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Abstract

Monte Carlo algorithms, such as the Metropolis-Hastings one, are commonly used to
simulate Ising spin systems. This thesis explores an alternative approach by applying
the replicator equation to simulate Ising models, replacing the minimisation of the
system’s energy with the maximisation of the player’s strategy. The analysis focuses
on an Ising model for which spins vectors can take orientations corresponding to the
principal axes of the system. The replicator equation is modified to take into account
interactions between neighbouring spins, both nearest and next-nearest neighbours,
as well as external magnetic and nematic fields.

Results show that both the Metropolis-Hastings and the proposed hybrid algo-
rithm reach similar outcomes at a local level. However, although the classical Monte
Carlo-based simulations converge to a more globally stable state, the rate of con-
vergence is significantly slower. The hybrid approach, while much faster, presents
a more fragmented state, composed of islands of stable states. The introduction of
magnetic fields and nematic interactions greatly impacts the system by enhancing
stability at the expenses of a slower convergence rate. The analysis suggests that,
while the Metropolis-Hastings algorithm remains a robust method for simulating
the Ising model, the replicator dynamics with appropriate modifications, provides
a faster and effective tool for understanding stability of complex spin systems, by
analysing local behaviours.
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Chapter 1

Introduction

Simulating complex physical systems is one of the most challenging and impor-
tant tasks in computational Physics. These simulations are an important tool in
understanding fundamental processes, often revealing critical insight into complex
phenomena. The aim of the thesis is to introduce a new approach for simulating
extended Ising systems, based on the replicator equation. Among the theoretical
paradigms of Statistical Mechanics, the Ising model holds a significant position.
Initially developed to describe ferromagnetism, this simple, yet powerful model has
been applied across various fields, from Materials Science [1] to Biology [2]. In its
simplest form, it provides a flexible framework for modelling pairwise interactions
between entities that can take binary states. The model has also been applied in the
context of evolutionary game theory, to study the evolution of repeated symmetric
games [3].

Evolutionary game theory models systems of individuals (like organisms or play-
ers) adopting strategies, rules of behaviours that dictate their actions, chosen from
a given game-specific set. The state of the system is determined by the frequency of
these strategies among individuals at any given moment, changing over time, as in-
dividuals die or reproduce. This evolution is governed by the fitness associated with
each strategy, which represents the ability of the individual adopting that strategy
to survive. The fitness depends on both the considered strategy and the state of
the system. In this context, the replicator equation plays a pivotal role, providing a
mathematical model for many evolutionary processes. Firstly introduced by Peter
Taylor and Leo Jonker [4], it translates the concept of survival of the fittest into a
deterministic differential equation. The change of the frequency of each strategy is
proportional to the difference between its fitness and the average fitness. Over time,
individuals tend to switch to strategies that maximise their fitness and strategies
that do better than the average increase in frequency while the less adequate ones
decrease.

Despite its significance, the classical replicator equation has limitations. In
particular, it fails to account for local interactions between subsets of individu-
als within the populations, which is fundamental when looking at applications to
interacting spins systems. A major development addressing this limitation is the
pair approximation method, firstly introduced by Matsuda [5]. The method takes
into account the importance of local interactions between players by tracking the
frequency between neighbouring strategy pairs. In this thesis, we introduce a new
approach to this problem, by modifying the equations to include interactions on a
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two-dimensional lattice. The aim of this modification is developing a model that
can be applied to simulate Ising systems, by considering the maximisation of the
individual’s fitness instead of the minimisation of the energy.

In this thesis, we study an Ising model, which considers three-dimensional uni-
tary spin vectors allowed to align along the principal axes of a three-dimensional
coordinate system. They are placed on a two-dimensional square lattice, where they
interact both with nearest-neighbouring and next-to-nearest neighbouring spins. Be-
tween nearest-neighbouring points, interactions are extended to include a term pe-
nalising orthogonal spins; the effects of magnetic and nematic fields are also consid-
ered. The model has been translated into a game theory framework. We assign a
probability distribution over the set of strategies to each point of a square lattice,
whose evolution follows differential equations with the same structure of the classical
replicator. However, when computing the fitness, we shift focus and compute the
fitness associated with each individual, accounting for the interactions specified by
the structure of the system, rather than the frequency of the fitness. These adjust-
ments provide a local character to the equations, which is reflected in the results of
the simulations. Particular attention is given to the addition of external biases in
the modified replicator equations, which is not present in the classical model. We
propose the addition of a new term in the equation, that shifts the probability in
every lattice point towards a given strategy, while being consistent with the model.

The modified equations are then used to construct an algorithm to explore the
behaviour of the system. Simulations obtained using the newly proposed replicator-
based algorithm are compared to the ones of the Metropolis-Hastings algorithm [6],
traditionally used to simulate Ising systems. By focusing on these two methods, the
goal is to understand how different interactions and external biases affect the be-
haviour of different spin systems and compare equilibrium configurations and speed
of convergence. We must consider that, while the Metropolis-Hastings algorithm
depends on the temperature of the system, our new method does not take it into
account. Since the system considers deterministic equations, we consider low tem-
perature simulations for the Metropolis-Hastings algorithm at T “ 0.01.

Firstly, we considered only nearest-neighbouring interactions, with homogeneous
coupling constant for both the ferromagnetic and antiferromagnetic case. For both
methods, simulations present a similar behaviour at convergence. They both form
clusters, that minimise the energy (or maximise the fitness) of interacting lattice
points inside them, while receiving a net zero contributions from the ones on the
boundaries. The size of these islands is bigger when using the Metropolis-Hastings
rule, which is able to reach a more stable state. However, the newly proposed
algorithm is much faster, considering the ferromagnetic case it converges in about
400 sweeps, in contrast to the 3500 necessary for the Metropolis-Hastings one. The
addition of external biases, magnetic or nematic fields, depending on the type of
interactions considered, allows the system to reach a more stable configuration.
Particularly, for ferromagnetic interactions, when the bias is strong enough, both
algorithms converge to the ground state, for which every spin is directed along the
same direction. For a more complex system, with competing nearest-neighbours
and next-to-nearest neighbour interactions, we observe a much richer convergence
behaviour. The ratio of the coupling parameter r “ J2

J1
of interactions between

next-nearest and next-to-nearest neighbour spins is important for the state of the
system. When its value is small enough, the ferromagnetic interactions between
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nearest neighbours dominate and the behaviour of system corresponds to the simple
ferromagnetic case, with smaller islands. As it increases, we observe two types of
clusters forming: a striped and a vortex-like configuration. This behaviour is
shown in Figure 1.1 for both algorithms, where we considered a model with r “ 5,
which is high enough for these islands to emerge.

(a) (b)

Figure 1.1: Simulation of an Ising system with ferromagnetic nearest neighbour
interactions and antiferromagnetic next nearest neighbour interaction with relative
strength given by r “ 5. The system is simulated using:(a) the replicator-based
algorithm (b) the Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, albeit slower, remains a robust method to
analyse the energy landscape and finding a globally stable configuration at conver-
gence. The replicator-based algorithm is faster, but reaches a fragmented locally
stable state. This originates from the inherited locality of the method, which lim-
its its ability to achieve global stability. The addition of external biases reduces
the advantage in speed of the replicator equation, while allowing it to reach a more
stable configuration. Possible future research directions include exploring how incor-
porating temperature variations may change the behaviour of the replicator-based
algorithm, to overcome its locality. Moreover, a mathematical analysis of the model
through Γ-convergence could be beneficial to understand its behaviour, in the con-
tinuous limit.

The plan of the thesis is the following:

• Chapter 2 presents a general review of the key concepts of this thesis, their
relevance in the thesis and the derivation of the replicator-based algorithm.
It introduces the discrete Ising model and its various extensions. Starting
from simple nearest neighbour interactions, we progressively introduced more
complex interactions, such as magnetic and nematic fields, extended interac-
tions term penalising orthogonal neighbouring spin vectors, and competing
next-to-nearest neighbour interactions. The classical tools for the simulation
of the Ising model are presented in this section, with a particular focus on
the Metropolis-Hasting algorithm. Spatial evolutionary game theory and the
replicator equations are briefly presented to serve as a base for the model. Our
new algorithm is introduced, by modifying the replicator equation to include
both spatial interactions and external biases.
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• Chapter 3 is devoted to the comparison of the newly proposed algorithm
and the results that can be obtained with the Monte Carlo methods. For
all cases we simulated a 100 ˆ 100 square lattice. Starting from the known
case of the Prisoner’s dilemma to test the algorithm, we simulate the game,
obtaining a state dominated by the second strategy. Then we simulate different
systems for both the replicator-based and the Metropolis-Hastings algorithms.
We start by considering simple ferromagnetic and antiferromagnetic cases to
which we add different external biases, corresponding to a magnetic and a
nematic field, respectively. The J1 ´ J2 model is considered and analysed for
different values the ratio r between the coupling constants, finding transition
points as parameter r varies. Also in this case, we consider the addition of a
nematic field, which significantly simplifies the behaviour of the system. In all
cases, the Metropolis-Hastings algorithm is significantly slower than the new
algorithm, but it often reaches a more globally stable state than the replicator
equations.

• Chapter 4 closes the thesis with a summary of the main results, highlight-
ing the performance of the two algorithms and their respective advantages.
Moreover, it suggests possible new future developments.
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Chapter 2

Methodology

2.1 Ising model

The Ising model was developed by the German physicist Wilhelm Lenz in 1920 to
describe ferromagnetic properties of materials through interactions between atomic
spins. The model was later named after his student Ernst Ising, who solved the
one-dimensional case, demonstrating the absence of a phase transition. Since then,
the Ising model has evolved into one of the most significant and widely studied
models in statistical mechanics. Notably, Lars Onsager provided an exact solution
to the two-dimensional model [7], highlighting its ability to capture essential features
of phase transitions, applicable to other types of systems of interacting particles.
The model offers a simplified yet powerful representation of interacting systems by
representing them as a network of atomic spins, binary variables that can take either
of two states: up or down. These spins interact with each other, depending on their
relative distance, and the model aims to understand how these interactions influence
global behaviours, such as magnetization.

To model the interactions between spins, it can be beneficial to define the system
on a graph. A graph is a mathematical structure representing relationships between
objects, determined by two sets V and E. The set V represents the vertices (or
nodes) of the graph, corresponding to the objects, in this case the spins. The set of
edges (or links) E represents the relationships between vertices and it corresponds
to a subset of all possible connections between vertices, determined by V ˆ V .
Therefore, the graph is defined as G “ pV,Eq and it is called undirected , if the edges
do not have a specific orientation, or directed, when the edges have an orientation; it
is called weighted, when the edges have specific values assigned to them, representing
the strength of the interactions. Specifically, in the context of the Ising model, the
spin variables si are defined on the sites i P V taking one of two possible states,
si P

␣

´1, 1
(

, corresponding respectively to a down or up spin. The main objective of
the model is to comprehend how these local interactions influence global properties,
such as its overall magnetization. The simplest form of the model considers only
interactions between nearest neighbouring spins, but more complex versions can
include external magnetic fields, higher order or different types of interactions. The
behaviour of the model is driven by its Hamiltonian H, which represents the total
energy of the system. The simplest version of the model considers only nearest
neighbour interactions and an external magnetic field and the Hamiltonian for such
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a system is given by
H “ ´

ÿ

pi,jqPE

Ji,jsisj ´
ÿ

iPV

hisi. (2.1)

In (2.1) the first summation denotes the sum over all pairs of spins si and sj con-
nected by an edge of the graph ppi, jq P Eq; the coupling parameter Ji,j quantifies
the strength and the nature of these interactions and can be considered as a weight
on the graph. The second summation is taken over each edge of the graph pi P V q

and accounts for the influence of an external magnetic field which acts on each spin
at site i with a strength hi. Parameters hi and Ji,j play a crucial role in determining
the behaviour of the system. The field establishes a preference for one direction
for each lattice site i, proportional to the strength hi. The coupling parameter Ji,j
dictates the nature of the magnetic interaction, dividing the system into different
classes, depending on its value. When Ji,j ě 0 for all pi, jq P E, the system is fer-
romagnetic, and the energy contribution given by the interaction term is minimised
when spins align with the direction of their neighbours, i.e. si “ sj for every pair
pi, jq P E. This leads to state with a strong net magnetization, characteristic of fer-
romagnetic materials, whose intensity is strongly correlated to the temperature of
the system. In particular, the ground state of the system, which corresponds to the
state of lowest energy, is represented by the configuration where all the spins in the
system are aligned, i.e. si “ s for all i points in the lattice. The value of s depends
on the sign of the magnetic field: for a homogeneous magnetic field, hi “ h for all
i P V , h ą 0 implies s “ 1, while s “ ´1 if h ă 0; for all other cases the configu-
ration may be more complex and other considerations may be taken into account.
On the other hand, the system is antiferromagnetic when Ji,j ď 0 for all pi, jq P E;
the energy is minimised when adjacent spins are anti-parallel. In this case however,
the perfect alternation of opposite spins is not always possible, depending on the
structure of the lattice. This can lead to what is known as frustration. In frustrated
systems, spins cannot simultaneously satisfy interactions preferences from all their
neighbours, resulting in multiple and often complex ground state configurations.

