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Abstract

Programming Deep Neural Networks (DNNs) can be a daunting task for individuals
with limited programming expertise. Moreover, the potential of Deep Learning
(DL) models could be vastly expanded if more people had access to this technology.
Conversely, for those already coding Neural Networks (NNs), comprehending
runtime errors, pinpointing issues, and resolving them remains a significant hurdle.

DeepBlocks is introduced as a Visual Programming (VP) tool that enables the
construction, debugging, training, and evaluation of DNNs through the addition
and connection of blocks, along with the configuration of training parameters.

The application was tested by actual users, whose feedback was instrumental
in further development and also conveyed gratitude for democratizing the power
of Deep Learning. This was achieved by providing an intuitive tool that allows a
wider audience to experiment with Deep Neural Networks.
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Chapter 1

Introduction

This thesis addresses the challenge of implementing Deep Learning (DL) pipelines
for individuals with limited or minimal programming expertise. It proposes the
development of a web application designed to simplify the creation and debugging
of models, tailored to the user’s specific preferences. This chapter introduces the
overview of the work (1.1), its aim (1.2), its contribution (1.3) and finally the
document structure (1.4).

1.1 Overview
Machine Learning (ML) algorithms are becoming increasingly prevalent across
various industries. Marketing and finance are two sectors where the use of ML
algorithms is particularly prioritized. In marketing, for example, ML can analyze
user preferences from online searches or shopping carts to provide personalized
recommendations. Additionally, ML is utilized to design targeted marketing
campaigns by identifying products and services that align with specific customer
interests. ML algorithms have been employed as personal assistants such as
Amazon’s Alexa, Apple’s Siri and Google Assistant. This communication involves
speech recognition, speech-to-text conversion, Natural Language Processing (NLP)
and text-to-speech. Moreover, ML is behind message bots which are used for
customer service to ensure fast responses [1].

Machine Learning can also apply to healthcare where it relies on the collection
of patient data. Using systems and tools designed to sort and categorize data, ML
algorithms can discover patterns in datasets that allow medical professionals to
identify new diseases, improve diagnosis and predict treatment outcomes [2] [1].
DeepDR is a Deep Learning system that can detect early-to-late stages of diabetic
retinopathy contributing to timely treatment [3].

Building ML pipelines is challenging. The first challenge lies in designing and

1



Introduction

setting up the pipeline itself due to its complexity, the required expertise, the
associated costs, and the need for continuous monitoring and updating. It requires
careful orchestration of the data processing sequence, model training, evaluation,
and deployment steps [4]. Another challenge is maintaining the pipeline from the
Concept Drift which is when the relationship between the input and target changes
over time that usually occurs when real-world environments change in contrast
to the training data the model learned from. Data Drift is another type of drift,
but this is caused by unforeseen changes in the input data. Models trained from
historic datasets may become less accurate and effective over time as the underlying
relationships between the data shifts evolves [5] [4].

Constructing a Machine Learning pipeline is a substantial endeavor that neces-
sitates meticulous planning and consideration of various elements. Initially, it is
crucial to comprehend the problem and the data at hand to tailor the ML pipeline
design. This comprehension impacts each phase of the pipeline. Subsequently,
selecting the appropriate tools is essential, depending on the project’s specific
needs, such as the programming language and framework. Monitoring the model’s
performance is vital as it aids in promptly responding to environmental shifts
and updating the model by retraining with new data or modifying the feature set,
thereby averting Concept Drift [4].

Debugging Machine Learning pipelines is complex due to the multiple intercon-
nected stages involved, from data pre-processing to model deployment. Each stage
can introduce errors, and the abstract error messages often fail to pinpoint the
exact source of the problem. Issues such as data inconsistencies, incorrect feature
engineering, or flawed model configurations can propagate through the pipeline,
leading to unexpected results. The integration of various tools and frameworks
can also introduce compatibility issues. To address these challenges, developers
must use a systematic approach, employing logging and visualization tools such
as UMLAUT and ModelTracker to trace errors, debug model performances and
ensure pipeline reliability [6] [7].

Given the significant challenges in designing and developing DL networks afore-
mentioned, including the complexities of debugging interconnected stages and
managing various tools and frameworks, the learning curve for mastering ML
pipelines is exceptionally steep. As a result, becoming proficient in ML pipelines
requires not only technical expertise but also extensive experience in managing the
nuances of end-to-end Machine Learning workflows [8].

Visual Programming (VP) tools applied to the ML sector such as TeachableMa-
chine [9], VisualBlocks [10] and DeepBlocks [11] have emerged to tackle the com-
plexities faced by Machine Learning programmers, offering specialized solutions.
These VP tools facilitate the creation and training of ML models by providing a
straightforward drag-and-drop interface on a canvas. This allows users to easily
configure parameters and define connections between different elements [12].
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However, while VP tools offer increased simplicity, they may compromise on
capabilities such as debugging or constructing intricate networks. NVIDIA DIGITS1,
for instance, was the first DL specific tool to provide an user interface to perform
tasks like data loading and one-click training. However, it is only possible to train
pre-built networks and it does not have the capability to design models from scratch.
Another example is Google’s Tensorboard2 which is often used as a supplement to
visualize Tensorflow models and finally Netron3 is used to visualize existing models
coded in various libraries [8].

1.2 Aim
The thesis aims to develop a new version of the DeepBlocks application developed
by Tommaso Calò and Luigi De Russis [11] utilizing Visual Programming (VP)
to construct, debug, and train Deep Learning (DL) pipelines. This will address
the challenges in design and implementation, reducing the learning curve. The
tool’s design is intended for use by Machine Learning (ML) students to become
acquainted with the DL pipeline environment and by ML novices and experts to
facilitate straightforward network construction and debugging.

When designing Deep Learning networks, it is important to consider that as the
network size grows, it can become difficult to manage and interpret. By adopting
a block-based approach (see more in Section 3), users can sequentially arrange
blocks on a canvas by adding and connecting them, which improves the network’s
scalability and readability as it expands.

When creating DL networks, it is difficult to individuate potential issues. The
VP tool aims also to validate the DL network prior to initiating the training
by sequentially verifying each block for incorrect parameters, highlighting issues
on the User Interface (UI). This assists users in pinpointing issues and offers
potential solutions for resolution. Once the DL network validation is verified
as successful, users can proceed to train the pipeline and analyze the outcomes.
Visualizations are helpful to record the model’s history, facilitating user analysis of
pipeline modifications against previous iterations as well as getting insights from
the model’s performances through metrics and plots.

The rise of Visual Programming paradigms and web-based platforms is making
the DL network creation more accessible to a broader audience. The implementation
of a web application that follows the VP paradigm offers an intuitive, user-friendly
environment that can be accessed via the Internet. By providing a drag-and-drop

1https://developer.nvidia.com/digits
2https://www.tensorflow.org/tensorboard
3https://netron.app/
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interface and simplifying the configuration of DL pipelines, the platform enables
users to experiment with and deepen their understanding of DL concepts without
the need for advanced programming skills. As a result, it opens up opportunities
for a diverse range of individuals to engage with and contribute to the field of Deep
Learning, fostering a more inclusive and educational environment.

1.3 Contribution
This work makes several contributions to the advancement of Machine Learning and
Deep Learning technologies. Firstly, it offers a comprehensive literature review of
Visual Programming (VP) tools tailored for creating and debugging ML pipelines.
This review not only catalogs existing tools but also critically examines their
functionalities, identifying gaps and challenges that current solutions face. This
analysis provides a strong foundation for understanding how VP tools can be
optimized for more efficient and user-friendly DL pipeline development, addressing
the needs of both novice and experienced users.

Secondly, the project focuses on the design and development of a three-tier
web application specifically crafted for building DL pipelines. This architecture
was chosen for its ability to separate concerns across different layers: the fron-
tend delivers an intuitive interface that simplifies the process of constructing DL
networks through a drag-and-drop mechanism; the middleware ensures smooth
communication and data handling between the user interface and the backend
service and other external services; and the backend server is responsible for the
heavy lifting of model creation, training and debugging. This tiered structure en-
hances scalability, maintainability, and security, allowing the application to handle
increasingly complex DL models while remaining accessible and responsive.

Moreover, the implementation details, including the source code, are provided
to facilitate replication, customization, and further innovation.

Finally, the project includes a user testing phase, which was designed to gather
qualitative and quantitative feedback from a diverse set of users, ranging from begin-
ners to more experienced users. The results of this testing provide valuable insights
into the usability, functionality, and overall effectiveness of the web application as
well as precious comments for further development. This user-centered approach
is fundamental to the project’s goal of democratizing access to DL technologies,
making them more accessible and usable for a wider audience.

1.4 Thesis structure
This thesis is structured to guide the reader through the development and evaluation
of a web-based Visual Programming (VP) platform for Deep Learning pipelines.
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Chapter 2 begins by providing a comprehensive overview of the existing literature,
situating this work within the broader context of Machine Learning and VP tools.
This chapter identifies key aspects of VP tools for Machine Learning, challenges,
and gaps in current solutions, setting the stage for the subsequent contributions.

Following this, Chapter 3 delves into the specifics of ML pipelines, detailing the
methodologies used in this project, particularly the application of Visual Program-
ming techniques. This chapter outlines how VP methodologies are employed to
simplify the creation, debugging, and management of DL pipelines, making these
complex processes more accessible as well as presenting the gRPC environment,
chosen for the implementation of the VP web-based tool.

Chapter 4 then discusses the design phase of the web application, explaining
the rationale behind the architectural choices and the User Interface design. This
chapter explores how the application’s design supports scalability, usability, and
integration of DL models, ensuring a seamless user experience.

In Chapter 5, the focus shifts to the practical aspects of the work, presenting a
detailed account of the implementation process. This chapter covers the technical
challenges encountered, the solutions developed, and the step-by-step construction
of the application’s three-tier architecture, including the frontend, middleware, and
backend components.

Chapter 6 then delineates the user testing phase, from the structure of the
tests to the analysis of the results. This chapter provides insights into how the
application was evaluated by a well defined group of users, the feedback received,
and how this feedback could be useful for further refinements of the platform.

Finally, Chapter 7 draws together the findings from the previous chapters,
offering conclusions about the efficacy and potential impact of the developed
platform. It also suggests directions for future work, emphasizing the ongoing need
for innovation in making DL technologies more accessible to a broader audience.
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Chapter 2

Related Work

This chapter provides descriptions of the scientific papers researched during this
thesis, offering insights into the research community’s efforts to assist users in
creating and training Machine Learning pipelines, potentially through the use of
the Visual Programming paradigm.

This phase has been launched to pinpoint potential new features for development
within DeepBlocks.

2.1 DeepBlocks
DeepBlocks by Tommaso Calò and Luigi De Russis [11], supervisors of this project,
provides an overview of the main features that must be retained in the new version
of the application.

A key feature of the tool is its ability to verify network correctness prior to
initiating the training project. It accomplishes this by iterating through the model’s
modules and invoking the forward function. Should an error occur, the application
assists in pinpointing the erroneous node by highlighting it and notifying the user
of the specific issue.

Another significant aspect is the adoption of the Visual Programming paradigm,
which allows users to place blocks on a canvas, link them as desired, and configure
the block parameters prior to initiating the verification or training process.

The final notable feature of the DeepBlocks desktop application is the capability
for users to create “superblocks”. A superblock is a node that can encompass other
nodes within it. While it appears as a singular node on the canvas, users can delve
into it to reveal the individual nodes that constitute the superblock. In the desktop
version of DeepBlocks, these superblocks are displayed on the left side, complete
with all their details and parameters clearly specified.

Users have the option to select a loss function from a dropdown list of predefined
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functions or to upload a file with a custom loss function for use during the training
process.

2.2 Visual Blocks
Visual Blocks by R. Du et al. [12] is a Visual Programming tool to build and train
Machine Learning pipelines.

During the formative studies the authors found out that creating a Visual
Programming interface for multimedia applications with Machine Learning models
interested all their participants. Most ML researchers, in fact, do not have enough
skills to write prototypes and so providing them a VP tool to rapidly create ML
pipelines would be beneficial. They observed also that comparing model outputs
and results is a crucial activity in the day-to-day life of a ML researcher by providing
visualizations able to gain insights and make evaluations on the fly.

Visual Blocks also offers intriguing insights into the freedom users have to
connect blocks and explore their functionality. Indeed, tests have revealed how
users interact with the blocks and whether this fosters creativity.

2.3 DL-IDE
DL-IDE by Tamilselvam et al. [8] is another tool to design Deep Learning models
based on a ‘no-code’ paradigm.

During their qualitative survey among software engineers they discovered that the
83% of the participants took about 3-4 days to implement a Deep Learning model
even if 86% of those respondents rated themselves with very good programming
skills. Thus, even good programmers find it challenging to implement DL models.
Another result of the survey shows that more than 92% of the respondents wanted
an interoperability framework to convert the model in one library into another
one. The most suitable existing framework determined by the authors of DL-IDE
is the Open Neural Network Exchange (ONNX) [13] which comes with an online
visualizer, the Netron web app 1.

The authors identified the main requirements for any DL tool:

• Design and Visualization: intuitive design and construction of Deep Learning
models.

• Elimination of need to code: automatic source code generation.

1https://netron.app/
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• Production-ready capabilities: efficiently training the model, fast and scalable
deployment.

The application is also designed so that for every update on the model design in
the drag-and-drop interface, the validation component checks the correctness of
the whole model.

The user test designed by the authors comprised three distinct tasks, each
targeting the creation of a unique Deep Learning model. This was achieved by
employing the provided layers through plain coding as well as a visual method
involving the addition and connection of nodes.

Upon concluding the experiments, the researchers highlighted that the average
duration for coding significantly exceeds that of using visual tools for designing
Deep Learning models. They also noted that the visual interface is well-adapted
for users of varying expertise, although the time required to construct a model is
contingent upon the individual technical abilities of the participants.

2.4 DeepVisual
DeepVisual by C. Xie et al. [14] is an application for designing and deploying DL
systems.

The goal of the research was to open the way to the technological innovations
and help developers from diverse domains to start to take advantage of DL models.
DeepVisual is another example of Visual Programming tool based on the drag-and-
drop paradigm to create visually a Neural Network.

One important feature of DeepVisual is the Code pane which is a tab of the
application in which is possible to visualize the generated code for the built network.
Any modification to the model affects the Code pane which is dynamically updated
to keep track of the changes. In the Code pane, the user is also able to export the
generated code in various DL framework supported.

