
POLITECNICO DI TORINO
Master’s Degree in Communication and Computer

Networks Engineering

Master’s Degree Thesis

Simulation Framework for Earthquake
Early Warning Using Optical Fiber

Networks

Supervisors

Prof. Vittorio CURRI

Prof. Emanuele VIRGILLITO

Prof. Roberto PROIETTI

Candidate

Federico NOTARSTEFANO

October 2024

Summary

This thesis presents the development of a simulation framework for optical fiber
networks used in earthquake early warning systems (EEWS). The primary objective
is to improve the detection and characterization of seismic events to provide timely
alerts that can help safeguard cities before the earthquake’s impact. The simulation
is centered around the propagation of seismic-induced strain through optical fibers
and the analysis of changes in the state of polarization (SOP) of light signals within
the fiber network.

The proposed work integrates a new model that combines an accurate strain
propagation mechanism along the fiber lines with a waveplate model to account
for the effects of birefringence and polarization changes. The network is divided
into Nodes and Lines, each line is then divided into segments undergoing their own
unique stress evolution due to the seismic waves. The stress evolution is then used
to compute the SOP evolution at the end of each Line. The segment abstraction
is based on the assumption that the earthquake induces a uniform effect on each
segment of the fiber. This means that within each segment, the strain measured
from the waveplates is considered to be consistent. This abstraction simplifies the
complex interactions within the fiber, allowing for a more manageable analysis of
the SOP changes.

A relevant component of the framework is the model calculating of the SOP
changes across all segments, which considers the accumulation of polarization
changes along the entire fiber length. A core element of the framework is the
Simulation Manager, which orchestrates the entire process of seismic event simula-
tion, strain application, and SOP analysis. It also manages the data flow, from
preprocessing seismic inputs to the final handling of simulation results, ensuring
robust and error-resilient operations.

The time base is unified to synchronize the detection and propagation effects
of the earthquake across different parts of the network. This enables the system
to measure the impact of the seismic wave as it reaches different segments and to
adjust the SOP accordingly. An important metric used in the framework is the
SOP Angular Speed (SOPAS), which quantifies the rate of change in polarization
due to seismic-induced strain. The analysis of SOPAS offers key insights into the

ii

dynamics of polarization variation, further aiding in early seismic detection.
The developed simulation measures the feasibility of using optical fiber networks

for real-time monitoring and early warning of seismic events. The integration of real-
time seismic data through the Syngine platform further enhances the simulation’s
realism, providing detailed strain information based on real-world earthquake
parameters. This allows the framework to simulate the behavior of the optical
network during actual seismic events with the realistic precision.

By observing the changes in polarization at both the start and end of each
fiber line, the system can provide critical seconds of warning that are vital for
implementing safety measures. This research contributes to the field of earthquake
early warning systems by providing a more detailed understanding of how seismic
waves affect optical fibers, paving the way for the deployment of rapid and effective
responses to ensure people safety in the event of an earthquake.

iii

Acknowledgements

I would like to express my gratitude to Professor Vittorio Curri for the invaluable
opportunity he gave me and for his guidance throughout this project. I would also
like to thank Prof. Emanuele Virgillito for his support and his readiness to assist
me with this work. Finally, I would like to thank the PLANET team for their
collaboration during this experience.

A special thanks goes to my family, Fabrizio, and my friends, whose love and
support I always cherish.

Federico

iv

Table of Contents

List of Tables x

List of Figures xi

Acronyms xiv

1 Introduction 1
1.1 Context . 1
1.2 Objective . 2
1.3 Structure . 2

2 Background and Literature Review 4
2.1 Introduction . 4
2.2 Seismic Waves Propagation . 5
2.3 Importance of Early Warning Systems 5
2.4 Related Works . 6

2.4.1 Distributed Acoustic Sensors (DAS) 6
2.4.2 State of Polarization (SOP) Sensing 7
2.4.3 Machine Learning Applications 7
2.4.4 Final Remarks . 7

3 Modeling Fiber Optic Network and Generation of Seismic Events 8
3.1 Introduction . 8
3.2 Structure of the Digital Twin . 9

3.2.1 Nodes and Lines Abstraction 9
3.2.2 Segment Abstraction and Strain Application 9
3.2.3 Syngine Integration for Seismic Events 9

3.3 Use of Segment Abstraction . 10
3.3.1 Rationale for Segmenting the Fiber 10
3.3.2 Strain Calculation and Application 10
3.3.3 Advantages of Segment Abstraction 11

vi

3.4 Syngine Integration . 11
3.4.1 Purpose of Syngine Integration 11
3.4.2 How Syngine is Integrated 12
3.4.3 Ground Motion to Strain Conversion 12
3.4.4 Advantages of Using Syngine 12
3.4.5 Generation of the Moment Tensor and Seismic Data Processing 13

4 Strain and Waveplate Model Integration 14
4.1 Introduction . 14
4.2 Strain Evolution . 15

4.2.1 How Strain is Modeled . 15
4.2.2 Strain Evolution Over Time 15
4.2.3 Code Implementation of Strain Evolution 16
4.2.4 Impact on the Waveplate Model 16

4.3 Strain Application on Segments . 16
4.3.1 Strain Application with Receiver Consideration 17
4.3.2 Strain Application without Receiver Consideration 19

4.4 Concept of Waveplate Model . 20
4.4.1 Internal and External Birefringence 21
4.4.2 Waveplate Model Representation 21
4.4.3 Waveplate Model for Seismic Sensing 22
4.4.4 Waveplate Model Implementation 22

4.5 Matricial Simplification of Strain Processing 23
4.5.1 Original Strain Processing 23
4.5.2 Matricial Strain Processing 24
4.5.3 Key Mathematical Differences 26
4.5.4 Performance Improvement 27

4.6 SOPAS Calculation . 27
4.6.1 Mathematical Definition of SOPAS 27
4.6.2 Computation of SOPAS . 28
4.6.3 Code Implementation . 28
4.6.4 Interpretation and Significance 29

5 The Simulation Manager 30
5.1 Introduction . 30
5.2 Data Preprocessing . 30

5.2.1 Cache Management . 31
5.2.2 Loading or Generating SAC Files 32
5.2.3 Log File Generation for Change Detection 32

5.3 Simulation Orchestration . 33
5.3.1 General Overview . 33

vii

5.3.2 Earthquake Strain Application 34
5.3.3 Strain Processing and Polarization Effects 34
5.3.4 Result Handling . 36
5.3.5 Conclusion on Result Handling 37

5.4 Error Handling and Robustness . 37
5.4.1 Cache and Resource Folder Management 37
5.4.2 Handling Missing or Corrupt Data 38
5.4.3 Re-initialization in Case of Data Deletion 38

5.5 Summary and Potential Future Improvements 39
5.5.1 Summary of the Simulation Manager’s Contributions 39
5.5.2 Potential Future Improvements 40

6 Visualization Methods for Seismic Data Analysis 41
6.1 Mapbox Integration for Geographic Visualization 41
6.2 Strain Evolution Visualization . 42
6.3 SOP Evolution Visualization . 42
6.4 SOPAS Visualization . 43

7 Results Analysis 44
7.1 Introduction . 44
7.2 Case 1: Epicenter Near Node A . 45

7.2.1 Network and Epicenter Visualization 45
7.2.2 Seismic Waveform (Syngine) 45
7.2.3 Strain Evolution in Key Lines 46
7.2.4 State of Polarization (SOP) Changes 46
7.2.5 SOP Angular Speed (SOPAS) 48

7.3 Case 2: Epicenter Between Node A and Node B 51
7.3.1 Network and Epicenter Visualization 51
7.3.2 Seismic Waveform (Syngine) 53
7.3.3 Strain Evolution in Key Lines 53
7.3.4 State of Polarization (SOP) Changes 56
7.3.5 SOP Angular Speed (SOPAS) 57

7.4 Case 3: Epicenter 5 km from Node B Towards Node C 59
7.4.1 Network and Epicenter Visualization 61
7.4.2 Seismic Waveform (Syngine) 61
7.4.3 Strain Evolution in Key Lines 62
7.4.4 State of Polarization (SOP) Changes 65
7.4.5 SOP Angular Speed (SOPAS) 67

7.5 Comparison of Results Across Cases 69

viii

8 Conclusion and future developments 70
8.1 Summary of Key Outcomes . 70
8.2 Challenges and Technical Limitations 71
8.3 Potential Future Improvements . 72
8.4 Final Thoughts . 73

A elements.py 74

Bibliography 107

ix

List of Tables

5.1 Cache management based on simulation parameters. 31
5.2 Data re-generation conditions based on the log file. 33
5.3 Error handling and recovery actions based on error type. 39

x

List of Figures

5.1 Flowchart illustrating the cache management process in the Simula-
tion Manager. 31

5.2 Flowchart representing the process of loading or generating .sac files. 32
5.3 Main phases of the simulation orchestration: Initialization, Simula-

tion Execution, and Result Handling. 33
5.4 Flowchart showing a simplified execution of the program orchestrated

by the Simulation Manager. 35

7.1 Network visualization with the epicenter near Node A. 45
7.2 Seismic waveform generated by Syngine near Node A. 46
7.3 Strain evolution in line A-B near Node A. 47
7.4 Strain evolution in line B-C far from Node A. 48
7.5 State of Polarization (Poincaré Sphere) for line A-B near Node A. . 49
7.6 SOP (Stokes Parameters) evolution in line A-B near Node A. 50
7.7 State of Polarization (Poincaré Sphere) for line B-C far from Node A. 51
7.8 SOP (Stokes Parameters) evolution in line B-C far from Node A. . . 52
7.9 SOP Angular Speed (SOPAS) in line A-B near the epicenter. 53
7.10 SOP Angular Speed (SOPAS) in line B-C far from Node A. 53
7.11 Network visualization with epicenter between Node A and Node B. 54
7.12 Seismic waveform generated by Syngine between Node A and Node B. 54
7.13 Strain evolution in line A-B near the epicenter. 55
7.14 Strain evolution in line C-D farther from the epicenter. 56
7.15 State of Polarization (Poincaré Sphere) for line A-B between Node

A and Node B. 57
7.16 SOP (Stokes Parameters) evolution in line A-B between Node A

and Node B. 58
7.17 State of Polarization (Poincaré Sphere) for line C-D farther from

the epicenter. 59
7.18 SOP (Stokes Parameters) evolution in line C-D farther from the

epicenter. 60

xi

7.19 SOP Angular Speed (SOPAS) in line A-B between Node A and Node
B. 61

7.20 SOP Angular Speed (SOPAS) in line C-D farther from the epicenter. 61
7.21 Network visualization with epicenter 5 km from Node B towards

Node C. 62
7.22 Seismic waveform generated by Syngine 5 km from Node B towards

Node C. 62
7.23 Strain evolution in line B-C near the epicenter. 63
7.24 Strain evolution in line A-B farther from the epicenter. 64
7.25 State of Polarization (Poincaré Sphere) for line B-C near the epicenter. 65
7.26 SOP (Stokes Parameters) evolution in line B-C near the epicenter. . 66
7.27 State of Polarization (Poincaré Sphere) for line A-B farther from

the epicenter. 67
7.28 SOP (Stokes Parameters) evolution in line A-B farther from the

epicenter. 68
7.29 SOP Angular Speed (SOPAS) in line B-C near the epicenter. 69
7.30 SOP Angular Speed (SOPAS) in line A-B farther from the epicenter. 69

xii

Acronyms

EEWS
Earthquake Early Warning Systems

SOP
State of Polarization

SOP
State of Polarization Angular Speed

LSTM
Long Short-Term Memory

DAS
Distributed Acoustic Sensing

WP
Wave Plate

xiv

Chapter 1

Introduction

1.1 Context

In recent years, the need for more effective earthquake early warning systems has
become increasingly important due to the potential devastation caused by seismic
events [1]. Traditional seismometers, while accurate, often suffer from limitations in
terms of coverage and response time, particularly in densely populated urban areas.
To address these challenges, researchers have explored alternative methods for
seismic detection that leverage existing infrastructure, one of the most promising
being the use of optical fiber networks [2].

Optical fibers, which are already deployed extensively for telecommunications,
have shown great potential as seismic sensors due to their sensitivity to strain and
environmental changes. By monitoring variations in the state of polarization (SOP)
of light signals transmitted through these fibers, it is possible to detect the ground
motion induced by seismic waves [3]. This approach not only provides a scalable
solution but also reduces the cost and complexity of implementing new earthquake
early warning systems.

The combination of seismic wave propagation models and optical fiber sensing
technology can enhance the precision of early warning systems. By measuring the
strain induced in the fiber by seismic waves and calculating the subsequent changes
in the SOP, it is possible to predict the arrival of the earthquake in real-time. This
thesis explores the development of a simulation framework that models how optical
fiber networks respond to seismic events, with the ultimate goal of improving
earthquake early warning capabilities.