In real-world applications, it is common to use a mixed Ising model, for which
both ferromagnetic and antiferromagnetic interactions coexist, in different regions
of the lattice. This occurs when the coupling parameter Ji,j takes both positive
and negative values for different coupling spins. Such systems reflect real material
behaviour, that arises from different situations, such as lattice imperfections given
by structural anomalies. In such systems, spins tend to align either parallel or anti-
parallel to their adjacent spins, depending on the local variations of the parameters,
leading to a wide range of possible configurations and magnetic behaviours.

In even more complex systems, interactions between spins are not limited to
nearest neighbouring spins, but may include interactions with next neighbouring
spins. These models are known as the J1 ´ J2 Ising model, where J1 represents the
nearest-neighbour coupling and J2 the next-to-nearest-neighbour coupling. In this
model, competing interactions between neighbours with different relative distances
can lead to frustration, which lead to more complex ground state configurations.
For an Ising model, with binary spins, the ground state on a square lattice has been
studied, using different methods, including mean field approximation [8], Monte
Carlo simulations [9] and Effective Field theory (EFT) [10]. The different studies
agree on defining two different phases determined by different ground states, even if
the type of transition and values of r are not in agreement. Using an EFT approach,
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R. A. dos Anjos et al [10] determined a second order phase transition between a
ferromagnetic phase, that emerges for values r ă 1

2
, and a super-antiferromagnetic

phase, when r ą 1
2
. The ferromagnetic phase is determined by the ferromagnetic

ground state, while, the super-antiferromagnetic phase is composed by alternated
rows of anti-parallel spins.

In this thesis, the Ising model is extended to include six different directions of the
spins, and the emerging phases will be more complex, see Section 3.4. Moreover, we
focus on different Ising systems, from simple cases with homogeneous ferromagnetic
nearest neighbour interactions to more complex systems with competing interactions
between neighbouring spins at different relative distances. We will address the
problem by performing simulations that are based on the replicator dynamics. In
particular, as we will see in Section 2.4, the energy minimisation is replaced by
fitness maximisation.

The most general model that we will consider is defined on a two-dimensional
square lattice with ferromagnetic nearest neighbour interactions, as well as antifer-
romagnetic next-to-nearest neighbour interactions, both homogeneous in the lattice.
A square lattice N ˆ N , with nearest and next-to-nearest neighbour interactions,
can be represented by a graph S “ GpV,Eq. The set of vertices V “ t1, . . . , N2u

corresponds to the lattice points and the set of edges, defined as E “ E1 Y E2 con-
tains nearest and next-to-nearest neighbouring pairs of lattice points. In particular,
E1 will contain edges connecting pairs pi, jq such that |i´ j| “ 1, while, the links in
E2 connects pairs pi, jq such that |i ´ j| “

?
2. The spins are represented as three

dimensional vectors restricted to align along the principal axes of the system, in
order to provide a simplified yet insightful model for studying the impact of com-
peting interactions. The aim is to conduct a numerical study that functions as a
precursor for a future, more rigours analysis, of a limit in a continuous three dimen-
sional vector space. The Hamiltonian of the system includes contributions from an
interaction term described by:

Eint “ ´J1
ÿ

pi,jqPE1

s⃗i ¨ s⃗j ` J2
ÿ

pi,jqPE2

s⃗i ¨ s⃗j

“ ´
ÿ

pi,jqPE1

s⃗i ¨ s⃗j ` r
ÿ

pi,jqPE2

s⃗i ¨ s⃗j .
(2.2)

The summation are taken over s⃗i neighbouring sites in the lattice and the spin
at each point in the lattice is represented by a vector that can take values in the
set

␣

p˘1, 0, 0, q,p0,˘1, 0, q, p0, 0,˘1q
(

, which correspond to an alignment with the
principal axes of the system. Specifically, the first summation term represents the
contributions from interactions between nearest neighbouring spins, at a distance
of one lattice spacing |i ´ j| “ 1, and it is negative to account for ferromagnetic
interactions. The coupling parameter J1 ą 0 defines the strength of the interac-
tion and the dot product s⃗i ¨ s⃗j measures the alignment of the spins. The second
term accounts for interactions between next-to-nearest neighbour, at a distance of?
2 lattice spacing; like the first one it depends on the alignment between the spins

through a coupling parameter J2 ě 0, and unlike the first one is a positive term
to account for antiferromagnetic interactions. The energy contribution is simpli-
fied by introducing the relative interaction strength r, defined as the ratio between
next-to-nearest-neighbour coupling constants and nearest-neighbour ones: r “ J2

J1
.

Expressing the energy in terms of r emphasises that the behaviour of the system
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depends on the relative strength between J1 and J2, rather than their individual
values. In Section 3.4 we will explore how the system behaviour changes for differ-
ent values of r, in the case of competing ferromagnetic next-nearest neighbour and
antiferromagnetic next-to-nearest neighbour interactions.

When considering an external magnetic field interacting with the spins, an ad-
ditional contribution to the energy of the system is introduced. Specifically, if we
consider a homogeneous magnetic field h⃗ “ Bµ⃗, of strength given by the positive
parameter B and directed along direction µ⃗, the contribution to the energy can be
expressed as:

Emag “ ´
ÿ

iPV

h⃗ ¨ s⃗i. (2.3)

This energy contribution considers the effect of the magnetic field and it is minimised
when the spins align with its direction µ⃗.

Moreover, nematic fields are also considered, especially when antiferromagnetic
interactions are added to the system. This type of fields introduce anisotropic in-
teractions that maintain a preferred orientation, without restricting the alignment
of spins, unlike that in equation (2.3). This characteristic allows spins to be favored
both in the parallel and anti-parallel direction of the field. Nematic interactions are
commonly found in liquid crystals, for which relative orientations of the molecules
are more important than their direction. The contribution to the energy derived
from this type of interaction can be expressed by the term

Enem “ ´
ÿ

iPV

|⃗hnem ¨ s⃗i|. (2.4)

Similar to the classical magnetic field , the homogeneous nematic field can be ex-
pressed by h⃗nem “ Bµ⃗, where the positive parameter B determines the strength and
the vector µ⃗ its direction, constituting the preferred orientation axis of the spins.
Unlike the classical magnetic field, the term depend on the absolute value of the dot
product between h⃗nem and the spins s⃗i.

We also considered an additional interaction term aimed at penalising the con-
tribution from orthogonal nearest neighbouring spins. The term can be expressed
as:

Eext “ ´
ÿ

pi,jqPE1

ν
`

1 ´ |s⃗i ¨ s⃗j|
˘

. (2.5)

The summation is taken over all possible pairs pi, jq P E1 in the system. This
additional interaction increases the total energy of the system by a factor ´ν (con-
sidering the term ν ď 0) when neighbouring spins are orthogonal to each other,
that is |s⃗i ¨ s⃗j| “ 0, and it does not have any effect when the spins are parallel or
anti-parallel to each other. It can also be considered as asymmetric, meaning that it
penalises the possible orthogonal direction differently. The contribution in this case
can be written as:

Eas “ ´
ÿ

pi,jqPE1

ν λ⃗
s⃗i,s⃗j

`

1 ´ |s⃗i ¨ s⃗j|
˘

. (2.6)

The energy contribution has the same form as in the symmetric case, except for the
strength parameter ν λ⃗

s⃗i,s⃗j
that now depends on the direction of the considered spins.

Generally, it can be defined as:

ν λ⃗
s⃗i,s⃗j

“

#

ν1 if s⃗i “ ˘λ⃗ or s⃗j “ ˘λ⃗,
ν2 otherwise.
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Therefore, when at least one of the interacting orthogonal spins is aligned with the
direction λ⃗ the penalisation has strength ν1, while, when neither of them is aligned
with λ⃗ it has strength ν2. Both cases ν1 ą ν2 and ν1 ă ν2 are analysed.

2.2 Metropolis-Hastings algorithm

After establishing the theoretical framework of the Ising model, understanding how
the interactions govern the system, the next step is to study how the model behaves
for different sets of couplings. Analytical solutions are often limited to simple cases,
making numerical simulations an essential tool for providing insights on the system
behaviours, for more complex systems. To simulate the behaviour of the system
at finite temperatures, we need to sample from the distribution of possible spin
configurations. In statistical physics, the probability of the system of being in a
particular configuration S at temperature T is given by the Maxwell-Boltzmann
factor:

P pSq “
e

´
HpSq

kbT

Z
, (2.7)

where kb is the Boltzmann factor, T the temperature of the system, HpSq the Hamil-
tonian of the configuration and Z the partition function, that sums over all possible
configurations. Sampling directly from the distribution can be unfeasible due the
computational complexity, especially for large systems, since computing the parti-
tion function of the system involves summing over an exponential number of config-
urations. Monte Carlo algorithms offer an efficient way to sample from the distribu-
tion without the need to compute the partition function. One of the most important
algorithms is the Metropolis-Hastings one, originally developed by Metropolis et al.
[6] and later generalised by Hastings [11]. Its flexibility has made it an essential
tool for numerical simulations, for a wide range of applications, from simulating
physical systems to estimating posterior distribution for Bayesian analysis. In the
context of the Ising model, the Metropolis-Hastings algorithm is used to explore spin
configurations in the systems, at non-zero temperatures. Starting from a random
configuration of spins, the algorithm constructs a Markov chain that, after enough
iterations, will eventually converge to the target distribution. The requirement for
the method to converge to equilibrium are ergodicity and the detailed balance con-
ditions, that are both satisfied by the structure of the algorithm.

The set of configuration of the system is explored by proposing at each step
random spin flips and accepting it based on the energy difference ∆E between the
current and newly proposed state. This process allows transitions between configu-
rations favouring states with lower energy, while still allowing higher energy ones to
be explored, proportionally to the temperature T of the system.