Users have the option to upload a file with code, after which the application’s
backend will take responsibility for generating the Neural Network’s graphical
structure and displaying it within the drag-and-drop interface.

2.5 UMLAUT
UMLAUT by E. Schoop et al. [6] is a tool to debug ML pipelines providing useful
errors suggestions or link to online resources.

This tool attaches to the DL program runtime, running heuristic checks of model
structure and behavior that encode the tacit knowledge of experts. UMLAUT then
displays results of checks as error messages that integrate program context, explain
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best practices, and suggest code recipes to address the root causes. The crucial
concept is that UMLAUT assists users before the evaluation phase.

The errors are categorized in three classes: Warning, Errors and Critical de-
pending on the impact on model performances. Error messages are presented in
a web interface that tightly couples errors with visualizations of model output,
linking root causes to their symptoms. Error messages include descriptions of
their underlying theoretical concepts, and suggest potential debugging strategies
to bridge theoretical and practical knowledge gaps. To translate these strategies
into actionable changes, UMLAUT errors include code snippets which implement
suggested fixes, outbound links to curated Stack overflow and documentation
searches, and links to the suspect lines of code in source.

2.6 Model Tracker
ModelTracker by Amershi et al. [7] introduces an interactive visualization tool
that integrates information from various traditional summary statistics and graphs.
This tool not only displays example-level performance but also facilitates direct
error examination and debugging.

A notable aspect of this research, which distinguishes it from previous works, is
the incorporation of user feedback. One significant suggestion was to display not
only the changed predictions but also the magnitude of these changes by directly
comparing them with the previous results. This enhancement allows for a more
nuanced understanding of model performance and aids in more effective debugging
and model improvement. In addition to this, other user feedback that influenced
the development of ModelTracker included better integration with other Machine
Learning tools and platforms.

2.7 Discussion
The research of the existing literature and tools reveals several important insights
that have influenced the development of the new version of DeepBlocks. The
DeepBlocks desktop version served as the foundation for this work, and its core
features, such as the creation of superblocks, custom loss function uploads, and
model correctness verification, have been preserved in the new version to maintain
consistency and functionality. These features are essential for users to efficiently
construct, debug, and train Deep Learning pipelines, providing a balance between
simplicity and depth in network design.

The Visual Blocks tool highlighted the importance of providing users with the
freedom to explore and connect different blocks, which fosters creativity and deeper
understanding of Machine Learning principles. This insight underscores the value
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of an intuitive, flexible visual interface that caters to both novice and experienced
users. The ability to compare model outputs and results in real-time, as emphasized
by Visual Blocks, is crucial for iterative development and refinement of ML models.

DL-IDE’s contribution to this work lies in its focus on the ‘no-code’ paradigm,
which aligns with the goal of making Deep Learning accessible to a broader audience.
The study presented in the article revealed that even experienced programmers
find it challenging to implement DL models quickly. Therefore, integrating a
drag-and-drop interface with automatic code generation not only accelerates the
development process but also lowers the entry barrier for non-programmers. The
interoperability framework highlighted by DL-IDE, particularly the use of ONNX
for model conversion, has also been a consideration in the new version of DeepBlocks,
ensuring that the tool can be integrated with various ML libraries and frameworks.

DeepVisual introduced the concept of dynamic code generation and visualization,
which allows users to see and export the generated code corresponding to their
visual model. This feature provides transparency and flexibility, enabling users
to understand the underlying code structure and modify it if necessary. The idea
of converting code into a graphical model representation is particularly intriguing
and presents an opportunity for future enhancements in DeepBlocks, potentially
allowing users to switch seamlessly between code and visual modes.

The UMLAUT tool brought forward the critical importance of advanced debug-
ging features in Deep Learning models. The ability to run heuristic checks and
provide context-aware error messages that include practical solutions and links to
online resources is a powerful aid for both novice and expert users. This approach
to debugging, where errors are not only identified but also contextualized with the-
oretical explanations and practical fixes, has influenced the design of error-handling
features in the new DeepBlocks version.

Finally, the ModelTracker tool demonstrated the effectiveness of integrating
user feedback into the development process. The ability to track changes in model
performance and visualize the magnitude of these changes, as well as the importance
of flexibility in integrating with other ML tools, has informed the design of the
User Interface and the feedback mechanisms in DeepBlocks. This focus on user
experience ensures that the tool remains adaptable and responsive to the needs of
its users.

In summary, this discussion demonstrates how the insights and features from each
of the researched tools and studies have significantly influenced the development of
the new DeepBlocks version. By integrating best practices - such as flexible visual
interfaces and debugging mechanisms - DeepBlocks is designed to enhance usability,
accessibility, and flexibility in Deep Learning model development. The incorporation
of these elements not only preserves the core strengths of the original DeepBlocks
but also introduces innovative features, ultimately advancing the capabilities of
Visual Programming in the Machine Learning domain. Additionally, features like
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seamless code-to-graphical model conversion and enhanced interoperability across
ML frameworks, as seen in some of the researched tools, present promising directions
for future versions of DeepBlocks, further extending its utility and appeal.
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Chapter 3

Materials and methods

This chapter presents the concept of Machine Learning (ML), the primary frame-
works, the phases of ML pipelines, diverse ML methods, the fundamentals of Visual
Programming, gRPC, and the theoretical concepts behind the techniques employed
in application testing.

3.1 Machine Learning
This section provides a concise introduction to Machine Learning, examining both
the ML pipelines and the methods involved as well as the main framework to code
DL models.

3.1.1 Introduction
Machine Learning (ML) is a subset of Artificial Intelligence (AI) that concentrates
on using data and algorithms to empower AI systems to mimic the way humans
learn, thereby progressively enhancing their accuracy.

Machine Learning (ML), Deep Learning (DL), and Neural Networks (NNs) are
distinct yet interconnected sub-fields of Artificial Intelligence. Neural Networks
form a subset of Machine Learning, and Deep Learning is a specialized branch of
Neural Networks.

Deep Learning algorithms are designed to process unstructured data in its
native form, such as text or images. They autonomously identify the features
that differentiate various data categories, reducing the need for human input and
allowing for the utilization of vast datasets.

Neural Networks, or Artificial Neural Networks (ANNs), consist of layers of
nodes, including an input layer, several hidden layers, and an output layer. Each
node, or artificial neuron, is connected to others and possesses an associated weight
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and threshold. If the output of a node exceeds the threshold value, the node
activates and transmits data to the next layer. If not, it does not pass data forward.

The term “deep” in Deep Learning refers to the number of layers within a Neural
Network. A NN with more than three layers, including the input and output layers,
is considered a Deep Learning algorithm or Deep Neural Network [15].

In this thesis the focus is on the Deep Neural Networks.

3.1.2 Pipelines
A Machine Learning pipeline is a series of interconnected data processing and
modeling steps designed to automate, standardize and streamline the process of
building, training, evaluating and deploying ML models.

ML pipelines consist of multiple sequential steps that do everything from data
extraction and pre-processing to model training and deployment. Figure 3.1 shows
an high level view of the stages of a ML pipeline.

The data processed throughout the pipeline is a dataset which can consist of
any kind of data type, like images, audio, text etc.

Figure 3.1: Stages overview of a ML pipeline

The first stage is the Data Input in which data is organized and processed so
that can be used by the following steps.

Data pre-processing is an essential step because the input dataset can produce
unexpected results during the training phase if not processed correctly. This stage
involves various operations, including data cleaning, data fusion, data reduction,
and data transformation. To prepare a final dataset for the training process, several
methods are available for pre-processing data, such as normalization, aggregation,
and numerosity reduction.

Model training is the process where the Machine Learning model receives
data and begins the learning process. It is a fundamental phase in a ML pipeline,
during which the model is trained to predict outcomes with the highest possible
accuracy.
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Model validation is the process of assessing a predictive model’s performance
and reliability by comparing its outputs against actual outcomes or using statistical
techniques to ensure it generalizes well to unseen data.

The Deployment of the model involves integrating the trained model into
a production environment where it can process real-world scenarios and provide
predictions or insights to end-users.

3.1.3 Methods
ML methods fall in three main categories [16]:

• Supervised Learning is a type of Machine Learning methods where a model
is trained on a labeled dataset, meaning that each training example is paired
with an output label. The goal is for the model to learn the relationship between
the input data and the corresponding labels so that it can make accurate
predictions on new, unseen data. Common algorithms used in supervised
learning include linear regression, decision trees, and Neural Networks.
More details in the following paragraph.

• Unsupervised Learning employs Machine Learning algorithms to analyze
and cluster unlabeled datasets. These algorithms uncover hidden patterns in
the data autonomously, without human intervention. The capability of this
method to identify similarities and differences in data makes it well-suited for
exploratory data analysis, cross-selling strategies, customer segmentation, as
well as image and pattern recognition.

• Semi-supervised Learning provides a middle ground between supervised
and unsupervised learning. It employs a smaller set of labeled data during
training to guide the classification and feature extraction from a larger set of
unlabeled data.

Supervised Learning

Supervised Learning is a fundamental approach in ML where a model is trained
using a labeled dataset. In this context, “labeled” means that each training example
is paired with an output label, which serves as the ground truth for the model to
learn from.

The primary objective of Supervised Learning is to learn a mapping from
inputs to outputs, enabling the model to make predictions on new, unseen data.
This process involves feeding the model a set of input features along with their
corresponding labels, allowing it to identify patterns and relationships within the
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data. Once trained, the model can then be evaluated on a separate test dataset to
assess its performance and generalization capabilities.

The Supervised Learning training process is chosen based on the problem type.
The two main type of problems are:

• Classification problems involve algorithms that accurately categorize test
data into distinct groups. For instance, they can differentiate between apples
and oranges. In practical applications, supervised learning algorithms are
employed to filter spam emails into a designated folder, separate from the
main inbox.

Common classification algorithms include linear classifiers, support vector
machines, decision trees, and random forests.

• Regression in supervised learning is a statistical method used to model
the relationship between a dependent variable and one or more independent
variables. It aims to predict continuous outcomes by fitting a mathematical
function to the observed data. Common techniques include linear regression,
which assumes a linear relationship, and more complex methods like polynomial
regression and support vector regression.

During the training phase, the model learns from the labeled data by adjusting
its parameters to minimize the difference between its predictions and the actual
labels. Finally, the model’s performance is evaluated using various metrics, such
as accuracy, precision, recall, and F1 score, to determine how well it can predict
outcomes on unseen data.

Supervised learning is widely applied across various domains, including finance,
healthcare, marketing, and Natural Language Processing.

Furthermore, it plays a crucial role in image recognition tasks, where models are
trained to classify images into predefined categories. The versatility and effectiveness
of supervised learning make it a cornerstone of modern ML applications.

3.1.4 Main Libraries and Frameworks

In the rapidly evolving field of Machine Learning (ML), various libraries and
frameworks have been developed to streamline the process of building, training,
and deploying models. These tools provide developers with pre-built modules,
optimized algorithms, and scalable solutions, thereby reducing the complexity of
ML development.

16



Materials and methods

PyTorch

Developed by Facebook’s AI Research lab, PyTorch1 is a prominent open-source
Deep Learning framework. PyTorch has gained popularity for its dynamic computa-
tion graph, which allows for real-time model definition and modification, making it
particularly suited for research and development. It offers a user-friendly interface,
strong support for GPU acceleration, and seamless integration with Python, making
it accessible to both beginners and experienced ML practitioners. PyTorch’s ecosys-
tem includes tools such as TorchVision for computer vision tasks and TorchText for
Natural Language Processing, further extending its utility across various domains
[17].

ONNX

The Open Neural Network Exchange (ONNX)2 is an open-source format designed
for the interchangeability of Deep Learning models between different frameworks.
Developed by Facebook and Microsoft, ONNX allows developers to train a model
in one framework (e.g., PyTorch) and then transfer it to another framework (e.g.,
TensorFlow) for inference. This interoperability is crucial in scenarios where
different tools or platforms are better suited for different stages of the ML pipeline.
ONNX is also supported by a wide range of hardware vendors, making it easier to
deploy models across diverse environments.

Hugging Face Transformers

Hugging Face’s Transformers library3 has become a go-to resource for working
with state-of-the-art Natural Language Processing (NLP) models. It provides
pre-trained models for tasks such as text classification, translation, summarization,
and more, built on architectures like BERT, GPT, and T5. However, the library’s
capabilities extend beyond NLP and have increasingly embraced computer vision
tasks as well.

For image-related tasks, Hugging Face Transformers supports a variety of
cutting-edge models such as Vision Transformers (ViT), DeiT (Data-efficient Image
Transformers), and CLIP (Contrastive Language-Image Pretraining). These models
enable powerful image classification, object detection, and image-text alignment
capabilities. The Vision Transformer (ViT) models treat images as sequences of
patches and apply the Transformer architecture, originally designed for NLP, to

1https://pytorch.org/
2https://onnx.ai/
3https://huggingface.co/docs/transformers/index
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these sequences. This approach has shown competitive performance compared to
traditional Convolutional Neural Networks (CNNs), especially when trained on
large datasets.

In addition to pre-trained models, the Hugging Face ecosystem provides tools for
fine-tuning these models on custom datasets, making it accessible for developers to
adapt these powerful models to their specific use cases. The library also supports
seamless integration with other tools and platforms within the Hugging Face
ecosystem, such as the ‘datasets’ library, which simplifies the process of loading
and pre-processing large image datasets.

Furthermore, Hugging Face’s Transformers library includes utilities for image
pre-processing, such as resizing, normalization, and augmentations, which are
essential steps in preparing images for model training and inference. The library
also offers straightforward APIs for converting images into the appropriate input
formats required by the Transformer models.

The Hugging Face platform also includes a model hub, where users can explore,
share, and deploy image models. This hub allows users to upload their trained
models and make them available to the broader community, fostering collaboration
and accelerating the development of image-related AI applications [17].

TensorFlow

TensorFlow4 is an open-source Machine Learning framework developed by Google.
It is highly versatile, supporting a wide range of tasks, including Neural Net-
work training, Deep Learning, and even reinforcement learning. TensorFlow is
particularly known for its scalability, making it suitable for both small projects
and large-scale production systems. It offers a comprehensive ecosystem of tools,
such as TensorBoard for visualization and TensorFlow Serving for deploying mod-
els. TensorFlow also supports both high-level APIs like Keras, which simplify
model building, and low-level operations, providing fine-grained control over model
architecture and optimization [17].

