particular, Fig. 5.7 shows that the map obtained with the
Projection by Projection method is the very similar to the previous one. Also
the maximum total damage estimated is affected by a very small variation and
in this case is 2.93 · 10−4.

Figure 5.7: Projection by Projection with Tovo-Benasciutti’s PDF - Case study
I

Using the Narrow-band PDF instead, the map determined is completely
different compared to the previous but also the total damage determined
become very conservative. Fig. 5.8 shows that the maximum total damage
of 1.78 · 10−1 is three orders of magnitude higher than with the Dirlik’s and
Tovo-Bneasciutti’s PDFs. However, excluding the boundary effect it become
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6.44 · 10−2 and hence two orders of magnitude higher compared to the others
methods.

(a) Complete model

(b) Without Boundary Conditions effects

Figure 5.8: Projection by Projection with Narrow-band PDF - Case study I

The extended S-N curve with the Haibach assumptions was applied to
all three multi-axial criteria with the Dirlik method. As can be seen in Fig.
5.9, the maximum total damage determined increases in all three cases and it
becomes 5.47 · 10−4 for the Equivalent Von Mises method, 5.39 · 10−4 for the
Equivalent Lemaitre method and 3.73 · 10−4 for the Projection by Projection
method. However, they does not change significantly since the stresses below
the fatigue limit turn out to be not particularly damaging.
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(a) Equivalent Von Mises

(b) Equivalent Lemaitre

(c) Projection by Projection

Figure 5.9: Multi-axial criteria with extended S-N curve
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Lastly, the modified S-N curve with the Susmel’s assumptions was
considered. It takes into account also the torsional S-N curve of the material
as well as the axial S-N curve. In particular, the Equivalent Lemaitre e the
Projection by Projection approaches were analyzed and the results are reported
in the following figure 5.10. The maximum damages obtained in this case are
2.37·10−4 for the Equivalent Lemaitre method and 4.86·10−2 for the Projection
by Projection method.

(a) Equivalent Lemaitre

(b) Projection by Projection

Figure 5.10: Multi-axial criteria with modified S-N curve

To validate and compare the results obtained, the commercial software
Fe-Safe was used. In particular, the following Fig. 5.11 shows the map of
total damage accumulated by the component in the same conditions of loading
as the previous analysis performed with the plug-in tool in Abaqus. This
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contour plot has been obtained considering the Equivalent Von Mises multi-
axial criteria and the Dirlik’s PDF. The maximum damage obtained with Fe-
Safe is 4.73 · 10−4 and hence it is the same order of magnitude of the damages
determied by the methods implemented into the fatigue tool.

Figure 5.11: Fe-Safe result with Equivalent Von Mises multiaxial criteria and
Dirlik’s PDF - Case study I

As expected, the same map of damage is obtained with the Tovo-
Benasciutti’s PDF, as shown by Fig. 5.12. The maximum total damage
determined of 4.72 · 10−4 is equal to the maximum obtained with the Dirlik’s
PDF and the same hotspot is determined.

Figure 5.12: Fe-Safe result with Equivalent Von Mises multiaxial criteria and
Tovo-Benasciutti’s PDF - Case study I
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The results obtained with Fe-Safe show that the lack of the phase
information in the plug-in tool mean that the hotspot determined with
the Equivalent Von Mises and the Equivalent Lemaitre in the pug-in tool
could be not exactly correct. However, the Fe-Safe’s results confirm the
good estimation of the hotspot and the maximum total damage obtained
with the Projection by Projection multi-axial criteria. Also in the safe-life
approaches the map obtained is consistent with the results showed by Fe-
Safe. However, Fe-Safe does not implement this type of approach and hence
a direct comparison is not possible. However, in literature other authors have
studied this L-plate by using safe-life approaches. The results obtained for the
Crossland criterion are reported in [9] [34] and are shown in Fig. 5.13 where
the maximum damage corresponds to about 2.5.