In this thesis, the Metropolis-Hastings algorithm is used to simulate the Ising
model in each proposed set up, to provide a basis for comparison of the new
replicator-based algorithm. The basic steps of the algorithm, modified to take into
account the Ising model described in the previous chapter, can be summarised as
follows:

1. Initialisation of the system: assign a random value to all the spins

2. Trial moves: perform N “ Lx ˆ Ly trial moves, or sweeps by:
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(a) Randomly select one site of the system

(b) Select one between allowed spins

(c) Compute the energy difference ∆E “ Ef ´ Ein

(d) A random number g is generated form a uniform distribution over
“

0, 1
‰

(e) Accept the change if ∆E ď 0 or g ď e
´∆E
kbT

3. Repeat the process for a given number of sweeps (Nsweeps ąą 1q

To optimize calculations and efficiently compute the change in energy ∆E at
each step, we consider the difference in configuration before and after the proposed
flip change. Let S be the configuration of the system at time t and S 1 the newly
proposed one at time t ` ∆t, when suggesting the flip of spin in position i in the
lattice. Since only spin s⃗i changes in the new configuration, all the others remain
unchanged, so s⃗j “ s⃗1

j for all j ‰ i given s⃗j P S and s⃗1
j P S 1 . Consequently,

the energy difference depends solely on the localised interactions with spin s⃗i, and
only contributions from the changed spin can be taken into account, allowing us
to restrict calculations only to the neighbouring spin, rather than recalculating the
entire energy of the system. Considering all possible energy contributions considered
in Section 2.1 the difference ∆E can be expressed as:

∆E “ Efin ´ Ein

“

q
ÿ

k“1

Jk
ÿ

pi,jqPEk

`

s⃗i ¨ s⃗j ´ s⃗i
1
¨ s⃗j

1
˘

´ h⃗ ¨
`

s⃗i
1
´ s⃗i

˘

´ |⃗hnem ¨ s⃗i
1
| ` |⃗hnem ¨ s⃗i

1
|

“

q
ÿ

k“1

Jk
ÿ

pi,jqPEk

`

s⃗i ´ s⃗i
1
˘

¨ s⃗j ´ h⃗ ¨
`

s⃗i
1
´ s⃗i

˘

´ |⃗hnem ¨ s⃗i
1
| ` |⃗hnem ¨ s⃗i

1
|,

(2.8)

where q defines the interaction range. The localised calculation of the energy dif-
ference yields a significant reduction of the dimension of each sweep, from being
proportional to the dimension of the system to the number of neighbours of the con-
sidered spin. This change makes the algorithm particularly well suited for large-scale
simulations.

Even though the algorithm is highly effective in simulating spin system, espe-
cially investigating temperature-dependent behaviours, it presents limitations when
exploring points near phase transitions. As the system approaches this points the
algorithm suffers from a critical slow down, leading to lower convergence and longer
simulation times. Alternatives have been proposed to address this limitation, each
one offering improvements in specific contexts. For example, the Wolff algorithm
[12] is highly effective in reducing slowing down near phase transition points, since it
proposes the flip of entire clusters of spins, but is not particularly useful outside fer-
romagnetic systems. Another solution is provided by parallel tempering [13], which
involves simulating the system at different temperatures. By allowing the different
simulations to exchange configurations, the exploration of the energy is facilitated
avoiding local minima that could trap the system. However, simultaneously carry-
ing out different simulation is computationally expensive. Therefore, although the
Metropolis-Hastings is not the only possible method, neither the best in all possible
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situations, it provides a robust and flexible framework for simulating spin systems at
finite temperature. With the algorithm proposed in this thesis, we provide a novel
approach and try to understand how it compares with the Metropolis-Hasting one.

2.3 Evolutionary game theory

The replicator dynamics is an important class of dynamical systems in evolutionary
game theory. Evolutionary game theory applies the traditional rules of game theory
to evolving populations, analysing how the population evolves over time and iden-
tifying which behaviours persist over time and which eventually go extinct. Each
individual in the system adopts a strategy (or phenotype), which affects their be-
haviour in the system. For example, in a biological context, cells can be considered
as players and their strategies are represented by the traits that survival cells pass
on to their daughter cells; this can be applied to cancer research [14]. The theory
describes a Darwinian process for which the survival of individuals depend on the
fitness level associated with the adopted strategy, and represents its ability to sur-
vive. The fitness is determined by considering both the strategy and the state of the
system. At each time step the system is updated: individuals with higher fitness are
more likely to reproduce, passing on their strategies to the off-springs, while those
with lower fitness die off at higher rate. This process leads to a selection process,
similar to biological evolution, where the fittest strategies dominate the population
over time.

In classical game theory, individuals in the system often choose one of the avail-
able strategies to play as a pure strategy ; it can be beneficial to generalise this
concept and introduce mixed strategies. For this types of games, individuals do not
choose a definite action, rather they play according to a probability distribution over
available actions. For a given set of pure strategies R, a mixed strategy allows a
player to select a strategy α P R with probability σα, where σα ě 0 and

ř

αPR σα “ 1.
Within the theory, there are two distinct types of games depending on the types

of interactions between individuals. For pairwise contest games a given individual
competes directly against a chosen opponent, randomly selected from the population.
This interaction corresponds to a repeated two-person games from traditional game
theory. In the context of games against the field there are no specific opponents
to a given individual, but they compete against the entire population. The success
of each strategy is determined by the overall state of the system, and the payoff
calculates by the strategies adopted by the entire population. An example of games
against the field is the replicator dynamics, a successful dynamic applied to various
problems in different fields, ranging from biology [15] to economics [16], central focus
of this thesis.

To explore the replicator dynamics, consider a population of N individuals. Each
individual i in the system adopts a strategy αi from a set of pure strategies R “
␣

1, 2, . . . , n
(

. At any given time t the fraction of the population adopting a given
strategy α can be defined as xαptq “

Nαptq
N

P r0, 1s , given Nαptq the number of
individuals playing α at time t. How the number of individuals playing different
strategy changes is important and determines the state of the system, that can be
represented as the vector X⃗ptq “

`

x1ptq, . . . , xnptq
˘T . The evolution of the state

X⃗ptq is driven by the relative fitness of each strategy. In particular, strategies that
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outperform the population average increase in frequency; conversely, those under-
performing decrease. The change in frequency of individuals playing strategy α from
time t to time t`∆t, defined as xαpt`∆tq ´xαptq, is proportional to the difference
between the fitness of the strategy and the population average. Since each individual
at any time step adopts one of the strategies belonging to the set R, for every time
step in the evolution, the states must be constrained to lie on the unit simplex of
the n-dimensional Euclidean space, with n the number of strategies of the game:
Sn “

␣

X⃗nptq : xα ě 0 @α P R,
ř

αPR xα “ 1
(

. The fitness of each strategy
fα is calculated using the payoff matrix A, an n ˆ n matrix whose elements aα,β
represent the payoff of an individual playing strategy α against one with strategy β.
Since each player interacts with every other player in the population, the fitness of
any strategy α P R is determined by taking into account every possible interactions
with the other strategies weighted by their frequency. Thus, the fitness of a given
strategy α can be calculated as

fαptq “
ÿ

βPR

aα,βxαptq . (2.9)

It follows that the average payoff over all possible strategies in R can be defined as

φ “
ÿ

αPR

fαptqxαptq . (2.10)

In a system evolving in discrete time steps, the evolution of the different strategies
can be described by the set of equations:

xαpt ` ∆tq “ xαptq ` xαptq
`

fαptq ´ φ
˘

, (2.11)

for every strategy α in set R . On the other hand, for continuous times, the evolution
of the system is governed by the differential equations:

dxαptq

dt
“ xαptq

`

fαptq ´ φ
˘

. (2.12)

It is important to note that the simplex Sn is invariant under the equation (2.12), in
other words any trajectory starting in Sn remains in Sn. For the discrete equations
it holds only for particular values of the matrix A and must be verified. Indeed, for
a large enough change, the probability distributions could become negative, while
ř

αPR xα “ 1 is still guaranteed by the equations above.
To solve the problem and ensure that the state remains in the simplex Sn, we

could consider a time step different than the unitary one. By adjusting ∆t to be
small enough, the simplex is invariant under the equation. The equation (2.11) can
be written as:

xαpt ` ∆tq “ xαptq ` xαptq ∆t
`

fαptq ´ φ
˘

, (2.13)

for every possible α in the set R. The value of ∆t does not alter the trajectory of the
dynamic, but simply change its velocity by scaling the absolute value of the change
∆xα.

The classical replicator dynamics describes a game against the fields, which as-
sumes that each individual interacts with the population as a whole. In some real-
world applications this assumption holds true, for example when modelling interac-
tions of merchants in economics the only important info is the distribution of bids
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and asks, for other purposes it can be beneficial to introduce interactions within
a smaller group. To expand the theory to incorporate spatial arrangements of the
players inside the population, we can introduce spatial evolutionary game theory.
Individuals are arranged on the vertices of a graph, S “ pV,Eq where V denotes a
finite set of N vertices p|V | “ Nq, and E Ď V ˆ V represent the interacting pairs
of individuals pi, jq. It is assumed that the graph is undirected, so pi, jq ” pj, iq.
Through this lens the classical replicator equations can be thought as the particular
case of a game on a fully connected graph. The evolution of the system is still
governed by the fitness of the strategies, however, individuals do not interact uni-
formly with each other in the population, instead they compete solely with the ones
connected to them with edges. Therefore, in this case the fitness does not depend
only on the considered strategy and the composition of the entire population, but
it depends also on the vertex and its connections. This introduces a more realistic
dynamic, as individuals are often influenced mostly by the local environment, rather
then the entire population. Contrary to the classical model, where the state is deter-
mined by the fraction of the population adopting all possible strategies in R, given
by X⃗ptq, in the spatial version, we must take into account the state of each lattice
point. In particular, we consider the probability distributions of strategies across
vertices of the graph. For each individual, we are interested in understanding how
the probability of adopting a specific strategy α, σi

αptq, changes over time. The spa-
tial localisation of the games means that the fitness of the strategies, and thus their
success, varies form player to player, depending on the strategies of their neighbours
and the structure of the lattice itself. Taking into account these modifications the
fitness of strategy α for a lattice point i can be written as:

f i
αptq “

ÿ

pi,jqPE

n
ÿ

β“1

ai,jα,β σj
βptq. (2.14)

The elements ai,jα,β of the matrices Ai,j represent the payoff associated with the pair
interacting vertices i and j, adopting respectively strategies α and β. Each matrix
Ai,j captures the strategic interactions between each pair of vertices pi, jq. The
average fitness can be calculated by considering all possible interactions between
the connected lattice points i and j, written as:

φptq “
ÿ

αPR

σi
αptqf i

αptq . (2.15)

If the considered graph has a weight ωi,j assigned to each edge pi, jq P E, the formula
2.14 for the fitness can be modified in the following way

f i
αptq “

ÿ

pi,jqPE

ωi,j

n
ÿ

β“1

ai,jα,β σj
βptq. (2.16)

This change allows us to shift our focus from examining the system as a whole to
concentrating on the individual and their specific interactions. This approach high-
lights local effects within the system, such as fluctuations or correlations between
neighbouring elements, that might be overlooked when considering the system glob-
ally.
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2.3.1 Application of the Ising model in game theory

The Ising model has been successfully integrated with the replicator dynamics to
explore stable states in evolutionary game theory, providing a powerful framework
for analysing how the system behaves over time. For symmetric games, where all
players are identical, the payoff depends only on the strategy itself, not on the
identity of the player. This symmetry simplifies the mapping of the game into
the Ising model. Each player can be represented by a point on the lattice, whose
structure reflects the interactions between players. In this set up the set of strategy
R corresponds to the set of allowed spins and their local interaction determine the
total fitness. As the system evolves, it forms patterns analogous to magnetic domains
found in ferromagnetic materials, reproducing the same pattern behaviour that can
be expected considering the corresponding Ising system [3]. On the other hand,
asymmetric games introduce additional complexities. In such games, players are not
identical and their fitness depends on the species they belong to, possibly resulting in
different payoffs from adopting the same strategy. This asymmetry complicates the
adaptation of Ising-like models, as it requires accounting for player-specific payoff
differences. Although symmetric games have well established statistical treatments
and equilibrium predictions [17], the analysis of asymmetric games through the
Ising model is still under development. Recently, Correira et al. introduced the
Ising model to explain the emergence of correlation in repeated games [18]. The
focus of the article is on a game called Battle of the Sexes , classic example of
an asymmetric game. Battle of the sexes is a two-player game where individuals
with conflicting preferences aim to coordinate to reach a favorable outcome. In
the article, the game is analysed using game-theoretic tools and a generalised Ising
model. Preferences and interactions are described using Ising-like parameters and
the players’ choice corresponds to an orientation of the spin. The study reveals
that the players’ strategies become correlated over repeated interactions, eventually
stabilising in configurations comparable to the Ising model ground state. Correira
et al. demonstrate that, even in small networks players, exhibit this correlated
behaviour. This model provides an important insight into the network effects in
asymmetric games, showing how interactions impact the convergence of the system.
This study highlights the intrinsic connection between the Ising theory and the
evolutionary game theory, showing how both can be integrated to model complex
strategic interactions.