1

Introduction

1.2 Objective
The primary objective of this thesis is to develop a simulation framework capable
of modeling the behavior of optical fiber networks in response to seismic events,
with the aim of enhancing earthquake early warning systems. This framework will
simulate how seismic waves propagate through the ground and induce strain on
optical fibers, and it will analyze how this strain affects the state of polarization
(SOP) of light signals within the network.

To achieve this, the thesis integrates key components such as:

• A model that accurately simulates seismic wave propagation and the resulting
strain along fiber optic lines [4].

• A waveplate model that simulates the effects of birefringence and polarization
changes in the fiber due to the induced strain [4].

• An analysis of how these changes can be used to detect and characterize
seismic events in real-time.

The overarching goal is to evaluate the feasibility of using existing optical fiber
infrastructure for real-time seismic monitoring and early warning. By providing
insights into how these networks respond to seismic waves, this research aims
to contribute to the development of cost-effective, scalable, and rapid-response
systems for earthquake detection. The framework developed will not only simulate
different seismic scenarios but also assess how the fiber network’s characteristics
influence the detection accuracy and warning time.

1.3 Structure
The thesis is organized into eight chapters, each covering different aspects of the
research:

• Chapter 1: Introduction – Provides an overview of the problem addressed
by this research, introduces earthquake early warning systems (EEWS), and
presents the objectives of the study.

• Chapter 2: Background and Literature Review – Discusses the prop-
agation of seismic waves and the importance of early warning systems. It
also reviews related works on Distributed Acoustic Sensing (DAS), State of
Polarization (SOP) sensing, and machine learning applications in seismic
detection.

2

Introduction

• Chapter 3: Modeling Fiber Optic Network and Generation of Seismic
Events – Introduces the methodology for creating a digital twin of the optical
fiber network, simulating seismic events using the Syngine platform, and
applying strain to the network.

• Chapter 4: Strain and Waveplate Model Integration – Delves into the
simulation of strain evolution in fiber optics and explains the integration of
the Waveplate Model to capture changes in birefringence and SOP during
seismic events.

• Chapter 5: The Simulation Manager – Explains the architecture and func-
tionality of the simulation manager, detailing data preprocessing, simulation
orchestration, error handling, and robustness.

• Chapter 6: Visualization Methods for Seismic Data Analysis –
Presents the tools and methods used for visualizing seismic data, including
strain evolution and SOP changes, with an emphasis on Mapbox integration.

• Chapter 7: Results Analysis – Provides a detailed analysis of the simulation
results across three different cases, showing how seismic events impact the
optical fiber network and discussing the observed strain, SOP and SOPAS
variations.

• Chapter 8: Conclusion and Future Developments – Summarizes the
key findings, discusses technical challenges, and proposes future improvements
to the simulation framework and its potential applications for earthquake
detection.

3

Chapter 2

Background and Literature
Review

2.1 Introduction
The growing reliance on optical fiber networks for high-speed communication has
opened new avenues for using these networks as distributed sensing platforms.
Among the most promising applications is their potential for seismic detection,
offering a cost-effective solution by leveraging existing fiber infrastructure rather
than deploying specialized sensor networks [5].

Seismic waves, caused by tectonic movements or other disturbances, can induce
mechanical stress on buried optical fibers. This stress, in turn, alters the state of
polarization (SOP) of light signals traveling through the fibers. By tracking changes
in SOP, it is possible to detect seismic activities and even predict their arrival
in urban areas [6]. This approach not only takes advantage of the wide coverage
of terrestrial optical networks but also eliminates the need for costly, dedicated
hardware.

Two main methods have been explored for seismic detection through optical
fibers: Distributed Acoustic Sensing (DAS) and polarization-based techniques.
While DAS has proven to be effective, it requires specialized, expensive equipment
and is limited by its operational range of less than 100 km. In contrast, polarization
sensing uses existing components of optical networks and offers a longer range at
minimal additional cost [7]. This chapter explores these technologies and presents
the Waveplate Model, a computational method that models birefringence and
polarization changes induced by seismic waves in optical fibers.

This chapter will also highlight recent research, including machine learning
applications, such as the LSTM-based neural networks used to enhance the detection
and interpretation of seismic events based on optical data [8].

4

Background and Literature Review

2.2 Seismic Waves Propagation
Seismic waves are vibrations generated by the release of energy during earthquakes.
These waves travel through the Earth, and they can be classified into two main
categories: body waves and surface waves. Body waves propagate through the
Earth’s interior, while surface waves travel along the Earth’s surface, causing the
most significant damage [8].

Body waves are further divided into Primary (P) waves and Secondary (S) waves.
P-waves are longitudinal waves, meaning that the particle displacement is parallel
to the wave propagation direction. These waves are the fastest and are the first
to be detected by seismic stations. S-waves, on the other hand, are transverse
waves, where particle displacement occurs perpendicular to the direction of wave
propagation. Although slower than P-waves, S-waves carry more energy and are
often associated with greater ground shaking.

Surface waves, which include Love and Rayleigh waves, cause the greatest
destruction during an earthquake. These waves propagate along the Earth’s surface
and have a lower frequency compared to body waves. Love waves move horizontally,
causing horizontal shearing of the ground, while Rayleigh waves induce a rolling
motion, combining vertical and horizontal movements. Due to their large amplitudes
and prolonged shaking, surface waves are typically responsible for the most severe
structural damage during an earthquake [9].

The propagation speed and amplitude of seismic waves depend on several factors,
such as the type of material they travel through, the depth of the earthquake, and
the distance from the epicenter. Detecting and analyzing these waves is crucial
for earthquake early warning systems, as the arrival of P-waves can serve as a
precursor to more destructive S-waves and surface waves.

2.3 Importance of Early Warning Systems
Early warning systems (EWS) for earthquakes are essential for mitigating the
impact of seismic events on infrastructure and human lives. The fundamental
principle behind earthquake early warning is to detect the initial, less destructive
P-waves and use them as a trigger to alert populations and initiate safety measures
before the arrival of more destructive S-waves and surface waves [10].

The time interval between the detection of P-waves and the arrival of the stronger
waves, known as lead time, can vary from a few seconds to minutes, depending
on the location of the seismic event and the distance of the affected area from
the epicenter. Even a warning of a few seconds can make a significant difference,
providing valuable time for individuals to take protective actions, for automated
systems to stop critical infrastructure (such as power plants or trains), and for

5

Background and Literature Review

emergency response systems to prepare for the ensuing impact.
Countries like Japan and Mexico have successfully implemented EWS that have

proven effective in mitigating earthquake damage. For example, Japan’s early
warning system, JMA (Japan Meteorological Agency), has been operational since
2007 and has provided timely alerts for numerous seismic events, including the
devastating Tohoku earthquake in 2011 [11]. Similarly, Mexico’s Seismic Alert
System (SASMEX) has been in place for years and has provided valuable warnings
for major earthquakes [12].

Implementing a reliable early warning system involves several key components:
the detection and analysis of seismic waves in real-time, the ability to transmit
alerts quickly, and the integration of automatic response systems to minimize
damage. The use of optical fiber networks as a sensor grid for seismic activity, as
discussed in this thesis, offers a cost-effective and scalable solution for detecting
earthquakes in real-time. By leveraging existing telecommunication infrastructure,
optical fiber networks can complement traditional seismic sensors and enhance the
overall efficiency of early warning systems [5].

2.4 Related Works

The detection of earthquakes through optical fiber networks has garnered significant
interest in recent years. A range of techniques and methodologies have been
proposed to enhance the accuracy and efficiency of early warning systems, utilizing
both existing infrastructure and advanced sensing technologies. This section
provides a review of the key scientific contributions in three main areas: Distributed
Acoustic Sensors (DAS), State of Polarization (SOP) monitoring, and machine
learning applications for seismic detection.

2.4.1 Distributed Acoustic Sensors (DAS)

DAS systems are widely recognized for their ability to detect mechanical stresses
over optical fibers. These systems can measure strain continuously along the fiber
by analyzing the backscattered light from a pulsed laser. While DAS technology
has proven to be effective for seismic detection [6], it is typically constrained by
a maximum operational range of less than 100 km and requires specialized and
expensive hardware. In contrast, this thesis explores cost-effective alternatives that
utilize polarization sensing within existing optical networks, offering the potential
for large-scale deployment without additional hardware costs.

6

Background and Literature Review

2.4.2 State of Polarization (SOP) Sensing
Monitoring the State of Polarization (SOP) in optical fibers has emerged as a
viable alternative to DAS for seismic detection. Changes in the SOP of light
signals traveling through optical fibers are induced by mechanical disturbances,
such as those caused by seismic waves. In particular, the work of Awad et al. [4]
proposes the Waveplate Model, which simulates the evolution of SOP along the fiber
during seismic events. This model was applied to real earthquake data from a 4.9
magnitude event in Italy, successfully demonstrating the detection of P-waves before
the arrival of destructive surface waves. By using SOP sensing, optical networks
can function as distributed seismic sensors without requiring dedicated equipment,
making them a promising solution for large-scale earthquake monitoring.

2.4.3 Machine Learning Applications
Recent advances in machine learning have also played a critical role in improving the
detection capabilities of optical fiber networks. Several studies have applied neural
networks to the analysis of SOP variations in optical fibers, enabling more accurate
and timely identification of seismic events. For example, a machine learning-driven
smart grid approach was proposed in [8], where a neural network with attention
mechanisms was used to analyze SOP variations in real-time, predicting the arrival
of P-waves and allowing emergency response systems to take action. This approach
leverages the computational capabilities of edge devices within the network and
offers a scalable solution for enhancing seismic detection.

2.4.4 Final Remarks
In summary, the reviewed works demonstrate the effectiveness of optical fiber
networks in detecting seismic activity. While DAS systems provide precise mea-
surements over short distances, SOP-based sensing offers a more scalable and
cost-effective alternative for long-range monitoring. Furthermore, the integration
of machine learning techniques holds great promise for improving the speed and
accuracy of seismic event detection, paving the way for more robust early warning
systems.

7

Chapter 3

Modeling Fiber Optic
Network and Generation of
Seismic Events

3.1 Introduction

This chapter introduces the methodology used for modeling the optical fiber network
and simulating seismic events within the network. The goal is to create a digital
twin of the physical optical network that can be used to simulate the effects of
earthquakes on the State of Polarization (SOP) of light signals propagating through
the fiber. A digital twin replicates the network structure and characteristics,
enabling the application of seismic strains to observe their impact on the network.

The focus is on defining the network’s architecture and integrating it with real
seismic event data to simulate ground motions along the optical fibers. This model
will serve as the foundation for further analysis in the following chapters, where we
integrate the Waveplate Model to study polarization effects and develop algorithms
for early detection of seismic activity.

The integration of the Syngine [13] platform for generating synthetic seismic
events is also discussed, providing a way to simulate earthquakes with realistic
parameters. This chapter lays the groundwork for applying the seismic strains and
observing the response of the optical network, contributing to a comprehensive
earthquake early warning system based on optical fiber sensing.

8

Modeling Fiber Optic Network and Generation of Seismic Events

3.2 Structure of the Digital Twin
The digital twin in this context refers to a simulated representation of the physical
fiber optic network and its response to seismic events. This simulation framework is
essential for understanding how seismic-induced strain propagates through optical
fiber lines and how it affects the state of polarization (SOP) of the transmitted
light signals. The framework models both the seismic wave propagation and the
fiber network’s physical response to these waves.

3.2.1 Nodes and Lines Abstraction
The network is divided into two key structural components: nodes and lines. Nodes
represent the connection points in the network, while lines represent the optical
fiber links that transmit the data. Each line is divided into multiple segments, and
each segment receive its own unique strain evolution due to the seismic waves. This
segmentation is crucial for simulating the local variations in stress along the fiber,
as the seismic wave’s impact will not be uniform across the entire network.

3.2.2 Segment Abstraction and Strain Application
To model the effect of seismic waves, each segment of the line is assigned a strain
value based on the seismic activity. This strain value is calculated from the ground
motion data, which is integrated from real-world seismic events, such as those
provided by the Syngine. The strain values are applied to the segments, which
represent discrete sections of the optical fiber. By applying strain to each segment,
the simulation can track the changes in SOP along the fiber, as the stress disturbs
the light’s polarization.

3.2.3 Syngine Integration for Seismic Events
The Syngine service provides realistic ground motion time series for different seismic
events. For each segment in the network, the Syngine platform generates synthetic
seismograms using a moment tensor model. This moment tensor is based on the
earthquake’s magnitude and fault geometry, which is critical for simulating realistic
ground displacement values. Once generated, these seismograms are filtered and
converted into strain values that are applied to the network. This process ensures
that the ground motion and strain data are accurately represented, making the
simulation closely mirror real-world seismic behavior. The simulation incorporates
different seismic scenarios by adjusting parameters such as the earthquake magni-
tude, location, and depth. This approach allows for the analysis of how varying
seismic conditions affect the fiber network. Specifically, the query to Syngine is

9

Modeling Fiber Optic Network and Generation of Seismic Events

instantiated for each network segment, enabling the fiber to sense the earthquake
as if it were in its actual position.

