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Summary

Artificial Intelligence has driven technological innovation over the past decade,
impacting various fields such as image recognition, natural language processing,
autonomous driving, and complex system modeling. Edge AI offers a promising
alternative to traditional cloud-based solutions by processing data directly on
devices. This enables real-time operations, improves privacy and data integrity, and
allows edge devices to acquire data from multiple sensors simultaneously, enhancing
their ability to extract meaningful information from the environment.

Microcontrollers (MCUs) are a popular choice for edge devices due to their
versatility and short time-to-market. However, they face challenges such as limited
computational resources and the need for low-power consumption, making it crucial
to optimize their design for deployment in edge AI applications.

In this context, X-HEEP is a configurable, open-source RISC-V 32-bit MCU
developed at the Embedded Systems Laboratory (ESL) at EPFL. The main goal of
this thesis is to enhance X-HEEP by introducing new features that address one of
the key challenges in deploying Edge AI models: the bottleneck in data movement
and manipulation, especially on low-power platforms.

To handle the large amount of data generated by multiple sensors in edge
computing, the DMA system of X-HEEP was extended with a configurable
number of channels, which are connected to the system bus via customizable
master ports. This extension allows memory bandwidth to scale with the number
of channels, except in cases of bus conflicts. Additionally, power consumption can
be reduced through clock-gating, which can be applied to individual unused DMA
channels by utilizing the existing power management system.

Edge AI, like cloud-based AI, relies heavily on neural networks, particularly
on GEMM (General Matrix Multiply) operations, which are fundamental to
deep learning. To meet performance, timing, and energy efficiency requirements,
specialized hardware accelerators such as multi-core clusters, in/near-memory
macros, and systolic arrays have been developed. At ESL, for example, two
innovative low-power architectures, Caesar and Carus, were designed to perform
both memory operations and computations.

A key operation in convolutional neural networks (CNNs) is the transformation
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of input tensors and filters into a matrix form using a technique called im2col
(image-to-column). This transformation simplifies convolutions by converting them
into matrix multiplications, which can then be accelerated by specialized GEMM
hardware. However, when handled by the CPU, the im2col operation can become
time-intensive, potentially negating the benefits of the accelerator and turning data
transfer into a performance bottleneck.

To address this issue, the thesis extends X-HEEP’s DMA system with 2D
capabilities and the ability to perform on-the-fly data transformations such as
transpositions, zero-padding, and sign extension. These enhancements allow the
DMA to manage tensor reshaping tasks more efficiently, reducing the overall CPU
load.

Furthermore, the thesis introduces the Always On Peripheral Bus (AOPB),
which exposes the Always-On peripherals, including the DMA subsystem, via a
simplified OBI protocol. This allows external accelerators to access pre-existing
peripherals directly, enabling complex data manipulations with minimal area
overhead, particularly for DMA-based accelerators.

To validate this interface, the thesis proposes a Smart Peripheral Controller
(SPC) for the im2col transformation, designed to optimize tensor reshaping for
GEMM operations. By leveraging the new DMA system’s features, the SPC mini-
mizes data movement overhead while keeping the area requirements low. Through
extensive testing, the im2col SPC achieved a 6.1x performance improvement
compared to CPU-based im2col routines, while consuming 2% less power, result-
ing in a 6.1x increase in energy efficiency.

All the designs introduced in this thesis will be integrated into HEEPatia,
a 16nm silicon implementation of X-HEEP aimed at low-power edge-computing
applications. To ensure the correctness and performance of these designs, a
comprehensive verification campaign was conducted. For this purpose, a software-
based platform called VerifHEEP was developed. This Python library, tailored
for X-HEEP, enables users to rapidly create a SBST verification environment
that targets both simulation tools and the PYNQ-Z2 FPGA board. VerifHEEP
was used to verify the DMA system and the im2col SPC, ensuring that the designs
function as expected and deliver the intended performance improvements.

A significant objective of this thesis was to make all components easy to under-
stand, use, extend, and adapt for future developers. To support this goal, extensive
documentation was created for both the DMA subsystem and the VerifHEEP
library, along with thoroughly commented hardware abstraction layers (HALs) and
usage examples.

The impact of this work is already evident, as several DMA-based projects
utilizing these new features have started development at both ESL and Polito’s
VLSI group before the completion of this thesis. This early adoption highlights
the importance of these contributions in addressing data movement challenges and
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advancing research in Edge AI.
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Chapter 1

Background Foundations

“Artificial intelligence is the science and engineering of making computers behave
in ways that, until recently, we thought required human intelligence.”

Andrew Moore, Dean of Computer Science at Carnegie Mellon University. [1]

1.1 Machine Learning Overview

1.1.1 Potential and Limits of Modern Artificial Intelligence

Artificial Intelligence (AI) refers to the field of computer science that focuses on
creating machines and systems capable of performing tasks that typically require
human intelligence, like understanding natural language, recognizing patterns and
making complex decisions.

AI systems can range from simple rule-based algorithms to complex neural
networks with billions of parameters, and they find application across a wide
spectrum of fields, from autonomous driving to advanced biomedical imaging.

The concept of AI was first articulated at the Dartmouth Conference in the
summer of 1956. The goal of the conference was to explore the possibility of
creating machines that could simulate human intelligence. It was during this event
that the term "Artificial Intelligence" was coined by John McCarthy [2].

However, the past decade has witnessed a remarkable surge in interest in the
field of AI, driven by significant advancements in computational power and the
emergence of "big data", often referred to as "the new oil" due to its immense
value in today’s digital economy. In AI, data play a crucial role, as they are the
foundational element required to train and refine algorithms.
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Background Foundations

Within the broad landscape of Artificial Intelligence, Machine Learning stands
out as a highly promising approach. There are numerous complex problems, such
as pattern recognition, human speech comprehension, and image generation, that
are exceedingly difficult, if not impossible, to solve by explicitly programming the
correct behavior.

The machine learning approach allows the developer to define the overall struc-
ture of the algorithm while enabling the system to autonomously learn and optimize
its parameters during the training phase, and sometime even during inference.

Despite these advancements, modern AI systems are not without their limitations.
One of the most significant challenges is the immense computational power required
to train sophisticated models, often necessitating specialized hardware like GPUs
and TPUs. Furthermore, the training process demands enormous datasets, which
are not always readily available or easily accessible. In addition to these constraints,
the power consumption during the inference phase can be substantial, particularly
in real-time or mobile applications, where energy efficiency is crucial.

As a potential solution to these challenges, the concept of Edge AI has emerged,
which refers to the deployment of AI algorithms directly on edge devices, rather
than relying on centralized cloud-based servers. By processing data locally on the
device, Edge AI can significantly reduce latency, improve privacy, and operate
independently of an internet connection. This approach is especially beneficial for
real-time applications and mobile environments, where the constraints of bandwidth,
energy, and computational resources are more pronounced.

1.1.2 Types of Problems Addressed by Machine Learning

Figure 1.1: Four categories of problems addressed by ML

The problems that Machine Learning tackle falls in one of four categories, as
depicted in figure 1.1, depending on whether the algorithm training is supervised
or not and whether the data space is continuous or discrete.
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1.1 – Machine Learning Overview

Regression

In a nutshell, regression focuses on predicting continuous numerical values based
on input features by minimizing a cost function.

Figure 1.2: An example of a fourth-order linear regression model used to predict
house prices based on service quality and crime rates in the area

Unlike classification, where the output is a discrete label, regression models
aim to understand the relationship between independent variables (features) and a
dependent variable (the target or output).

The general approach to regression is composed of a progression of steps:

1. Choose a model describing the relationships between variables of interest.
e.g. Linear regression:

y = w · x + b

Weights (w) and biases (b) are the parameters of the algorithm that are learned
during the training phase.

2. Define a loss function that quantifies the degree to which the model’s pre-
dictions deviate from the actual data. The most popular choice is the L2
norm.
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L(x) = (t(x)− y(x, w, b))2 (1.1)

In this regard, it’s crucial to select a regularizer that reflects the preference for
simpler candidate explanations among those with similar loss function values,
in accordance with Occam’s principle [3].

3. Fit the model by minimizing the loss function using an optimization algorithm,
effectively training the model.

In real-world scenarios, problems are often too complex to be analysed accurately
with a simple linear regression.

Generalized regression (1.2) is a powerful expansion of this concept, as it’s
capable of capturing more complex, non-linear relationships within the data source
by introducing higher-order terms.

y =
nØ

i=1
wi · x(i−1)

i (1.2)

However, choosing the order of the regression is a delicate matter, as it can have
destructive consequences on the effectiveness of the model.

To address this challenging decision, the generalization error can be referred to,
which represents the error that occurs when the model is applied to new, unseen
data. It is influenced by two main components:

• Bias error: It arises from approximating a complex real-world problem
with an overly simplified model. Bias represents the difference between the
predictions of the average model and the actual outcomes, caused by incorrect
assumptions and simplifications. Over-simplified models, such as those with a
low order of regression, tend to produce high bias.

• Variance error: It reflects the model’s sensitivity to small fluctuations in
the training data, often resulting from a model with too high an order of
regression. Variance measures how much the model’s predictions would vary
if it were trained on different datasets drawn from the same distribution.

To estimate the generalization error, the ground truth data is divided into two
subsets:

• Training set: This subset is used to perform the regression and train the
model.
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1.1 – Machine Learning Overview

Figure 1.3: Bias and variance contributions to the generalization error

• Validation set: This subset simulates the data that will be encountered
during inference and it is used to evaluate the model’s fit and performance.

The contribution of variance to the generalization error typically follows an
exponential pattern relative to model complexity, while the contribution of bias
follows a decaying exponential curve. Figure 1.3 illustrates this relationship and
highlights the combined effect of these contributions, i.e. the overall generalization
error. Furthermore, it’s possible to identify two distinct situations:

• Underfitting: This occurs when the model is too simple to capture all the
relevant characteristics of the data. It is identified by both a high training
error and a high validation and test error.

• Overfitting: Conversely, overfitting happens when the model is too complex
and captures irrelevant details or noise in the data. This is characterized by a
low training error, due to the model’s high complexity, but a high validation
error.

Overfitting is generally preferred over underfitting as a starting point, since it
provides a better foundation for refinement. Various techniques can reduce the
model’s complexity to an optimal level, whereas increasing the complexity of an
underfitting model is more challenging.
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A simple yet effective approach to address overfitting is to increase the dataset
size. Although this may slightly raise the training error, it helps reduce the
validation error, thereby mitigating overfitting. In this context, the importance of
data collection becomes even more crucial.

Another highly effective approach is to progressively reduce the number of
parameters while maintaining a low training error. This powerful technique, known
as regularization, allows for tuning model complexity to reduce both bias and
variance.

The core principle of regularization involves incorporating model complexity
directly into the cost function.

Two popular types of regularization applied to generalized regression are:

• Ridge: This method adds ∥w2∥, the squared sum of the model parameters,
to the cost function, multiplied by a regularization factor λ.

• Lasso: This method adds ∥w∥, the sum of the model parameters, to the cost
function, also multiplied by a regularization factor λ.

The regularization factor λ itself is a parameter that must be carefully selected.
Increasing λ too much can lead to underfitting by overly simplifying the model,
while decreasing it too severly can result in overfitting by allowing the model to
become too complex.

The final step in building a regression model is selecting a suitable optimization
algorithm. One of the most widely used methods is gradient descent, an iterative
technique that is often more effective than direct solutions in explicit form. In
essence, gradient descent seeks to find the minimum of the loss function by following
the steepest descent direction. At each iteration, the algorithm computes the partial
derivative of the loss function with respect to each parameter wj (denoted as ∂L

∂wj
)

and adjusts the parameters based on the sign of this derivative:

• If ∂L
∂wj

> 0, increasing wj would increase the loss L, so wj should be decreased.

• If ∂L
∂wj

< 0, increasing wj would decrease the loss L, so wj should be increased.

The parameters are updated using the rule in equation (1.3), (1.4) in vector
form, where α is the learning rate.

wj ← wj − α
∂L

∂wj

(1.3)

w← w− α∇L(w) (1.4)
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The learning rate α is an example of a hyperparameter, which influences both the
speed and the likelihood of convergence to a minimum. If α is too small, gradient
descent progresses slowly. Conversely, if α is too large, the algorithm may overshoot
the optimal point and potentially diverge.

Figure 1.4 illustrates the Mean Squared Error of a model trained with three
different learning rates, highlighting the impact of suboptimal parameter choices.

Figure 1.4: Behaviour of the gradient descent optimization algorithm with three
different learning rates

When features have widely varying value ranges, or are skewed, convergence
during optimization can become significantly slower. To mitigate this effect, the
dataset can be scaled and normalized using the transformation in equation (1.5).

x′
i = xi −mean(xi)

max(xi)−min(xi)
(1.5)

This process helps to standardize the feature values, ensuring that they are on
a similar scale, which in turn can accelerate convergence and improve the efficiency
of the optimization algorithm.

Gradient descent is a powerful method but it might be inefficient when the
dataset is too big, which as seen previously is a necessary measure that contributes
to the reduction of overfitting.

A potential solution is Mini-Batch Stochastic Gradient Descent, a technique
that updates the weights based on the loss function computed from a small subset
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of the training data, known as a "mini-batch" or simply "batch". The update rule is
given by equation ( 1.6).

w← w− α · (y − t) ·XB (1.6)

where XB represents the mini-batch.
This approach balances the efficiency of Stochastic Gradient Descent, which uses

a single data point per update, and the stability of traditional Gradient Descent,
which instead uses the entire dataset.

Classification

This class of algorithms tries to apply a prediction function to a representation
of the input data to get the desired output as a discrete label, as opposed to a
continuous value. A wide range of solutions can be found, ranging from the simplest
and most efficient solutions up to large networks with billions of parameters. Let’s
proceed in complexity order.

Decision boundary

This problem involves classifying data based on whether they fall inside or
outside a certain boundary, which must be learned during training. The objective is
to identify an appropriate boundary, or model, that can effectively predict the class
of data based on its position relative to this boundary. By leveraging high-order
features, it is possible to learn n-dimensional separation boundaries.

To address this classification problem, logistic regression is employed, which
applies the principles of linear regression to a discrete case, as described with
equation (1.7), where σ is the sigmoid activation function that enables classification.

y = σ(w ·X + b) (1.7)

However, the typical loss function used in linear regression, the L2 norm, is
unsuitable here. When combined with the sigmoid function, it leads to a critical
issue known as the vanishing gradient problem, which prevents the weights from
being properly updated and halts learning.

This phenomenon occurs especially when the weights are very distant from
0, as they are randomly initialized at the beginning of each epoch. Instead, the
Cross-Entropy loss function can be used, as it avoids the vanishing gradient issue,
allowing effective training of the model. Figure 1.5 clearly demonstrates the impact
of this situation on the training process.

8
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Figure 1.5: Average loss for a binary classification model trained once with L2
and once with Cross-Entropy as loss functions, averaged over 500 runs

Support Vector Machines

Support Vector Machines (SVMs) are a robust classification technique that, like
decision boundary methods, seek to separate data into distinct classes.

Figure 1.6: Decision Boundary model obtained using SVMs, with data randomly
generated in two clusters
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SVMs focuses on maximizing the margin between the closest data points from
each class, known as support vectors. The hyperplane that SVMs identify as the
decision boundary is the one that maximizes this margin.

The closest elements to the boundary are called support vectors, as shown in
figure 1.6. They influence the position and orientation of the hyperplane, defining
the margin of separation between the two classes.

Decision Trees

Decision Trees are used to model decisions in a hierarchical structure, where
each node represents a feature test, and each branch represents an outcome of that
test, leading to a final decision at the leaf nodes.

This makes decision trees highly interpretable, as the decision-making process
can be visualized and understood easily. They can handle both categorical and
numerical data, and they naturally perform feature selection, making them versatile
for various types of datasets.

Furthermore, decision trees are highly sequential and computationally cheap,
making them perfect for CPUs and mobile devices.

Figure 1.7: Decision Trees model with
four classes

Figure 1.8: Structure of the Deci-
sion Trees model after training

However, decision trees have certain limitations. Small trees are inexpensive to
train but tend to have high bias, while large trees are computationally expensive and
often exhibit high variance. Additionally, they are generally prone to overfitting.

To achieve a balance between these extremes, small trees can be combined into
ensembles known as forests. In this approach, randomness is crucial, as each tree
is trained on a random subset of the data, which plays a more significant role than
in typical mini-batch training.
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The decisions of these trees are then combined through a voting process known
as "Bagging" (Bootstrap Aggregating).

While decision trees are not well-suited for models with a large number of features,
such as image recognition tasks, they offer a good compromise for applications on
platforms with limited computational power and resources.

Neural Networks

Neural Networks are a class of machine learning models loosely inspired by early
knowledge on the structure and function of the human brain. In classical neural
networks, each "neuron" computes a linear combination of input features followed
by a non-linear activation function, which is essential for enabling the network to
generalize beyond the training data.

Figure 1.9: AlexNet is a popular deep convolutional neural network architecture
with 8 layers, designed for image classification, featuring stacked convolutional
layers, ReLU activations, max-pooling, and dropout to improve performance and
prevent overfitting [4]

The linear combination, while computationally straightforward, involves numer-
ous coefficients that require efficient handling of multiplications and additions.

