
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Advanced Computational Strategies in
Electromagnetic BEM Preconditioning

Supervisors

Prof. Francesco P. ANDRIULLI

Prof. Adrien MERLINI

Candidate

Masciocchi MATTEO

ACADEMIC YEAR 2023-2024





Summary

Abstract

This thesis presents some advancements in computational electromagnetics, focus-
ing on integral equation methods for the solution of electromagnetic scattering
problems. It explores numerical techniques and matrix operations that enhance the
computational efficiency necessary for practical applications: the analysis starts
from the derivation of the BEM equations from the Maxwell’s systems, continues
exploring the most popular basis functions and discretization schemes, tackles the
complexity issues that arise introducing fast solvers and preconditioning, inves-
tigates harmonic transforms and their behavior on non-regular domains, focuses
on the recent preconditioning techniques relying on Laplacian filters, and finally
introduces a novel approach to operator filtering. This work presents arguments
for both 2D and 3D formulations.

Integral Operators and BEM

Integral operators play a crucial role in formulating the boundary element method
(BEM) from Maxwell’s equations. The thesis starts by deriving integral equations
from Maxwell’s systems, highlighting how these equations can be transformed
into boundary integral equations suitable for numerical treatment. The BEM is
particularly effective for solving scattering problems as it reduces the dimensionality
of the problem by one, focusing computations on the boundary of the domain
only. Key integral equations, such as the Electric Field Integral Equation (EFIE)
and Magnetic Field Integral Equation (MFIE), are discussed in details. The use
of boundary conditions and the application of Love’s equivalence principle to
transform scattering problems into more manageable forms are also covered. The
focus is then placed on the discretization of such operators. Basis functions such
as Rao-Wilton-Glisson, Loop and Star are introduced, and numerical integration
and the implication of dealing with discretized linear systems are addressed.
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Well-Known Computational Issues, Solutions, and Fast Schemes
One of the main computational challenges in solving integral equations is the high
complexity and large memory requirements of the resulting formulations. Intuitively,
this is due to the fact that integral operators leads to dense matrices since each
element of the solution depends on all the elements of the source. Solution of dense,
full rank linear systems is generally O(N3), being N the number of unknowns. The
thesis addresses these issues by exploring various numerical techniques and fast
algorithms. Techniques such as the Method of Moments (MoM) and preconditioning
are employed for discretizing integral equations, leading to a system of linear
equations with favourable properties for fast solution. The thesis delves into the use
of the Fast Multipole Method (FMM) and Adaptive Cross Approximation (ACA)
to accelerate matrix-vector multiplications, significantly reducing computational
time and memory usage. Finally, preconditioning techniques, such as the use of the
Helmholtz decomposition and quasi-Helmholtz projection, are discussed to improve
the convergence rates of iterative solvers.

Geometry Regularity and Flexible Approaches
The accuracy and efficiency of numerical methods in electromagnetics often depend
on the regularity of the geometry being analyzed. This work includes a detailed
analysis of how the operator of interest straightforwardly simplifies when computed
on harmonic geometries, such as circle and sphere, and with uniform discretization.
However, such domains are of little practical interest, thus the challenge is to
adapt the schemes that lead to these simplifications in such a way that they are
applicable also to non-uniform domains. Non-uniform discretization schemes, from
the well-known Non-Uniform Discrete Fourier Transform (NUDFT) to the recently
introduced Non-Uniform Vector Spherical Harmonic Transform, are explored for
their ability to handle complex geometries with varying levels of detail, with
favourable complexities. These transforms facilitate the efficient computation of
electromagnetic fields on irregular surfaces, enhancing the applicability of the
numerical methods. The research also examines the relationship between spherical
harmonic transforms and the 2D Fast Fourier Transform (FFT), investigating the
contexts in which the former can be replaced by the latter, leading to further
computational efficiency.

Operator Filtering Strategies
The thesis review and introduces advanced operator filtering strategies to enhance
numerical stability and efficiency. Laplacian multiplicative filters, introduced
by Merlini et al. in 2022, have been proved to be an efficient filtering strategy,
paving the way to new families of direct and inverse solvers. They are essentially
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multiplicative preconditioners for the integral operators that behave as spectral low
pass filters, allowing for efficient storage and manipulation of the target matrices.
The analogies among the operators and Laplacian spectrum are the foundations for
their effectiveness. The newly introduced Modified Green’s functions formulations
for the 2D case embody another approach to filtering, which does not rely on
multiplicative preconditioners but rather on modifying the continuous operator
formulations, in such a way that their discretized counterparts exhibit a truncated
spectrum. Numerical results demonstrate the success of these filters in modifying the
operator spectral properties. The implementation details and practical applications
of these filtering strategies are thoroughly discussed.

Conclusions
This thesis work is a panoramic onto the actual research panorama in the BEM
computational electromagnetics field, going from its theoretical foundations to many
open research problems, touching four out of the ten most impactful algorithms
of the 20th century, and including also some advancements in operator filtering.
The text is enriched with numerical results to show the effectiveness in practical
scenarios of the proposed formulations, as well as abundant citations to external
sources where the interested reader can find further details. Mathematical notation
and equations are extensively employed, being by far the more appropriate language
for the topic.
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direction with wavelength λ . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Illustration of the original direct scattering problem. . . . . . . . . . 14
1.4 Depiction of Love’s equivalent formulation for the exterior scattering

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Polarization definitions and other useful notations for the 2D setting 20
1.6 3D triangular mesh for a bunny model . . . . . . . . . . . . . . . . 24
1.7 Piecewise linear mesh for a 2D manifold . . . . . . . . . . . . . . . 24
1.8 Notation used for the definition of RWG functions. . . . . . . . . . 26
1.9 Rao-Wilton-Glisson basis function. . . . . . . . . . . . . . . . . . . 26
1.10 Loop basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.11 Star basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.12 Global loops on a torus (NH = 1): toroidal in orange, poloidal in blue. 28
1.13 Piecewise linear basis functions example on a non-uniform discretized

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.14 Comparative analysis of the Green’s function and its regular compo-

nent in both lossless and lossy media environments. . . . . . . . . . 35

2.1 Singular values of Λ and PΛH (left) and of Σ and PΣ (right) for a
sphere discretized with 188 vertices, 376 cells and 564 edges. . . . . 47

2.2 Singular value clustering due to symmetry (below filtering thresh-
old) and null-space (after threshold). The figure has been obtained
decomposing the Laplacian, filtering, recomposing the filtered Lapla-
cian, adding noise with magnitude equal to machine precision, and
then decomposing the Laplacian again. . . . . . . . . . . . . . . . . 50

3.1 3D representation and SHT of a 2D trigonometric polynomial of
order (7,4). The linear plot is the magnitude of row of index +4 of
the SHT matrix, which is the only non-zero one. . . . . . . . . . . . 66

xiv



3.2 3D representation and 2D DFT of the spherical harmonic of order
n = 8, l = 1. The linear plot is the magnitude of row of index +1 of
the 2D-DFT matrix, which is the only non-zero one. . . . . . . . . . 66

3.3 a. SHT of the original function, b. 2D-DFT of the original function,
c. 2D-DFT of the filtered function, d. SHT of the filtered function.
The band-limitedness in the DFT domain does not reflect into a
band-limited SHT spectrum. . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Relative error on the discretized projector Gλ,eG−1
λ,λGe,λ with respect

to the discretization density. The error decays with polynomial order
as O(x−4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Relative error on the discretized projector Gλ,eG−1
λ,λGe,λ with respect

to the discretization density, and in presence of missing consecutive
discretization points. It is noticeable how the lack of only two
consecutive points produces an overall error comparable to a uniform
discretization with the number of discretization points halved. . . . 71

3.6 Numerical evaluation of the relationship among the singular vectors
on the circle and other geometries. the plot technique used here is
described in details in appendix B. . . . . . . . . . . . . . . . . . . 73

4.1 Scatterer used as reference for the following numerical results . . . . 82
4.2 singular vector projection of Sn with Butterworth approximation of

order 32 vs Laplace-Beltrami singular vectors. The upper left corner
shows the interdependence at low frequency, the diagonal part in the
middle is the region where the ordering is effective and the bottom
right region corresponds to the filtered operator nullspace. . . . . . 84

4.3 Application of Butterworth filtering (Eq. 2.55) to operator S. Sin-
gular values ordered by the singular vectors of the unfiltered S
operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Application of Butterworth filtering (Eq. 2.55) to operator S. Sin-
gular values ordered by the singular vectors of the Laplace-Beltrami
operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Singular values of S0 and singular values of Sα0 using (4.7), ordered by
the singular vectors of the Laplace-Beltrami operator, and reference
mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Singular values of S and singular values Sα using (4.8) and (4.10),
ordered by the singular vectors of the Laplace-Beltrami operator. . 85

4.7 Singular values of G−1SG−1N and singular values of G−1SαG−1N
where Sα is computed using (4.8) and (4.10), ordered by the singular
vectors of the Laplace-Beltrami operator. . . . . . . . . . . . . . . . 85

B.1 Operator N2D discretized on a non-regular mesh . . . . . . . . . . . 94

xv





Acronyms

ACA
Adaptive Cross Approximation

BC
Buffa-Christiansen

BEM
Boundary Element Method

DFT
discrete Fourier transform

EFIE/O
Electric Field Integral Equation/Operator

FaVeST
Fast Vector Spherical harmonic Transform

FFT
fast Fourier transform

FMM
fast multiple method

LHS
left hand side

MFIE/O
Magnetic Field Integral Equation/Operator

xvii



MoM
Method of Moments

PEC
Perfect Electric Conductor

PMC
Perfect Magnetic Conductor

RHS
right hand side

RWG
Rao-Wilton-Glisson

SHT
Spherical Harmonic Transform

xviii



Chapter 1

Introduction to
Computational
Electromagnetics

In this chapter, a continuous line will be drawn from the Maxwell equations to the
discretized electric and magnetic integral equations, passing through wave theory,
the Method of Moments and the Boundary element Method.

2D notations

In this thesis, we will always present together with the 3D formulations also the
2D equivalents. More in details, with 2D setting, we refer to geometries which are
invariant over one dimension (by convention, the ẑ axis). Thus, in this context,
the problem is evaluated only on the xy plane, where the geometry manifold
collapse into a curve. Physical quantities on this geometries are represented as
X = Xtt̂ +Xzẑ +Xnn̂, where t denotes the quantities on the xy plane, tangential
to the surface; n denotes the quantities on the xy plane, perpendicular to the
surface and z denotes the quantities on the z axis (i.e., tangential to the surface).
Fig. 1.1 exemplifies the notation for a simple geometry.

1.1 The Maxwell’s system
Maxwell’s theory has been a major milestone in physics, describing in a powerful
and incredibly predictive way the relationships among the Electric and Magnetic
fields, an interplay that underpins much of modern electromagnetic theory and
applications. This understanding has been suggested by the observation of a number
of physical phenomena where an interaction between electric E and magnetic B

1



Introduction to Computational Electromagnetics

Figure 1.1: Notation used for the 2D setting. The sample shape is a circle, i.e.,
an infinite cilinder due to invariancy along the z axis.

fields was undeniable. Then, experiments carried out by different scientists of the
time confirmed the evidence, and finally James Clerk Maxwell, synthesizing earlier
works by Faraday, Ampère, and others, formulated a set of equations that not only
described this interaction but also unified the study of electricity, magnetism, and
even optics into a coherent theory of electromagnetism.

1.1.1 Maxwell’s and Continuity Equations in integral form
The whole electromagnetic theory rely on a set of four equations, called the
Maxwell’s system. Given an open surface C bounded by a closed contour γ, and a
closed surface S enclosing the volume V , these equations read"

S

D(r, t) · dS =
˚

V

ρe(r, t) dV (1.1)
˛
γ

E(r, t) · dl = − ∂

∂t

¨
C

B(r, t) · dC −
¨
C

M(r, t) · dC (1.2)
"
S

B(r, t) · dS =
˚

V

ρm(r, t) dV (1.3)
˛
γ

H(r, t) · dl = ∂

∂t

¨
C

D(r, t) · dC +
¨
C

J (r, t) · dC. (1.4)

(1.5)

Definitions and units of the quantities involved are the following:

E is the electric field, V/m;

H is the magnetic field, A/m;

D is the electric flux density, A·s/m2;

B is the magnetic flux density, V·s/m2;

2



1.1 – The Maxwell’s system

J is the electric current density, A/m2;

M is the magnetic current density, V/m2 (unobserved in nature);

ρm is the magnetic charge density, in V·s/m3 (unobserved in nature);

ρe is electric charge density, in A·s/m3.

These equations are valid in any extended region of space (no continuity conditions
are required), and they are known as the Maxwell’s equations in integral form.
Eq. 1.1 establishes the relationship among electric charge and electric field, and
it is independent on frequency. Eq. 1.2, also known as Faraday’s law, determines
that also a varying magnetic field can be a source of an electric field (note that
M is introduced for symmetry with the electric field, but is zero in all known
cases). Eq. 1.3 affirm that the magnetic field is purely solenoidal (note that ρm is
introduced only for symmetry with the electric field, but is zero in all known cases).
Eq. 1.4, also known as Ampère-Maxwell law, to conclude, defines the sources of
the magnetic field: variations in time of the Electric field flux and electric currents.

Then, it is necessary to mention the equations relating fields and flux densities,
called constitutive equations,

B(r, t) = µ H(r, t) (1.6)
D(r, t) = ϵ E(r, t), (1.7)

where the quantities denoted as µ and ϵ are respectively the permeability and
the permittivity of the medium in which field propagation occurs. These are in
general tensor quantities and show complicated dependence on position, time,
frequency, and on the field itself. A commonly used simplification is to consider µ
and ϵ as constant scalars: this is the assumption of a medium which is isotropic
(same properties in all directions), linear (w.r.t. response to electromagnetic fields),
and homogeneous (uniform properties throughout the medium). Since vacuum
represents the most common medium with such properties, its permeability and
permittivity are known as µ0 and ϵ0, whose values are

µ0 = 4π10−7 H/m

ϵ0 = 1
µ0 c2

0
= 8.85 × 10−12 F/m.

Speed of light in vacuum, denoted as c0, is one of the seven fundamental constants
established in the International System of Units, of value 299,792,458 m/s. From
this, for any medium with such properties, permeability and permittivity are
expressed as µ = µ0 µr, ϵ = ϵ0 ϵr, where µr and ϵr are adimensional quantities.
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Finally, the assumption of conservation of the electric charge is based on experi-
mental evidences, and translates in the continuity equation

"
S

J (r, t) · dS = − ∂

∂t

˚
V

ρe(r, t) dV. (1.8)

For the sake of symmetry, the continuity equation is also defined for the magnetic
field as

"
S

M(r, t) · dS = − ∂

∂t

˚
V

ρm(r, t) dV (1.9)

however, notice that all the involved quantities has not been observed in nature so
far.

1.1.2 Maxwell’s and Continuity Equations in differential
form

Stokes’ theorem, which reads
¸
C

A · dl =
˜
S
(∇ × A) · dS with A being a generic

vector field, is exploited to move to the differential form:

∇ × E(r, t) = − ∂

∂t
B(r, t) − M(r, t) (1.10)

∇ × H(r, t) = ∂

∂t
D(r, t) + J (r, t). (1.11)

∇ · B(r, t) = ρm(r, t) (1.12)
∇ · D(r, t) = ρe(r, t). (1.13)

To simplify the flux integrals which are involved, some conditions need to be verified
for these expressions to be valid: the vector fields should be «single-valued, bounded,
continuous functions of position and time and exhibit continuous derivatives» [1].
Such conditions hold true if the surface C and its contour γ, as well as the volume
V , lie in a isotropic, linear and homogeneous medium.

In these equations, the electric current density J is the sum of conduction
current, which obeys Ohm’s law (J c = σE where σ is the material conductivity,
S/m), and impressed current J S, source of the system. The term ∂

∂t
D represents

instead the electric displacement current and, by symmetry, the contribution ∂
∂t

B
can be denoted as magnetic displacement current. Magnetic current density M
is usually introduced in the Maxwell’s system in order to preserve symmetry and
duality properties, even if magnetic currents and charges have not been observed
in nature and thus can be omitted.
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1.2 – Electromagnetic field in free space

The same applies also to the continuity equations, which can be expressed in
the differential form as

∇ · J (r, t) = − ∂

∂t
ρe(r, t), (1.14)

∇ · M(r, t) = − ∂

∂t
ρm(r, t). (1.15)

1.1.3 Maxwell’s equations in frequency domain
Any time-harmonic vector can be written as the sum of its in-phase and in-
quadrature components:

V(r, t) = V ′(r) cos(ωt) − V ′′(r) sin(ωt) = ℜ{(V ′(r) + jV ′′(r)) ejωt}. (1.16)

In the previous notation, the complex vector (V ′ + jV ′′) = V is called phasor
and, given constant angular frequency ω, contains the same amount of information
of the original vector V . From there on, quantities in roman letters represent
the complex phasors of the respective real-valued vector fields in time domain.
Assuming time-harmonic dependence of all the quantities involved in the Maxwell’s
system, it is possible to rewrite them in terms of their phasors. This is really
convenient because time derivatives, in the phasors domain, becomes simple scalar
multiplications:

∂

∂t
V(r, t) = ℜ(jωV (r) ejωt). (1.17)

Since both sides of the equation includes real part operators and complex exponen-
tials, they can be simplified to obtain

∇ × E(r, ω) = −jωB(r, ω) − M(r, ω) (1.18)
∇ × H(r, ω) = jωD(r, ω) + J(r, ω) (1.19)
∇ · B(r, ω) = Pm(r, ω) (1.20)
∇ · D(r, ω) = Pe(r, ω). (1.21)

Observing that the frequency-domain representation of Maxwell’s equations can
also be derived by applying the Fourier transform to the time-domain quantities
involved is noteworthy. This observation implies that Eq. 1.18 - 1.21 are applicable
not only to time-harmonic fields, but to any field with a generic spectrum that is
integrable over the real numbers domain, i.e., any physically feasible one.

1.2 Electromagnetic field in free space
Solving Maxwell’s equations, especially when paired with appropriate boundary
conditions, presents significant challenges. Analytical solutions are rare and typically
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limited to a few special scenarios, the most notable being radiation in free space,
which refers to a homogeneous and infinitely vast expanse of space: This concept
will be elaborated upon in this section. Note that in the difficulty in obtaining
analytical solutions resides the critical need for efficient numerical solvers, which
are the final aim of this thesis.

1.2.1 Electromagnetic radiation in free space
In physics, a wave is generally defined as a perturbation, impulsive or periodic,
which propagates throughout space at a well-defined speed. Waves are originated
by a source, and satisfy the wave equation which reads, for a scalar wave

∂2

∂t2
E = 1

v2 ∇2E (1.22)

where ∇2 = ∇ · ∇ =
1
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

2
is the spatial Laplacian Operator.

Starting from Maxwell’s equations in differential form in a source-free region
(ρe = 0 and J = 0), we have

∇ · E = 0, (1.23)
∇ · B = 0, (1.24)

∇ × E = −∂B
∂t
, (1.25)

∇ × B = µ0ϵ0
∂E
∂t
. (1.26)

If we take the curl of Eq. 1.25, we obtain

∇ × (∇ × E) = − ∂

∂t
(∇ × B). (1.27)

Using the vector identity ∇ × (∇ × A) = ∇(∇ · A) − ∇2A and substituting ∇ × B
from Eq. 1.26, we get

∇2E − µ0ϵ0
∂2E
∂t2

= 0. (1.28)

Similarly, switching the roles of Eq. 1.25 and 1.26, we derive

∇2B − µ0ϵ0
∂2B
∂t2

= 0. (1.29)

These are the electromagnetic wave equations for electric field E and magnetic field
B, indicating that both fields propagate as waves with a speed v = 1√

µ0ϵ0
= c0, i.e.,

the speed of light in vacuum.
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1.2 – Electromagnetic field in free space

Let’s now investigate the fundamental properties of the electromagnetic field.
Under the hypothesis that the electric and magnetic fields are time-harmonic
waves, and assuming (without loss of generality) that they propagates toward the
x̂ direction, they will have an analytic form like

E = Eyŷ + Ez ẑ = E0,ycos(kx− ωt)ŷ + E0,zcos(kx− ωt)ẑ, (1.30)
B = Byŷ + Bz ẑ = B0,ycos(kx− ωt)ŷ + B0,zcos(kx− ωt)ẑ. (1.31)

Applying Eq. 1.25, we obtain

∂Ez

∂x
= ∂By

∂t
(1.32)

−kE0,zsin(kx− ωt) = ωB0,ysin(kx− wt) (1.33)
E0,z = −c0B0,y (1.34)

And, symmetrically, applying Eq. 1.26

E0,y = c0B0,z (1.35)

From Eq. 1.34 and 1.35 we can derive

E2 = E2
0,y + E2

0,z = c2
0(B2

0,y + B2
0,z) = c2

0B
2 → E = c0B (1.36)

E · B = EyBy + EzBz = 0. (1.37)

These equations reveal us that (i) the electromagnetic field can propagate in
vacuum without the need for any media, (ii) the two waves’ magnitudes have a
fixed relationship, (iii) the two waves are in phase and perpendicular in space. By
a practical point of view, this allows us to compute only one of those two vector
field, and to retrieve the other at the end of the calculations. A visualization of an
electromagnetic wave is reported in Fig. 1.2.