3.3 Use of Segment Abstraction
Segment abstraction is a key component in modeling the interaction between seismic
waves and the optical fiber network. The optical fiber lines are not treated as
unique entities but are divided into smaller, manageable segments. Each segment
represents a discrete portion of the fiber with its own strain evolution due to the
seismic waves. Within each segment, the strain from the earthquake is considered
uniform, whereas for the entire fiber line, the seismic wave impacts different points
in varying ways. This abstraction simplifies the computational complexity of
simulating seismic stress effects on the fiber network and allows for more accurate
analysis as the segment length is reduced.

3.3.1 Rationale for Segmenting the Fiber
Seismic waves induce mechanical stresses on the fiber, causing variations in the
fiber’s internal birefringence, which in turn affects the SOP of the light passing
through it. These mechanical stresses, however, are not uniformly distributed along
the entire length of the fiber. Different parts of the fiber experience varying levels
of strain depending on their distance from the earthquake’s epicenter, the local
geological conditions, and the characteristics of the seismic wave propagation.

By dividing the fiber into segments, each segment can be assigned a unique
strain profile that reflects the local seismic activity. This enables the simulation to
model how the SOP changes locally, rather than assuming uniform strain across
the entire fiber. The segment abstraction provides a more granular and realistic
representation of the seismic effects on the optical network.

3.3.2 Strain Calculation and Application
Each segment’s strain is calculated based on the ground motion data from seismic
events. The simulation framework, leveraging data taken from Syngine, specifically
it generates strain values for each segment as the seismic wave propagates through
the ground. These strain values are applied to each segment of the optical fiber,
allowing the simulation to track how the fiber’s SOP changes over time as the
strain evolves.

The strain applied to a segment is influenced by several factors, including:

• The magnitude and depth of the seismic event.

• The distance of the segment from the earthquake epicenter.

10

Modeling Fiber Optic Network and Generation of Seismic Events

• The properties of the ground and the fiber’s surrounding environment.

By calculating and applying strain on a per-segment basis, the simulation can
model how the polarization of light in the fiber is affected by seismic waves at a
highly localized level.

3.3.3 Advantages of Segment Abstraction
The use of segment abstraction offers several advantages:

• Granularity: The division into segments allows for detailed analysis of how
seismic stress affects different parts of the fiber, providing more accurate
predictions of SOP changes. The segment length is variable, and users can
decide the level of granularity by choosing the appropriate segment length.

• Scalability: By abstracting the fiber into smaller units, the simulation can
scale to large networks without losing accuracy or becoming computationally
expensive.

• Localization: Segment abstraction enables the detection of localized seismic
events and can help pinpoint the locations of disturbances within the network.
This is critical for early warning systems, which rely on the ability to detect
seismic activity in real-time and respond accordingly.

In summary, segment abstraction is crucial for accurately modeling the interac-
tion between seismic events and optical fibers. It allows the simulation to capture
localized changes in SOP, providing a more detailed and realistic representation of
the fiber network’s behavior during an earthquake.

3.4 Syngine Integration
The integration of Syngine, a web-based service provided by IRIS (Incorporated
Research Institutions for Seismology), plays a crucial role in generating realistic
seismic wave data for the simulation framework. Syngine offers synthetic seismo-
grams based on user-defined parameters, allowing for the simulation of ground
motion and strain that would be experienced by the optical fiber network during
an earthquake.

3.4.1 Purpose of Syngine Integration
Syngine provides detailed ground motion time series data for specific seismic events,
including earthquake magnitude, depth, and location. By integrating this data
into the simulation, we can simulate the impact of actual or hypothetical seismic

11

Modeling Fiber Optic Network and Generation of Seismic Events

events on the optical fiber network. This ensures that the seismic strain applied to
the fiber segments is both realistic and scientifically accurate.

The Syngine service delivers ground motion data in the form of .sac files,
which contain time-series data representing the seismic event. This data is used
to compute the strain experienced by each segment of the optical fiber, which, in
turn, affects the state of polarization (SOP) of light passing through the fiber.

3.4.2 How Syngine is Integrated
To integrate Syngine into the simulation, the following steps are performed:

• The simulation framework sends a request to the Syngine service, specifying
the earthquake parameters such as magnitude, source location, depth, and
the desired receiver locations (the position of the fiber segments).

• Syngine responds by generating synthetic seismograms in .sac format, which
are then downloaded and extracted into the simulation environment.

• The downloaded seismic data is processed to extract the relevant ground
motion time series for each fiber segment. This data is then converted into
strain values using predefined formulas, as seismic ground displacement directly
affects the mechanical strain experienced by the optical fibers.

3.4.3 Ground Motion to Strain Conversion
Once the ground motion data is obtained from Syngine, it is necessary to convert
this data into strain values that can be applied to the optical fiber segments. This
is done using a simplified model of strain, which relates ground displacement to
fiber elongation. The strain on each segment is calculated as:

ϵ = ∆L

L

where ϵ is the strain, ∆L is the change in length of the fiber segment due to
ground motion, and L is the original length of the segment.

Syngine provides the ground displacement ∆L, which is then applied to the
corresponding fiber segment. This allows the simulation to model the physical
deformation of the fiber caused by the seismic waves, which is crucial for calculating
changes in the state of polarization (SOP).

3.4.4 Advantages of Using Syngine
The integration of Syngine into the simulation framework offers several advantages:

12

Modeling Fiber Optic Network and Generation of Seismic Events

• Realism: Syngine provides scientifically accurate, real-time seismic data
based on global seismological models, ensuring that the simulated seismic
waves closely resemble actual earthquake events.

• Customization: Users can define specific earthquake parameters, allowing
for tailored simulations of seismic events that could impact specific regions or
optical fiber networks.

• Efficiency: The Syngine service automates the generation of synthetic seismo-
grams, saving time and reducing the complexity of manually modeling seismic
waves. Moreover, using real-time seismogram data generated by Syngine
ensures that the simulated strain on the fiber network mirrors actual seismic
behavior at the specific sensing location.

3.4.5 Generation of the Moment Tensor and Seismic Data
Processing

To accurately simulate seismic events and their impact on the optical fiber network,
the Syngine platform is used to generate synthetic seismograms. For each seismic
event, the moment tensor is calculated based on the earthquake’s magnitude,
strike, dip, and rake angles using Pyrocko’s moment tensor library. The moment
tensor represents the source mechanism of the earthquake and is a critical factor in
determining how seismic waves propagate through the ground and impact the fiber
network.

The moment tensor is converted into synthetic seismograms, which are used to
model ground displacement at specific receiver locations along the fiber. Once the
seismograms are generated, they undergo preprocessing and filtering:

• Detrending: Removes any linear trends in the data, which could distort the
analysis of seismic waves.

• Low-pass and high-pass Filtering: Filters the data to focus on the fre-
quency range of interest for seismic wave analysis. This is important since the
wave can be affected by some kind of noise.

This processed seismic data is then converted into ground displacement values
that are used to calculate the strain applied to each fiber segment. The filtering
ensures that the strain values used in the simulation are realistic and correspond
to the behavior of seismic waves at the appropriate frequency ranges.

13

Chapter 4

Strain and Waveplate Model
Integration

4.1 Introduction

In this chapter, we delve into the integration of seismic strain data with the
Waveplate Model to simulate the state of polarization (SOP) changes in optical
fiber networks. The interaction between seismic waves and buried optical fibers
causes mechanical strain, which, in turn, alters the polarization of light signals
traveling through the fibers. By accurately modeling the propagation of strain
along the fiber segments, we can predict how the SOP evolves as seismic waves
propagate through the network.

The Waveplate Model, which is used to simulate birefringence in the optical
fibers, is a key component of this approach. Birefringence, caused by imperfections
in the fiber and external perturbations, affects the polarization of light, and the
Waveplate Model helps us capture these changes in detail. In this chapter, we will
describe how seismic strain is applied to the fiber segments, explain the principles
behind the Waveplate Model, and introduce a matrix-based simplification of the
model to improve computational efficiency. Finally, we will discuss how the State
of Polarization Angular Speed (SOPAS) is calculated, providing insights into how
polarization changes can be monitored in real-time for seismic detection.

This chapter forms the core of the simulation framework by connecting the seismic
event data with the polarization model, enabling the monitoring of polarization
shifts during earthquakes and their application in early warning systems.

14

Strain and Waveplate Model Integration

4.2 Strain Evolution
The strain evolution in optical fibers is a key factor in determining how seismic
events impact the State of Polarization (SOP) of the light traveling through the
fiber. In our simulation, strain is applied to each segment of the fiber network to
mimic the effect of seismic waves. This strain, induced by seismic activity, alters
the birefringence of the fiber, which in turn changes the SOP.

4.2.1 How Strain is Modeled
Strain is modeled as a time-varying phenomenon across different segments of the
fiber. Each segment experiences a unique strain evolution based on its location
and the characteristics of the seismic wave affecting it. The strain applied to each
segment is derived from the ground displacement caused by seismic waves. This
displacement is converted into strain using the following formula:

ϵ = ∆L

L0

where:

• ϵ is the strain (dimensionless),

• ∆L is the change in length (ground displacement),

• L0 is the original length of the fiber segment.

For each segment of the optical fiber, the ground displacement due to seismic
waves is converted into strain using a predefined conversion factor, which represents
how much ground displacement results in strain along the fiber.

4.2.2 Strain Evolution Over Time
The strain is not static but evolves over time as the seismic wave propagates. The
strain evolution for each segment is represented as a time series, where the strain
at each time step is updated based on the seismic wave’s impact at that point in
time. This is calculated as:

ϵ(t) = convert_displacement_to_strain(d(t), conversion factor)

Where d(t) is the displacement caused by the seismic wave at time t, and the
conversion factor ensures that the displacement is appropriately scaled to reflect
strain in the optical fiber.

15

Strain and Waveplate Model Integration

4.2.3 Code Implementation of Strain Evolution
Below is the code representation of how strain evolution is computed for each
segment of the fiber:

1 f o r l i n e in s e l f . l i n e s :
2 f o r segment in l i n e . segments :
3 # Generate s e i s m i c wave s p e c i f i c to the segment
4 segment_wave = earthquake . generate_syngine_wave_for_segment (

segment)
5

6 # I n i t i a l i z e the s t r a i n evo lu t i on array
7 segment . i n i t i a l i z e _ s t r a i n _ e v o l u t i o n (l en (segment_wave))
8

9 f o r time_step in range (l en (segment_wave)) :
10 # Calcu la te s t r a i n at each time step
11 para l l e l_d i sp l a c ement = segment_wave [time_step]
12 p a r a l l e l _ s t r a i n = s e l f . convert_displacement_to_stra in (

para l l e l_d i sp lacement , conver s i on_fac to r)
13 segment . s t r a in_evo lu t i on [time_step] = [p a r a l l e l _ s t r a i n ,

0] # Only p a r a l l e l s t r a i n c a l c u l a t e d

In this implementation, the strain evolution for each segment is calculated by
iterating over the time steps of the seismic wave. At each time step, the displacement
caused by the seismic wave is converted into strain using the conversion factor.

4.2.4 Impact on the Waveplate Model
Once strain is applied to the segments, it affects the birefringence of the fiber,
which is a key input to the Waveplate Model discussed in later sections. The strain
evolution alters the polarization of the light traveling through the fiber, and this is
captured by the State of Polarization Angular Speed (SOPAS) and other metrics.

In summary, strain evolution helps for simulating how seismic waves mechanically
affect the fiber, which in turn influences the light’s polarization. The accurate
modeling of this strain evolution is essential for predicting and detecting seismic
events using optical fiber networks.

4.3 Strain Application on Segments
In this section, we will explore the methods used to apply strain to optical fiber
segments in response to seismic events. Optical fibers buried underground experi-
ence mechanical stress during seismic activity, and this stress can be quantified

16

Strain and Waveplate Model Integration

as strain. To simulate this effect, strain values are calculated and applied to each
segment of the fiber network.

We present two approaches for applying strain, each serving different purposes
based on the complexity and precision of the simulation:

• Strain Application with Receiver Consideration: This method takes
into account the relative position of the earthquake’s epicenter and the specific
segment of the fiber. The strain is calculated based on the angle and distance
from the epicenter, making it more precise for localized seismic events. For each
segment, the function makes calls to Syngine, a seismic data service, passing
the segment’s position and the earthquake’s epicenter to generate seismic
waves specific to that segment. This ensures that the waves applied reflect
the actual sensing data that would be observed in each segment during an
earthquake event, thus simulating a realistic strain profile across the network.