Among the most commonly used activation functions are:

• Sigmoid function
σ(z) = 1

1 + e−z
(1.8)

The sigmoid function was historically favored for its smooth gradient, as can
be seen in figure 1.10, which facilitates learning through gradient descent
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methods, and its bounded output, making it suitable for binary classification
tasks.
However, it also presents significant drawbacks, including the vanishing gradi-
ent problem, as explained in depth in the decision boundary paragraph 1.1.2,
and the issue of a non-zero-centered output, which can cause inefficiencies
during optimization.

• Hyperbolic tangent (tanh)

tanh(z) = 2
1 + e−2z

− 1 (1.9)

This function is similar in form to the sigmoid but produces outputs between
-1 and 1, as shown in figure 1.11, providing a zero-centered output that helps
mitigate some of the optimization issues associated with the sigmoid function.
Despite this advantage, the tanh function also suffers from the vanishing
gradient problem for extreme input values.

• Rectified Linear Unit (ReLU)

ReLU(z) = max(0, z) (1.10)

This function and its variants have gained significant popularity in recent
years and constitute foundational blocks in deep learning applications.
It offers a simple, non-linear transformation that retains only positive values,
as depicted in figure 1.12. ReLU is computationally efficient and, most im-
portantly, it mitigates the vanishing gradient problem by providing a constant
gradient for positive inputs.
However, it is not without issues, such as the potential for "dying ReLUs", where
neurons can become inactive during training. Variants like Leaky ReLU
introduce small gradients for negative inputs to prevent neuron inactivity.

• Softmax, commonly used in the output layer of classification networks. It
converts logits into probabilities that sum to one, making it suitable for
multi-class classification tasks. By comparing different activation functions,
it becomes clear that while each has specific strengths and weaknesses, the
choice of activation function significantly impacts the performance and training
efficiency of neural networks.

Neural networks are organized in a layered architecture, where each layer consists
of a set of neurons that process input data and pass the results to the next layer.
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Figure 1.10: Sigmoid
function

Figure 1.11: Hyperbolic
tangent function

Figure 1.12: ReLU func-
tion

This structure, where neurons in one layer are connected to those in the subsequent
layer, forms a Directed Acyclic Graph (DAG).

Figure 1.13: Example of a Neural Network with two hidden layers

The layers are typically divided into three main types: the input layer, hidden
layers, and the output layer, as shown in figure 1.13. The input layer receives
the raw data, which is then transformed by one or more hidden layers through
weighted connections.

Finally, the output layer produces the model’s predictions. The connections
between layers are unidirectional, meaning information flows in a single direction
from the input to the output, ensuring the graph remains acyclic.

The process of training a neural network involves the backpropagation algorithm,
which is an iterative method for optimizing the weights of the connections between
neurons by minimizing the error in the network’s predictions. After each input
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passes through the network, the prediction is compared to the actual target value,
and an error is calculated.

This error is then propagated backward through the network, layer by layer, to
update the weights. The weight updates are guided by the gradient of the error
with respect to each weight, calculated using the chain rule of DAGs. This allows
the network to iteratively adjust its parameters in a direction that reduces the
error.

It is in this context that the vanishing gradient could effectively disrupt the
training process. The repeated multiplication by small values can lead to the gradi-
ents becoming so small that they effectively "vanish", making it nearly impossible
for the weights in the earlier layers to be updated effectively. As a result, the
network fails to learn important features in the early layers, which severely limits
the overall learning capacity of the model.

Figure 1.14: Example of an intermediate step of the training of a Neural Network
with a Drop Out regularizer applied

Similarly to regression models, regularization techniques are used to reduce
overfitting.

A very popular approach is the Drop Out method, represented in figure 1.14.
It operates by randomly "dropping out" or deactivating a subset of neurons during
each training iteration. The remaining neurons must compensate for the missing
connections, which encourages the network to develop redundant, distributed
representations of the data.

Furthermore, Drop Out can reduce the memory required to store the model’s
weights when they are represented using a sparse matrix representation. By
deactivating a significant number of neurons, the network effectively operates with
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fewer active parameters at any given time, which can be beneficial in memory-
constrained environments.

Convolutional Neural Networks (CNNs) are a specialized class of deep
neural networks designed specifically for tasks like image recognition and computer
vision.

Traditional deep neural networks, while powerful, have limitations when applied
to vision tasks due to their large number of parameters and computational load.

CNNs address these challenges by replacing full neuron-to-neuron connections
with convolutions, where each neuron is connected only to a local region of the
input, known as the receptive field. This localized connectivity allows the network
to focus on small, meaningful patterns in the input data, such as edges or textures,
which are then combined in deeper layers to recognize more complex structures.

Figure 1.15: Example of a single Convolutional Neural Network layer

A key feature of CNNs is the use of shared weights across all neurons in a layer,
significantly reducing the number of parameters and the need for large amounts of
training data.

Figure 1.15 represents the structure of a generic CNN layer, composed of:

• Convolutional layer: This layer performs the core convolution operation.

• Activation function: As previously discussed, the activation function is
crucial for enabling generalization.

• Pooling layer: This layer further limits connectivity by summarizing in-
formation in local regions of the feature map. The most common pooling
techniques are max pooling and mean pooling, as shown in figure 1.16.
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Figure 1.16: Example of a Max Pooling with 3x3 filters and a 3 element stride

However, convolutional layers alone do not comprise a CNN; they are typically
followed by a limited number of fully connected layers and a softmax layer to
produce a statistically sound output.

Despite the use of activation functions like ReLU, the vanishing gradient problem
remains a significant challenge in the deepest convolutional neural networks. One
potential solution is the introduction of modules that can partially or completely
bypass groups of layers, ensuring effective backpropagation.

This approach was explored by GoogLeNet [5] with its inception modules,
depicted in figure 1.17.

Figure 1.17: The inception module in the GoogLeNet architecture is placed on
the left side of the network, where it bypasses the main blocks

Recurrent Neural Networks (RNNs) are a type of neural network designed
to handle sequential data, making them particularly well-suited for tasks like
language modeling, speech recognition, and time series prediction. Unlike traditional
feedforward networks, RNNs have connections that form cycles, allowing information

16



1.1 – Machine Learning Overview

to persist across time steps. This enables RNNs to maintain a memory of previous
inputs, which is crucial for understanding context in sequences.

However, RNNs are prone to challenges such as vanishing and exploding gradients,
which can make training difficult, especially over long sequences. To address these
issues, advanced variants like Long Short-Term Memory (LSTM) and Transformers
have been developed, offering more robust performance by better managing the
flow of information through the network.

Unsupervised Learning

Unsupervised learning refers to a type of machine learning where the model is
trained on data without explicit labels or predefined outcomes. Instead of predicting
specific outputs, the model seeks to identify patterns, structures, or relationships
within the data itself.

This type of learning is particularly useful in situations where labeled data is
scarce or where the goal is to explore the underlying structure of the data.

Two of the most important approaches to unsupervised learning are clustering
and dimensionality reduction, which target discrete and continuous data spaces,
respectively.

Clustering
This technique is most effective when the source data naturally forms clusters

and is frequently used to uncover patterns within the data.

Figure 1.18: Progression of K-Means clustering across three iterations, showing
the iterative refinement of cluster centers as they converge towards their final
positions

A popular solution to this problem is K-means clustering, a NP-hard algorithm
which is based on the assumption that each point in a cluster is close to its cluster
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center. The algorithm begins by randomly initializing k centroids, which serve as
the initial centers of the clusters. It then iteratively assigns each data point to the
nearest centroid, forming clusters, and updates the centroids to be the mean of the
points in each cluster. This process repeats until the centroids stabilize, indicating
that the clusters are well-formed.

While K-means is simple and efficient, its performance depends on the initial
placement of centroids and the choice of k, which must be predetermined. Addi-
tionally, K-means assumes that clusters are spherical and equally sized, which may
not suit all datasets, and it can be sensitive to outliers.

Dimensionality Reduction
This technique is particularly useful when the source data presents a large

number of features without any indication of their relevance. It can improve both
training speed and prediction quality by contributing to the reduction in overfitting.

A popular tool to perform dimensionality reduction is the principal component
analysis (PCA). The algorithm operates by projecting data onto a subspace spanned
by a basis of eigenvectors derived from the data space.

For each point xi in the original space, the algorithm identifies the closest point
x′

i within this subspace, effectively reducing the dimensionality while preserving as
much variance as possible.

There are two possible ways to describe the PCA progression to find the best
subspace in a 2D space. Let’s take two subspaces, S1 and S2, represented in figure
1.19. On one hand, S1 is a better subspace beacause has a lower average distance
from the elements than S2. On the other hand, the projections of the elements on
S1 are more "spread out" than S2’s projections. Therefore, two criteria can be used
to obtain the same result:

• Minimize the projection error

• Maximize the variance of the projected errors

S1 S2

Figure 1.19: Simple two-dimensional example of Principal Component Analysis.
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Generalizing the previous example, the algorithm for PCA relies on the spectral
decomposition of matrices. A symmetric matrix A has a full set of eigenvectors,
which can be chosen to be orthogonal, resulting in the decomposition A = QΛQT ,
where the columns of Q are the eigenvectors of A, and the elements of Λ are its
eigenvalues.

PCA is typically performed on the empirical covariance matrix Σ, defined as
Σ = q(xi − µ)(xi − µ)T /N , where µ is the mean of the data points. It can be
proven that Σ is positive semidefinite, meaning all its eigenvalues are non-negative.

PCA reduces the dimensionality of the data by selecting the eigenvectors corre-
sponding to the largest K eigenvalues, which are known as the principal components
of Σ. The orthogonality of these eigenvectors ensures that the new features derived
from them are uncorrelated.

Principal Components can be learned using an Autoencoder, which is a feed-
forward neural network designed to predict x from x, essentially approximating
the identity function.

In the case of a simple 2-layer Autoencoder, the network learns the Principal
Components, with the weights W1 and W2 corresponding to the matrices QT and
Q, respectively.

Figure 1.20: Accuracy obtained using different feature dimensions, as extracted
from the 2017 paper ’Using Deep Autoencoders for Facial Expression Recognition’
[6]. This paper investigates the effectiveness of deep autoencoders for feature
selection and dimension reduction in facial expression recognition, demonstrating
that the features extracted from the stacked autoencoder outperform other state-
of-the-art techniques, including the standard PCA, as shown in this graph.

19



Background Foundations

While this setup allows the network to learn linear Principal Components, deeper
networks can go beyond and learn non-linear Principal Components, providing a
more powerful alternative to standard PCA. Deep Autoencoders, in fact, are more
powerful than PCA when using the same number of parameters, similar to how
deep neural networks generally outperform their shallow counterparts, as shown in
figure 1.20.

Reinforcement Learning

Reinforcement Learning (RL) is a distinct field of Machine Learning that emerged
in the 1950s, building on the foundational work of Andrey Markov, who introduced
the "Markov Decision Process" (MDP) as a framework for decision-making in
uncertain and unsupervised environments.

At the core of MDPs is the concept of Markov Chains, which describe a sequence
of states where transitions to the next state depend solely on the current state,
without regard to prior states. MDPs extend this by incorporating decision-making,
allowing an agent to select actions that influence these state transitions.

Figure 1.21: Example of a Reinforcement Learning model training for ETH’s
quadrupedal system ANYmal, by Hwangbo et al [7].

In RL, the problem is framed as an agent exploring an environment to achieve
a goal by maximizing expected cumulative rewards. The agent interacts with the
environment by sensing its current state and taking actions that alter this state to
obtain rewards.

While the reward signal represents the immediate benefit of a specific action, the
value function captures the long-term benefit, or cumulative reward, expected from
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a given state. The central objective of RL algorithms is to determine an optimal
policy, i.e. a strategy for selecting actions, that maximizes the value function and
ensures the agent consistently achieves the highest possible cumulative rewards
over time.

RL algorithms can be broadly categorized into model-free and model-based
approaches. Model-free algorithms, which do not build an explicit model of the
environment or the underlying Markov Decision Process (MDP), rely on trial-and-
error interactions with the environment to learn optimal policies.

These algorithms are further divided into value-based and policy-based methods.

• Value-based algorithms focus on accurately estimating the value function
of each state using the recursive Bellman equation. By sampling trajectories of
states and rewards, the agent can estimate the value function and subsequently
determine the optimal policy by acting greedily with respect to the learned
value function. Well-known value-based algorithms include SARSA and Q-
learning.

• Policy-based algorithms directly parametrize the policy, turning the learn-
ing process into an explicit optimization problem. The agent samples trajec-
tories to adjust the policy in a way that maximizes the expected cumulative
reward, as seen in methods like REINFORCE and deterministic policy gradient
(DPG).

While policy-based approaches can model continuous action spaces, they suffer
from high variance and instability during training. Value-based methods are more
stable but less effective in continuous action domains.

Actor-critic algorithms combine both approaches by parametrizing both the
policy (actor) and the value function (critic), leveraging the strengths of each to
stabilize training and enhance performance.

1.1.3 Core Computational Mechanisms in ML
In the previous section, the primary types and structures of Machine Learning
algorithms were discussed. This section now delves deep into the core computational
mechanisms essential for effective training and inference of these models.

Vector and matrix products: the workhorse of ML

Vectors and matrix products are fundamental to a wide range of computations
essential to most ML algorithms. Data points are typically represented as vectors,
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while datasets are organized as matrices, with each row corresponding to a data
point and each column to a feature. These vectors and matrices are crucial
for applying linear transformations, such as matrix-vector multiplication, which
facilitates data manipulation and transformation within models.

A general NN can be represented by a single equation that relates input activa-
tions, weights, biases, and the activation function, as shown in equation (1.11).

y = g(x) · (W · x + b) (1.11)

This formulation highlights that at the core of a neural network lies the matrix
product of weights (W) and inputs (x), which is the primary computational
challenge in machine learning, and optimizing its execution can significantly reduce
processing time.

This neural network structure is simply an instance of the General Matrix
Multiplication (GEMM), a fundamental operation in linear algebra. Due to extensive
research in this field, GEMM operations have been highly optimized for an wide
variety of targets.

Popular libraries like TensorFlow and PyTorch leverage these optimized GEMM
routines to improve the performance of neural networks built with them.

Furthermore, in convolutional neural networks (CNNs), convolutions can be
restructured as matrix multiplications using techniques like im2col, which will be
explained in detail further along this section.

Thanks to this transformation it is possible to take advantage of highly opti-
mized GEMM routines or even specialized hardware, from GPUs and TPUs to
heterogeneous systems with specific accelerators.

CNNs Computational Structure

As the name states, convolution is at the base of CNNs. It is a fundamental
mathematical operation that combines two functions to produce a third function,
reflecting how the shape of one is modified by the other.

For continuous functions f(t) and g(t), the convolution (f ∗ g)(t) is defined as
the integral in equation (1.12).

(f ∗ g)(t) =
Ú ∞

−∞
f(τ)g(t− τ) dτ, (1.12)

f(τ) is one function, and g(t− τ) is the other, reversed and shifted. In discrete
settings, such as digital signal processing, the convolution of two sequences f [n]
and g[n] is given by a discrete formulation, as shown in equation (1.13).
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(f ∗ g)[n] =
∞Ø

m=−∞
f [m] · g[n−m]. (1.13)

This sum captures the overlap between the sequences as one shifts across the
other.

Figure 1.22: Two-dimensional example of a convolution computation, step one

Figure 1.23: Two-dimensional example of a convolution computation, step two

Figure 1.22 and 1.23 illustrates, in two steps, part of the convolution process
on a two-dimensional input, such as an image. The filter, or kernel, is "passed" over
the image, and at each step, a pixel of the output is computed and stored.

The movement of the filter is governed by a parameter called the stride, which
defines how many elements are skipped during the filter’s traversal.

This parameter has several significant effects on the CNN:
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• Dimensionality reduction: The stride down-samples the data, similar to
pooling. Within certain limits, this can positively affect the CNN’s inference
performance.

• Loss of detail: Inevitably, some data is lost due to striding, particularly at
the edges of images, where central pixels receive more attention as they are
processed multiple times.

To mitigate these effects, zero-padding can be applied, which involves adding a
border of zeros around the input image. This technique has two main consequences:

• Increased detail, especially at the edges, counteracting the stride effect.

• Increased memory usage, due to the enlargement of the input tensor.

Depending on the technique used, there could be a substantial increase in memory
accesses needed to perform padding, potentially slowing down the inference process.

This mechanism reflects the mathematical definition of the convolution operation,
but it clearly requires many cycles due to the movement of the filter.

Each time that the filter moves, it means that data has to be loaded from
memory, RAM or external, which slows down the convolution operation. For
low-latency applications, like obstacle-avoidance, the delay introduced with this
implementation of the convolution can compromise the application.

Im2col transformation

The im2col technique, "image to column", is a computational technique used to
reshape an input image (or generally, any input tensor) into a format that makes
convolution operations more efficient to compute.

Specifically, it converts the sliding window approach into a matrix multiplication
problem, which can be efficiently handled using highly optimized General Matrix
Multiply (GEMM) routines. Figure 1.24 shows some of the steps of the im2col
process, applied to a 3x3, 3 channel tensor, using a 2x2 kernel.