2.4 Replicator dynamics for the Ising model

The model considered in this thesis is defined on a square lattice of size N ˆN , with
N ąą 1. The lattice can be represented by a graph S “ GpV,Eq, where the set
of vertices V “

␣

1, . . . , N2
(

, corresponds to the lattice points and the set of edges
to their connections. To each point of the lattice i P V is associated a probability
distribution over a set of pure strategies R , denoted by σi

α, reflecting that we are
considering a mixed strategy model. These strategies correspond to the spin vectors
in the Ising model. The set of pure strategies is denoted as R “

␣

1, . . . , n “ 2h
(

and it can be divided into two distinct subsets R1 “
␣

1, . . . , h
(

which contains
the primary strategies and R2 “

␣

ph ` 1q, . . . , n
(

, which consists of the opposite
strategies. For each strategy belonging to R1 there exists a corresponding opposite
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strategy in R2. This relationship is formalised through the function

revpαq :“

#

α ` h if α P R1,

α ´ h if α P R2.

which determines the opposite strategy α belonging to any of the two subsets. The
strategies in the set R1 can be translated to the principal directions assumed by the
spin variables, and their opposite strategies in R2 correspond to their anti-parallel
directions. Specifically, given a strategy α P R , we can associate with α one of the
possible orientation assumed by the spin variables α⃗ , and the strategy corresponding
to revpαq corresponds to the direction ´α⃗. For the Ising model presented in Section
2.1 of this thesis, we define a set of pure strategies R with cardinality n “ 6, thus
h “ 3. This means that the set of pure strategies is R “

␣

1, 2, 3, 4, 5, 6
(

, while
R1 “

␣

1, 2, 3u and R2 “
␣

4, 5, 6
(

. The strategies belonging to the set R1 correspond
to the principal directions x, y, z of the three dimensional coordinate system, and
thus to the spin vectors p1, 0, 0q, p0, 1, 0q, p0, 0, 1q. On the other hand, the opposite
strategies in R2 represent the opposite directions along each axis, which corresponds
to the negative directions in the three dimensional space.

We recall that we focus on the Ising model with nearest and next-to-nearest
interactions on the square lattice. Here, the set of edges is defined as E “ E1 Y

E2, containing nearest and next-to-nearest neighbouring pairs of lattice points. In
particular, E1 will contain edges connecting pairs pi, jq such that |i ´ j| “ 1, while,
the links in E2 connects pairs pi, jq such that |i ´ j| “

?
2. A weight ωi,j can be

assigned to each connection, and it depends on its position within the lattice, so
that ωi,j “ pk for every edge pi, jq P Ek , with the same relative distance dk. In
particular, we determine the weights pk by imposing the following conditions:

• the product dkpk “ c for each k “ 1, . . . , q, where c is constant and equal for
every value of k. This ensures that interactions with neighbours at progres-
sively farther relative distances dk are assigned a progressively larger weight
pk, and their contribution to the fitness of the individual becomes smaller.

• the sum of all the wights of all connections to a given vertex is equal to 1,
řq

k“1 pknk “ 1, where nk is the number of connections with associated weight
pk, i.e. the number of kth -nearest neighbouring spins. This condition ensures
the normalisation of probability distribution.

This construction ensures that nearest neighbour interactions have a greater impact
on the total fitness of an individual than next-to-nearest neighbour interactions.
The fitness of the strategy α for an individual i is then calculated as:

f i
αptq “

q
ÿ

k“1

pk
ÿ

pi,jqPEk

ÿ

βPR

ak; i,jα,β σj
βptq. (2.17)

In this equation, ak; i,jα,β is an element of the matrix Ak;i,j and corresponds to the payoff
obtained by the individual i playing strategy α against its kth-nearest neighbour
j playing strategy β , knowing the individuals are at relative distance |i ´ j| “

dk, since pi, jq P Ek. This payoff matrix takes into account contributions to the
total fitness from all possible interactions, allowing the possibility of different types
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of interactions depending on the relative distance pk. The average payoff is still
described by equation (2.15).

In this framework, the goal is to maximise the fitness of each player i, which
is analogous to the minimisation of the energy in the Ising model. As a result,
the payoff matrix is constructed based on the contribution to the total energy of
the system from the interactions between neighbouring spins. For example, given
the strategies α, β P R corresponding to spin vectors in the Ising model aligned
along directions α⃗ and β⃗ respectively , we can construct the payoff matrices Ak;i,j by
defining their elements through the interaction energy between the kth neighbouring
spin i and j

ak; i,jα,β “ Jk; i,j α⃗ ¨ β⃗ @α, β P R and @pi, jq P E and k “ 1, . . . , q , (2.18)

where Jk;i,j is the coupling parameter for the kth-nearest neighbours i and j . For
nearest neighbours, the interactions can be extended to include a penalisation for
orthogonal spins, described in equation (2.6). Therefore, the payoff matrix for the
nearest neighbour interactions might have an additional term, determined by:

a1; i,jα,β “ J1; i,j α⃗ ¨ β⃗ ` να⃗,β⃗ p1 ´ |α⃗ ¨ β⃗|q @α, β P R and @pi, jq P E. (2.19)

In the considered models, the coupling parameters Jk;i,j are homogeneous across
the lattice, i.e Jk;i,j “ Jk for every pi, jq P E. This implies that matrices Ak;i,j are
also homogeneous within the lattices, allowing us to define Ak; i,j “ Ak for every kth

neighbour and all pairs pi, jq P E.
The probability distribution associated with each lattice point evolve according

to the spatial-discrete replicator equations (described in equation(2.11)), which de-
pends on the difference between the total fitness f i

α of the considered strategy α for
the i individual and its average φ:

σi
αpt ` ∆tq “ σi

αptq ` σi
αptq∆σi

α∆t

“ σi
α ` σi

α ∆t
“

f i
αptq ´ φ

‰

“ σi
α

#

1 ` ∆t
q
ÿ

k“1

pk
ÿ

«

ÿ

βPR

akα,β σ
j
β ´

ÿ

γPR

ÿ

βPR

σi
β a

k
γ,β σ

β
β

ff+

.

(2.20)

The time step ∆t plays a crucial role in the dynamic impacting its velocity; a
larger time scale ∆t accelerates the evolution of the system. However, its value
must be carefully selected based on the entries of the payoff matrix A, to ensure
physically meaningful distribution. Specifically, at each time step the probability
distribution must lie on the simplex of the n-dimensional Euclidean space Rn :
Sn “ tσ⃗i

αptq : σi
α ě 0 @α P R @i P V ;

ř

αPR σi
α “ 1u. To maintain this condition,

the time step ∆t must large enough to allow for fast evolution, but not so large that
the probability distribution becomes negative. Therefore, the condition to impose
for determining an appropriate time step ∆t can be written as :

min
σi,σβ

∆σα
i ě

1

∆t
@i P V. (2.21)

This ensures that the system evolves within the constraints of the simplex preventing
the occurrences of negative probabilities.
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2.4.1 External biases

Although the classical replicator equation effectively models many aspects of evo-
lutionary dynamics, it does not take into account external influences that could
significantly alter the system trajectory. These external influences could be critical
in real-world scenarios, even outside the Ising framework, modelling environmental
factors, such as resource availability, that differently impact the survival of strategies,
shaping evolutionary outcomes. In Ising systems, external influences are typically
represented by magnetic fields, which bias the alignment of the spins towards the
field’s direction, breaking the symmetry of the system. To incorporate an analogous
behavior in the replicator dynamics, we propose the addition of a new term to the
classical replicator equation, that represents external biases. In particular, for an
external bias of strength defined by the positive parameter B favoring strategy µ
the replicator equation becomes:

σi
αpt ` ∆tq “ σi

α

␣

1 ` ∆t∆σi
α ` ∆t∆σi,B

α

(

. (2.22)

Here, ∆σi
α is the change in probability of strategy α due to interactions with neigh-

bouring player, as described by the classic replicator dynamics, and ∆σi,B
α represents

the additional change caused by the external bias B. To ensure that the modified
equation still align with the principles of the replicator dynamics and preserves the
invariance for the simplex Sn, specific conditions must be imposed. These condition
ensure that the modified version behaves predictably under the influence of external
biases. First, we consider an external bias analogous to a classical magnetic field
h⃗ “ Bµ⃗, with B ě 0. Choosing B ă 0 would simply invert its direction. Indeed the
direction µ⃗ is preferred when B is positive and undesired when B is negative, result-
ing respectively in a positive and negative shift of the probabilities. The opposite is
true for the direction ´µ⃗. In this case, the conditions are the following:

1. Normalisation: The sum of the changes in probabilities over the set R must
be zero to ensure the normalisation condition

ř

αPR σi
α “ 1:

ÿ

αPR

σi
α

`

∆σi
α ` ∆σi,B

α

˘

“ 0 `
ÿ

αPR

σi
α∆σi,B

α “ 0 @i P V,B ě 0. (2.23)

2. Consistency with the original equation: when no bias is present in the
system (B “ 0), the modified version should reproduce the original form of
the equation:

∆σi,0
α “ 0 @α P R and @ i P V. (2.24)

3. Favoring the biased strategy; the introduction of the bias should increase
the probability of the favored strategy, α “ µ:

∆σi,B
µ ě 0 @B ě 0. (2.25)

4. Opposing the opposite strategy: conversely, the bias should decrease the
probability of the strategy corresponding to the anti-parallel direction of the
magnetic field, which is α “ revpµq:

∆σi,B
revpµq

ď 0 @B ě 0.
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5. Strongest influence: the bias should exert the strongest positive influence
on the favored strategy, α “ µ, and the strongest negative on the opposing
one, α “ revpαq:

∆σi,B
revpµq

ď ∆σi,B
α ď ∆σi,B

µ @i ‰ µ, revpµq , @B ě 0. (2.26)

The full equation incorporating the proposed adjustment for external biases can
be written as:

σi
αpt ` ∆tq “σi

α

"

1 ` ∆t
q
ÿ

k“1

pk
ÿ

„

ÿ

βPR

akα,β σ
j
β ´

ÿ

γPR

ÿ

βPR

σi
β a

k
γ,β σ

β
β

ȷ

`

` ∆t

„

bpαq ´
ÿ

βPR

σj
β bpβq

ȷ*

.

(2.27)

The term bpαq represents the external bias of the system that for a classical magnetic
field is defined as:

bpαq “

$

’

&

’

%

B if α “ µ,
´B if α “ revpµq,
0 otherwise.

It can be proven that this formulation does indeed satisfy all of the required
conditions, indeed:

1. The sum of the changes introduced by the new term cancels out:

ÿ

αPR

σi
α∆σi,B

α “
ÿ

αPR

σi
α

«

bpαq ´
ÿ

βPR

σα
β bpβq

ff

“
ÿ

αPR

σi
αbpαq ´ 1

ÿ

βPR

σi
βbpβq “ 0 @i, B.

(2.28)

.

2. When the bias B “ 0, the bias term bpαq becomes zero for every α P R, thus
the contribution to the changes due to external influences is zero for every
possible strategy.

3. The probability of aligning to the magnetic field is always higher with respect
to the case with no magnetic field. Considering α “ µ, which implies bpαq “

B ě 0, the change becomes

∆σi,B
µ “ bpµq ´

ÿ

βPR

σi
β bpβq

“Bp1 ´ σi
µ ` σi

revpµqq ě ∆σi,0
α .

(2.29)

since pσi
revpµq

´ σi
µq P

“

´ 1, 1
‰

.

The change ∆σα,B
µ is maximised when σi

revpµq
“ 1 and σi

µ “ 0 which implies
∆σi,B

µ “ 2B, and minimised when σi
revpµq

“ 0 and σi
µ “ 1 , which implies

∆σi,B
µ “ Bp1 ´ 1 ` 0q “ 0
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4. Conversely, considering the strategy opposite to the magnetic field, so α “

revpµq which implies bpαq “ ´B ď 0

∆σi,B
µ “Bp´1 ´ σi

µ ` σi
revpµqq ď ∆σi,0

α . (2.30)

since pσi
revpµq

´σi
µq P r´1, 1s. The change is maximised and null when σi

revpµq
“ 1

and σi
µ “ 0 which implies ∆σi,B

µ “ Bp´1 ´ 0 ` 1q “ 0, and minimised when
σi
revpµq

“ 0 and σi
µ “ 1 which implies ∆σi,B

µ “ Bp´1 ´ 1 ` 0q “ ´2B.