• Strain Application without Receiver Consideration: In this simplified
version, a single seismic wave is generated by selecting a reference point near
the earthquake’s epicenter as the receiver. This wave is then propagated
across the entire network, with each segment’s strain being adjusted through
attenuation calculations based on the segment’s distance from the epicenter.
The attenuation factor accounts for the energy dissipation of seismic waves over
distance, ensuring that segments farther from the epicenter experience lower
strain values compared to those closer. This approach is more computationally
efficient but sacrifices some precision, as the specific geometric positioning of
each segment relative to the earthquake is not considered.

The following subsections will detail these two methods, discussing their imple-
mentations and the specific functions involved in each approach.

4.3.1 Strain Application with Receiver Consideration
The apply_earthquake_strain_with_receiver function is responsible for ap-
plying seismic strain to each segment of the fiber optic network. This function
processes seismic data and converts it into strain values based on the earthquake’s
characteristics and the segment’s position relative to the earthquake’s epicenter.
Below is an explanation of the logic and a breakdown of how the function operates.

• Line and Segment Processing:
The function iterates over all fiber lines and their respective segments. For
each segment, a seismic wave is generated through a call to generate_syngine
_wave_for_segment, which simulates the ground motion experienced by that
specific segment during the earthquake:

17

Strain and Waveplate Model Integration

1 f o r l i n e in s e l f . l i n e s :
2 f o r segment in l i n e . segments :
3 segment_wave = earthquake .

generate_syngine_wave_for_segment (segment)
4

• Initialization of Strain Evolution:
The strain evolution for each segment is initialized to store the computed
strain data for each time step. Additionally, the timestamp of the earthquake
is saved:

segment.initialize_strain_evolution(len(segment_wave))
segment.timestamp = earthquake.start_time

• Conversion Factor:
A conversion factor is used to translate ground displacement (measured in
nanometers) into strain (measured in nano-strain). Each nanometer of ground
displacement corresponds to a specific amount of strain applied to the wave-
plate. The conversion factor is defined as follows:

conversion_factor = waveplate_interval

This factor ensures that the strain calculation is related to the displacement
experienced by the optical fiber wave plate.

• Strain Calculation per Time Step:
For each time step in the seismic wave, the function calculates the angle
between the earthquake’s epicenter and the segment. The angle is used to
compute both the parallel and orthogonal displacements that the segment
experiences. These displacements are then converted into strain values:

1 f o r time_step in range (l en (segment_wave)) :
2 ang le = ca l cu l a t e_ang l e (segment , earthquake . p o s i t i o n)
3 para l l e l_d i sp lacement , orthogonal_displacement =

ca l cu la te_d i sp lacement (
4 segment_wave [time_step] , ang le)
5 p a r a l l e l _ s t r a i n = s e l f . convert_displacement_to_stra in (

para l l e l_d i sp lacement , conver s i on_fac to r)
6 or thogona l_st ra in = s e l f . convert_displacement_to_stra in (

orthogonal_displacement , conver s i on_fac to r)

18

Strain and Waveplate Model Integration

7 segment . s t r a in_evo lu t i on [time_step] = [p a r a l l e l _ s t r a i n ,
o r thogona l_st ra in]

8

Supporting Functions

Several supporting functions assist in performing precise calculations. These
include:

• generate_syngine_wave_for_segment: Generates seismic strain waves
for each segment based on its position relative to the earthquake.

• calculate_angle: Computes the angle between the segment and the earth-
quake’s epicenter, which is important for calculating the strain distribution.

• calculate_displacement: Calculates both parallel and orthogonal displace-
ments based on the seismic wave’s characteristics and the segment’s orientation
relative to the earthquake, thus using the angle of the previous function.

• convert_displacement_to_strain: Converts displacement values into
strain using the pre-defined conversion factor.

In this method, seismic waves are simulated for each segment individually, and
the resulting strain values are directly tied to the unique position and angle of the
segment relative to the epicenter. This method provides a localized and precise
strain calculation for each segment and thus for each part of the network.

4.3.2 Strain Application without Receiver Consideration
In addition to the apply_earthquake_strain_with_receiver function, a variant
function apply_earthquake_strain applies strain to the fiber network without
considering specific receiver positions. This variant simplifies the process by
calculating the strain on the entire fiber network based solely on the earthquake’s
characteristics, without detailed geometrical considerations. Below is an explanation
of the function logic and its key differences.

Key Differences from the apply_earthquake_strain_with_receiver Func-
tion

• Absence of Receiver-Specific Logic:
Unlike apply_earthquake_strain_with_receiver, this version does not con-
sider the specific positions of fiber segments relative to the earthquake’s epicen-
ter. Instead, the earthquake’s effect is applied starting from a single waveform
and then attenuated, based on distance across the entire network.

19

Strain and Waveplate Model Integration

• Simplified Strain Calculation:
The function simplifies the process by directly applying the strain from the
seismic wave data, computing only the parallel strain for each segment. This
eliminates the need for orthogonal strain calculation, making it computationally
more efficient.

Functions Involved

This variant introduces fewer computations compared to the receiver-based strain
application, using a more generalized set of functions:

• generate_syngine_wave:
This function generates a synthetic seismic wave that applies uniformly to all
segments in the fiber network. Unlike the previous approach, where a unique
wave was generated for each segment, this function is called only once. The
generated wave is then distributed across all segments, assuming that the
entire network is equally affected by the earthquake’s force. This simplifies
the simulation by treating the network as a whole rather than as individual
segments with distinct seismic responses.

• convert_displacement_to_strain:
This function remains the same as in the previous method. It converts
the displacement measured from the seismic wave into strain values using a
predefined conversion factor, ensuring consistency in the strain calculation.

Conclusion on the Differences

While both functions aim to simulate the strain applied to the fiber network, the
apply_earthquake_strain function simplifies the process by ignoring receiver-
specific data and applying the strain uniformly across the network. This makes it
computationally more efficient but less precise in scenarios where localized strain
calculations are necessary. The absence of segment-specific angle and displacement
calculations means this method is faster but sacrifices accuracy when the exact
position of each segment relative to the earthquake’s epicenter is important.

4.4 Concept of Waveplate Model
The Waveplate Model is a computational approach designed to simulate the impact
of birefringence on the state of polarization (SOP) of light propagating through an
optical fiber. In the context of seismic detection, seismic waves induce strain in
the optical fiber, altering the birefringence and, consequently, the SOP of the light
signal. The Waveplate Model divides the optical fiber into small pieces (inside each

20

Strain and Waveplate Model Integration

segment), or "waveplates", to model the accumulated polarization effects caused by
these seismic-induced strains.

4.4.1 Internal and External Birefringence
Optical fibers are inherently birefringent due to imperfections during their con-
struction. This internal birefringence affects the polarization of light as it travels
through the fiber. Additionally, external mechanical stresses, such as those caused
by seismic activity, introduce further birefringence. The Waveplate Model is de-
signed to separate these two effects by simulating the internal birefringence across
small uniform segments of fiber and analyzing deviations caused by external forces.

Mathematically, birefringence in the fiber can be described by the Jones matrix
formalism. Each waveplate can be represented by a Jones matrix Md, which models
the phase retardation caused by the birefringence:

Md =
A

ei δ
2 0

0 e−i δ
2

B

where δ is the phase difference induced by the birefringence, which depends on the
strain applied to the segment.

4.4.2 Waveplate Model Representation
The optical fiber is divided into N segments, each representing a waveplate with
its own birefringence properties. The cumulative effect of all waveplates on the
state of polarization (SOP) is computed by multiplying the Jones matrices for each
waveplate in sequence. The orientation of each waveplate is randomized to simulate
the natural variations in fiber geometry. The angle θ is generated for each segment
to reflect these variations, and the corresponding rotation matrix R(θ) is applied
to the Jones matrix for each waveplate. Let R(θ) represent the rotation matrix for
the waveplate orientation:

R(θ) =
A

cos θ − sin θ
sin θ cos θ

B
The Jones matrix for each segment can then be described as:

J = R−1(θ)MdR(θ)

where θ is the random orientation of the waveplate in the fiber. This randomness
in orientation ensures that the simulation captures the unpredictable nature of
birefringence effects in real-world fibers.
The final polarization state is the product of all Jones matrices across the fiber:

Pout = JNJN−1 · · · J1Pin

21

Strain and Waveplate Model Integration

where Pin is the initial polarization state and Pout is the final polarization state at
the end of the fiber.

4.4.3 Waveplate Model for Seismic Sensing
In the context of seismic sensing, the Waveplate Model tracks the changes in SOP
caused by the strain along the fiber due to seismic activity. The strain alters the
birefringence of each segment, modifying the phase retardation δ. This strain-
induced birefringence is a direct result of the ground displacement caused by seismic
waves.

Model Assumptions

The Waveplate Model makes the following assumptions:

• Each waveplate has a random but uniform internal birefringence.

• The strain induced by seismic waves introduces additional birefringence in
each waveplate.

• The seismic-induced birefringence can be modeled as a small perturbation to
the internal birefringence of the fiber.

Mathematical Representation of Strain

The strain ε in each segment of the fiber is calculated based on the displacement of
the ground during seismic activity. This strain is used to modify the birefringence
of the fiber:

δ′ = δ0 + ε · β

where δ0 is the internal birefringence and β is a constant representing the sensitivity
of the fiber to strain.

The total change in the SOP is obtained by applying the modified Jones matrices
to the light polarization, yielding the final polarization state after seismic activity.

4.4.4 Waveplate Model Implementation
The Waveplate Model is implemented in Python and simulates the effects of
birefringence and strain on the SOP. Each waveplate’s random orientation is taken
into account, and the cumulative effect on polarization is calculated by multiplying
the corresponding Jones matrices. The final output provides the SOP at the end
of the fiber, which can be used to detect seismic events.

The output of the model is the state of polarization at the end of the fiber,
which changes based on the seismic strain experienced by the fiber.

22

Strain and Waveplate Model Integration

4.5 Matricial Simplification of Strain Processing
The original process_strain_in_wp_model function computes the strain effects
along the optical fiber waveplates in an iterative manner, which can be computation-
ally expensive. The optimized version, process_strain_in_wp_model_matricial,
achieves the same results using matrix operations, leading to a more efficient com-
putation. This section provides an in-depth explanation of the improvements and
the mathematical formulations involved.

4.5.1 Original Strain Processing
In the original method [4], the strain evolution is calculated iteratively for each
waveplate and time step:

• Strain Matrix Construction:
The strain experienced by each waveplate is extracted from the segment strain
evolution, creating a time series of strain for each waveplate:

strain_matrix(t, j) = segment.strain_evolution(t, 0)

where t represents the time step and j the waveplate index.

• Rotation Matrix Calculation:
For each waveplate, the birefringence and imperfections due to internal fiber
characteristics are modeled using a rotation matrix:

R(θ) =
A

cos(θ) − sin(θ)
sin(θ) cos(θ)

B

The inverse of the rotation matrix is applied sequentially to account for the
effect of random orientation within the fiber segments.

• Jones Matrix Multiplication:
The Jones matrices representing the polarization effects are multiplied itera-
tively for each waveplate and time step:

Pout = Jn × · · · × J1 × Pin

This multiplication is done for each j and t in a loop cycle, making the process
computationally expensive.

• Output Polarization:
The final polarization state is computed through repeated matrix multiplica-
tions across all waveplates and for all time steps.

23

Strain and Waveplate Model Integration

4.5.2 Matricial Strain Processing
The optimized version of the strain processing function replaces iterative calculations
with matrix operations, significantly enhancing computational efficiency. Below,
we break down the key operations involved in this matricial approach and explain
their mathematical basis.

Pre-computed Rotation Matrices

In the original iterative approach, rotation matrices were computed individually
for each waveplate and time step. In the matricial approach, we precompute these
matrices and expand them for all time steps.

Each waveplate introduces a random internal birefringence that can be modeled
using a rotation matrix R(θ), where θ represents the random angle of birefringence
due to imperfections:

R(θ) =
A

cos(θ) − sin(θ)
sin(θ) cos(θ)

B
In the matricial version, instead of recalculating this matrix for each step, we
precompute the rotation matrices for all time steps and all waveplates:

rotation_matrices = xp.array ([R(θ)])

To handle all waveplates simultaneously, these matrices are expanded across time
steps using broadcasting techniques. This pre-computation significantly reduces
the redundant calculations required at each iteration, optimizing performance.

Matricial Computation of Strain Effects

The strain effects on the waveplates are determined by the interaction between the
seismic strain and the birefringence in the fiber. In the matricial approach, the
strain data is processed as a matrix.

The phase shift due to birefringence and external strain is calculated as:

d′(t, j) = Birefringence × (1 + strain(t, j))

where strain(t, j) is the strain experienced by waveplate j at time t, and Birefrin-
gence is a fixed value that depends on the physical properties of the fiber.