Figure 5.13: Damage map obtained with the Crossland criterion [34] - Case
study I

Anyway, Fe-Safe allows to use critical plane criteria to define the
equivalent uniaxial PSD. In particular, the three different definition of critical
plane lead to different results in the total damage accumulated. However,
as shown by Fig. 5.14, excluding the boundary conditions effects, all three
criteria define the same hotspot. The critical plane defined by the maximum
normal stress leads to a maximum damage of 6.54 · 10−5. The critical plane
defined by the maximum shear stress, instead, leads to a maximum damage of
1.47 · 10−3. Finally, combining the two definitions with a factor k = 0.25 on
the shear stress, the maximum damage becomes 5.96 · 10−4.
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(a) Maximum Normal Stress

(b) Maximum Shear stress

(c) Combination of Normal and Shear stress with factor k=0.25

Figure 5.14: Fe-Safe’s results with Critical Plane criteria
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5.1.2 Bracket
As done for the L-plate, once the modal analysis and the random analysis are
performed, the Random Vibration Fatigue tool developed can be applied to
estimate the total damage accumulated on the component. In fact, the aims of
the study are to determine the hot-spot where the fatigue failure can happen
first and to calculate the total damage accumulated in order to address the life
of the component. In particular, in order to limit the study to one fatigue-
limit criteria and one infinite-life criteria, the Projection by Projection and
the Crossland criteria were applied to study the bracket since these two have
demonstrated better results when applied to the first case study. The following
table 5.2 contains the material properties used for the analysis and the previous
defined PSD is considered to represent the a random vibration loading of 10
seconds.

Axial Inverse Slope b 8.55
Axial Constant C [Pa] 1.62 · 1082

Strength limit [Pa] 360 · 106
Axial Fatigue Limit [PA] 120 · 106

Torsional Fatigue Limit [Pa] 80 · 106
Reference Number of Cycles 2.0 · 106

Table 5.2: Fatigue Material Properties - Case Study II

The following Fig. 5.15 represents the contour plot of the total damage
obtained with the fatigue-limit approach. In particular, the damage is obtained
considering the Projection by Projection method in combination with the
Tovo-Benasciutti PDF and excluding the stresses below the knee point. As
highlighted by the figure, the maximum damage is obtained on the top left hole
used to fix the bracket to the structure and hence the value of the total damage
could suffer of the boundary condition effect. However, the maximum damage
determined by the tool is 1.85 ·10−6 which corresponds to a total life of around
2800 hours before the a crack might occur.
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Figure 5.15: Projection by Projection - Case study II

Considering the infinite-life approach instead, Fig. 5.16 shows the damage
contour plot obtained considering the Crossland criterion. The map is limited
to the elements that exceed the damage value of 1, hence the elements for
which a fatigue failure can occur. Also in this second case, the maximum
value of 12.5 is obtained on the top left hole and thus it could be effected by
the Boudary conditions. However, the maximum damage largely exceed the
maximum value of 1 and hence this means that the stresses obtained from the
random vibrations could lead to a fatigue crack starting from the hole. This
analysis confirms the correctness of the previous one, since only the stresses
above the knee point were considered.

Figure 5.16: Crossland - Case study II

As done for the L-plate, also for this second case study, the results obtained
with the tool are validated and compared to the damage map obtained using
the commercial software Fe-Safe. Considering the same loading conditions
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applied to the analysis with the the plug-in tool in Abaqus, the following
Fig. 5.17 shows the map of total damage accumulated by the component
determined with Fe-Safe. In particular the contour plot has been obtained
considering the Equivalent Von Mises multi-axial criteria, the Dirlik’s PDF
and the same material properties as used into the tool. The maximum damage
determined by the commercial software is 9.20 · 10−7.

Figure 5.17: Fe-Safe result with Equivalent Von Mises multiaxial criteria and
Dirlik’s PDF - Case study II

As showed, the Fe-Safe’s results confirm the good estimation of the hotspot
and the maximum total damage obtained with both criteria. Moreover, the
order of magnitude of the maximum total damage obtained with Fe-Safe is
the same as for the fatigue-limit approach with the plug-in tool, even if for
both there could be boundary effects that affect the real life of the component.
However, also the damage map obtained for the safe-life approaches with the
Crossland criteria is consistent with the results showed by Fe-Safe.
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Chapter 6

Discussions

This last chapter aims to present the main findings derived from the work done.
In particular, the purpose of this chapter is to highlight the main characteristics
of the results obtained and define the future employment of the tool in the study
of random vibration fatigue. Moreover, a final section is dedicated to future
works on this field that can extend and improve the fatigue tool in Abaqus.

6.1 Conclusions
The two case studies used to validate the fatigue tool permitted to derive
some clear result on the application of the plug-in tool in Abaqus for random
vibration fatigue calculation.

Firstly, the employment of spectral methods permits to determine the
hotspot of the component, where the fatigue crack can more likely appear,
more quickly compared to time domain approaches. This means that the
analysis of also detailed components characterized by thousands of elements
can be performed in a few tens of minutes. However, these methods,
as described, are limited to zero mean random vibrations with Gaussian
distribution, which could be not always the case.