5. The change should be maximised for α “ µ and minimised for α “ revpµq.
Consider:

∆σi,B
revpµq

“ Bp´1 ´ σα
µ ` σi

revpµqq ď ∆σi,B
µ “ Bp1 ´ σα

m ` σα
revpmqq.

The following also holds:

∆σi,B
revpµq

“ Bp´1 ´ σi
µ ` σi

revpµqq ď ∆σi,B
α “ Bpσi

revpµq ´ σi
µq @α ‰ µ, revpµq.

(2.31)

The same modified replicator equation can also be applied to more general exter-
nal biases, favoring different strategies with varying magnitudes, analogous to the
effects of a magnetic field applied along different directions. Moreover, in the case
of a nematic magnetic field, which favors both a strategy µ and its opposite revpµq

the condition (4) no longer holds, as both directions are favored equally, ∆σi,B
revpµq

“

∆σi,B
µ . For the same reason, the condition (5) becomes ∆σi,B

α ď ∆σi,B
µ “ ∆σi,B

revpµq

for all i ‰ µ, revpµq. In such cases, the bias term is given by:

bnempαq “

#

B if α “ µ, revpµq,
0 otherwise.

Again, the parameter B is chosen to be positive, as a negative B would simply favor
every strategy different than α and revpαq. Finally, the time step determination
remains analogous to the case without magnetic field, with the addition of the new
magnetic term. The condition for the distribution to remain valid is given by:

min
σi,σj

∆

„

σi
α.int ` σi,B

α

ȷ

ě
1

∆t
. (2.32)

2.5 Algorithm
The proposed algorithm follows a similar structure to the Metropolis-Hastings one,
featuring a series of updates of the distribution across the lattice. The procedure
can be summarised as follows.

1. Initialisation: initialise the probability distributions σi,B
α randomly for each

lattice sites.

2. Sweeps: Perform N ˆ N sweeps:

(a) Randomly select one site.

22



(b) Compute the updated probability for each possible strategy α at the
selected site i, σi,B

α pt ` ∆tq, using the replicator equation (2.27).

(c) Based on the newly computer distribution extract the new played strategy
at site i.

3. Repeat the process for a given number of sweeps Nsweeps ąą 1.

Initial condition are a key feature of each system, they have a great impact
on the converging state. Although initially, deterministic ones were considered, i.e.
σi
α “ δα,si , given si „ UniformpRq for every i P V , they were quickly discarded, since

for the replicator equation they define an evolutionary stable state. Consider a point
i in the lattice such that its distribution probability is concentrated on strategy si
`

σi
α “ δα,si

˘

, the lattice points j, such that |i´j| “ dk, are considered its kth-nearest
neighbours and they select another sj strategy

`

σj
α “ δα,sj

˘

. We consider how any
randomly selected strategy α for the lattice point i changes, substituting the selected
deterministic initial condition in the replicator equation (2.27), it becomes :

σi,B
α pt ` ∆tq “ δα,si

#

1 ` ∆t
q
ÿ

k“1

pk
ÿ

„

ÿ

βPR

aα,βδβ,sj ´
ÿ

γPR

ÿ

βPR

δγ,siaγ,βδβ,sj

ȷ

`

`∆t

«

bpαq ´
ÿ

βPR

δβ,sibpβq

ff+

“ δα,si

#

1 ` ∆t
q
ÿ

k“1

pk
ÿ

“

aα,sj ´ asi,sj
‰

`B∆t
“

δα,µ ´ δα,revpµq ´ δµ,si ` δrevpµq,si

‰

+

.

(2.33)

This equation show that values α ‰ si, the updated distribution the updated dis-
tribution σi,B

α pt ` ∆tq “ 0, for any values of ∆t, B, µ, q and A, since in this case
δα,si “ 0. On the other hand, when α “ si the equation can be simplified as:

σi,B
si

pt ` ∆tq “ 1 ` ∆t
q
ÿ

k“1

pk
ÿ

“

asi,sj ´ asi,sj
‰

`

` B∆t
“

δsi,µ ´ δsi,revpµq ´ δµ,si ` δrevpµq,si

‰

“ 1.

(2.34)

For every values of ∆t, B, µ, q and A. This proves that if σi
αptq “ δα,si then

σi
αpt ` ∆tq “ δα,si , for every t. Hence, deterministic initial conditions lead to fixed,

unchanging states.
Similar considerations could be made for uniform initial conditions, i.e.σi

α “ 1{n
for every α P R and every point in the lattice i. Substituting as before the conditions
in the lattice in equation (2.27). We obtain

σi,B
α pt ` ∆tq “

1

n

#

1 ` ∆t
q
ÿ

k“1

pk
ÿ

«

ÿ

βPR

aα,β
1

n
´

n
ÿ

γ“1

ÿ

βPR

1

n
aγ,β

1

n

ff

`

` ∆t

«

bpαq ´
ÿ

βPR

1

n
bpβq

ff+

.

(2.35)

23



To simplify the equation it can be defined the sum over the columns of the matrix
A as sumpαq “

řn
β“1 aα,β.

σi,B
α pt ` ∆tq “

1

n

#

1 ` ∆t
q
ÿ

k“1

pk
ÿ 1

n

«

sumpαq ´
1

n

ÿ

γPR

sumpγq

ff

`∆tB

„

δα,µ ´ δα,revpµq ´
1

n
`

1

n

ȷ

+

.

(2.36)

For most cases considered in this thesis in chapter 3 , matrix A is defined such
that the sum over its columns is the same for every row α, so we can define a fixed
parameter sumpαq “ sum for every α P R, which depends only on the choice of A.
Therefore the equation can be simplified as:

σi,B
α pt ` ∆tq “

1

n

#

1 ` ∆t
q
ÿ

k“1

pk
ÿ 1

n

„

sum ´
1

n
n sum

ȷ

`

` B∆t

„

δα,µ ´ δα,revpµq ´
1

n
`

1

n

ȷ

+

“
1

n

#

1 ` B∆t
“

δα,µ ´ δα,revpµq

‰

+

.

(2.37)

This indicates that in the absence of external biases
`

B “ 0
˘

, the probabilities
across all strategies for any point in the lattice remain uniform , σi,0

α pt ` ∆tq “ 1
n

if σi,0
α ptq “ 1

n
, for any time t. However, adding an external bias in the system tilts

the probabilities in the direction of the favored strategy µ making uniform initial
conditions viable.

As a consequence, randomly distributed probability distributions are chosen as
initial conditions.

The Metropolis-Hastings algorithm is strongly affected by the system’s temper-
ature, whereas the replicator-based algorithm under consideration does not take
temperature into account. In the article [19] Arne Trauslen et al. have explored the
comparison between the selection parameter w P

“

0, 1
‰

to the parameter β “ 1
kbT

in a Moran process. The Moran process is a stochastic model that studies the evo-
lution of fixed-size populations. In each iteration, one individual reproduces with
a probability proportional to its fitness, replacing a randomly chosen individual,
which introduces both selection and randomness into the dynamics. This process
continues until one type becomes dominant or one type goes extinct. They proved
that in the limit of strong selection processes, for which w “ 1 and the fitness cor-
responds to the payoff π, F “ 1 ´ w ` wπ “ π, the Moran process is deterministic
corresponding the low temperature case, and thus T Ñ 0 and β Ñ 8. By increasing
the temperature, stochastic effects are introduced into the system, which correspond
to lowering the value w. For the replicator equations the fitness of corresponds to
its payoff, thus w “ 1. For this reason, we can consider simulations obtained us-
ing the proposed algorithm as performed at low temperature an compare them low
temperature Metropolis-Hastings simulations.

24



Chapter 3

Results

3.1 Benchmark
In order to ensure the validity of the proposed algorithm, it was first checked against
a known benchmark case. It was considered the case analysed by V. Pandit et al.
[20], for a game where only two strategies are available to every player, so the
cardinality of set R is set to n “ 2. In the paper the discrete replicator equation is
analysed, described in the previous chapter in Section 2.3, (2.11). They focused on
the analysis of a system with payoff matrix with structure.

A “

„

1 S
T 0

ȷ

.

The choice of the matrix is not restrictive as the dynamic can be proven to be in-
variant under transformations of the type A ÞÝÑ A ` e⃗⃗bT , where e⃗ is a unit vector
of n components, n is the number of strategies considered in the dynamic and b⃗ any
vector of n components. The values of the parameters S and T are fundamental
for the dynamic. They determine the regions, where the equation satisfies the con-
ditions xαpt ` ∆tq ě 0 and

ř

αPR xαpt ` ∆tq “ 1, provided xαptq satisfies the same
conditions. By adjusting T and S, the type of game being played can be classified
based on its equilibrium behaviour. By choosing T ě 1 and S ď 0, the game belongs
to the class of problems known as the Prisoner’s dilemma. For a simple two player
game defined by the same payoff matrix A, defection is a Nash equilibrium point,
meaning that once all player chose strategy two, which in this context is known
as defection, no individual player can improve their outcome by switching strategy,
from defecting to cooperating. Similarly, in a infinitely repeated Prisoner’s Dilemma,
defeating is an evolutionary stable strategy [21]. This means that the fraction of
players defeating is increasing as the system evolves, while the fraction cooperating
decreases. Eventually, the system converges to a state where players consistently
choose to defeat, and the fraction of players electing to cooperate goes to zero. In-
deed, for equation (2.11), for problems belonging to the Prisoner’s dilemma class,
the difference x2pt`∆tq ´x2ptq ě 0 for every t, and the opposite is true for x1. The
evolution of the system leads to an equilibrium state, for which the first strategy,
effectively disappears from the system, while all the individuals choose to adopt the
second strategy. For our algorithm, simulations were carried out by considering the
replicator dynamics described in the previous chapter in section 2.4, in equation
(2.20). So we considered a square N ˆN lattice with N “ 100 with players choosing
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(a) (b)

Figure 3.1: (a) State of the system after 90 sweeps showing the dominant stable
strategy b) Probability distribution of strategy one for the first point in the lattice,
showing the fast extinction of strategy one

strategy from the set R “
␣

1, 2
(

and payoff given by the matrix defined in 3.1, with
values of the parameters S “ ´0.5 and T “ 2, without external influence. Under
such conditions we would expect to replicate the equilibrium state discussed above,
with the probability of playing the second strategy (defeating) increasing and even-
tually dominating over the other for every point of the lattice, since the system is
homogeneous. To simulate the system, the time step ∆t “ 1 was determined by the
criterion described by (2.21), ensuring that the system evolves in a stable manner
without violating constraints of the probability distributions. The algorithm was
run for multiple sweeps, consisting of N2 trial moves across the entire lattice. After
approximately 90 sweeps, the systems reaches the ferromagnetic ground state, for
which each points adopts the second strategy as dominant. At convergence, as ex-
pected, the probability of choosing strategy 1 (denoted as σk

1) has dropped to zero,
while the probability of choosing the second strategy approaches one, for all the
lattice points, σk

2 « 1 for all k P V . This outcome confirms that the algorithm cor-
rectly replicates the predicted behaviour for the Prisoner’s dilemma case. Therefore,
the algorithm can be tested for more complex and interesting cases. The results are
illustrated in Figure 3.1. Panel (a) shows the benchmark configuration after approx-
imately 90 sweeps, demonstrating the total dominance of the second strategy. Panel
(b) depicts the probability distribution of the strategy one for the first point in the
lattice, which shows that, for that particular point the extinction happens around
20 sweeps.

The successful simulation of this benchmark case shows the robustness of the
algorithm and allows us to explore more complex cases of the game. In the fol-
lowing we will apply the algorithm to study a wide rage of multi-strategy systems,
introducing different types of interactions and external biases.