The example in figure 1.24 uses one of the two most popular tensor representation
formats, known as NCHW. N represents the batch size, C denotes the channel, H
stands for height, and W for width.
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Figure 1.24: Example of im2col computation

However, there is another commonly used format called NHWC. The matrix in
example 1.14 provides an example of this format, representing a 1x2x2x3 tensor,
i.e. batch size 1, height and width of 2, and 3 channels.

C
(1, 2, 3) (4, 5, 6)
(7, 8, 9) (10, 11, 12)

D
(1.14)

(1, 2, 3) are the values of the first "pixel" of the tensor across different channels,
where "1" corresponds to CH0, "2" to CH1, and "3" to CH2. As the format suggests,
height (H) comes first, followed by width (W), and finally the channel (C).

For reference, matrix 1.15 represents the same tensor but in the NCHW format.
The submatrix (1, 4, 7, 10) is the 2x2 slice of channel 0, and similarly for the other
two submatrices.



(1) (4)
(7) (10)
(2) (5)
(8) (11)
(3) (6)
(9) (12)


(1.15)
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The question of which of these two formats is the better choice naturally arises,
and it is not a trivial one to answer.

Today, neural networks are developed using frameworks such as TensorFlow and
PyTorch, which abstract away the low-level details of the underlying algorithms.
As a result, there is limited information on tensor representation formats in the
research community, and much of it is biased toward the framework’s developers.

Both frameworks incorporate the im2col operation in their convolutional layers,
with PyTorch using the NCHW format by default, while TensorFlow uses NHWC.

NVIDIA, the developer of TensorFlow, states in its documentation on Convolu-
tional Layers [8] that "[format choice] has an effect on performance, as convolutions
implemented for Tensor Cores require NHWC layout and are fastest when input
tensors are laid out in NHWC." In other words, TensorFlow uses NHWC by default,
so if the input data are in NCHW format, inference will require an additional
conversion and, therefore, be slower.

It is worth noting that no detailed reasoning is provided for why NHWC was
chosen as the default format.

Figure 1.25: Comparison between NHWC and NCHW execution times on Intel
i9 CPU

However, it is arguable that NHWC exhibits greater spatial locality than NCHW,
a characteristic that can be advantageous on highly parallelized machines such as
GPUs, of which NVIDIA is a leading producer. In the NHWC format, channel data
for the same spatial location (height and width) are stored adjacently, allowing
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for more efficient parallel processing. This layout aligns well with the architecture
of GPUs, where multiple channels of the same pixel are processed simultaneously,
leading to more coalesced memory accesses and optimized performance on hardware
like Tensor Cores.

On the other hand, NCHW is generally faster on CPUs than NHWC. The
NCHW format benefits from better cache utilization on CPUs, where the spatial
dimensions (height and width) are stored contiguously, leading to more efficient
sequential memory access. This observation is confirmed by a test campaign based
on the im2col implementation provided by XuanTie [9], a core member of the
RISC-V foundation.

Figure 1.25 shows the results of the tests in terms of machine cycles. The tests
were conducted on a platform equipped with an Intel Core i9 CPU, starting with a
batch of 5 on a 100x100 input tensor with 3 channels, and increasing both height
and width of the input at each iteration.

Moreover, in non-cached systems with low processing power, Direct Memory
Access (DMA) controllers can still benefit from the linear access pattern of NCHW,
much like caches do. In such systems, the sequential memory access provided by
NCHW allows DMA controllers to efficiently transfer large blocks of data with
minimal overhead.

1.2 Deploying ML Models on Edge Devices

1.2.1 Edge AI vs Cloud AI
Cloud AI refers to the use of cloud computing infrastructure to train, deploy, and
execute artificial intelligence (AI) models. It is the most common method used in
many consumer applications due to its ability to handle large-scale data processing
and computation.

In cloud AI, data is sent from a device to remote servers, where it is processed
by powerful AI models, and the results are then returned to the device. This
system is ideal for applications such as virtual assistants, image recognition, and
recommendation engines, which rely on massive datasets and continuous model
updates.

One of the key advantages of cloud AI is its ease of scalability, which allows
businesses to quickly increase or decrease their computational resources as demand
changes. This flexibility is crucial for organizations that need to manage large
volumes of data or run multiple AI applications simultaneously, without investing
in additional expensive hardware infrastructure.
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While cloud AI excels at processing vast amounts of data, it has limitations
in situations that require real-time analysis, instant responses or operation in
environments with limited or no connectivity. This is where edge AI comes into
play.

Unlike cloud AI, which relies on remote servers, Edge AI processes data locally,
on the device itself, without needing to send information back to the cloud. This
makes it particularly useful in scenarios where quick decision-making is critical, such
as in autonomous vehicles, industrial automation, or critical healthcare equipment.

By removing reliance on constant internet connectivity, Edge AI ensures the
continuity of its services across diverse environments. Furthermore, edge devices
enhance the integrity of personal data and significantly reduce the risk of privacy
breaches.

The task of running effective NN models on small and mobile devices is quite a
challenging one. There are several constraints that has to be taken into account
when designing a model to run on edge devices:

• Computing resources: These devices have limited computational power due
to their small size and energy constraints. They are rarely equipped with
powerful vector processing units, which are traditionally used to accelerate
inference via GEMM operations, like GPUs.

• Power consumption: Edge devices are often battery-powered, requiring them
to be highly efficient, and the models must also be optimized and adapted
accordingly.

1.2.2 Mitigating Critical Challenges in Edge AI
In recent years, numerous solutions have emerged to address the limitations of
Edge AI, focusing on both performance and efficiency.

From a hardware perspective, new accelerators have been introduced, ranging
from general-purpose to highly specialized designs. General-purpose accelerators,
like GPUs and TPUs, offer great flexibility, enabling them to handle a wide variety
of workloads.

However, this flexibility often comes with increased area and power consumption
due to their need to accommodate diverse computational tasks.

In contrast, specialized accelerators integrated into heterogeneous platforms,
such as Systolic Arrays and Near-Memory Computing (NMC) units, are highly
optimized for specific tasks. These accelerators deliver greater power and area
efficiency, but at the cost of reduced adaptability for tasks outside their design
focus.
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NMC and In-Memory Computing (IMC) specifically address the inefficiencies
of the traditional von Neumann architecture, where memory and processing are
separated, creating bottlenecks in data-intensive AI workloads. With SRAM
accesses consuming up to 100× more energy than arithmetic operations, NMC and
IMC minimize costly data transfers by bringing computation closer to the data.

NMC places processing units near memory to optimize bandwidth and reduce
bus pressure, while IMC embeds computation directly within memory cells. Both
architectures offer energy-efficient, high-performance solutions for AI workloads,
significantly improving power and computational efficiency.

Figure 1.26: Caesar Structure Figure 1.27: Carus Structure

NM-Caesar and NM-Carus [10] are two promising examples of such architectures.
They have been developed to address the inefficiencies of traditional architectures
in edge AI applications.

NM-Caesar, figure 1.26, is optimized for area efficiency and lower-power
operations, making it suitable for simpler AI tasks, such as TinyML benchmarks.
It leverages a SIMD-based approach to reduce data movement and execute tasks
like peak detection and lightweight neural networks with minimal overhead.

On the other hand, NM-Carus, figure 1.27, is a fully programmable, RISC-
V-based architecture designed for higher performance and more complex, data-
intensive applications like deep neural networks. By integrating near-memory
computing with vector processing capabilities, NM-Carus significantly improves
both throughput and energy efficiency, achieving up to 50× lower execution time
and 33× better energy efficiency compared to traditional RISC-V CPUs.

1.2.3 X-HEEP: eXtendable Heterogeneous Energy-Efficient
Platform

Among the notable advancements in efficient edge computing, the X-HEEP project
stands out as a versatile and successful platform.
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Figure 1.28: X-HEEP structure overview

X-HEEP [11] is an open-source, configurable, and extensible RISC-V microcon-
troller developed at the Embedded Systems Laboratory (ESL) of EPFL.

It is designed to serve a variety of purposes: it can be used as a standalone
low-cost microcontroller, integrated into existing systems as a peripheral subsystem,
or customized with external peripherals and accelerators.

One of its main strengths is the flexibility it offers developers, especially for
those designing novel accelerators or peripherals, by allowing them to easily drive
their Intellectual Property (IP) blocks using simple controllers.

X-HEEP is built using well-established, open-source IPs such as RISC-V CPUs
and peripherals from groups like OpenHW, OpenTitan and PULP. The platform
supports both simulation, FPGA and ASIC flows, which makes it suitable for rapid
prototyping and testing.

In terms of architecture, it consists of a RISC-V CPU, a system bus, configurable
SRAM memory banks, and a wide array of peripherals, including timers, UART,
GPIO, DMA, and SPI, among others.

One of the key advantages of X-HEEP is its extensibility, allowing users to add
custom peripherals and accelerators without modifying the core platform. This
agility makes it ideal for domains like machine learning, where custom accelerators
for tasks like matrix computations can be seamlessly integrated.

Furthermore, X-HEEP supports low-power operations through features like
clock-gating, power-gating, and multiple power domains, making it highly efficient
for edge computing applications.

30



1.2 – Deploying ML Models on Edge Devices

The MetaWearS project and X-HEEP’s role

Among the notable applications of X-HEEP, the MetaWearS [12] system stands
out for its innovative use of the platform in edge AI and biomedical domains, as it
levergaes X-HEEP for efficient biomedical signal processing in wearable devices.

Figure 1.29: MetaWearS addresses the challenges of a wearable system lifecyle,
specifically the need for large training datasets and effective model updates

MetaWearS addresses key challenges in health monitoring, such as the need for
large amounts of labeled data and frequent model updates that can drain battery
life. By utilizing a meta-learning approach, it significantly reduces the data required
for both model training and updates.

X-HEEP plays a crucial role in MetaWearS by providing a low-power, flexible
hardware platform that supports rapid, energy-efficient model updates. The RISC-
V processing unit handles data collected from wearables while the system updates
models through Bluetooth Low Energy (BLE) with minimal overhead.

This approach drastically improves the energy efficiency of model updates
by 456x for epileptic seizure detection and 418× for atrial fibrillation detection,
extending the battery life of wearable devices used for continuous health monitoring.
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HEEPocrates, a 65nm implementation of X-HEEP

HEEPocrates [13] is a silicon implementation of the X-HEEP platform, specifically
designed for ultra-low-power edge computing in healthcare applications.

Figure 1.30: HEEPocrates layout, silicon photo, and physical realization (on a
Swiss 5-cent franc coin) [13]

It leverages the core architecture of X-HEEP, enhancing it with specialized
accelerators to meet the strict performance and energy efficiency demands of
biomedical signal processing.

Built using a 65nm technology node, HEEPocrates integrates the X-HEEP
microcontroller with a coarse-grained reconfigurable array (CGRA) and in-memory
computing accelerators. They optimize computational efficiency, particularly in
tasks like seizure detection and heartbeat classification, while maintaining low
power consumption.

HEEPocrates has also been integrated into VersaSens, a versatile wearable
sensor platform designed for real-time acquisition, synchronization, and processing
of bio-signals.

The VersaSens system leverages HEEPocrates in its HEEPO module, where it
serves as a co-processor dedicated to accelerating machine learning and deep learning
algorithms. This integration enables the platform to perform real-time inference
during bio-signal acquisition, such as electrocardiogram (ECG), electroencephalogram
(EEG), and electrodermal activity (EDA) signals.
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Figure 1.31: Structure of the VersaSens platform

HEEPocrates’ ultra-low-power architecture makes it ideal for the wearable device,
ensuring that machine learning computations are efficient without compromising
battery life or performance.

The modular and customizable nature of VersaSens, combined with the HEEP-
ocrates SoC, allows the platform to provide highly accurate, real-time data pro-
cessing while maintaining wearability and user comfort. This makes it particularly
useful in clinical and biomedical applications where continuous monitoring is
required.
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Chapter 2

Development

2.1 Data Movement in X-HEEP: the OBI
Protocol

The main focus of this thesis is to reduce the limitations and obstacles in the
deployment of Edge AI models on X-HEEP.

One of the most significant factors contributing to the shortcomings of edge
computing is data movement. Therefore, it is essential to analyze how data is
transferred within the X-HEEP microcontroller.

Figure 2.1: Example of a basic OBI transaction
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The OBI protocol [14] is employed to manage data transmission and reception
between any memory component, from the RAM banks within X-HEEP to the
SPI-connected FLASH. The Open Bus Interface (OBI) protocol is a streamlined,
point-to-point bus interface designed for managing data transactions between
various components in the system. It consists of two main channels: the Address
Channel (A) and the Response Channel (R). The Address Channel facilitates the
transfer of requests (e.g., read/write commands), while the Response Channel
handles the corresponding data responses.

A typical OBI transaction consists of two phases: the address phase, where the
manager sends a request (e.g. data address and control signals), and the response
phase, where the subordinate provides the data or an acknowledgment.

In the address phase, the manager initiates a transaction by asserting the request
signal (req) to indicate that the address phase signals, including address (addr),
write data (wdata), write enable (we), and control signals (be, aid, prot, etc.), are
valid.

The subordinate then signals its readiness to accept these signals by setting the
grant signal (gnt) high. The address phase completes on the rising edge of the
clock when both req and gnt are high.

Following the address phase, the response phase begins when the subordinate
asserts the response valid signal (rvalid), indicating that the response data (rdata),
along with other response signals (err, rid, rchk, etc.), is ready. The manager, upon
asserting the ready signal (rready), completes the response phase. The transaction
concludes on the rising edge of the clock when both rvalid and rready are high.

This handshake process ensures synchronized communication between units,
minimizing the risk of data corruption or misalignment.
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2.2 Designing a Multichannel DMA System for
X-HEEP

2.2.1 The Challenge of Handling Multiple Data Streams in
Edge AI

In Edge AI, data is typically gathered from multiple sensors, each providing a
continuous stream of information. When these data streams converge on a single
edge device, such as an X-HEEP-based system like HEEPocrates [1.2.3], the
device’s CPU is often tasked with managing the flow of data from each sensor.

Input Data

Edge 
device

(ML Model)
Output

Camera sensor

Biomed sensor

Temperature sensor

Figure 2.2: Structure of a general Edge AI system, with a variety of sensors
connected to the edge device

This constant handling of input can create a significant bottleneck. Instead of
focusing on the computational tasks required for data processing and inference,
the CPU must allocate considerable resources to managing and synchronizing the
sensor data. As a result, the efficiency of the system is reduced, with processing
power diverted away from performing the critical AI algorithms.

This challenge highlights a fundamental problem in Edge AI systems, where
managing concurrent data streams can degrade overall performance and delay
real-time decision-making.

2.2.2 Structural Description
To address the previously mentioned limitation, this thesis introduces a novel
Multichannel DMA System, specifically developed for the X-HEEP microcontroller.
Before this work, the DMA system within X-HEEP was limited to a simple
monochannel design.

The development of the multichannel system presented here marks a significant
contribution, enhancing the platform’s capacity to handle multiple concurrent data
streams efficiently.
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Figure 2.3: Structural Overview of the proposed Multichannel DMA System

The DMA subsystem consists of a customizable number of channels, each
representing an identical instance of a shared base design. Additionally, the unit is
equipped with a configurable number of system bus master ports to scale bandwidth
linearly, barring any bus conflicts.

The entire X-HEEP platform is developed using SystemVerilog as the hardware
description language, and the DMA is no exception.

In practical terms, the dma_subsystem.sv file is responsible for generating
the DMA instances, based on parameters extracted from the project’s general
configuration file, mcu_cfg.hjson, of which an extract is reported in Code 2.1.
This configuration file specifies, for each unit, the base address and length of its
memory map, along with parameters that can be utilized by both hardware design
and software applications.

Furthermore, depending on the master port configuration, specific OBI crossbars
are generated and connected to the bus master ports and the appropriate DMA
channel instance ports, ensuring efficient data flow across the system.

The configuration of the DMA’s master ports is managed through two parame-
ters:

• Number of master ports

• Maximum number of DMA channels per master port
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Listing 2.1: Code snippet of mcu_cfg.hjson

1

2 {
3

4 cpu_type : cv32e20
5

6 linker_script : {
7 stack_size : 0x800 ,
8 heap_size : 0x800 ,
9 }

10

11 debug: {
12 address : 0x10000000 ,
13 length : 0x00100000 ,
14 },
15

16 ao_peripherals : {
17 address : 0x20000000 ,
18 length : 0x00100000 ,
19 soc_ctrl : {
20 offset : 0x00000000 ,
21 length : 0x00010000 ,
22 path: "./hw/ip/ soc_ctrl /data/ soc_ctrl .hjson"
23 },
24

25 [...]
26

27 dma: {
28 offset : 0x00030000 ,
29 length : 0x00010000 ,
30 ch_length : 0x100 ,
31 num_channels : 0x4 ,
32 num_master_ports : 0x2 ,
33 num_channels_per_master_port : 0x2 ,
34 path: "./hw/ip/dma/data/dma.hjson"
35 },

While the first parameter is straightforward, the second requires a more detailed
explanation. Consider a project requiring a configuration with four channels and
two master ports. There are two possible ways to connect the four channels to the
two ports:

• CH0, CH1 connected to port 0 and CH2, CH3 connected to port 1

• CH0, CH1, CH2 connected to port 0 and CH3 connected to port 1
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In the first configuration, each master port is connected to two channels, which
corresponds to a channels-per-master-port ratio of 2. Conversely, the second
configuration has a ratio of 3, where the first three channels are connected to port
0, and the remaining channel is connected to port 1.

