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Summary

This thesis presents a novel approach to renal failure detection, proposing the use of voice
analysis as a non-invasive biomarker. Renal failure, also known as kidney failure, is a
condition affecting around 10% of the global adult population, occurs when the kidneys
are unable to efficiently filter waste from the bloodstream, leading to fluid and toxic
accumulation and other severe health complications. Current diagnostic methods rely
on clinical assessments and laboratory tests, which are often time-consuming, resource-
intensive and stressful for the patient. This research explores an alternative, automated
detection method by focusing on changes in vocal characteristics, hypothesizing that fluid
retention can influence the voice in measurable ways.

The primary goal of the study is to develop a machine learning model capable of de-
tecting changes in patients’ voices that correspond to renal failure, particularly in those
undergoing dialysis. Dialysis is the process of removing the toxin which the body is not
bale to expel by removing the fluid accumulated in the body. By analyzing voice record-
ings from patients before and after dialysis, the study identifies patterns that correlate
vocal changes with fluid removal during the treatment process. The dataset used includes
voice recordings as in figure from 86 patients, collected over a period of 90 days. The anal-
ysis examines how different machine learning models—such as Support Vector Machines
(SVM), Random Forest (RF), and Gradient Boosting (GB)—perform in classifying these
changes.

The study reveals several findings:
• Support Vector Machines Outperform Other Models: Among the different

models tested, SVM demonstrated the highest accuracy in detecting voice changes
related to renal failure. This is particularly true for anuric patients, who experience
more significant fluid retention.

• Vocal Characteristics are Linked to Fluid Retention: The results show a
significant correlation between fluid accumulation and changes in voice, supporting
the hypothesis that voice can be a reliable biomarker for renal health monitoring.
The presence of vocal changes, such as differences in pitch and tone, can signal fluid
retention levels in patients.

• Challenges in Model Generalization: While the models performed well in
detecting voice changes for individual patients, generalizing these results across a
broader population remains challenging. This suggests that future research should
focus on refining the models to improve their applicability to diverse patient groups.

This research introduces the potential for voice analysis to be used as a cost-effective,
non-invasive tool in the clinical detection of renal failure. The use of voice as a biomarker
not only reduces the reliance on resource-intensive tests but also provides an accessible
means of monitoring patients over time.The study also highlights the challenges in de-
veloping models that can generalize well across a broader population. To address this,
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further research is needed to improve the robustness and accuracy of the models, partic-
ularly when applied to a more diverse set of patients.

This thesis establishes a foundation for using vocal characteristics as a biomarker for
renal failure, offering an alternative to traditional diagnostic methods. Using machine
learning techniques, this approach could lead to the development of more efficient, patient-
friendly tools for monitoring renal failure.
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Chapter 1

Introduction

Renal failure (also known as kidney failure) is a common medical condition, affecting
about 10% of the global adult population. Renal failure is characterized by an individual’s
decreased ability to filter waste products from the blood, resulting in a build-up of toxins
and an inability to effectively manage bodily functions. If not addressed timely can
lead to the risk of life-threatening complications, including cardiovascular disease and
severe infections. The World Health Organization (WHO) predicted renal failure to be a
significant contributor to global disability and mortality by 2030 [2]. Rapidly identify and
asses renal failure play a crucial role in an effective treatment. Patient monitoring of renal
function are essential for informed treatment choices and evaluating treatment progress.

Even today, the diagnosis of renal failure relies heavily on clinical assessment and
laboratory tests. The report by Hong et al. [3] highlights that standardised scales in
research and clinical settings rely on objective measures such as glomerular filtration rate
(GFR) and creatinine levels to improve the diagnosis and monitoring of renal function.
While these measures help to minimise bias, there remains the potential for variability
in the interpretation of results during clinical assessment, leading to inconsistencies in
diagnosis. This variability has implications for treatment decisions. In addition, the lack
of resources and well-trained professionals poses a significant challenge to the effective
diagnosis and monitoring of patients with renal failure. There is currently a need for more
robust, affordable and automated tools for the clinical detection of renal failure. Recent
research suggests significant potential in leveraging advanced technologies, specifically
non-invasive biomarkers and imaging techniques for automatically detecting renal failure.
Non-invasive options stand out as favorable for incorporation into an automated system,
given their cost-effectiveness, ease of use, and reduced patient discomfort. Clinicians
frequently rely on various diagnostic indicators such as changes in urine output, electrolyte
imbalances, and imaging studies showing kidney damage as indicative signs of renal failure.

This thesis aims to investigate how innovative technologies can be utilized in a reliable
manner for the detection of renal failure leveraging on voice as biomarker.

Pathological changes in patients with chronic kidney disease (CKD) were examined and
analyzed. CKD is a progressive condition that leads to the gradual loss of kidney function,
resulting in the accumulation of waste products and fluid imbalances. The diminished
kidney function results in characteristic clinical symptoms such as hypertension, edema,
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Introduction

and anemia, while non-clinical symptoms encompass fatigue and cognitive impairments.
Pathological analysis of kidney function can provide valuable insights into the presence of
renal failure, even when patients may not exhibit overt symptoms. However, accurately
characterizing changes and finding insights from biomarkers and imaging studies can be
challenging, as it typically requires precise and consistent measurements.

By exploiting different machine learning and deep learning methods, this research aims
to:

• Compare the performances of different classification methods for detecting renal
failure

• Investigate how the fluid accumulation can lead to a change in voice and be used as
biomarker to detect the decompensation.

1.1 State of the Art
Chronic kidney disease (CKD) has emerged as a significant health concern, with recent
research efforts focusing on the potential for automated detection through speech analysis.
In the study by Mun et al. [4], glottal features were analyzed in speakers with CKD
from the database [5], highlighting their potential for automated CKD detection. The
study identified notable differences in glottal source features between CKD patients and
non-CKD controls, with CKD-affected speech often exhibiting breathy characteristics.
The researchers utilized a combination of voice quality, glottal, and spectral features in
classification experiments, demonstrating the efficacy of these features in distinguishing
CKD presence. Specifically, the study achieved impressive classification results, with a
combined feature set producing an F1-score of 88%. However, it is essential to note
that speech analysis studies for renal failure are significantly limited compared to other
investigated diseases, indicating a need for further research in this area.

1.2 Outline
Chapter 2, Background, defines speech production and its related features. Also, it gives
an overview of feature extraction and classification methods used in the study.

Chapter 3, Datasets, Protocols and Evaluation Metrics, describes the dataset pro-
vided for the analysis and defines the experimental protocols and metrics used in the
experiments.

Chapter 4, presents the Handcrafted features methodology and gives the relative re-
sults with comments.

Chapter 5, reports comments and considerations on the results obtained.
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Chapter 2

Background

2.1 Speech production
The speech signal is often represented using a source-filter model, modeled as a two-stage
process. The first stage models the sound source originating at the glottis as a time-
varying signal e(t), typically a periodic pulse train with pulse spacing τp. The second
stage acts as a filter that amplifies and attenuates the signal with a continuous impulse
response, peaking at chosen resonance frequencies called formants. This filter represents
the vocal tract system v(t). The resulting speech signal s(t) is obtained by the convolution
of e(t) and v(t) in the time domain:

s(t) = e(t) ∗ v(t).