Moreover, the tool permits to simplifies the procedure requested to the user
since it takes advantage of the Abaqus random analysis, where the PSDs of
the acceleration can be directly defined. To address the same calculation with
a commercial software as Fe-Safe, it requires the definition of an additional
file which contains the acceleration PSDs. However, this has demonstrated
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an important drawback of the random analysis in Abaqus. In fact, it does not
determine the stress CSD and hence the phase information of the stress are lost.
This can be very significant especially for out-of-phase stress components.
The Equivalent Von Mises and the Equivalent Lemaitre methods make use of
the real part of the stress CSD, which was approximated. This assumption
can lead to error on the equivalent PSD, generating a different damage map
as obtained in the first case study for the L-Plate. Moreover, as demonstrated
by [35], the Equivalent Von Mises stress PSD formula is better suited for in-
phase since it neglects phase differences between the bi-axial stresses leading
to errors in case of out-of-phase stress components.

In addition, the Equivalent Von Mises approach can be applied only to a
very small class of materials and for this reason the modified S-N curve was
implemented. It demonstrated that quite significant different damages can be
obtained if also the torsional fatigue curve is considered. The extension of the
S-N curve under the knee point could lead or not to important differences in
the damage map which depends on the specific case of the material properties
and the intensity of the loading.

The first case study has also highlighted that the results obtained with the
Dirlik’s PDF and the Tovo-Benasciutti’s are equivalent and it confirmed that
the Narrow-band method define a conservative determination of the damage
when it is applied to broad-band spectra.

Among the finite-life approaches, the Projection by Projection approach
has demonstrated to achieve good results compared to Fe-Safe and hence it
was adopted to study the bracket in the second case study. As evidenced, it
permitted to correctly define the fatigue hotspot and obtain similar results in
terms of maximum total damage accumulated on the component.

For what concerns the infinite-life approaches, the Crossland, Sines and
Matsubara methods showed to obtain very similar results and hence the
preference of one method depends only on the specific case. Since this type
of methods are not implemented on commercial software as Fe-Safe, a direct
validation could not be done but however the results obtained for the L-plate
are consistent with the finite-life approach results and the literature.

However, all the methods developed refers to HCF and hence to the stress
state. For this reason, caution has to be made when the random vibration
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loading is particularly intense and high level of stress are reached in the
component. In this case, the assumption could not be valid and it could lead
to significant errors.

Moreover, also the modal damping used in the random analysis has to be
defined correctly, especially when the natural frequency are exited. A smaller
or higher damping could lead to significant difference in the stress PSD and
hence leading to significant variations in the total damage accumulated.

Finally, the methods developed are defined in a statistchal sense and the
random nature of the processes analysed are such that only appropriate test
campaigns can correctly evaluate the damage accumulation on the component,
especially for non-proportional loading.

6.2 Future works
Some assumptions were made to develop the fatigue tool and hence they define
all potential future works to extend the tool to more general cases.

In particular, the effects of temperature or corrosion, as the surface
roughness or the stress concentrations were not considered and are some
possible feature that might be included into the tool.

However, the main restriction of the study is that it is limited to random
stationary ergodic processes with zero mean and Gaussian distribution, which
is a strong simplification needed to address the problem with the existing
methods.

However, some method as the Tovo-Benasciutti were developed also for
non Gaussian [36] or for non stationary switching random loads [22] cases
even if they are limited to the uni-axial case. Thus, future works on this field
might extend the tool to non Gaussian or non stationary random processes in
more general cases.

In addition, the study does not take into account the mid stress correction
and only zero mean stress processes are considered. Thus, a further
development of the fatigue tool concerns the mean stress.

For this purpose, in vibration fatigue analysis, it is common to determine
the static stress level (i.e., the mean stress levels) and then shift the S–N curve
by applying mean stress correction theories (Goodman, Soderberg).

However, as suggested by Aykan in [37], a better and faster solution is
to calculate the damage, considering the mid stress correction, of the most
critical point only after calculating the damage with the oscillating stresses for



108 | Discussions

the entire component.

An additional improvement to the work concerns the inclusion of the exact
stress CSDs, which are not directly available in the random analysis with
Abaqus CAE.

This upgrade can extend, in a more accurate way, the tool to the study of
also out-of-phase stresses.

Finally, in the helicopter field but also in other engineering sectors, the
environmental excitation is not strictly random but it is composed of sinusoidal
contributions superimposed to random vibrations.