Figure 2.4: DMA-to-bus connection,
composed with two 2-to-1 OBI crossbars

Figure 2.5: DMA-to-bus connection,
composed with a 3-to-1 OBI crossbar
and a single direct connection

While the first configuration is a general-purpose, balanced setup, the second
configuration may be more suitable for applications requiring a low-latency channel
for high-priority tasks. This mechanism ensures maximum flexibility, allowing users
to tailor the DMA subsystem to their specific requirements, optimizing for both
area and performance.

From a functional perspective, utilizing the multichannel DMA is straightforward.
Each DMA channel is accessible through software via a structure generated by
OpenTitan’s regtool.

This tool uses an HJSON configuration file to describe the registers of a unit,
specifying attributes such as size, name, software/hardware access privileges, reset
types, and other relevant parameters. Regtool then generates SystemVerilog files for
integration into the main design, along with header files that aid in the development
of a Hardware Abstraction Layer (HAL).

Among these there is a C structure that provides a clean and efficient mean to
access the unit’s registers. For instance, a register can be accessed as shown in
Code 2.2.

Listing 2.2: Register access via HAL

1

2 unit -> SRC_PTR = ( uint32_t ) input_ptr ;
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In the case of the DMA, all channels are identical and share the same set of
registers. To facilitate access to individual channels, a flexible approach has been
implemented, as shown in Code 2.3, where each DMA channel can be accessed by
calculating the appropriate base address.

Figure 2.6: Memory map scheme of the DMA System.

Listing 2.3: Macro for accessing DMA channels

1

2 # define dma_peri ( channel ) (( volatile dma *) ( DMA_START_ADDRESS
+ DMA_CH_SIZE * channel ))

Thus, the registers for each DMA channel can be accessed independently. For
example, accessing and configuring channel 2 can be done as shown in Code 2.4.

Listing 2.4: Accessing DMA CH2

1

2 dma_ch_2 = dma_peri (2);
3 dma_ch_2 -> SRC_PTR = ( uint32_t ) input_ptr ;
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2.3 Extending X-HEEP’s DMA System with
Advanced Transactions Capabilities
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Figure 2.7: Structural Overview of the Proposed DMA System with Advanced
Transaction Channels

2.3.1 Complex Data Manipulation in GEMM Accelerators
General Matrix Multiplication (GEMM ) accelerators, such as systolic arrays and in-
memory computing described in [1.2.2], are highly efficient at performing large-scale
matrix computations.

However, to fully utilize their potential, complex data manipulation is often
required. These accelerators rely on carefully structured data movement patterns
to feed operands into the computation units. This involves reshaping, tiling,
or streaming data in specific ways to match the requirements of the hardware
architecture, possibly becoming a performance bottleneck.

The need for extensive data rearrangement can hinder overall performance, as
it may require significant CPU intervention to manage the flow of data between
memory and the accelerator.

Consequently, high CPU utilization becomes a concern, as the CPU must spend
a considerable amount of time coordinating data movement instead of focusing on
higher-level processing tasks. This inefficiency can offset the performance gains
offered by GEMM accelerators, particularly in real-time or resource-constrained

42



2.3 – Extending X-HEEP’s DMA System with Advanced Transactions Capabilities

environments.

2.3.2 Structural Description
To further enhance X-HEEP’s data management capabilities, the core DMA unit
that forms each channel has been completely redesigned in this thesis.

This redesign introduces advanced features such as 2D transactions, along
with zero-padding, transpositions, and sign extensions performed on-the-fly, signif-
icantly optimizing the complex data manipulations required by edge computing
accelerators.
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Figure 2.8: Structural Overview of the New DMA Channel

As shown in Figure 2.8, each DMA Channel is composed of three main stages:

• Input Stage

• Processing Stage

• Output Stage

These stages are managed by a central Control Unit (CU), which is responsible
for coordinating each stage and asserting interrupt signals when enabled. The CU
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and all stages share access to a set of configuration registers, allowing the DMA
Channel to be configured and enabling communication of important information to
the CPU. These registers are generated using OpenTitan’s regtool and a specific
HJSON configuration file.

Input Stage

The Input Stage consists of two aggregates of Finite State Machines (FSMs) that
manage the OBI interface with the crossbars connecting the DMA System to the
System Bus, as shown in figure 2.4.

The OBI READ FSM issues read requests based on a source address calculated
according to the transaction parameters, specifically the increments for the first and
second dimensions. The read_ptr_reg register stores this computed source address
and increments whenever the READ FSM receives an OBI GNT signal. A secondary
signal, read_ptr_valid_reg, ensures synchronization between read_ptr_reg and
OBI’s RVALID, which indicates that the requested data is valid. This RVALID-
synchronized value is then used to perform data shifts necessary for handling
different data types, as detailed in [2.3.2].

clk

DATA_IN_GNT

DATA_IN_RVALID

DATA_IN 0x1 0x2 0x5 0x6

CNT_D1 2 1 2 1 0

CNT_D2 2 1 0

READ_PTR_REG 0xAC2E 0xAC32 0xAC3E 0xAC42

READ_PTR_VALID_REG 0xAC2E 0xAC32 0xAC3E 0xAC42

INC_D1 4

INC_D2 12

SRC_PTR 0xAC2E

Figure 2.9: Details on the READ FSM main signals, including counters and
source registers. On the top, the most critical OBI signals, while on the bottom
the values of a few configuration registers. More details on the meaning behind
these parameters can be found in the functional description section [2.3.3].

To track the progress of the transaction, two counters are used, one for each
dimension. When a request is granted, the first dimensinon (D1) counter is
decremented, and upon reaching zero, it resets while the second dimension (D2)
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counter is decremented. When both counters reach zero, all necessary elements
have been copied and the FSM enters the idle state. Each data read is pushed in
the READ FIFO, ready to be processed by the PADDING FSM.

Figure 2.9 illustrates the key signals of the READ FSM during a 2D transaction
that extracts the top-left 2x2 sub-matrix from a 4x4 matrix, as shown in matrix
2.10.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⇒ 1 2
5 6

Figure 2.10: 4x4 matrix and the extracted 2x2 sub-matrix.

Matrix transposition is performed solely by the READ FSM. To enable this
feature, the CPU has to set a specific control bit, dim_inv, which stands for
"dimensionality inversion".

clk

DATA_IN_GNT

DATA_IN_RVALID

DATA_IN 0x1 0x5 0x2 0x6

CNT_D1 2 1 2 1 0

CNT_D2 2 1 0

TRSP_SRC_PTR_REG 0xAC2E 0xAC32

READ_PTR_REG 0xAC2E 0xAC3A 0xAC32 0xAC36

READ_PTR_VALID_REG 0xAC2E 0xAC3A 0xAC32 0xAC36

DIM_INV 1

INC_D1 12

INC_D2 4

SRC_PTR 0xAC2E

Figure 2.11: Details on the READ FSM main signals during a matrix transposi-
tion. Note the changes of the source address values with respect to figure 2.9.

To handle matrix transposition, the source pointer updates differ from the
standard incrementing pattern. In this case, inc_d1 is set by the CPU to the
length of a row in bytes, representing the offset needed to move to the next element
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in the same column. As each element is copied, the source pointer increments by
inc_d1 bytes, effectively traversing down the column.

A secondary register, trsp_src_ptr_reg, is initialized with the starting source
address of the transaction—the address of the first element in the matrix. When
an entire column has been copied, the source pointer resets to the value in
trsp_src_ptr_reg. Then, trsp_src_ptr_reg is incremented (e.g., by inc_d2 element
size) to point to the first element of the next column.

This mechanism ensures that the FSM begins copying from the first element
of each new column. The source address moves down a column by increments of
inc_d1 bytes and then jumps back to the top of the next column when a column is
completed. Figure 2.11 represent the behaviour of the FSM’s main signals during
the transposition of the same 2x2 matrix of the past example, reported in matrix
2.12.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⇒ 1 5
2 6

Figure 2.12: 4x4 matrix and the extracted 2x2 sub-matrix, transposed.

The Input Stage also includes the READ ADDR FSM, which is used when
the DMA operates in Address Mode. In this mode, the DMA fetches destination
pointers from an address list stored in memory, rather than computing them.

The READ ADDR FSM generates read requests for these addresses and pushes
the received data into the READ ADDR FIFO, which is later accessed by the
WRITE FSM as addresses used to write data to the correct location.

Processing Stage

The Processing Stage is central to the functionality of the new DMA System. It
features the PADDING FSM, which moves data from the READ FIFO to the
WRITE FIFO, applying necessary transformations according to the transaction
parameters.

Similar to the Input Stage, the PADDING FSM monitors the transaction status
using counters, accounting for both the padding parameters and transaction sizes.
Padding is achieved by refraining from popping data from the READ FIFO and
instead pushing zeros into the WRITE FIFO, based on the value of the pad_on
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signal, which is controlled by a dedicated FSM whose states are determied on the
counters value.

Once both dimensional counters reach zero, the FSM enters the idle phase.

Figure 2.13: A section of a Verilator simulation focusing on the main signals of
the PADDING FSM. The FSM state progression is highlighted in orange, which
determines the value of pad_on, setting the WRITE FIFO input to 0.

Output Stage

The Output Stage mirrors the Input Stage but performs the opposite function. It
consists of the WRITE FSM, which writes data by popping it from the WRITE
FIFO. Like other stages, the WRITE FSM tracks the status of the transaction
using counters and computes on its own the destination pointer for each element.

In Address Mode, the destination pointer is instead sourced from the READ
ADDR FIFO.

When both dimensional counters reach zero and the WRITE FIFO is empty,
the WRITE FSM generates a completion signal, allowing the CU to trigger an
interrupt, if enabled.

~

Managing Datatypes and Sign Extension

In both the Input and Output Stages, a sophisticated mechanism is implemented
to handle different data types, such as words, half-words, and bytes. The challenge
arises from the fact that the RAM of X-HEEP is word-addressable, like most modern
SRAMs, meaning it can only store and output 32-bit words.

Consequently, the memory discards the lower 4 bits of the address; for instance,
the addresses 0x0ABC3 and 0xABC1 both refer to the same word.

During the read operation, the READ FSM always accesses the full word, as
addressing anything smaller would have no effect due to the word-addressable
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architecture. Once the word is retrieved, a shift operation ensures that the relevant
data type (whether it be a byte or half-word) is correctly positioned in the least
significant bits (LSB).

This is accomplished by a dedicated FSM in the Input Stage, which operates
based on the address offset, i.e. the last four bits. When the address is word-aligned
(offset 0), no shift is necessary. However, for offsets such as 1, indicating that the
desired data is the second byte, the FSM shifts the corresponding byte into the
LSB.

For example, in the case of 0xABCDEF39, if the second byte is needed, the FSM
shifts EF to replace 39, yielding 0xABCDEFEF.

The complete switch-case logic is shown in Code 2.5.

Listing 2.5: Snippet of the Input Stage: a compact FSM shifts the input data
based on the source address offset, which is influenced by the data type being
read. The signal fifo_input holds the processed data that is pushed into the READ
FIFO.

1

2 always_comb begin : proc_input_data
3

4 fifo_input [7:0] = data_in_rdata [7:0];
5 fifo_input [15:8] = data_in_rdata [15:8];
6 fifo_input [23:16] = data_in_rdata [23:16];
7 fifo_input [31:24] = data_in_rdata [31:24];
8

9 case ( read_ptr_valid_reg [1:0])
10 2’b00: ;
11 2’b01: fifo_input [7:0] = data_in_rdata [15:8];
12

13 2’b10: begin
14 fifo_input [7:0] = data_in_rdata [23:16];
15 fifo_input [15:8] = data_in_rdata [31:24];
16 end
17

18 2’b11: fifo_input [7:0] = data_in_rdata [31:24];
19 endcase
20 end

Figure 2.14 illustrates an example of a 4-element 1D copy with bytes as the
source datatype. By combining the fifo_input value with the last two bits of
read_valid_ptr_reg, the effect of this mechanism becomes clear: the byte indexed
by these two bits is always placed as the LSB in fifo_out.

The Padding Stage is entirely unaware of the input and output data types,
simplifying its architecture and improving the robustness of the entire DMA
Channel.
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clk

DATA_IN_GNT

DATA_IN_RVALID

DATA_IN 17AC39BD 17AC39BD 17AC39BD 17AC39BD

FIFO_IN 17AC39BD 17AC3939 17AC17AC 17AC3917

CNT_D1 4 3 2 1 0

READ_PTR_REG 0xDDA0 0xDDA1 0xDDA2 0xDDA3

READ_PTR_VALID_REG 0xDDA0 0xDDA1 0xDDA2 0xDDA3

INC_D1 1

SRC_PTR 0xDDA0

Figure 2.14: Details on the READ FSM main signals in a 1D transaction copying
bytes.

In the Output Stage, the data type becomes critical again, as this is where sign
extension is applied, when enabled. The situation is similar to the Input Stage but
in reverse. The RAM only accepts full 32-bit words, making it necessary to handle
sub-word writes, such as bytes or half-words, carefully.

This is accomplished in two steps: first, by computing the appropriate byte
enable mask based on the output data type and communicating it to the RAM
via the byte enable signal provided by the OBI protocol, and second, by correctly
shifting the data into the appropriate position within the word.

During this process, if the output data type is larger than the source type and
sign extension is enabled, the FSM ensures that the sign bit is properly extended
to the higher bits of the destination. For example, when copying signed byte
data (such as quantized neural network weights) into half-words or words, the sign
extension can be performed to ensure that arithmetic operations on the larger data
type behave correctly.

The FSM responsible for this in the Output Stage operates similarly to the one
described in Code 2.5, but with the added responsibility of handling sign extension.

The Role of FIFOs in a DMA Channel

In the new DMA Channel architecture, FIFOs play a critical role in ensuring that
stages are decoupled, allowing for efficient data synchronization between stages,
especially when padding is required. Each FSM that interacts with a FIFO must
ensure that the FIFO is not empty before popping data and that it is not full before
pushing new data into it. This coordination ensures smooth data flow through the
stages without overflow or underflow conditions.

Furthermore, the FIFO sizes for each DMA channel can be individually config-
ured, allowing the architecture to be tailored to specific application needs. This
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flexibility is achieved through a parameterization mechanism, as demonstrated in
Code 2.6 from the dma_subsystem.sv file, where the DMA channels are instan-
tiated. By enabling the EN_SET_FIFO_CH_SIZE definition, the size of the
FIFOs for each channel can be adjusted using a predefined configuration array.

Some applications might benefit from larger FIFOs, allowing more data to be
buffered when the bus is heavily utilized, or when the target peripheral, such as an
SPI interface, operates at a slower speed. Conversely, other applications may not
require large FIFOs, allowing for area savings by reducing FIFO size.

A hybrid system, where certain channels have larger FIFO sizes while others
have smaller ones, can optimize performance by catering to both high-throughput
and low-latency requirements. This flexible configuration allows the DMA system
to efficiently handle varying data workloads and peripheral speeds.

Listing 2.6: Snippet from dma_subsystem.sv: Configurable FIFO sizes for each
DMA channel.

1

2 //‘define EN_SET_FIFO_CH_SIZE ;
3

4 ‘ifdef EN_SET_FIFO_CH_SIZE
5

6 localparam int unsigned LARGE_FIFO_CH_SIZE = 8;
7 localparam int unsigned MEDIUM_FIFO_CH_SIZE = 4;
8 localparam int unsigned SMALL_FIFO_CH_SIZE = 2;
9

10 typedef enum {L, M, S} fifo_ch_size_t ;
11

12 localparam fifo_ch_size_t FIFO_CH_ARRAY [ core_v_mini_mcu_pkg ::
DMA_CH_NUM ] = ’{L, M, M, S};

13

14 ‘endif

Synchronizing Peripherals and DMA: the Trigger System

In memory-to-peripheral and peripheral-to-memory operations, it is common for
the peripheral to have a response time that cannot keep pace with the system
clock. For example, SPI typically transmits and receives data with a period of
approximately 30 clock cycles.

This disparity in timing necessitates a communication mechanism between the
DMA subsystem and the peripheral, allowing the DMA operations to be paused
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based on the peripheral’s state. These control signals are referred to as triggers.
Triggers can be utilized in both directions, whether the peripheral is writing

data to memory via the DMA or the DMA is reading data from the peripheral. The
DMA can be configured to respond to these triggers by enabling the corresponding
slot via software, using the DMA HAL.

2.3.3 Functional Description
As previously discussed in [2.3.2], the DMA supports both 1D and 2D transactions,
allowing it to handle complex data manipulations such as matrix operations,
padding, and sign extension.

A DMA transaction involves copying data from a source pointer to a destination
pointer, which can either be another memory location or a peripheral buffer. The
DMA operates in different modes, including single mode, circular mode, and address
mode, each tailored to specific use cases.

To initiate a transaction, the configuration must first be loaded into the DMA
registers. Once the first dimension size is written to its respective register, the
transaction begins.