In the frequency domain, this involves multiplying the Fourier transform (FT) of the
excitation signal by the FT of the vocal tract:

S(jω) = E(jω) · V (jω).

The resulting waveform is periodic with a period of τp and features a line spectrum with
a frequency of 1

τp
, with an envelope determined by the vocal tract’s frequency response.

The sound source (the glottis): The source of voiced speech sounds emanates
from the vibration of the vocal folds within the glottis. When air is forced from the
lungs through a closed glottis, the vocal folds vibrate, creating the primary sound source
for most speech sounds. However, not all speech sounds are generated this way. Voice-
less sounds originate higher in the vocal tract. For example, the voiceless labiodental
fricative [f] is produced by air passing through the constriction between the lower lip and
upper teeth, with minimal filtering since there’s little structure in front to alter the sound.

The filter (the vocal tract): The glottal source wave is filtered within the vocal
tract as it progresses towards the external environment. Several anatomical structures
play a role in this filtering process, including the epiglottis, pharynx, velum, various parts
of the tongue (blade, tip, body, and root), the alveolar ridge, hard palate, teeth, lips, and
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the nasal cavity. Each component serves to modify the sound originating from the glottal
source wave.

Figure 2.1. Speech production entails a three-level process: cognitive planning level,
physiological level (muscular actions), and acoustic level (sound generation) [1]

2.2 Prosodic and Acoustic Features
Speech features can be divided into four main groups: source, spectral, prosodic, and
formant features.

Source-related features: These convey information about the glottis during nat-
ural voice production, either parameterizing the glottal flow or vocal fold movements.
Research has shown that depression affects source measures, primarily focusing on voice
quality attributes like jitter, shimmer, and harmonic-to-noise ratio (HNR) [6, 7]. De-
pressed speech often exhibits breathy and tense voice qualities, indicating a decline in
laryngeal coordination [6].

Spectral features: These characterize the speech spectrum, representing the fre-
quency distribution of the speech signal at a specific moment. Common spectral features
include Power Spectral Density (PSD) and Mel Frequency Cepstral Coefficients (MFCCs)
[8, 9]. Spectral features capture various characteristics such as intensity decay, prosodic
irregularities, and articulatory errors. However, their comprehensiveness can pose chal-
lenges for classification or prediction systems. Studies have noted shifts in spectral energy,
particularly in relation to depression severity [7].

Prosodic features: These represent long-term variations in rhythm, stress, and in-
tonation. Key examples include speaking rate, pitch (fundamental frequency, F0), and
loudness [10, 11]. Depression can affect prosodic patterns, often resulting in reduced
speaking intensity, narrower pitch range, slower speech rate, diminished intonation, and
lack of linguistic stress [10, 11].
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2.3 – Short-time feature representations

Formant features: Formants are dominant components in the speech spectrum, pro-
viding information on the resonance properties of the vocal tract. Studies have identified
significant differences in formant locations in individuals with depression [7]. For example,
changes in the second formant (F2) can indicate slower tongue movements. Formant fea-
tures are crucial for developing systems to classify depressive speech, with some classifiers
achieving high accuracy using these features [6, 11].

2.3 Short-time feature representations
2.3.1 Acustic feature extraction
The extraction of audio features is of great importance for the comprehension and anal-
ysis of the characteristics of audio signals across a wide range of fields, including speech
recognition, music analysis, environmental sound classification, and medical voice analy-
sis. This research makes use of audio features from the ComParE 2016 set [12], imple-
mented via openSMILE [13]. The concise set of low-level descriptors (105 in total) was
selected to enhance the model’s explanatory capacity, despite the capability of extracting
over 6,000 features using the same package. Features were extracted using the default
parameters with a window size of 60 ms and an overlap of 10 ms. For audio features
that yield more than one value per sample, the results were averaged. Furthermore, the
original nomenclature was revised to enhance the transparency and comprehensibility of
the methodology. The principal operations in this phase include feature extraction using
openSMILE, temporal averaging to mitigate temporal variations, and standardization to
optimize the performance of the model.

2.3.2 Timing features engineering
In the analysis of audio signals, it is of particular importance to consider the influence of
pathological changes in the vocal tract on the ability to read or speak. In order to gain
a comprehensive understanding of this influence, it is essential to utilize every segment
of the audio, including respiration and pauses, which are inherent to audio recordings
conducted for aforementioned tasks.

The segmentation of audio is a complex process that requires not only the application of
appropriate signal processing techniques but also the implementation of machine learning
methodologies to overcome the limitations of rule-based algorithms and assess the results
on audio recorded in various environments and with diverse hardware.

In their study, Hlavnička et al. [14] present a complex solution for dividing the record-
ings into four distinct segments: voiced, unvoiced, respiration, and pauses. This solution
incorporates a variety of techniques, including calculation of power, ZCR, or autocorre-
lation, unsupervised clustering methods, and a set of rules when applying the algorithm.
Additionally, the authors present a set of features related to phonation, articulation, res-
piration, and timing. The efficacy of the proposed method was evaluated on a cohort
of Parkinson’s disease patients and a control group. In this work, similar algorithm and
feature calculation methods were re-implemented and then applied to the investigated
dataset.
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2.3.3 Spectrogram generation
A spectrogram is a visual representation of the spectrum of frequencies as they vary with
time. It is generated from audio signals utilizing the Python library librosa [15]. This
process involves converting the audio waveform into a time-frequency domain using the
Short-Time Fourier Transform (STFT).

Mathematically, the STFT is defined as:

X(t, ω) =
Ú ∞

−∞
x(τ)w(τ − t)e−jωτ dτ (2.1)

where x(τ) is the input signal, w(τ − t) is a window function, t represents time, and ω
represents frequency.

The results of the vowel trimming algorithm were truncated to the first second of
the audio, which aligns with the recommended signal length for analysis [16, 17]. This
approach ensured that each audio recording was represented as an array of the same
shape. As previously stated in research, the first second of a vowel articulation recording
is sufficient to detect pathological changes in voice production.

Additionally, it was decided to utilize a spectrogram normalization technique called
Per-Channel Energy Normalization (PCEN) [18]. This approach allows for the indepen-
dent adjustment of the energy levels of each frequency channel, rendering it effective in
a variety of acoustic environments, such as the dataset tested where patients performed
recordings in their homes with a considerable amount of background noise. PCEN en-
hances robustness against noise and variability in recording conditions, which is crucial
for reliable model performance in real-world medical applications.