Thus, a further study could involve the implementation of spectral methods
to directly study Sine-on-Random excitation, as proposed in [38] without the
need of an harmonic removal technique to separate the deterministic and the
random components.
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Appendix A

Supporting material

A.1 Gaussian and Rayleigh distribution
The instantaneous values of a Gaussian random process l(t) follows the PDF
in Eq. A.1, wherem is the mean value (generally zero in the case of vibratory
phenomena) and s is the standard deviation.

p(l) =
1

s
√
2π
exp

(
− [l(t)−m]2

2s2

)
(A.1)

The Rayleigh distribution, instead has the PDF in Eq. A.2

p(l) =
l

s2
e−

l(t)2

2s2 (A.2)

A.2 Auto-correlation and Cross-correlation
functions

The auto-correlation function for a random process l(t)i is defined by the Eq.
A.3

R(t1, t1 + τ) = lim
∆l→∞

1

N

∑
i

l(t1)
il(t1 + τ)i = E[l(t1)l(t1 + τ)] (A.3)
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Where N is the number of recordings of a random phenomenon varying
with time from 0 to T [i ∈ [1, N ]] and E[·] is the mathematical expectation.
For a continuous process the auto-correlation function is Eq. A.4

R(τ) =

∫ ∞

−∞
l(t1)l(t1 + τ)p[l(t1)] dl(t1) (A.4)

Given the two processes l(t) and u(t) (for example, the excitation and
the response of a mechanical system), the cross-correlation function is the
function defined by the Eq. A.5

R(t1, t1 + τ)lu = lim
∆l→∞

1

N

∑
i

l(t1)
iu(t1 + τ)i = E[l(t1)u(t1 + τ)] (A.5)

If all ∆ti tend towards zero and if N → ∞, the quadratic mean is
defined by Eq. A.6 where the RMS value takes into account the totality of
the frequencies of the signal.

l2(t) =
1

T

∫ T

0

l2(t) dt (A.6)

Thus, in the time domain, the auto-correlation function Rl(τ) of the
calculated signal, for a given τ delay, of the product l(t)l(t + τ) is defined
by Eq. A.7

Rl(τ) = E[l(t)l(t+ τ)] = lim
T→∞

1

2T

∫ T

−T

l(t)l(t+ τ) dt (A.7)

The functionRl(τ) indicates the influence of the value of l at time t on the
value of the function l at time t+ τ . If Rl(τ) tends towards zero quickly when
τ becomes large, the random signal probably fluctuates quickly and contains
high frequency components.

At the same way it is possible to define the the cross-correlation function
between two random functions l(t) and u(t). It is defined by Eq. A.8
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Rlu(τ) = E[l(t)u(t+ τ)] = lim
T→∞

1

2T

∫ T

−T

l(t)u(t+ τ) dt (A.8)

The cross-correlation function makes it possible to establish the degree of
resemblance between two functions of the same variable (time in general).

A.3 Power spectral density
In vibration mechanics the mean power of an excitation is defined by Eq.
A.9. Considering the signal l(t) between −T/2 and +T/2 by Eq. A.9 where
lT (t) = l(t) for |t| ≤ T/2 and lT (t) = 0 for |t| > T/2

Pm = lim
T→∞

1

T

∫ +T/2

−T/2

|lT (t)|2 dt (A.9)

the function lT (t) has as a Fourier transformLT (f) and according to Parseval’s
equality ∫ +∞

−∞
|lT |2 dt =

∫ +∞

−∞
|LT (f)|2 df (A.10)

To find the mean power contained in a frequency band ∆f it is assumed
that the excitation l(t) is applied to a linear system with constant parameters
whose weighting function is h(t) and the transfer function is H(f). The
response rT (t) is given by Eq. A.11 where λ is an integration constant.

rT (t) =

∫ ∞

0

h(λ)lT (t− λ) dλ (A.11)

The mean power of the response is written by Eq. A.20

P response
m = lim

T→∞

2

T

∫ T

0

r2T (t) dt = lim
T→∞

2

T

∫ T

0

|RT (f)|2 df (A.12)

Fourier transform of the two members of Eq. A.11, we can show that Eq.
A.13:

RT (f) = H(f)Lt(f) (A.13)

yielding to Eq. A.14
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P response
m = lim

T→∞

2

T

∫ ∞

0

|H(f)|2|LT (f)|2 df (A.14)