Scikit-learn

Scikit-learn5 is a powerful library built on top of NumPy, SciPy, and Matplotlib,
providing simple and efficient tools for data mining and data analysis. It is one of the
most popular libraries for implementing traditional Machine Learning algorithms
such as classification, regression, clustering, and dimensionality reduction. Scikit-
learn is designed with an emphasis on simplicity and accessibility, making it an

4https://www.tensorflow.org/
5https://scikit-learn.org/stable/index.html
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ideal choice for those new to ML. It also supports various pre-processing techniques,
model evaluation methods, and pipelines, facilitating end-to-end ML workflows
[17].

Keras

Keras6 is a high-level neural networks API, written in Python, that runs on top of
TensorFlow, Theano, or CNTK. It is designed to enable fast experimentation with
deep neural networks, allowing users to build and train models with just a few lines
of code. Keras emphasizes modularity, minimalism, and extensibility, providing
a simple interface for defining complex models. Due to its ease of use and focus
on user experience, Keras has become a preferred choice for those who want to
quickly prototype models without delving into the complexities of the underlying
frameworks [18].

CAFFE

Caffe7, short for Convolutional Architecture for Fast Feature Embedding, is a Deep
Learning framework developed by the Berkeley Vision and Learning Center (BVLC).
Known for its speed and modularity, Caffe is particularly well-suited for tasks that
require Convolutional Neural Networks (CNNs), such as image classification and
object detection.

One of the key strengths of Caffe is its efficiency. It is written in C++ and
supports CUDA, allowing it to leverage GPU acceleration for faster training and
inference. This makes Caffe an attractive choice for deploying Deep Learning
models in real-time applications, where performance is critical.

Caffe’s architecture is highly modular, allowing users to define complex neural
networks by assembling layers such as convolution, pooling, and activation functions.
The framework also provides a “Model Zoo”, a collection of pre-trained models
that can be used out-of-the-box for a variety of tasks or fine-tuned for specific
applications. This library includes models like AlexNet, VGGNet, and GoogLeNet,
which have been pivotal in advancing the field of computer vision [19].

Although Caffe is highly efficient, it has some limitations. The framework does
not natively support dynamic Neural Network structures, making it less flexible
compared to other modern frameworks like PyTorch or TensorFlow. However, its
speed and ease of use continue to make it a valuable tool for specific use cases,
particularly in industry settings where performance is paramount [20].

6https://keras.io/
7https://caffe.berkeleyvision.org/
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Apache Spark

Apache Spark8 is an open-source distributed computing system that provides an
efficient platform for big data processing and Machine Learning. Its ability to
process large datasets in parallel makes it an invaluable tool for Machine Learning
applications that require handling massive amounts of data.

Spark’s MLlib, the Machine Learning library built on top of Spark, offers a
range of scalable algorithms for classification, regression, clustering, collaborative
filtering, and more. It also includes utilities for data processing, feature engineering,
and model evaluation, making it a comprehensive tool for developing Machine
Learning pipelines.

One of the significant advantages of Apache Spark is its integration with other
big data tools, such as Hadoop, Hive, and HBase, allowing it to easily process data
stored in a variety of formats and locations. This integration is crucial for Machine
Learning applications that operate on large datasets distributed across multiple
storage systems.

Spark also supports a wide range of programming languages, including Java,
Scala, Python, and R, making it accessible to a broad audience of data scientists
and engineers.

For Deep Learning tasks, Apache Spark can be integrated with other frameworks
such as TensorFlow and Keras, enabling distributed training of Neural Networks
across a cluster of machines [21].

Conclusion

The libraries and frameworks discussed in this section represent the cutting edge of
tools available for Machine Learning development. Each offers unique features and
advantages, catering to different aspects of the Machine Learning life-cycle, from
data pre-processing and model training to deployment and inference. By leveraging
these tools, developers and researchers can accelerate their workflows, achieve
higher performance, and focus more on innovation rather than the underlying
complexities of ML implementation.

During this project, the PyTorch library, the ONNX format and the HuggingFace
Transformers were used.

3.2 Visual Programming
End-User Development (EUD) has emerged as a field that is concerned with tools
and activities allowing end users who are not professional software developers

8https://spark.apache.org/
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to write software applications. One advantage is that as end users, they know
their own domain and needs more than anyone else, and they are often aware of
specificities in their respective contexts.

Visual Programming, among other EUD techniques, allows end users to create
a program by piecing together graphical elements rather than textually specifying
them.

According to the analysis given by the paper Characterizing Visual Programming
Approaches by Kuhail et al. [22], the VPL can be split in four categories:

• Block-based VP enables users to construct programs by dragging and drop-
ping “blocks” of code from a predefined command list into a development space.
These blocks fit together to form a complete program. This method eradicates
syntax errors, thus lessening the cognitive load on users and enabling them to
focus on conceptual comprehension instead of the intricacies of code syntax.
One very popular tool which can serve as an example is Scratch9.

• Icon-based languages leverage icons, which are graphical symbols that repre-
sent objects or actions.

• Form-based VP enables developers to design a form by adding triggers
and actions through text-based drop-down menus or visual drag-and-drop
interfaces. While some form-based methods are predominantly visual, others
incorporate textual specifications.

• Diagram-based VP involves the connection of graphical elements, such as
boxes, with arrows, lines, or arcs to denote relationships. Understanding a
diagram-based program requires users to navigate through the diagram, which
employs various forms of perceptual coding to depict the program’s flow.

In this thesis, the objective is to leverage the use of the diagram-based VP to
build a Deep Neural Network.

3.3 gRPC
Like many RPC systems, gRPC is based around the idea of defining a service,
specifying the methods that can be called remotely with their parameters and
return types. By default, gRPC uses protocol buffers, which are language-neutral
mechanism serializing structured data [23], as the Interface Definition Language
(IDL) for describing both the service interface and the structure of the payload

9https://scratch.mit.edu/
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messages. gRPC can define four kinds of service method: Unary RPCs where the
client sends a single request to the server and gets a single response back. Server
streaming RPCs where the client sends a request to the server and gets a stream
to read a sequence of messages back. The client reads from the returned stream
until there are no more messages. gRPC guarantees message ordering within an
individual RPC call. Client streaming RPCs where the client writes a sequence
of messages and sends them to the server, again using a provided stream. Once the
client has finished writing the messages, it waits for the server to read them and
return its response. Again gRPC guarantees message ordering within an individual
RPC call. Bidirectional streaming RPCs where both sides send a sequence of
messages using a read-write stream. The two streams operate independently, so
clients and servers can read and write in whatever order they like: for example, the
server could wait to receive all the client messages before writing its responses, or it
could alternately read a message then write a message, or some other combination
of reads and writes. The order of messages in each stream is preserved [24].

In this thesis project, gRPC was selected due to its simplicity, efficient commu-
nication structure, and ease of scalability. Its lightweight nature enables fast and
reliable communication between services, while its support for multiple program-
ming languages ensures flexibility across different platforms. Additionally, gRPC’s
ability to easily add new services without major architectural changes makes it
highly scalable, allowing for seamless expansion and integration as the project
grows. This combination of simplicity and scalability makes gRPC an ideal choice
for building a robust and future-proof service architecture. Among the several
service methods, the Unary has been used.

The language used for handling the communication is Python through its
grpcio-tools10 package, and the protocol buffer language has been used to define
the server interface and the structure of the payload messages.

3.4 Testing techniques
There are many ways to test an application and its interface. The main categories to
distinguish are the Between-subjects where different people test each condition, so
that each person is only exposed to a single user interface, or the Within-subjects
where the same person tests all the conditions [25].

The between-subjects design offers several advantages in usability studies. First,
it minimizes learning and the transfer of knowledge between conditions. For
example, when a participant completes a series of tasks on a car-rental site, they
become familiar with the domain, such as learning about fees for drivers under

10https://pypi.org/project/grpcio-tools/
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21 or insurance coverage. However, in a between-subjects design, this knowledge
transfer is not a problem since participants are not exposed to multiple levels of the
same independent variable. Another benefit is the shorter session duration: testing
a single application results in shorter sessions, which are less tiring for participants
and more suitable for unmoderated remote testing. Finally, this design is easier to
set up compared to within-subjects design, which requires randomization of stimuli
to avoid order effects [25].

The within-subjects design presents several significant advantages. First, it
requires fewer participants to achieve statistically significant results. Since each
participant provides data for each level of the independent variable, a single
participant can contribute multiple data points. For example, in a study comparing
two car-rental sites, 40 participants will generate data for both sites, while a
between-subjects design would need twice the number of participants, increasing
the cost. Thus, within-subjects studies are more cost-effective. Additionally, the
within-subjects design minimizes noise in the data, reducing the likelihood that real
differences between conditions are obscured by random variability. Participants
bring their own history, knowledge, and emotional state to the test. For example,
a happy participant will affect all conditions similarly, whereas in a between-
subjects design, such an effect might impact only one group, requiring additional
effort to balance such variables between groups. In practice, controlling for these
factors across groups is difficult, making within-subjects design more robust to such
variations [25].

3.4.1 SEQ Questionnaire

Single Ease Question (SEQ) is a standard user experience metric that researchers
use in usability studies to figure out how hard or easy it is for user attempts to
do a task. It lets you get more qualitative information and determine how users
feel about the task. Instead of measuring how well an interface or prototype is
used, SEQ measures how hard the users respond differently and think it is to do a
specific task [26].

SEQs offer invaluable benefits to user experience research. They enable to
pinpoint problematic areas within the tested interface or workflow by collecting user
feedback immediately after each task. This real-time insight helps identify the most
challenging aspects, allowing to prioritize improvements effectively. Additionally,
SEQs provide fresh and unbiased insights, as participants’ experiences are still
vivid in their minds right after completing a task. This timeliness minimizes the
risk of other tasks influencing their memory or distorting their perception, leading
to more accurate feedback on the user experience [27].
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3.4.2 SUS Questionnaire

The System Usability Scale (SUS) is a widely used 10-item questionnaire designed
to assess the usability of a system. Each item is rated on a 5-point Likert scale
ranging from 1 (Strongly Disagree) to 5 (Strongly Agree). A Likert scale is a
rating scale used to measure opinions, attitudes, or behaviors. It consists of a
statement or a question, followed by a series of five or seven answer statements.
Respondents choose the option that best corresponds with how they feel about the
statement or question. Because respondents are presented with a range of possible
answers, Likert scales are great for capturing the level of agreement or their feelings
regarding the topic in a more nuanced way [28].

The questionnaire covers a range of usability aspects, with alternating positive
and negative statements to ensure balanced feedback. The questions are as follows:

• I think that I would like to use this system frequently.

• I found the system unnecessarily complex.

• I thought the system was easy to use.

• I think that I would need the support of a technical person to be able to use
this system.

• I found the various functions in this system were well integrated.

• I thought there was too much inconsistency in this system.

• I would imagine that most people would learn to use this system very quickly.

• I found the system very cumbersome to use.

• I felt very confident using the system.

• I needed to learn a lot of things before I could get going with this system.

SUS has a strong record of consistently being a reliable and valid tool for
measuring usability. It’s shown to effectively provide valuable insights to smaller
sample-size audiences, making them easier to leverage than larger commercial
techniques. SUS has also proven to consistently provide valid measurements around
perceived usability, meaning any researcher or team can trust the results [29].
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Scoring System

The scoring system for SUS involves adjusting user responses to ensure consistency
between positive and negative statements. For odd-numbered items, subtract
one from the user’s response, while for even-numbered items, subtract the user’s
response from 5. This method scales all values to a range from 0 to 4, where a
score of 4 represents the most positive usability rating.

After adjusting the responses, sum the total for each user. To convert this total
to a standardized score, multiply the result by 2.5. This transformation scales
the score to a range of 0 to 100, with higher scores indicating better usability.
According to established benchmarks, a SUS score above 68 is considered above
average in terms of usability [30].

25





Chapter 4

Design

This chapter outlines the design process for the user interface of the new version of
DeepBlocks.

Previously, DeepBlocks was developed as a desktop application by Tommaso
Calò and Luigi de Russis [11]. Building upon the features implemented in the
desktop version, the design phase for the new version was organized into three
key steps. First, a review of existing literature was conducted to identify similar
applications and extract useful ideas and features (see Section 2). Next, the
appropriate architecture for the web application was selected. Finally, the user
interface (UI) was designed using Figma, a collaborative interface design tool [31].

4.1 Features design
The design of the new features was carried out by evaluating the existing features
in the desktop version of the DeepBlocks application and by exploring the literature
for new functionalities to implement in the upcoming version of the app.

4.1.1 From the desktop version
The concept began with the creation of a Visual Programming tool aimed at
constructing, debugging, and evaluating Deep Neural Networks. The core objective
was to preserve the distinctive features that define the application, ensuring it
remains innovative and beneficial for its intended users. The primary functionality
involves defining the network by adding, connecting, and parameterizing blocks.
A novel feature introduced in DeepBlocks is the capability to forge a Superblock,
which encapsulates a variety of heterogeneous blocks within. You can see an
example of the Superblock design in Figure 4.1.

An essential feature of the application is pre-training network verification, which
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Figure 4.1: Superblock design comparison: the new version is depicted on the
left, while the previous one is shown on the right.

identifies and highlights erroneous nodes in the User Interface, serving as an
instructive guide for users. In the previous version of DeepBlocks, errors were
indicated by highlighting the branch where the issue originated. In the current
version, the specific node causing the error is circled with a red dashed line, and
an error message is displayed. This enhancement helps users quickly identify and
resolve issues, as shown in Figure 5.2.

One feature of the desktop version retained in the new version of the application
is the organization of the training settings menu. This menu includes fields for
setting the number of epochs, learning rate, batch size, optimizer, and the loss
function for the training process. Regarding the loss function, users can upload
a file with a custom loss function or select from a list of predefined ones, such as
Cross Entropy (CE), Binary Cross Entropy (BCE), and Mean Squared Error (MSE)
loss functions. For the optimizer, two options are available: the Adam optimizer
and Stochastic Gradient Descent (SGD).

Compared to the previous version, the new release has expanded the functions
available for users to build their DL model. Additionally, the node design displayed
on the canvas has been updated to clarify its function. As illustrated in Figure
4.2, the left side shows the new block design, labeled with the PyTorch function,
whereas the older version displays a node named after a Fully Connected (FC)
block.