3.2 Ferromagnetic case
In this section, we consider a system for which the payoff matrices are designed to
mimic ferromagnetic interactions among nearest neighbouring spins, with homoge-
neous coupling constant J “ 1, for every pair pi, jq P E. We consider again a square
lattice of size N “ 100. The payoff matrix can be determined as described in Section
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(a) (b)

Figure 3.2: Ground state showing ferromagnetic islands, simulated using (a) the
replicator dynamics with ferromagnetic-like payoffs and (b) the Metropolis-Hastings
algorithm with ferromagnetic interactions

2.4, by equation (2.19). In this case, the coupling parameter is homogeneous in the
lattice, so the payoff depends only on the direction and magnitude of the vectors,
not on their position, and the notation can be simplified by considering ai,jα,β “ aα,β
for each interaction defined by the pair pi, jq. Moreover, no additional interactions
were considered, so νλ

s⃗i,s⃗j
“ 0 for every possible vectors s⃗i, s⃗j. As a results, when

considering ferromagnetic interactions the system favors neighbouring spins with the
same strategies, resulting in a configuration with an higher number of interacting
pairs with equal strategy. Indeed, the contribution to the fitness of the strategy is
given by the diagonal elements of the matrix aα,α “ Jα⃗ ¨ α⃗ “ J for every strategy
α P R. On the other hand, interactions between opposite strategies are undesir-
able and penalised in the total payoff, whose contribution is given by the elements
aα,revpαq “ ´J for every strategies α P R. All other possible interactions are neutral
and have no effect on the fitness of the strategy, providing a zero contribution, since
no extended interactions are considered in this case.

Therefore the payoff matrix Aferro when Ji,j “ 1 for every pair pi, jq reduces to
the matrix:

Aferro “

»

—

—

—

—

—

—

–

1 0 0 ´1 0 0
0 1 0 0 ´1 0
0 0 1 0 0 ´1

´1 0 0 1 0 0
0 ´1 0 0 1 0
0 0 ´1 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The time step was set to ∆t “ 2, to ensure that the probability remains positive
through the simulations, by requiring the constraint outlined in Equation (2.21).
In this case, the expected equilibrium configuration corresponds to a ferromagnetic
ground state, for which all players adopts the same strategy. Due to the presence of
different strategies contributing zero to the total payoff of each individual, the state
could form ferromagnetic clusters which arrange so that neighbouring islands are
mostly formed by orthogonal spins. Contributions from the boundary are indeed
negligible to the energy of the system and clusters form in the Ising system. In
particular, for the replicator equation the probability distributions are expected to
converge to a state where σk

α “ 1 for every k P V , however the strategy α could
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(a) (b)

Figure 3.3: For a ferromagnetic Ising system (a) the probability distribution of
strategy one for the first point in the lattice, obtained using the replicator-based
algorithm (b) and energy convergence in the Metropolis-Hastings simulations

vary for different points in the lattice. After approximately 300 sweeps, 99, 27% of
points reach this equilibrium point. The dominant strategy is highly dependent on
the local initial conditions, and thus the resulting state is composed of ferromagnetic
islands, as shown in the Figure 3.2a.

When comparing the simulations using the replicator dynamics to the ones us-
ing the Metropolis-Hastings algorithm, it reveals that they both exhibit similar
behaviours at convergence, forming ferromagnetic islands. However, the Metropolis-
Hastings simulations tend to produce larger clusters. Figure 3.3b shows the results
for a system on a N ˆ N square lattice, with N “ 100, a small temperature of
T “ 0.01 and homogeneous ferromagnetic interactions J “ 1 for every nearest
neighbouring spin, i, j such that |i ´ j| “ 1. The average area of the clusters are
calculated and averaged over 200 different simulations and normalised by the size
of the system. For the replicator algorithm, the islands have a relative average area
of 0.0013 and the Metropolis-Hastings algorithm 0.2, proving that the area of the
island is significantly larger in the case of the Metropolis-Hastings algorithm. The
perimeter of the islands, normalised by the average area of the islands, is for the
replicator and Metropolis-Hastings algorithm respectively pmean

Amean
“ 1.3 and 0.08.

Analysing the two systems using the energy function described in Section 2.1, the
replicator simulations will reach convergence faster but to a state with higher energy
Ef “ ´1.35, converging quickly but only locally to stable states composed by small
ferromagnetic islands. In contrast, the Metropolis-Hastings algorithm, albeit slower,
converges to a state with much lower energy Ef “ ´1.95, forming a globally stable
configuration. We can observe in Figure 3.3 the velocity of the two algorithms. For
the replicator-based algorithm, we look at the evolution of player 1’s probability of
choosing strategy 1, σ1

1, shown in Figure 3.3a . The probability quickly stabilises
around the value zero (σ1

1 « 0) after approximately 400 sweeps. Figure 3.3b shows
the slower evolution of the energy function of the Monte Carlo simulations, which
takes up to 3500 sweeps to reach convergence.
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(a) (b)

Figure 3.4: Simulations of a ferromagnetic Ising system with a magnetic field of
B “ 0.5 using the a) replicator-based algorithm (b) and the Metropolis-Hastings
algorithm

3.2.1 Adding external biases

To further explore the system dynamics, a bias for strategy one was introduced.
In the Ising model is implemented by adding the contribution of a magnetic field
directed along the positive direction of the x axis. The replicator equations were
modified, as described in Chapter 2, equation (2.27), so that the probability distribu-
tion shifts in favor of the corresponding strategy with each step, in this case strategy
one. The time step was adjusted for the new structure to ensure stability and it was
found to be a function of the strength of the magnetic filed B, ∆t “ 2 ` 2B.

Considering a magnetic field directed along direction 1, and with strength B “

0.5, both simulations were able to reach the ferromagnetic ground state, with nor-
malised energy Ef “ ´1.9. As in the previous case, the replicator-based algo-
rithm was quicker, reaching convergence after approximately 15 sweeps, while the
Metropolis-Hastings algorithm required approximately 50 sweeps. For both algo-
rithms, the introduction of the external bias is advantageous, as it accelerates con-
vergence and lowers the energy of the system. In this case, the replicator-based algo-
rithm is useful, since it reaches the ground state and it is faster than the Metropolis-
Hastings one.

For lower values of B, the system still preserves similar characteristics to the
unbiased case, with ferromagnetic clusters slowly increasing in size as parameter B
increases. Although both algorithm shows this trend in island size their average
area will consistently be larger in ground states reached by the Metropolis-Hastings
than in replicator simulations, with the difference decreasing as B increases. In
particular, the average perimeter before decreasing reaches a peak at 0.01, as shown
in Figure 3.6b for the replicator dynamics, after which it decreases for higher values
of B. The system reaches the ground ferromagnetic state and clusters disappear,
thus the average perimeter goes to zero for B ě 0.04. This behaviour is expected,
since as the magnetic field increases, so do the average area and the perimeter of the
clusters, as the external bias helps the system to reach a more stable configuration.
However, the increase is constrained by the size of the system, and while the area
expands until there is only one island with size N ˆ N , as shown in Figure 3.6a,
the perimeter starts decreasing when the boundaries between clusters disappear, as
the number of islands decreases. Thus, when we apply a bias with strength over
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(a) (b)

Figure 3.5: For a ferromagnetic Ising system with a B “ 0.5 magnetic field (a) the
probability distribution of strategy one for the first point in the lattice, obtained
using the replicator-based algorithm (b) and energy convergence in Monte Carlo
simulations

B “ 0.04, the islands that form in this configuration have areas comparable to the
size of the system. The ratio between average area and average perimeter increases
for every value of the magnetic field B.

Adding a nematic field will yield equivalent results to the classical magnetic one,
both in behaviours and in numerical results.

3.3 Antiferromagnetic case

In this section, we consider a system designed to mimic an antiferromagnetic be-
haviour, where the coupling constant J “ ´1 for every nearest neighbouring spin
pair in the lattice. The payoff matrices A1;i,j are determined as discussed in Sec-
tion3.2 according to equation (2.18). Specifically, the matrix for antiferromagnetic
interactions takes the following form:

Aantiferro “

»

—

—

—

—

—

—

–

´1 0 0 1 0 0
0 ´1 0 0 1 0
0 0 ´1 0 0 1
1 0 0 ´1 0 0
0 1 0 0 ´1 0
0 0 1 0 0 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The expected equilibrium configuration for this system corresponds to the an-
tiferromagnetic ground state. This state corresponds of two interpolated square
sub-lattices S1 “ pV1, E1q and S2 “ pV2, S2q, such that V “ V1 YV2 and E Ă V1 ˆV2,
where S “ pV,Eq represents the original lattice. In this configuration, each point
belonging to one sub-lattice adopts the same strategy, while points on the other sub-
lattice follow opposite strategies. For instance, if all points i P S1 select a strategy
si “ 1 then every point on the other sub-lattice adopt the opposite strategy, which
averages sj “ 4 for all j P S2 for the considered case n “ 6. This ensures that every
two neighbouring points adopt opposite strategies, achieving the antiferromagnetic
configuration.
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(a)

(b) (c)

Figure 3.6: (a) Average area as a function of the strength of the magnetic field B for
the replicator-based simulations. (b) average perimeter as a function of the strength
of the magnetic field B for the replicator-based simulations. (c) Ratio of average
area and average perimeter as a function of the strength of the magnetic field B for
the replicator-based simulations.
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(a) (b)

Figure 3.7: Simulations for an antiferromagnetic system with a nematic magnetic
field of B “ 0.2 using: (a) the replicator-based algorithm and (b) the Metropolis-
Hastings algorithm

To simulate the system, we employ once again the equation (2.21) to find the
optimal time step, which is the same of the ferromagnetic case ∆t “ 2. As shown
in figure 3.8a, the system evolves into a configuration of antiferromagnetic islands,
composed by the interpolated square lattices S1 and S2. The ratio between the
average area of these islands and the size of the system is 0.0013 and the ratio
between the average perimeter and average area is 1.31. They correspond to the
results obtained in the ferromagnetic case. In the replicator simulations, the system
converges only locally to the expected behaviour, with a final energy of Ef “ ´1.35.
The Metropolis-Hastings simulations yield a similar result, although the configura-
tion presents form larger islands, corresponding to a more stable configurations with
smaller energy Ef “ ´1.9, as shown in figure 3.8b.

3.3.1 Adding an external bias

To the system can be added an external bias, however, unlike the ferromagnetic case,
a simple magnetic field will not be effective in driving the system global stability.
Standard magnetic fields penalise one direction as much as it favours its anti-parallel
counterpart, which would be counterproductive. Instead, we can consider a nematic
magnetic field, along one of the three directions, which proves to be more effective.
The bias function bpαq will be defined as:

bpαq “

#

B if α “ µ or α “ revpµq,
0 otherwise.

In the replicator equation, the nematic bias is applied as described in Section 2.4,
and will favour strategy µ and its opposite counterpart revpµq, corresponding to
the direction µ⃗ and ´µ⃗ respectively. As with the ferromagnetic case with the mag-
netic field, the time step is defined by ∆t “ 2 ` 2B . Simulations show that a
bias of strength B ě 0.2 is sufficient to drive the system into a predominantly an-
tiferromagnetic ground state, as seen in figure 3.7. The state is dominated by an
antiferromagnetic behaviour with some imperfections. These defects are: few re-
maining spins aligned in a different directions from µ⃗ or ´µ⃗ and more importantly
pairs of neighbouring spins parallel to each other. These doublets of parallel spins
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do not disappear from the system, even at higher values of B. Indeed, the nematic
bias introduces a positive contribution that offsets the negative one, given by the
antiferromagnetic interaction between each doublet. On the contrary, the number
of neighbours adopting the same strategy slightly increases as B increases.

In conclusion, the addition of a nematic field significantly improves the system’s
ability to converge towards a stable low-energy configuration, even if doublets are
still present.

3.3.2 Penalising interfaces

Another approach at improving the system’s stability is introducing an extended
interaction that penalises orthogonal neighbouring spins. The desired effect of this
interaction would be to reduce the perimeter of the islands. In the context of the
Ising model, this additional interaction term was modeled as an added contribution
to the total energy described by equation (2.5). In the replicator equation, this
penalisation can be incorporated as negative contribution to the total payoff, by
adjusting the elements of the matrix Apot as follows:

Apot “

»

—

—

—

—

—

—

–

´1 ν ν 1 ν ν
ν ´1 ν ν 1 ν
ν ν ´1 ν ν 1
1 ν ν ´1 ν ν
ν 1 ν ν ´1 ν
ν ν 1 ν ν ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The parameter ν is negative and its value determines the strength of the penalization,
transforming the contribution to the total fitness of orthogonal neighbouring spins
from zero to negative. This effect discourages neighbouring spins to adopt "orthogo-
nal" strategies, which correspond, given a strategy α, to all strategies β ‰ α, revpαq.
With an effect analogous to the extended interaction energy contribution, defined
in Section 2.1 Equation (2.5).