If we consider GT (f) = 2|LT (f)|2
T

, the mean power corresponding to the
record lT (t) , finite length T , in the band ∆f centered on f , is written Eq.
A.15 and total mean power through out the record Eq. A.16:

PT (f,∆f) =

∫ f−∆f/2

f−∆f/2

GT (f) df (A.15)

PT (f,∆f) = lim
T→∞

∫ f−∆f/2

f−∆f/2

GT (f) df (A.16)

A.4 Wiener-Khinchine relations
It is shown that, for a stationary process Eq. A.17

G(f) = 2

∫ +∞

−∞
R(τ)e−2πifτ dτ (A.17)

R(τ) being an even function of τ , we obtain Eq. A.18 :

G(f) = 4

∫ +∞

0

R(τ)cos(−2πfτ) dτ (A.18)

If we take the inverse transform of G(f) the Eq. A.17 becomes Eq. A.19
and R(0) = l2(t) =

∫ +∞
0

G(f) df = (RMS value)2

R(τ) =
1

2

∫ +∞

−∞
G(f)e2πifτ df =

∫ +∞

0

G(f)cos(2πfτ) df (A.19)

These relations are called “Wiener-Khinchine relations”.

Considering one signal sample il(t), the relation between the PSD of the
excitation and the response of a linear system is:

iu(t) =

∫ ∞

0

h(λ)il(t− λ) dλ (A.20)

yielding to Eq. A.21
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iu(t1)
iu(t2) =

∫ ∞

0

∫ ∞

0

h(λ)h(µ)il(t1 − λ)il(t2 − µ) dλdµ (A.21)

and hence Eq. A.22

Ru(t1, t2) = E[u(t1)u(t2)] =

∫ ∞

0

∫ ∞

0

h(λ)h(µ)Rl(t1 − λ, t2 − µ) dλdµ

(A.22)
Example of a stationary process Ru(t1, t2) = Ru(0, t1 − t2) = Ru(t1 −

t2) = Ru(τ) and Ru(τ) =
∫∞
0

∫∞
0
h(λ)h(µ)Rl(τ, λ− µ) dλdµ

A.5 Transfer functions
Consider a stationary random vibration s(t) applied to a linear mechanical
system and its response v(t). In the absence of noise on the input and on the
response, measures l(t) and u(t) of these signals are identical to s(t) and v(t)
respectively. Their Fourier transforms are linked byU(f) = H(f)L(f) where
H(f) of the transfer function of the system. We will square each member
of this equation: U∗(f)U(f) = H(f)∗H(f)L∗(f)L(f) or according to the
autospectrum definition, Guu(f) = |H(f)|2Gll(f), a first expression of the
transfer function, which we will callH1(f) defined by Eq. A.23, whereH1(f)

contains no information on the phase :

H1(f) =

√
Guu(f)

Gll(f)
(A.23)

Going back and multiplying its two members by the conjugate Fourier
transform of L(f), L∗(f)U(f) = H(f)L∗(f)L(f) or, according to the
PSD definition (autospectrum and cross-power spectral density): Glu(f) =

H(f)Gll(f) yielding a second expression H2(f) of the transfer function Eq.
A.24:

H2(f) =
Glu(f)

Gll(f)
(A.24)

Finally, multiply both sides of relation by the conjugate U∗(f) of U(f).
It becomes U∗(f)U(f) = H(f)U∗(f)L(f) and Guu(f) = H(f)Gul(f).
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Yielding the last expression of H3(f) Eq. A.25:

H3(f) =
Guu(f)

Gul(f)
(A.25)

These three conditions are theoretically similar as long as: (i) signals l(t)
and u(t) have no noise; (ii) there is no other vibration source contributing to
the response u(t); (iii) PSDs are calculated with a very low statistical error.

The derivative of the auto-correlation function of a derivable process is:
(i) continuous and derivable at any point; (ii) even. It is thus canceled for
τ = 0 , yielding E[ll̇] = 0 There is no correlation between a stationary
process l(t) and the derivative l̇(t) (whatever the distribution law). The auto-
correlation functions of the derivative processes of l(t) depend only on τ

and the derivatives of a stationary process are stationary functions. However,
the integral of a stationary function is not necessarily stationary. The result
obtained shows the existence of a transfer function H(Ω) between l(t) and its
derivatives Eq.A.26 A.27 where H(Ω) = iΩ

Sl̇(Ω) =| H(Ω) |2 Sl(Ω) (A.26)

Sl̈(Ω) =| H(Ω) |4 Sl(Ω) (A.27)
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