4.1.2 From the literature
The literature research pinpointed many interesting functionalities that could match
with the scope of DeepBlocks.

Some suggestions were reserved for potential inclusion in future versions of Deep-
Blocks, while others were considered during the current project’s implementation
phase. Among those assessed for this version was the proposal of a resolution phase
that could be based on standard error or utilize online resources when the server
returns an error in the model.

Another aspect underscored by numerous scientific studies is the potential to
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Figure 4.2: To the left is the new block design, and to the right is the older
version.

develop a flexible system that can also extend compatibility to other frameworks.
In this regard, the targeted open system for constructing DL models that can be
utilized across various frameworks is the Open Neural Network Exchange (ONNX)
format. Users can export their models in ONNX format and then employ them in
multiple frameworks to alter the training process or evaluation phase or visualizing
the model graphically on the Netron website1.

The final feature evaluated during the project’s design phase was the ability to
compare current results with those from previous models when there have been
changes in node parameters. This allows users to swiftly determine whether their
parameter adjustments have effectively enhanced the model’s overall performance.

4.2 Architecture
To determine the most suitable architecture model for the second version of
DeepBlocks, a comprehensive evaluation of all potential options was conducted.
After an initial round of deliberations, the decision to continue with a desktop
application was discarded. This choice was made due to the inherent limitations of
desktop applications, including restricted accessibility, challenges in maintaining
up-to-date functionalities, and the difficulty in providing seamless user experiences
across different platforms.

The final architecture selected for DeepBlocks is a web-based application utilizing
a three-tier model. This architecture offers enhanced scalability, accessibility, and
ease of maintenance, ensuring that users can access the application from anywhere
with an internet connection. The three tiers of the architecture are as follows:

1https://netron.app/
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• Web User Interface (UI): This tier handles the frontend logic and is responsible
for managing user interactions. It is designed to provide a user-friendly and
responsive interface that facilitates smooth communication between the user
and the application. It also includes the logic to download the DL model in
JSON format and to upload a JSON file that contains a model.

• Middleware Service: Acting as an intermediary layer, the middleware service
connects the frontend with the backend. It processes incoming requests,
performs optional data validation and checks, and manages access to external
resources and services. This tier ensures efficient communication and data
flow between the UI and the backend.

• Backend: This tier is responsible for the core functionality of building and
training DL models. It manages the computational processes and algorithms
necessary for DeepBlocks to deliver accurate and reliable results. The backend
is designed to be scalable and robust, allowing for the efficient handling of
complex computations and large datasets.

This three-tier architecture not only enhances the overall performance and
reliability of DeepBlocks but also provides a flexible foundation for future updates
and feature expansions. A schematic representation of this architecture is illustrated
in Figure 4.3, showcasing the interaction between the different components of the
system.

Figure 4.3: DeepBlocks’ web architecture

By adopting this web-based three-tier architecture, DeepBlocks is well-positioned
to meet the evolving needs of its users, offering a modern solution that is both
powerful and adaptable.
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4.3 UI design
After finalizing the application’s architecture, the next step involved creating a
Medium-Fidelity prototype (Med-Fi). This prototype served as a preliminary
design, featuring a series of interconnected screens that provide a clear visual
representation of the application’s layout and flow. Although not finalized, this
prototype offers a more detailed view than low-fidelity sketches, as it permits to
understand the overall structure and functionality of the application [32]. The
focus was on usability and user interaction, ensuring that the design concept aligns
with the intended user experience.

Building on the features identified in the previous version of the application,
as referenced in Section 2.1, and those found in other scientific works detailed in
Section 2, an initial set of requirements has been established. Subsequently, given
that the selected architecture is web-based, the design has been carried out with
consideration for a web browser environment.

The DeepBlocks web application’s design was crafted using Figma [31], a web-
based tool for creating prototypes. The web UI was conceptualized to mirror the
layout of an Integrated Development Environment (IDE) used for coding.

The DeepBlocks’ interface includes a vertical menu bar on the left side with
icons, providing navigation through the app’s various menus: a selection of blocks
to add to the network (N), a list of already incorporated blocks with available
operations (V), a training menu for setting parameters and initiating the training
process (T), a separate menu for import/export tasks (S), and an icon to access
the training results window (A). The Medium-Fidelity design of the DeepBlocks
application, showcasing the left menu and the open list of available blocks, is
depicted in Figure 4.4.

Nodes are represented as compact blocks on the interface, ensuring clarity and a
degree of scalability with growing network sizes. Superblocks, introduced in Section
2.1, further enhance scalability. Upon creating and opening a Superblock, a new
tab is generated at the top of the webpage, enabling seamless navigation. This
tab allows the user to effortlessly switch between the Superblock and the main
tab, where all individual blocks and Superblocks are displayed. This functionality
enhances the user experience by providing a streamlined way to access and manage
different components of the application.

Users have the flexibility to personalize block names by relabeling them.
The web UI features zoom controls located at the bottom-right, allowing users

to zoom in, zoom out, and fit the entire network within a single screen view as
efficiently as possible.

To configure any node parameters, the user can open the node bar which is
displayed in the bottom part of the screen. This interface provides a description
of the node, displays any specific parameters that can be adjusted for the specific
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Figure 4.4: DeepBlocks Med-Fi prototype: vertical menu bar on the left side
with icons and the open list of available blocks with an example network

PyTorch function, and includes a tab for error messages if any issues arise. This
setup ensures that users have all the necessary information and tools to effectively
manage node configurations. Figure 4.5 depicts the design of this component.

Figure 4.5: DeepBlocks Med-Fi prototype: node info bar to set parameters and
display errors, if any

The menu displaying the training results is designed to show the status of the
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training process and includes controls for managing execution. The training results
are presented in a tabular format, with key metrics such as accuracy, precision,
recall, and F1-score visualized through tables and plots. This approach provides a
clear and concise overview of the model’s performance. Figure 4.6 shows the design
of that component.

Figure 4.6: DeepBlocks Med-Fi prototype: a results menu featuring various plots
and corresponding metric values
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Chapter 5

Implementation

In this chapter, the various components of the application are detailed, including
the implementation choices, the libraries utilized, and the rationale behind the
development of each component of the web application. This section is crucial as it
provides insights into the technical architecture and the decision-making process
that underpins the overall functionality of the application.

The source code of the application is available on GitLab at the following link
https://git.elite.polito.it/filippocaste/deepblocks-msthesis.git.

5.1 Architecture
This section provides a comprehensive overview of the application’s architecture
from a technical perspective. The architecture is composed of three main compo-
nents: the frontend, the middleware service, and the backend server responsible for
building and training Deep Learning models. These components work in tandem
to deliver a seamless user experience, from interacting with the Graphical User
Interface (GUI) to executing complex Deep Learning tasks.

Frontend The frontend is the user-facing layer of the application, responsible for
rendering the Graphical User Interface (GUI) and managing user interactions. The
frontend has been developed using the React framework, which is known for its
efficiency in building dynamic and responsive User Interfaces.

Middleware The middleware serves as a bridge between the frontend and the
backend, facilitating communication and ensuring that requests from the frontend
are appropriately handled and routed to the backend services.
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Backend The backend is the core of the application, responsible for the heavy
lifting involved in building, training, and managing Deep Learning models. It
exposes a range of services through a gRPC interface, allowing the middleware to
invoke these services as needed.

5.1.1 Data Management
One of the unique aspects of the application is that it does not incorporate user
account management or persistent data storage. As a result, the data handled
by the application is transient and session-based. The main data components
include the available building blocks and PyTorch functions that users can utilize
to construct their models. This data is stored directly in the frontend, making it
readily accessible for user interactions.

Future Enhancements

In future iterations of the application, it might be beneficial to incorporate user
accounts and persistent storage. This would allow users to save their work, share
models with others, and return to their projects at a later time without the need to
download the model and later uploading it. Additionally, implementing a database
to store user data could open up new possibilities, such as tracking user progress,
and providing analytics on the types of models users are building.

5.2 Communication Flow
The communication flow between the frontend, middleware, and backend is designed
to be efficient and robust. Each component communicates with the others using
well-defined protocols and data formats, ensuring that information is transferred
accurately and quickly.

The frontend communicates with the middleware using API calls. These calls
are made using HTTP, and the data is serialized in JSON format or sent as binary
data.

The middleware uses gRPC to communicate with the backend. This choice was
made to leverage gRPC’s performance advantages, such as lower latency. gRPC also
allows for more complex data structures to be transferred between the middleware
and backend, which is essential for the complex tasks handled by the backend.

5.2.1 Error Handling
The communication flow includes robust error-handling mechanisms. For example,
if the backend encounters an issue during model training, it sends an error message
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back to the middleware, which then relays this information to the frontend. The
frontend can then display an appropriate error message to the user, providing
guidance on how to resolve the issue.

5.3 Frontend

5.3.1 Folder organization
The Figure 5.1 illustrates the organizational structure of the repository’s directory
that contains the frontend code.

Figure 5.1: The folder structure for the frontend implementation, including the
main sub-folders and files.

The frontend directory is structured to efficiently organize the web application’s
components and resources. At the root level, it contains essential files such as
index.html for the main webpage structure, package-lock.json for managing
dependencies, and README.md for documentation purposes. Within the public
folder, there is a sub-directory data, which stores static data resources accessible
by the application. The src folder is the core of the project, housing various
sub-directories: API, which contains the API logic and service calls; components,
which includes reusable UI components; and models, which holds data models used
throughout the application which are mainly the Blocks.js and SuperBlock.js
files. Additionally, the src directory contains key files like App.jsx, the main
application component; style.css, which manages the application’s styling; and
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main.jsx, which serves as the entry point for the JavaScript code. This structure is
designed to keep the codebase modular and maintainable, facilitating development
and future enhancements.

5.3.2 Functionality
The frontend is more than just a static interface; it plays a pivotal role in the
overall workflow. Users can construct Neural Network architectures by dragging
and dropping various components onto the canvas. These components represent
different layers or operations, such as convolutional layers, activation functions, or
pooling layers. The frontend provides real-time feedback, allowing users to visualize
the connections between different layers and observe how changes affect the overall
architecture.

Additionally, the frontend offers the ability to create superblocks, which are
composite blocks designed to encapsulate multiple blocks or even other superblocks.
This feature enhances modularity and reusability within the Neural Network design.

The frontend also enables users to export the created model in various formats:
as a PyTorch model, as an ONNX file, or as a JSON document. The JSON format
is specifically designed to allow users to upload the model back into DeepBlocks
in the future, enabling them to continue working on it. Since this functionality
pertains exclusively to the frontend, the logic for converting the JavaScript objects
created by the user is handled entirely within the frontend layer without involving
the backend. However, for the conversion to ONNX format and the creation of the
PyTorch model, backend processing is required.

Whenever an error is returned by the middleware server during network validation
or training, it is the responsibility of the frontend to analyze the server’s error
message. The goal is to identify the node responsible for the error and adjust its
style, enabling immediate visualization by the user as it is depicted in Figure 5.2.

Figure 5.2: The node causing the error is highlighted, allowing the user to easily
identify and correct it based on the error message

38



Implementation

JSON Structure of a Node (Block)

The structure of a Block node in the JSON format includes the following fields:

• id (String): A unique identifier for the block, automatically generated as a
string based on an incrementing counter.

• type (String): Specifies the type of the block, which determines its behavior
and characteristics within the Neural Network architecture.

• position (Object): Contains information about the block’s position within
the architecture. This could include coordinates or other positioning details
and it is a default parameter from Reactflow.

• data (Object): Stores additional data associated with the block. This includes:

– openInfo (Boolean): Indicates whether the block’s detailed information
is currently open.

– isSelected (Boolean): Indicates whether the block is currently selected.

• parameters (Object): Holds the specific parameters that define the block’s
configuration. These parameters vary depending on the type of block.

• hidden (Boolean): A flag indicating whether the block is hidden. By default,
this is set to false.

• fn (Function): The PyTorch function associated with the block that defines
its specific computational behavior.

• description: A brief description about the PyTorch function job.

The Block class includes a static method to update the ID counter:

• static updateIdCounter(newIdCounter): Updates the internal counter
used to generate unique IDs for new blocks.

JSON Structure of a Superblock

The structure of a Superblock in the JSON format includes the following fields:

• id (String): A unique identifier for the superblock, generated as a string with
an appended ’s’ based on an incrementing counter.

• type (String): Specifies the type of the superblock, which categorizes its role
within the architecture.

39



Implementation

• position (Object): Contains information about the superblock’s position.
This could include coordinates or other positional attributes.

• data (Object): Stores additional data related to the superblock, including:

– openInfo (Boolean): Indicates whether the superblock’s detailed infor-
mation is currently open.

– isSelected (Boolean): Indicates whether the superblock is currently
selected.

– isOpenInSheet (Boolean): Indicates whether the superblock is open in
a separate sheet or detailed view.

– hasSheet (Boolean): Indicates whether the superblock has an associated
sheet for detailed configuration.

• children (Array of Strings): An array of child block IDs associated with this
superblock. Each child is referenced by its unique ID.

The Superblock class also includes a method to manage its children:

• addChild(child): Adds a new child block to the superblock. The child is
identified by its unique ID and appended to the children array.

Training parameters

The training parameters required to send the created model to the backend layers
include the number of epochs, learning rate, batch size, loss function, and
optimizer. The number of epochs defines how many times the entire training
dataset will pass through the model during the training process. The learning rate
is a crucial factor that controls how much the model’s weights are adjusted with
respect to the loss gradient during optimization. The batch size determines the
number of training samples processed before the model updates its weights. The
loss function is a critical element in training, as it measures the difference between
the predicted output and the actual label. It can be chosen from options such as
Binary Cross Entropy (BCE), Cross Entropy (CE), or Mean Squared Error (MSE).
Alternatively, a custom loss function may be provided through an uploaded file
containing a function named custom_loss. Lastly, the optimizer is responsible for
updating the model’s parameters to minimize the loss, with the options being the
Adam optimizer or Stochastic Gradient Descent (SGD). Each of these parameters
plays a fundamental role in determining the behavior and success of the training
process [33].
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Available blocks

The following blocks are the ones currently supported by the application developed
during this project to create a DL model based on the PyTorch documentation 1.