However, the impact of this extended interaction on the simulations is minimal.
In the replicator-based algorithm, while the average perimeter decreases, the ratio
average area to average perimeter increases from 1.51 to 2.22, considering values ν
from 0 to ´2. The Metropolis-Hastings simulations present the opposite effect. For
the same values of ν and the ratio decreases instead of increasing, from 2.35 to 1.93.
Even when considering larger penalisations, such as ν “ ´10, the impact on the
average perimeter of the clusters remains limited, especially for the replicator-based
simulations.

This effect can be better understood by recognising that the replicator-based
simulation operate on a local scale. The interactions in this model only modify the
behaviour of individual spins, by maximising the fitness calculated only by consid-
ering their immediate neighbouring spins. Since these updates do not account for
the global structure or larger-scale interactions within the system, introducing a
penalization through the interaction matrix also affects only local interactions. As a
consequence, the impact of this penalization remains confined to small, isolated re-
gions rather than influencing the overall configuration, and it increases only slightly
the size of clusters. Next, we considered the introduction of an asymmetric poten-
tial that penalizes orthogonal directions in different ways. The energy contribution
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(a) (b)

(c) (d)

Figure 3.8: Simulations of an antiferromagnetic Ising model with additional nearest
neighbour interactions regulated by the parameter ν, (a) replicator-based algorithm
with ν “ 0 (b) Metropolis-Hastings with ν “ 0 (c) replicator-based algorithm with
ν “ ´2 (d) Metropolis-Hastings with ν “ ´2

(a) (b)

Figure 3.9: Simulations obtained with a replicator-based algorithm of an antifer-
romagnetic Ising system with additional nearest neighbour interaction with asym-
metric strength defined by ν1 and ν2, with values (a) ν1 “ 0 ν2 “ ´0.5 (b) ν1 “ 0
ν2 “ ´0.7
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(a) (b)

Figure 3.10: Simulations obtained with the Metropolis-Hastings algorithm of an
antiferromagnetic Ising system with additional nearest neighbour interaction with
asymmetric strength defined by ν1 and ν2, with values (a) ν1 “ 0 ν2 “ ´0.5 (b)
ν1 “ 0 ν2 “ ´0.7

to the Ising system was defined in Section 2.4 as (2.6). In particular, this type of
interaction can be used to single out one direction (and its anti-parallel) among the
orthogonal ones, by changing the definition of its strength so that ν1 “ ν3. The
strength parameter can be defined as:

νs⃗i,s⃗j “

#

ν2 if s⃗i “ p0, 0,˘1q or s⃗j “ p0, 0 ˘ 1q,
ν1 otherwise.

As before, in the replicator dynamics, the penalisation is modeled through the payoff
matrix. When singling out direction z, which corresponds to the strategy d “ 3 in
the replicator framework, the payoff matrix will take the form:

Apot “

»

—

—

—

—

—

—

–

´1 ν1 ν2 1 ν1 ν2
ν1 ´1 ν2 ν1 1 ν2
ν2 ν2 ´1 ν2 ν2 1
1 ν1 ν2 ´1 ν1 ν2
ν1 1 ν2 ν1 ´1 ν2
ν2 ν2 1 ν2 ν2 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

In this case, the effect of the potential is quite large. Consider choosing ν2 ą ´0.5,
the penalised direction is completely erased from the system, for both simulations.
The obtained state has a slightly smaller energy (Ef “ ´1.4) than the simple
ferromagnetic case; therefore it is a more stable configuration, even if the convergence
speed does suffer from the presence of the potential. Considering the case of a
potential that penalises only the orthogonal directions lying on the plane formed
by the d “ 1 and d “ 2 directions, the parameter are chosen as ν1 ă 0 and ν2 “

0. The resulting state will be very similar to an antiferromagnetic ground state,
with alternated spins in the d “ 3 and d “ 6 directions, with some additional
imperfections, in the replicator simulations, such as spin doubles, as shown in figure
3.9b In the replicator equation, convergence takes around 350 sweeps while for the
Metropolis-Hastings algorithm, it requires around 5000 sweeps.

The extended interaction fails to generate significant improvements when all
orthogonal directions are penalised uniformly, while it becomes effective when one
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(a) (b)

Figure 3.11: Simulations obtained with a replicator-based algorithm of an antiferro-
magnetic Ising system with additional nearest neighbour interaction with asymmet-
ric strength defined by ν1 and ν2, with values (a) ν1 “ ´0.5 ν2 “ 0 (b) ν1 “ ´0.7
ν2 “ 0

(a) (b)

Figure 3.12: Simulations obtained with the Metropolis-Hastings algorithm of an
antiferromagnetic Ising system with additional nearest neighbour interaction with
asymmetric strength defined by ν and ν2, with values (a) ν “ ´0.5 ν2 “ 0 (b)
ν “ ´0.7 ν2 “ 0

specific direction is singled out for penalisation. In this case, system convergences
to a state that resembles the one obtained by considering a nematic field. Since
the outcome is similar and the fact that the addition to a nematic field is easier to
understand and implement, in the following simulations for a model with competing
interactions between nearest and next-nearest neighbour interactions we will focus
exclusively on a nematic field.

3.4 J1 ´ J2 interactions

In this section, we introduce competitive next-to-nearest interactions to the model,
which introduce frustration in the system. The second neighbour interactions are
governed by the parameter r, which determines the relative strength of the inter-
actions between the second-nearest neighbours and first-nearest neighbour interac-
tions. We set the first-neighbour interactions to be ferromagnetic, so the matrix of
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(a) (b)

Figure 3.13: Graph obtained of the normalised average area of ferromagnetic islands
as a function of parameter r with (a) the Metropolis-Hastings algorithm (b) and the
the replicator-based algorithm

interactions is equal to the one discussed in the ferromagnetic case A1 “ Aferro. The
second-neighbour interactions are set to antiferromagnetic, represented by the payoff
matrix A2 “ rAanti´ferro. Since r is a positive parameter and Aantiferro “ ´Aferro

the second neighbour interaction can also be expressed as A2 “ ´rAferro. The set
of equations governing the dynamic of the system takes the form:

σi
αpt ` ∆tq “σi

α

"
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ÿ
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(3.1)

In this equation, the first summation accounts for the interactions between the near-
est neighbouring points, which are at a relative distance d1 “ 1, while the second
summation introduces the antiferromagnetic next-to-nearest interactions. The pa-
rameter r controls the relative contribution of the second neighbour interactions and
as r varies the system exhibits different behaviours, similarly to what was predicted
for the Ising model with binary variables [10].

In particular, when r is small, the nearest neighbour interactions dominate and
the system behaves similarly to a purely ferromagnetic one, although, with smaller
magnetic domains. However, as r increases, the antiferromagnetic next-nearest
neighbour interactions become more significant, leading to a much more complex
stable state. Particularly, instead of the super-antiferromagnetic phase, described
in [10], a more complex state emerges, composed of both alternated rows of anti-
parallel spins and by vortex-like structures. The transition from a ferromagnetic to a
mixed phase is shown in Figure 3.13, by considering the mean area of the ferromag-
netic islands as a function of the parameter r for both methods. Panel (a) shows the
behaviour for simulations obtained using the Metropolis-Hastings algorithm. The
size of the islands decreases as r increases, at first rapidly for values of r ă 0.2, then
progressively slower. Therefore, in the Metropolis-Hastings simulations, at r “ 0.2,
the system still shows dominance of ferromagnetic interactions and it converges to
a state composed of ferromagnetic islands, see Fig.3.15, Panel (a). For r “ 1.0 an-
tiferromagnetic next-to nearest neighbour interactions are stronger and the system
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(a) (b)

(c) (d)

Figure 3.14: Simulations of an Ising system with ferromagnetic nearest neighbour
interactions and antiferromagnetic next nearest neighbour interaction with relative
strength given by the parameter r. The system is simulated using a replicator-based
algorithm for the values of r: (a) r “ 0.02 (b) r “ 0.05 (c) r “ 0.08 (d) r “ 0.1

has changed phase: the ferromagnetic islands have disappeared and a complex state
has emerged, composed of vortex-like patterns and stripes, see Fig.3.15, Panel (d).
For the replicator-based algorithm the same transition is present, but it occurs at
different values of r. Figure 3.13, Panel (b) shows the behaviour of the size of the
ferromagnetic islands as r increases. In this case, the transition occurs at a smaller
value of r, and at r “ 0.1 the system has already started transitioning to a mixed
state, see Fig.3.14. Even in this case, the replicator dynamic is faster than the
Metropolis-Hastings algorithm, but it convergences to a state with higher energy,
considerations that are valid for every value of r.

At a high enough values of r, such as r “ 5, when antiferromagnetic interactions
become important and both simulations stabilise into complex configurations. These
convergence states are composed of two distinct types of islands:

• Type 1: These islands contain either horizontal or vertical stripes, where
spins alternate between parallel and anti-parallel directions.

• Type 2: These islands exhibit a vortex-like pattern, where spins alternate
between two orthogonal directions and their anti-parallel ones.

In both types of islands, spins adopt opposite strategies to their second nearest
neighbour; as a result the energy term corresponding to the next-to-neighbour in-
teractions is minimised. On the contrary, first neighbour interactions provide a net
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(a) (b)

(c) (d)

Figure 3.15: Simulations of an Ising system with ferromagnetic nearest neighbour in-
teractions and antiferromagnetic next-to-nearest neighbour interaction with relative
strength given by the parameter r. The system is simulated using the Metropolis-
Hastings algorithm, for the values of r: (a) r “ 0.2 (b) r “ 0.33 (c) r “ 0.5 (d)
r “ 1.
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(a) (b)

Figure 3.16: Simulations of an Ising system with ferromagnetic nearest neighbour
interactions and antiferromagnetic next nearest neighbour interaction with relative
strength given by r “ 5. The system is simulated using: (a) the replicator-based
algorithm (b) the Metropolis-Hastings algorithm.

zero contribution in both cases. For Type 1 islands, half of the nearest neighbours
are parallel to the central lattice point and the other half anti-parallel, leading to
cancellation. For Type 2 islands nearest neighbours are arranged perpendicularly
to the central point, again resulting in a zero net contribution. These patterns are
illustrated in Figure 3.16. In particular, Type 1 islands correspond to the super
antiferromagnetic behaviour described in Article [10], corresponding to the ground
state for an J1 ´ J2 Ising model with binary spins. The introduction of four ad-
ditional directions complicates the behaviour and it introduces vortex-like pattern,
Type 2 islands. As discussed above, the Metropolis-Hastings converge to a state
with lower normalised energy Ef “ ´9.5 , after approximately 3500 sweeps, while,
the replicator simulation is quicker, only 50 sweeps are needed, but it converges to
a state with higher normalised energy, Ef “ ´7.6.