Figure 1.2: Visualization of an electromagetic wave propagating along the ẑ
direction with wavelength λ
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1.2.2 Potentials for electric and magnetic fields
In the frequency domain, Maxwell’s equations, specifically Eq. 1.18 and 1.19,
reveal complexities when seeking solutions, particularly due to boundary conditions.
These complexities are magnified by the assumption that only electric sources are
present, excluding magnetic currents M and charges ρm. The assertion in Eq. 1.12
that magnetic flux density is solenoidal allows it to be represented as the curl of a
vector field A(r), as permitted by the vector calculus identity ∇ · (∇ × A) = 0,

B(r) = ∇ × A(r). (1.38)

This expression introduces A(r) as determining the curl, while its divergence
remains undefined. Substituting into Eq. 1.18 gives us

∇ × (E(r) + jωA(r)) = 0. (1.39)

Acknowledging that ∇ × ∇ϕe = 0 allows for representing an irrotational field as
the gradient of a scalr field, hence

E(r) + jωA(r) = −∇ϕe(r). (1.40)

This indicates that the electric field, generated by the system’s electric currents
and charges, is expressible through both the vector field A(r) and the scalar field
ϕe(r), termed electric vector and scalar potentials respectively, with units V·s/m
and V. Manipulating these equations allows for establishing a direct relationship
between the potentials and their sources. Implementing the potential definitions
into Eq. 1.19 yields

∇ ×
A

1
µ

∇ × A(r)
B

= jωϵ [−jωA(r) − ∇ϕe] + J(r), (1.41)

which simplifies to

∇2A(r) + k2A(r) = ∇(jωµϵϕe(r) + ∇ · A(r)) − µJ(r), (1.42)

introducing the wave number k = ω
√
µϵ. Additionally, the divergence equation

(Eq. 1.13) is rendered as

∇ · (−jωA(r) − ∇ϕe(r)) = −ρe(r)
ϵ

, (1.43)

which simplifies further under the Lorenz gauge condition, which decouples scalar
and vector potentials:

∇ · A(r) = −jωµϵϕe(r). (1.44)
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1.2 – Electromagnetic field in free space

This choice enables the vector and scalar electric potentials to fulfill the inhomoge-
neous Helmholtz equation in their respective forms:

∇2A(r) + k2A(r) = −µJ(r) (1.45)

∇2ϕe(r) + k2ϕe(r) = −ρe(r)
ϵ

. (1.46)

Note that the potentials, as well as the fields, satisfy the wave equations. The same
procedure can be employed to find the potentials for magnetic sources

∇2F (r) + k2F (r) = −ϵM(r) (1.47)

∇2ϕm(r) + k2ϕm(r) = −ρm(r)
µ

(1.48)

however, note again that these sources are unobserved in nature.

1.2.3 Green’s function and scattered field
The approach utilizing Green’s function to find an analytic solution for the potentials
involves solving the inhomogeneous Helmholtz equation. This method relies on
determining the solution for a point source excitation, depicted by a Dirac delta
function, and is known as the Green’s function or fundamental solution, symbolized
by g. The original Helmholtz equation’s solution is then derived by convolving g
with the actual source, leveraging the superposition principle. Mathematically, the
Green’s function is defined to satisfy:

∇2g(r) + k2g(r) = −δ(r), (1.49)

where the equation has a unique solution only under the boundary condition that
imposes the existence of only outgoing waves at infinity, known as Sommerfeld’s
radiation condition. The expression for the three-dimensional free space Green’s
function is given by:

g(r) = e−jk|r|

4π|r|
if k>0, (1.50)

g0(r) = 1
4π|r|

if k=0 (1.51)

By convolving both sides of eq. (1.49) with the right hand sides of equations 1.45,
1.46, 1.47, 1.48 and comparing what obtained with the just mentioned equations,
potentials A, ϕe, F , ϕm are respectively obtained as
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A(r) = µ

˚
r′∈IR3

g(r − r′)J(r′)dV ′ (1.52)

ϕe(r) = 1
ϵ

˚
r′∈IR3

g(r − r′)ρe(r′)dV ′ (1.53)

F (r) = ϵ

˚
r′∈IR3

g(r − r′)M(r′)dV ′ (1.54)

ϕm(r) = 1
µ

˚
r′∈IR3

g(rr′)ρm(r′)dV ′. (1.55)

To perform this convolution, we use the property that the convolution of the Green’s
function with the source term of a differential equation gives the solution to that
differential equation. The convolution process effectively "spreads" the influence of
the point source δ(r) across the space where the current density J(r′) is nonzero,
weighted by the Green’s function g(r − r′) which accounts for the propagation
effects between the source point r′ and the observation point r.

Summing up the contributions, electric and magnetic fields scattered from both
electric and magnetic sources are written as

E(r) = −jωA(r) − ∇ϕe(r) − 1
ϵ
∇ × F (r) (1.56)

H(r) = −jωF (r) − ∇ϕm(r) + 1
µ

∇ × A(r) (1.57)

or equivalently, given the Lorenz gauge considered, as

E(r) = −jωA(r) + 1
jωµϵ

∇∇ · A(r) − 1
ϵ
∇ × F (r) (1.58)

H(r) = −jωF (r) + 1
jωµϵ

∇∇ · F (r) + 1
µ

∇ × A(r). (1.59)

2D formulations

The Green function 2D formulation can be obtained starting from the 2D Helmholtz
equation for the Green’s function

∇2g2D(r) + k2g2D(r) = −δ(r) (1.60)

and from the two-dimensional (2D) free space Green’s function, expressed as

g2D(r, r′) := − i
4H

(2)
0 (k|r − r′|) if k>0, (1.61)

g2D
0 (r, r′) := − 1

2π log(|r − r′|) if k=0 (1.62)
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where H
(2)
0 denotes the Hankel function of the second kind and zeroth order,

accounting for the cylindrical wave propagation in a 2D medium.
from 1.60, 1.62 and from the potentials 1.45 - 1.48, by convolving the Green’s

function g2D(r − r′) with the source terms in 2D, we find the expression for the
vector potentials in the two-dimensional space. The convolution delivers:

A2D(r) = µ

¨
r′∈IR2

g2D(r − r′)J(r′)dA′ (1.63)

ϕ2D
e (r) = 1

ϵ

¨
r′∈IR2

g2D(r − r′)ρe(r′)dA′ (1.64)

F 2D(r) = ϵ

¨
r′∈IR2

g2D(r − r′)M (r′)dA′ (1.65)

ϕ2D
m (r) = 1

µ

¨
r′∈IR2

g2D(rr′)ρm(r′)dA′, (1.66)

where dA′ represents the area element in the plane of integration, and the integral
is taken over the 2D space R2. Equations 1.56 - 1.59 holds also in 2D, replacing
the quantities with the respective planar ones.

1.3 Maxwell’s equations in statics
In the scenario where the frequency is precisely zero, the electric (E) and magnetic
(H) fields are entirely decoupled, leading to Maxwell’s equations being expressed
as:

∇ × E(r, ω) = −M (r, ω) (1.67)
∇ × H(r, ω) = J(r, ω). (1.68)

When considering only physical (electrical) sources, eq. (1.67) implies that
the electric field is irrotational, rendering it conservative over simply connected
domains: ˛

C

E · dl = 0 , (1.69)

reflecting the conservation of electric potential ϕe. This principle, recognizing
the path-independence of potential difference, or voltage, is better recognized as
Kirchhoff’s Voltage Law (KVL). The relation E = −∇ϕe (where E is in Volts per
meter, V/m) is merely a specific case of eq. (1.40) under static conditions with
only electric sources.

Kirchhoff’s Current Law (KCL), another foundational concept in circuit analysis,
emerges from eq. (1.68). By defining the current I in Amperes flowing through an

11



Introduction to Computational Electromagnetics

open surface So bounded by contour Co and applying Stokes’ theorem, a relationship
involving the magnetic field’s circulation is established:

I =
¨
So

J(r) · dS =
¨
So

(∇ × H(r)) · dS =
˛
Co

H(r) · dl, (1.70)

where J is in Amperes per square meter (A/m2), H is in Amperes per meter
(A/m), and dS and dl are in square meters (m2) and meters (m), respectively.
These relationships also hold for a closed surface Sc, whose enclosing contour Cc
diminishes to zero, indicating that the net current passing through the closed
surface Sc is zero, embodying the essence of KCL.

1.3.1 quasi-static regime

Note that any physically feasible quantity cannot have exact zero frequency, or in
other words, a null spectrum. This statement underscores a fundamental principle
in physics, where absolute static conditions (zero frequency) are idealized concepts
rather than practical realities.

In light of this, the quasi-static regime emerges as a critical conceptual framework.
This regime is characterized by frequencies that are sufficiently low so that the wave
nature of electromagnetic phenomena can be neglected in some aspects, yet the
effects of time variation cannot be entirely ignored. From a conceptual viewpoint,
the quasi-static regime allows for the application of static field approximations to
systems experiencing slow temporal changes.

In the quasi-static regime, the retardation effects due to the finite speed of
electromagnetic wave propagation are minimal, and the electromagnetic fields at
any point in space can be approximated as responding instantaneously to changes in
sources. However, this does not mean that time variations are absent; rather, they
are present but occur over time scales long enough that the fields can be considered
quasi-static. This approach facilitates the analysis of complex electromagnetic
problems by simplifying the mathematical models.

The applicability conditions of this regime depends on two main factors:

• the ratio among the maximum physical size of the object lmax under analysis
and the minimum wavelength λmin(i.e., maximum frequency) involved

• the needed precision of the analysis

As a rule of thumb, for average accuracy results, if lmax < 1
10λmin, the quasi-static

approximation can be employed.
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1.4 Integral equation formulation

In this section, we will move from the Maxwell equations to the so-called integral
Equations, which deals with real-world scattering problems. We will start by
introducing the correct boundary conditions, then we will use Love formulation to
reshape the problem in a more convenient way, and finally we will manipulate the
formulations to make them more compact and expressive.

1.4.1 Boundary conditions

The differential form of Maxwell’s system is not applicable in the presence of
material discontinuities, as the fields or their derivatives may not exhibit continuity
at the interfaces between different media. However, certain relationships between
the inner and outer limits of the electric and magnetic fields at these interfaces can
be deduced from Maxwell’s equations in their integral form, which remains valid
under any circumstances.

Let us consider a spatial region denoted by Ω1 and its smoothly defined boundary
Γ, characterized by the outward unit normal vector n̂. The field limits at the
boundary, external and internal to the region Ω1, are indicated respectively with
the superscripts 0/1. These field limits obey the following boundary conditions:

n̂ × (E0 − E1) = −ms, (1.71)
n̂ × (H0 − H1) = js, (1.72)
n̂ · (D0 − D1) = ρe,s, (1.73)
n̂ · (B0 − B1) = ρm,s. (1.74)

In these equations, the subscript s denotes surface quantities: surface current den-
sities in A/m and V/m, and surface charge densities in A · s/m2 and V · s/m2.

These pairs of conditions are interrelated, and typically, only the first condition
is explicitly applied in the formulation of integral equations. It is also essential to
note that in the context of real materials, surface currents and charges are absent,
leading to the familiar conditions for the continuity of the tangential components of
the fields and the normal components of the flux densities. Conversely, the surface
of a perfect electric conductor (PEC) may accommodate surface electric currents
and charges, while surface magnetic currents and charges are theoretically feasible
on the surface of a perfect magnetic conductor (PMC). Note that PEC and PMC
does not exist in nature, however, they are useful mathematical concepts. It is also
noteworthy that metal artifacts can often be approximated as PECs.
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1.4.2 Love formulation and surface equivalence principle
The Surface Equivalence Principle posits that the electromagnetic field within any
region devoid of sources, denoted as Ω, can be entirely determined by knowing
the tangential components of the electric and magnetic fields along the boundary
Γ = ∂Ω. This principle is crucial for formulating boundary integral equations,
which recast the original problem into a new, equivalent free-space scattering issue,
with the analytic solution discussed in Section 1.2.

For instance, take the scattering problem involving an object Ω1, endowed with
material parameters (ϵ1, µ1), and subjected to excitation from the external region
Ω0 = R3\Ω1, characterized by (ϵ0, µ0) (refer to Figure 1.3). The demarcation
between Ω0 and Ω1 is the smooth interface Γ, at each point of which the outgoing
(relative to Ω1) unit surface normal vector n̂ is defined. The incident excitation
(Einc,H inc) induces currents within Ω1, denoted as (j,m), which, in turn, are the
sources for the scattered fields (Esc,Hsc). The process of determining the scattered
field from the known incident field constitutes the direct scattering problem.

To evaluate the total field, which is the superposition of the incident and
scattered fields, it is necessary not only to identify the currents (j,m) but also
to understand the scattering operators, i.e., the Green’s function tailored to the
geometry and material parameters being investigated, which connects the scattered
fields back to their sources. Typically, this intricate information is unattainable for
scatterers with non-canonical shapes.

Figure 1.3: Illustration of the original
direct scattering problem.

Figure 1.4: Depiction of Love’s equiv-
alent formulation for the exterior scat-
tering problem.

On the other hand, the solution to free-space electromagnetic scattering is well-
known, as elucidated in Section 1.2. Utilizing the Surface Equivalence Principle,
the original problem can be transitioned into a free-space scattering scenario. This
necessitates substituting the actual fields inside the scatterer (E,H) and the real
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(if present) surface current densities (js,0,ms,0) at the boundary with alternative
quantities, labelled as (E′,H ′), (js,ms), which contain an equivalent amount of
information, thus leaving the external fields unchanged. Specifically, the new and
original problems in Ω0 are equivalent if the boundary conditions

n̂ × (E0 − E′1) = −ms, (1.75)
n̂ × (H0 − H ′1) = js, (1.76)

are met. A judicious selection is Love’s formulation, which sets interior fields to
zero (the scattered fields negate the incident ones), necessitating that the unknown
surface current densities fulfill

n̂ × E0 = −ms, (1.77)
n̂ × H0 = js. (1.78)

Given the nullity of electric and magnetic fields inside Ω1, the material parameters
of the scatterer can be substituted with (ϵ0, µ0) from the surrounding medium
without altering the problem’s essence. Consequently, a free-space scattering
scenario is achieved: the external scattered fields (Esc,Hsc) can be deduced from
the scattering of fictitious surface currents (js,ms) via formulas 1.58 and 1.59. As
these currents (js,ms) are defined over a surface rather than a volume, the electric
and magnetic vector potentials can be reformulated as

A(r) = µ

¨
r′∈Γ

G(r − r′)js(r′)dS ′, (1.79)

F (r) = ϵ

¨
r′∈Γ

G(r − r′)ms(r′)dS ′. (1.80)

Note that these equations are in a 3D setting, and the involved integral operators
are only over the 2D manifold Γ. This, by a computational point of view, is of
great interest, because it almost directly reflects in a complexity improvement as
we will see later.

1.4.3 The electric and magnetic field integral equations
The Electric and Magnetic Field Integral Equations (EFIE and MFIE) stand as
two pivotal integral equations within the realm of computational electromagnet-
ics. These equations are derived from the boundary conditions 1.71 and 1.72,
corresponding to the electric and magnetic fields, respectively.

In light of the scattering problem delineated in section 1.4.2 and subsequently
reformulated through the Love’s formulation of the surface equivalence principle (as
per equations 1.77 and 1.78), a preliminary formulation of both EFIE and MFIE is
hereby introduced:
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n̂(r) × (Einc(r) + Esc(r)) = −ms(r) (1.81)
n̂(r) × (H inc(r) + Hsc(r)) = js(r). (1.82)

However, these expressions do not allow to compute the fields in an efficient way.
In this section, we will introduce operators which facilitate the rewriting of the
EFIE and MFIE in a more tractable form, ultimately enabling the solution of the
exterior scattering problem.

Scattered fields reformulation

The scattered fields (Esc,Hsc) are described through the radiation formulae 1.58
and 1.59 that incorporate potentials as outlined in eq. (1.79) and eq. (1.80). This
step necessitates careful consideration due to the presence of singularities in the
potentials’ expressions when evaluated at the boundary Γ.

Before delving into the behavior of potentials at the boundary, it is useful to
rearrange certain terms in eq. (1.58) and eq. (1.59) using vector calculus identities,
allowing the derivative operators to be moved within the surface integrals. This
manipulation yields the identities:

∇ ·
¨
r′∈Γ

G(r − r′)f(r′)dS ′ =
¨
r′∈Γ

G(r − r′)∇′ · f(r′)dS ′, (1.83)

∇ ×
¨
r′∈Γ

G(r − r′)f(r′)dS ′ =
¨
r′∈Γ

∇G(r − r′) × f(r′)dS ′, (1.84)

where f represents js or ms, and primed operators act with respect to the primed
variable r′.

The advantage of these latter formulations lies in their capacity to simplify the
computational process for evaluating the scattered fields. By transferring the differ-
entiation operations inside the integrals, the complexity associated with handling
boundary conditions and singularities is effectively reduced. This approach not
only facilitates a more straightforward computation of the fields but also enhances
the accuracy of the numerical solutions by directly addressing the derivatives of
the potentials within the integrals.

Behavior of potentials on the surface

The jump relations reported in 1.4.4 for the scalar operators and better detailed in
[2], elucidate the continuity of tangential traces for terms A(r) and ∇∇ · A(r) in
equation 1.58 across the boundary. More specifically, for r0 ∈ Γ,

lim
r→r0

n̂(r) × A(r) = n̂(r0) × A(r0) (1.85)

lim
r→r0

n̂(r) × (∇∇ · A(r)) = n̂(r0) × (∇∇ · A(r0)) . (1.86)
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1.4 – Integral equation formulation

Moreover, the tangential trace of the curl of F is identified as discontinuous across
Γ, with the discontinuity magnitude defined by the tangential component of ms(r).
Hence, for r ∈ Ω0/1,

lim
r→r0

n̂(r) × (∇ × F (r)) = ±1
2ms(r0)

+ n̂(r0) × p.v.

¨
r′∈Γ

∇G(r − r′) × ms(r′)dS ′. (1.87)

Note that the notation p.v. stands for "principal value," a method used to define
and evaluate integrals that may not converge due to singularities. It is calculated
by symmetrically excluding a small neighborhood around the singularity and then
taking the limit as this neighborhood approaches zero. Formally, for a function
f with a singularity at a, the principal value of the integral over a domain Ω is
defined as:

p.v.