• Input Blocks

– Input Dataset (from huggingface.co)
∗ Parameters:

input_dataset: Input dataset from huggingface.co/datasets
(e.g., ‘dair-ai/emotion’)

dataset_type: Dataset type from huggingface.co/datasets
(currently either ‘text’ or ‘image’)

dataset_config: Dataset configuration (e.g., ‘default’)

• Normalization Blocks

– Batch Normalization 1D
∗ Parameters:

num_features: Number of features
momentum: Momentum
eps: Epsilon
affine: Whether to use learnable affine parameters

– Batch Normalization 2D
∗ Parameters:

num_features: Number of features
momentum: Momentum
eps: Epsilon
affine: Whether to use learnable affine parameters

– Layer Normalization
∗ Parameters:

normalized_shape: Shape of the tensor to be normalized
eps: Epsilon
elementwise_affine: Whether to apply affine transformation

element-wise

• Element-wise Operations

– Addition

1https://pytorch.org/docs/stable/nn.html
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– Subtraction
– Multiplication
– Division

• Operations on Blocks

– Concatenate
– Split

• Reshaping Layers

– Flatten
∗ Parameters:

layer_type: Type of the layer
start_dim: The dimension to start flattening (0-based index)
end_dim: The dimension to stop flattening (exclusive)

– Linear
∗ Parameters:

layer_type: Type of the layer
in_features: Size of each input sample
out_features: Size of each output sample
bias: If set to False, the layer will not learn an additive bias

• Regularization Layers

– Dropout
∗ Parameters:

kernel_size: Size of the convolving kernel
p: Dropout probability

• Activation Functions

– Sigmoid
– Tanh
– ReLU
– Leaky ReLU

∗ Parameters:
negative_slope: Negative slope

– Softmax
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∗ Parameters:
dim: Dimension along which softmax will be computed

– Multihead Attention
∗ Parameters:

embed_dim: Total dimension of the model input
num_heads: Number of parallel attention heads
dropout: Dropout probability
bias: Whether to add bias to key and value sequences
add_bias_kv: Whether to add bias to the key and value se-

quences
add_zero_attn: Whether to add a new batch of zeros to key

and value sequences at each forward call
kdim: Total number of features in key
vdim: Total number of features in value

• Convolutional Layers

– Conv1d
∗ Parameters:

in_channels: Number of input channels (e.g., number of word
embeddings for text data)

out_channels: Number of output channels from the convolution
kernel_size: Size of the convolutional filter
stride: Stride of the convolution (step size)
padding: Padding added to the input (0 for no padding)
dilation: Spacing between elements in the filter
bias: If False, then no bias term is added

– Max Pooling 1d
∗ Parameters:

kernel_size: Size of the max pooling window
stride: Stride of the pooling operation
padding: Padding added to the input (0 for no padding)
ceil_mode: If True, will use ceil instead of floor to compute the

output shape
– Average Pooling 1d

∗ Parameters:
kernel_size: Kernel size
stride: Stride of the window
padding: Implicit zero padding to be added on both sides
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ceil_mode: Whether to use ceil instead of floor to compute the
output shape

count_include_pad: Whether to include the zero-padding in
the averaging calculation

– Conv2d
∗ Parameters:

in_channels: Number of input channels (e.g., number of word
embeddings for text data)

out_channels: Number of output channels from the convolution
kernel_size: Size of the convolutional filter
stride: Stride of the convolution (step size)
padding: Padding added to the input (0 for no padding)

– Max Pooling 2d
∗ Parameters:

kernel_size: Size of the max pooling window
stride: Stride of the pooling operation
padding: Padding added to the input (0 for no padding)
ceil_mode: If True, will use ceil instead of floor to compute the

output shape
– Average Pooling 2d

∗ Parameters:
kernel_size: Kernel size
stride: Stride of the window
padding: Implicit zero padding to be added on both sides
ceil_mode: Whether to use ceil instead of floor to compute the

output shape
count_include_pad: Whether to include the zero-padding in

the averaging calculation

Invoking the forwarding process

The useEffect hook in App.jsx manages the validation and checking of a net-
work model whenever certain dependencies change.Initially, the hook defines an
array paramObj containing the current values of several parameters (learningRate,
epochs, batchSize, loss, and optimizer). This array is used to send the param-
eters to the backend for validation.

A debounceEffect function is defined to handle the actual validation process.
It starts by checking if the network is currently being trained and if there is an input
node in the configuration. The input node is identified as a node of type customNode
with a specific parameter named ‘input_dataset’ and must be connected by an
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edge. If the network is not being trained and the input node is present, the function
verifies that all necessary parameters are set. If any parameters are missing or set to
default values, a warning message is displayed to the user to set all parameters. The
function then sends a request to the backend using BLOCKS_API.forwardBlock to
validate the network configuration with the provided parameters. Upon receiving a
successful response, the checking state is reset, and a success message is shown to
the user. Any previous error states or messages are cleared.

In case of an error during the validation request, the function processes the error
message to extract the problematic node’s ID and its details. It also identifies if
the node is part of a superblock and updates the error states accordingly. An error
message is then displayed to the user, specifying the issue with the block and the
associated node.

The hook uses a debounce mechanism to delay the execution of the debounceEffect
function by 4 seconds. If another change occurs within this period, the previous
timeout is cleared and reset to ensure that the validation is not triggered exces-
sively. The cleanup function clears the timeout when the component unmounts or
dependencies change, preventing potential memory leaks.

The implementation code can be found at frontend/src/App.jsx.

Invoking the training process

The handleTrain function is responsible for managing the initiation of a training
session based on provided parameters. It begins by verifying that all necessary
parameters are set and are of the correct type. Specifically, it checks whether
the parameters learningRate, epochs, and batchSize are non-zero, the loss
is not set to an empty string or ‘Custom’, and the optimizer is not empty. If
any of these conditions are not met, the function will display an error message
indicating that all parameters need to be filled. Next, the function checks whether
the learningRate, epochs, and batchSize values are numeric. If any of these
values are not numbers, an error message is generated, informing the user of the
specific non-numeric parameter. The error state is set, and training is halted. If
the parameters are valid, the function creates an object that holds key-value pairs
representing each parameter. This object is prepared for submission to the backend.

If a custom loss function is defined, it is first uploaded to the backend via an
API call. Once this is done (or if no custom loss is set), the function sends the
training network’s nodes, edges, and parameters to the backend using another API
request. During this process, the function checks whether the network architecture
has changed from previous sessions. If it has, the new network configuration and
metrics are stored. If the network remains the same, the training metrics are
appended to the previous session. The function then informs the user that training
has completed and displays the results in the dedicated menu tab. In case of an

45



Implementation

error during the API call, appropriate error messages are shown, and the training
process is stopped.

If the initial pre-training check fails, the user is prompted to fix the errors before
proceeding. If any required parameters are missing, the user is notified to complete
the parameter input.

The code for this function is located at frontend/src/components/Sidebar.jsx

Duplicating a node

The handleDuplicateNode function is responsible for creating a duplicate of a
given node in a node graph. This function handles two cases: duplicating a
superBlockNode and duplicating a standard Block. The process for each case is
as follows:

For a node of type superBlockNode, the function first identifies and collects
the IDs of its child nodes, excluding those with ‘i’ (input) or ‘o’ (output) in their
IDs. It then retrieves the corresponding child nodes from the nodes array.

The function creates new blocks for each child node by copying their type,
position, data, parameters, and function. Each new block is marked as hidden to
limit the visibility only in the case of the superblock sheet is opened and a mapping
of original to new IDs is maintained. These new blocks are collected into an array.

Next, a new Superblock is created with updated properties. It includes a
modified position and a label indicating it is a copy of the original. Two invisible
nodes, an invisibleInputNode and an invisibleOutputNode, are also created
and added to the new superblock. The IDs of these invisible nodes are appended
to the list of children for the new superblock, and they are included in the nodes
array with hidden status.

The function then copies the edges associated with the original children nodes.
It maps the original edge sources and targets to the new block IDs, replacing any
references to the invisible nodes accordingly. The new edges are added to the
existing edges in the graph.

For a node that is not of type superBlockNode, the function creates a new
Block with a similar process: duplicating its type, position, data, parameters, and
function, while updating the label to indicate it is a copy. If there is an open
superblock in the graph, the new block is added as a child of this superblock and
made visible.

Finally, the function updates the node graph by adding the newly created nodes
(blocks and/or superblocks) to the existing list of nodes.

The implementation code is located at frontend/src/App.jsx.
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Eliminating nodes

The handleDeleteNodes function manages the deletion of nodes from a graph. It
starts by creating copies of the current nodes and edges arrays to avoid direct
modification. It also identifies all superblocks (nodes of type superBlockNode) in
the graph. For each node specified in the parameter of type array, the function
processes it based on its type. If the node is a superblock, it retrieves the IDs of its
child nodes and removes both the child nodes and the superblock itself from the
updatedNodes array. Additionally, it deletes the edges associated with these child
nodes and those connected to or from the superblock. It also removes any sheets
related to the superblock from the sheets state. If the node is not a superblock,
the function checks each superblock to see if the node to be deleted is one of its
children. If so, it removes the node from the list of children. It then removes any
edges connected to or originating from the node and finally removes the node from
the updatedNodes array. The function updates the state with the modified lists of
nodes and edges.

The code can be found at frontend/src/App.jsx.

Renaming nodes

The handleRenameNode function updates the label of a specific node and reflects
this change across the application. It begins by creating a new array of nodes
where the node with the matching ID is updated with the new name provided,
while other nodes remain unchanged. The function then updates the sheet names
associated with the node, replacing the old name with the new one if the node’s
ID matches. Finally, it updates the state with the modified array of nodes. This
ensures that both the node label and any related sheets are synchronized with the
new name.

The code is located at frontend/src/App.jsx.

Downloading the network in the JSON format

The handleDownload function manages the downloading of network data based
on the specified file type. If the fileType parameter is ‘json’, the function
converts the nodes, edges, and network parameters into a JSON string and creates
a downloadable file using a Blob. It then generates a temporary URL for the file,
creates a link element, and simulates a click on this link to trigger the download.
After the download, it cleans up by revoking the temporary URL and removing the
link element. If the fileType is not ‘json’, the function calls an API to export
the network in the requested file format. It then creates a temporary URL for
the received blob, sets up a download link, and simulates a click to initiate the
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download. On successful download, it displays a success message, and on failure, it
shows an error message with the exception details.

The code for this function can be found at frontend/src/App.jsx

Uploading a network

The handleUpload function handles the upload of a network file. It begins by
checking if an inputFile is provided. If so, it uses a FileReader to read the file’s
contents as text. On successful reading, the function attempts to parse the file’s
content as JSON. If parsing is successful and the JSON contains nodes, edges,
and params, it proceeds to set the nodes and edges state to the parsed data. The
function also updates the application name to the file’s name and initializes the
sheets state. It then iterates over the parameters to set various configuration values
such as learningRate, epochs, batchSize, loss, and optimizer. If an error
occurs during parsing or reading, it catches the error and displays an appropriate
error message. On successful upload, it displays a success message. The function
also handles edge cases where errors occur while reading the file by providing error
messages. The commented-out code seems to handle more complex cases of node
mapping and updating, which is not currently in use.

The code is located at frontend/src/App.jsx

Training results

The Results component in this React application displays the results of the DL
training session. It receives two props: metrics and parameters. The component
is structured into three main sections. First, it presents a table of the training
results, where it lists the latest values of various metrics, such as accuracy and
loss, extracted from the most recent metrics data. Second, it provides a table
of parameters used during training, including details such as learning rate and
batch size. Finally, the component incorporates the Plots component, which
visualizes the training metrics. The Plots component generates line charts for
precision and recall, loss over epochs, and accuracy over epochs, using different
colors for each session to distinguish between them. The charts are designed to aid
in understanding the performance of the model throughout the training process.

The component is able to understand whether a model have been changed from
the previous training session or not. If the model is the same as before, or with just
some different parameters, the plots are made by showing the results with different
colors and labels to provide a clean manner to compare the results with respect to
the previous iteration.
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Help page

The help page provides a comprehensive guide on how to use the application,
including creating and training the networks, visualizing results, and exporting
models.

5.3.3 Libraries

• React2: The choice of React for the frontend was driven by its component-
based architecture, which allows for the modularization of the UI. This modu-
larity is crucial for managing the complex interactions and the dynamic nature
of the application’s interface.

• Reactflow3: For handling the graphical representation of networks, including
nodes and edges, the Reactflow library was employed. Reactflow offers a
powerful and flexible way to visualize complex structures, making it an ideal
choice for applications that require the manipulation of graphical elements,
such as Neural Network layers in this case. The library also provides built-in
functionalities like zooming, panning, and drag-and-drop, which enhance user
interaction and experience.

• Bootstrap4: Bootstrap was utilized for quickly styling the user interface
elements, ensuring that the application is not only functional but also visually
appealing. The grid system, responsive design components, and pre-designed
UI elements provided by Bootstrap allowed for a consistent user experience
across different devices and screen sizes.

• Chart.js5: Chart.js was integrated for visualizing data in the form of interac-
tive charts. This library is particularly useful for displaying the performance
metrics of the trained model. Its ability to create various types of charts with
minimal configuration made it a good fit for the application’s needs.

2https://react.dev/
3https://reactflow.dev/
4https://getbootstrap.com/
5https://www.chartjs.org/
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5.4 Middleware
5.4.1 Folder organization
The Figure 5.3 illustrates the organizational structure of the repository’s directory
that contains the middleware service code.

Figure 5.3: The folder structure for the middleware server, including the main
sub-folders and files.

The server directory is organized to facilitate the development and deployment
of the backend services. At the root of the directory lies essential files like main.py,
which serves as the entry point for the application, and requirements.txt, which
lists the necessary Python dependencies. The README file provides documentation
for the server, explaining its setup and usage. Within the server folder, there are
several sub-directories: controllers contains the logic that handles the incoming
requests, routes defines the various API endpoints, and services manages the
business logic and interactions with the data layer. The proto directory is desig-
nated for protocol buffer files, which are used for defining the structure of data and
services in a gRPC context. This structure is designed to keep the backend code
modular and scalable, allowing for easy maintenance and future enhancements.

5.4.2 Functionality
The middleware acts as a translator, converting HTTP requests from the frontend
into gRPC calls that the backend can understand. It also manages sessions, handles
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user requests, and routes them to the appropriate backend services. For instance,
when a user requests to train a model, the middleware processes this request and
forwards it to the backend, where the training process is initiated.

In addition to serving as a communication hub, the middleware also interacts
with external services. For example, it may fetch resolution steps in case of errors,
if the query is successfully processed by the external service. It also handles error
management, ensuring that any issues in communication between the frontend and
backend are gracefully managed and communicated back to the user.