After applying PCEN, log-mel spectrograms were employed, which are the preferred
audio frequency representation for DL approaches. Log-mel spectrograms apply a log-
arithmic transformation to the mel spectrogram, compressing the dynamic range of the
audio signal. This compression helps to reduce the effect of very high amplitude values,
making the features more manageable and less sensitive to variations in loudness. The
logarithmic scale better represents how humans perceive sound. The human auditory per-
ception process is logarithmic in nature, meaning that we are more sensitive to changes in
quieter sounds than in louder sounds. By using log-mel spectrograms, the input features
are aligned more closely with human hearing, which often leads to improved performance
in tasks that involve human-related audio, such as speech or medical voice analysis. In
many real-world audio tasks, the relevant features are often found in the mid to low am-
plitude ranges. The logarithmic transformation is more effective than a linear scale in
highlighting these features, thereby improving the ability of the model to learn and dis-
criminate between different classes. This is particularly important in medical applications
where subtle differences in audio signals can be critical [19, 20].

A log-mel spectrogram is derived by first computing the Mel-frequency cepstral coef-
ficients (MFCCs) and then applying a logarithmic transformation. Mathematically, the
mel scale can be approximated as:

m = 2595 log10

3
1 + f

700

4
(2.2)
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where f is the frequency in Hz, and m is the mel frequency.
The log-mel spectrogram is computed by:

Log-Mel(t, m) = log
AØ

k

|X(t, ωk)|2Hm(ωk)
B

(2.3)

where X(t, ωk) is the STFT of the signal, and Hm(ωk) is the mel filterbank.
Log-mel spectrograms are preferred for this type of task because they closely mimic

the human ear’s perception of sound, providing a more relevant feature space for machine
learning models dealing with audio data. They emphasize perceptually important features
and compress dynamic range, making it easier for models to learn and generalize from the
data.

2.4 Classification methods
Classification is the process of identifying, understanding, and organizing objects and
concepts into predefined groups. Machine learning classification algorithms utilize training
data to estimate and generate the probability or likelihood that incoming data will belong
to one of the established categories or classes. Essentially, a classifier is a model that, based
on input training information, assigns new observations to specified classes or clusters.

Selecting suitable classification methods posed a significant challenge. After thorough
deliberation, the final decision favored a combination of fundamental techniques commonly
used for classification tasks. These techniques include Random Forest (RF), Support
Vector Machine (SVM), and Gradient Boosting (GB).

2.4.1 Support Vector Machine
The aim of a Support Vector Machine (SVM) is to identify the optimal hyper-plane in
N -dimensional space (where N is the number of features) that correctly classifies the data.
Among the possible hyper-planes, the optimal one maximizes the margin—the distance
between the nearest data points of each class—which helps minimize classification errors.
Generally, a larger margin corresponds to a lower generalization error for the classifier
[21].

SVMs are capable of handling both linearly and non-linearly separable data by utilizing
the kernel trick. This technique enables the algorithm to implicitly transform the input
features into a higher-dimensional space where the data can be linearly separated [22]. As
a result, SVMs can effectively tackle complex classification problems that do not have a
linear decision boundary in the original feature space.

Support Vector Classification (SVC) is a classification method based on SVMs [23].
The following parameters are crucial for the algorithm and will be fine-tuned to achieve

the best F1 score:

• Kernel: This parameter determines how the input data is transformed into the
hyperplane defined by the kernel’s mathematical function. The kernels tested in our
case include linear, polynomial, Radial Basis Function (RBF), and sigmoid [23].
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• Regularization Parameter (C): This parameter controls the ’smoothness’ of the
margins, allowing the SVM to tolerate a certain degree of classification error. A high
value of C results in a harder model (less tolerant to misclassifications), while a low
value of C results in a softer model (more tolerant to misclassifications) [21].

• Gamma (γ): This kernel coefficient applies to the sigmoid, RBF, and polynomial
kernels. It governs how much influence a single training point has on the surrounding
region. Lower gamma values indicate a broader similarity radius, grouping more
points together. In contrast, higher gamma values require points to be in very close
proximity to each other to be classified within the same category [23].

2.4.2 Random Forest
Random Forest (RF) is an ensemble learning method based on decision trees that combines
multiple trees to make predictions [24]. To build each tree within the forest, a random
subset of the original training data is chosen using bootstrap sampling, resulting in each
tree being trained on a slightly varied dataset, thereby infusing diversity into the forest.

At each node of a decision tree, a random subset of features is considered to determine
the best split [24]. This approach ensures that each tree only assesses a subset of features,
reducing the risk of any single feature dominating the decision-making process. The tree
is constructed by iteratively dividing the data based on different features and thresholds
to minimize impurities in the resulting subsets.

Once all the trees are constructed, predictions are made by aggregating the outputs of
individual trees through a voting mechanism. In classification tasks, the class that garners
the most votes becomes the predicted class [24].

The following parameters are essential for the algorithm and will be fine-tuned to
achieve the best F1 score:

• Number of estimators: This represents the number of decision trees in the random
forest. Typically, the greater the number of estimators, the better the performance
of the random forest up to a certain threshold. Nonetheless, it’s important to note
that an excessive number of estimators can lead to computational complexity and
prolonged training times [24].

• Maximum depth: A decision tree expands by separating data recursively based on
characteristics and thresholds until a stopping criterion, which may be the maximum
depth, is satisfied. The trees can recognize more intricate patterns in the data when
the maximum depth is greater, although overfitting is also possible. To prevent
overfitting and let the trees identify significant correlations in the data, it is critical
to tweak this parameter properly.

• Minimum samples split: This dictates the minimum number of samples needed
to split an internal node within a decision tree [24]. When the number of samples at
a node falls below the specified minimum, that node is designated as a leaf node, and
any additional splitting is halted. This parameter serves the purpose of regulating the
depth of the tree, ensuring that it does not excessively divide regions with inadequate
data.
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• Minimum samples leaf : This establishes a minimum requirement for the number
of samples that must be present in a leaf node. Should a split operation lead to a leaf
node with fewer samples than the specified minimum, that split is abstained from.
Like the minimum samples split parameter, this setting is essential for managing the
size and depth of the decision tree and serves as a safeguard against overfitting.

Tuning these parameters is crucial to optimize the Random Forest model’s performance
and enhance its ability to generalize well on new, unseen data [24].

2.4.3 Gradient Boosting
Gradient Boosting (GB) harnesses the predictive power of decision trees through a se-
quential approach. Unlike Random Forest, which constructs trees independently, Gradi-
ent Boosting builds a sequence of trees, starting with a simple model—typically a shallow
tree—and iteratively improving upon it [25]. Each subsequent tree in the ensemble aims
to correct the errors of its predecessors [26].

During the construction of each tree, Gradient Boosting assigns higher weights to data
points that were previously misclassified or had larger prediction errors . This adaptive
weighting ensures that subsequent trees focus more on challenging instances in the data,
gradually improving overall predictive accuracy [27].

Variety among the trees is promoted by allowing each tree to consider only a subset
of features at each node when determining the optimal split, akin to Random Forest
[24]. This strategy mitigates the risk of any single aspect dominating the decision-making
process.

Once all trees are constructed and trained, predictions are made by combining the
outputs of individual trees. In classification tasks, the final prediction is determined by
the class that receives the most weighted votes across all trees, resulting in robust and
accurate predictions [25].