During execution, the DMA System can handle multiple transactions concur-
rently, provided they target different channels. A key feature is its ability to
automatically re-launch transactions in circular mode, useful for continuous data
streams from peripherals like SPI, where the peripheral’s response time is much
slower than the system clock. In cases like this, triggers [2.3.2] are used to
synchronize DMA operations with peripheral readiness.

Increment System in DMA Transactions

The DMA increment system allows for flexible data transfers, making it possible to
achieve both contiguous and non-contiguous read and write operations in 1D and
2D transactions. By carefully setting the increments for the source and destination
addresses, the DMA can efficiently handle various data manipulation tasks, such
as sub-array extractions or matrix operations.

1D Transactions

In a 1D transaction, the increment determines how much the DMA should move
the read and write pointers after each data transfer. This feature is particularly
useful for non-contiguous data handling, where only specific parts of the data need
to be copied. For example, consider an array of 4 word-type elements (each word
being 4 bytes), as reported in Code 2.7.
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Listing 2.7: Example of a 4 word array

1 | 0 xBADC0DE5 | 0 xBADC0FFEE | 0 xC0FFEEED | 0 xFEEDBEEF |

To copy only the first 2 bytes from each word, the following settings would be
required:

• Set the data type of source and destination to half-word (2 bytes).

• Set the source increment to 4 bytes.

• Set the destination increment to 2 bytes.

• Set the 1D transaction size to 4 data units.

With these configurations, after each read operation, the DMA will increment
the read pointer by 4 bytes (skipping to the next word), and the write pointer will
be incremented by 2 bytes. This allows the DMA to efficiently copy non-contiguous
data.

2D Transactions

In 2D transactions, the DMA requires a second increment value to handle multi-
dimensional data structures like matrices. The second increment is used to define
how many data units the DMA should "skip" to move from one row to the next,
allowing for matrix manipulations in a single DMA transaction.

Consider a 4x4 matrix from which we want to extract a 2x2 sub-matrix, placed
on the top-left corner, as shown in matrix 2.15.

3 5 7 9
2 4 6 8
1 3 5 7
0 2 4 6

⇒ 3 5
2 4

Figure 2.15: 4x4 matrix and the extracted 2x2 sub-matrix.
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To achieve this, the following increment values are set:

• Source increments:

– 1D increment: 1 word (4 bytes)
– 2D increment: 3 words (12 bytes)

• Destination increments:

– 1D increment: 1 word (4 bytes)
– 2D increment: 1 word (4 bytes)

In this case, the 1D increment specifies the step within a row, while the 2D
increment tells the DMA how far to jump to move to the next row of the matrix.
By setting these increments correctly, the DMA can skip over unnecessary elements
and extract the desired submatrix.

Moreover, by configuring the 2D increments, the system can also handle non-
contiguous 2D reads and writes, allowing for even more complex data manipulations
such as skipping rows or columns, achieving a stride.

Configuring Padding in DMA Transactions

Additionally, the DMA channel can be configured to add zero padding to extracted
data, an essential feature for handling 2D data in machine learning tasks like
pattern recognition, as it is used to increase the detail of the edges of the image.
The padding feature allows users to add extra rows or columns of zeros around
the input matrix, ensuring alignment or preparing the data for further processing.
The padding is controlled by four parameters, which define the amount of padding
applied to each side of the extracted matrix:

• Top

• Bottom

• Left

• Right

It is essential to note that the padding is applied conceptually only after the
matrix has been extracted, meaning that the padding parameters refer solely to
the extracted submatrix, not the original source matrix.
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For example, let’s consider a 2x3 matrix with padding applied on all sides, as
shown in matrix 2.16. In this case, zeros (represented by T , B, L, and R) are
added around the original data (x), resulting in a padded matrix.

T T T T T
L x x x R
L x x x R
B B B B B

Figure 2.16: Padding example of a 3x2 matrix, explaining the meaning of "top",
"bottom", "left" and "right" padding in the DMA System.

To further illustrate, matrix 2.17 revisits the example of extracting a 2x2
submatrix from a 4x4 matrix, but this time with a left and top padding of 1
element.

3 5 7 9
2 4 6 8
1 3 5 7
0 2 4 6

⇒
0 0 0
0 3 5
0 2 4

Figure 2.17: Padding example of a 2x2 matrix extracted from a 4x4 matrix, with
1 layer of zero padding on top and on the left.

DMA Hardware Abstraction Layer

In order to facilitate the development of DMA-based applications, the existing
DMA Hardware Abstraction Layer (HAL) has been updated and expanded in this
thesis to support the newly introduced features.

The HAL is structured around three core functions: dma_validate_transaction(),
dma_load_transaction(), and dma_launch(), each responsible for managing differ-
ent aspects of DMA operations. Additionally, the initialization function, dma_init(),
resets transaction structures and clear DMA registers for each channel, ensuring
that the DMA subsystem starts in a known state.

54



2.3 – Extending X-HEEP’s DMA System with Advanced Transactions Capabilities

dma_validate_transaction()

The function dma_validate_transaction() ensures that the configuration of a DMA
transaction is correct by performing thorough sanity and integrity checks. These
checks validate target configurations, verify data alignment, and inspect increment,
padding, trigger, and mode settings to prevent potential execution errors. The
function returns configuration flags that provide feedback on any detected issues,
allowing developers to address them before proceeding.

dma_load_transaction()

Once a transaction is validated, the dma_load_transaction() function configures
and loads the transaction into the appropriate DMA channel. This step involves
setting pointers, increments, padding, and operation modes by writing the relevant
registers, while ensuring that no other transaction is currently running.

Crucially, the transaction is not launched immediately; the SIZE_D1 register,
which starts the transaction, is left unwritten at this stage to allow for controlled
launching later.

dma_launch()

Finally, dma_launch() is responsible for initiating the pre-configured DMA trans-
action. It checks for any ongoing transactions and, once the path is clear, writes to
the SIZE_D1 register to start the operation.

If the transaction is set to trigger an interrupt upon completion, the function
will block until the interrupt is received, ensuring that the CPU can wait for the
operation to complete without further intervention. The HAL ensures that DMA
transactions are handled robustly, with built-in validation and error handling to
support the new DMA features introduced in this work.

Interrupt Request Handler

Due to hardware constraints, the DMA subsystem has only a single fast interrupt
line, regardless of how many channels are present in the system. This fast line
is managed by the X-HEEP’s FIC (Fast Interrupt Controller, an IP provided by
OpenHW ) and used to signal the transaction done interrupt, while the window
done interrupt is managed from a slower unit, the PLIC (Platform-Level Interrupt
Controller).

To determine which channel raised the interrupt, the DMA HAL checks the
interrupt flag register (IFR) of each channel. This register is set when a transaction
completes and the interrupt is enabled, and it is cleared once the CPU reads its
content.
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When the IFR for a channel is found to be high, the HAL invokes the weakly
defined dma_intr_handler_trans_done() function, passing the channel ID as an
argument. This default handler can be customized by the user to implement specific
actions when a transaction is completed.

To optimize interrupt handling, the HAL also offers an additional cus-
tomization mechanism to prioritize certain channels. By defining the constant
DMA_HP_INTR_INDEX in dma.h (the DMA HAL’s header file), channels with
IDs less than or equal to this index are treated as high-priority.

When one of these high-priority channels raises an interrupt, the han-
dler_irq_dma() function immediately calls the user-defined interrupt handler and
exits, bypassing the loop that checks other channels. This ensures that high-priority
channels are serviced faster, but could potentially starve low-priority channels
if high-priority interrupts are frequent and the associated handler performs long
tasks.

To prevent this, two design choices are available: minimizing the workload
within the IRQ handler itself (a universal good design practice) and setting the
DMA_NUM_HP_INTR parameter, which limits the number of consecutive in-
terrupts a high-priority channel can trigger before the system checks for pending
interrupts from low-priority channels.

The loop-based mechanism for handling interrupts is shown in Code 2.8 from
the DMA’s HAL dma.c.

This interrupt management system ensures the DMA remains responsive and
adaptable in real-time applications. Furthermore, this mechanism is also applicable
to window interrupts, which trigger when a predefined amount of data has been
transferred during a transaction.

The integration of prioritization and configurable limits enhances the robustness
of the DMA system by allowing developers to tailor interrupt handling to the
specific needs of their application, ensuring a balance between responsiveness and
fairness across DMA channels.
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Listing 2.8: Interrupt handling mechanism in the DMA HAL with customizable
prioritization

1

2 void fic_irq_dma (void) {
3

4 for (int i = 0; i < DMA_CH_NUM ; i++)
5 {
6 if ( dma_subsys_per [i].peri -> TRANSACTION_IFR == 1)
7 {
8 dma_subsys_per [i]. intrFlag = 1;
9 dma_intr_handler_trans_done (i);

10

11 #ifdef DMA_HP_INTR_INDEX
12

13 #ifdef DMA_NUM_HP_INTR
14

15 if (i <= DMA_HP_INTR_INDEX && dma_hp_tr_intr_counter <
DMA_NUM_HP_INTR )

16 {
17 dma_hp_tr_intr_counter ++;
18 return ;
19 }
20 else if (i > DMA_HP_INTR_INDEX )
21 {
22 dma_hp_tr_intr_counter = 0;
23 }
24

25 #else
26

27 if (i <= DMA_HP_INTR_INDEX )
28 {
29 return ;
30 }
31 #endif
32

33 #endif
34 }
35 }
36 return ;
37 }
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2.4 Developing the Always-On Peripheral Bus to
Support DMA-Based Accelerators
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2D DMA CH0

Zero padding logic

Interrupt logic

. . .

READ N-to-M
XBAR

ADDR N-to-M
 XBAR

WRITE N-to-M
 XBAR

. . . . . .

AOPB

X-Heep

DEMUX

Address decoder

GPIO SPI

SOC
CTRL

BOOT
ROM

POWER
MANAGER FIC

UART RV TIMER

. . .

System bus
Smart Peripheral

Controller
(SPC)

Smart Peripheral
Controller

(SPC)

. .
 .

. . . . . . . . .

. .
 .

Read FIFO

OBI read
FSM

OBI read
addr FSM

OBI write
FSM

Read addr
FIFO Write FIFO

Zero padding logic

Interrupt logic

Read FIFO

OBI read
FSM

OBI read
addr FSM

OBI write
FSM

Read addr
FIFO Write FIFO

2D DMA CHx

. . .

Figure 2.18: Structural Overview of the AOPB embedded into the Always-On
Peripheral System.

2.4.1 DMA-Based Accelerators to Reduce CPU Utilization
During the development of the Advanced DMA System for X-HEEP, it became
apparent that CPU utilization remained a significant contributor to memory
overhead. This issue is especially pronounced in applications that require the
continuous configuration of DMA channels. In these cases, the CPU must frequently
set up new DMA transactions and wait for their completion, which leads to
prolonged periods where the CPU is occupied with managing data transfers.

As highlighted in the Multichannel chapter 2.2, this is one of the key limitations
in edge computing that this thesis seeks to address.

A prime example of such an application is the im2col reshaping transformation.
Performing this operation requires executing multiple DMA runs proportional to
the number of channels, the batch size, and the filter dimensions. When X-HEEP is
employed to run the inference of a convolutional neural network (CNN) algorithm,
the CPU is stalled by the transformation process, unable to process data until it
completes.

Even though the advanced DMA system reduces the overall number of runs
needed for operations like im2col, the CPU remains bogged down by the need to
repeatedly configure the DMA.
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This situation highlights the necessity for a solution that allows the CPU to
focus on data processing rather than data movement. Although the multichannel
feature reduces the complexity of managing multiple data flows and the advanced
DMA reduces the number of runs required for operations like the im2col, the
fundamental issue of prolonged CPU blockage persists.

To address this limitation, the thesis explores the implementation of DMA-based
accelerators. These accelerators are designed to autonomously access and configure
the DMA controller to perform necessary data movements without constant CPU
intervention. By offloading data management tasks to the accelerators, the CPU is
freed to process data concurrently, thus enhancing system performance.

This strategy aligns with the ongoing trend in computing architecture towards
heterogeneity, where specialized hardware components are leveraged to perform
specific tasks more efficiently than general-purpose CPUs.

2.4.2 Structural Description

Alway-On Peripheral Subsystem

DMA
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AOPB

X-Heep

DEMUX
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Smart Peripheral
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OBI-to-Register
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Figure 2.19: Structural Overview of the Always-On Peripheral Bus.
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To alleviate the CPU bottleneck and support DMA-based accelerators, this thesis
introduces a new Peripheral Bus specifically designed for efficient communication
between accelerators and peripheral devices. Although X-HEEP already provides
an extension interface via system bus master ports, utilizing this interface for
accelerators to program the DMA’s registers presents two significant drawbacks:

1. Quadratic Cost of Adding Bus Masters: Adding additional master
ports to the system bus increases its complexity and area footprint, which
grows quadratically with the number of masters due to the nature of crossbar
buses. This not only consumes more silicon area but also complicates the bus
architecture, making it less efficient for the intended purpose.

2. Unnecessary Protocol Complexity: The system bus employs the OBI
protocol, which is designed for complex communication scenarios involving
potential conflicts and advanced features. For the simple register writes
required by the accelerators, this protocol introduces unnecessary complexity.

Implementing an OBI-compatible finite state machine (FSM) within the acceler-
ators solely for peripheral register access adds unnecessary overhead and complexity,
making it a suboptimal solution.

Listing 2.9: Register interface package.

1

2 package reg_pkg ;
3

4 typedef struct packed {
5 logic valid;
6 logic write;
7 logic [3:0] wstrb;
8 logic [31:0] addr;
9 logic [31:0] wdata;

10 } reg_req_t ;
11

12 typedef struct packed {
13 logic error;
14 logic ready;
15 logic [31:0] rdata;
16 } reg_rsp_t ;
17

18 endpackage
19 }
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To address these issues, the Always-On Peripheral Bus (AOPB) was developed
and integrated into X-HEEP. The AOPB employs a simplified version of the
OBI protocol, designed for efficient communication with peripheral registers. It
seamlessly interfaces with the register top module generated by OpenTitan’s Regtool,
as it shares the same register interface used throughout the X-HEEP project, shown
in figure 2.9. Compared to OBI, this protocol uses a single ready signal in place of
OBI’s separate rvalid and grant signals.

Located within the Always-On domain, which includes critical peripherals such
as the DMA System, Power Manager, Timer, and GPIO System, the AOPB
provides a dedicated communication pathway for accelerators to interact with
peripherals independently of the system bus.

External accelerators can access the AOPB through exposed ports, while the
system bus remains connected to the AOPB for regular operations. This design
offers several advantages over using the system bus for programming configuration
registers.

1. Increased Area Efficiency: Crossbar buses consume area that grows quadrat-
ically with the number of masters:

M2 > M12 + M22, M1 + M2 = M

M1 + M2 = M

Partitioning communication into two smaller buses significantly reduces overall
area consumption. By separating the CPU and accelerator communication
onto distinct buses, the complexity and size of each bus is minimized, resulting
in a more efficient hardware implementation.

2. Simplified Arbitration and Protocol Optimization: The arbitration
system within the AOPB is simplified due to fewer masters and a less complex
protocol. This leads to improved area and energy efficiency.
Additionally, the streamlined protocol for peripheral register access allows
the AOPB to optimize the FSMs used by accelerators, reducing latency and
simplifying the accelerator architecture.

This inequality shows that the sum of the squared areas of two buses is less
than the squared area of a single bus, which justifies splitting the system.

From a structural standpoint, the AOPB is inserted between the OBI-to-register
converter and the register demux provided by PULP. This component uses the
OBI’s address to index the bus request among the different peripherals of the AO
Subsystem.
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The AOPB itself is composed of a register multiplexer developed by Florian
Zaruba for the PULP Project. This IP is designed to handle multiple input
ports, each representing a master needing access to peripheral registers. Its main
components are:

• Input Interface: Receives register access requests from multiple accelerators,
each with signals for address, data, write enable, and valid indicators.

• Arbitration Mechanism: Employs a round-robin scheme with non-starving,
rotating priorities, or a priority-based method to grant access when multiple
requests are active, ensuring fairness and preventing starvation.

• Output Interface: Forwards the selected request to the peripheral bus,
following the simplified Open Bus Interface (OBI) protocol used in the AOPB.

• Response Handling: Routes responses, including data read and write
acknowledgments, back to the correct accelerator.

The PULP’s register multiplexer accepts a general request-response protocol, so
in this case the protocol passed was the one shown in 2.9.

Accelerators that leverage the AOPB are referred to as Smart Peripheral Con-
trollers (SPCs). The AOPB is completely transparent to both the X-HEEP core
and the SPCs, as both simply access peripherals by indexing their memory-mapped
addresses.

To facilitate the development of DMA-based SPCs, the DMA channel exposes
two key signals that can be utilized by the SPCs. The first signal, dma_done,
indicates when a transaction has been completed. The second, an input signal
called dma_stop, resets the channel’s finite state machines (FSMs). This feature is
particularly useful in scenarios where fewer data need to be written than originally
anticipated

For instance, one application of the AOPB, which will be developed at the
EPFL’s Embedded Systems Laboratory in the near future, is a Level-Crossing
Subsampler (LCS). In brief, this system will read data from an ADC and instruct
the DMA to store only specific values—those samples that have crossed a predefined
threshold. This mechanism avoids storing insignificant data, such as low-amplitude
noise, which would ideally remain within the LCS threshold and thus go undetected.