Proto Conversion

The middleware server plays a critical role in the data processing pipeline by
receiving serialized JSON data from the frontend, which encapsulates all the nodes
and their connections. Its primary function is to transform this JSON data into a
format that is compatible with the gRPC server’s message definitions, ensuring
that the backend server can effectively process the information.

For detailed information on the message definitions, refer to the protocol buffer
file discussed in Section 5.5.2.

The structure sent by the frontend contains information about blocks, connec-
tions between blocks (edges), and global parameters (params). Blocks represent
individual nodes in the network, each with a unique id, a node type (type), a
position (position), specific data (data), and parameters (parameters). Each
block may also include a specific function (fn), such as “torch.nn.Conv2d” for a
convolution block. Additionally, special blocks like superblocks (superBlockNode)
contain references to child nodes (children) to represent more complex structures.

The middleware service processes each block and converts it into a protocol
buffer format where each block is represented as a node in the following way:

• Each block is assigned an id corresponding to its original identifier to keep
the reference in case of errors.

• The block’s parameters are translated into key-value pairs, where the parameter
name becomes the key (key) and its value is stored as the value. If a parameter
has no defined value, it is assigned None.

• For blocks representing specific operations (like PyTorch functions), a function
field is added containing the function name (e.g., torch.nn.Conv2d).

superBlockNodes, which aggregate child nodes, are translated into protocol
buffer blocks containing additional parameters. Each child node is represented
as a parameter with the key childId and a value corresponding to the child’s
id. Invisible input and output nodes associated with complex blocks are also
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translated as independent nodes in the protocol buffer, with their relationship
preserved through edges.

The connections between blocks, defined in the edges section of the structure
sent from the frontend, are translated into direct relationships between nodes in the
protocol buffer. Each connection contains a source (source) and a target (target),
represented by the corresponding node ids. These are added to the edges section
of the protocol buffer.

Lastly, global parameters of the network, such as learningRate, epochs, and
batchSize, are also translated as key-value pairs in the protocol buffer. These
parameters are taken directly from the params section sent from the frontend,
retaining the user-defined or default values.

The final result of this conversion is a protocol buffer structure that contains
a complete representation of the network, including the blocks, connections, and
global parameters.

External services

The middleware server is equipped with an error guidance mechanism that connects
to external resources, such as Stack Exchange [34], to assist users in troubleshooting
issues encountered during the training process or network validation. When an
error occurs, the middleware server analyzes the error message and context, and
then queries the Stack Exchange website6 for potential solutions or explanations.
This information is then presented to the user in a link format, offering immediate
guidance and recommended actions. This integration enhances the user experience
by providing accessible support and reducing downtime caused by errors.

Future Enhancements

Future versions of the application could explore integrating access to a broader
range of external resources to further support users during error resolution and
network validation. Additionally, the middleware server could be enhanced to
function as a load balancer, distributing requests across multiple backend servers
to ensure scalability and maintain performance during periods of high demand.
This approach would allow the application to handle larger user bases efficiently,
providing a more robust and responsive user experience.

6https://api.stackexchange.com/docs/advanced-search
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5.4.3 Libraries
• Flask: Flask is a lightweight web framework for Python that was chosen for its

simplicity and flexibility in building the middleware server. It allows for easy
creation of APIs, which are essential for handling HTTP requests and routing
in the application. Flask’s minimalistic design and modular nature make it
ideal for rapid development and integration with other components of the
system, particularly in environments where quick prototyping and adaptability
are required [35].

• grpcio-tools: The grpcio-tools library is an essential component used
in the gRPC client proof of concept. This library provides tools for gen-
erating Python code from protocol buffer (‘.proto’) files, which define the
structure of the messages and services used in gRPC communication. By
using grpcio-tools, the application can seamlessly convert protocol buffer
definitions into Python classes, enabling efficient communication between the
client and server through Remote Procedure Calls (RPCs). This is crucial
for ensuring that the middleware server can interact with the backend in a
structured and consistent manner [36].

5.5 Backend
The backend is built as a gRPC server, which allows for efficient communication
between the middleware and the backend services. gRPC was chosen for its
performance benefits and its support for multiple programming languages, which
provides flexibility in how the backend can be extended in the future.

5.5.1 Folder organization
The Figure 5.4 illustrates the organizational structure of the repository’s directory
that contains the execution service code.

The execution_service directory is designed to handle the core functionalities
related to network and model generation within the application. The directory
is organized into several key components: the network_generation sub-directory
contains scripts and logic dedicated to the generation of Neural Network architec-
tures, while model_generation.py and pytorch_functions.py provide specific
functions and classes for building and managing PyTorch models. The proto
directory is included for protocol buffer files, which are likely used to define data
structures and services for communication purposes. The root of the directory
also contains execution_service.py, the main script that coordinates the various
services, along with requirements.txt, which lists the dependencies necessary for
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Figure 5.4: The folder structure for the execution service implementation, includ-
ing the main sub-folders and files

the execution service to run, and a README file, which offers documentation and
instructions related to the service.

5.5.2 Functionality
The backend’s primary responsibility is to provide services related to Deep Learning
model management. These services include:

• Model training: The backend can initiate and manage the training of Deep
Learning models. This includes compiling the model, setting up the training
loop, and managing resources such as GPUs.

• Model export: Once a model is trained, the backend can export the model
in a format suitable for deployment, such as ONNX or PyTorch model.

• Model pre-training check: The backend provides tools for checking the
model by forwarding all the layers one by one and returning the errors.

Message definition

In the context of a gRPC environment, the protocol file serves as a critical contract
between the client and server, defining the communication structure and the
available services.

The Trainer service provides three Remote Procedure Calls (RPCs) that the
server implements:
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• TrainNetwork: This RPC accepts a Network message and returns a NetworkResult.
The Network message contains the Neural Network’s architecture, defined by
nodes and edges, and any associated parameters. The server’s role is to process
this structure, execute the training logic, and return the results encapsulated in
the NetworkResult message, which includes metrics and status information.

• ExportNetwork: This RPC is designed to export the trained network to
the ONNX file format or PyTorch’s .pth. The server receives the Network
message, processes the request to export the network, and returns a File
message containing the serialized network data and file name.

• ForwardBlock: This RPC facilitates the forward propagation of a single
block within the network. The server receives a Network message representing
the block and returns a ForwardResult, which includes the output parameters
and a status message.

The protocol file defines several message types to structure the data exchanged
between the client and server:

• Node: Represents a computational unit within the network, containing an
ID, a PyTorch function name, and associated parameters.

• Edge: Defines connections between nodes, indicating the data flow within the
network.

• Parameters: Key-value pairs used to configure nodes or the network as a
whole.

• File: Used to encapsulate file data and metadata, such as when exporting a
network or uploading a custom loss function to the server.

• Metric: Represents performance metrics, such as accuracy or loss, tracked
during the training process.

• Network: A composite message that encapsulates the entire network’s struc-
ture, including nodes, edges, parameters, and any associated files.

• NetworkResult: Contains the outcome of the TrainNetwork RPC, including
the status indicating a numerical code indicating the successful completion of
the operation or that an error occurred, a message, and performance metrics
obtained from the network evaluation phase.

• ForwardResult: Contains the outcome of the ForwardBlock RPC, including
the status indicating a numerical code indicating the successful completion of
the operation or that an error occurred and a message.

The protocol buffer definition is presented in the Appendix A.
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Model creation

A key operation in the system is the creation of the model used to manage layers and
execute the training process. The create_model function demonstrates how the
model is generated in response to a request sent by the gRPC client. This request
includes the network structure, encapsulated in the Network message (detailed in
Appendix A), which defines all nodes, edges, network parameters and the custom
loss function file if present.

The first step in the process is responsible for transforming the node specifications
(received as strings) into actual PyTorch modules that will compose the Neural
Network architecture. The function begins by processing a list of nodes that
represent different layers in the model. Each node contains information about
the type of operation (such as a convolutional or fully connected layer) and its
parameters. The goal is to map these nodes to their corresponding PyTorch layers
and configure them based on the provided parameters.

The core functionality starts with an internal helper function, filter_params,
which is used to filter and convert the node parameters into the expected format
for each layer. It checks the parameter type (e.g., int, float, tuple) and ensures that
the values are correctly parsed from the node’s string data. The function relies on
a predefined dictionary which stores the expected types for each parameter of the
corresponding PyTorch functions and can easily be expanded.

Next, for each node, the function determines the appropriate PyTorch class by
extracting the function name (using the node.function field) and checking if it is
a valid PyTorch function. If the function is valid, the code then proceeds to create
the specific layer based on the node’s parameters.

These layers are then passed to the CustomModel class, which extends nn.Module.
The CustomModel is designed to create and execute a DL model by combining

nodes, edges, and layers (modules). These three components — nodes, edges, and
modules — form the foundation of the Neural Network architecture. The core
functionality involves mapping these nodes to corresponding computational layers,
defining the relationships between nodes using edges, and finally constructing a
model that can perform a forward pass by processing data from input to output.

At the initialization stage, the model is provided with three main inputs: nodes,
edges, and modules. The nodes represent the individual computational blocks
(layers) of the network, each identified by a unique identifier (id). The edges define
the dependencies between the nodes, specifying how data should flow from one
node to another. The modules are the layers or computational blocks of the Neural
Network, such as torch.nn.Conv2d, torch.nn.ReLU, and so on.

Once the model is initialized, the first step is to construct a computational graph.
This graph organizes the nodes based on the connections specified by the edges and
ensures that each node is executed only after its required inputs are available. The

56



Implementation

graph is built by iterating over all the edges and connecting the source and target
nodes accordingly. The result is a directed acyclic graph (DAG) that represents the
data flow through the network. In addition to the graph construction, the model
establishes a topological order7 of nodes. This ordering ensures that the nodes are
executed in a sequence that respects their dependencies. Specifically, for any node,
all preceding nodes in the graph (those providing inputs to this node) must be
executed before the current node. This topological sort is critical for determining
the correct sequence of operations during the forward pass.

Once the graph and topological order are in place, the model proceeds to map
the nodes to their respective layers. To achieve this mapping, the model compares
the function of each node to the available layers in the module list. It ensures
that the parameters of the node (such as input/output shapes) match those of the
layer through the compare_parameters function. If a match is found, the node is
associated with the corresponding layer, ensuring that it will perform the correct
computation during the forward pass.

The forward pass is the key phase where data flows through the network from
input to output. The process begins with the input data being passed to the first
node in the topological order. For each node, the model performs the following
steps: first, it collects the outputs of all predecessor nodes (those providing inputs
to the current node). If the node is a standard layer, such as a convolutional layer,
it simply applies the layer’s transformation to the input data. However, if the
node is an aggregation function (e.g., addition, multiplication, concatenation), it
combines the inputs from multiple predecessor nodes according to the specified
operation.

The model handles several special cases during the forward pass. For example,
certain nodes perform operations such as splitting, where the output of one node is
sent to multiple successor nodes. Additionally, some nodes may represent attention
layers, such as multi-head attention. In these cases, the model ensures that the
input data is appropriately reshaped before applying the attention mechanism.

Throughout the forward pass, the outputs of each node are stored and made
available for subsequent nodes. This ensures that the forward pass proceeds
smoothly through the network, with each node receiving the required inputs from
its predecessors. If any node encounters an error, the model provides a detailed
error message, indicating which node and layer caused the issue. This makes
debugging easier and allows for more robust network design.

7https://www.geeksforgeeks.org/topological-sorting/
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Model pre-training check

The forward_model function is a critical component in the system, responsible
for managing the initial data pre-processing and executing the Neural Network’s
forward pass based on the structure provided by the client.

The function identifies the input dataset configuration by parsing the nodes
for specific parameters that describe the dataset name, type, and configuration.
Depending on the dataset type — whether text or image — the function loads and
pre-processes the dataset accordingly. For text datasets, a tokenizer is employed
to convert the text into a format suitable for the model, while image datasets are
resized and processed using a feature extractor like ViTImageProcessor8.

Once the dataset is prepared and formatted, the function initializes an input
tensor that matches the expected input size of the model. This tensor is crucial for
simulating the input during the forward pass.

Following the data preparation, the function constructs the model by invoking
the create_model method, which assembles the network based on the provided
nodes and edges. If the model creation is successful, the function proceeds to
execute the forward pass by iterating through the network’s topologically ordered
nodes. The output of each node is computed and stored, ensuring the correct data
flow through the network.

Model training

The train_model function is the core component responsible for orchestrating the
training process of the Neural Network models. It handles the loading and pre-
processing of datasets, model creation, parameter initialization, and the iterative
training and evaluation phases.

Initially, the function determines the appropriate computing device, utilizing a
GPU if available. It then identifies and loads the input dataset based on the nodes’
configuration, which includes the dataset name, type, and any specific configuration
required. Depending on the dataset type —either text or image—different pre-
processing steps are applied. For text data, tokenization is performed using the
BERT tokenizer9, while for image data, images are resized and processed using a
pre-trained Vision Transformer (ViT) image processor. The pre-processed datasets
are then converted into PyTorch tensors, ready for model input.

Once the dataset is prepared, the model is constructed using the create_model
function, which initializes the network architecture based on the provided nodes
and edges. The model is subsequently moved to the device for training. The

8https://huggingface.co/docs/transformers/model_doc/vit
9https://huggingface.co/docs/transformers/model_doc/bert
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function then sets up essential training parameters, such as the number of epochs,
learning rate, batch size, loss function, and optimizer, based on user-defined or
default values.

The training loop involves multiple epochs, where the model iteratively processes
batches of data, computes the loss using the specified loss function, performs
backpropagation, and updates the model weights. The learning rate is adjusted
dynamically using a scheduler to optimize the training process. After each epoch,
the model’s performance is evaluated on a validation dataset to compute key
metrics, including accuracy, precision, recall, and F1-score. These metrics are
tracked across epochs to monitor the model’s improvement and generalization.

Throughout the training process, the function incorporates extensive error han-
dling to catch and report issues, such as mismatched tensor shapes or failures in loss
computation and backpropagation. This robust design ensures that any problems
encountered during training are promptly identified and addressed, allowing for
smooth model development and tuning.

At the end of the training, the function returns a set of metrics that summarize
the model’s performance over the training epochs, providing valuable insights into
the effectiveness of the training process.