This phase shift d′(t, j) is then used to construct the diagonal Jones matrices
for each waveplate:

Md(t, j) =
exp

1
1j·d′(t,j)

2

2
0

0 exp
1

−1j·d′(t,j)
2

2
24

Strain and Waveplate Model Integration

These diagonal matrices represent the polarization change due to birefringence and
strain, and they are applied to all waveplates and time steps in a single matrix
operation.

Efficient Jones Matrix Multiplication

In the original iterative approach, Jones matrices were multiplied one by one
across all waveplates. In the matricial version, we use numpy’s einsum function to
efficiently compute the Jones matrix multiplication across all waveplates and time
steps in one operation.

The Jones matrices for each waveplate and time step are computed as:

Jtotal(t) = xp.einsum(′ijkl, ijmn, ijop− > ijkp′,

inv_rotation_matrices, Md, rotation_matrices)
(4.1)

where:

• inv_rotation_matrices is the inverse of the rotation matrix for each waveplate,

• Md is the diagonal Jones matrix for the birefringence and strain,

• rotation_matrices is the precomputed rotation matrix.

This operation efficiently handles the matrix multiplication across all dimensions
(n_samples, n_waveplates, and the 2x2 matrices), replacing the iterative loop
with a single matrix operation.

Final Output Polarization

Once the total Jones matrix has been computed for each time step, the final
polarization state of the light can be determined by applying this matrix to the
input polarization state.

Let Pin be the initial polarization state of the light, which we assume to be
linearly polarized at +45◦:

Pin = 1√
2

A
1
1

B
The output polarization state for each time step is then computed as:

Pout(t) = Jn(t) × · · · × J1(t) × Pin(t)

This can be computed for all samples at once using:

Pout(t) = xp.einsum(′ijl, l− > ij′, Jtotal, Pin)

This operation provides the final polarization state for all waveplates and all time
steps.

25

Strain and Waveplate Model Integration

Conversion to Stokes Parameters

After computing the output polarization, we convert it to Stokes parameters to
analyze the polarization state.

The Stokes parameters S1, S2, and S3 are computed as:

S1 = |Pout(t)1|2 − |Pout(t)2|2 (4.2)
S2 = 2 · Re (Pout(t)1Pout(t)∗

2) (4.3)
S3 = 2 · Im (Pout(t)1Pout(t)∗

2) (4.4)

These parameters describe the state of polarization on the Poincaré sphere.

Key Benefits of the Matricial Approach

The matricial approach provides several key advantages over the original iterative
method:

• Loop Elimination: By using matrix operations, the matricial approach elim-
inates the need for nested loops over waveplates and time steps, significantly
improving performance.

• Vectorized Operations: Operations such as Jones matrix multiplications and
Stokes parameter calculations are vectorized, allowing them to be computed
for all samples and waveplates simultaneously.

• Pre-computation: Precomputing the rotation matrices reduces the compu-
tational overhead by avoiding redundant calculations.

In summary, the matricial approach streamlines the strain processing pipeline by
leveraging matrix operations, resulting in a significant reduction in computational
time without compromising the accuracy of the polarization evolution.

4.5.3 Key Mathematical Differences
• Loop Elimination:

In the matricial version, loops over waveplates and time steps are replaced
by matrix operations. This eliminates the need for nested loops, significantly
improving performance.

• Matrix-based Jones Calculations:
In the matricial process, the polarization state is calculated using matrix
multiplications:

Pout(t) = xp.einsum(′ijl, l− > ij′, J(t), Pin)

26

Strain and Waveplate Model Integration

This allows the Jones matrices of all waveplates to be applied in one step,
rather than iteratively.

• Pre-computation of Rotation Matrices:
The pre-computation and broadcasting of rotation matrices reduce the com-
putational load by avoiding redundant calculations.

4.5.4 Performance Improvement
The matricial process significantly reduces computational complexity by eliminating
loops and leveraging efficient matrix operations. This ensures that the same accuracy
in polarization evolution is maintained while achieving much faster results, making
the method suitable for large-scale simulations.

In conclusion, the matricial simplification of the strain processing pipeline
drastically improves the simulation’s speed and scalability, without compromising
on the physical accuracy of the model.

4.6 SOPAS Calculation
The State of Polarization Angular Speed (SOPAS) is a metric designed to capture
the rapidity of change in the state of polarization (SOP) within optical fiber
networks. The SOP is typically represented by three Stokes parameters: S1, S2,
and S3, which describe the polarization in a 3D space. SOPAS provides a scalar
value that encapsulates the speed at which the SOP vector rotates over time,
offering insight into changes due to external perturbations such as seismic waves.

4.6.1 Mathematical Definition of SOPAS
SOPAS is calculated by measuring the angular displacement between consecutive
SOP vectors, represented by the Stokes parameters, over small time intervals.
Formally, it is defined as:

SOPAS(t) = 1
∆t

arccos
A

S(t) · S(t − ∆t)
|S(t)||S(t − ∆t)|

B

where:

• S(t) = [S1(t), S2(t), S3(t)] is the Stokes vector at time t,

• S(t − ∆t) is the Stokes vector at the previous time step,

• ∆t is the time interval between two measurements.

27

Strain and Waveplate Model Integration

4.6.2 Computation of SOPAS
The SOPAS computation in the code involves the following key steps:

1. The Stokes parameters S1, S2, and S3 are extracted for each time step.

2. For each time step t, the dot product of the Stokes vectors at time t and t − 1
is computed:

S(t) · S(t − 1)

3. The norms of S(t) and S(t − 1) are calculated:

|S(t)| and |S(t − 1)|

4. SOPAS is then computed using the arc cosine of the normalized dot product
divided by the time interval:

SOPAS(t) =
arccos

1
S(t)·S(t−1)

|S(t)||S(t−1)|

2
∆t

4.6.3 Code Implementation
The implementation of SOPAS in the simulation follows these steps:

1 de f calculate_sop_angular_speed (s e l f) :
2 f o r l i n e in s e l f . l i n e s :
3 i f l i n e . s tokes_evo lut ion i s not None :
4 S1 = l i n e . s tokes_evo lut ion [: , 0]
5 S2 = l i n e . s tokes_evo lut ion [: , 1]
6 S3 = l i n e . s tokes_evo lut ion [: , 2]
7

8 # Construct the Stokes ve c t o r s
9 S_k = np . array ([S1 , S2 , S3]) .T

10 S_k_minus_1 = np . r o l l (S_k , 1 , ax i s =0)
11

12 # Compute dot product and norms
13 dot_product = np . sum(S_k [1 :] ∗ S_k_minus_1 [1 :] , a x i s =1)
14 norms_product = np . l i n a l g . norm(S_k [1 :] , a x i s =1) ∗ np .

l i n a l g . norm(S_k_minus_1 [1 :] , a x i s =1)
15

16 # Calcu la te cos (ang le) and c l i p va lue s between −1 and 1
17 cos_angle = np . c l i p (dot_product / norms_product , −1, 1)
18

19 # SOPAS c a l c u l a t i o n
20 f s = 10 # Sampling f requency (10 Hz)
21 SOPAS = np . a r cco s (cos_angle) ∗ f s
22 l i n e . sop_angular_speed = SOPAS

28

Strain and Waveplate Model Integration

4.6.4 Interpretation and Significance
SOPAS serves as a valuable tool for detecting external perturbations in optical
fibers. High SOPAS values correspond to rapid polarization changes, indicating
potential seismic activity. In our simulation, SOPAS is used to monitor the
network’s response to earthquakes, providing insights into how seismic waves affect
light polarization in real-time

29

Chapter 5

The Simulation Manager

5.1 Introduction
The Simulation Manager is the core component responsible for orchestrating the
entire seismic simulation workflow. Its primary function is to coordinate the interac-
tion between the network model, the earthquake event, and the results visualization
system. By managing all the key processes, the Simulation Manager ensures that
the system runs smoothly, efficiently, and can handle complex simulations with
varying parameters.

The Simulation Manager operates as a control unit that initializes the system
components, processes seismic data, and generates results based on the fiber
optic network’s response to seismic activity. It is designed to be modular and
adaptable, allowing for easy updates and integration of new functionalities without
compromising the overall structure of the simulation.

This chapter will delve into the details of how the Simulation Manager orches-
trates the various processes in the simulation, with a focus on the initialization of
the network and earthquake, data preprocessing, strain application and processing,
and finally, the handling and visualization of results. Additionally, it will discuss
the system’s robustness, including how it handles errors and manages cached data
for efficient operation.

5.2 Data Preprocessing
The Simulation Manager plays a critical role in preparing the data before starting
the simulation. This process, referred to as Data Preprocessing, includes cache
management, loading or generating .sac files, and creating a log file to detect
parameter changes. This section explores these aspects in detail.

30

The Simulation Manager

5.2.1 Cache Management
To optimize the simulation performance and reduce loading times, the Simulation
Manager utilizes a cache. The cache stores temporary data used during the
simulation, including intermediate results or preprocessed data. If the simulation
parameters change, the cache must be refreshed and new data generated.

Parameter Cache Action
Earthquake Magnitude/Epicenter Re-generate seismic data

Network Node Position Recalculate strain and SOP
Segment Length or Waveplate Interval Reset cache files

Table 5.1: Cache management based on simulation parameters.

Start Simulation

Check log file

Change
detected?

Use cached
data

Clear cache
& regener-
ate data

Proceed with
simulation

No Yes

Figure 5.1: Flowchart illustrating the cache management process in the Simulation
Manager.

If any of the listed parameters change, the system automatically clears the
cache/ and resources/ directories, ensuring that the results reflect the new
simulation conditions. The Simulation Manager checks the log file, comparing
current parameters with saved values, to determine whether data needs to be
regenerated.

31

The Simulation Manager

5.2.2 Loading or Generating SAC Files
.sac files contain seismic data used in the simulation to apply earthquake effects
to the network segments. The Simulation Manager performs one of the following
operations:

• If the .sac files already exist in the resources/ directory, the system loads
them without generating new data.

• If the files are unavailable, the Syngine service is used to generate new .sac
files, using the earthquake parameters specified in the simulation.

Earthquake
Wave Gen-

eration

Check for
existing
.sac files

Files available?Load .sac files
from cache

Generate .sac
files via Syngine

Continue
Simulation

Yes No

Figure 5.2: Flowchart representing the process of loading or generating .sac files.

Using existing .sac files reduces simulation time, while regenerating them via
Syngine ensures that the data accurately reflects updated earthquake parameters.

5.2.3 Log File Generation for Change Detection
To ensure that the data is always up to date, the Simulation Manager generates
and maintains a log file in the resources/ directory. This file stores key simulation
parameters such as earthquake magnitude, position, segment length, and network

32

The Simulation Manager

configuration. If a difference is detected between the current parameters and
those stored in the log file during a new simulation, the cache/ and resources/
directories are cleared, and new data is regenerated.

Parameter Re-generation Condition
Magnitude If different from the previous log

Epicenter Location If different from the previous log
Network Structure If segment length has changed

Table 5.2: Data re-generation conditions based on the log file.

The log file acts as a "memory" that allows the Simulation Manager to avoid
unnecessary recalculations when the simulation parameters remain unchanged.

5.3 Simulation Orchestration
The Simulation Manager plays an important role in orchestrating the various
stages of the simulation, from initializing the network to processing strain and
computing polarization effects. This section provides a detailed description of the
steps involved in orchestrating the simulation.

5.3.1 General Overview
The Simulation Manager acts as the core controller, ensuring that all components
of the simulation work together seamlessly. It integrates the network structure,
earthquake events, and the necessary computations to model seismic impacts on
the optical fiber system.

Initialization

Simulation
Execution

Result Handling

Figure 5.3: Main phases of the simulation orchestration: Initialization, Simulation
Execution, and Result Handling.

33

The Simulation Manager

The Simulation Manager process is divided into three main phases:

• Initialization: The network and earthquake data are loaded, and necessary
precomputations, such as cache management, are performed.

• Simulation Execution: The earthquake strain is applied to the optical net-
work, and the resulting polarization effects are computed using the waveplate
model.

• Result Handling: The final polarization states are processed, and relevant
visualizations are generated.

5.3.2 Earthquake Strain Application
The Simulation Manager applies seismic strain to each network segment based on
the earthquake parameters. Two variants of strain application are available:

• Strain Application with Receiver Consideration: The strain is calculated
based on the relative position between the earthquake’s epicenter and each
segment in the network. This method uses precise seismic data for localized
strain calculations.

• Strain Application without Receiver Consideration: In this simplified
version, the displacement query is performed only once, and the attenuation of
the strain across segments is calculated manually using an attenuation factor,
this version still considers the earthquake’s impact angle and distance from
the epicenter.

The strain application process begins by generating seismic waves for each
segment, using two methods accordingly to the with/without receiver considerations.
The strain is then processed according to the waveplate model.