By skipping unnecessary memory writes, this system significantly reduces mem-
ory accesses, a key advantage for low-power platforms like X-HEEP.

However, in such a scenario, the DMA channel configured to copy N samples
might ultimately need to copy only N−m samples, as the LCS effectively subsamples
the data. When this occurs, the dma_stop signal becomes essential, allowing the
external accelerator to halt the DMA transaction as needed.
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2.5 Developing an Im2col SPC to Optimize
On-Edge CNNs

2.5.1 NCHW vs. NHWC : Choosing the Optimal Format
As discussed in Section 1.1.3, two prevalent formats for representing tensors are
NHWC and NCHW. The cited section highlighted that the NCHW format is more
advantageous for low-power, RISC-V microcontrollers such as X-HEEP.

Building upon this insight, an application was developed during this thesis to
convert NHWC tensors to NCHW format, leveraging the 2D DMA capabilities.

During the development and testing of the application, it became apparent that
the conversion between NHWC and NCHW formats can be performed as a simple
matrix transposition in both directions.

To better visualize this, consider flattening the HxW matrices that compose
the channels in the NCHW representation. In this flattened view, each NCHW
row, representing a channel, corresponds to a column in the NHWC format. This
realization is significant because it means that the conversion from one format to
the other can be efficiently executed using the new DMA system’s transposition
feature, with minimal overhead involved.

Figure 2.20: This is a representation of a 3x3x3 tensor, flattened in NCHW format
on the right and NHWC format on the left. The dimensions are highlighted, and
the channels are distinguished by different colors. This visualization demonstrates
that the two formats can be easily interchanged through a simple transposition.

This efficient bidirectional conversion is great news, as it simplifies the inter-
changeability between the two formats without incurring significant computational

63



Development

costs. A single configuration of the DMA is sufficient to handle the conversion of
an entire tensor, making the process both swift and resource-efficient.

Figures 2.21 and 2.22 provide a graphical illustration of the access patterns
for both NCHW and NHWC formats, showing how both the input tensors and
the algorithm change. It highlights how both the input tensors and the algorithm
change.

The NCHW format is linear, relying on repeated regular matrix copies, which
are efficiently mapped to the new DMA system.

In contrast, the NHWC im2col operation is less straightforward. Even in this
simple example, the DMA must operate across three ’dimensions’: while elements
1 and 2 are contiguous within the same column, copying elements 3 and 4 requires
moving to the next row block. The two dimensions of the new DMA are quickly
exhausted, as the first is used to move from element 1 to 2 along the same column,
and the second to shift from element 2 to 3. A third dimension, along with
functionality akin to transposition, would be needed to move from element 4 to 5,
which would require additional hardware resources.

Figure 2.21: Initial steps of the im2col
reshaping transformation of an NCHW
tensor.

Figure 2.22: Initial steps of the
im2col reshaping transformation of
an NHWC tensor.

This example clearly shows that there is no universal algorithm to perform
im2col on both NHWC and NCHW formats. Implementing both would require
separate logic in an accelerator, resulting in double the area overhead, with only
half of it utilized at any given time. This consideration, along with the low cost of
format conversion, supports the decision to accelerate a single tensor format.
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Among the two, NCHW emerges as the optimal choice, as it avoids the need
for additional hardware resources.

2.5.2 DMA-based vs Specialized Im2col Accelerators
Due to the importance of the im2col transformation, several accelerators have been
proposed in the research community, such as SPOT [15]. SPOT is a hardware
accelerator designed for sparse convolutional neural networks (CNNs). It integrates
a novel im2col unit with a systolic array-based general matrix multiplication
(GEMM) unit, streamlining the im2col transformation to maximize data reuse and
minimize redundant memory accesses.

SPOT’s architecture supports dynamic reconfigurability, allowing it to adapt
to various CNN layers while exploiting sparsity in both input feature maps and
weights.

Figure 2.23: SPOT architecture overview.

In contrast, a DMA-based accelerator could leverage the existing DMA periph-
eral in a system, offering a simpler and more efficient approach. While SPOT
performs the function of a DMA itself, this increases complexity and area overhead.
Without needing specific data, it is evident that a DMA-based accelerator—by
reusing a peripheral already present in the system—would require significantly less
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hardware, making it ideal for ultra-small, low-power edge-computing platforms
where minimizing area is essential.

SPOT’s strategy of reducing memory accesses through buffering and reuse is
innovative, but it results in a much larger hardware footprint, which might not be
practical for constrained edge devices.

Furthermore, while SPOT benefits from sparse matrix representations, this
technique is less relevant for simpler CNNs, where performance bottlenecks are
typically found in the input rather than the filters. In such cases, sparse filter
representation would have little effect on overall performance.

2.5.3 Structural Description
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Figure 2.24: Structural overview of the im2col Smart Peripheral Controller.

This thesis proposes an implementation of an im2col Smart Peripheral Controller
(SPC), which takes advantage of the AOPB introduced in the previous chapter to
leverage the new DMA system for reshaping NCHW tensors, preparing them for
GEMM accelerators.

With respect to specialized accelerators as SPOT, this approach is more suitable
for low-power, small edge-computing platforms, as it reuses the system’s existing
DMA with minimal overhead, while remaining flexible enough to integrate with
any type of GEMM accelerator.

The SPC is composed of three main blocks:

• Parameter FSM: Responsible for calculating the necessary parameters
required to configure each DMA run.

66



2.5 – Developing an Im2col SPC to Optimize On-Edge CNNs

• Register Interface Controller: This block interfaces with the AOPB,
programming one DMA channel register at a time.

• Top Module: This unit instantiates the Parameter FSM and the Register
Interface Controller. It includes an FSM that manages the DMA channel con-
figuration by calculating the correct register address, selecting the appropriate
data to be written, and initiating the Register Interface Controller.

To buffer the parameters and enhance throughput during the DMA configuration
time, a FIFO is placed between the two FSMs. Similar to the architecture of a
DMA channel, the FIFO decouples the different stages, simplifying the design and
improving robustness.

Each FIFO entry holds all the parameters needed to configure the DMA that
change with each iteration, while other parameters, such as the datatype, remain
static and are directly taken from the im2col SPC configuration register. The
structure of the FIFO’s datatype is declared in a special package file, as reported
in code 2.10.

Listing 2.10: DMA interface datatype.

1 package dma_if_pkg ;
2

3 typedef struct packed {
4 logic [31:0] input_ptr ;
5 logic [31:0] output_ptr ;
6 logic [22:0] in_inc_d2 ;
7 logic [7:0] n_zeros_top ;
8 logic [7:0] n_zeros_bottom ;
9 logic [7:0] n_zeros_left ;

10 logic [7:0] n_zeros_right ;
11 logic [15:0] size_du_d1 ;
12 logic [15:0] size_du_d2 ;
13 } dma_if_t ;
14

15 endpackage

Mapping the im2col algorithm to the new DMA system

The algorithm that the SPC implements in hardware was first developed in software.
Specifically, a C code was written to map the XuanTie NCHW im2col algorithm
[9] onto the advanced DMA, taking advantage of its 2D, stride, and zero-padding
capabilities to remove two loops. The SPC then implements this algorithm in
hardware.
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The pseudocode for the original XuanTie im2col algorithm for NCHW tensors
is reported in code 2.11.

Listing 2.11: XuanTie C code implementation of the im2col algorithm for NCHW
tensors.

1 height_col = ( height + pad_top + pad_down - ksize_h )/ stride_h + 1;
2 width_col = (width + pad_left + pad_right - ksize_w )/ stride_w + 1;
3 channel_col = channel * ksize_h * ksize_w ;
4

5 for c = 0 to channel_col - 1 do
6 w_offset = c % ksize_w ;
7 h_offset = (c / ksize_w ) % ksize_h ;
8 c_im = c / ( ksize_h * ksize_w );
9 for b = 0 to batch - 1 do

10 for h = 0 to height_col - 1 do
11 for w = 0 to width_col - 1 do
12 im_row = h_offset + h * stride_h - pad_top ;
13 im_col = w_offset + w * stride_w - pad_left ;
14 col_index = ((c * batch + b) * height_col + h) *

width_col + w;
15 if im_row < 0 or im_col < 0 or im_row >= height or

im_col >= width then
16 output_data [ col_index ] = 0.0;
17 else
18 output_data [ col_index ] = input_data [ get_index (

b, c_im , im_row , im_col )];
19 end if
20 end for
21 end for
22 end for
23 end for

The variables w_offset and h_offset represent the current horizontal and
vertical positions within the convolution filter window. These offsets define the
specific element in the filter being considered by the algorithm at each step.

To explain the computation of the number of zeros to pad on the left side
(n_zeros_left), let’s analyse the three possible cases, based on the current offset
and the left padding (LEFT_PAD). The code snippet is reported in code 2.12.

The meaning of the three cases of the previous snipped are:

• No Padding Required: If the filter’s horizontal offset (w_offset) is greater
than or equal to the left padding (LEFT_PAD), no additional zeros are needed
on the left side.
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Listing 2.12: Zeros on the left computation.

1 if ( w_offset >= LEFT_PAD ) {
2 n_zeros_left = 0;
3 }
4 else if (( LEFT_PAD - w_offset ) % STRIDE_D1 == 0) {
5 n_zeros_left = ( LEFT_PAD - w_offset ) / STRIDE_D1 ;
6 }
7 else {
8 n_zeros_left = ( LEFT_PAD - w_offset ) / STRIDE_D1 + 1;
9 }

• Perfect Stride Alignment: When the remaining padding aligns exactly
with the stride (STRIDE_D1), the number of zeros is calculated as the integer
division of the padding difference by the stride. For example, consider a
3-element wide filter applied to an input with a left padding of 3 and a stride
of 2, where w_offset is 1. Here, the filter’s second element encounters the
padding only once, resulting in n_zeros_left = (3 - 1) / 2 = 1.

• Partial Stride Coverage: In cases of misalignment, an additional zero is
needed to account for the partial stride, ensuring complete coverage. For
instance, with the same 3-element filter and stride 2, but with w_offset
= 0, the filter’s first element encounters the padding twice. In this case,
n_zeros_left is calculated as (3 - 0) / 2 + 1 = 2.

The computation for the number of zeros on the top (n_zeros_top) follows a
similar logic, adjusting for the vertical offset and top padding (TOP_PAD), and its
reported in code 2.13.

Listing 2.13: Zeros on top computation.

1 if ( h_offset >= TOP_PAD ) {
2 n_zeros_top = 0;
3 }
4 else if (( TOP_PAD - h_offset ) % STRIDE_D2 == 0) {
5 n_zeros_top = ( TOP_PAD - h_offset ) / STRIDE_D2 ;
6 }
7 else {
8 n_zeros_top = ( TOP_PAD - h_offset ) / STRIDE_D2 + 1;
9 }

For the right and bottom padding, two additional parameters are required:
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fw_minus_w_offset and fh_minus_h_offset, which represent the mirrored hori-
zontal and vertical offsets, calculated as shown in code 2.14.

Listing 2.14: Mirrored filter offset computation.

1 fw_minus_w_offset = FW - 1 - w_offset ;
2 fh_minus_h_offset = FH - 1 - h_offset ;

Additionally, the adapted padding regions (ADPT_PAD_RIGHT and
ADPT_PAD_BOTTOM) are introduced. These parameters adjust the padding
to handle cases where the filter does not perfectly align with the input tensor
due to the stride and filter size. To explain their meaning and computation, let’s
analyse the right padding case, whose computation is reported in 2.15.

Listing 2.15: Adapted padding region computation.

1 ADPT_PAD_RIGHT = ( STRIDE_D1 * ( N_PATCHES_W - 1)) + FW - ( LEFT_PAD
+ IW);

Figure 2.25: Example of a non-aligned filter slide.

Let’s take a practical example: a 6-wide input with a 3-wide filter, 1 padding
on both the left and right, and a stride of 2. Figure 2.25 shows a single row of a
channel from such a tensor.

When sliding the filter over the input, it becomes evident that the filter cannot
fully cover the entire row. Thus, even with non-zero right padding, there will be no
padding in the output im2col transformation. The adapted padding region reflects
this exact scenario: in this case, it computes to (2× (3− 1) + 3− 1− 6) = 0.

Now, let’s analyze the computation of the number of zeros on the right
(n_zeros_right) using the adapted padding region parameter, reported in code
2.16.
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Listing 2.16: Zeros on the right computation.

1 if ( fw_minus_w_offset >= RIGHT_PAD || ADPT_PAD_RIGHT == 0) {
2 n_zeros_right = 0;
3 }
4 else if (( ADPT_PAD_RIGHT - fw_minus_w_offset ) % STRIDE_D1 == 0) {
5 n_zeros_right = ( ADPT_PAD_RIGHT - fw_minus_w_offset ) /

STRIDE_D1 ;
6 }
7 else {
8 n_zeros_right = ( ADPT_PAD_RIGHT - fw_minus_w_offset ) /

STRIDE_D1 + 1;
9 }

• No Padding Needed: If the mirrored offset exceeds the right padding or
the adapted padding region is zero, no zeros are needed.

• Perfect Stride Alignment: If the difference between the adapted padding re-
gion and the mirrored offset is divisible by the stride, the number of zeros is com-
puted as (ADPT_PAD_RIGHT−fw_minus_w_offset)/STRIDE_D1.

• Partial Stride Coverage: If misalignment occurs, we add one with respect
to the previous case to cover the incomplete stride.

This calculation ensures accurate handling of the right padding, especially when
the filter’s slide does not perfectly cover the input tensor due to stride misalignment.
The adapted padding region adjusts the necessary padding to guarantee complete
coverage without overlapping.

The computation for the number of zeros on the bottom (n_zeros_bottom) is
analogous to the right padding, adjusting for the vertical dimension and using
fh_minus_h_offset and ADPT_PAD_BOTTOM, and reported in code 2.17.

Additional parameters are needed for the configuration of the DMA, including
the transaction size in both dimensions. This is computed using the formulas
reported in code 2.18.

The stride for the first dimension is obtained via a constant parameter, which
remains unchanged throughout the algorithm. However, the stride for the second
dimension varies with each run, as it depends on the transaction size, which in
turn is influenced by the number of zero-padding elements.

Additionally, the source pointer for each run is calculated by adding an offset
to the pointer of the first element of the tensor. This offset is derived using the
function reported in code 2.19.

The function is called every iteration as shown in 2.20.
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Listing 2.17: Zeros on the bottom computation

1 if ( fh_minus_h_offset >= BOTTOM_PAD || ADPT_PAD_BOTTOM == 0)
2 {
3 n_zeros_bottom = 0;
4 }
5 else if ( ( ADPT_PAD_BOTTOM - ( fh_minus_h_offset )) % STRIDE_D2 ==

0)
6 {
7 n_zeros_bottom = ( ADPT_PAD_BOTTOM - ( fh_minus_h_offset )) /

STRIDE_D2 ;
8 }
9 else

10 {
11 n_zeros_bottom = ( ADPT_PAD_BOTTOM - ( fh_minus_h_offset )) /

STRIDE_D2 + 1;
12 }

Listing 2.18: Computation of the transaction size

1 size_transfer = N_PATCHES_W - n_zeros_left - n_zeros_right ;
2 size_transfer_d2 = N_PATCHES_H - n_zeros_top - n_zeros_bottom ;

After the transaction is configured and launched, the output pointer is incre-
mented by the size of the output row in the output matrix.

Furthermore, the w_offset, h_offset, and im_c (the channel index) parameters
are updated using an optimized mechanism that leverages modulo operators and
counters. This optimization improves the compatibility with hardware mapping
and reduces CPU load.

The horizontal offset w_offset value is incremented by one after each batch. If
w_offset reaches FW - 1, it is reset to zero. This method eliminates the need for
modulo operations by utilizing simple increment and reset logic.

Similarly, the vertical offset h_offset is updated using an auxiliary counter,
h_offset_counter. After each batch, h_offset_counter is incremented, and
when it reaches FW - 1, it is reset to zero and h_offset is incremented. If
h_offset reaches FH - 1, it is also reset to zero. This approach replaces the
division and modulo operations with simpler increment logic.

Lastly, for the image channel index im_c, calculated as im_c =
ê

c
F W ×F H

ë
,

another counter, im_c_counter, is used. This counter is incremented after each
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Listing 2.19: Function to get the input pointer offset.

1 int get_index (int dim1 , int dim2 , int dim3 , int index0 , int index1
, int index2 , int index3 ) {

2 return (( index0 * dim1 + index1 ) * dim2 + index2 ) * dim3 +
index3 ;

3 }

Listing 2.20: Call to get the input index.

1 int index = get_index (CH , IH , IW , b, im_c , im_row + n_zeros_top *
STRIDE_D2 , im_col + n_zeros_left * STRIDE_D1 );

batch, and when it reaches FW × FH - 1, it is reset to zero and im_c is incremented.
This optimization reduces computational overhead by avoiding direct division
operations.

By replacing expensive arithmetic calculations with efficient increment and
reset mechanisms, these optimizations significantly enhance the performance of the
im2col mapping process, leading to faster computation times and reduced resource
utilization.

2.5.4 Parameter FSM

The Parameter FSM is designed to implement the algorithm described in the
previous section in hardware, with a few optimizations.