3.4.1 Adding an external bias

To further explore the system dynamics, a bias strategy was introduced in the form
of a nematic field, which favours a given spin alignment, both parallel and anti-
parallel to the magnetic field. Similarly to the antiferromagnetic case, a nematic
field directed along direction d “ 3 was chosen, corresponding to the z direction.
When the field strength is sufficiently large, spins that do not align with the field
gradually disappear, leaving behind cluster of spins aligned with the preferred di-
rections. In Figure 3.17, we can see the state reached by the replicator-based algo-
rithm for a field of strength B “ 0.1 for different values of r, around the transition
point. As r varies, the influence of the nematic field lead to different changes in the
behaviour of the system. For smaller values of r, the state is similar to the ferromag-
netic case described in Section 3.2, forming clusters of parallel spins. However, only
two directions are present, corresponding to the direction of the nematic field. For
r ą 0.2, the configuration corresponds to the super-antiferromagnetic configuration
described in [10], with alternated rows or columns of anti-parallel spins. The intro-
duction of bias effectively erase vortex-like pattern from the system, since directions
orthogonal to z are now penalised. Some clusters of parallel spins are still present
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(a) (b)

(c) (d)

Figure 3.17: Simulations using a replicator-based algorithm of an Ising system with a
nematic field of strength B “ 0.1 and variable ratio between ferromagnetic nearest
neighbour interactions and antiferromagnetic next nearest neighbour interactions
near the transition point from ferromagnetic dominant to a more balanced model.
The ratio r is respectively (a) r “ 0.02 (b) r “ 0.05 [c] r “ 0.08 [d] r “ 0.1

when r “ 0.1. For the Metropolis-Hastings algorithm, simulations behavior is the
same, but the strength of the field needed to eliminate others direction is larger than
for the Metropolis-Hastings. For the same strength of the field, B “ 0.1, as shown
in Figure 3.18, the spins are still able to assume any direction. The only notable
difference is in the size of clusters formed by directions d “ 3 and d “ 6, which are
larger. In this case, it is necessary a strength B ą 0.6 for the spins to be directed
only along z and ´z. For both algorithms, the introduction of a nematic field sim-
plify the situation, and the configurations obtained are similar to the ones predicted
for an Ising model with binary spins in [10]. Indeed, the nematic field effectively
reduces the alignment of the spins to the parallel and anti-parallel direction of the
introduced field. The system presents the super-antiferromagnetic phase, composed
of Type 1 islands, and Type 2 islands disappear from the system.

For the J1 ´ J2 Ising model, the comparison between the replicator-based algo-
rithm with nematic field and the ones obtained with Metropolis-Hastings algorithm
is also interesting. For r “ 5, with an added nematic field of B “ 0.1 the replicator-
based algorithm converges to a configuration with normalised energy is Ef “ ´7.6,
after 50 sweeps. The Metropolis-Hastings simulations for the same value of r without
nematic field, reaches a state with normalised energy Ef “ ´1, after approximately
1000 sweeps. The replicator-based algorithm reaches a state with lower energy, al-
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(a) (b)

(c) (d)

Figure 3.18: Simulations using a Metropolis-Hastings algorithm of an Ising system
with a nematic field of strength B “ 0.1 and variable ratio between ferromagnetic
nearest neighbour interactions and antiferromagnetic next nearest neighbour inter-
actions near the transition point from ferromagnetic dominant to a more balanced
model. The ratio r is respectively (a) r “ 0.2 (b) r “ 0.3 (c) r “ 0.5 (d) r “ 1.
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(a) (b)

Figure 3.19: Simulations of an Ising system with ratio between ferromagnetic nearest
neighbour interactions and antiferromagnetic next nearest neighbour interactions
r “ 5, respectively obtained using (a) the replicator-based algorithm with an added
nematic field of strength B “ 0.1 (b) the Metropolis-Hastings.

though with different composition, as we can see in Figure 3.19, and it is still much
faster than the Metropolis-Hastings. These findings suggests that the replicator dy-
namics could be a valid alternative to simulate Ising systems, and external biases
could be an useful tool to help the system reach a more stable configuration faster.
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Chapter 4

Conclusions

In this thesis, we have proposed a novel approach to simulating Ising models, based
on the replicator equation. In this new method, energy minimisation is replaced
with fitness maximisation in order to drive the system toward a stable configura-
tion. The proposed algorithm delves into the simulations of different extended Ising
systems with six different directions of the spin variable, and it is compared to the
results obtained with the well-known Metropolis-Hastings algorithm. Our aim is to
understand the comparative performance of these algorithms in terms of convergence
speed and stability of the resulting spin configurations.

The algorithms were tested against a series of case studies, ranging from simple
nearest-neighbour interactions (both of ferromagnetic and antiferromagnetic type)
to a more complex model with competing nearest neighbour and next-to-nearest
neighbour interactions. The obtained results show that the Metropolis-Hastings
algorithm excels at finding globally stable states, by minimising the system’s energy
more efficiently. This global stability arises from an effective exploration of the
energy landscape. On the other hand, the replicator-based algorithm converges
faster, even though to a more fragmented locally stable state. These states are
characterized by the formation of clusters of spins that replicate locally the behaviour
of the more stable states found by the Metropolis-Hastings algorithm, suggesting
that the new method prioritise faster solutions, only locally stable. This feature
makes the new approach suitable to be used when the size of the system is extremely
large, or in much more complex cases, where convergence using the Metropolis-
Hastings algorithm requires a long computational time.

Magnetic or nematic fields are also considered in the dynamics. The addition is
straightforward in the Metropolis-Hastings algorithm, for which only the energy cal-
culation must be adapted, while for the replicator-based method, a new approach is
proposed to include the effects of external biases, maintaining the principal features
of the replicator equation. When external magnetic fields are introduced, both al-
gorithms display a predictable shift in spin alignment towards the favored direction.
Both algorithms are able to reach a more stable state and for high enough strength of
the bias their convergence state corresponds to the ground state of the model. More-
over, the convergence speed slightly decreases, with respect to the unbiased case.
Considering a system with nearest-neighbour ferromagnetic interactions, simulations
with the replicator-based algorithm converge after approximately 400 sweeps, while
it decreases to around 20 sweeps when adding a bias of strength B “ 0.2. The same
effect is present in the Metropolis-Hastings simulations, from 3500 to 50 sweeps,
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for the same cases, but, even though the improvement is greater in the Metropolis-
Hastings case, the replicator-based algorithm reaches the same convergence state
faster. When considering an Ising model with competing interactions among neigh-
bours at different relative distances, we observe a richer convergence state. The
behaviour of the system is highly dependent on the ratio r “ J2{J1 between the
coupling constants. When r is small enough, ferromagnetic nearest-neighbour in-
teractions dominate and the system is comparable to one with ferromagnetic in-
teractions alone, with slightly smaller islands. As r increases, a more interesting
mixed state emerges, composed of two types of clusters: one where alternated anti-
parallel spins are arranged in stripes and the other composed of orthogonal spins
in a vortex-like configuration. This transition occurs at different values of r for the
two algorithms, for Metropolis-Hastings simulations the parameter must be at least
r “ 1 to observe this behaviour, while for the replicator-based algorithm it is enough
to chose r ą 0.1 for these new clusters to emerge. Finally, adding an external ne-
matic field reduces the complexity of the patterns of the stable states, by shifting the
spins towards the direction of the bias. This addition does not change the transition
from a ferromagnetic to mixed-state, that occurs around the same values of r, but
the resulting configuration is less complex. The vortex-like islands are erased from
the system, leaving only striped ones, with spins directed parallel and anti-parallel
to the field, which corresponds to the super-antiferromagnetic ground state analysed
in [10].

In conclusion, this thesis has demonstrated the applicability of the replicator
equation as a viable alternative to the Monte Carlo-based Metropolis-Hastings al-
gorithm for simulating Ising spin systems. Through a series of case studies, the
proposed algorithm was shown to converge more rapidly to locally stable states, at
the cost of settling with more fragmented configurations. This approach can there-
fore be considered in scenarios where local interactions are crucial, global stability is
less relevant, and faster simulations are required, whereas the Metropolis-Hastings
algorithm remains the preferred choice for systems that demand global stability.

4.1 Future developments
This works aims to be a computational foundation for future, more rigorous develop-
ments. One potential exploration could be incorporating the temperature dynamics
to study phase transitions more in depth. The Metropolis-Hastings algorithm is
heavily influenced by the temperature of the system. On the other hand, the con-
sidered replicator-based algorithm does not incorporate these effects. Following the
comparison made in [19], we considered the replicator-based simulations as low-
temperature ones. A development in this direction could be considering a similar
comparison and modifying the replicator algorithm to include temperature effects.
This addition would introduce stochastic effects in the model and could help the
system to overcome local effects.

Our study is also structured as a basis for a future, more rigorous analysis of
the continuous limit; this is typically dealt with in the framework of Γ-convergence
[22, 23]. Analytical studies of similar systems were carried out for J1 ´ J2 and
J1 ´ J2 ´ J3 models in [24] and [25], respectively.

A one-dimensional spin chain with competing interactions between nearest and
next-nearest neighbouring spins is considered in [24], where the study focuses on
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a frustrated ferromagnetic and antiferromagnetic spin chain with vanishing spac-
ing on the one-dimensional torus for low-dimensional magnets at zero temperature.
Using a variational approach, the authors aim to understand the ferromagnetic-
to-helimagnetic transition point, at values of the ratio r “ J2{J1 approaching the
transition point from below. The results show the emergence of a chiral ground state.
The scale of the chirality depends on the scaling distance between the position of
the spins in the chain and the distance from the transition point.

The problem in a two-dimensional square lattice with the introduction of third-
nearest-neighbour interactions is studied in [25], where a frustrated J1 ´ J2 ´ J3
spin model is considered on a square lattice, again focusing on the ferromagnetic-to-
helimagnetic transition, as the lattice spacing vanishes. The study explores how the
competition between the three interactions leads to complex magnetic patterns, such
as helices of different chiralities. The analysis shows that the system presents two
regions, characterized by different ground states. When r1 “ J1{J3 ă 2, the system
has a helical ground state, where spins form helices whose chirality depends on the
values of r1 and r2 “ J2{J3. As r1 increases, the system tends to a ferromagnetic
ground state, where all spins are aligned.

Together, these studies show how competing interactions drive the emergence of
chiral states and phase transitions in Ising systems, highlighting that the ground
state of the system changes as the relative strength of the competing coupling con-
stant varies. In particular, when J2 and J3 are strong enough, respectively for the
first and second considered case, the ground state is complex and presents helices.
This behaviour is similar to the vortex-like structure observed in our numerical
solutions, suggesting that a rigorous analysis could reveal similar results.

In view of this similarity, while our algorithm based on the replicator equations
has some limitations, we are confident that it may offer a compelling alternative for
specific problems, especially when looking at the local stability of spin system.
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Appendix A

Julia Code

Simulations were carried out using the following Julia function, that describes the
replicator-based algorithm described in this thesis. Given an N ˆ N square lattice
with n the number of strategies that can be adopted by each point, in the following
sigma is a N2-vector of vectors with n components that represents the probabilities
associated with each point in the lattice at the time t considered, q the farther
interacting neighbours present in the model, neig is a N2-vector of vectors whose
kth component contains all kth-nearest neighbours, the vector of matrices a specify
the matrix of interactions for each kth-nearest neighbours, b a n-vector defining the
external bias h⃗ “ Bµ⃗, and, finally, Delta_t the time step of the system.

1 function replicator_step(sigma, N, n, q, neig, p, a,b,
Delta_t)ãÑ

2 #(a) randomly select one of the N^2 lattice sites
3 i= rand(1:N^2)
4 nei=neig[i,:]
5

6 #(b) compute the updated probabilities for the
individual i, by calculating the change Delta_u(m)
for each startegy m, using the modified-replicator
equation.

ãÑ

ãÑ

ãÑ

7 Delta_u=zeros(n) #initialise to zero the change in
probabilitiesãÑ

8

9 for k in 1:q
10 for n in nei[k]
11 Delta_u+=(a[k]*sigma[n]).-sigma[i]'*

a[k]*sigma[n]#Delta_u+=(a[k]*sigma[n]).-sigma[i]'*
a[k]*sigma[n] #change due to the
interactions

ãÑ

ãÑ

ãÑ

12 end
13 Delta_u=Delta_u.*p[k]
14 end
15 Delta_u+=b.-sigma[i]'*b #contrinution from an

external bias of weight bãÑ

16

17 #update the probabilities
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18 sigma[i]+=sigma[i].*Delta_u./R
19

20 #control for normalized weights to avoid
computational errors: if the sum of the
probabilities associated with point l are not
normalised we normalise them.

ãÑ

ãÑ

ãÑ

21 my_sum=sum(sigma[i])
22 if !isapprox(my_sum, 1, rtol=1e-9)
23 sigma[i]=sigma[i]./my_sum
24 end
25 return sigma
26 end
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