ˆ
Ω
f(x) dx = lim

ϵ→0

Aˆ
Ω\[a−ϵ,a+ϵ]

f(x) dx
B
. (1.88)

Similar results can be obtained also for the terms in equation 1.59 relative to
magnetic scattering. Finally, tangential traces of the scattered fields (Esc,Hsc)
evaluated in points r approaching the surface Γ from outside are rewritten as

n̂(r) × Esc(r) = −jkηn̂(r) ×
¨

r′∈Γ
G(r − r′)js(r′)dr′

+ η

jk
n̂(r) × ∇

¨
r′∈Γ

G(r − r′)∇′ · js(r′)dr′

− 1
2ms

− n̂(r) × p.v.
¨

r′∈Γ
∇G(r − r′) × ms(r′)dr′ (1.89)

n̂(r) × Hsc(r) = −jk

η
n̂(r) ×

¨
r′∈Γ

G(r − r′)ms(r′)dr′

+ 1
jkη

n̂(r) × ∇
¨

r′∈Γ
G(r − r′)∇′ · ms(r′)dr′

+ 1
2js

+ n̂(r) × p.v.
¨

r′∈Γ
∇G(r − r′) × js(r′)dr′, (1.90)

where η is the impedance of background medium. By substituting these expres-
sions in equations 1.81 and 1.82, the electric and magnetic field integral equations
are redefined in terms of only incident fields and surface currents. In order to
shorten these expressions, it is convenient to introduce surface integral operators.
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Surface integral operators

The electric field integral operator Tk is constructed from a linear combination of
the vector and scalar electric potential operators, namely TA,k and Tϕ,k:

Tk = −jkTA,k + 1
jk

Tϕ,k (1.91)

(TA,kf)(r) = n̂(r) ×
¨

Γ
Gk(r, r′)f(r′)dr′ (1.92)

(Tϕ,kf)(r) = n̂(r) × ∇
¨

Γ
Gk(r, r′)∇′ · f(r′)dr′. (1.93)

Similarly, the magnetic field integral operator, Kk, is articulated as

(Kkf)(r) = n̂(r) ×
¨

Γ
∇Gk(r, r′) × f(r′)dr′. (1.94)

These operators are instrumental in expressing the Electric Field Integral Equation
(EFIE) and the Magnetic Field Integral Equation (MFIE) for the exterior scattering
problem, finally in a compact and expressive form:

−n̂ × Einc = ηTkjs + 1
2ms − Kkms (1.95)

n̂ × H inc = −1
η

Tkms + 1
2js − Kkjs. (1.96)

When structured in a matrix block form, the solution system derived from eq. (1.95)
and eq. (1.96) becomes

A
ηTk I

2 − Kk
I
2 − Kk − 1

η
Tk

BA
js

ms

B
=
A

−n̂ × Einc

n̂ × H inc

B
, (1.97)

solving for the surface currents (js,ms), which address the exterior scattering
problem.
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1.4 – Integral equation formulation

1.4.4 Scalar operators and jump relations
Single and double layer potentials and the hypersingular operator, scalar operators
inherited from the acoustic [3–5], are defined as

(Sv)(r) =
¨

Γ
G(r − r′)v(r′)dS ′ r ∈ R3\Γ , (1.98)

(Dv)(r) =
¨

Γ

∂

∂n′G(r − r′)v(r′)dS ′ r ∈ R3\Γ . (1.99)

(D∗v)(r) = ∂

∂n

¨
Γ
G(r − r′)v(r′)dS ′ r ∈ R3\Γ , (1.100)

(N v)(r) = − ∂

∂n

¨
Γ

∂

∂n′G(r − r′)v(r′)dS ′ r ∈ R3\Γ (1.101)

where n, by convention, points toward the outside. Those are harmonic operators,
embodying solutions to the Laplace equation within the domain R3\Γ for any scalar
function v.

The properties associated with these potentials are well established, and represent
the so-called jump relations:

• The single layer potential exhibits continuity across Γ: [Sϕ] = 0.

• Conversely, the double layer potential demonstrates discontinuity across Γ:
[Dψ] = ψ.

• The normal derivative of the single layer potential is discontinuous across Γ:
[γ1Sϕ] = −ϕ.

• The normal derivative of the double layer potential maintains continuity across
Γ: [γ1Dψ] = 0.

For comprehensive formalism and validations of these principles, one can refer to
[3, 4].

Although EM integral operators are vector ones, we will see in the following
how under certain hypothesis they can be expressed in terms of scalar ones, and
specifically in terms of these operators. In practice, this can be leveraged to obtain
fast EM solvers out of fast strategies to compute those operators, that is indeed
simpler than dealing with the vector ones. We will now see a first application
of this procedure, in the 2D setting, and a second one in 2.2, with Helmholtz
decomposition.

1.4.5 TE and TM Modes in the 2D setting
To further simplify the expressions, without loosing generality, we can introduce
the definition of Transverse Electric (TE) and Transverse Magnetic (TM) modes
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in both EFIE and MFIE in the bidimensional setting. These modes refer to the
incidence on the impinging electromagnetic field with respect to the manifold. As
illustrated in Fig. 1.5 (where the example scatterer is a PEC cylinder), TE modes
represents fields with the electric component on the xy plane, whereas TM modes
represents fields with the magnetic component on the xy plane. Note that, in
the 2D setting, the fields can only propagate on the xy plane by definitions, i.e.,
k̂2D ∈ xy. With this notation, we can now express any 2D field as a composition

Figure 1.5: Polarization definitions and other useful notations for the 2D setting

of a TE and TM field, denoting

E = Et + Ez = Ett̂ + Ezẑ , (1.102)
H = Ht + Hz = Htt̂ +Hzẑ , (1.103)
js = js,t + js,z = js,tt̂ + js,zẑ , (1.104)

ms = ms,t + ms,z = ms,tt̂ +ms,z .ẑ (1.105)

IN this setting, the TE-EFIE can be derived from 1.95 in terms of scalar operators,
as described in [6] at chapter 10.2, obtaining

Einc
t = η

1
jk

N2Djs,t . (1.106)

where
(N2Dv)(r) = − ∂

∂n

ˆ
γ

∂

∂n′G(r − r′)v(r′)dr′ r ∈ R2\γ (1.107)

is the 2D-equivalent of 1.101.
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Following a parallel procedure, we can rewrite 1.95 - 1.96 as

Einc
z = ηjkS2Djs,z , (1.108)

H inc
z =

1
− 1

2I + D2D
2
js,t , (1.109)

H inc
t =

11
2I + D∗

2D

2
js,z , (1.110)

which are respectively the TM and TE EFIE, and the TM and TE MFIE, and
where S2D, D2D, D

∗
2D are the 2D equivalent of 1.98 - 1.100, as exemplified for N2D

in 1.107.

1.5 The boundary element method

Integral equations presented in the previous sections can be solved numerically
by means of the boundary element method (BEM), a technique which applies the
Method of Moments [7] to a boundary value problem. In this section, we will briefly
walk through the Method of Moments in all its main steps: discretization, definition
of the basis functions, test functions and to conclude linear system formulation.
Than, in the next sections, we will see more in detail those steps, showing in details
how this method is applied in electromagnetic problems in BEM setting.

We will take as example the electric field integral equation for PEC materials, in
which magnetic surface currents are null because of the PEC properties of having
null electric field inside:

η Tk js = −n̂ × Einc. (1.111)

Note that this is just a case, but the very same procedure can be applied also to
the other integral equation seen in the previous sections. Tk is a linear operator;
the unknown current js and the RHS b := (−n̂ × Einc) are functions in the space
{Γ → C3}.

Discretization

To numerically tackle the boundary integral equation (BIE) presented in eq. (1.111),
the first step involves discretizing the surface Γ. The mesh elements provide the
basis for defining the domain of the basis functions, which are crucial for discretizing
both the current and the right-hand side (RHS) of the equation.
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Basis functions

The unknown current js is approximated as a linear combination of Ns basis
functions, called source basis functions, sn:

js(r) ≃
NsØ
n=1

jnsn(r). (1.112)

These basis functions are vectorial (sn : Γ → R3), while the coefficients jn are
complex scalars, so that the linear combination in 1.112 can be a valid approximation
of js. Substituting eq. (1.112) in eq. (1.111), by linearity

η
NsØ
n=1

jnTk sn ≃ b. (1.113)

Test functions

The objective is to find the unknown coefficients jn such as to minimize the error1
b − η

qNs
n=1 jnTk sn

2
, called residual. To this purpose, the residual is tested against

a set of Nt basis functions, called test basis functions, tm, and the result of each of
these operations is imposed to be null

K
tm, b − η

NsØ
n=1

jnTk sn

L
= 0

⇐⇒ η
NsØ
n=1

jn ⟨tm, Tk sn⟩ = ⟨tm, b⟩

⇐⇒ η
NsØ
n=1

Tmn jn = bm

⇐⇒ ηT j = b. (1.114)

⟨a, b⟩ denotes an inner product computation. For a, b : Γ → C3,

⟨a, b⟩ =
¨

Γ
a(r) · b(r)dS (1.115)

and for a, b : γ → C2,

⟨a, b⟩ =
ˆ
γ

a(r) · b(r)dl, (1.116)

where the overline denotes complex conjugation.
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Linear system formulation

Finally, a numerical solution of the integral equation 1.111 can be found by solving
the linear system

ηT j = b (1.117)

where the involved quantities read

Tmn = ⟨tm, Tk sn⟩ (1.118)
jn = ⟨sn, js⟩ (1.119)

bm = ⟨tm, b⟩ . (1.120)

1.5.1 The Gram Matrix

The Gram matrix is the Method of Moments identity operator,i.e., it maps quantities
from basis functions to test ones. Given a set of source basis functions {sn}Nn=1
and a set of test functions {tm}Mm=1 defined on a discretized domain Γ, the Gram
matrix Gt,s ∈ RM×N is defined by its elements:

[Gt,s]mn = ⟨tm, sn⟩Γ . (1.121)

In particular, when different basis and test functions are employed, the resulting op-
erator is often referred to as mix-Gram matrix. The Gram matrix thus encapsulates
the geometric and functional relationships between these basis and test functions,
offering insights into their orthogonality, linear independence, and stability of the
numerical methods employed.

1.5.2 Mesh Elements

3D case

In the 3D setting, discretization is typically achieved using flat triangular elements
to construct what is known as a mesh. An example is shown in Fig. 1.6. The
fidelity with which this mesh represents Γ is largely governed by the average length
of the edges, denoted as h. The selection of h is critical and must adhere to
both the Nyquist-Shannon sampling theorem, ensuring h < λ/2 where λ is the
wavelength, and the necessity to accurately reflect the geometric details of the
surface. Depending on the application, one of the two constraints will be the critical
one, and as we will see later, this largely determines the strategies that can be used
to solve the problem in a computationally effective way.
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2D case

On a bi-dimensional manifold, the most intuitive discretization is the one with
piecewise linear elements, which can be seen as the 2D-equivalent of the triangular
elements proposed for the 3D case. An example is shown in Fig. 1.7. Again,
the average length of those elements h determines both the discretization (and
consequently, the simulation) accuracy and the computational effort. h must be
chosen accordingly to Nyquist-Shannon theorem, i.e., h < λ/2, and must be small
enough to well represent the geometry details of the manifold to be discretized.

Figure 1.6: 3D triangular mesh for
a bunny model

Figure 1.7: Piecewise linear mesh
for a 2D manifold

1.5.3 Basis functions
A discretization of the closed surface Γ, equipped with an outward unit normal n̂
at each point, is achieved using a triangular mesh consisting of NV vertices, NE

edges, and NF flat triangular faces. The topology of Γ is quantified by its genus,
NH , representing the count of handles on the surface. Euler’s relation for such
geometries is captured by:

NE = NV +NF + 2NH − 2 (1.122)

The discretization employs local basis functions, such as Rao-Wilton-Glisson (RWG),
Buffa-Christiansen (BC), and others, each defined within specific mesh elements
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(edges, vertices, or faces). Conversely, global loops, reflecting the geometry’s
handles, extend across the entire mesh. In this section, we will delve into the
various basis functions employed in electromagnetic BEM, focusing first on the 3D
setting and then to the 2D one.

Rao-Wilton-Glisson basis functions

Defined on mesh edges, Rao-Wilton-Glisson or Raviart-Thomas basis functions
fig. 1.8, associate with any edge ei bridged by vertices v±

i , as:

fi(r) =


r − r+

i

2A+
i

r ∈ c+
i

r−
i − r

2A−
i

r ∈ c−
i

, (1.123)

where A±
i denotes the area of the triangle c±

i , with c±
i , r±

i and v±
i as in Fig.

1.9. This normalization ensures the flux through edge ei is unity, though some
conventions also incorporate edge length li for additional scaling as per [8]. A key
feature of RWG functions is the continuity of their normal component across ei,
constant along the edge at:

|fi(r ∈ ei) · n̂i| = 1
li
, (1.124)

with n̂i being the edge’s normal unit vector. However, their tangential compo-
nents are discontinuous. This continuity implies RWG functions are divergence-
conforming, with their divergence across mesh faces expressed as

∇ · fi(r) =


1
A+
i

r ∈ c+
i

− 1
A−
i

r ∈ c−
i

, (1.125)

where A+
i and A−

i are the areas of faces c+
i and c−

i , indicating piece-wise constant
divergence. Yet, due to tangential discontinuity, RWG functions are not curl-
conforming. A curl-conforming basis can be derived by rotating RWG functions
through n̂× operation, although such functions are not divergence-conforming.

Buffa-Christiansen basis functions

Introduced by [9], BC basis functions are localized on edges within a barycentrically
refined mesh. This refinement subdivides each face into six smaller triangles,
positioning new vertices at midpoints of edges, original vertices, and median
intersections. The BC function for edge ei combines RWG functions of adjacent
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Figure 1.8: Notation used for the defi-
nition of RWG functions.

Figure 1.9: Rao-Wilton-Glisson basis
function.

edges sharing a vertex with ei. BC functions, symbolized as g, are inherently
divergence-conforming and quasi-curl-conforming, a property elucidated in [10].
This indicates a well-conditioned relationship (i.e., a well-conditioned Gram matrix)
between BC functions and their rotated RWG counterparts. Rotated BC functions,
n̂ × g, exhibit both curl-conformity and quasi-divergence-conformity.

Loop basis functions

Pyramid basis functions are constructed locally around vertices, with the loop
function for a vertex vj described as

λj(r) =


1 r = vj,

0 r = vi, i /= j,

linear otherwise,
(1.126)

achieving a value of one at vj and zero at other vertices, often referred to as
the pyramid function [11]. With reference to pyramid basis functions, each loop
function is defined as Λj(r) = ∇s × n̂λj(r), where ∇s is the surface gradient
operator defined as

∇s = ∇ − n̂
∂

∂n
. (1.127)

Thus, the loop basis can be interpreted as the discretized surface curl operator [12].
The Loop to RWG matrix Λ (the matrix whose columns are the coefficients of the
Loop functions when expressed as linear combinations of the RWG functions) can
be expressed as

Λij =


+1 vj = v+

i

−1 vj = v−
i

0 otherwise
. (1.128)
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The loop basis functions are characterized by their solenoidal nature, as evident
from their definition and the divergence property of RWG functions.

Star basis functions

Patch basis functions can be defined for a face cj as

pj(r) =


1
Aj

if r ∈ cj,

0 otherwise ,
(1.129)

where Aj is the area of face cj. Note that these basis functions are localized to
faces and piecewise constant. Star basis functions are defined on faces, and the
Star to RWG matrix Σ (the matrix whose columns are the coefficients of the Star
functions when expressed as linear combinations of the RWG functions) is defined
as

Σij =


+1 cj = c+

i

−1 cj = c−
i

0 otherwise
. (1.130)

or equivalently as Σij = ⟨pi,∇s · fj(r)⟩, highlighting their behavior as discretized
surface div operator [12]. Notably, substituting RWG functions in a star with BC
functions yields a solenoidal function [11].

Figure 1.10: Loop basis function. Figure 1.11: Star basis function.

Global Loops

Global loops, defined per handle, introduce two types, toroidal and poloidal, as
depicted for a torus. Within the considered mesh, global loops are expressible as
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sums of RWG functions:

hj(r) =
NeØ
i=1

Hijfi(r), (1.131)

with H ∈ RNE×2NH as the transformation matrix. To cope with the computational
intensity of this formulation, an alternative involves calculating H as the null-space
of integral operators, detailed in [13]. Global loops, thus defined, are solenoidal but
exclusively so, differing from their harmonic, non-discretized counterparts due to
the limitations of the RWG basis in representing the curl operator with regularity.

Figure 1.12: Global loops on a torus (NH = 1): toroidal in orange, poloidal in
blue.

Piecewise linear basis functions

In the bi-dimensional setting, piecewise linear basis functions are defined on the
vertices. More in detail, they are defined as

ϕi(x) =


x− xi−1

xi − xi−1
x ∈ [xi− 1, xi]

xi+1 − x

xi+1 − xi
x ∈ [xi, xi+1]

, (1.132)

where x is the curvilinear abscissa along the curve being discretized. Note that
this definition strongly recalls the RWG definition, with edges in place of faces and
vertices in place of edges, due to the reduced dimensionality of the problem. These
basis functions are also known as Hat functions, a visualization is in Fig. 1.13.

Dirac delta as basis functions

Another possible choice for basis function, valid both for 3D and 2D, is

fi(r) = δ(ri) ri ∈ Γ. (1.133)
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Figure 1.13: Piecewise linear basis functions example on a non-uniform discretized
domain

It must be noted that this choice has really bad continuity properties, in fact it is
discontinuous and has discontinuous derivatives of all kind, thus it cannot represent
real quantities. However, it is very simple to convolve with, and as we will see
exhibits some really nice computational features. It is also noteworthy that in the
context of numerical integration schemes, "sampling" implicitly refer to convolution
with Dirac delta.

1.5.4 Discretization of operators and physical quantities
Selecting appropriate source and testing basis functions is a crucial aspect of
discretizing integral equations, heavily influenced by the regularity requirements of
the operator in use.

Considering the Electric Field Integral Equation (EFIE) for Perfect Electric
Conductors (PEC), the discretization process frequently employs Rao-Wilton-
Glisson (RWG) basis functions f for sources and their rotated counterparts n̂ × f
for testing. This approach leads to the evaluation of the right-hand side (RHS)
against these rotated RWG functions, resulting in:

Tmn = ⟨n̂ × fm, Tk fn⟩ (1.134)
bm = ⟨n̂ × fm, b⟩ , (1.135)

where the operation n̂× applied during testing aligns with and simplifies against
similar operations defined within the expressions for Tk and b. For the following, it
is useful to also define the discretized vector and scalar potential operators

TA,mn = ⟨n̂ × fm, TA,k fn⟩ (1.136)
Tϕ,mn = ⟨n̂ × fm, Tϕ,k fn⟩ (1.137)

(1.138)

Analogously, for the discretization of the PEC-EFIE using Buffa-Christiansen (BC)
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g basis functions as sources and their rotated versions n̂ × g for testing, we find:

Tmn = ⟨n̂ × gm, Tk gn⟩ (1.139)
bm = ⟨n̂ × gm, b⟩ . (1.140)

This systematic approach ensures that the testing procedure, involving the rotation
through n̂×, is effectively accounted for and integrated into the formulations for
both Tk and the incident field b components. Also the identity operator can be
discretized by means of some source and test basis functions leading to the Gram
or mix-Gram matrix, as already explained in 1.5.1.

1.5.5 Simplification of the scalar potential calculation
Finally, it is worth mentioning a common trick exploited in the discretization of
the Tϕ,k operator to eliminate the gradient present in its definition. The testing to
be evaluated is

Tϕ,mn = ⟨n̂ × fm, Tϕ,k fn⟩

=
¨

Γm

dr (n̂(r) × fm(r)) ·
A

n̂(r) × ∇
¨

Γn

dr′ Gk(r, r′)∇′ · f(r′)
B
,

(1.141)
where Γm and Γn are the supports of the testing and source basis functions
considered. After simplifying the n̂× operators and by defining the scalar quantity
ψ(r) =

˜
Γn
dr′ Gk(r, r′)∇′ · f(r′), the above testing reduces to

Tϕ,mn =
¨

Γm

dr fm(r) · ∇ψ(r). (1.142)

By applying the vector calculus identity ∇ · (ψfm) = ψ∇ · fm + (∇ψ) · fm, we get

Tψ,mn =
¨

Γm

dr ∇ · (ψ(r)fm(r)) −
¨

Γm

dr ψ(r)∇ · fm(r). (1.143)

By applying the divergence theorem and noticing that the normal component of
an RWG function at the boundary of its domain is null, it follows that the first
term in eq. (1.143) is null, since¨

Γm

dr ∇ · (ψ(r)fm(r)) =
˛
∂Γm

ψ(r) (fm(r) · n̂(r)) dl = 0. (1.144)

Finally, the gradient in the definition of Tϕ,k has been removed, and a divergence
operation has appeared to the testing function, so that the expression of Tϕ,mn

reads

Tϕ,mn = −
¨

Γm

dr ∇ · fm(r)
¨

Γn

dr′ Gk(r, r′)∇′ · f(r′), (1.145)
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This discretization operation becomes completely similar to that of the electric
vector potential operator, apart from the fact that the divergence is applied to
both source and test basis functions.