Similar to Random Forest, Gradient Boosting shares parameters such as Number of
Estimators, Maximum Depth, Minimum Sample Split, and Minimum Samples Leaf. How-
ever, it introduces a unique parameter called the "learning rate," which controls the con-
tribution of each tree to the ensemble. This learning rate governs how quickly the model
learns from errors during the boosting process, influencing the overall convergence and
final model performance.

2.5 Summary
This chapter delves into the essential stages of speech analysis management, emphasizing
the generation of voice sounds, feature extraction techniques, and classification method-
ologies. Feature extraction is a a crucial procedure that converts raw data into mean-
ingful representations, facilitating the analysis of speech signals. Additionally, we explore
various classification techniques such as Support Vector Machines, Random Forests and
Gradient Boosting. Each of these approaches provides distinct methods for categorizing
and analyzing speech signals, each with its own set of hyperparameters, strengths, and
limitations.
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Chapter 3

Datasets, protocols and
evaluation metrics

In this chapter an overview of available datasets and their use is presented, followed by a
description of the dataset that the rest of the chapters focus on.

3.1 Dataset
The dataset related to renal failure is part of a series of experiments conducted by Charité
Hospital in Berlin, included in the Telemed5000 collection [28]. For simplicity, it will be
referred to as Telemed5000 in the following pages.
It includes audio recordings from 91 patients undergoing dialysis over a span of 90 days
as part of the study as in table 3.1. The patients, with a mean age of 60 ± 14 years,
consisted of 29 women and 62 men, all of German nationality. Each patient contributed
voice samples both before and after their dialysis sessions. However, the frequency of
dialysis sessions per patient varied, averaging 3 sessions per week as in figure 3.2. All
patients utilized the same mobile device for recording.

The audio recordings were sampled at 16 kHz. Data collection involved capturing
stable, sustained vowel articulations (/a/, /i/, and /u/) averaging 5.6 ± 1.8 seconds in
length per original audio recording, an example of vowel at 3.3. The dataset facilitates
a comprehensive exploration of voice changes associated with physiological shifts due to
dialysis. Table ?? presents the distribution of recordings, excluding audio files affected by
distortions.

3.2 Organising dataset
To achieve the scientific objective, it was determined that a meticulously curated dataset
was essential. The initial approach for the task aimed to maximize or minimize fluid
accumulation. To accomplish this, the dialysis events for each patient were retrieved.
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Figure 3.1. Presence of recording over time for a given patient.

Figure 3.2. Distance in time from dialysis event for a given patient.

Subsequently, the nearest recordings in time before and after each event were selected.
The state before the event was labeled as ’1’ (wet state), while the state after was labeled
as ’0’ (dry state).

In order to maximize even more the fluid accumulation a tolerance criteria was applied
in terms of hour for the before and after, respectively 18 and 12 hours, as showed in figure
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3.2 – Organising dataset

Figure 3.3. Example of voice waveform (top) and log spectrogram (bottom)
present in the dataset.

Table 3.1. Dataset description

n=91 (100%) Mean±SD Task
vowel /a/ vowel /i/ vowel /u/

7518 7513 7508
Female 29 (32%) 2376 2375 2374
Age 59±13
Male 62 (68%) 4961 4957 4953
Age 60±14

Notes:
n - Number of patients,
SD - Standard Deviation,
The % are rounded.

3.4. This was done since many recordings where to far away in time to be considered.
These thresholds were also specifically chosen because of the prolonged inactivity typically
occurring the night before dialysis, requiring a longer pre-dialysis window compared to
the post-dialysis window, as shown in figure.

Another precaution that has been implemented is to include only pairs of dialysis
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events where both the before and after events are present, ensuring a balanced dataset
as shown in figure 3.5, in this case the recording between Friday and Saturday has been
discarded since there is no recording in that time tolerance for the before.

Since voice changes through time the recording should not be considered as indepen-
dent. In order to keep the temporal component into account each, recording per vowel
task, was concatenated with the following one temporally. If between the recordings a
dialysis event was present the label applied would be "1", "0" otherwise. The intuition
is that between dialysis event the change in voice is greater than when there is no dial-
ysis event. The visual representation of the process is at figure 3.6. The strength of
this approach is that the model is able to compare each state t with the following t + 1
making a comparison between the two. It’s important to notice that the concatenation
is just one of the possible operation that can be performed between the recording features.

In the dataset construction and in the following analysis some attention has been
devoted to the difference between type of patients. In particular since voice change ac-
cordingly to the amount of fluid retrained by the body the differentiation between patient
category is fundamental. In particular we can divide patients in tree main categories:

• Anuric: patients who are able to expel naturally less than 100ml

• Oliguric: patients who are able to expel naturally between 100ml and 500ml

• Normuric: patients who are able to expel naturally more than 500ml

This distinction is crucial since we expect better results for those patient who are more
unable to expel fluid naturally and will benefit more from the dialysis resulting in a bigger
delta in fluid accumulation.

3.3 Performance metrics
Accuracy counts the number of times a model correctly predicts over the entire dataset.
However, this measure is only reliable if the dataset is class-balanced, meaning each class
contains an equal number of samples. Therefore, for binary classification tasks like de-
pression detection, other metrics such as the F1 score, precision (P), and recall (R) are
often used.

These metrics can be calculated using frame-level results, including true positives (TP),
false positives (FP), and false negatives (FN). Precision measures the proportion of pre-
dicted positive samples that are actually true positives. Recall is calculated as the ratio
of true positives (TP) to the sum of true positives and false negatives (FN). The F1 score,
which is the harmonic mean of recall and precision, provides a single metric that balances
both precision and recall.

These metrics are computed as follows:

Accuracy = TP + TN

TP + TN + FP + FN
(3.1)
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Figure 3.4. Difference between the dialysis event and the nearest recording in hours.

Figure 3.5. Difference between the dialysis event and the nearest recording in hours.

Precision (P) = TP

TP + FP
(3.2)

Recall (R) = TP

TP + FN
(3.3)

F1 Score = 2 · Precision · Recall
Precision + Recall (3.4)
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Figure 3.6. Visual representation of the pairwise approach

3.4 Summary
This chapter introduces the telemed5000 dataset used in the study. It is composed by a
total of 91 patients, 29 female and 62 man, each monitored for 90 days. All the patients
are German speaker. The main strategy to deal with the dataset are presented alongside
with the underlying hypothesis of a correlation between a fluid build-up and a chage in
voice. The evaluation metrics are also presented to asses the performance of the model.
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Chapter 4

Handcrafted feature study

A fundamental step for audio analysis is to transform the audio recordings into a set
of features. The features are extracted from speech by a feature extractor. They are
aggregated to obtain a fixed length representation of the the speaker and use them as
input for the classifier.