Firstly, the algorithm has been simplified by imposing a constraint on the D1
and D2 strides, limiting them to multiples of 2. This reduces the multiplications
and divisions required for computing the DMA parameters involving strides to
simple shift operations. The modulo operation, used for calculating zero-padding
sizes, has also been optimized thanks to this additional constraint. To check if a
number is divisible by a multiple of 2, the formula shown in 2.21 is used.

Secondly, the computation of the input offset and zero-padding sizes has been
divided into multiple stages using simple pipeline registers. This optimization was
introduced to improve the critical path of the FSM, as meeting timing constraints
in FPGA synthesis proved challenging.
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Listing 2.21: Optimized divisibility condition computation.

1 divisible_condition = number & ((1 << strides ) - 1)

2.5.5 Register Interface Controller

This unit communicates with the AOPB to configure the DMA system, accessing
the parameters stored in the FIFO by the Parameter FSM. It is a simple FSM,
composed of four states:

• IDLE: The default state. The FSM enters this state after a reset or when
a transaction is completed. When the start_i signal is asserted, the FSM
initiates the transaction process.

• SENDING: In this state, the FSM sets the register interface protocol signals,
including valid, write, addr, and wdata.

• WAITING_READY: The FSM waits for the ready signal from the AOPB
in this state before moving to the next one.

• DONE: The transaction is complete, and the FSM returns to the IDLE state.

This unit has been designed with a general structure to support future develop-
ments of Smart Peripheral Controllers, such as the im2col SPC described in this
section.
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Figure 2.26: Overview of a SBST Verification Set-Up.

2.6.1 Advantages of Software-Based Self-Test Techniques
Software-Based Self-Test (SBST) is a technique traditionally used to test the
functionality of digital systems, particularly processors and embedded cores, by
running dedicated software routines on the target hardware.

Originally, SBST was introduced to perform self-test operations on deeply
embedded systems where external testing equipment, such as Automatic Test
Equipment (ATE), may be impractical or costly. In this context, SBST allows the
hardware to test itself by executing pre-defined software patterns, checking for
defects or malfunctions in real-time.

This approach is especially valuable in post-manufacturing phases, where the
focus is on identifying operational faults and ensuring the system functions as
intended.

In contrast, verification techniques are typically employed during the design
phase to ensure that a system or component meets its functional and design
specifications before hardware is physically built.

Formal verification methods use mathematical proofs to ensure that the system
behaves correctly under all possible inputs, providing guarantees of correctness.
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Techniques such as model checking and theorem proving are common in this domain.
However, formal verification can be highly complex and time-consuming, espe-

cially for large or intricate systems, often requiring specialized tools and expertise.
Scaling formal methods to handle the full complexity of modern hardware de-
signs can be difficult, which sometimes limits their application to specific system
components

Functional verification, on the other hand, involves testing the system’s re-
sponse to specific, often practical, scenarios to confirm that the design meets its
requirements, typically without exhaustive guarantees. Simulation, emulation, and
prototyping are widely used approaches for functional verification.

While traditionally a testing technique, SBST can also be adapted to serve as a
functional verification tool, especially when implemented on an FPGA or other
reconfigurable hardware platforms during the design phase.

By automating the execution of SBST routines across thousands of configurations,
it is possible to empirically verify the correct functionality of a unit in a wide range
of scenarios, akin to functional verification. This process validates that the system
behaves according to its specifications, even though it does not provide formal
guarantees.

Thus, SBST can be extended beyond post-silicon testing to functionally verify
the design of a unit in a pre-silicon or prototyping environment.

2.6.2 Integrating the new designs into a 16nm silicon
implementation of HEEP

HEEPatia is the latest silicon implementation of X-HEEP, developed using TSMC’s
16nm technology and designed for low-power edge-computing applications. At the
time of this thesis, the project is in its final design stages and is expected to be
produced by the end of 2024 by a team from the Embedded Systems Laboratory
at EPFL.

All the new designs introduced in this thesis, including the DMA system, the
im2col SPC, and the AOPB, will be integrated into the HEEPatia chip. This
represents a deeply significant achievement for this thesis, as the opportunity to
validate these designs on a high-performance technology is both a privilege and a
testament to the quality of this work.

Additionally, this integration allows for their enhancement within powerful and
advanced units such as the CARUS in-memory computing IPs and CGRAs.

As a result of this integration, it became essential to develop a methodology
for verifying and testing the new designs. Due to the necessity of developing a
solid and straightforward solution, Software-Based Self-Test (SBST) functional
verification was deemed the most viable solution.
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Moreover, given the need to test a large number of configurations in a short
time, testing on a simulated model proved inadequate. Thus, the target platform
for the verification system was necessarily an FPGA development board, capable
of supporting the test harness and programmable via a PC.

The PYNQ-Z2 FPGA development board by AMD, already supported on X-
HEEP and available in the Embedded Systems Laboratory, was chosen as the
primary target for the verification script.

In alignment with X-HEEP’s open-source nature, it was deemed beneficial to not
only create a verification system for the designs introduced in this thesis but also to
develop a system adaptable to any X-HEEP-based application. Thus, VerifHEEP
was born, a Python library offering a range of methods that enable users to rapidly
construct a complete verification environment. VerifHEEP covers every aspect,
from model compilation and synthesis of the model to random data generation and
golden results computation, including completion time estimation.

To achieve this, VerifHEEP takes advantage of the flows already developed
for X-HEEP’s model building and synthesis, automating them, and integrating
with functionalities to generate datasets, automate the interface with the board
itself, like the GDB debugger to load executables and start the execution and serial
communication threads to manage the reception of results.

2.6.3 VerifHEEP Library Structure

Model Compilation and Synthesis

The VerifHeep class provides robust methods for compiling and synthesizing X-
HEEP models, leveraging existing flows developed for the X-HEEP project. The
compileModel method generates the X-HEEP configuration by specifying pa-
rameters such as memory banks, CPU type, and bus configuration. This setup
ensures that the verification environment is prepared with the correct hardware
configuration to build X-HEEP.

The buildModel method compiles the microcontroller for various targets, in-
cluding Verilator and QuestaSim, based on the specified optimization settings and
hardware requirements. This flexibility allows users to select the most suitable com-
pilation toolchain and target platform for their specific verification needs, making
the process both efficient and adaptable.

Input Data and Golden Result Generation

Another significant part of VerifHeep is its capability to generate input datasets
and compute golden outputs for verification purposes.
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The genInputDataset method creates random input datasets, which can be
customized based on several parameters, such as datatype, size, and value range.
These datasets are used as stimuli for data-processing applications, helping to
validate the proper functioning of the system under test.

The generation of random input data can be tailored to meet specific require-
ments. Users can specify the datatype (e.g., uint32_t, int8_t), allowing the data
to be suited for different types of processing units and test scenarios.

Additionally, users can control the size of the dataset, as well as the minimum
and maximum range for the values, ensuring the generated data is appropriate for
the intended verification goals.

The genInputDataset method also supports the inclusion of additional param-
eters to further customize the dataset. These parameters, such as configuration
constants or metadata about the dataset structure, are defined and included in the
generated header file. This feature enables the provision of metadata that may
be useful for interpreting or processing the dataset, like dimensions of a tensor in
terms of number and sizes of channels, as reported in code 2.23.

Listing 2.22: Input data C file for the im2col application developed to test the
im2col SPC and compare its performance to the CPU.

1 # include " im2col_input .h"
2

3 const uint32_t input_image_nchw [25] = {
4 45280 , 44040 , 39555 , 48322 , 43761 ,
5 46986 , 61580 , 31407 , 53015 , 50099 ,
6 48311 , 52851 , 12647 , 34880 , 26310 ,
7 1708 , 38684 , 39145 , 34646 , 20833 ,
8 38991 , 55892 , 20081 , 22175 , 48554
9 };

Additionally, the genGoldenResult method is used to compute the expected
output (golden result) using a provided reference function. This ensures that
the application’s results match the expected behavior, which is fundamental for
verifying the correctness of computations performed by accelerators and processing
units.

The golden result is generated based on the input dataset and can include any
relevant parameters returned by the reference function. These parameters are then
written into the header file alongside the golden output, providing all the necessary
information for comparison during verification.
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Listing 2.23: Input data header file for the im2col application developed to
test the im2col SPC and compare its performance to the CPU. It includes the
parameters of the input tensor and the padding to apply to it.

1 # include <stdint .h>
2

3 # define IH 5
4 # define IW 5
5 # define CH 1
6 # define BATCH 1
7 # define FH 3
8 # define FW 3
9 # define TOP_PAD 1

10 # define BOTTOM_PAD 1
11 # define LEFT_PAD 1
12 # define RIGHT_PAD 1
13 # define STRIDE_D1 1
14 # define STRIDE_D2 1
15

16 extern const uint32_t input_image_nchw [25];
17

18 #endif // INPUT_IMAGE_NCHW_H

Board Interface and Debugging

The library also includes methods to establish communication with the target board
and facilitate debugging.

The serialBegin method initializes a serial communication channel between
the host and the target, enabling the transfer of test data and retrieval of results.

Debugging methods such as setUpDeb and stopDeb help configure GDB sessions
and remotely control the target, allowing users to load and debug the software
running on the PYNQ-Z2 FPGA board.

The launchTest method integrates these debugging capabilities to execute test
applications, gather the serial output, and parse the results to evaluate verification
outcomes.

Execution Time Estimation

VerifHeep includes a set of functions dedicated to performance estimation, which
is particularly useful during verification involving multiple iterations. The
chronoStart, chronoStop, and chronoExecutionEst methods assist in deter-
mining the average execution time of test iterations and estimating the remaining
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time for the entire test.
By providing accurate timing information, these methods help developers opti-

mize and manage test durations effectively.

2.6.4 Developing a Verification Environment for the Im2col SPC
using VerifHEEP

Figure 2.27: Screenshot of the Im2col SPC verification environment interface,
built using VerifHEEP.

This use case demonstrates the power of the VerifHeep tool in developing a
verification environment for the Im2col SPC functionality. It involves running
thousands of iterations, each with different parameter configurations.

This approach allows for an extensive verification of the Im2col function under
various conditions. Each iteration of the loop modifies parameters such as the input
tensor dimensions, padding, kernel size, and strides to comprehensively validate
the performance and correctness of the Im2col SPC across different scenarios.

The test application developed for this environment assesses three different
implementations of the Im2col function. First, it performs the Im2col operation
using only the CPU, executing the C code version implemented by XuanTie, as
shown in 2.11. Next, it runs the same algorithm using the new DMA engine,
as described in section 2.5.3. Finally, the test uses the specialized Im2col SPC
hardware described in chapter 4.2.

In each iteration, the process begins by generating an input dataset using the
genInputDataset function. This dataset is tailored to the specific parameters for
that iteration, ensuring that each configuration is tested thoroughly.

The golden result is then computed using the genGoldenResult function,
which takes the generated input dataset and passes it through a reference
im2col_function implemented in PyTorch. This function performs the Im2col
transformation, providing the expected output for comparison during verification.
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After generating the dataset and golden result, the environment connects to the
PYNQ-Z2 board using GDB, and the test is executed via the launchTest function.
The execution involves running the Im2col function on the hardware, with the
results collected through serial communication.

The serial output is then parsed and categorized into different lists based on
the type of test outcome, such as CPU, DMA 2D, or SPC. Each iteration logs
information about the cycles and parameter configurations, allowing for detailed
performance analysis.

The graphical aspect of this verification environment is managed using the
curses and tqdm libraries. The curses library provides an interactive console
interface that displays the current parameters being tested, while tqdm offers a
progress bar indicating the overall progress of the verification process.

This combination creates a user-friendly interface that helps users monitor the
progress of thousands of iterations in real-time, providing clear visibility into the
ongoing verification. Figure 2.27 presents a screenshot of the graphical interface
used in the im2vol verification process.

Finally, the results from each iteration are stored in three separate lists based on
the type of test performed, i.e. CPU, DMA 2D, or SPC. These categorized results
are then written to a text file for further analysis. Specifically, this environment
has been used to obtain the results discussed in the next chapter.
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Chapter 3

Results

3.1 Analysis of Performance and Area Overhead
of the new DMA System

3.1.1 Test Set-Up

In order to gain enough insights to evaluate the performance of the new DMA
system, a tailored VerifHEEP-based environment has been developed that runs ex-
ample_dma_2d, an application developed to test different features of the introduced
DMA system.

Each of these tests measured the DMA performance by carrying out the same
operation on the CPU. The CPU result was used both to verify the correctness of
the DMA and to obtain a cycle count, enabling a performance comparison between
the DMA and the CPU.

Specifically, the following tests were performed:

• Testing copy and padding of an NxM matrix using HALs: This test
extracts a matrix of size NxM, applies optional padding, and copies it to a
destination matrix using hardware abstraction layers (HALs). This allows for
a detailed evaluation of the data movement and padding mechanisms handled
by the DMA.

• Testing copy and padding of an NxM matrix using direct register
configuration: This test bypasses HALs and instead directly utilizes DMA
register operations for copying and padding an NxM matrix. This test focuses
on maximizing performance while sacrificing certain safety checks, allowing
for a maximum performance.

During each iteration of the test, the input datasets were generated using
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VerifHEEP’s methods, as described in 2.6.3, by varying both the extracted matrix
dimensions and the padding applied. This approach ensured that a diverse dataset
was used for each iteration, enhancing the potential and robustness of the DMA
verification.

Additionally, area and power results were obtained via a 16nm synthesis on the
HEEPatia project, which, as mentioned in section 2.6.2, will include the new DMA
system.

3.1.2 Performance Improvement with respect to CPU Routines

Figure 3.1: Performance comparison of a matrix copy operation between the
CPU and DMA implementations. The y-axis shows the number of cycles required
to perform the copy, while the x-axis represents the size of the output matrix,
including the applied zero padding. The comparison highlights the efficiency of the
DMA over the CPU, especially for larger matrix sizes.

The performance of the DMA was evaluated by comparing a matrix copy operation
performed in three different ways: by the CPU, by the DMA using Hardware
Abstraction Layers (HALs), and by the DMA using direct register writes.

Figure 3.1 presents the comprehensive results, with the CPU data in blue, DMA
with HAL in red, and DMA with direct register configurations in green.
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From the analysis of these results, four key observations can be made.

• The DMA clearly outperforms the CPU for larger transactions, showcasing its
advantage in data transfer tasks.

• The use of HAL introduces an expected overhead due to validation and
integrity checks. This overhead is constant rather than relative, meaning that
for smaller transactions, the impact is more significant, whereas for larger
transactions, it becomes less noticeable.

• For very small transactions, the CPU actually outperforms the DMA. This is
because the constant configuration overhead of the DMA cannot be overcome
for such small data sizes, making the CPU the faster option in these cases.

• There is significant variation in the CPU results, which is largely attributable
to the effect of padding.

Figure 3.2: Performance comparison of a matrix copy operation without padding.

The padding phenomenon increases the loop size of the C code linearly, whereas
for the DMA, it only involves configuring one of the registers. Whether or not
padding is present, the configuration remains constant, resulting in no additional
overhead for the DMA.
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Figure 3.3: Performance comparison of a matrix copy operation with a 2-wide
padding applied to every border of the input matrix.

Figures 3.2 and 3.3 illustrate the performance comparison when filtering tests
without padding and with a 2-wide padding applied to every border of the input
matrix, respectively.

Without padding, the DMA without HAL achieves a performance improvement
of 4.4 times compared to the CPU. With a 2-wide padding, the performance
increase rises to 6.1 times, emphasizing the efficiency of the DMA in handling
complex memory configurations.

3.1.3 Area Occupation Analysis

Let’s start from analysing the area footprint of a single DMA channel, embedded
in HEEPatia and synthetised on 16nm. As shown in Table 3.5, the largest unit is
the configuration registers.

This is understandable, since the DMA channel has a considerable number of
parameters and configuration options, with a total of 26 parameters. Some of these
are single-bit, such as the transaction and window IFRs, while others are 32-bit,
like the source, destination, and address pointers.

The second largest contributor to the area footprint is the inter-stage FIFOs.
Overall, the units with strong memory components comprise most of the area
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footprint, which is to be expected, as there are no large combinatory units present.
The finite state machines (FSMs) constitute just 24% of the area of a single DMA
channel.

To compare the area footprint of the new DMA channel to the previous DMA
design, a synthesis using Xilinx Vivado was necessary. This is because the HEEP-
atia project originally began with the new DMA channel, making it technically
impossible to perform a 16nm synthesis of both versions simultaneously.

Table 3.2 reports the differences between the two versions of the DMA, consid-
ering a single channel.

Table 3.1: Area footprint of a single DMA channel

Unit Area Contribution (%)
Configuration Registers 40

Inter-stage FIFOs 36
FSMs 24

Table 3.2: Comparison between the new and old DMA channel

New DMA Old DMA
LUTs 1080 620

Registers 978 725

During these tests, the new DMA demonstrated performance improvements
of approximately 53% in the best-case scenario. Notably, the performance gains
scale linearly with the matrix size, meaning that larger matrices yield even greater
performance benefits.

Given these improvements, the increase in area footprint is well justified, as it
leads to substantial gains in both functionality and efficiency.