5.3.3 Strain Processing and Polarization Effects
The strain experienced by each segment leads to birefringence effects in the fiber,
altering the state of polarization (SOP) of the light traveling through it. The
Waveplate Model is used to simulate these polarization effects.

• Waveplate Model: Each fiber segment is divided into multiple waveplates,
and the strain applied to the segment induces phase shifts and changes in
polarization. The model computes the SOP evolution for each waveplate.

34

The Simulation Manager

initialize_simulation()check_and_create_cache

create_folders

initialize_network

initialize earth-
quake parametersrun_simulation()

apply_earthquake_strain()

process_strain_in_wp_model()

calculate_SOPAS()

visualize_results() plot_in_map

plot_strain

plot_SOP

plot_SOPAS save_images()

load from .sac filesgenerate_syngin_wave()

download_sac_files()

end_simulation()

OROR

Figure 5.4: Flowchart showing a simplified execution of the program orchestrated
by the Simulation Manager.

• Matrix-based Optimization: The simulation employs matrix-based opera-
tions to efficiently compute the Jones matrices for all waveplates and time steps,
significantly reducing computation time compared to the non-matrix-based
approach.

• GPU Acceleration: The process is significantly accelerated by utilizing
GPUs, if available. This allows for faster computation and real-time processing
of large datasets, enhancing the overall efficiency of the simulation.

35

The Simulation Manager

5.3.4 Result Handling
The final stage of the simulation, as shown in 5.4 is the processing and visualization
of the results. This phase includes the calculation of the State of Polarization, the
SOP Angular Speed (SOPAS) and the visualization of the polarization evolution,
which provides insight into how seismic events affect the polarization state in the
fiber.

Result Handling

The final stage of the simulation is the processing and visualization of the results.
This phase includes the following visualizations:

• Mapbox Visualization:

– Lines, Nodes, and Earthquake Epicenter: The optical fiber network,
including lines and nodes, is plotted on a geographical map using Mapbox.
The earthquake epicenter is also marked to provide a spatial context of
the seismic event.

– Propagation Circles: Concentric circles are drawn around the epicenter
to indicate the propagation of seismic waves over time. These circles help
visualize the spread of the earthquake’s impact and the areas affected by
the seismic waves.

• Strain Visualization:

– Strain Evolution Plots: The strain evolution is plotted for each fiber
line, with three sample segments selected within each line. These plots
show how the strain levels change dynamically as seismic waves travel
through the optical fiber network.

• State of Polarization (SOP) Visualization:

– 2D SOP Plots: The evolution of the State of Polarization (SOP) over
time is visualized in 2D plots for each fiber line. These plots track the
Stokes parameters S1, S2, and S3 at each time step.

– 3D Poincaré Sphere: The SOP is also visualized on a 3D Poincaré
sphere, showing the trajectory of the polarization state over time. This
provides a comprehensive view of how seismic events influence the polar-
ization.

• State of Polarization Angular Speed (SOPAS):

36

The Simulation Manager

– SOPAS Plots: The State of Polarization Angular Speed (SOPAS) is
plotted over time for each fiber line. These plots help identify periods of
rapid polarization changes, indicating potential seismic activity.

These visualizations provide a clear understanding of the polarization evolution
and strain distribution over time, offering valuable insights into how seismic events
affect the optical fiber network.

5.3.5 Conclusion on Result Handling
The result handling process ensures that both the quantitative data (SOPAS) and
visual representations (Poincaré sphere, SOP evolution) are available for analysis.
This combination of numerical and visual data provides a comprehensive view of
how seismic events affect the polarization state in optical fiber

5.4 Error Handling and Robustness
The robustness of the simulation framework is ensured through careful management
of potential errors and interruptions. This section describes the strategies employed
to handle missing or corrupt data and to manage critical system resources, ensuring
that the simulation can recover from common failure scenarios.

5.4.1 Cache and Resource Folder Management
The Simulation Manager relies on cached data and pre-generated resources, such
as SAC files, to speed up simulation runs. These resources are stored in specific
directories (cache and resources/sac_files). If these folders are deleted or
corrupted, the system must recreate them to prevent failures.

• Cache Recreation: During each simulation initialization, the system checks
whether the cache and resources folders exist. If they are missing, the
manager recreates them and logs this action in the log file.

• Automatic Cleanup: If changes to the simulation parameters (e.g., earth-
quake magnitude, segment length) are detected, the cache and resource folders
are cleared, forcing the system to regenerate data.

The check for the existence of directories can be represented as follows:

if not exists(cache_folder) then create_folder(cache_folder)
This guarantees that the necessary directories are always present, avoiding

missing folder errors.

37

The Simulation Manager

5.4.2 Handling Missing or Corrupt Data

One of the most common sources of errors during simulation is missing or corrupt
data, especially when dealing with pre-downloaded SAC files or cache data. The
Simulation Manager includes a robust mechanism to detect these issues.

• Data Integrity Check: Before loading any cached data or SAC files, the
system verifies the integrity of these files. For SAC files, this involves checking
that the file to be reused is exactly the same as the one that the program
would download from the servers. If any anomalies are detected, the system
automatically triggers a re-download of the affected files.

• Fallback Mechanism: If a SAC file is found to be missing or corrupt,
the system falls back to querying the IRIS Syngine API to regenerate the
seismic wave data. This ensures that even in the event of data corruption, the
simulation can continue.

5.4.3 Re-initialization in Case of Data Deletion

In scenarios where data or cache folders are accidentally deleted mid-simulation,
the Simulation Manager automatically re-initializes the simulation environment.
This includes clearing out incomplete data, regenerating files, and restarting the
simulation from the last known good state.

The re-initialization process follows these steps:

1. Detect Missing Data: During each simulation run, the system checks for
the existence of critical data. If a required file is missing, the system logs the
error and proceeds to clean up the environment.

2. Re-create Resources: The system then recreates the necessary resources,
such as SAC files, based on the current simulation parameters. If cache files
are missing, the system regenerates them from scratch.

3. Restart Simulation: Once the environment is stable, the system restarts
the simulation, ensuring that no incomplete or corrupt data is used.

The overall process ensures that the simulation can recover from a wide variety of
errors, from missing cache files to data corruption, with minimal user intervention.

This table summarizes the common errors and the corresponding recovery actions
taken by the Simulation Manager during runtime.

38

The Simulation Manager

Error Type Detection Method Recovery Action
Missing cache folder Directory existence check Create missing folder
Corrupt SAC file File integrity check Re-download from Syn-

gine
Deleted data during sim-
ulation

Periodic file check Re-initialize and regener-
ate data

Table 5.3: Error handling and recovery actions based on error type.

5.5 Summary and Potential Future Improvements
The Simulation Manager plays a central role in orchestrating the entire simula-
tion process, ensuring the smooth operation of each component. It manages the
flow of data, from loading network configurations and earthquake events to the
complex task of strain processing and polarization evolution. The implementation
includes optimizations, such as the use of matrix-based strain processing and cache
management, which significantly enhance performance.

5.5.1 Summary of the Simulation Manager’s Contributions
Throughout the simulation, the Simulation Manager contributes in several key
areas:

• System Initialization and Configuration Management: The manager
initializes the system by loading network configurations and preparing earth-
quake parameters. It ensures that all required resources are in place before
the simulation begins.

• Data Preprocessing: One of the most critical roles is preprocessing, which
involves checking for cached data, ensuring SAC files are up-to-date, and
loading the necessary data to reduce redundant downloads and calculations.

• Simulation Orchestration: The Simulation Manager coordinates the ap-
plication of strain to each fiber segment and orchestrates the complex interac-
tions between strain and polarization models. It applies both receiver-based
and simplified strain calculations, depending on the simulation needs.

• Optimized Strain Processing: Using matrix-based calculations, the man-
ager efficiently processes strain across all segments and waveplates, reducing
the computational overhead compared to traditional methods.

• Error Handling and Robustness: Through robust error handling mech-
anisms, the Simulation Manager recovers from common failures, such as

39

The Simulation Manager

missing data or folder deletion. It ensures that the simulation can proceed
smoothly, even in the event of unexpected interruptions.

• Visualization and Post-processing: After the strain has been processed,
the manager oversees the calculation of polarization changes and visualizes
the results in the form of SOP, SOPAS, earthquake waveforms, and the other
relevant metrics.

5.5.2 Potential Future Improvements
While the Simulation Manager is currently robust and efficient, there are several
potential future improvements:

• Further Parallelization and GPU Optimization: While the current
system uses matrix operations to improve performance - if possible executed
on GPU -, further parallelization, particularly with GPUs, could enhance the
simulation speed, especially for larger networks.

• Enhanced Log Management: Currently, the log system tracks changes
in parameters, ensuring consistency across simulations. In the future, more
detailed logs, such as performance metrics, memory usage, and detailed error
reports, could be included for debugging and optimization.

• Support for Multiple Earthquake Events: The current simulation man-
ager handles one earthquake at a time. Extending the system to manage
multiple seismic events occurring simultaneously would improve the realism of
the simulation.

• Dynamic Network Adjustments: The simulation assumes that the network
structure remains fixed during the simulation. Future iterations could incor-
porate dynamic adjustments, allowing the simulation to adapt to real-time
changes in the network (e.g., fiber cuts or rerouting).

In summary, the Simulation Manager represent a core component that not only
coordinates the simulation process but also optimizes performance and manages
potential errors. With future improvements, it has the potential to become even
more versatile and powerful, accommodating more complex and realistic simulations
of seismic events.

40

Chapter 6

Visualization Methods for
Seismic Data Analysis

One of the key components of the developed simulation framework is the visualiza-
tion of results. Visualization provides an intuitive way to understand how seismic
waves impact the optical fiber network, particularly in terms of the evolution of
strain and the State of Polarization (SOP) in the network.

This chapter outlines the methods used to visualize seismic events and their
effects on the fiber network, focusing on tools such as Mapbox for geographic
representation and various graphical plots to track the SOP and the State of
Polarization Angular Speed (SOPAS). These visualizations allow us to monitor
changes in the fiber network and understand the influence of seismic activity on
the network’s optical properties.

6.1 Mapbox Integration for Geographic Visual-
ization

The integration of Mapbox allows the real-time visualization of the optical fiber
network on a geographic map, highlighting network nodes, fiber lines, and the
position of the earthquake’s epicenter. The map dynamically displays concentric
seismic waves emanating from the epicenter, showing how different fiber segments
are affected by seismic activity.

Key features:

• Geographical representation: The fiber network is plotted geographically,
helping to visualize the spatial relationship between network segments and
the earthquake’s epicenter.

41

Visualization Methods for Seismic Data Analysis

• Dynamic seismic data: The epicenter and its surrounding wave propagation
are visualized in real-time, offering immediate insight into affected fiber lines.

• Interactive exploration: Users can zoom in and out to explore specific
nodes and fiber lines, provided upon interaction with the map.

6.2 Strain Evolution Visualization
Strain evolution along the fiber lines represents the impact of seismic waves over
time. The visualization tracks how strain affects each fiber segment and plots both
the parallel and orthogonal strain components using two different colors: blue for
the parallel component and orange for the orthogonal component.

Key features:

• Temporal strain evolution: The strain in each fiber segment is plotted over
time, highlighting the propagation of seismic waves. The distinction between
parallel (blue) and orthogonal (orange) strain components provides insight
into how different segments react to seismic forces.

This visualization helps identify critical regions in the network where strain
levels are highest, providing useful information for seismic monitoring.

6.3 SOP Evolution Visualization
The State of Polarization (SOP) evolves in response to the strain-induced birefrin-
gence in the fiber network. This section focuses on visualizing the temporal and
spatial evolution of the SOP across different fiber segments.

Key features:

• Temporal SOP evolution: The Stokes parameters (S1, S2, S3) are plotted
over time, providing detailed insights into how the SOP shifts as the seismic
waves propagate through the fiber. Each Stokes parameter is plotted separately
to track changes in polarization.

• Poincaré sphere visualization: The Stokes parameters are also represented
on the Poincaré sphere, providing a 3D view of the polarization states. The
trajectory traced by the SOP on the Poincaré sphere shows how seismic waves
influence the polarization of light in the fiber.

These visualizations allow us to detect shifts in polarization caused by seismic
activity, providing valuable insights into the optical network’s response.

42

Visualization Methods for Seismic Data Analysis

6.4 SOPAS Visualization
The State of Polarization Angular Speed (SOPAS) measures the rate of change in
the SOP, offering a more concise and interpretable representation of polarization
dynamics compared to tracking individual Stokes parameters. This section focuses
on visualizing SOPAS across the network during seismic events.

Key features:

• SOPAS over time: SOPAS is plotted over time for each fiber segment,
showing how quickly polarization changes during seismic activity. Sudden
spikes in SOPAS may indicate the arrival of seismic waves, particularly the
fast-moving P-waves.