4.1 Feature Extraction
To achieve uniform power distribution among all voice samples during analysis, loud-
ness normalization following the ITU-R BS.1770 standard was implemented using the
pyloudnorm library [29, 30]. Research has shown that this method produces favorable
results in speech prediction and recognition tasks [31]. The procedure involves assessing
the loudness level of each audio sample and adjusting it to a uniform target loudness level
of -23 LUFS. Following this, peak normalization is applied to the audio tracks to ensure
that the peak is at the highest or lowest permissible level without causing distortion. This
involves determining the maximum absolute value of the audio signal and then scaling all
samples in the signal by this value. The scaling ensures that the peak amplitude ranges
between 1.0 and -1.0 [29].

A concern that needs to be addressed is the introduction of noise or unwanted silence
in audio recordings. This occurs because, when someone records audio, there is always
a period of silence after the recorder is turned on and before it is turned off. For the
study, an automated tool was developed to properly trim audio where there is no vowel
articulation. It has been shown that there are differences between speech and non-speech
audio segments in terms of the following features: Zero Crossing Rate (ZCR) and Short-
Time Energy (STE) values [32, 33]. The ZCR for speech segments is much lower, while
the STE is higher. Conversely, for non-speech segments, the values are reversed [33].

The features are calculated as follows:

ZCR = 1
T − 1

T −1Ø
n=1

| sgn(x[n]) − sgn(x[n − 1])| (4.1)
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sgn(x[n]) =
I

1 if x[n] ≥ 0
−1 if x[n] < 0

(4.2)

STE =
T −1Ø
n=0

x[n]2 (4.3)

Where x[n] indicates the discrete time signal, sgn represents the sign function, and T
is the total number of samples in the frame.

The vowel articulation is a voiced sound, which means that it is a quasi-periodic signal.
This is due to the glottal vibrations that are responsible for producing this sound [33].
Studies have shown that the length of the range of voiced sounds lasts between 20 and
30 milliseconds [32]. Therefore, the window length for the calculation of features was set
to 25 milliseconds with an overlap of 12.5 milliseconds. This overlap is crucial for the
correct reconstruction of the signal. Furthermore, the application of the window function,
in this case, the Hamming window, makes the process of reconstruction almost perfect.
This is known as the overlap-add process [34]. However, it is common practice in studies
to set the threshold manually in order to distinguish between segments. An alternative
approach is to apply Gaussian Mixture Models (GMM), which have been shown to be a
commonly used method for speech segment classification and applied for this work [35].

Furthermore, the majority-voting technique is utilized to mitigate the risk of some
labels being incorrectly identified. This algorithm is used to reclassify frames that were
initially marked as unwanted artifacts, reassigning them to the vowel articulation category.
This method operates under the assumption that during a sustained vowel articulation
task, the audio will exhibit a pattern of artifacts, vowel articulation, followed by more arti-
facts [36]. Additionally, the minimum articulation interval is set to 1 second. Throughout
the implementation of these methods, the original audio sampling rate was preserved to
ensure that no valuable waveform information was lost.

4.2 Hyperparameter Tuning
To find the most efficient set of hyperparameter values for a specific model, grid search is
a well-known hyperparameter optimization technique [37]. This process involves selecting
the best set of hyperparameters before the training phase, significantly impacting the
model’s performance [38].

Each combination of values in the grid is used to train and evaluate the model using
a predefined evaluation metric described in Section 3.4 [39]. This systematic evaluation
process assesses the model’s performance across all possible hyperparameter combinations.

The ultimate objective of grid search is to identify the most efficient set of hyperpa-
rameters that produces the best performance on the evaluation measure. This optimal
combination is then selected as the most suitable set to evaluate the algorithm on a test
set, which is separated out before the k-fold cross-validation, according to the protocol
splitting for each dataset [40].
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4.3 Hypothesis and results
The following is a brief explanation of the methodology and the results.

In the context of renal failure monitoring using machine learning, this study proposes
the use of voice as a biomarker to detect dialysis events between two audio recordings.
The rationale stems from the well-established relationship between changing vocal char-
acteristics and fluid accumulation in patients suffering from kidney failure. Rather than
using a traditional time series model, which can be cumbersome for this application, the
approach is to compare each audio recording with its predecessor. This method aims to
use machine learning techniques to detect subtle differences between successive recordings,
thereby identifying potential dialysis events based on voice biomarkers.

The experiment involved 91 patients, each individually trained using grid search to
optimise model parameters. Metrics were computed and aggregated across predefined cat-
egories within the dataset. Due to the recognised challenge of generalising models across
patients, this approach was chosen. The study acknowledges the difficulty of achieving
cross-patient generalisation. However, this aspect is left for future analysis beyond the
scope of this research.

The following section describes the results of experiments on kidney failure datasets
applying the traditional pipeline. For each dataset, first, the performance will be discussed,
and the different classifiers for each feature set will be com- pared. Then, for the best-
performing models, a qualitative analysis of the most representative features for renal
failure detection will be presented.

4.3.1 Kidney failure: classification results
Table 4.2 presents the aggregated results of the classification using SVM. The results
are grouped first by type of disease (anuric, normuric, oliguric) and then based on this
difference by sex. The total number of patients involved in the aggregation of the results
is smaller than the initial number, because for a few of them there was a high imbalance
between the number of 0/1 labels, resulting in a high accuracy value, which would have
affected the mean values after aggregation. The process of removing those patient has
been done with a quantile analysis, removing those patient with a support less than 11 for
the 0 class and less than 14 for the class 1 as in figure 4.2, this has been done to include
in the computation of the results only those patients having a large enough number of
samples in the test set.x

The same results for the accuracy and F1 values can be visualized in the box plots in
figure 3.1 and 3.4 respectively.

The same tables and plots are shown for XGBoost classifier below.

As it’s clearly visible from the tables above SVM performs better than XGBoost and
RF across all the categories.
It’s also worth notice how the initial hypothesis regarding patients across the different
categories is reflected in the results showing better performances in both accuracy and
F1 score when dealing with anuric patient rather than normuric and oliguric. This fact
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clearly shows the major impact that fluid accumulation brings to voice.

Despite this results provide high performances for some categories the standard devi-
ation remains high indicating a poor capability of the model to generalize well for all the
patients.

The comparison across model is shown in figure 4.1

Figure 4.1. Performance across models
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Figure 4.2. Outlier detection for all patients. patients having less than the quantile
value for both classes are removed from the result aggregation.

Figure 4.3. Accuracy values using SVM grouped by disease type on the left
and by sex on the right
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Figure 4.4. F1 values using SVM grouped by disease type on the left and by sex on the right
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4.3 – Hypothesis and results

Table 4.1. Analysis of Telemed5000 dataset with differential classifier.