1.5.6 Changes of basis in the solution of linear systems
When solving linear systems using a change of basis, proper normalization must
be applied to the quantities of interest. Given a discretized operator [Ap,p]mn =
⟨pm,Apn⟩, a change of basis described by the mix-gram matrix [Gq,p]mn = ⟨qm,pn⟩
and the gram matrix [Gp,p]mn = ⟨pm,pn⟩, we want to compute [Aq,q]mn =
⟨qm,Aqn⟩.

At first, we need to normalize Ap,p with respect to the inner product in the
p-basis as

Ap,p,norm = G−0.5
p,p Ap,pG

−0.5
p,p . (1.146)

Now, we can correctly apply the change of basis

Aq,q = GH
q,pAp,p,normGq,p . (1.147)

In the context of a linear system in the form Ap,pbp = xp, the normalization and
change of basis must also be applied to b and x as

bq = GH
q,pG

−0.5
p,p bp (1.148)

xq = GH
q,pG

−0.5
p,p xp (1.149)

leading to the full system solution in the form

bp = G−0.5
p,p Gp,q

1
GH
p,qG−0.5

p,p Ap,pG−0.5
p,p Gp,q

2−1
GH
p,qG−0.5

p,p xp. (1.150)

Despite the appearing complexity, consider that for local basis functions Gp,p

are sparse, and their multiplication and inversion is easily achievable in linear
complexity. Furthermore, the inversion of the operator upon the change of basis
may lead to significant improvement in the computation time, as exemplified in
3.2.1.

1.6 Introduction to Numerical Integration
A pivotal step towards fully realizing the Boundary Element Method involves the
numerical implementation of the inner products outlined in equations 1.115 - 1.116.
Beyond these points, all formulations become discrete, making them amenable to
computational processing. This challenge is at the heart of a broad domain within
computational science, known as Numerical Integration. Our objective here is to
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provide a primer on this subject, emphasizing how various strategies for addressing
this challenge significantly influence the final solution.

Numerical integration involves approximating the integral of a function using a
finite sum. Generally, this process includes selecting a suitable set of points within
the integration domain and assigning a weight to each point. The choice of points
and their associated weights plays a crucial role in determining the accuracy and
efficiency of the numerical integration. Apart special cases related to particular
function classes, the integration accuracy always depends on the discretization
density (i.e., number of sampling points per unit length, surface or volume) and
on the smoothness of the function to be integrated and of its derivatives. Since
the computational cost scales with the discretization density, a trade-off between
accuracy and computational intensity must be found depending on the application’s
need. Rules which guarantees certain levels of accuracy of the integration exists for
the domains and functions of interest.

Gauss-Legendre quadrature

The Gauss-Legendre quadrature falls under the category of Gaussian quadrature, a
family of schemes for polynomials and smooth functions integration over a fixed
interval, typically [−1, 1]. The essence of the Gauss-Legendre integration rule lies
in its selection of both integration points (the abscissas) and their corresponding
weights in such a way that they ensures that the method achieves the highest
possible degree of accuracy for polynomials w.r.t the number n of integration points.
Specifically, the abscissas are chosen to be the roots of Legendre polynomials, and
the weights are determined to maximize the accuracy of the integral’s approximation
over the chosen interval. For an inner product ⟨fi,ϕ⟩, where fi is a piecewise
linear basis function as defined in 1.132, and ϕ : γ → C2 represents a continuous
and differentiable function on y, the Gauss-Legendre integration scheme can be
applied to numerically approximate the integral. The process involves mapping the
integration domain to the standard interval of the Gauss-Legendre quadrature and
then applying the quadrature rule to compute the approximation.

Error bound

Gauss-Legendre quadrature with n points is exact for polynomials of degree less
than or equal to 2n − 1. Given a function f(x) that is 2n-times continuously
differentiable on the interval [−1, 1], the error En of the Gauss-Legendre quadrature
can be expressed as:

En =
-----
ˆ 1

−1
f(x) dx−

nØ
i=1

wif(xi)
----- = f (2n)(ξ)

(2n)! · 22n+1[(n!)4]
(2n+ 1)[(2n)!]3 , (1.151)
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for some ξ ∈ (−1, 1), where wi are the quadrature weights, xi are the quadrature
points (roots of the n-th Legendre polynomial), and f (2n)(ξ) is the 2n-th derivative
of f(x) evaluated at some point ξ within the interval.

Assuming f (2n)(ϵ) = const over the interval, the error bound simplifies to:

En = O
A

1
(2n)!

B
. (1.152)

Considering the rapid growth of the factorial function compared to the growth
rate of the derivatives of the functions of interest, typically at most polynomial (like
in the case of the derivation of eαx, α > 1, which derivatives grows like O(αn) the
error term decreases very quickly as n increases. This make the Gauss-Legendre
integration scheme highly effective in practical cases.

surface integrals

To extend the Gauss-Legendre quadrature rule to surface integrals, the method
involves applying a tensor product of the one-dimensional (1D) Gauss-Legendre
quadrature rule across each dimension independently. For a function f(x, y) defined
over a rectangular domain D = [a, b] × [c, d] in the xy-plane, the 2D integral can
be approximated by:

¨
D

f(x, y) dx dy ≈
nØ
i=1

nØ
j=1

wiwjf(xi, yj), (1.153)

where xi and yj are the Gauss-Legendre quadrature points in the x and y directions,
respectively, and wi and wj are the corresponding weights. This approach effectively
decomposes the 2D integral into a series of weighted sums of the function evaluated
at the quadrature points. For non-rectangular domains additional transformations
or mappings are required to convert the integration domain to a standard form where
the Gauss-Legendre quadrature can be directly applied. This domain conversion is
often source of complexities, under both accuracy, complexity and stability points
of view. Specific integration methods exists for different domains, like [put some
citations here].

33



Introduction to Computational Electromagnetics

1.6.1 Singularity integration
In the discretized functional space framework, the most relevant method of moments
matrices for solving prevalent integral formulations are delineated as follows:

[TA]mn =
¨

r∈Γ
fm(r) ·

A¨
r′∈Γ

G(r − r′)fn(r′)dS ′
B
dS, (1.154)

[Tϕ]mn = −
¨

r∈Γ
∇ · fm(r)

A¨
r′∈Γ

G(r − r′)∇′ · fn(r′)dS ′
B
dS, (1.155)

[K]mn =
¨

r∈Γ
fm(r) ·

A¨
r′∈Γ

∇G(r − r′) × fn(r′)dS ′
B
dS. (1.156)

For the matrix entries where the supports of fm and fn are sufficiently distant, these
integrals can be numerically approximated by employing two-dimensional Gaussian
quadrature rules on triangles, applied twice with orders N and N ′, respectively:

[TA]mn ≈
NØ
i=1

fm(ri) ·

 N ′Ø
j=1

G(ri − r′
j)fn(r′

j)w′
j

wi, (1.157)

[Tϕ]mn ≈ −
NØ
i=1

∇ · fm(ri)
 N ′Ø
j=1

G(ri − r′
j)∇′ · fn(r′

j)w′
j

wi, (1.158)

[K]mn ≈
NØ
i=1

fm(ri) ·

 N ′Ø
j=1

∇G(ri − r′
j) × fn(r′

j)w′
j

wi, (1.159)

where ri and r′
j represent the sampling points on the supports of fm and fn,

with wi and w′
j being the Gaussian weights at these points. While the Gauss-

Legendre quadrature rule is typically employed and provides satisfactory outcomes
for non-polynomial kernels, it yields imprecise or erroneous results when applied
to integrands exhibiting singular behavior. This problematic scenario arises when
the supports of fm and fn coincide or are proximate, leading to a situation where
ri ≈ r′

j, rendering the Green’s function and its gradient singular. Under these
circumstances, specialized techniques are imperative for accurate integration.

Singularity Subtraction

A prominent method to manage singular kernels, the singularity subtraction tech-
nique, was introduced in seminal works [14, 15]. This approach entails reformulating
the integrand with singular behavior by decomposing it into singular and non-
singular components. This is practically achieved by subtracting the singular part
from, and then adding it back to, the integrand. The differential, termed the regular
part, devoid of singularities, is amenable to numerical integration via standard
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quadrature rules. Conversely, the singular component can be assessed analytically.
An illustrative case is the Green’s function G(r − r′), which can be decomposed as

G(r − r′) = e−jk|r−r′| − 1
4π|r − r′|

+ 1
4π|r − r′|

, (1.160)

with the initial term representing the regular part and the latter the singular
portion.
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Figure 1.14: Comparative analysis of the Green’s function and its regular compo-
nent in both lossless and lossy media environments.

Figure 1.14 showcases a comparison between the characteristics of the Green’s
function and its regular segment in scenarios involving lossless and lossy media.
The asymptotic behaviors of the real and imaginary sections as R = |r − r′| → 0
align with the Taylor expansion given by

G(R) = 1
4π

5 1
R

− jk − k2R + O(R2)
6
, (1.161)

highlighting that, for lossless conditions, ℜ(G) = O(R−1), ℑ(G) = O(1). The
extraction of the singular segment influences solely the real component of the
Green’s function, leading to a transformation where ℜ(Gext) = O(R). Conversely,
in lossy environments due to the complex nature of the wave number, the extracted
Green’s function’s real part scales as ℜ(Gext) = O(1), with the imaginary section’s
behavior remaining unaffected by the subtraction process.
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Singularity cancellation

The technique of singularity subtraction, while effective, necessitates the enumer-
ation and programming of various specific scenarios for each potential kernel to
analytically resolve their singular components. To address these complexities,
numerous singularity cancellation methods have been devised over the years, with
some of the most notable ones highlighted in [16–19]. These approaches tend to
achieve a higher accuracy level compared to the traditional singularity subtrac-
tion methodology. The essence of these schemes lies in implementing a variable
transformation for the integrand that introduces a Jacobian within the integral.
The ideal transformation is one where the Jacobian precisely negates the kernel’s
singularity while transforming the original triangular integration domain into a
rectangular one.

Particularly, [20] and [21] propose integration strategies centered around singu-
larity cancellation, specifically tailored to mitigate the challenges in integrating the
overdamped Green’s function. A further significant advantage of these methods
is their ability to simplify the integration from two dimensions to merely one
dimension.

Green function filtering

As we will see in Chapter 4, the method that we propose in this work implicitly
address also the singularity integration problem in an alternative way. The Green
function filtering modifies the Green function in such a way that its singular part
is inherently smoothed, allowing, among the other things, for easier integration.
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Chapter 2

The graph Laplacian
approach to filtering

The purpose of this chapter is twofold. On the one hand, we introduce here the
main computational complexity and stability issues posed by the electromagnetic
operators. On the other hand, we deeply analyze the role that the Laplacian
operator plays, and how some manipulation based on it can lead to interesting
solutions and strategies. More in detail, this chapter is structured as follow. We
will start by introducing direct and inverse solvers, their complexity issues and
the most known algorithms to tackle them. Then, we will discuss preconditioning,
and in particular Quasi-Helmholtz decomposition as preconditioning strategy for
the EFIE. An introduction to matrix spectral filtering follows, and to conclude
Laplacian multiplicative filters are proposed as an effective way to perform spectral
manipulation of electromagnetic integral equation operators.

2.1 Computational Complexity
An essential aspect when numerically solving a problem is the computational
complexity of the employed algorithm. This encompasses the time required to
reach a solution, and memory needed for data storage. Ideally, we’d like to develop
numerical scheme whose complexity grows linearly or quasi-linearly with the number
of unknowns, indicating scalability. The boundary integral equations discussed
earlier, solved via the Boundary Element Method (BEM) with the formulation
proposed in Chap. 1, do not exhibit this property. Let’s take as example the
PEC-EFIE equation (1.117), solved numerically over a mesh with Ne edges. The
solution process encompasses three primary steps:

1. The computation of the matrix T, explicitly calculated element by element,
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which has a time complexity O(N2
e ).

2. The computation of the vector b, with a time complexity O(Ne).

3. The resolution of the linear system as shown in (1.117), explicitly solving
for the current vector η j = T−1b, which complexity is dominated by matrix
inversion, time complexity O(N3

e ).

Consequently, the overall complexity is O(N3
e ), leading to prohibitively long solution

times as the number of unknowns increases. This issue extends to the matrix storage
complexity, which is O(N2

e ), further complicating scalability.

2.1.1 Families of solvers
In this section, a primer is given on the principal approaches to numerical solution
of linear systems.

Inverse solvers

Inverse solvers looks for single solutions of the linear system. The linear system is
solved iteratively, aiming for a solution within the Krylov subspace,
span{b,Tb,T2b, ...,Tkb}:

η j = T−1b ≈
kØ
i=1

αiTib. (2.1)

Here, the time complexity depends on the product of the number of iterations k
needed for the desired accuracy and the cost of matrix-vector multiplication, which
naively requires O(N2

e ) operations. Efforts should thus focus on both reducing
the number of iterations to a constant and minimizing the cost of computing the
matrix and matrix-vector products to linear time. We will tackle the matrix-vector
product problem and the iteration bound problem separately in the following.

Direct solvers

Direct solvers, on the other hand, tackle the problem in a more classical manner,
inverting the system matrix. This operation is naively of complexity O(N3

e ), but
leveraging matrix property this complexity could be reduced. The most notable
property enabling fast inversion is the rank of the matrix: the inversion complexity
for a N × N matrix with rank r < N can be reduced to O(Nr2) [22]. We will
address in the following the problem of manipulating the matrix rank. Notice that,
once the matrix has been inverted, computing solutions of the same problem for
multiple stimuli reduces to a M-V product. This make those methods of great
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interest, since in real scenarios this is often the case (e.g., given an antenna, we may
want to compute its response to different impinging fields with varying frequencies
and amplitudes).

2.1.2 Fast matrix vector product
Fast M-V product can be achieved by means of many techniques available in
literature, such as the Adaptive Cross Approximation (ACA) [23, 24], and the
Fast Multiple Method (FMM) [25], also available in multi-level versions [26–28].
These two approaches lead to M-V multiplication in time and memory growing as
O(Nlog(N)) for size N problems.

Adaptive Cross Approximation and Single-Skeleton Form Factorization

The Adaptive Cross Approximation (ACA) algorithm is a pivotal tool for efficiently
dealing with matrices arising from boundary element methods and kernel-based
methods with a numerically finite rank. The fundamental advantage of ACA is
its ability to construct a low-rank approximation of a matrix M ∈ RN×N without
needing to compute the full matrix. This allows for matrix storage and M-V
multiplication in O(rN) complexity.

Given a matrix M, assumed to have a numerically finite rank, ACA seeks an
approximation Mapprox that satisfies ||M − Mapprox|| < ε, where ε is a predefined
accuracy threshold. The approximation is sought in the form of a product of two
matrices,

Mapprox = UVH , U,V ∈ RN×r, (2.2)

where r is the rank of the approximation. The matrices U and V are constructed
incrementally, capturing the essential structure of M with significantly fewer
elements, leading to an approximation that can be stored and manipulated with
O(rN) complexity, where r ≪ N .

The ACA algorithm operates by selectively sampling rows and columns of
M , progressively building up an outer product form until the desired precision
is achieved. A notable enhancement of ACA is the incorporation of a pivoting
procedure to improve numerical stability [29, 30]. It’s important to note that the
ACA resulting rank r may be higher than the optimal numerical rank obtained
through Singular Value Decomposition (SVD) for the same accuracy level. However,
SVD has cubic complexity which makes it unpractical in the fast solvers field.

The matrix-vector (M-V) between the matrix M approximated by Mapprox =
UVH and the vector v can be efficiently computed as Mv = UVHv, delivering a
time complexity of O(rN).

Another good property of ACA is its kernel-free nature, that implies its appli-
cability does not depend on the specific properties of the kernel generating the
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matrix but only on the rank properties of the matrix itself.

Fast Multipole Method

The Fast Multipole Method (FMM) represents a significant advancement in the
computational treatment of N-body problems, where the objective is to efficiently
evaluate the interactions among N particles. Traditional methods require O(N2)
operations to compute all pairwise interactions, making large-scale simulations
computationally intensive. FMM, however, reduces this complexity to O(N logN),
enabling rapid computations even for systems with a vast number of elements.
Practically, this method allows to compute fast M-V products for the matrices
arising in our domain, even when full rank.

Originating from efforts to address computational challenges in gravitational
and electrostatic simulations, FMM is based on a hierarchical decomposition of
space and the use of multipole expansions to approximate the cumulative effect of
distant particles on a given target. This approach also allows for precise control
over approximation errors.

More in details, after decomposing the geometry in regions, the algorithm
determines for each region near neighbors and far-interacting regions. For the first,
the full matrix is computed and employed, but the number of neighbors for each
region is constant: this means that the overall complexity of this computations
scales as O(NM2), where M is the size of each region. For the latter, the effect of
all the sources in a region is summed up and streamlined to the destination region
by (i) converting the spherical wave kernel in plain wave basis, (ii) translating the
plane wave basis from source to destination and (iii) reconstructing the spherical
wave kernel locally. This can be done in complexity (with some effort), thus limiting
the overall complexity to O(N1.5) for the single-level algorithm (with an optimal
choice of M), and to O(Nlog(N)) for the multi-level one.

2.1.3 Inverse solver iteration bound
Notice that equation 2.1 is a (approximate) diagonalization of T−1, using the
Krylov space as vector basis. This, leveraging the spectral theorem, leads to the
relationship among the eigenvectors {λn} of T and the iterative solver coefficients
αi

1
λn

≃
kØ
i=1

αiλ
i
n. (2.3)

By looking at 2.3, and recalling the strict relationship among singular values and
eigenvalues, it is clear that the lower the variation range of the singular values of T
(i.e., the lower the condition number), the fewer terms in the summation 2.3 are
required to approximate accurately the values 1

λn
. Note that the condition number
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is an effective indicator of rapid convergence of an inverse solver only under certain
conditions, dictated by the spectral properties of the matrix T. In particular, if T
is Hermitian and positive definite, the CG method ensure an upper bound on the
error e(i) = j(i) − j given by [31]

∥ei∥T ≤ 2
A√

cond T − 1√
cond T + 1

Bi
∥e0∥T (2.4)

which leads to an iteration bound, given a target error threshold ϵ,

i ≤
51
2

√
cond T ln

32
ϵ

46
. (2.5)

However, in most practical cases, the involved matrices are not Hermitian and
positive definite, making CG unpractical [32]. Other popular Krylov methods,
such as GMRES or CGS, do not have such strict error bounds depending on the
condition number alone. Other properties, such as the clustering of singular values
on a semi-axis of the complex plane, are needed for rapid convergence [33].

In conclusion, in order to keep the number of iterations k constant and low, it is
necessary to assure condition number of matrix T constant and as low as possible,
or to enforce other spectral properties on the linear system matrix of interest. This
is the final aim of matrix preconditioning.

It is worth noticing that, if on the one side spectral filtering enables to apply
low-rank fast algorithms to the matrices, on the other side it introduces a large
null-space that makes the condition number explode, thus special care must be
taken when solving such systems. How to efficiently solve this issue is an open
research field, with the Moore-Penrose pseudo-inverse serving as a track but not
yet being a defnitive solution.

Introduction to preconditioning

In the context of solving linear systems, the concept of a matrix’s condition number
is pivotal. This parameter does more than just dictate the iteration count necessary
for an iterative solver to find a solution; it also sets the limits on the solution’s
precision. A particularly high condition number might even prevent the solver from
converging. A matrix is termed ’well-conditioned’ when its condition number is
modest and does not depend on the parameters of the problem, such as frequency,
the total unknowns, or material properties. If not, it is regarded as ’ill-conditioned’.

The process of matrix preconditioning seeks to identify preconditioning matrices
to the left and/or right, denoted by L and R, with the aim of reducing the condition
number of the product compared to that of the initial matrix. When employing
both left and right preconditioners, the system of equations Ax = b is transformed
into:

LARy = Lb,
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where the solution to the original system, x, is recovered by x = Ry. The choice
of L and R is of paramount relevance. Those matrices must have very peculiar
properties: they should support fast multiplication and compressed storage and
they should effectively precondition the operator of interest.

2.2 Low frequency breakdown and Quasi-Helmholtz
preconditioning

In this section, a glimpse into one of the most notable sources of ill-conditioning of
the EFIE is presented, together with proposed solutions in literature. The purpose
of this section is twofold: on the one hand, it is intended to help fixing ideas with
a concrete example of ill-conditioning and curing by means of preconditioning; on
the other hand, here we put the foundations needed to later introduce the graph
Laplacian filters.