• Comparison across fiber lines: SOPAS values are compared across different
fiber segments, revealing which parts of the network experience the most rapid
polarization changes due to seismic forces.

SOPAS visualization is particularly useful for real-time seismic monitoring and
early warning, as it highlights sudden polarization changes that could precede
larger seismic disturbances.

43

Chapter 7

Results Analysis

7.1 Introduction

This chapter presents and discusses the results of the simulations conducted on the
optical fiber network. The seismic events tested were generated using the Syngine
service, and the simulations involved three magnitudes: 3.5, 5.0, and 7.0. Three
different epicenter positions relative to the network were considered, each providing
distinct strain and polarization responses. For clarity and to avoid overwhelming
the reader with too many images, only the results for magnitude 5.0 are presented
for all cases.

It is important to note that, while the results presented here are indicative and
helpful for development purposes, the numerical values should not be interpreted
as definitive or final, as further tuning and validation of the simulation model are
ongoing. The results serve as a proof of concept for using optical fiber networks as
a seismic early warning tool.

The three main cases analyzed in this chapter are:

• Case 1: Epicenter near Node A,

• Case 2: Epicenter between Node A and Node B,

• Case 3: Epicenter 5 km from Node B towards Node C.

Each case will discuss the seismic waveforms generated by Syngine, the corre-
sponding strain evolution along key fiber lines, the changes in the SOP, and the
behavior of SOPAS over time.

44

Results Analysis

7.2 Case 1: Epicenter Near Node A

This section presents the results for the simulation where the earthquake’s epicenter
is located near Node A. The analysis focuses on the strain, SOP, and SOPAS
evolution in key lines near and far from the epicenter.

7.2.1 Network and Epicenter Visualization

Figure 7.1: Network visualization with the epicenter near Node A.

Figure 7.1 shows the fiber optic network with the epicenter located near Node
A. The proximity of the epicenter to line A-B suggests that this segment will
experience higher strain values compared to segments farther from the epicenter.

7.2.2 Seismic Waveform (Syngine)

Figure 7.2 presents the seismic waveform generated by Syngine near Node A for
a magnitude 5.0 earthquake. This waveform represents the ground displacement
due to the earthquake, which is crucial for understanding how strain propagates
through the optical fiber network.

45

Results Analysis

Figure 7.2: Seismic waveform generated by Syngine near Node A.

7.2.3 Strain Evolution in Key Lines

Figure 7.3 shows the strain evolution in line A-B, which is the closest segment to the
earthquake epicenter. The blue trace, representing the parallel strain component,
is significantly more pronounced than the orthogonal component (orange trace).
This indicates that the strain in this segment is predominantly influenced by the
parallel component of the seismic wave.

In contrast, Figure 7.4 illustrates the strain evolution in line B-C, a segment
located farther from the epicenter. Here, the orthogonal component (orange trace) is
more pronounced than the parallel component, suggesting that this line experiences
more orthogonal strain due to the orientation of the wave relative to the fiber
segment.

Comparison: Interestingly, even though line A-B is closer to the epicenter
and experiences more strain overall, the orthogonal component in line B-C is more
significant. This difference in wave orientation results in line B-C having a slightly
higher SOPAS variation, as discussed in the next section.

7.2.4 State of Polarization (SOP) Changes

Figures 7.5 and 7.6 depicts the State of Polarization (SOP) on the Poincaré Sphere
and on the 2d plot for line A-B. The significant shifts in polarization correspond to
the strain peaks observed in the strain evolution plot, indicating changes in the
polarization state caused by seismic activity.

On the other hand, figures 7.7 and 7.8 shows the State of Polarization for line
B-C. The polarization shifts here are much less pronounced compared to line A-B,
which reflects the lower strain values in this line.

46

Results Analysis

Figure 7.3: Strain evolution in line A-B near Node A.

47

Results Analysis

Figure 7.4: Strain evolution in line B-C far from Node A.

7.2.5 SOP Angular Speed (SOPAS)
Figure 7.9 shows the SOP Angular Speed (SOPAS) for line A-B near the epicenter.
Although this line experiences high strain, the SOPAS values are lower than

48

Results Analysis

Figure 7.5: State of Polarization (Poincaré Sphere) for line A-B near Node A.

expected because the parallel strain component dominates, which has less effect on
the polarization changes compared to orthogonal components.

Interestingly, Figure 7.10 shows that the SOP Angular Speed for line B-C is
slightly higher than that of A-B (with a difference on the order of 0.01). This is
due to the greater influence of the orthogonal strain component on the polarization
changes in line B-C, despite the lower overall strain in this segment.

Comparison: Although line A-B experiences more strain due to its proximity
to the epicenter, line B-C shows a greater SOPAS variation. This is a result
of the wave orientation, which causes a higher orthogonal strain component on
B-C, leading to more significant polarization changes. This contrasts with initial
expectations, where we anticipated line A-B to show greater SOPAS due to its
higher strain.

49

Results Analysis

Figure 7.6: SOP (Stokes Parameters) evolution in line A-B near Node A.

50

Results Analysis

Figure 7.7: State of Polarization (Poincaré Sphere) for line B-C far from Node A.

7.3 Case 2: Epicenter Between Node A and Node
B

This section presents the results for the simulation where the earthquake’s epicenter
is located between Node A and Node B. The analysis focuses on the strain, SOP,
and SOPAS evolution in key lines near the epicenter, particularly the line connecting
Node A and Node B, and comparisons with lines farther from the epicenter.

7.3.1 Network and Epicenter Visualization
Figure 7.11 shows the fiber optic network with the epicenter located between Node
A and Node B. This position suggests that both lines A-B and C-D will experience
significant strain, with line A-B being more directly affected due to its proximity
to the epicenter.

51

Results Analysis

Figure 7.8: SOP (Stokes Parameters) evolution in line B-C far from Node A.

52

Results Analysis

Figure 7.9: SOP Angular Speed (SOPAS) in line A-B near the epicenter.

Figure 7.10: SOP Angular Speed (SOPAS) in line B-C far from Node A.

7.3.2 Seismic Waveform (Syngine)
Figure 7.12 presents the seismic waveform generated by Syngine for the earthquake
with an epicenter between Node A and Node B. The waveform shows the propagation
of seismic energy that impacts the nearby fiber lines.

7.3.3 Strain Evolution in Key Lines
Figure 7.13 shows the strain evolution in line A-B, which is the segment closest to
the earthquake epicenter. The strain varies across different segments of the line: at
the center, where the epicenter is located, the strain is predominantly orthogonal
due to the perpendicular orientation of the seismic wave. Towards the nodes A and

53

Results Analysis

Figure 7.11: Network visualization with epicenter between Node A and Node B.

Figure 7.12: Seismic waveform generated by Syngine between Node A and Node
B.

B, the strain becomes more parallel as the wave propagates along the line.
In contrast, Figure 7.14 illustrates the strain evolution in line C-D, which is

located farther from the epicenter. Here, the strain is predominantly orthogonal
across all segments of the line. This is because the distance from the epicenter
results in a more uniform wave orientation, causing the strain to be consistently
orthogonal to the line.

54

Results Analysis

Figure 7.13: Strain evolution in line A-B near the epicenter.

55

Results Analysis

Figure 7.14: Strain evolution in line C-D farther from the epicenter.

7.3.4 State of Polarization (SOP) Changes
In line A-B, the SOP changes displayed on the Poincaré Sphere (Fig. 7.15) show
significant shifts, correlating with the peaks in strain near the epicenter. In contrast,

56

Results Analysis

Figure 7.15: State of Polarization (Poincaré Sphere) for line A-B between Node
A and Node B.

line C-D (Fig. 7.17), located farther from the epicenter, exhibits more gradual
polarization changes due to lower strain levels.

The evolution of Stokes parameters mirrors this behavior: line A-B (Fig. 7.16
and 7.16) shows faster parameter changes, while line C-D (Fig. 7.18 and 7.18)
evolves more slowly, reflecting the reduced strain and less significant polarization
variations.

7.3.5 SOP Angular Speed (SOPAS)

Figure 7.19 shows the SOP Angular Speed (SOPAS) for line A-B near the epicenter.
The contribution of the parallel strain components, particularly towards nodes A
and B, has increased the SOPAS. This allows for the distinction of various seismic
waves, such as the primary (P) waves, secondary (S) waves, and surface waves.

57

Results Analysis

Figure 7.16: SOP (Stokes Parameters) evolution in line A-B between Node A
and Node B.

In contrast, Figure 7.20 shows the SOP Angular Speed for line C-D, which
is farther from the epicenter. The SOPAS is lower here because the strain is

58

Results Analysis

Figure 7.17: State of Polarization (Poincaré Sphere) for line C-D farther from
the epicenter.

predominantly orthogonal across the line, resulting in less significant polarization
changes.

7.4 Case 3: Epicenter 5 km from Node B Towards
Node C

This section presents the results for the simulation where the earthquake’s epicenter
is located 5 km from Node B, towards Node C. The analysis focuses on the strain,
SOP, and SOPAS evolution in key lines near the epicenter, particularly the line
B-C, with comparisons to lines farther from the epicenter.

59

Results Analysis

Figure 7.18: SOP (Stokes Parameters) evolution in line C-D farther from the
epicenter.

60

Results Analysis

Figure 7.19: SOP Angular Speed (SOPAS) in line A-B between Node A and
Node B.

Figure 7.20: SOP Angular Speed (SOPAS) in line C-D farther from the epicenter.

7.4.1 Network and Epicenter Visualization
Figure 7.21 shows the fiber optic network with the epicenter located 5 km from
Node B, towards Node C. The proximity of the epicenter to line B-C suggests that
this line will experience higher strain values compared to line A-B, which is farther
from the epicenter.

7.4.2 Seismic Waveform (Syngine)
Figure 7.22 presents the seismic waveform generated by Syngine near Node B for
a magnitude 5.0 earthquake. The waveform shows how the ground displacement

61

Results Analysis

Figure 7.21: Network visualization with epicenter 5 km from Node B towards
Node C.

Figure 7.22: Seismic waveform generated by Syngine 5 km from Node B towards
Node C.

propagates towards the optical fiber segments in this region.

7.4.3 Strain Evolution in Key Lines
Figure 7.23 shows the strain evolution in line B-C, which is located closest to the
epicenter. The plot indicates that both parallel and orthogonal strain components
are present, with the orthogonal component being more pronounced. This suggests

62

Results Analysis

Figure 7.23: Strain evolution in line B-C near the epicenter.

that the orientation of the seismic wave relative to line B-C causes more orthogonal
strain.

Figure 7.24 illustrates the strain evolution in line A-B, which is farther from

63

Results Analysis

Figure 7.24: Strain evolution in line A-B farther from the epicenter.

the epicenter. As expected, the strain values here are lower, and the parallel strain
component dominates due to the relative distance and wave orientation.

Comparison: The strain in line B-C near the epicenter is higher and more

64

Results Analysis

orthogonal compared to line A-B. This is expected given the location of the epicenter
and the wave propagation direction. However, the parallel strain component in
line A-B still plays a significant role, particularly in segments farther from the
epicenter.

7.4.4 State of Polarization (SOP) Changes

Figure 7.25: State of Polarization (Poincaré Sphere) for line B-C near the
epicenter.

Figures 7.25 and 7.26 show the State of Polarization (SOP) changes on the for
line B-C. The significant polarization shifts reflect the higher orthogonal strain in
this segment, resulting in a slow polarization changes.

Figures 7.27 and 7.28 show the SOP for line A-B, where polarization shifts are
less pronounced due to lower strain levels and the dominance of the parallel strain
component.

65

Results Analysis

Figure 7.26: SOP (Stokes Parameters) evolution in line B-C near the epicenter.

Comparison: The polarization changes in line B-C are more significant com-
pared to line A-B. This is consistent with the higher orthogonal strain in B-C,
which has a greater effect on SOP than the parallel strain in A-B.

66

Results Analysis

Figure 7.27: State of Polarization (Poincaré Sphere) for line A-B farther from
the epicenter.

7.4.5 SOP Angular Speed (SOPAS)

Figure 7.29 shows the SOP Angular Speed (SOPAS) for line B-C near the epicenter.
The variation in SOPAS is higher here due to the greater influence of the orthogonal
strain component, which accelerates the changes in polarization.

In contrast, Figure 7.30 shows the SOPAS in line A-B, which is farther from the
epicenter. The SOPAS variation is lower in this line due to the dominance of the
parallel strain component, which has less impact on polarization changes compared
to orthogonal strain.

Comparison: The SOP Angular Speed in line B-C is higher than in line A-B,
consistent with the higher orthogonal strain component in B-C. The parallel strain
in A-B leads to slower changes in SOPAS, as expected.

67

Results Analysis

Figure 7.28: SOP (Stokes Parameters) evolution in line A-B farther from the
epicenter.