Renal Failure
n = 76 (100%) Mean ± SD

Accuracy F1
Total Anurie 42 (54%) 0.758 ± 0.065 0.746 ± 0.074
Total Oligurie 6 (36%) 0.754 ± 0.085 0.747 ± 0.088
Total Normurie 28 (34%) 0.740 ± 0.069 0.734 ± 0.074
Female 23 (30%)
Anurie 14 (18%) 0.741 ± 0.046 0.726 ± 0.063
Oligurie 3 (3%) 0.708 ± 0.056 0.702 ± 0.059
Normurie 6 (8%) 0.700 ± 0.053 0.681 ± 0.063
Age 59 ± 13
Men 54 (70%)
Anurie 28 (36%) 0.767 ± 0.072 0.756 ± 0.079
Oligurie 3 (3%) 0.800 ± 0.093 0.793 ± 0.098
Normurie 22 (28%) 0.751 ± 0.070 0.748 ± 0.071
Age 60 ± 14

Notes:
n - Number of patients,
SD - Standard Deviation,
Training was conducted on a per-patient basis using Support Vector Machines
(SVM) with grid search for hyperparameter tuning. For each patient, the model was
evaluated 10 times, each with a different random state for the train/test split. The final
results were stored and aggregated.
The % are rounded.
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Table 4.2. Analysis of Telemed5000 dataset with differential classifier.

Renal Failure
n = 76 (100%) Mean ± SD

Accuracy F1
Total Anurie 42 (54%) 0.732 ± 0.048 0.722 ± 0.044
Total Oligurie 6 (36%) 0.731 ± 0.039 0.730 ± 0.068
Total Normurie 28 (34%) 0.740 ± 0.069 0.727 ± 0.049
Female 23 (30%)
Anurie 14 (18%) 0.727 ± 0.036 0.706 ± 0.061
Oligurie 3 (3%) 0.701 ± 0.052 0.67 ± 0.050
Normurie 6 (8%) 0.700 ± 0.049 0.665 ± 0.043
Age 59 ± 13
Men 54 (70%)
Anurie 28 (36%) 0.734 ± 0.058 0.741 ± 0.053
Oligurie 3 (3%) 0.793 ± 0.074 0.754 ± 0.099
Normurie 22 (28%) 0.731 ± 0.072 0.751 ± 0.051
Age 60 ± 14

Notes:
n - Number of patients,
SD - Standard Deviation,
Training was conducted on a per-patient basis using XGBoost with grid search for
hyperparameter tuning. For each patient, the model was evaluated 10 times, each with a
different random state for the train/test split. The final results were stored and
aggregated.
The % are rounded.

Table 4.3. Grid search parameters and value for SVM, RF and GB

Model paramters Grid search values

SVM
C
γ

Kernel

[0.1, 1, 10, 100]
[0.001, 0.01, 0.1, 1]

Linear, RBF, polynomial, sigmoid

RF

Number of estimators
Maximum depth

Minimum samples split
Minimum samples leaf

[10, 20, 30, 40, 50, 70, 80, 100, 150, 200]
[5, 7, 10, 20]

[2, 3, 5, 7, 10, 15]
[3, 4, 5]

GB

Number of estimators
Maximum depth

Minimum samples split
Minimum samples leaf

Learning rate

[10, 20, 30, 40, 50, 70, 80, 100, 150, 200]
[5, 7, 10, 20]

[2, 3, 5, 7, 10, 15]
[3, 4, 5]

[0.001, 0.01, 0.1]
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Table 4.4. Analysis of Telemed5000 dataset with Random Forest classifier.

Renal Failure
n = 76 (100%) Mean ± SD

Accuracy F1
Total Anurie 40 (52%) 0.748 ± 0.060 0.735 ± 0.072
Total Oligurie 7 (9%) 0.745 ± 0.078 0.738 ± 0.082
Total Normurie 30 (39%) 0.730 ± 0.065 0.723 ± 0.071
Female 22 (29%)
Anurie 12 (16%) 0.730 ± 0.050 0.718 ± 0.061
Oligurie 4 (5%) 0.700 ± 0.052 0.690 ± 0.057
Normurie 6 (8%) 0.695 ± 0.051 0.680 ± 0.062
Age 58 ± 12
Men 55 (71%)
Anurie 28 (36%) 0.760 ± 0.070 0.745 ± 0.078
Oligurie 3 (4%) 0.790 ± 0.089 0.780 ± 0.093
Normurie 24 (31%) 0.740 ± 0.065 0.735 ± 0.068
Age 61 ± 13

Notes:
n - Number of patients,
SD - Standard Deviation,
Training was conducted on a per-patient basis using Random Forest (RF) with grid
search for hyperparameter tuning. For each patient, the model was evaluated 10 times,
each with a different random state for the train/test split. The final results were stored
and aggregated.
The % are rounded.
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Chapter 5

Final Analysis

The best results were observed within the male population, prompting a detailed analysis
of the relationship between the results and the fluid extracted during dialysis.

Figure 5.1 displays a scatter plot of the median F1 score weighted per class versus the
median ultrafiltration extracted during the dialysis period per patient. These values were
obtained using an SVM model, which was proven to be the best-performing model. The
analysis was conducted using only patients with more than 50 recordings throughout their
hospitalization period. The plot shows the labels provided by the hospital. It is evident
from the definitions given that some patients who, theoretically, should not be able to eject
a large amount of fluid are shown to have minimal fluid extraction, while those capable
of ejecting fluid have a higher volume of fluid extracted. Despite the anuric and normuric
categorization not being strictly defined in medical terms, it affects the research outcome.
The expectation would be to have a higher F1 score among the anuric group compared to
the normuric group. In this study, the mean F1 score for anuric patients is 74.45%, while
for normuric patients, it is 73.79%.

We further examined how the results would vary by redefining the threshold for catego-
rizing anuric and normuric patients at 2, 2.5, and 3 liters. The results and corresponding
graphs are presented in Figures 5.2, 5.3, and 5.4 respectively.

The summary graph in Figure 5.5 illustrates that with the hospital’s original cate-
gorization, there is minimal difference between anuric and normuric patients. However,
when using a custom threshold of 2 liters, the difference becomes pronounced, highlighting
the effect of fluid accumulation on the patient’s body. As expected, raising the threshold
increases the fluid retention values for both normuric and anuric groups, as more patients
in both groups are classified as having higher fluid retention.

Despite some values supporting the underlying hypothesis, the linear correlation be-
tween the F1 score and the median ultrafiltration is only 0.3803. Specifically, the anuric
patients located in the bottom right part of the plot present the most significant issue.

When increasing the threshold for the number of recordings required for the model,
the scatter plots are shown in Figures 5.6, 5.7, 5.8, and 5.9.

In this scenario the correlation gets much stronger since the amount of recordings per
patients requires is larger. Applying this threshold the correlation is above 0.67% showing
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a clear effect of the fluid accumulation on the model performance.

Figure 5.1. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Figure 5.2. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Figure 5.3. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Figure 5.4. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Figure 5.5. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Figure 5.6. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Figure 5.7. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Figure 5.8. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Figure 5.9. Scatter plot of weighted F1 score versus median ultrafiltration
extraced per patient.
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Chapter 6

Conclusions

The present research leverage the potential of speech analysis as a promising, non-invasive
tool for detecting renal failure, particularly through the nuanced examination of vocal
characteristics influenced by fluid accumulation. The observed distinctions between anuric
and normuric patients highlight the profound impact of fluid retention and associated
symptoms on speech patterns. These findings reinforce the hypothesis that vocal source
and vocal tract features can serve as critical indicators of renal impairment.