The genesis of the EFIE’s low-frequency breakdown can be elucidated through
its formulation in eq. (1.91): as k → 0, the equation delineates a disparity in
the behavior of its components—where the vector potential term scales as O(k),
conversely, the scalar potential term scales as O(1/k). Alternatively, it can be seen
as the mathematical incarnation of the quasi-static regime introduced in 1.3. This
dichotomy results in the attenuation of the vector potential’s contribution and an
unbounded increase in the scalar potential’s influence as the frequency decreases,
leading to Tk ≈ 1

jk
Tϕ,k and signifying a decoupling of electric and magnetic fields

approaching static conditions. The manifestation of this issue becomes apparent
when addressing the linear system reformulated in eq. (1.117):è

−η(jk)2 TA + ηTϕ

é
j = jkb, (2.6)

highlighting that solenoidal current distributions approximate the solution, thereby
underscoring the problem’s ill-posedness.

A meticulous analytical scrutiny of the T operator’s spectrum in the asymptotic
regime reveals that its condition number grows as O(1/k2) [11, 34]. In scenarios of
sufficiently low frequencies, this escalates to a near (numerically) singular matrix
condition, obfuscating the convergence of iterative methods designed for solving the
linear system. To circumvent this predicament, a strategy involving the segregation
of solenoidal and non-solenoidal current contributions is proposed. This entails a
re-scaling of the corresponding system blocks independently, aiming to forestall
information loss and thereby reformulating the problem as well-conditioned.

Quasi-Helmholtz preconditioning has emerged as a pivotal approach to address
this problem. The inception of this solution strategy traces back to the seminal work
by Wilton et al. [35], accruing significant relevance in contemporary research due
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to the surge in demand for efficient and reliable low-frequency full-wave simulation
tools, propelled by the miniaturization trend in electronic device manufacturing.

The section is structured as follows: first, we will introduce the Helmholtz
decomposition theorem alongside with the Loop-Star decomposition, which is its
most intuitive incarnation. Then, we will see how this decomposition comes together
with some criticalities, and how Quasi-Helmholtz projectors can solve this problem.

2.2.1 Helmholtz Decomposition Theorem
The Helmholtz Decomposition Theorem posits that a vector field U , provided it is
sufficiently smooth and exhibits rapid decay, can be delineated as the sum of an
irrotational component and a solenoidal component. Leveraging the fundamental
identities of vector calculus, specifically for any smoothly varying scalar field ψ and
vector field V where ∇ × (∇ψ) = 0 and ∇ · (∇ × V ) = 0, the decomposition is
articulated as:

U = ∇ψ + ∇ × V , (2.7)
with the first term symbolizing the irrotational portion and the latter term signifying
the solenoidal portion of the field. In scenarios where U is defined over a two-
dimensional manifold Γ, the decomposition adopts the guise of surface operators,
expressed as:

U = ∇sψ + n̂ × ∇sξ. (2.8)
where ∇s is defined and widely discussed in Sec. 2.4.1 Moreover, the rotation of
2.8 maintains the essence of a Helmholtz decomposition:

n̂ × U = n̂ × ∇sψ − ∇sξ, (2.9)

thereby interchanging the roles of the solenoidal and irrotational components.
In practical applications where U is discretized, that is, expressed as a linear

amalgam of basis functions as outlined in eq. (1.112), achieving a full Helmholtz
decomposition directly is not always viable; instead, a quasi-Helmholtz decom-
position is employed. This approach bifurcates the field into solenoidal, U s, and
non-solenoidal, Uns, constituents:

U = U s + Uns. (2.10)

Subsequent sections delve into two distinct methodologies to accomplish this
decomposition, namely Loop-Star decomposition and Quasi-Helmholtz projectors.

2.2.2 Loop-Star Decomposition
Loop, star, and global loops, delineated respectively on vertices, cells, and handles,
have been introduced previously. It has been established that for a closed surface
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Γ, these functions comprehensively span the RWG space. Euler’s equation 1.122
elucidates that the columns of Λ and Σ matrices are not linearly independent,
necessitating the removal of one column from each to achieve linear independence.
Henceforth, it is assumed that these adjustments have been made, rendering
Λ ∈ RNE×(NV −1) and Σ ∈ RNE×(NC−1). The decomposition matrix A is thus defined
as:

A = (Λ H Σ). (2.11)

Revisiting the discretized (PEC)-EFIE 1.117, employing AT and A as left and
right preconditioning matrices, respectively, transforms the linear system to:I

ηATTA y = ATb
j = Ay . (2.12)

This can be envisioned as a change of basis from RWG to Loop-Stars-Global loops
performed in the forward direction before solving the system, and backward after
the system solution.

Expanding the block multiplication ATTA yields:

ATTA =

ΛTTΛ ΛTTH ΛTTΣ
HTTΛ HTTH HTTΣ
ΣTTΛ ΣTTH ΣTTΣ

 , (2.13)

where T is 1.134. Recalling Tϕ’s definition from 1.93 and recognizing that loop
functions are inherently solenoidal, it becomes evident that

ΛTTϕ = 0 (2.14)
HTTϕ = 0 (2.15)
TϕΛ = 0 (2.16)

TϕH = 0 . (2.17)

This insight allows the product ATTA to be succinctly rewritten as

ATTA =

ΛT (−jkTA)Λ ΛT (−jkTA)H ΛT (−jkTA)Σ
HT (−jkTA)Λ HT (−jkTA)H HT (−jkTA)Σ
ΣT (−jkTA)Λ ΣT (−jkTA)H ΣT (−jkTA + 1

jk
Tϕ)Σ



=

O(k) O(k) O(k)
O(k) O(k) O(k)
O(k) O(k) O( 1

k
)


(2.18)

where TA is 1.136. Note that in the static limit this problem can be formulated in
terms of the scalar operators S and N defined in 1.98 - 1.101, as clearly elucidated in
[34]. The matrix’s conditioning behavior is then appraised through the Gershgorin
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circle theorem, which states that given a matrix M ∈ CN×N , for any i = 1, . . . , N ,
define Ri = q

j /=i |(M)ij| and Di(Mii, Ri) as the closed disk centered at Mii with
radius Ri. These disks are termed Gershgorin disks. All eigenvalues of M lie within
the union of these Gershgorin disks.

From the application of the Gershgorin Circle Theorem, it is discernible that the
eigenvalues exhibit two distinct clustering behaviors: one tending towards zero at a
rate of O(k), and the other escalating towards infinity as O(1/k). This leads to a
condition number that scales as O(1/k2), aligning with the anticipations regarding
the low-frequency breakdown. A remedy to this issue is introduced through the
incorporation of specific scalings within the decomposition matrix:

As =
A

1√
k

Λ
1√
k

H
√
kΣ

B
. (2.19)

This adjustment leads to a transformed scaling of the blocks in the preconditioned
matrix AT

s TAs, articulated as:

AT
s TAs =

O(1) O(1) O(k)
O(1) O(1) O(k)
O(k) O(k) O(1)

 . (2.20)

By virtue of the Gershgorin Circle Theorem, it can be deduced that the eigenvalues
of this matrix converge to constant values with diminishing radii, thus rendering the
system well-conditioned. Specifically, the condition number of AT

s TAs is rendered
invariant with respect to frequency fluctuations.

However, a notable limitation associated with this preconditioning strategy
is its introduction of an alternative form of ill-conditioning that is contingent
upon the mesh discretization. As elucidated in [11], the condition number of
GΛΣ = [Λ Σ]TG[Λ Σ], where G represents the well-conditioned Gram matrix
of the RWG basis, experiences an augmentation proportional to O(1/h2). This
escalation adversely affects the condition number of the decomposed (PEC)-MFIE
operator. This dilemma stems from the fact that the quasi-Helmholtz decomposition,
in this scenario, is derived through differential operators, which inherently possess
a non-flat spectrum. Nevertheless, this complication can be rectified by resorting
to projectors and operators characterized by flat, rectangular spectra.

2.2.3 Quasi-Helmholtz Projection
Given a vector field x expressed through RWG functions, the objective is to identify
a projection operator PΣ that maps x to its non-solenoidal component xns, which
resides within the range of Σ, symbolized as R(Σ), ensuring that xns is the closest
approximation to x. Adhering to the projection theorem, the discrepancy (x − xns)
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is orthogonal to R(Σ), indicating its presence in the nullspace of ΣT , denoted as
N (ΣT ):

ΣT (x − PΣx) = 0 ⇐⇒ ΣTx = ΣTPΣx.

The matrix PΣ = Σ(ΣTΣ)+ΣT , employing Moore-Penrose pseudo-inversion de-
noted by +, fulfills equation 2.21. This matrix is not only a projector, i.e.,
(PΣ)2 = PΣ, but it also constitutes an orthogonal projector with R(PΣ) ⊥ N (PΣ)
[36]. The complementary projector to the solenoidal space, PΛH , projects onto the
entire RWG solenoidal subspace, inclusive of both local and global loops. Conse-
quently, the quasi-Helmholtz projectors within the RWG functional domain are
delineated as:

PΣ = Σ(ΣTΣ)+ΣT (2.21)
PΛH = 1 − PΣ. (2.22)

In a parallel fashion, dual quasi-Helmholtz projectors are conceptualized, aiming
at the BC non-solenoidal and solenoidal subspaces, respectively:

PΛ = Λ(ΛTΛ)+ΛT (2.23)
PΣH = 1 − PΛ. (2.24)

Quasi-Helmholtz projectors can be ingeniously utilized to delineate and inde-
pendently rescale the segments of the operator that correlate with solenoidal or
non-solenoidal source and testing functions. When the electric field integral opera-
tor T undergoes left- and right-multiplication by the identity matrix expressed as
I = PΛH + PΣ, it manifests as

T = (PΛH + PΣ)T(PΛH + PΣ)
= −jkPΛHTAPΛH − jkPΛHTAPΣ − jkPΣTAPΛH

+ PΣ
A

−jkTA + 1
jk

Tϕ

B
PΣ, (2.25)

with the simplifying assumptions PΛHTϕ = TϕPΛH = 0 being applied.
The preconditioning strategy for the (PEC)-EFIE utilizing Quasi-Helmholtz

projectors involves defining left and right preconditioning matrices as

L = αPΛH + βPΣ, (2.26)
R = γPΛH + δPΣ, (2.27)

where α, β, γ, and δ are scaling coefficients selected to ensure the resulting matrix
is well-conditioned, akin to the loop-star decomposition approach. The resultant
system to be solved is given byI

ηLTTR y = LTb,
j = Ry, . (2.28)
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2.3 – Introduction to matrix spectral manipulation

This preconditioning technique, distinct from the loop-star decomposition, is
immune to the mesh discretization ill-conditioning, ensuring that the condition
number of LTTR does not exceed cond(T). This advantage stems from the non-
differential nature of the projectors, with the overall differential contribution of Σ
nullified in the PΣ expression, as numerically demonstrated in fig. 2.1. Moreover, it
obviates the need for explicit identification of global loops. However, it is crucial to
recognize that this aspect also limits the freedom in choosing rescaling coefficients,
as blocks associated with global loops cannot be independently rescaled from the
remaining solenoidal functions.
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Figure 2.1: Singular values of Λ and PΛH (left) and of Σ and PΣ (right) for a
sphere discretized with 188 vertices, 376 cells and 564 edges.

2.3 Introduction to matrix spectral manipulation
As we’ve seen many times in this section, the spectral properties of the operator
matrices involved are central in determining the effectiveness of many solution
methods. It would thus be nice to be able to manipulate the spectral properties of
those matrices. Let’s now better explain what do we mean by filtering and spectral
manipulation. We will here introduce filtering and spectral projector using the
SVD.

Filtering by SVD

The most straightforward approach would be to start with the computation of the
SVD of the matrix, namely

X = UxSXVT
X, [SX]ii = σX,i, (2.29)
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The graph Laplacian approach to filtering

where Ux and Vx are unary and SX is a block-diagonal matrix with the singular
values σX,i of X as entries in decreasing magnitude order. Then, we can arbitrarily
set to zero the unwanted part of the spectrum, i.e., to impose the rank of a matrix
to be constant and equal to n keeping at the same time the most of the information
content of the matrix. We define the filtered matrix Xn as

Xn = UxSX,nVT
X, [SX,n]ii =

0, if i ≤ n

[SX]ii, if i > n
. (2.30)

This can also be seen as the application of a projector P : [Pn]ii =
0, if i ≤ n

1, if i > n

on the singular value matrix, obtaining the filtered singular value matrix denoted
here with SX,n, and then the reconstruction of the matrix by multiplication with
the left and right singular vectors. Obviously, depending on the used projector
we can obtain different types of filters, arbitrarily deciding which singular values
we keep and which we discard. As we know, the SVD operation involved in this
approach is prohibitively expensive, but there exists (and we’ll later introduce)
effective ways of achieving the same result in a computationally efficient manner.

Error introduced by spectral manipulation

Whenever we alter the spectrum of a matrix and we build its filtered counterpart,
we should expect the filtered matrix to be a slight modification of the original one.
More in detail, we can bound the error that we introduce while filtering as

E = X − Xn = UxSXVT
X − UxSX,nVT

X

= Ux(SX − SX,n)VT
X

= UxSE,nVT
X (2.31)

with SE,n : [En]ii =
0, if i ≤ n

σX,i, if i > n
. Using the Frobenius norm of the error

matrix

∥E∥F =
öõõô nØ
i=n−k+1

σ2
X,i, (2.32)

which tells us that the error we introduce is of the order of the highest singular
value we truncate. Notice that numerical methods always come with an associated
error, which is often determined by the numerical integration accuracy. Thus, as a
first rule of thumb, it’s acceptable to set the filtering threshold at the first singular
vectors with magnitude comparable to numerical integration accuracy. Further
investigations about the acceptability of the introduced error are open research
fields.
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2.3 – Introduction to matrix spectral manipulation

2.3.1 Eigenvalue perturbation theory
When dealing with matrices with a null-space, or with clustering eigenvalues
or singular values, some considerations needs to be taken into account when
dealing with spectral decompositions (eigenvalue decomposition or singular value
decomposition). In this section, we will firstly introduce Davis-Kahan Theorem,
and then delve into its consequences in concrete scenarios: clustering spectrum due
to symmetry, and null-space created by filtering.

Davis-Kahan Theorem

Let A and A+E be Hermitian matrices, with E being a perturbation matrix. Let
λi and λj be eigenvalues of A and A + E, respectively, and let ui and vj be the
corresponding eigenvectors. The angle θ between ui and vj is bounded by:

sin(θ) ≤ ∥E∥2

δ
, (2.33)

where δ = mini /=k |λi − λk| is the separation between the eigenvalues of A.
Additionally, let U and V be subspaces spanned by some sets of eigenvectors

of A and A+ E, respectively. Define the angle Θ between these subspaces as the
largest principal angle between any pair of vectors from U and V . Then,

sin(θ) ≤ ∥E∥2

δ∗ , (2.34)

where δ∗ = min (|λi − µj| : λi ∈ spec(A), µj ∈ spec(A+ E)) is the separation be-
tween the parts of the spectra of A and A+ E.

Recall that every numerical matrix at least include machine error, with in double
precision arithmetic is of order 10−16. This theorem explains two phenomena we
often encounter in singular vector or eigenvector projections plot B: clustering of
singular values or eigenvalues due to symmetry and due to filtering.

Clustering spectrum due to symmetry

According to the analysis of [37], it turns out that all the scalar operators 1.98-1.101,
when computed in two dimensions on the circle, have eigenvalues which are equal
in pairs. By the relationship between eigenvalues and singular values it is easy
to understand that also singular values follow the same rule. This is evident in
numerical results, as shown in Fig. 2.2.

Clustering due to filtering

When we filter a matrix, we introduce an artificial null-space into its spectrum.
This results in a subspace with δ∗ = 0, thus removing every constraint on the
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The graph Laplacian approach to filtering

eigenvector correspondence. Thus, when checking the eigenvector corruption due to
a filtering algorithm, it is not enough to compute the numerical difference among
the eigenvector matrices before and after the filtering. It only make sense to
compute such a difference on the columns of such matrices spanning the unfiltered
subspace; or to consider the filtered matrix eigenvalue spectrum, together with the
projection of the eigenvector matrices before and after the filtering, one against
each other. On such a visualization, exemplified in Fig. 2.2 if no corruption takes
place, we expect to see a diagonal part before the filter cutoff, and a messy one in
correspondence with the null-space.
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Figure 2.2: Singular value clustering due to symmetry (below filtering threshold)
and null-space (after threshold). The figure has been obtained decomposing
the Laplacian, filtering, recomposing the filtered Laplacian, adding noise with
magnitude equal to machine precision, and then decomposing the Laplacian again.

2.4 Laplacian Multiplicative filters
Laplacian filters introduced in [38] are an effective way to carry out spectral
manipulation in almost linear complexity. The idea is to be able to filter the
operator in a multiplicative way. Being F the filter matrix with filtering threshold
n and X the operator of interest, we’d like to achieve

Xn = FX. (2.35)

Ideally, to obtain a filtered version of the operator X as FX, and supposing our
filter is a projector (i.e., it is a normal matrix with UF = VF and [SF]ii ∈ {0, 1}),
we need

FX = UFSFUF
HUXSXVX

H = UXSFSXVX
H (2.36)
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2.4 – Laplacian Multiplicative filters

which means that UF
HUX = I, i.e., the filter must share the left singular vectors

of X. With the same logic, to obtain a filtered version of the operator X as XF,
we need VX

HVF = I, i.e., the filter must share the right singular vectors of X. In
order to have commutation between filter and operator, by the way, also X must be
normal, but we don’t need its left and right eigenvectors to be identical: they can
differ by a complex, unitary constant, which can be different for each of them. So,

UX = VXC (2.37)

with C diagonal, complex, [C]i,i = 1. Hence, we can rewrite

X = VXCSXVX
H (2.38)

where CSX is a diagonal matrix, thus X is finally diagonalized by VX. Note
that for both U and V , their hermitian equals the inverse since they represents
othonormal basis.

On top of that, we need fast algorithms for computation and storage of F, as
well as for the multiplication FX.

2.4.1 The special role of the graph Laplacians
In this section, the theoretical framework behind the effectiveness of the Graph
Laplacians as filters is presented. First, the discrete mesh graph Laplacians are
introduced, subsequently, we will see how they are related to the operators of
interest; to conclude, fast methods for the computation of the filtered graph
Laplacians are introduced.

First order differential operators

Here we present a possibly mathematically inexact interpretation of the loop and
star basis as differential operators on manifolds, and from this intuition we postulate
the foundations for the effectiveness of the graph Laplacian operators for filtering
purposes.

We start by recalling the four differential operators, which maps vector into
scalar quantities and vice-versa:

gradϕ = ∇ϕ : C → Cn, (2.39)
divv = ∇ · v : Cn → C, (2.40)

curlϕ = ∇ × (n̂ · ϕ) : C → Cn, (2.41)
curlv = n̂ · (∇ × v) : Cn → C (2.42)

with ϕ ∈ C being a scalar function and v ∈ Cn being a vector field. According to
the divergence theorem, the volume integral of the divergence of a vector field over
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a volume V equals the flux of the vector field through the boundary surface S of
the volume ˆ

V

∇ · v dV =
ˆ
S

v · n dS. (2.43)

Applying integration by parts to a scalar field ϕ and a vector field v gives:
ˆ
V

ϕ(∇ · v) dV = −
ˆ
V

(∇ϕ) · v dV +
ˆ
S

ϕv · n dS. (2.44)

If ϕ and v vanish on S, the surface integral disappears, showing the fundamental
relationship between the gradient and divergence as adjoint operators. Upon dis-
cretization, representing the gradient operator ∇ by a matrix G and the divergence
operator ∇· by a matrix D, Eq. 2.44 implies

⟨∇ϕ,v⟩ = −⟨ϕ,∇ · v⟩, (2.45)

which shows that the matrix D is the adjoint of the matrix G, thus D = GH . An
equivalent procedure leads to the conclusion that also curlϕ is the adjoint of curlv.

Now, we consider a vector field v discretized on a manifold using RWG basis
functions introduced in section 1.5.3. we can now interpreter the quasi-Helmholtz
decomposition theorem presented in Eq. 2.8 (discretized by loop and star basis
functions) as the application of the two scalar operators: the vector curl of loops
plus the gradient of the stars yields the field.