Export model to ONNX or pth file

The ExportNetwork RPC provides the capability to export trained models into
industry-standard formats such as ONNX and .pth, ensuring compatibility with
a wide range of deployment environments and tools. This functionality is encap-
sulated within the export_to_onnx and export_to_pth functions, which handle
the conversion of PyTorch models based on the network structure defined by nodes
and edges.

The export_to_onnx function converts a PyTorch model into the ONNX format,
which is particularly useful for deploying models in environments that support
ONNX, such as Tensorflow and other frameworks. The function first constructs
the model using the provided nodes and edges, simulating an input tensor for the
export process. If the initial export fails, the function attempts an alternative
input tensor shape, ensuring robustness in handling different model configurations.
Upon successful export, the ONNX file is saved to the specified directory, ready for
being sent to the gRPC client (the middleware server).

Similarly, the export_to_pth function facilitates the export of models into
the .pth format, which is the standard format for saving PyTorch models. This
format preserves the model’s state dictionary, including all the learned parameters,
enabling seamless loading and inference in any PyTorch environment. The function
constructs the model and saves the state dictionary to the specified file path. In
case of any issues during the saving process, appropriate exceptions are raised to
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inform the user.
Both functions are designed with error handling mechanisms to ensure the export

process is reliable and user-friendly. Whether the target format is ONNX or .pth,
these functions play a crucial role in the deployment and distribution of trained
models.

Future Enhancements

The backend is designed to be extensible, allowing new services to be added as the
needs of the application grow. For example, additional services could be added to
support new types of models, integration with different ML frameworks, or more
advanced debugging and monitoring tools.

5.5.3 Libraries
• Torch: Torch is a foundational library for DL, providing robust support for

tensor operations, automatic differentiation, and Neural Network implementa-
tion. It is widely used in Machine Learning for tasks ranging from basic linear
algebra to complex Neural Network training [37].

• NumPy: NumPy is a fundamental package for scientific computing in Python,
offering powerful tools for working with arrays and matrices. It integrates
seamlessly with Torch, allowing for efficient numerical computations, which
are crucial in data preprocessing, manipulation, and mathematical operations
within Machine Learning pipelines [38].

• Torchvision: Torchvision extends Torch by providing datasets, model archi-
tectures, and image processing utilities specifically tailored for computer vision
tasks. It includes pre-trained models, transforms for image augmentation, and
easy-to-use data loaders, facilitating the development of image-based Deep
Learning models [39].

• grpcio-tools: The grpcio-tools library is vital for enabling gRPC commu-
nication in the server architecture. It allows for the generation of Python code
from protocol buffer (‘.proto’) files, which define the structure of messages and
services in gRPC. This ensures efficient and structured communication between
different components of a distributed system, particularly in environments
where performance and scalability are critical [36].

• Hugging Face: Hugging Face is renowned for its extensive collection of
pre-trained models, particularly in Natural Language Processing (NLP). It
provides tools for fine-tuning, deploying, and utilizing models in various NLP
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tasks, simplifying the integration of state-of-the-art models into production
systems and research workflows [40].

• Evaluate10: The evaluate library is used for assessing the performance of
Machine Learning models by providing a wide range of evaluation metrics. It
is particularly useful in the training and validation phases, offering metrics like
accuracy, precision, recall, and F1-score to ensure that models meet desired
performance criteria.

• Transformers11: Part of the Hugging Face ecosystem, the transformers
library is focused on implementing transformer models, which are the backbone
of many modern NLP systems. It provides easy access to pre-trained models
and tools for fine-tuning them on specific tasks, making it a crucial tool for
developing and deploying NLP applications.

10https://huggingface.co/docs/evaluate/index
11https://huggingface.co/docs/transformers/index
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Chapter 6

User Testing

In this chapter, the testing phase is presented comprehensively, offering a clear
breakdown of user categories, a detailed explanation of the testing scripts, and
an in-depth analysis of the results. The user categories are carefully defined to
simulate real-world usage scenarios. The testing script is meticulously crafted, with
each step explained to ensure reproducibility and ease of understanding.

The test consisted of two parts: one focused on coding and discussing the
implementation of a ResNet with two residual blocks, while the other one involved
creating the same ResNet using DeepBlocks to streamline the process.

6.1 User categories
The identified user categories comprise both ML novices, such as Machine Learning
students, and ML practitioners, ranging from freshly graduated Master’s degree
students to young researchers. This selection was made to ensure the tool or
framework is accessible and valuable across a broad spectrum of experience levels.
ML novices often need more guidance and simplified explanations, making it crucial
to evaluate whether the system provides sufficient clarity and support for beginners.
Meanwhile, ML practitioners, especially those with more experience, require a solu-
tion that is robust, scalable, and capable of handling complex tasks. By including
this range of users, the testing phase can assess whether the system effectively
caters to the diverse needs of both groups — offering intuitive functionality for
learners while maintaining the flexibility and depth required by more advanced
users. This comprehensive approach ensures that the system can support growth
in proficiency and adapt to various skill levels.

Following this approach, a total of 16 participants were selected for testing,
consisting of 8 Machine Learning students and 8 PhD candidates or research
assistants. To minimize order effects as discussed in Section 3.4, randomization of
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task order was introduced. Half of the students first completed the coding task
before using the DeepBlocks application to create the same model, while the other
half began with the DeepBlocks task. The same methodology was applied to the
PhD candidates and research assistants. This randomization was implemented
to ensure that the order of task presentation did not influence the participants’
performance or their perception of task difficulty.

6.1.1 Screening survey

Testers were asked to complete a brief questionnaire aimed at gathering personal
data and assessing their familiarity with Machine Learning (ML) concepts. The
questionnaire consists of two sections.

In the first section, testers were asked for demographic information, including
their name, age, gender, highest level of education attained (and the specific field
of study), as well as their current occupation (student, young researcher, or PhD
candidate). This section was designed to capture basic background information
to understand the diversity of the participants and how different educational or
professional experiences might influence their interaction with ML tools.

The second section focused on the tester’s knowledge of Machine Learning,
divided into two subsections: theoretical knowledge and practical coding experience.
Testers were asked to assess their familiarity with various aspects of ML, starting
with their knowledge of designing an ML pipeline and their confidence in using
popular ML frameworks (such as PyTorch, TensorFlow, etc.). The familiarity
with coding a Machine Learning pipeline was also evaluated. The answer scale
ranged from No knowledge to I am an expert, with intermediary options like I am
new to ML concepts, I know a few things, and I have good knowledge. This range
of responses allows for a nuanced understanding of the user’s competency level,
ensuring that the system can cater to both novices and experts.

Additionally, participants were asked to indicate how frequently they engage in
coding tasks related to ML models, with options such as Less than once a month,
Once a month, Less than once a week, Once a week, and More than once a week.
This was included to gauge their hands-on experience with coding ML models,
which often differs from theoretical understanding.

The questions were chosen deliberately to ensure that the system was evaluated
by a diverse range of users with varying levels of experience. The goal was to
ensure the platform could address the needs of both theoretical learners and those
more involved in the practical application of Machine Learning. Moreover, by
understanding their coding frequency, we could better assess how familiar users
were with implementing ML solutions, ensuring the feedback from occasional users
was just as valuable as that from frequent practitioners.
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6.2 Test script
Before beginning the usability testing, the DeepBlocks project was introduced to
the users to explain the concept behind the application and its overall goals.

The test was divided into two segments: the first centered on coding and dis-
cussing the implementation of a ResNet featuring two residual blocks, accompanied
by an intermediate questionnaire assessing the task’s difficulty. The second segment
entailed constructing the identical ResNet utilizing DeepBlocks to simplify the
procedure, followed by a questionnaire that posed specific questions after certain
tasks to appraise the entire process.

Finally, as last step, users were required to fill the SUS questionnaire concerning
the usage of DeepBlocks and a qualitative survey mainly focus on what could be
improved in further versions and what the testers really liked about the application.

6.2.1 DeepBlocks part
The usability testing conducted for the DeepBlocks application involved a series of
tasks designed to evaluate user interaction and functionality comprehension. Users
were instructed to open the training menu and configure the training parameters,
including setting the number of epochs to 10, the learning rate to 0.0001, and
the batch size to 64. In addition, the loss function was customized by uploading
a file named custom_loss.py, and the Adam optimizer was selected. Successful
completion of this task was determined by the correct configuration of all parameters
through the appropriate menu navigation.

Following this, users were asked to add an input node and configure it by
assigning the dataset sasha/dog-food (from HuggingFace datasets1). The task
was deemed successful if the user correctly identified the node and applied the
correct dataset.

To further evaluate the application’s ease of use, users were tasked with building
the model by adding the remaining blocks in sequence in order to build a ResNet.
A successfully completed task resulted in the construction of the ResNet with two
residual blocks.

Users were also encouraged to introduce superblocks, blocks containing other
blocks inside, for scalability purposes, ensuring that the network remained organized
on the canvas. Superblocks were connected to the network, indicating successful
completion of the task.

In the next step, participants were prompted to investigate the result of a
network check without modifying any blocks or parameters for a short duration.

1https://huggingface.co/datasets
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If any errors were encountered, users were instructed to diagnose the problem by
interpreting the error message, identifying the problematic node, and resolving the
issue.

The following phase involved training the network. Users were required to locate
and activate the Train button, allowing the training process to commence. If any
errors occurred during training, participants were expected to follow a similar
investigative process as in the previous task, correctly diagnosing the issue based
on the server’s response and implementing the necessary corrections.

After training, users were instructed to explore the results of the network, which
involved interacting with the visualizations provided. This interaction included
navigating through the results and examining details by hovering over the plots.

Finally, participants completed the test by downloading the constructed network
in JSON format. This involved accessing the relevant menu and ensuring the
correct format was selected for download.

Each task was structured to evaluate the intuitive use of the application, the
clarity of the error messages, and the overall user experience in performing essential
operations such as model construction, training, and results interpretation.

6.2.2 Coding part
In this part of the test, participants were tasked with coding a Deep Neural Network
from scratch, specifically implementing the structure of a ResNet model. They
were free to use any programming language or framework they preferred, such as
PyTorch, TensorFlow, or others. The task began with initializing a new file and
adding the necessary input datasets and nodes to build the network.

Next, they implemented the validation steps for the model. Participants were
required to configure the network parameters by setting the same hyperparameters
used for the DeepBlocks part. They also needed to define a custom loss function
tailored to the task and select the Adam optimizer for training.

Once these configurations were in place, the participants trained the network
and monitored its progress. This task evaluated their ability to manually code and
configure a Deep Learning model, focusing on advanced aspects such as customizing
loss functions and implementing validation procedures. The freedom to choose
any framework or language allowed participants to leverage their familiarity with
different tools, making the test more adaptable to their individual skills.

6.2.3 Post-task questionnaire
For the tasks related to the creation of superblocks and setting hyperparameters,
a post-task questionnaire was provided. The question asked, “Overall, this task
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was” with response options ranging from “Very difficult” to “Very easy” on a five-
point scale. Additionally, a post-task questionnaire was administered for the task
involving the coding of the ResNet. This question aimed to provide an overview
of how both Machine Learning novices and practitioners perceive the difficulty
of coding a Deep Learning model. These three tasks were specifically chosen for
evaluation as they require more complex thinking and problem-solving compared
to the others.

6.2.4 Qualitative survey
The questionnaire is designed to collect qualitative feedback on the usability, ef-
fectiveness, and areas for improvement in DeepBlocks. Participants were asked to
compare their experience using DeepBlocks with traditional methods of building
Deep Learning models, identifying any advantages or disadvantages. The question-
naire explores how DeepBlocks influences the model creation process, probing into
specific features that users found intuitive or challenging. Additionally, it seeks
to understand how DeepBlocks could affect users’ workflow in the long term and
how its Visual Programming approach compares to conventional coding practices
in Deep Learning. Participants are also encouraged to describe any limitations
they encountered, provide suggestions for improvement, and reflect on scenarios
where DeepBlocks might be particularly beneficial. The ultimate goal is to gather
insights that will help enhance the tool and understand its potential impact on the
Deep Learning community.

6.3 Results
This section presents the results of the questionnaires along with the lessons learned
from the feedback provided by the testers.

Table 6.2 presents the numerical results of the number of Critical and Non-
Critical errors per task.

6.3.1 Comments
During the testing phase, several users highlighted the potential and usability of
the application. T2 mentioned that they would be one of the first users if the
application became available, while T3 compared it to a similar mechanism in
Matlab2, pointing out that Matlab’s version lacks export capabilities in different
formats. For academic use, T3 suggested that it would be helpful to visualize the

2https://it.mathworks.com/help/deeplearning/ref/deepnetworkdesigner-app.html
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Task Critical Non-Critical
Add the input node 0 2
Add the blocks and set the parameters 0 18
Superblock creation 1 25
Set hyperparameters 0 6
Error check 0 0
Error correction 0 8
Train the network 0 2
Open training results 0 1
Download model as a JSON file 0 0

Table 6.2: Critical and Non-Critical Errors per Task

code generated by each block and view the output size for each edge. T4 was
impressed with the application’s potential impact on students, noting its ability
to simplify the creation and visualization of Neural Networks. However, T4 also
mentioned the absence of common commands like Ctrl+C and Ctrl+V for node
manipulation. T5 quickly used the guide to create superblocks and duplicate nodes
and commented that the application is suitable for users with limited programming
knowledge, though a good understanding of the blocks and parameters is still
necessary. T6 initially opened the guide but struggled to find it again after closing
it, and also mentioned difficulty in finding the hyperparameter settings window
and the way to start the training process. Once familiar with the process, creating
a superblock was considered manageable. T7 quickly glanced through the guide,
attempted to delete a node using keyboard shortcuts but failed, and found the
‘play’ icon for setting hyperparameters unintuitive. They noted that the superblock
creation process is simple with the guide but not obvious otherwise. Additionally,
T7 found the duplicate functionality insufficient and suggested the application
would be highly beneficial for users learning Neural Networks. T8 expected a popup
to choose the location and name of saved files after clicking the ‘Download’ button
and found the numerous error messages bothersome as they did not disappear
after re-training. T9 had trouble merging superblocks using selection boxes and
emphasized the need for clearer saving mechanisms for node parameters. T10
appreciated the application’s concept but suggested UI improvements, such as
easier copying and automatic renaming of copied superblocks with different names.
T11 suggested enlarging the block pins, adding keyboard shortcuts, and improving
error handling. T12 and T13 explored the application with ease, using the guide
for clarification when needed. They expected standard keyboard commands like
Ctrl+C and Ctrl+V to work. T14 also found the persistent error messages annoying
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but found the guide helpful for beginners. T15 recommended a clearer right-click
menu for renaming superblocks, while T16 suggested larger junction points, noting
the application is useful for those new to Machine Learning, helping lower the
learning curve.