The results of our experiments suggest that comprehensive spectral information—including
fundamental frequency and other vocal tract-related features—is essential for accurate
classification. This emphasis on retaining detailed acoustic information is crucial for im-
proving detection accuracy, given the complex interplay between fluid retention, renal
failure symptoms, and their effects on speech production.

Moreover, our analysis of mutual information values reveals that the influence of fluid
retention on speech cannot be underestimated. The correlation between fluid accumula-
tion and the model’s ability to differentiate between "dry" and "wet" states underscores
the significance of considering fluid-related factors in speech analysis for renal failure.

In summary, this research not only provides insights into the acoustic markers of renal
failure but also lays the groundwork for further exploration in this field. Future studies
might continue to refine feature extraction techniques and explore additional acoustic
indicators to enhance the reliability and applicability of speech-based diagnostic tools for
renal failure. Our findings advocate for the integration of speech analysis into clinical
practice, offering a novel approach to early detection and monitoring of renal conditions.
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Appendix A

Handcrafted features

Table A.1: Feature Descriptions

Feature Name Description
meanF0_MEAN Mean of the fundamental frequency (F0)
meanF0_STD Standard deviation of the fundamental

frequency (F0)
meanF0_MIN Minimum value of the fundamental frequency

(F0)
meanF0_MAX Maximum value of the fundamental frequency

(F0)
meanF0_RANGE Range of the fundamental frequency (F0)

meanF0_KURTOSIS Kurtosis of the fundamental frequency (F0)
meanF0_SKEWNESS Skewness of the fundamental frequency (F0)

stdevF0_MEAN Mean of the standard deviation of the
fundamental frequency (F0)

stdevF0_STD Standard deviation of the standard deviation of
the fundamental frequency (F0)

stdevF0_MIN Minimum value of the standard deviation of the
fundamental frequency (F0)

stdevF0_MAX Maximum value of the standard deviation of the
fundamental frequency (F0)

stdevF0_RANGE Range of the standard deviation of the
fundamental frequency (F0)

stdevF0_KURTOSIS Kurtosis of the standard deviation of the
fundamental frequency (F0)

stdevF0_SKEWNESS Skewness of the standard deviation of the
fundamental frequency (F0)

hnr_MEAN Mean of the harmonic-to-noise ratio (HNR)
hnr_STD Standard deviation of the harmonic-to-noise

ratio (HNR)
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Feature Name Description
hnr_MIN Minimum value of the harmonic-to-noise ratio

(HNR)
hnr_MAX Maximum value of the harmonic-to-noise ratio

(HNR)
hnr_RANGE Range of the harmonic-to-noise ratio (HNR)

hnr_KURTOSIS Kurtosis of the harmonic-to-noise ratio (HNR)
hnr_SKEWNESS Skewness of the harmonic-to-noise ratio (HNR)
localJitter_MEAN Mean of the local jitter
localJitter_STD Standard deviation of the local jitter
localJitter_MIN Minimum value of the local jitter
localJitter_MAX Maximum value of the local jitter

localJitter_RANGE Range of the local jitter
localJitter_KURTOSIS Kurtosis of the local jitter
localJitter_SKEWNESS Skewness of the local jitter

localabsoluteJitter_MEAN Mean of the local absolute jitter
localabsoluteJitter_STD Standard deviation of the local absolute jitter
localabsoluteJitter_MIN Minimum value of the local absolute jitter
localabsoluteJitter_MAX Maximum value of the local absolute jitter

localabsoluteJitter_RANGE Range of the local absolute jitter
localabsoluteJitter_KURTOSIS Kurtosis of the local absolute jitter
localabsoluteJitter_SKEWNESS Skewness of the local absolute jitter

rapJitter_MEAN Mean of the RAP jitter
rapJitter_STD Standard deviation of the RAP jitter
rapJitter_MIN Minimum value of the RAP jitter
rapJitter_MAX Maximum value of the RAP jitter

rapJitter_RANGE Range of the RAP jitter
rapJitter_KURTOSIS Kurtosis of the RAP jitter
rapJitter_SKEWNESS Skewness of the RAP jitter

ppq5Jitter_MEAN Mean of the PPQ5 jitter
ppq5Jitter_STD Standard deviation of the PPQ5 jitter
ppq5Jitter_MIN Minimum value of the PPQ5 jitter
ppq5Jitter_MAX Maximum value of the PPQ5 jitter

ppq5Jitter_RANGE Range of the PPQ5 jitter
ppq5Jitter_KURTOSIS Kurtosis of the PPQ5 jitter
ppq5Jitter_SKEWNESS Skewness of the PPQ5 jitter

ddpJitter_MEAN Mean of the DDP jitter
ddpJitter_STD Standard deviation of the DDP jitter
ddpJitter_MIN Minimum value of the DDP jitter
ddpJitter_MAX Maximum value of the DDP jitter

ddpJitter_RANGE Range of the DDP jitter
ddpJitter_KURTOSIS Kurtosis of the DDP jitter
ddpJitter_SKEWNESS Skewness of the DDP jitter
localShimmer_MEAN Mean of the local shimmer
localShimmer_STD Standard deviation of the local shimmer
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Feature Name Description
localShimmer_MIN Minimum value of the local shimmer
localShimmer_MAX Maximum value of the local shimmer

localShimmer_RANGE Range of the local shimmer
localShimmer_KURTOSIS Kurtosis of the local shimmer
localShimmer_SKEWNESS Skewness of the local shimmer

localdbShimmer_MEAN Mean of the local dB shimmer
localdbShimmer_STD Standard deviation of the local dB shimmer
localdbShimmer_MIN Minimum value of the local dB shimmer
localdbShimmer_MAX Maximum value of the local dB shimmer

localdbShimmer_RANGE Range of the local dB shimmer
localdbShimmer_KURTOSIS Kurtosis of the local dB shimmer
localdbShimmer_SKEWNESS Skewness of the local dB shimmer

apq3Shimmer_MEAN Mean of the APQ3 shimmer
apq3Shimmer_STD Standard deviation of the APQ3 shimmer
apq3Shimmer_MIN Minimum value of the APQ3 shimmer
apq3Shimmer_MAX Maximum value of the APQ3 shimmer

apq3Shimmer_RANGE Range of the APQ3 shimmer
apq3Shimmer_KURTOSIS Kurtosis of the APQ3 shimmer
apq3Shimmer_SKEWNESS Skewness of the APQ3 shimmer

aqpq5Shimmer_MEAN Mean of the APQ5 shimmer
aqpq5Shimmer_STD Standard deviation of the APQ5 shimmer
aqpq5Shimmer_MIN Minimum value of the APQ5 shimmer
aqpq5Shimmer_MAX Maximum value of the APQ5 shimmer

aqpq5Shimmer_RANGE Range of the APQ5 shimmer
aqpq5Shimmer_KURTOSIS Kurtosis of the APQ5 shimmer
aqpq5Shimmer_SKEWNESS Skewness of the APQ5 shimmer