It is worth noticing that both loop-to-RWG and star-to-RWG matrices Λ and
Σ are respectively the primary and dual graph divergences, considering as primary
graph the vertices one and as secondary the faces one. This stems from their
definition, which is the one of a differential operator, assigning a +1 and a −1
weight to every graph element (respectively, vertex or face). As a consequence, we
can interpreter those matrices as disceretizations of the operators 2.41 and 2.40,
and their adjoints ΛT and ΣT as disceretizations of 2.42 and 2.39 [11, 39]. On
the dual mesh defined on the barycentric refinement [9], the role of such matrices
is inverted, with Λ becoming the divergence operator and Σ becoming the curl
operator.

Second order differential operators

the Laplace operator (or Laplacian) is a differential operator given by the divergence
of the gradient of a scalar function on Euclidean space

grad(divv) = ∆v : Cn → Cn. (2.46)

We are particularly interested in its discrete incarnations, as graph Laplacian and
discrete Laplace-Beltrami operator in particular. Building on the definitions given
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in the previous section, it is straightforward to compute the primary and dual
graph Laplacians as [38]

∆ns = ΣTΣ, (2.47)
∆s = ΛTΛ. (2.48)

Note that these operators does not take into account the physical dimensions of
the manifold, but describe only the differential property of the mesh.

The Laplace-Beltrami operator, on the other hand, for a two-dimensional mani-
fold RWG mesh, can be built from the following discretization

[G
Λ

]i,j = ⟨∇ × n̂λi,∇ × n̂λi⟩ = ⟨∇s · λi,∇s · λj)⟩ (2.49)

G
Λ

= ΛHGΛ, (2.50)
where G is the RWG gram matrix for the given manifold; or, for duality, as
G

Σ
= ΣHGΣ [11].

Note that it can be proved that any valid preconditioning scheme for G
Σ

applies
also to ∆ns, and any valid preconditioner for G

Λ
applies also to ∆s [11].

2.4.2 Filtered graph Laplacians as multiplicative precondi-
tioners

The idea of filtered Laplacians as preconditioners is suggested by some analogies
between the wavelet spectral properties of the Laplacian and of the integral operators
of interest [40, 41]. However, a clear theoretical framework behind the effectiveness
of this approach is still under investigation.

We can define the filtered graph Laplacians [38]
(XTX)n = VXLX

2
nVX

T (2.51)
where X can either represent the loop-to-RWG Λ or start-to-RWG Σ matrix, VX
are its right singular vectors and LX is its singular value matrices (diagonal, with
SV in descending order). Now, the new filtered loop and filtered star basis functions
can be introduced, with filtered loop-to-RWG and filtered star-to-RWG matrices
defined as

Σn = Σ
1
ΣTΣ

2+ 1
ΣTΣ

2
n
, (2.52)

Λn = Λ
1
ΛTΛ

2+ 1
ΛTΛ

2
n
. (2.53)

The new basis function inherits most of the properties of the loop and star basis
functions, such as loop-star orthogonality. In addition, it can be proved that
non-intersecting differences of loop or star matrices are mutually orthogonal, and
that XT

mXn = XT
min(n,m)Xmin(n,m). This implies that XTXn = XT

nXn.
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2.4.3 Efficient computation of the graph Laplacian multi-
plicative filter

The filtering proposed in Eq. 2.51 relies on SVD, which is, as already discussed,
computationally inefficient. In this section, efficient methods to perform matrix-
vector product for the filtered graph Laplacians

1
ΛTΛ

2
n

and
1
ΣTΣ

2
n

are proposed,
both in case of constant and variable filtering threshold w.r.t the number of
unknowns. Numerical results on the obtained spectra are deferred to section 4.3,
while the effectiveness of the resulting solvers is proved in [38].

Constant filtering threshold

In such context, there are two viable algorithms to achieve efficient filtering, namely
preconditioned inverse power methods [42] and Butterworth matrix filters.

The first method proposed yield the last singular vectors and singular values of
the ΣTΣ and ΛTΛ matrices at the price of a constant number of matrix-vector
products. Given the sparsity of such matrices, the resulting method is linear in
complexity and the filtered projectors can be efficiently obtained.

The Butterworth matrix filtering method is a matrix extension of the well-known
Butterworth filter, which is, for order m and cutoff parameter xc > 0, characterized
by

fm,xc(x) = (1 + (x/xc)m)−1, x ≥ 0. (2.54)
The spectrum of a symmetric positive matrix A ∈ RN×N , composed of the set of
singular values {σi(A)}i, can be filtered by extending fm,xc to matrix arguments
and applying it to A, resulting in the filtered matrix

Afilt := fm,xc(A) = (I + (A/xc)m)−1, (2.55)

with singular values {fm,xc(σi(A))}i. The filtered matrix (ΣTΣ)n can then be
expressed as

(ΣTΣ)n = (ΣTΣ) lim
m→∞

fm,σn(ΣT Σ)(ΣTΣ). (2.56)

In practical cases, the computation can be halted after few iterations, in fact, filters
of order n ∈ (10,100) provide already very good result 4.3. Further stabilization
and implementation details can be found in [38].

Unknowns-proportional filtering threshold

When the filtering index is proportional to the number of unknowns, we can leverage
the ideas of polynomial preconditioning and graph wavelets [41, 43, 44] and adopt
a method based on a polynomial expansion of the spectral filter.

Given that we are interested in cases where the filtering index is proportional
to the number of degrees of freedom, we can use a polynomial approximation of
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fm,xc on the interval [0, σNS
(ΣTΣ)]. A natural basis for this approximation is the

Chebyshev polynomials {Tn(x)}n, defined by the recurrence relation

Tn(x) =


1 if n = 0
x if n = 1
2xTn−1(x) − Tn−2(x) otherwise.

(2.57)

The approximated filtered matrix now reads

(ΣTΣ)n ≈ −c0

2 I +
ncØ
k=1

ckTk

A
ΣTΣ

σn(ΣTΣ)

B
, (2.58)

where the cn are the expansion coefficients of fm,σn(ΣT Σ) in the basis of the first
nc + 1 Chebyshev polynomials. The filters obtained by following this approach
will require the same number of sparse matrix-vector multiplications for increasing
discretization when the filtering index is proportional to the number of degrees of
freedom. Further details can be found in [38].
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Chapter 3

Non-uniform discretization

In this chapter, a qualitative and quantitative analysis of the behavior of integral
operators on non-uniform discretized meshes and non-regular geometries has been
performed. It is notable that on regular manifolds, i.e., circle and sphere, respec-
tively in 2D and 3D, all the problems discussed in this thesis have trivial solutions
by the application of the Fourier transform, or Spherical Harmonic transform in
3D. These very versatile tools, which also have fast implementations, diagonalize
integral and differential operators, leading to very efficient solution strategies in
linear complexity. This chapter is structured as follows: we start by discussing how
these circular domains are of few practical interest for real world applications, then,
we will discuss which are the properties of such domains that make calculations so
effective on them. We will then discuss what happens to these nice and efficient
formulation when we slightly move away from circular geometries, adding some
irregularity in the discretization or in the geometry itself. We will also discuss the
relevant fast algorithm for non-uniform settings, and discuss possible strategies,
approaches and schemes.

3.1 The advantages of non-uniform discretization
schemes

In computational electromagnetics, uniform discretization is often impractical due
to the inherent inefficiencies and excessive computational demands it imposes. Two
factors can determine the size of the mesh elements:

• the simulation frequency, which dictates the minimum wavelength, thus due
to Shannon therorem the needed discretization density,

• the geometry details, which may need a certain level of accuracy in the
discretization to be correctly represented.
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The scope of this section is to address the second case, that we will call the "Dense
discretization" scenario. In uniform discretization, the entire computational domain
is divided into equally sized elements. If fine details exist in small regions, the
entire domain must be discretized with the same small element size to capture
those details accurately. This leads to a massive number of elements, increasing
the computational load significantly. The large number of elements generated by
uniform discretization results in high memory usage and computational require-
ments. This can become unmanageable, especially for large domains or complex
geometries. This represents a huge inefficiency in resource usage, that could thwart
the complexity performance offered by the best numerical methods.

Non-uniform discretization, on the other hand, adapts the element size to the
specific needs of different regions within the computational domain. This approach
offers several advantages:

• By using smaller elements in regions with high field variations or complex
geometries, and larger elements in regions with low field variations, non-uniform
discretization efficiently captures important details without unnecessarily
increasing the problem size.

• This adaptive approach results in a smaller overall number of elements, re-
ducing the computational burden and memory requirements without loosing
simulation accuracy

• Another advantage is the possibility to focus on the areas of greater interest
inside the simulation domain, and set higher accuracy constraint only on those,
leaving looser constraints on the rest of the geometry. This leads to further
computational resources savings.

In real world dense discretization problems, it is common the need to have very
high accuracy on some small detail (e.g., an antenna) being part of much bigger
objects (i.e., a plane). To fix ideas, suppose we would like to have a discretization
with mesh length DH on a detail of size SH and mesh length DL on the rest of the
simulation domain with size SL. The usage of non-uniform discretization allows
for a growth of the total simulation complexity O(max( SH2

DH2 ,
SL2

DL2 )) compared to
O( SL2

DH2 ) in case of uniform discretization. Notice that in practical cases the ratios
SH
DH

and SL
DL

are often of similar magnitude, whereas SL
DH

may easily be a couple
of orders of magnitude higher, further doubled by the square in the complexity
equation.

To summarize, Non-uniform discretization is a powerful complexity reducer in
computational electromagnetics, particularly in the low to mid-frequency regimes.
By focusing computational resources on the areas where they are most needed
and relaxing the requirements in less critical regions, it allows for efficient and
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accurate simulations without the excessive computational cost associated with
uniform discretization.

3.2 Properties of circular geometries

As we anticipated earlier, the circle and the sphere exhibits some very interesting
properties when it comes to solving numerical problems on such manifolds. In fact,
it must be noticed that the properties of the discretized operators are influenced
by three factors: the operator nature, the the problem geometry and chosen
discretization (basis functions, mesh points). Let’s use some simple examples to fix
ideas.

• Any derivative operator (such as the Laplacian) will lead to a sparse matrix,
since each point result will be a linear combination of its neighbours points
only.

• Any operator on a circle, with uniform discretization will lead to a circulant
matrix, because each point will have the same relationship with points in
equal relative positions.

• A discretized integral operator will have the highest magnitude on the biggest
mesh elements, because the value of such samples are representative of bigger
areas of the geometry; and for the same reason will have very low magnitude
for the samples corresponding to the smallest mesh elements.

It is straightforward how such properties translates into computational schemes. A
sparse matrix will be easier to compress, or may be diagonalized via permutations.
A circulant matrix can be diagonalized by Fast Fourier Transform. A matrix with
a wide dynamic range of value will be probably ill-conditioned and may lead to
numerical cancellation issues. Let’s focus on the usage of the FFT to diagonalize
circulant matrices.

3.2.1 Diagonalization via FFT

We will first provide a brief recall of Fourier transform, one of the most fascinating
mathematical tools of all times. Then, we will present its fast implementation,
widely acknowledged as one of the most impactful algorithms of the last century. To
conclude, we will explain how this transform allows for solution of linear problems
described by circulant matrices in linear complexity.
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Fourier transform

The Fourier transform, a mathematical operation named after Joseph Fourier,
who introduced the concept in the early 19th century, is a powerful tool in both
pure and applied mathematics [45]. Fourier’s work, originally developed to solve
problems related to heat conduction, revealed that any periodic function could be
expressed as a sum of sine and cosine functions, which are the basic building blocks
of harmonic analysis.

The essence of the Fourier transform lies in its ability to decompose a function
into its constituent frequencies. This expressive power is particularly useful in the
analysis and processing of signals, allowing us to transform a time-domain signal
into its frequency-domain representation. Mathematically, the Fourier transform of
a function f(t) is given by

f̂(ω) =
ˆ ∞

−∞
f(t)e−iωt dt (3.1)

where f̂(ω) represents the frequency components of the function f(t). This transfor-
mation provides a comprehensive view of the harmonic content of f(t), effectively
breaking it down into complex sinusoidal components. For a function defined on a
domain, the Fourier series expansion is expressed as

f(x) =
∞Ø

n=−∞
cne

i 2πnx
L (3.2)

where cn are the Fourier coefficients, calculated by

cn = 1
L

ˆ L

0
f(x)e−i 2πnx

L dx . (3.3)

Another relevant feature of the complex exponential set is that they form an
orthonormal basis for the space of square-integrable periodic functions L2([0, L]). It
must be noted that a function defined on a circle is inherently a periodic function,
because the domain can be interpreted as a period, and the function as an infinite
replica of that period. This underpins the effectiveness of Fourier theory on this
domain.

Discrete Fourier Transform

The discrete Fourier transform of a sequence {xn} of length N , which is interpreted
as a uniform sampling of a periodic function, is given by

Xk =
N−1Ø
n=0

xne
−i2πkn/N , k = 0, 1, . . . , N − 1 (3.4)
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where Xk represents the frequency components of the sequence {xn}. The FFT
algorithm computes these coefficients rapidly by recursively breaking down the
DFT into smaller DFTs, exploiting symmetries in the complex exponentials space.
The inverse discrete Fourier transform (IDFT) is given by

xn = 1
N

N−1Ø
k=0

Xke
i2πkn/N , n = 0, 1, . . . , N − 1 (3.5)

where xn represents the original sequence and Xk are the frequency components.
The IDFT converts the frequency domain representation back to the time domain.

Gram matrix

As discussed in 1.5.1, for each basis function we can define a Gram matrix, which has
to be taken into account when dealing with change of basis. The DFT introduces a
new basis, namely the complex exponential ϕk(n) = e−i 2πkn

N , with associated Gram
matrix Gdefined as:

Gk,l =
N−1Ø
n=0

ϕk(n)ϕl(n) =
N−1Ø
n=0

e−i 2πkn
N ei

2πln
N =

N−1Ø
n=0

ei
2π(l−k)n

N .

For k /= l:

Gk,l =
N−1Ø
n=0

ei
2π(l−k)n

N = 1 − ei2π(l−k)

1 − ei
2π(l−k)

N

= 0,

since ei2π(l−k) = 1 and ei
2π(l−k)

N /= 1. For k = l:

Gk,k =
N−1Ø
n=0

1 = N.

Thus, the Gram matrix G is:
G = NI,

where I is the N ×N identity matrix.

Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient algorithm to compute the discrete
Fourier transform (DFT) and its inverse. First proposed by Cooley and Tukey
in 1965 [46] and then evolved to the its latest form FFTW [47, 48], the FFT
revolutionized many fields by drastically reducing the computational complexity
of the DFT from O(N2) to O(N logN), where N is the number of evenly spaced
samples. One of the key applications of the FFT is in the efficient convolution
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of signals. By transforming a signal into the frequency domain, convolutions can
be performed as simple multiplications, which are computationally less intensive.
This property is widely utilized in filtering, data compression and digital signal
processing.

Application to circulant problems

Suppose we have a linear system in the form Ab = x where A is a circulant matrix.
The eigenvalues of A can be obtained by applying the DFT to the first row of A.
Let a = [a0, a1, . . . , aN−1] be the first row of A. The DFT of a is given by:

âk =
N−1Ø
n=0

ane
−i2πkn/N , k = 0, 1, . . . , N − 1 (3.6)

The matrix A can then be diagonalized as:

A = FÂkFH (3.7)

where F is the normalized DFT matrix and Âk is a diagonal matrix with the
eigenvalues âk on its diagonal. The entries of the DFT matrix F of size N ×N are
defined as

[F]jk = 1√
N
e−i2πjk/N , j, k = 0, 1, . . . , N − 1 , (3.8)

making F a unitary matrix. Note that the coefficient 1√
N

already takes into account
for the normalization w.r.t. the exponential inner product, i.e., for the inverse
square gram matrix introduced in 1.5.6. This diagonalization allows us to solve the
linear system efficiently as

b = FÂ−1
k FHx , (3.9)

and since the DFT and its inverse can be computed rapidly using the Fast Fourier
Transform (FFT) and [Â−1

k ]ii = 1
[Âk]ii

, this approach reduces the computational
complexity from O(N3) to O(N logN). Circular problems, where the underlying
physical system exhibits rotational symmetry, are particularly well-suited for this
method, since as already seen the resulting system matrices are always circulant.

3.2.2 Harmonic transforms in 3D
In extending the concepts of the Fourier transform and circulant matrices to
three-dimensional problems, we encounter the natural counterpart to the discrete
Fourier transform (DFT) in spherical coordinates: spherical harmonics. Spherical
harmonics play a crucial role in solving problems with spherical symmetry, similar
to how the DFT is used for problems with circular symmetry. Also in this case,
fast schemes are available.
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Spherical Harmonics Transform

In the 3D setting, many physical problems can be expressed in terms of linear
systems involving spherical harmonics [49–53]. Consider a linear system of the form
Ab = x where A is now a matrix that discretize an electromagnetic operator on a
sphere. In spherical coordinates, functions can be expanded in terms of spherical
harmonics Ylm(θ, ϕ), which are the angular portion of the solution to Laplace’s
equation in spherical coordinates. Spherical harmonics are defined as

Ylm(θ, ϕ) = (−1)m
öõõô(2l + 1)

4π
(l −m)!
(l +m)!Plm(cos θ)eimϕ (3.10)

where l is a non-negative integer, m is an integer such that −l ≤ m ≤ l, and
Plm(cos θ) are the associated Legendre polynomials. The function f(r, θ, ϕ) in
spherical coordinates can be expanded as

f(r, θ, ϕ) =
∞Ø
l=0

lØ
m=−l

flm(r)Ylm(θ, ϕ) (3.11)

where flm(r) are the radial coefficients. This expansion is particularly useful because
spherical harmonics form an orthonormal basis for the space of square-integrable
functions on the sphere. The transformation from spatial domain to spherical
harmonic domain can be represented as:

flm(r) =
ˆ 2π

0

ˆ π

0
f(r, θ, ϕ)Y ∗

lm(θ, ϕ) sin θ dθ dϕ (3.12)

where Y ∗
lm(θ, ϕ) denotes the complex conjugate of the spherical harmonic function.

By leveraging spherical harmonics, we can diagonalize matrices that are invariant
under rotations, similar to how circulant matrices are diagonalized by the DFT.

Fast Spherical Harmonic Transform

The Fast Spherical Harmonic Transform (SHT) is an efficient algorithm designed
to compute the spherical harmonic coefficients of a function defined on the surface
of a sphere [54–56]. Just as the Fast Fourier Transform (FFT) accelerates the
computation of the Discrete Fourier Transform (DFT), the Fast SHT reduces
the computational complexity of spherical harmonic transforms from O(N2) to
O(N log2 N) for N sample points. This efficiency is crucial for applications in
geophysics, astrophysics, and computational electromagnetics, where data is often
naturally expressed on spherical domains. The Fast SHT leverages the hierarchical
structure of the spherical harmonics and recursive algorithms to efficiently compute
these coefficients. By exploiting symmetries and applying techniques similar to
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those used in FFTs, the Fast SHT significantly reduces the computational burden.
However, those algorithms remain quite complex, with non-trivial error bounds and
numerous stability considerations to be taken into account during implementation
[57]. One prominent application of the Fast SHT is in the field of global climate
modeling, where data on temperature, pressure, and other variables is naturally
sampled on a nearly-spherical grid, i.e., the earth.

Bi-dimensional Discrete Fourier Transform

2D-DFT is the natural extension of DFT to the planar setting. it is particularly
suitable for dealing with functions which are periodic under two dimensions. Note
that this is relates to spherical symmetry only under some specific discretization
choices.

Let a P × Q-matrix u = {umn; −P1 ≤ m ≤ P2,−Q1 ≤ n ≤ Q2}, with P1 =
⌊P/2⌋, with P2 = P − P1 − 1, and Q1 = ⌊Q/2⌋, Q2 = Q−Q1 − 1. Denote the nth
column by u(:, n) and the mth row by u(m, :), and u(m,n) for umn. Assume that
each column u(:, n) is extended to be a P -periodic sequence, and likewise, each row
is extended to be a Q-periodic sequence. The 2D-DFT FP,Q, with the periods P
and Q, for a (P,Q)-matrix u is defined as

(FP,Qu)(m,n) =
P2Ø

p=−P1

Q2Ø
q=−Q1

u(p, q)e−i( 2π
P
mp+ 2π

Q
nq) (3.13)

for all m,n. The inverse transform F−1
P,Q is defined by

(F−1
P,Qv)(p, q) = 1

PQ

P2Ø
m=−P1

Q2Ø
n=−Q1

v(m,n)ei(
2π
P
pm+ 2π

Q
qn) (3.14)

for all p, q. The 2-D DFT and its inverse transform can also be given, and usually
are computed, in the terms of one-dimensional (1-D) DFT’s as follows:

(TP,Qu)(m,n) = (TQv(m, :))(n), where v(p, q) = (TPu(:, q))(p), (3.15)

for all m,n, p, and q, or the order is reversed: first take FQ row-wise and then
FP column-wise. A similar equation holds for F−1

P,Q in terms of F−1
P and F−1

Q .
Since 2D-DFT can be expressed in terms of 1D-DFT, the fast implementation is
straightforward employing FFT.