3.2 Analysis of Performance, Power
Consumption and Area Overhead of the
Im2col SPC

The following sections present and analyze the results of a comprehensive verification
test based on the environment described in Section 2.6.4. Area and power figures
were obtained through a 16nm technology synthesis conducted as part of the
HEEPatia project.

87



Results

3.2.1 Performance Improvement with respect to CPU-based
Routines

Figure 3.4: Performance comparison of an im2col reshaping transformation,
performed using the XuanTie C implementation, its DMA mapped version and
finally using the im2col SPC. The y-axis shows the number of cycles required to
perform the operation, while the x-axis represents the size of the output matrix,
including the applied zero padding. The comparison highlights the efficiency of the
DMA over the CPU, especially for larger matrix sizes, and the additional advantage
of the im2col SPC.

To evaluate the performance advantage of the im2col SPC, it was compared against
the CPU-based routines, specifically the XuanTie C implementation and its DMA-
mapped version, as explained in Section 2.6.4. Figure 3.4 illustrates the results of
the verification run, where thousands of tests were conducted, each with varying
configurations and input data.

As expected, the results closely resemble the performance of a DMA channel
during a matrix copy. This is because the im2col operation, at its core, involves a
series of matrix copies, which becomes evident when the algorithm is mapped onto
the new DMA.
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The im2col SPC improves upon the DMA-programmed CPU routine by paral-
lelizing the computation of parameters and programming the DMA channel with
minimal overhead. As a result, it achieves a significant performance boost of up to
60%. However, the increase is not extraordinary, which aligns with expectations.

One key aspect of the im2col SPC, not immediately apparent from the perfor-
mance analysis but clear from the power analysis discussed later, is that the CPU
remains completely inactive while the im2col SPC is running.

As outlined in previous chapters, this allows the CPU to either process the
transformed data or enter a low-power state, thereby enhancing energy efficiency.
This is a substantial improvement, complementing the notable performance gains
offered by the im2col SPC.

Figure 3.5: Performance comparison of an im2col reshaping operation without
padding

Once again, there is a significant difference in performance depending on whether
padding is involved, similar to the results observed in the DMA performance analysis.
Figures 3.5 and 3.6 present the filtered results of the verification run, showing
that when a padding of size 2 is applied to all sides, the im2col SPC performs 6.1x
better than the CPU. In contrast, without padding, the performance gain is 4.1x.
It is very important to emphasize once again that these gains scale linearly with
the size of the test.
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Figure 3.6: Performance comparison of an im2col reshaping operation with a
2-wide padding applied to every edge of the input tensor

3.2.2 Power Consumption Analysis

To perform a comprehensive analysis of the introduced im2col SPC accelerator,
a power analysis was conducted using a 16nm technology, embedding the SPC
within the HEEPatia project. Three tests were carried out, comparing the SPC
against the XuanTie C implementation and its DMA-mapped version, as detailed
in Section 2.6.4. The input tensor was generated using the VerifHEEP methods,
with the following parameters:

• IH: 27

• IW: 27

• CH: 3

• BATCH: 1

• FH: 3

• FW: 3

• TOP_PAD: 2
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• BOT_PAD: 2

• LEFT_PAD: 2

• RIGHT_PAD: 2

• STRIDE_D1: 1

• STRIDE_D2: 1

These parameters were set to produce an output matrix close to the size of
a single RAM bank, i.e., 32kB. These tests were performed without low-power
optimizations, meaning the power manager was not used to disable peripherals
when not required.

The results of the power consumption simulations are shown in table 3.3 and
figure 3.7. Notably, the total power consumption among the CPU, DMA system
and im2col SPC remained consistent across all tests, with a slight 3.88% reduction
when using the im2col SPC.

The DMA consumed slightly more power in the DMA-mapped test compared
to the CPU test, due to cyclic register configurations. A similar observation can be
made for the SPC, though it consumed slightly less power as it optimizes register
configurations, avoiding redundant register rewrites, unlike the HAL used in the
DMA-mapped test.

CPU power consumption decreased in the DMA-mapped test and further in
the SPC test, as expected, since the CPU had to execute fewer instructions and
perform less intensive operations.

As anticipated, the SPC power consumption remained stable in the first two
cases but increased slightly in the final test due to register configuration and logic
execution.

Test DMA [W] CPU [W] im2col SPC [W] Total [W]
XuanTie C 1.78e-04 3.81e-04 2.70e-04 8.29e-04

DMA-mapped 1.82e-04 3.55e-04 2.70e-04 8.07e-04
im2col SPC 1.80e-04 3.42e-04 2.76e-04 7.98e-04

Table 3.3: Power consumption of different units and their total contribution across
different tests
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Figure 3.7: Graphical representation of the power consumption contributions for
each type of test

This is a highly positive outcome, as it demonstrates that the performance
gains from the im2col SPC and DMA-mapped approaches are achieved without
increasing power consumption. Furthermore, these improvements translate directly
into a significant enhancement in energy efficiency, which is a critical metric for
low-power edge-computing applications.

Specifically, across the three tests, the energy efficiency improvements amount
to 4.31x for the DMA-mapped im2col implementation and 7.11x for the im2col
SPC, as illustrated in table 3.4.

XuanTie C DMA-mapped im2col SPC
Runtime [s] 3.22e-03 7.68e-4 4.71e-4

Total power consumption [mW] 0.829 0.807 0.789
Total energy consumption [J] 2.67e-6 6.20e-7 3.76e-7

Energy efficency gain 1x 4.31x 7.11x

Table 3.4: Estimation of energy efficency gains, considering the 100 MHz frequency
used in the test

3.2.3 Area Occupation Analysis

Let’s analyze the area footprint of the various components that make up the im2col
SPC. The largest contributor to the area footprint is the DMA-interface FIFO,
which is used to decouple the computation of DMA channel parameters from their
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Table 3.5: Area footprint of the im2col SPC

Unit Area Contribution (%)
Configuration Registers 13
DMA-interface FIFOs 36

Parameter FSM 24
AOPB Interface FSM 2

actual configuration.
This is expected, given the substantial number of parameters involved. The

parameter FSM accounts for 24% of the total area footprint of the SPC, while the
AOPB interface FSM contributes only 2%. Configuration registers represent 13%
of the total area.

In relation to the total area of HEEPatia, the im2col SPC occupies only 0.43%.
Given the significant performance and efficiency gains, alongside the minimal area
footprint, the inclusion of this unit in the HEEPatia chip is well justified.
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Chapter 4

Future Improvements and
Conclusions

This section introduces concepts and strategies aimed at improving the designs and
solutions presented in this thesis. While their implementation was beyond the scope
and timeline of this work, their integration could offer significant enhancements to
the challenges and critical issues related to the deployment of Edge AI models on
X-HEEP.

4.1 Optimizing Memory Accesses for Non-Word
Datatypes

As explained in Section 2.3.2, X-HEEP memory is word-addressable. This means
that the last two bits of the addresses are discarded, and every non-word memory
access still results in a word access.

While this is not an issue for word datatype operations, it can lead to multiple
accesses to the same memory location for other data types.

Consider an application that programs the DMA to copy an N ×M matrix
from location A to location B using half-words for both input and output. In the
worst-case scenario, this could result in a waste of (N ×M)/2 memory accesses to
read the data.

For repetitive patterns, this issue can be mitigated by the application developer,
who could opt to use word accesses, reducing the time and memory accesses needed
to move a half-word matrix by half. For byte datatype operations, (N ×M)× 3/4
of memory accesses would be redundant due to accessing the same location, as
shown in figure 2.14.
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DMA Channel

data

READ
FIFO

data

pop

WRITE
FIFO

READ
ADDR
FIFO

data

push

OBI
READ
FSM

data

push

OBI
READ
ADDR
FSM

data

pop push

PADDING
FSM

OBI
WRITE
FSM

src cnt

src cnt

dst cnt

CONFIGURATION REGISTERS

pop

addr

Input Stage Processing Stage Output Stage

READ 
XBAR OUTPUT

READ ADDR
XBAR OUTPUT

WRITE
XBAR INPUT

SYSTEM BUS

CONTROL UNIT INTERRUPT
SIGNALS

Buffer Stage

BUFFER 
FSM

INPUT
BUFF

Figure 4.1: Updated DMA channel scheme with a new stage, the Buffer Stage,
which implements the data buffer optimization for non-word transactions

However, this optimization is application-specific, whereas a hardware solution
could transparently reduce memory accesses for the application developer. One of
the simplest and most effective hardware approaches would involve a 32-bit buffer
to store read data.

A check on the next read address’s 30 most significant bits (MSBs) could
determine if the data is already in the buffer, and if not, a new memory read
operation would begin. This feature could be easily introduced in the DMA channel
structure by adding another stage, the Buffer Stage, before the Input Stage, as
shown in figure 4.1.

While increasing the buffer size is possible, it introduces additional complexity.
With multiple buffers, logic would be required to fetch the correct buffer, handle
removal, and track available spots.

The tradeoff between reduced memory accesses and the increased complexity of
the DMA channel’s Input Stage should be carefully evaluated. Reducing memory
accesses would lower memory power consumption and decrease switching activity
on the system bus, but this could be offset by the complexity needed to maintain
such a system.

Nonetheless, optimizing memory access would be highly beneficial, as memory
operations are often the bottleneck, as discussed throughout this thesis.
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4.2 Further Optimizing Convolution
Computation Using 3D DMA and Stream
Accelerators

The current implementation of the im2col function utilizes a DMA system to
produce one row at a time of the output matrix. This approach leverages the
two-dimensional capabilities of the DMA introduced in this thesis: each row of the
reshaped output is obtained by copying elements of the input tensor that overlap
with the filter as it slides over the input, processing one channel at a time and one
element of the filter per row.

However, by extending the DMA with 3D transactions and considering, for
simplicity, a batch size of one, the DMA could transition across channels within
a single transaction. This capability would allow it to write multiple rows of the
output matrix simultaneously, specifically, three rows per transaction when dealing
with three channels.

Furthermore, utilizing a 3D DMA would enable a modification of the im2col
algorithm to write one column of the output matrix at a time instead of one row.

In this version of the im2col algorithm, each column is formed by copying the
elements covered by the filter at a fixed spatial position—specifically, the same
height (H) and width (W ) offsets, across all channels. The elements are copied
left to right and top to bottom within the filter window, but the filter remains
stationary at this spatial location while moving across channels.

After collecting the necessary elements from all channels for this position, the
filter is then moved to the next spatial location according to the stride, and the
process repeats. A conventional 2D DMA can only copy a fraction 1/Ch of the
column because it is limited to copying elements within a single channel, i.e. it
cannot transition across channels while maintaining the same H and W offsets.
In contrast, a 3D DMA can perform this operation across all channels in a single
transaction, effectively copying the entire column corresponding to that fixed spatial
position.

This alternative method of executing im2col can be exploited not merely to
reduce the im2col transformation time but to accelerate the entire convolution
process.

As explained in Section , convolution computed using im2col is performed
as a matrix multiplication: Filters × Input. Each individual multiplication is
essentially a vector dot product between the unrolled filter and a single column of
the reshaped input.
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The vector dot product itself is a multiply-accumulate (MAC) operation, involving
the accumulation of the products of corresponding elements from the filter vector
and the input column.

This presents an advantageous opportunity: with a 3D DMA available, the
im2col operation can be performed column by column. Consequently, instead of
storing the reshaped input for later use, each column can be directly utilized to
compute the convolution output, processing one vector product at a time.

Stream Accelerator

f

Input A

Input B

Output

Figure 4.2: General scheme of a double input, single output stream accelerator

To implement this computation, a stream accelerator can be employed, a simple
unit composed of two inputs and one output, each connected to FIFOs (First-In,
First-Out buffers), as shown in giure 4.2. One of the inputs, Input A, receives data
from a DMA channel (e.g., Channel 0) programmed by a modified im2col SPC
that implements im2col in a column-wise fashion, as describe before. This channel
writes the reshaped input column element by element into Input A of the stream
accelerator.

The second input, Input B, is supplied by another DMA channel (e.g., Channel
1), configured by the CPU at the beginning of the computation to copy the filter
elements, which have been reshaped using im2col beforehand since the filters are
constant. The third dimension of the DMA, now accessible in this extended DMA
system, is utilized to reset the filter copy process after it has been used to compute
the product with a single input column.

The stream accelerator processes the data by performing element-wise multipli-
cation and accumulating the results until a predefined counter reaches zero. This
counter is initialized with the number of products to accumulate, which is the size
of the im2col column, given by Fw × Fh × Ch ×B, where Fw and Fh are the filter
width and height, Ch is the number of channels, and B is the batch size. This
parameter is set in a configuration register before computation begins.

Once the counter reaches zero, indicating that all necessary products have
been accumulated, a single output value of the convolution is ready. A third
DMA channel (e.g., Channel 2) is then used to transfer this result from the stream
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accelerator. The stream accelerator regulates the writing process using an additional
trigger connected to this DMA channel. This setup is represented in figure 4.3.

im2col SPC

DMA subsystem
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 XBAR

X-Heep

System bus

. . . . . . . . .

. . .

DMA CH1 DMA CHn

. . .. . .

A
O

PB

Stream Accelerator

X +

Figure 4.3: Scheme of a stream accelerator integrated in X-HEEP along with the
im2col SPC

This synchronization is necessary because the output becomes available only
after Fw × Fh ×Ch ×B accumulations, requiring the output DMA channel to wait
for data readiness, similar to how a DMA waits for a peripheral device like SPI to
signal that data is ready.

The ingenuity of this solution lies in the fact that, within the same time required
to produce the reshaped input tensor, the convolution result is simultaneously
computed and available.

This approach offers two significant advantages:

• Zero Memory Overhead: The largest issue with im2col reshaping is the
substantial memory overhead required to store the expanded input tensor.
In the current implementation, this issue can be mitigated through tiling
techniques: by computing im2col row by row, it’s possible to perform the
convolution channel by channel, thereby reducing the memory needed to buffer
the reshaped input by a factor of 1/Ch.
However, with the proposed solution, the reshaped input does not need to be
buffered at all. The only memory overhead is the minimal storage required
for the FIFOs in the stream accelerator.

• Greatly Enhanced Performance: There is a significant performance im-
provement over traditional methods of computing convolution using im2col
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techniques. By processing data directly as it is transferred, the proposed
method reduces computational latency tenfold.

Moreover, the stream accelerator, as described, introduces minimal area over-
head, making it a highly efficient and impressive enhancement to the convolution
computation pipeline.

4.3 Conclusion
This thesis presents several enhancements to the X-HEEP microcontroller, address-
ing critical challenges in data transfer and manipulation, a major limitation in the
application of edge computing applications, such as Edge AI.

The central innovation is the advanced DMA system, which, through its multiple
independent channels, efficiently manages various data streams, allowing the CPU
to either process data or enter low-power modes. The 2D transaction capabili-
ties, including zero padding, transposition, and sign extension, further enhance
performance and efficiency for data-intensive tasks.

The Always-On Peripheral Bus expands the potential for accelerator developers
by enabling direct access to Always-On peripherals, such as the DMA subsystem.
This feature enables highly efficient data transfer and manipulation operations
while minimizing the area footprint on the accelerator side, all without adding
complexity to the system bus.

The im2col SPC was introduced as an accelerator that utilizes the AOPB
interface to fully exploit the novel DMA system, offering significant performance
improvements over CPU-based routines while reducing power consumption. This
approach achieves both a notable efficiency gain, up to 7.1x, in the most critical
step of GEMM-based convolution computations. Remarkably, these results were
achieved with minimal area overhead, consuming only 0.43% of the total area in
the HEEPatia project.

This demonstrates that the DMA-based accelerator approach proposed in this
thesis not only delivers substantial improvements in performance and efficiency, but
also shows that these gains can be realized with small, highly efficient accelerators.
This is particularly valuable for small, low-power microcontrollers like X-HEEP,
which operate within stringent area constraints, making it a key contribution to
advancing the development of more powerful and efficient Edge AI applications.

All the designs introduced in this thesis, including the DMA system, AOPB,
and im2col SPC, will be integrated into the HEEPatia SoC, a 16nm silicon imple-
mentation of X-HEEP designed for low-power edge-AI applications. Consequently,
a thorough verification and testing campaign was required. To expedite and au-
tomate this process, while also assessing the performance of the Unit Under Test
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(UUT), VerifHEEP was developed. This Python library supports the creation of
a complete verification environment for X-HEEP, including model building and
synthesis, dataset and golden results generation, FPGA board connection, and
runtime estimation.

Thanks to VerifHEEP, both the DMA system and im2col SPC have been
successfully verified through tens of thousands of unique tests on both simulation
platforms and FPGA targets.

An important achievement of this thesis is the publication of all modifications
to X-HEEP on its open-source GitHub repository. The project gained significant
traction, with numerous institutions around the world using it as a foundation for
developing their own accelerators and contributing to its ongoing evolution.

A key objective of this thesis was to ensure that all components were designed
to be easily understood, utilized, extended, and adapted by future developers.
To support this, extensive documentation has been created for both the DMA
subsystem and the VerifHEEP library, along with thoroughly commented HALs
and examples.

The impact of this work is already evident, as several DMA-based projects
utilizing these new features have started development at both ESL and Polito’s
VLSI group even before the thesis’s completion. This early adoption underscores
the significance of these contributions in addressing the data movement bottleneck
and advancing research in Edge AI.
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