apq11Shimmer_MEAN Mean of the APQ11 shimmer
apq11Shimmer_STD Standard deviation of the APQ11 shimmer
apq11Shimmer_MIN Minimum value of the APQ11 shimmer
apq11Shimmer_MAX Maximum value of the APQ11 shimmer

apq11Shimmer_RANGE Range of the APQ11 shimmer
apq11Shimmer_KURTOSIS Kurtosis of the APQ11 shimmer
apq11Shimmer_SKEWNESS Skewness of the APQ11 shimmer

ddaShimmer_MEAN Mean of the DDA shimmer
ddaShimmer_STD Standard deviation of the DDA shimmer
ddaShimmer_MIN Minimum value of the DDA shimmer
ddaShimmer_MAX Maximum value of the DDA shimmer

ddaShimmer_RANGE Range of the DDA shimmer
ddaShimmer_KURTOSIS Kurtosis of the DDA shimmer
ddaShimmer_SKEWNESS Skewness of the DDA shimmer

mfccs_1_MEAN Mean of the 1st MFCC
mfccs_1_STD Standard deviation of the 1st MFCC
mfccs_1_MIN Minimum value of the 1st MFCC
mfccs_1_MAX Maximum value of the 1st MFCC
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Handcrafted features

Feature Name Description
mfccs_1_RANGE Range of the 1st MFCC

mfccs_1_KURTOSIS Kurtosis of the 1st MFCC
mfccs_1_SKEWNESS Skewness of the 1st MFCC

mfccs_2_MEAN Mean of the 2nd MFCC
mfccs_2_STD Standard deviation of the 2nd MFCC
mfccs_2_MIN Minimum value of the 2nd MFCC
mfccs_2_MAX Maximum value of the 2nd MFCC

mfccs_2_RANGE Range of the 2nd MFCC
mfccs_2_KURTOSIS Kurtosis of the 2nd MFCC
mfccs_2_SKEWNESS Skewness of the 2nd MFCC

mfccs_3_MEAN Mean of the 3rd MFCC
mfccs_3_STD Standard deviation of the 3rd MFCC
mfccs_3_MIN Minimum value of the 3rd MFCC
mfccs_3_MAX Maximum value of the 3rd MFCC

mfccs_3_RANGE Range of the 3rd MFCC
mfccs_3_KURTOSIS Kurtosis of the 3rd MFCC
mfccs_3_SKEWNESS Skewness of the 3rd MFCC

mfccs_4_MEAN Mean of the 4th MFCC
mfccs_4_STD Standard deviation of the 4th MFCC
mfccs_4_MIN Minimum value of the 4th MFCC
mfccs_4_MAX Maximum value of the 4th MFCC

mfccs_4_RANGE Range of the 4th MFCC
mfccs_4_KURTOSIS Kurtosis of the 4th MFCC
mfccs_4_SKEWNESS Skewness of the 4th MFCC

mfccs_5_MEAN Mean of the 5th MFCC
mfccs_5_STD Standard deviation of the 5th MFCC
mfccs_5_MIN Minimum value of the 5th MFCC
mfccs_5_MAX Maximum value of the 5th MFCC

mfccs_5_RANGE Range of the 5th MFCC
mfccs_5_KURTOSIS Kurtosis of the 5th MFCC
mfccs_5_SKEWNESS Skewness of the 5th MFCC

mfccs_6_MEAN Mean of the 6th MFCC
mfccs_6_STD Standard deviation of the 6th MFCC
mfccs_6_MIN Minimum value of the 6th MFCC
mfccs_6_MAX Maximum value of the 6th MFCC

mfccs_6_RANGE Range of the 6th MFCC
mfccs_6_KURTOSIS Kurtosis of the 6th MFCC
mfccs_6_SKEWNESS Skewness of the 6th MFCC

mfccs_7_MEAN Mean of the 7th MFCC
mfccs_7_STD Standard deviation of the 7th MFCC
mfccs_7_MIN Minimum value of the 7th MFCC
mfccs_7_MAX Maximum value of the 7th MFCC

mfccs_7_RANGE Range of the 7th MFCC
mfccs_7_KURTOSIS Kurtosis of the 7th MFCC
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Handcrafted features

Feature Name Description
mfccs_7_SKEWNESS Skewness of the 7th MFCC

mfccs_8_MEAN Mean of the 8th MFCC
mfccs_8_STD Standard deviation of the 8th MFCC
mfccs_8_MIN Minimum value of the 8th MFCC
mfccs_8_MAX Maximum value of the 8th MFCC

mfccs_8_RANGE Range of the 8th MFCC
mfccs_8_KURTOSIS Kurtosis of the 8th MFCC
mfccs_8_SKEWNESS Skewness of the 8th MFCC

mfccs_9_MEAN Mean of the 9th MFCC
mfccs_9_STD Standard deviation of the 9th MFCC
mfccs_9_MIN Minimum value of the 9th MFCC
mfccs_9_MAX Maximum value of the 9th MFCC

mfccs_9_RANGE Range of the 9th MFCC
mfccs_9_KURTOSIS Kurtosis of the 9th MFCC
mfccs_9_SKEWNESS Skewness of the 9th MFCC

mfccs_10_MEAN Mean of the 10th MFCC
mfccs_10_STD Standard deviation of the 10th MFCC
mfccs_10_MIN Minimum value of the 10th MFCC
mfccs_10_MAX Maximum value of the 10th MFCC

mfccs_10_RANGE Range of the 10th MFCC
mfccs_10_KURTOSIS Kurtosis of the 10th MFCC
mfccs_10_SKEWNESS Skewness of the 10th MFCC

mfccs_11_MEAN Mean of the 11th MFCC
mfccs_11_STD Standard deviation of the 11th MFCC
mfccs_11_MIN Minimum value of the 11th MFCC
mfccs_11_MAX Maximum value of the 11th MFCC

mfccs_11_RANGE Range of the 11th MFCC
mfccs_11_KURTOSIS Kurtosis of the 11th MFCC
mfccs_11_SKEWNESS Skewness of the 11th MFCC

mfccs_12_MEAN Mean of the 12th MFCC
mfccs_12_STD Standard deviation of the 12th MFCC
mfccs_12_MIN Minimum value of the 12th MFCC
mfccs_12_MAX Maximum value of the 12th MFCC

mfccs_12_RANGE Range of the 12th MFCC
mfccs_12_KURTOSIS Kurtosis of the 12th MFCC
mfccs_12_SKEWNESS Skewness of the 12th MFCC

mfccs_13_MEAN Mean of the 13th MFCC
mfccs_13_STD Standard deviation of the 13th MFCC
mfccs_13_MIN Minimum value of the 13th MFCC
mfccs_13_MAX Maximum value of the 13th MFCC

mfccs_13_RANGE Range of the 13th MFCC
mfccs_13_KURTOSIS Kurtosis of the 13th MFCC
mfccs_13_SKEWNESS Skewness of the 13th MFCC
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