3.2.3 Relationship among SHT and 2D-DFT
An interesting direction of research that I explored in my BS internship was
investigating the relationship among SHT and bi-dimensional DFT. In particular,
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3.2 – Properties of circular geometries

we came across a paper [58] that states that the FFT can be used to perform
interpolation and anterpolation in multilevel-FMM, steps that by formal definition
involve the usage of spherical harmonics [51], with even better accuracy. Given
that SHT in FMM is used to do spectral filtering, we hypotized the possibility of
using this approach to do operator filtering.

To effectively verify the relationship among SHT and 2D-DFT, we tried out
a simple but effective test: to numerically check the band-limitedness of 2D-
exponentials when expressed in spherical harmonic basis, and vice-versa.

Gram matrix definition

In order to perform these tests, at first we need to define and build the gram
and mix-gram matrices for the involved basis functions. Due to the orthogonality
of both the SH and 2D-exponentials basis functions, the gram matrices GSH,SH

and Ge2,e2 for both basis are diagonal ones, thus the normalization can be easily
included as a coefficient in the change of basis as in 3.2.1. The spherical harmonics
to 2D-exponentials gram matrix is defined as GSH,e2 = GSH,δGe2,δ, where GSH,δ

and Ge2,δ are respectively the SHT and the 2D-DFT matrices. Note that the
explicit usage of these matrices leads to a cubic complexity. Fast implementations
shall be used instead.

Numerical results

Numerical results shows that the spherical harmonic expansion of exponentials is
full, without any decay in the coefficient series. The opposite, i.e., the 2D-DFT
expansion of a spherical harmonic, is band-limited in the sense that the coefficient
series decays with an exponential behavior. An important note about the latter
case is that the decay is only visible toward the higher frequency, but not toward
the lower ones: in other words, a single order n spherical harmonic requires O(n)
Fourier coefficients to be represented. These results highlights the absence of any
sparse mapping among the two basis, but on the other hand suggest that filtering
the 2D-DFT transform can effectively lead to an approximate filtering also in
the spherical harmonic domain. By the way, trying to explicitly filter spherical
harmonics by a 2D-DFT introduces large

3.2.4 Vector Spherical Harmonic Transform
The Vector Spherical Harmonic Transform (Vector SHT) extends the concept of
spherical harmonic transforms to vector fields defined on the surface of a sphere
[59, 60]. This extension is necessary because, in many physical applications,
the quantities of interest are inherently vector fields rather than scalar fields.
Unlike the scalar case, where spherical harmonics suffice, vector fields require a

65



Non-uniform discretization

Figure 3.1: 3D representation and SHT of a 2D trigonometric polynomial of order
(7,4). The linear plot is the magnitude of row of index +4 of the SHT matrix,
which is the only non-zero one.

Figure 3.2: 3D representation and 2D DFT of the spherical harmonic of order
n = 8, l = 1. The linear plot is the magnitude of row of index +1 of the 2D-DFT
matrix, which is the only non-zero one.

more complex representation to capture both their magnitude and directional
components accurately.

In 2D problems, vector fields can often be decomposed into scalar components
that can be separately transformed using the standard Fourier transform. This
simplification works well in 2D due to the lower dimensionality and the nature of
planar symmetry. However, in 3D, vector fields exhibit more complex behaviors
that cannot be adequately captured by scalar spherical harmonics alone.

Vector spherical harmonics are typically defined in terms of the scalar spherical
harmonics and their gradients. For a vector field F(θ, ϕ), the expansion in terms of
vector spherical harmonics Ylm, Ψlm, and Φlm is given by

F(θ, ϕ) =
∞Ø
l=0

lØ
m=−l

[almYlm(θ, ϕ) + blmΨlm(θ, ϕ) + clmΦlm(θ, ϕ)] (3.16)

where Ylm = Ylm(θ, ϕ)r̂, Ψlm(θ, ϕ) = r∇Ylm(θ, ϕ), Φlm(θ, ϕ) = r × Ψlm(θ, ϕ) being
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Figure 3.3: a. SHT of the original function, b. 2D-DFT of the original function,
c. 2D-DFT of the filtered function, d. SHT of the filtered function. The band-
limitedness in the DFT domain does not reflect into a band-limited SHT spectrum.

r̂ the unitary vector along the radial direction and r the position vector of the
point with spherical coordinates r, θ, ϕ; and alm, blm, clm are the corresponding
coefficients. By using vector spherical harmonics, we can efficiently represent and
analyze vector fields, preserving their physical properties and facilitating operations
such as differentiation, integration, filtering and convolution in the spectral domain.
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3.3 Non uniform discretization schemes

3.3.1 Non-Uniform Discrete Fourier Transform (NUDFT)
The Non-Uniform Discrete Fourier Transform (NUDFT) generalizes the DFT to
handle non-uniform discretization cases, enabling the analysis of data sampled at
arbitrary points [61].

The NUDFT of a function f(x) is defined as

F (k) =
N−1Ø
n=0

f(xn)e−i2πkxn/T , k = 0, 1, . . . , N − 1 (3.17)

where T is the period of the signal, and xn are the sample points. The inverse
NUDFT is used to reconstruct the signal from its frequency components. It is
given by:

f(xn) = 1
N

N−1Ø
k=0

F (k)ei2πkxn/T , n = 0, 1, . . . , N − 1 (3.18)

One of the main challenges in computing the NUDFT is the increased computa-
tional complexity compared to the standard DFT. The lack of uniform structure
does not allow the application of the O(N logN) FFT algorithm. However, various
fast algorithms and approximations, such as the Non-Uniform Fast Fourier Trans-
form (NUFFT), have been developed to mitigate this issue and provide efficient
computations for non-uniform data.

NUFFT leverages interpolation techniques to approximate the non-uniform data
by mapping it onto a uniform grid, where the FFT can then be applied efficiently.
This is generally achieved through a process called "gridding". The steps involve:

• Gridding: The non-uniformly spaced data points are convolved with a carefully
chosen kernel to interpolate them onto a uniform grid.

• FFT Application: The standard FFT is applied to the gridded data.

• De-Gridding: The results are then interpolated back to the original non-
uniform grid to obtain the desired frequency components.

This approach reduces the complexity of the transform significantly. With the
use of efficient gridding and de-gridding techniques, the NUFFT can achieve a
computational complexity close to O(N logN), making it nearly as efficient as the
FFT while handling the challenges posed by non-uniform sampling. Accuracy in
the NUFFT is a critical aspect that hinges on the choice of the interpolation kernel
and the parameters used in the gridding process. Commonly used kernels, such as
Gaussian or Kaiser-Bessel functions, are selected for their favorable properties in
minimizing interpolation errors and spectral leakage. The accuracy of the NUFFT
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3.3 – Non uniform discretization schemes

can be controlled by adjusting parameters like the kernel width and the oversampling
factor; however, higher accuracy requires more computational resources. The best
trade off between efficiency and precision is application-dependent.

3.3.2 Basis function choice
When dealing with non-uniform schemes, the employed basis functions play a
crucial role. More in detail, the accuracy performances of fast schemes may
be compromised by the error introduced by numerically integrating on irregular
domains. The formulation in 3.17, in fact, relates to function samples, which implies
using Dirac delta as source and test functions. This is however an inconvenient
choice in practice, because as discussed in 1.5.3 it is not straightforward for the
application of differential operators.

Upon uniform discretization, the usage of hat functions introduces only a little
error (constant for each harmonic) on the magnitude of the interpolated functions,
preserving correctly its phase. This means the singular vector of the DFT are
uncorrupted, and a marginal error is present on its singular values. This error
is compensated when the adjoint transform is applied. When we move to non-
uniform discretization, however, we end up with spurious errors on both phase
and magnitude, varying on each point according to the mesh segment length.
This reflects in a corruption of the singular vectors of the transformation, which
introduce errors not compensated by the adjoint operator.

3.3.3 Numerical analysis and research directions
A campaign of numerical measure of the errors associated with the usage of hat
functions has been carried out, considering different forms of irregularity in the
discretization. Namely, we considered discretizations derived by the uniform ones
by removing a (or multiple) point(s), as well as cases where the point position is
moved by a little amount around their initial position. We also measured the effect
of a completely random discretization. Fig. 3.4 shows the decay of the order on
the discretized projector from hat functions to exponentials, evaluated as

err =
|Ge,e − Gλ,eG−1

λ,λGe,λ|
|Ge,e|

, (3.19)

with respect to the number of discretization points. The result is a decay of
polynomial type, of order 4. Fig. 3.5 shows how bad is the effect of removing
consecutive points from the mesh, introducing irregularity. For certain discretization
ranges, it is enough to remove two consecutive points to obtain a decay in accuracy
equivalent to halving the discretization density while keeping a uniform mesh.
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For comparison, it is worth noticing that, with NUDFT, on such meshes accuracy
to nearly machine precision has always been achieved, even if numerical results
are not reported. We made some attempts to circumvent the problem. At first,
we tried to develop algorithms to correct the phase of the interpolation, thus
preserving the singular vectors. However, the needed phase correction not only
depends on the geometry, but also on the specific function to be interpolated. Then,
we also tried the introduction of a new basis function made of a series of delta with
amplitudes shaped as a hat functions, but chosen in such a way to be orthogonal
one against the other. Results were poor also in this case. The only effective
strategy we tested was the usage of interpolation strategies, to sample the function
on reconstructed uniform grids, but this approach is unpractical: it does not allow
for a real non-uniform grid simulation, which is the final goal of such studies. The
topic definitely remains an open research field.
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Figure 3.4: Relative error on the discretized projector Gλ,eG−1
λ,λGe,λ with respect

to the discretization density. The error decays with polynomial order as O(x−4).

3.3.4 Non-uniform Fast Vector Spherical Harmonic Trans-
forms

FaVeST (Fast Vector Spherical Harmonic Transforms) [62] represents the state-of-
the-art in the efficient computation of spherical harmonic transforms, extending
capabilities to both uniform and non-uniform discretizations. The forward FaVeST
algorithm computes the vector spherical harmonics with a computational cost
proportional to N log

√
N for N evaluation points. Similarly, the adjoint FaVeST,

which evaluates a linear combination of vector spherical harmonics up to a degree of√
M for M evaluation points, also achieves M log

√
M complexity. These algorithms

offer significant improvements in efficiency compared to traditional methods, which
typically have O(N2) complexity.
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to the discretization density, and in presence of missing consecutive discretization
points. It is noticeable how the lack of only two consecutive points produces an
overall error comparable to a uniform discretization with the number of discretiza-
tion points halved.

FaVeST leverages the fast algorithms for scalar spherical harmonic transforms,
integrating them with vector spherical harmonics using Clebsch–Gordan coefficients
from quantum mechanics. This approach allows the decomposition of vector
spherical harmonics into manageable components, facilitating the use of efficient
scalar FFT techniques. FaVeST is hierarchically grounded into the other algorithms
introduced in this chapter:

• Fast Fourier Transform (FFT): Provides the efficient computation of the
discrete Fourier transform.

• Non-Uniform Fast Fourier Transform (NUFFT): Extends FFT capabil-
ities to non-uniformly sampled data.

• Fast Scalar Spherical Harmonic Transform (Fast SHT): Adapts FFT
techniques to spherical domains for scalar fields.

• FaVeST: Builds on Fast SHT to handle vector fields, incorporating both
divergence-free and curl-free components.

By integrating these algorithms, FaVeST achieves high computational efficiency
and accuracy, making it a powerful tool for analyzing vector fields on spherical
surfaces.
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3.4 Generalization to non circular geometries
When dealing with non-circular geometries, the symmetry of the geometry no
longer leads to operators whose eigenvectors or singular vectors are exponentials
(2D) or spherical harmonics (3D). However, it is noteworthy how the high-frequency
part of the operator singular vector space still behaves similarly to that for regular
geometries. More specifically, for a given non-circular geometry, let X be the integral
operator of interest, X its discretized counterpart and UXSXVT

X its singular value
decomposition.

At high frequencies, the wavelength λ becomes small compared to the char-
acteristic dimensions of the geometry. Thus, the local behavior of the wave can
be approximated by the behavior in a locally regular geometry. We can define a
threshold frequency ft such that for frequencies f > ft, the singular vectors un and
vn for the non-circular geometry X are close to those of the circular (or regular)
geometry Xreg.

Thus, for f > ft, the differences between the singular vectors of X and Xreg
become smaller, and the high-frequency part of the operator singular vector space
for non-circular geometries behaves more and more that of regular geometries.

3.4.1 Behavior of the Laplacian

The Laplacian, according to its definition in 2.4.1, is not sensitive to the geome-
try curvature but only to the discretization regularity. Thus, for any uniformly
discretized mesh, the discretized Laplacian will be a regular matrix, circulant in
the 2D case. This property, together with the monotonic Laplacian spectrum,
makes the set of Laplacian singular vectors a suitable choice as ordered basis w.r.t.
spacial frequency. On the other side, we expect the integral operators to share
the Laplacian singular vectors only above a certain geometry-dependent spatial
frequency ft.

3.4.2 Mapping to regular geometries

Mapping non-regular geometries onto regular ones is a technique for simplifying
the analysis and solving integral equations more efficiently. This process involves
transforming a complex, irregular domain into a simpler, regular domain where
analytical and numerical methods are more straightforward to apply. For the
mapping to be effective, it is needed that it preserves the solution accuracy and
that both forward and inverse mapping can be applied in linear complexity. Several
strategies are commonly employed to achieve this transformation. Here follows a
non-exhaustive list of the most relevant ones.
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Figure 3.6: Numerical evaluation of the relationship among the singular vectors
on the circle and other geometries. the plot technique used here is described in
details in appendix B.

Conformal mapping [63, 64] is a mathematical technique that transforms one
plane region into another in such a way that angles are preserved. This method
is particularly useful in two-dimensional problems where it can be used to map
complex geometries onto simpler ones, such as mapping an arbitrary-shaped domain
onto a unit circle or rectangle.

Parameterization techniques [57, 65] involve representing the geometry of a
domain using a set of parameters. These techniques are particularly useful in three-
dimensional problems where surfaces can be described using parametric equations.
Common parameterization methods include Bézier and B-Spline Surfaces, used
to represent complex surfaces through control points and Non-Uniform Rational
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B-Splines, an extension of B-splines that include weights for each control point,
allowing for the representation of both standard analytical shapes (like circles and
ellipses) and free-form shapes.

Grid and mesh generation techniques [66] involve creating a discretized rep-
resentation of a complex geometry that approximates a regular domain. These
techniques are crucial for finite element and boundary element methods, where the
accuracy of the solution depends on the quality of the mesh. Common approaches
include structured grids, unstructured grids and Adaptive Mesh Refinement

Domain decomposition methods [67–69] involve breaking down a complex domain
into smaller, more manageable subdomains, which can be more regularly shaped.
These methods are beneficial for parallel computing and large-scale simulations.
Key techniques include Schwarz Methods, an iterative methods that solve sub-
problems on overlapping subdomains and combine the solutions to form the global
solution and Mortar Methods, which use non-overlapping subdomains and employ
Lagrange multipliers to ensure continuity across the subdomain interfaces.

Finally, coordinate transformations [70, 71] involve changing the coordinate
system to map a non-regular domain onto a regular one. Common transformations
include Polar and Spherical Coordinates and Elliptical and Parabolic Coordinates,
used for domains that naturally fit these coordinate systems, allowing for a more
regular representation.

74



Chapter 4

Operator filtering based on
Modified Green Functions

As already elucidated in section 2.3, operator filtering is an emerging field of
research in computational electromagnetic, with Multiplicative Laplacian filters
standing as one of the most promising techniques. Operator filtering, relying on
quasi-Helmholtz filters, has successfully been used to stabilize the Electric Field
Integral Equations (EFIE) for 3D scattering in both the dense-discretization and
low frequency regimes and to enhance the compressibility of integral operators for
building single-skeleton fast direct solvers.

In this chapter, we introduce a novel way to directly obtain filtered operators by
truncating carefully chosen spectral representation of the operators’ kernels. This
means that the standard BEM discretization of the modified operators will directly
yield matrices whose spectra correspond to a filtered version of the spectrum of
the discretized original operators, further simplifying the process. The study has
been performed in a bi-dimensional setting, on a uniformly discretized non-convex
geometry. The principal formulations contained in this chapter has also been
published in [72], thus this work can be seen as an extended form of the conference
paper, comprehensive of implementation details.

Consider a 2D scatterer modeled by a smooth curve γ ∈ R2 lying on the xy
plane, in a medium with wavenumber k and impedance η, on which impinges an
electromagnetic field (Ei,H i). Let’s consider the EFIE problem in TE and TM
polarizations, as formulated in 1.106 and 1.108. Using piecewise linear Lagrangian
interpolants {ϕi} introduced in 1.132 as both source and test functions, a mesh
composed of N segments of uniform length h, and the operators N and S introduced
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in 1.101 and 1.98, we can write the BEM linear system as

Sjz = Ez, (4.1)
Njt = Et (4.2)

where

[S]ij = ⟨φi,Sφj⟩ , (4.3)
[N]ij = ⟨φi,Nφj⟩ , (4.4)

Et =
K
φi,

ik
η
Et

L
, (4.5)

Ez =
K
φi,

1
ηikEz

L
(4.6)

4.1 Modified Green Function filtering in 2D
The scheme that we present in this work is articulated in three steps: (i) define the
filtered Green’s function gα(r, r′) where α indicates a filtering parameter (akin to a
cutoff frequency) that will depend on the spectral representation chosen, (ii) define
the filtered operators Sα and N α, and (iii) use the boundary element method to
obtain the matrices with the corresponding filtered spectra.

4.1.1 Definition of the filtered Green functions
We introduce two different approaches to filtering, namely a multi-dimensional one
based on the Fourier transform (available in both static and dynamic regimes) and
a mono-dimensional one that leverages the Mehler–Sonine integral (only for the
dynamic case). Note that dimensionality, in this context, does not refere to the
geometry of the problem, but to interpretations of the different spectral expansions
employed.

Multi-dimensional filters

The first approach to filter g(r, r′) we present, imply transforming it into spectral
domain in the sense of a multidimensional Fourier expansion, and back-transforming
a truncated version obtaining the following modified kernels. In the static case,
the resulting formulation reads

gα0 (r, r′) = − 1
2π log(|r − r′|) − 1

2π

ˆ +∞

s=α

J0(s|r − r′|)
s

ds , (4.7)
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and in the dynamic case

gα(r, r′) = − i
4H

(2)
0 (k|r − r′|) − 1

2π

ˆ +∞

s=α

J0(s|r − r′|)s
s2 − k2 ds (4.8)

respectively, where α > k, J0 is the 0th order Bessel function of the first kind and
H

(2)
0 is the 0th order Hankel function of the second kind. Implementation details

will be discussed later.

Mono-dimensional filter

Another possible spectral expansion of g(r, r′) can be obtained for the dynamic
case leveraging Mehler–Sonine integrals, obtaining

Y0(x) = − 2
π

ˆ ∞

1

cos(xt)ñ
(t2 − 1)

dt (4.9)

where Y0 is the 0th order Bessel function of the second kind. Using the identity
H

(2)
0 (x) = J0(x) − iY0(x), recalling the Green’s Function definition, and truncating

Y0(x), we obtain

gα(r − r′) = − i
4J0(k|r − r′|) − 1

2π

ˆ α/k

t=1

cos(k|r − r′|t)√
t2 − 1

dt . (4.10)

This formulation, however, is challenging to compute. Implementation details will
be discussed later.