6.3.2 Screening survey

Testers were carefully selected to ensure an equal distribution between Machine
Learning novices and more experienced users. The group of ML novices consists
primarily of students pursuing a Master’s degree, with only one participant enrolled
in a Bachelor’s degree program. Specifically, half of the students, totaling four
individuals, are enrolled in Master’s programs in Biomedical Engineering. Two are
pursuing a Master’s degree in Computer Engineering, one is a Bachelor’s student
in Computer Engineering, and one is enrolled in a Master’s program in Electronic
Engineering.

The more experienced testers, including PhD candidates and young professionals,
are categorized as follows: one research assistant in Cinema and Media Engineering,
one research assistant in Biomedical Engineering, and six individuals working in
the field of Computer Engineering. Among these six, two are software developers,
while the remaining four are PhD candidates.

Of the sixteen testers, thirteen identify as men, and the remaining three identify
as women. The age of participants ranges from 19 to 30 years, encompassing a
wide spectrum of educational and professional stages. This distribution reflects the
common trajectory within technical fields, where individuals begin formal education
in their late teens and continue through to professional roles by their late twenties
or early thirties.

The results from the screening survey reveal varying levels of familiarity and
confidence in Machine Learning (ML) competencies among testers. A significant
portion of the respondents indicated that they “know a few things” about designing
an ML pipeline, coding within an ML framework, and using ML frameworks, with a
smaller group expressing “good knowledge” in these areas. A minority reported no
knowledge or being new to ML concepts. In terms of coding frequency, participants’
experience also varied, with some coding “more than once a week” while others
indicated programming “less than once a month” for ML purposes. The variation
in both ML knowledge and coding frequency highlights the range of experience
levels among the individuals surveyed, which is crucial for understanding how users
with different ML backgrounds approach and interact with Machine Learning tools
and frameworks.
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6.3.3 Post-task questionnaire

The results of the post-task questionnaire are categorized into three main tasks:
coding (task 1), superblock creation (task 3), and setting hyperparameters (task
4). Each task was evaluated by participants based on the level of difficulty they
experienced during the post-task phase.

Coding task

Participants’ responses to task 1, which involved coding, showed a broad spectrum
of difficulty levels. A significant portion of the respondents found the task to be
“quite difficult” or even “very difficult”, highlighting the challenges some users faced
with coding. However, other participants rated the task as “neither difficult nor
easy”, indicating a neutral experience. A smaller subset of users found coding to be
“quite easy” or “very easy”, suggesting that a portion of the testers felt comfortable
with the coding task. Overall, the range of experiences indicates varying levels
of familiarity and proficiency with coding among the participants with the more
expert users or student indicating this task as easy.

Superblock creation task

For task 3, which involved superblock creation, the majority of participants rated
the task as either “quite easy” or “neither difficult nor easy”. A few respondents
found it “quite difficult”, but overall, the superblock creation task was perceived as
moderately easy to neutral by most. This suggests that participants were generally
comfortable with this aspect of the system, though there were still some who found
it challenging. Most participants noted that the process becomes smooth after
consulting the help guide, yet they suggested it could be more intuitive, eliminating
the need to refer to the guide when creating a superblock.

Hyperparameters setting task

Task 4, which focused on setting hyperparameters, was generally regarded as easier
compared to the other tasks. Many participants rated it as “very easy” or “quite
easy” demonstrating a high level of comfort and confidence in completing this
task. Only a small fraction found it “quite difficult” or “neither difficult nor easy”
mainly because they didn’t find intuitive the menu icon. The ease of this task for
most participants suggests that setting hyperparameters was intuitive and well
integrated within the system, leading to more positive experiences.
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6.3.4 SUS questionnaire
The answers to the SUS questionnaire are shown in Figure 6.1. It is possible
to observe that the responses to the System Usability Scale (SUS) questionnaire
provided a detailed overview of the system’s usability. The results revealed that
most participants agreed or strongly agreed that they would like to use the system
frequently. Many also found the system easy to use, with several respondents
expressing high confidence in their ability to use it. However, some participants
felt that they would need the support of a technical person to operate it effectively.

The integration of system functions was generally well received, as many testers
either agreed or strongly agreed that the system’s various functions were well
integrated. A few respondents found the system’s design consistent, not highlighting
much inconsistencies in the system. There was also a mix of opinions regarding
the learning curve: while some participants believed that most users would quickly
learn how to use the system, others felt they needed to learn many things before
being able to use it effectively. Furthermore, while several users agreed that the
system was not cumbersome, others found it somewhat challenging to use.

Overall, the SUS scores reflect a balance between positive usability experiences
and areas where some users encountered difficulties, suggesting that while the
system is generally user-friendly, certain aspects may require refinement to enhance
consistency and ease of learning.

Following the rules to calculate the SUS score presented in Section 3.4.2, the
overall SUS score is 79.53, which indicates that the system falls into the “good”
range of usability. This score suggests that, on average, users had a positive
experience, though there are still areas that could be improved for a more seamless
and consistent user interaction.

6.3.5 Qualitative survey
The feedback on using DeepBlocks compared to traditional methods for creating
Deep Learning models highlights both its advantages and limitations. Many users
emphasized how DeepBlocks simplifies the process through its graphical UI, making
it easier to visualize and connect different layers of the model. This visual approach
allows users to translate their ideas into working models more intuitively and
quickly, which is seen as a major advantage over writing code from scratch. Users
appreciated the clear feedback provided on connections between layers, helping
to avoid errors and ensuring that parameters between blocks were compatible.
Features like superblocks, which allow for the reuse of components as well as
improving scalability, further streamline the process. Beginners benefited from the
drag-and-drop functionality, which made it easier to understand and experiment
with different components. However, some users noted drawbacks, including a lack
of flexibility in adjusting parameters directly compared to coding, and frustrations
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Figure 6.1: SUS questionnaire results

with the interface related to block selection and editing. Experienced developers
found it slower and less efficient than traditional coding, particularly due to the
absence of features like code completion or familiar shortcuts. While the tool was
seen as intuitive and user-friendly for beginners and those focused on visualizing
models, some experienced users still preferred the control offered by traditional
coding methods.

Several features of DeepBlocks stood out as particularly useful, such as the
ability to easily define necessary parameters by clicking on a block, ensuring no
parameters were overlooked. The intuitive drag-and-drop interface for creating
connections between blocks provided a clear, chronological representation of the
model’s workflow. The automatic checking of dimensional compatibility between
blocks was highlighted as a valuable feature. Users also appreciated the integrated
training function, which allowed them to start training models with minimal effort
by entering hyperparameters and clicking a button, as well as the helper page
providing clear instructions for navigating the platform.

Challenges encountered while using DeepBlocks included difficulties in making
manual connections between blocks, duplicating or creating superblocks, and
grouping blocks due to a confusing selection system. Users reported frustrations
with the absence of keyboard shortcuts for copying and pasting, and noted that
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personalized block creation was not intuitive. The right-click menu could benefit
from clearer visual cues, and some users found error messages intrusive, needing
to be manually cleared. The process of disconnecting or removing links between
nodes was not clearly explained, and suggestions were made to increase the size of
block junctions for easier navigation.

Many users expressed that using DeepBlocks regularly could enhance their
workflow, particularly by improving the efficiency of creating and modifying Deep
Learning models. The ability to visualize existing models and make graphical
modifications with direct feedback was seen as a strong advantage. Users suggested
that if bugs were fixed and features like easier copy-paste functionality were added, it
could further speed up their workflow. However, some more programming-oriented
users felt that DeepBlocks could slow them down and viewed it more as a learning
tool than a programming tool.

While many users did not encounter significant limitations, some reported
issues that affected task completion, such as the inability to unselect grouped
blocks and difficulties with linking blocks correctly. Better access to guidelines and
help resources within the app was suggested to streamline workflows. Users also
identified hyperparameter tuning as an area for improvement.

To enhance DeepBlocks for developers, suggestions included displaying accept-
able value ranges for block parameters based on connected layers, cleaning up
existing bugs, incorporating new blocks, and linking documentation for frameworks
like PyTorch and TensorFlow. Enhancements could also include greater customiza-
tion of the training procedure and allowing users to download complete code,
including the training procedure. Improved error visualization that aligns with
the overall UI and automatic cleaning of error messages would enhance usability,
particularly for non-developers.

DeepBlocks is particularly beneficial for educational projects, beginner-level
Deep Learning tasks, and environments where users are starting to explore Machine
Learning. Its scalability allows users to easily modify previous projects for new
applications while receiving direct feedback on their adjustments, which is valuable
for those with minimal knowledge of Deep Learning as it aids in visualizing and
comprehending the underlying concepts.

6.3.6 Future enhancements
In future versions of DeepBlocks, several enhancements could significantly improve
user experience and functionality. Firstly, the app could include a feature that
displays acceptable value ranges for block parameters based on connected layers,
making it easier for users to set parameters correctly. Addressing existing bugs would
also enhance the overall user experience. Additionally, incorporating new blocks
would expand the app’s functionality, and linking documentation for frameworks
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like PyTorch and TensorFlow directly within the app would provide valuable
context for users. Another beneficial feature would be the option to download
the complete code, including the training procedure, which would provide better
transparency and usability. Improving error visualization to align with the overall
UI and implementing automatic clearing of error messages once resolved would
enhance usability, particularly for non-developers. Lastly, increasing the size of
block junctions for easier navigation and improving access to guidelines and help
resources within the app would streamline user workflow. Incorporating these
enhancements could greatly improve the efficiency and usability of DeepBlocks for
its users.
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Conclusions

The use of Machine Learning algorithms has expanded across various industrial
sectors, gaining widespread popularity. However, constructing a Machine Learning
pipeline depends on the programming skills of data scientists. Visual Programming
applications have addressed this challenge by enabling the creation of such pipelines
through a drag-and-drop interface of blocks that represent ML functionalities,
although they have their limitations.

DeepBlocks aligns with the principles established by the creators of DL-IDE,
highlighting the importance of a Visual Programming tool for developing Deep
Learning models that features an intuitive interface, removes the necessity for
coding, and enables efficient training along with rapid and scalable deployment [8].

DeepBlocks utilizes Visual Programming for the creation, debugging, and train-
ing of Deep Neural Networks. It allows users to place blocks that symbolize
PyTorch functions onto a canvas, adjust their parameters, and link them together.
DeepBlocks introduces superblocks, as termed in its prior version, which are blocks
designed to encapsulate additional blocks within them. It also features a user-
friendly interface that facilitates easy navigation within the web tool. Additionally,
DeepBlocks performs checks after each modification to evaluate if the altered model
is still prepared for training or if any errors have occurred. Moreover, DeepBlocks
offers users the ability to download their designed model in multiple formats,
enabling its use in other applications or its re-upload to the web tool for further
development.

DeepBlocks is designed as a web application to ensure easy access from any
device and from any location globally, eliminating the need for downloading an
executable file to begin crafting a Deep Learning model.

The testing phase revealed that the tool features a user-friendly interface, which
could significantly flatten the learning curve, particularly for novices. Moreover,
the ability to visualize all the model components was well-received by the majority
of users, allowing for a comprehensive view of the model and aiding in their
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comprehension of its structure.
This thesis has laid the groundwork for developing an application that aids

in building Deep Learning models. However, there remains significant room for
future work that can expand its scope and capabilities. One potential avenue for
expansion is to increase the range of functions available for model building, allowing
users to design more complex and diverse models. This could include integrating a
broader selection of layers, optimizers, loss functions, and pre-processing tools to
give users more flexibility in their designs.

Additionally, it would be beneficial to incorporate more detailed documenta-
tion and educational resources within the application itself. By providing clear
descriptions of each function’s purpose, along with examples and explanations of
how these functions interact within a Deep Learning pipeline, the application could
serve as a powerful learning tool for users who are not only building models but
also gaining a deeper understanding of the underlying principles.

Another important feature to consider for future work is the ability to export
the generated models into code that is compatible with various Deep Learning
frameworks such as PyTorch, TensorFlow, and Keras. By providing users with the
option to download the model in the framework of their choice, the application
would significantly improve its usability and versatility, catering to a wider range of
preferences and project requirements. This capability would allow users to directly
integrate the generated code into their workflows, facilitating seamless transitions
between model prototyping and deployment.

Lastly, incorporating interactive tutorials or guided examples could further
enhance the application’s role as a teaching tool. By bridging the gap between
model construction and theoretical understanding, these additions could make the
platform more accessible to a wider range of users, from beginners to advanced
practitioners. Expanding these aspects would make the application not only more
versatile but also a more effective resource for learning and exploring Deep Learning
techniques.

Source code for DeepBlocks is available on GitLab at the following link: https:
//git.elite.polito.it/filippocaste/deepblocks-msthesis.git.
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Appendix A

Protocol Buffer definition

1 syntax = " proto3 ";
2
3 service Trainer {
4 // Train the network
5 rpc TrainNetwork ( Network ) returns ( NetworkResult ) {}
6 // Export to file (onnx or pth)
7 rpc ExportNetwork ( Network ) returns (File) {}
8 // Forward single block to the network
9 rpc ForwardBlock ( Network ) returns ( ForwardResult ) {}

10 }
11
12 message Parameters {
13 string key = 1;
14 string value = 2;
15 }
16
17 message Node {
18 string id = 1;
19 string function = 2; // is the pytorch function name
20 repeated Parameters parameters = 3;
21 }
22
23 message Edge {
24 string source = 1;
25 string target = 2;
26 }
27
28 message File {
29 bytes file_data = 1;
30 string file_name = 2;
31 }
32
33 message Metric {
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34 string name = 1;
35 repeated float value = 2;
36 }
37
38 message Network {
39 repeated Node nodes = 1;
40 repeated Edge edges = 2;
41 repeated Parameters parameters = 3;
42 repeated File files = 4;
43 }
44
45 message NetworkResult {
46 string status = 1;
47 string message = 2;
48 repeated Metric metrics = 3;
49 }
50
51 message ForwardResult {
52 string status = 1;
53 string message = 2;
54 repeated Parameters parameters = 3;
55 }
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