4.1.2 Definition of the filtered operators

Given the filtered Green functions hereby defined, we can now build the filtered
operators of interest, which reads

(Sαjz)(r) :=
ˆ
γ

gα(r, r′)jz(r′) dr′ , (4.11)

(N αjt) (r) := − ∂

∂n

ˆ
γ

∂

∂n′ g
α(r, r′)jt(r′) dr′ . (4.12)

Note that also operators D and D∗ can be built in an analogous manner
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4.1.3 Application of BEM and filtered matrices
Now, it is straightforward to compute the discretized counterparts of the filtered
operators as

[Sα]ij = ⟨φi,Sαφj⟩ , (4.13)
[Nα]ij = ⟨φi,N αφj⟩ . (4.14)

(4.15)

This step is crucial, since here we expect the spectral properties of the continuous
operators to translate into spectral properties of the matrices, which are the ones
of interest by a computational point of view.

4.2 Implementation details for stability
All the filtered Green function formulations proposed so far pose some challenges
on the computational side, mainly in terms of stability. In this section, stable
formulation and implementation details are provided.

Multi-dimensional filters

For the implementation of (4.8), the computation is split in two parts: the singular
part is handled by Maclaurin expansion; whereas the asymptotic regime is handled
by a recursive extraction of terms which leads to a series of rational coefficients,
that are tabulated for runtime. More in detail, to enhace performances, it becomes
convenient to introduce a third regime, for medium size argument, which is handled
by Taylor expansion around suitably choosen points: in this way, Maclaurin
expansion order can be reduced without compromising solution’s accuracy.

Starting from the static case, Eq. (4.7) can be rewritten

åg(r, S) = 1
2π

A
γ + log(S2 ) +

+∞Ø
k=1

(−1)k(Sr)2k

2k(k!)24k

B
(4.16)

Since the log is already computed accurately, it only remains to compute accurately
(see NIST 10.22.39)

f(x) =
+∞Ø
k=1

(−1)kx2k

2k(k!)24k = −γ − log(x2 ) −
ˆ +∞

x

J0(t)
t

dt (4.17)

For small x, we compute the truncated series directly.

f(x) =
nØ
k=1

(−1)kx2k

2k(k!)24k +O(x2n+2) (4.18)
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To increase the precision, the terms in the sum are accumulated from large k to
smaller k
For large x, We use the expansion

ˆ +∞

x

J0(t)
t

dt =
ó

2
π

nØ
k=0

A
sk

sin(t− π/4)
x2k+3/2 + ck

cos(t− π/4)
x2k+5/2

B
+O

3 1
x2n+7/2

4
(4.19)

where

s0 = −1 (4.20)

sm = (2m+ 1
2)cm−1 − (−1)m(4m)!2

322m(2m)!3 (4.21)

cm = (−1)m(4m+ 2)!2
322m+1(2m+ 1)!3 − (2m+ 3

2)sm (4.22)

These rational coefficients sm and cm are tabulated for runtime.
Unfortunately, the accuracy of the two previous expressions decreases as small x
increases or large x decreases so that there is a range where none of the previous
formulas delivers an accurate result. In this range of medium x that do the junction
between the two other forms, we use a taylor expansion around points x0 = x− h

ˆ +∞

x

J0(t)
t

dt =
ˆ +∞

x0+h

J0(t)
t

dt

=
ˆ +∞

x0

J0(t)
t

dt+
nØ
k=1

1
k!
∂k−1

∂tk−1

A
J0(t)
t

B
|t=x0h

k +O(hn+1) (4.23)

The coefficients for several points x0 are computed with high precision arithmetic
and tabulated for the runtime.

Using the 3 techniques in different regimes, the machine precision accuracy can
be achieved for any values of the parameters r and S.

For the dynamic case, the technique is the same: in the asymptotic regime, we
use the following expansion of J0 and integrate by part to extract terms

J0(t) =
ó

2
π

nØ
k=0

A
ak

cos(t− π/4)
t2k+1/2 + bk

sin(t− π/4)
t2k+3/2

B
+O

3 1
t2n+5/2

4
(4.24)

ak = (−1)k(4k)!2
322k(2k)!3 , bk = (−1)k(4k + 2)!2

322k+1(2k + 1)!3

After few integrations by part it is easy to see that we can look for a general term
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in the form
ˆ +∞

t=A

J0(t)t
t2 −B2dt =

ó
2
π

sin(A− π/4)
m−1Ø
k=0

1
(A2 −B2)2k+1A2k−1/2

2kØ
i=0

sk,i(A2 −B2)iA2(2k−i)

+
ó

2
π

cos(A− π/4)
m−1Ø
k=0

1
(A2 −B2)2k+2A2k+1/2

2k+1Ø
i=0

ck,i(A2 −B2)iA2(2k+1−i)

+
ó

2
π

ˆ +∞

t=A

cos(t− π/4)
(t2 −B2)2m+1t2m−1/2

2mØ
i=0

rm,i(t2 −B2)it2(2m−i)dt

+
ó

2
π

ˆ +∞

t=A

 nØ
k=m+1

akcos(t− π/4)
(t2 −B2)t2k−1/2 +

nØ
k=m

bksin(t− π/4)
(t2 −B2)t2k+1/2 +O (...)

 dt
(4.25)

After two integration by part, we get the recurrence formulas for the coefficients

r0,0 = a0 (4.26)
sm,i = −rm,i (4.27)
cm,i = (2 + 4m− 2i)rm,i + (2i− 2m− 5/2)rm,i−1 (4.28)

cm,2m+1 = bm + (2m− 1/2)rm,2m (4.29)
rm+1,i = (2i− 4m− 4)cm,i + (2m− 2i+ 7/2)cm,i−1 (4.30)

rm+1,2m+2 = am+1 + (−2m− 1/2)cm,2m+1 (4.31)

i.e. after substitution,

s0,0 = −1 (4.32)
cm,i = (−2 − 4m+ 2i)sm,i + (−2i+ 2m+ 5/2)sm,i−1, i ∈ [0,2m](sm,−1 = 0)

(4.33)

cm,2m+1 = (−1)m(4m+ 2)!2
322m+1(2m+ 1)!3 + (−2m+ 1/2)sm,2m (4.34)

sm,i = (−2i+ 4m)cm−1,i + (−2m+ 2i− 3/2)cm−1,i−1, i ∈ [0,2m− 1](cm−1,−1 = 0)
(4.35)

sm,2m = −(−1)m(4m)!2
322m(2m)!3 + (2m− 3/2)cm−1,2m−1 (4.36)

For small argument, the goal is to reuse the static filter integral I1 where (here
S = αR)

In =
ˆ +∞

S

J0(t)
tn

dt (4.37)
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The integral that we want to compute is
ˆ +∞

S

J0(t)t
t2 − x2dt = I1 + x2

ˆ +∞

S

J0(t)
t(t2 − x2)dt (4.38)

But we can continue recursively, and eventually we get
ˆ +∞

S

J0(t)t
t2 − x2dt =

N−1Ø
n=0

x2nI2n+1 + x2N+1
ˆ +∞

S

J0(t)
t2N(t2 − x2)dt (4.39)

Also, we have

In+2 = − 1
(n+ 1)2 In − 1

(n+ 1)2
J1(S)
Sn

+ 1
n+ 1

J0(S)
Sn+1 (4.40)

Mono-dimensional filter

Regarding Eq. 4.10, here a step-by-step procedure to compute the oscillatory part
(2, α/k) of the integral is described in details. Let’s start by defining

f(t) := 1√
t2 − 1

. (4.41)

Now, rewrite the integral in (4.10) as

Ic1,c2k = ℜ
Aˆ c2

c1
eiktf(t)dt

B
. (4.42)

We can define a change of variable which maps (−1, 1) into (c1, c2) carried out by
a function

g(t) := (t+ 1) c2 − c1
2 + c1 , (4.43)

end then expand f ◦ g as a linear combination of Legendre polynomials Pn

f(g(x)) =
∞Ø
n=0

anPn(x) , an = 2n+ 1
2

ˆ 1

−1
f(g(x))Pn(x) dx. (4.44)

Now, define k′ = c2−c1
2 k and rewrite (4.42) as

Ic1,c2k = ℜ
A
c2 − c1

2 ei(k′+kc1)
∞Ø
n=0

an

ˆ 1

−1
eik′tPn(t)dt

B
. (4.45)

Using the following identity from [73]
ˆ 1

−1
Pn(t)eiktdt = (i)n

ó
2π
k
Jn+ 1

2
(k) , (4.46)
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we finally obtain

Ic1,c2k = ℜ

c2 − c1
2 ei(k′+kc1)

∞Ø
n=0

an(i)n
ó

2π
k′ Jn+ 1

2
(k′)

 (4.47)

which is computable up to arbitrary precision.
In the interval (1,2) a different expansion is used: by integration by part of Eq.

(4.42), we obtain

Ic1,c2k =
è
cos(kt) ln

1
t+

√
t2 − 1

2éc2
t=c1

+ k

ˆ c2

c1
sin(kt) ln

1
t+

√
t2 − 1

2
dt (4.48)

and the integral on the right hand side is computed using the Legendre expansion
procedure. Because ln

1
t+

√
t2 − 1

2
is not singular in 1, the number of terms of

the expansion is low, and the approach is efficient and accurate.

4.3 Numerical results
Let γ be the scatterer depicted in Fig. 4.1, with maximum dimensions around
2 m. The frequency is set to 1 GHz with a mesh size of h = λ/30, leading to
approximately 830 mesh elements.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Scatterer

Figure 4.1: Scatterer used as reference for the following numerical results

To understand the following plots, some considerations made through this thesis
have to be gathered and taken into account:

• As introduced in section 3.4.1, the singular vectors of the Laplacian provide a
meaningful ordering basis, because they can be interpreted as spatial frequency
harmonics,
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• However, according to 3.4.1, we cannot expect Laplacian singular vectors to
be equal to the operator for non-circular geometries,

• Section 3.4 explains how we expect the singular vectors to become increasingly
similar for higher spatial frequencies, since the local behavior of the geometry
becomes indistinguishable above its characteristic spatial frequency,

• Finally, above the filtering threshold, we cannot expect that any ordering can
be made due to the clustering of singular vector in the null-space, according
to Davis-Khan theorem introduced in section 2.3.1.

Thus, to represent in a meaningful way the spectrum of our discretized operators
and filtered counterparts, we followed this procedure:

1. perform SVD on all the matrices we want to represent, and on the Laplacian,

2. compute the permutation matrix that makes the singular vectors of the matrix
of interest most similar to the Laplacian ones. The concept of similarity can
be defined with any vector norm, we used energy norm of the convolution
among the two vectors,

3. apply this permutation matrix to the singular values of the matrix of interest,

4. plot the resulting spectrum in logarithmic scale.

It is now possible to analyze the following numerical results. In the beginning of
the spectrum we expect to have some misalignment among the singular values,
because the ordering according to the Laplacian is not reliable for low spectral
frequencies. In the same way we expect to have ordering problems approaching the
null-space, where Davis-Kahan theorem effect becomes evident. The ordering is by
the way reliable in the middle frequencies, around the cutoff frequency of the filter.

Fig. 4.4 shows the application of the multiplicative Laplacian filters introduced
in 2.4.2 to the discretized single layer operator S. As clearly visible, the filter of
order 32 is highly effective, with a decay to machine precision in about a hundred
of singular values.

The aforementioned singular value behavior is also clearly visible when looking
at the projection of the filtered operator singular vectors on the Laplacian ones, as
shown in Fig. 4.2 for the discretized operator S under Butterworth filtering. For
more details about this kind of plot, the reader can refer to Appendix B.

An alternative technique to display the spectra, which solves the low-frequency
ordering issue, is to order the singular values of the filtered operator with respect to
the original operator ones. An example of such a plot is reported in Fig. 4.3, where
the original operator spectrum is well-ordered by definition [37], but as we can see
there are bigger issues when it comes to the ordering in the null-space region.
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Figure 4.2: singular vector projection of Sn with Butterworth approximation of
order 32 vs Laplace-Beltrami singular vectors. The upper left corner shows the
interdependence at low frequency, the diagonal part in the middle is the region
where the ordering is effective and the bottom right region corresponds to the
filtered operator nullspace.
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Figure 4.3: Application of Butterworth
filtering (Eq. 2.55) to operator S. Singu-
lar values ordered by the singular vectors
of the unfiltered S operator
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Figure 4.4: Application of Butterworth
filtering (Eq. 2.55) to operator S. Singu-
lar values ordered by the singular vectors
of the Laplace-Beltrami operator

Fig. 4.5 shows the effectiveness of the modified green function static formulation
(4.7) on the discretized single layer operator S in static. In blue, the original
operator’s spectra, in red its filtered incarnation one. Fig. 4.6 show the performance
of (4.8) and (4.10) on the same operator in the dynamic case. We finally show the
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effectiveness of the filtering procedure in the Calderón precontitioned TE-EFIE [32]

G−1SG−1Njt = G−1SG−1et , (4.49)

where [G]ij := ⟨φi, φj⟩. In Figure 4.7, in particular, we show the singular values of
G−1SG−1N and singular values of G−1SαG−1N where Sα is computed using (4.8)
and (4.10), ordered by the singular vectors of the Laplace-Beltrami operator.
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Figure 4.5: Singular values of S0 and
singular values of Sα0 using (4.7), ordered
by the singular vectors of the Laplace-
Beltrami operator, and reference mesh.
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Figure 4.6: Singular values of S and
singular values Sα using (4.8) and (4.10),
ordered by the singular vectors of the
Laplace-Beltrami operator.
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Figure 4.7: Singular values of G−1SG−1N and singular values of G−1SαG−1N
where Sα is computed using (4.8) and (4.10), ordered by the singular vectors of
the Laplace-Beltrami operator.
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Chapter 5

Conclusions and future work

In this work, the Laplacian multiplicative filters and Modified Green Function
Filters, recently introduced in [38] and [72] are widely discussed, and new implemen-
tation details and stability considerations for the Modifies Green Function filters in
2D are introduced. A comprehensive analysis of the effect of different discretization
and basis function choices has been carried out, highlighting the reasons behind
the effectiveness of fast harmonic transforms on circular and spherical domains,
under uniform and non-uniform discretizations. Some investigations have also
been carried out on the relationship among Spherical Harmonic Transform and
bi-dimensional Fourier Transform, in order to better establish the boundaries of
the interchangeability among the two proposed in [58]. These topics are preceded
by an extensive introduction, that goes from the well-known Maxwell equations to
the more complex concepts tackled in this work without any discontinuity, with
a deep focus on the Boundary Element Method and families of Fast Solvers. A
great amount of references are also provided for the reader interested in further
investigations.

The Modified Green Function filters are here introduced for the bi-dimensional
setting, but it is straightforward to imagine the existence of 3D counterparts. These
3D filters could be of great practical interest, since 3D simulations are much more
effective for real world applications.

87



88



Appendix A

Linear Algebra Primer

Matrix Norms

Frobenius Norm: Defined as

∥A∥F =
öõõô mØ
i=1

nØ
j=1

|aij|2

This norm considers all elements of matrix A and is useful for various matrix
operations.
Euclidean Norm (2-norm): Defined as the largest singular value of A,

∥A∥2 = σmax(A)

This norm is critical for understanding the behavior of A under transformation.

Matrix Transformations

Transpose: (AT )ij = Aji. It reflects the matrix over its main diagonal.
Hermitian (Conjugate Transpose): (A∗)ij = Aji. Essential for complex
matrices, where the conjugate transpose is used.

Matrix Definitions

Symmetric Matrix: AT = A. Important for properties like real eigenvalues.
Positive Definite Matrix: xTAx > 0,∀x /= 0. Such matrices have positive
eigenvalues, which implies stability in various systems. Circulant matrix: A
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circulant matrix A is of the form

A =


a0 aN−1 · · · a1
a1 a0 · · · a2
... ... . . . ...

aN−1 aN−2 · · · a0


.

Singular Value Decomposition (SVD) and Eigen Decomposi-
tion (EigD)
SVD: A = UΣV ∗ where U and V are unitary, and Σ is diagonal.
EigD: A = V ΛV −1 where Λ is diagonal and V is the matrix of eigenvectors.
Both decompositions provides diagonalization of the original matrix, and the
diagonal matrices are often refered to as matrix spectrum. Singular values of A are
the absolute values of the eigenvalues of

√
A∗A. This relationship bridges the gap

between geometric and algebraic properties of A.

Projector
A matrix P is a projector if P 2 = P . It maps vectors onto a subspace defined by P .
Orthogonal Projector: P = A(ATA)−1AT projects onto the column space of A
orthogonally.

Condition Number
κ(A) = ∥A∥∥A−1∥

Measures the sensitivity of matrix operations to perturbations. High condition
numbers indicate potential numerical instability.

Gershgorin Circle Theorem
Each eigenvalue of A lies within at least one Gershgorin circle, centered at aii
with radius qj /=i |aij|. This theorem provides a way to estimate the location of
eigenvalues.

Moore-Penrose Pseudoinverse
For matrix A, the pseudo-inverse A+ satisfies:

AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A
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Useful for solving systems of equations that are not necessarily invertible.

Complexity of Naive Matrix Operations
Multiplication: O(n3), Inversion: O(n3)
Matrix-Vector Product: O(n2)
These operations form the computational foundation of many algorithms in numer-
ical linear algebra.

Bound among Condition Number and Linear System Solu-
tion Accuracy
For Ax = b, if δA and δb are perturbations, then:

∥δx∥
∥x∥

≤ κ(A)
A

∥δA∥
∥A∥

+ ∥δb∥
∥b∥

B

This inequality demonstrates how small changes in A or b can lead to large changes
in x, especially when κ(A) is large. Remember that the discrete computations
always carry a perturbation at least equal to machine precision, i.e. 10−16 for
double precision arithmetic.
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Appendix B

Matrix representation

Most of the topics in computational science involve analyzing properties of numerical
matrices. Some of these properties are scalar ones (e.g., the rank or the condition
number), other are continuous (e.g., the spectrum) and other relates to the structure
(e.g., sparsity, circularity, presence of blocks). This underpin the need for suitable
graphical representations, because looking at a huge table of raw numbers is
something we human are not really good at. The goal of this section is to introduce
the main graphical techniques used in this work to represent matrices, together
with their advantages and disadvantages.

Logarithmic color plot
Logarithmic color plot is useful to represent matrices with high dynamic range
of values. A first thing that must be noticed is that only the magnitude of the
matrix entries is represented: nothing is reported about the phase (i.e., the sign
of the entries if they are real numbers). The usage of a colorbar is fundamental,
because the color mapping to values depends on the maximum and minimum
numerical value in the matrix. When comparing multiple logarithmic color plot,
it may also be useful to force the usage of the same dynamic range, to have a
coherent color-value mapping. This representation allows to immediately recognize
circularity and sparsity, and also the presence of structure, like null spaces or
presence of blocks. The example in Fig. B.1 shows the operator N∈D introduced in
1.107 discretized on the mesh 4.1. There is a clear maximum on the main diagonal
(self-element), and a repetitive (but not circulant) pattern in the rest of the matrix.

In Matlab code, given a matrix A, this can be achieved by

imagesc(log10(abs(A)));
colorbar;
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Figure B.1: Operator N2D discretized on a non-regular mesh

Spectrum plot
A logarithmic plot of the matrix spectrum is the best tool to understand its
numerical rank. While the algebraic rank is defined as the number of non-zero
eigenvalues (or singular values, if using SVD), the numerical rank depends on
the threshold we choose as numerical zero. Plotting the logarithm of the sorted
eigenvalues or singular values allows to understand the behavior of the spectrum,
if it has a relevant magnitude drop at a certain point, how steep it is and what
is the order of magnitude of the values before and after the drop. Furthermore,
the dynamic range of the represented values roughly corresponds to the condition
number. Example of this kind of plot are 2.2, but also 4.5-4.7 apart for the ordering,
which is discussed in section 4.3.

In Matlab code, given a matrix A, this can be achieved by

S = svd(A);
semilogy(S);

Eigenvector or singular vector projections
Particularly in the context of filtering, the relationships among eigenvectors or
singular vectors of couple of matrices are of paramount importance. Given two
matrices A and B, the logarithmic color plot of VH

AVB where VX can either be the
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eigenvector, left or right singular vector matrix of X is an interesting visualization
of such a relationship. given the linear independence of both eigenvectors and
singular vectors, the similarity of the eigenvector or singular vector set for A and B
is expressed by the similarity of VH

AVB to the identity matrix. The effect of Davis-
Kahan theorem 2.3.1 must be taken into account. Example of such representations
are Fig. 2.2 and 4.2.

In Matlab code, given two matrices A and B, this can be achieved by

[ua, sa, va] = svd(A);
[ub, sb, vb] = svd(b);
imagesc(log10(abs(va’*vb)));
colorbar;
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