68

Results Analysis

Figure 7.29: SOP Angular Speed (SOPAS) in line B-C near the epicenter.

Figure 7.30: SOP Angular Speed (SOPAS) in line A-B farther from the epicenter.

7.5 Comparison of Results Across Cases
This section provides a comparative analysis of the results across the three cases.
Differences in strain evolution, SOP changes, and SOPAS are discussed, highlighting
how the epicenter position and earthquake magnitude influence the network’s
response. The orthogonal strain component has been shown to play a more
significant role in polarization changes, particularly in lines located near the
epicenter, while parallel strain components contribute less to the overall SOP
variation.

69

Chapter 8

Conclusion and future
developments

8.1 Summary of Key Outcomes
This thesis has presented a framework for seismic detection using an optical fiber
network, leveraging the Waveplate Model to track polarization changes induced by
seismic strain. Key advancements achieved include:

• Seismic Detection Through Optical Networks: The use of existing
optical networks to detect seismic activity without additional infrastructure
costs was a significant breakthrough. The method enables the detection
of ground displacements through polarization analysis, providing real-time
feedback for early warning systems.

• Waveplate Model Integration: The application of the Waveplate Model al-
lowed for precise simulation of birefringence changes in fiber optic cables caused
by seismic waves. This model effectively translated the mechanical strain
induced by seismic events into measurable changes in the State of Polarization
(SOP), offering a possible method for continuous seismic monitoring.

• Computational Optimization: Significant improvements in simulation
performance were achieved through the optimization of strain evolution ma-
trices and the parallelization of key computational tasks. The development
of a matrix-based representation of strain evolution reduced computational
overhead, allowing for real-time processing of seismic events in large-scale
networks.

• Simulation Flexibility and Scalability: The framework’s flexibility in
handling different magnitudes and epicenter locations across various network

70

Conclusion and future developments

configurations demonstrated its potential for wide-scale deployment. The
modular structure of the Simulation Manager facilitated the simulation of
complex seismic scenarios, ensuring scalability for future extensions and real-
world applications.

8.2 Challenges and Technical Limitations
While this research has demonstrated the potential of optical networks for seismic
detection, several challenges and technical limitations were encountered during the
development of the framework:

• Computational Constraints: The real-time processing of seismic events
requires significant computational resources, particularly for large-scale net-
works. Despite optimization efforts, the strain evolution calculations and
matrix-based simulations of polarization effects are computationally inten-
sive, especially when simulating multiple seismic events simultaneously. The
reliance on GPU-based acceleration mitigates these issues but introduces
additional complexity in terms of hardware requirements.

• Simulation Manager Limitations: The Simulation Manager, while flexible,
faces limitations in handling more advanced parallelization and fault tolerance
during simulations. Handling large datasets, particularly for real-time appli-
cations, poses challenges in terms of memory usage and scalability. Future
work could focus on improving the efficiency of the manager, optimizing data
caching, and incorporating more sophisticated error-handling mechanisms.

• Data Availability and Accuracy: The accuracy of the seismic wave simu-
lation is heavily dependent on the availability of high-resolution seismic data
from external sources, such as Syngine. Limited access to precise real-time
seismic data could affect the robustness of the simulations, particularly for
smaller magnitude events or remote regions with limited sensor coverage. If
Syngine (or an equivalent tool) were available as a local library or software,
it would eliminate the need for repeated queries to external servers, thereby
improving efficiency and reliability.

• Fiber Network Infrastructure: Although the use of existing optical fiber
infrastructure reduces costs, it also introduces uncertainties due to the varying
quality and age of the cables. Differences in fiber construction, installation,
and environmental conditions may introduce unexpected birefringence effects,
which are difficult to predict and model accurately.

71

Conclusion and future developments

8.3 Potential Future Improvements
Several future improvements could enhance the framework’s performance, scalability,
and real-time applicability:

• Further Parallelization and GPU Optimization: While the current
system already utilizes the CPU for matrix operations, implementing par-
allelization to execute multiple processes simultaneously could significantly
enhance simulation speed. Additionally, leveraging GPU optimization could
further improve performance, especially for larger networks.

• Enhanced Log Management: Currently, the log system tracks changes
in parameters, ensuring consistency across simulations. The cache system
operates with a memory of 1, meaning it evaluates whether the current
simulation is identical to the previous one. If any differences are detected,
the system updates the cache accordingly. While this approach is efficient,
it limits the ability to save multiple simulations. Expanding the cache to
store more simulations could provide greater flexibility and historical data for
analysis, but it would require significantly more memory. In the future, more
detailed logs, such as performance metrics, memory usage, and detailed error
reports, could also be included for debugging and optimization.

• Support for Multiple Earthquake Events: The current simulation man-
ager handles one earthquake at a time. Extending the system to manage
multiple seismic events occurring simultaneously would improve the realism of
the simulation.

• Dynamic Network Adjustments: The simulation assumes that the network
structure remains fixed during the simulation. Future iterations could incor-
porate dynamic adjustments, allowing the simulation to adapt to real-time
changes in the network (e.g., fiber cuts or rerouting).

• Advanced Parallelization: Future work could focus on implementing more
advanced parallelization techniques to improve computational efficiency, espe-
cially for large-scale simulations involving multiple seismic events. This would
allow the system to handle real-time data streams from extensive networks
with reduced latency.

• Integration with Machine Learning: Machine learning algorithms could
be integrated into the framework to improve the accuracy of seismic wave
detection and polarization change prediction. By training models on historical
data, the system could potentially enhance its ability to detect subtle seismic
events.

72

Conclusion and future developments

• Real-Time Monitoring and Alerts: Extending the system to provide
real-time monitoring capabilities, with automatic alerts for seismic events,
could make the framework more practical for real-world applications. This
would require the integration of real-time data feeds and optimization of the
simulation process to provide immediate feedback.

• Adaptation to Different Fiber Networks: Adapting the framework to
function with different types of optical fiber networks, including older or lower-
quality infrastructure, could broaden its applicability. This would involve
further research into how varying fiber properties affect birefringence and SOP
changes during seismic events.

8.4 Final Thoughts
The work presented in this thesis demonstrates the feasibility of using optical fiber
networks for seismic detection, offering a novel approach to leveraging existing
telecommunication infrastructure for early warning systems. By integrating the
Waveplate Model, the framework accurately simulates the strain-induced polar-
ization changes caused by seismic events, providing a powerful tool for real-time
monitoring.

While there are challenges, such as computational limits and data availability,
the flexibility and scalability of the simulation framework offer vast potential for
further development. With continued advancements, this approach could play a
crucial role in enhancing global earthquake monitoring and response systems.

This thesis lays the groundwork for future research into fiber-optic-based seismic
detection, paving the way for more efficient, scalable, and precise systems capable
of providing early warnings in areas vulnerable to earthquakes. As fiber optic
networks continue to expand globally, the potential for applying this technology to
real-world scenarios grows, making it an exciting frontier for innovation in seismic
monitoring.

73

Appendix A

elements.py

code/elements.py
1 import json
2 import math
3 import random
4 from pyrocko import moment_tensor as pmt
5 from xmlrpc . client import Error
6 from pathlib import Path
7 import hashlib
8 import shutil
9 import matplotlib . pyplot as plt

10 import plotly . graph_objs as go
11 from math import radians , degrees , sin , cos , atan2 , sqrt
12 from datetime import datetime , timedelta
13 import requests
14 import zipfile
15 import os
16 from obspy import read
17 import pandas as pd
18 from mpl_toolkits . mplot3d import Axes3D
19 import pypolar .jones as jones
20 import pypolar . visualization as vis
21 from py_pol .utils import degrees
22 from py_pol . jones_matrix import Jones_vector
23 from pyrocko .trace import project
24 from scipy. interpolate import interp1d
25 from sympy. codegen .ast import Raise
26 import time
27

28

29 try:
30 import cupy as xp # For GPU computation
31 use_gpu = True

74

elements.py

32 print("CuPy is available . Running on GPU.")
33 except ImportError :
34 import numpy as xp # For CPU computation
35 use_gpu = False
36 print("CuPy is not available . Running on CPU.")
37 import numpy as np
38

39 resources_path = Path(__file__). parent / ’resources ’
40 cache_path = Path(__file__). parent / ’cache ’
41 results_path = Path(__file__). parent / ’results ’
42 output_dir = None
43

44 class Node:
45 def __init__ (self , id , position , stokes_params):
46 self.id = id
47 self. position = position
48 self. stokes_params = stokes_params
49

50 @staticmethod
51 def load_from_json (file_path):
52 with open(file_path , ’r’) as f:
53 data = json.load(f)
54 nodes = [Node(id=node[’id’], position =node[’position ’

], stokes_params =node[’stokes_params ’]) for node in
55 data[’nodes ’]]
56 return nodes
57

58 def plot(self):
59 # Logic to plot nodes on a map
60 pass
61

62

63 class Segment :
64 def __init__ (self , id , start_position , end_position):
65 self.id = id
66 self. start_position = start_position
67 self. end_position = end_position
68 self. strain_evolution = None # Load strain evolution if

it exists
69 self. timestamp = None # Timestamp when the seismic wave

reaches this segment
70 self. segment_wave = None # Load segment wave if it exists
71

72 def initialize_strain_evolution (self , num_time_steps):
73 if self. strain_evolution is None:
74 # Initialize strain evolution matrix : [time , (parallel

, orthogonal)]
75 self. strain_evolution = np.zeros ((num_time_steps , 2))
76

75

elements.py

77

78 def load_segment_wave_cache (self):
79 # Load the wave data from cache if it exists , otherwise

return None
80 cache_file = f"cache/ wave_cache / segment_wave_ {self.id}. npy

"
81 if os.path. exists (cache_file):
82 return np.load(cache_file)
83 return None
84

85 def save_segment_wave_cache (self):
86 # Ensure wave_cache directory exists
87 os. makedirs ("cache/ wave_cache ", exist_ok =True)
88 # Save the wave data to cache
89 cache_file = f"cache/ wave_cache / segment_wave_ {self.id}. npy

"
90 np.save(cache_file , self. segment_wave)
91

92 def load_strain_cache (self):
93 # Load strain evolution data from cache if it exists
94 cache_file = f"cache/ strain_cache / strain_evolution_ {self.

id}. npy"
95 if os.path. exists (cache_file):
96 return np.load(cache_file)
97 return None
98

99 def save_strain_cache (self):
100 # Ensure strain_cache directory exists
101 os. makedirs ("cache/ strain_cache ", exist_ok =True)
102 # Save the strain evolution to cache
103 cache_file = f"cache/ strain_cache / strain_evolution_ {self.

id}. npy"
104 np.save(cache_file , self. strain_evolution)
105

106 def save_all_caches (self):
107 # Save all cache data
108 if self. segment_wave is not None:
109 self. save_segment_wave_cache ()
110 if self. strain_evolution is not None:
111 self. save_strain_cache ()
112

113

114

115 class Line:
116 def __init__ (self , id , start_node , end_node , segment_length

=500 , waveplate_interval =4):
117 self.id = id
118 self. start_node = start_node
119 self. end_node = end_node

76

elements.py

120 self. segment_length = segment_length
121 self. length = haversine_distance (np.array(self. start_node .

position), np.array(self. end_node . position))
122 self. segments = self. create_segments ()
123 self. waveplate_interval = waveplate_interval
124 self. num_waveplates = math.ceil(self. length / self.

waveplate_interval)
125 self. initial_polarization_state = None # new attribute to

store the initial polarization state
126 self. final_polarization_state = None # new attribute to

store the final polarization state
127 self. stokes_evolution = None # new attribute to store the

stokes evolution
128 self. sop_angular_speed = None # new attribute to store

the SOP angular speed
129 self. num_segments =len(self. segments)
130

131 @staticmethod
132 def load_from_json (file_path , nodes , segment_length ,

waveplate_interval = 4):
133 with open(file_path , ’r’) as f:
134 data = json.load(f)
135 lines = [
136 Line(
137 id=line[’id’],
138 start_node =nodes[line[’start_node ’]],
139 end_node =nodes[line[’end_node ’]],
140 segment_length = segment_length ,
141 waveplate_interval = waveplate_interval
142) for line in data[’lines ’]
143]
144 return lines
145

146 def initialize_stokes_parameters (self , num_time_steps):
147 # Initialize SOP evolution matrix : [time , (S1 , S2 , S3)]
148 self. stokes_evolution = np.zeros ((num_time_steps , 3))
149

150

151 def create_segments (self):
152 segments = []
153 start_position = np.array(self. start_node . position)
154 end_position = np.array(self. end_node . position)
155 total_distance = self. length
156 direction = (end_position - start_position) /

total_distance
157 num_segments = int(total_distance // self. segment_length)
158

159 for i in range(num_segments):

77

elements.py

160 segment_start = start_position + i * self.
segment_length * direction

161 segment_end = segment_start + self. segment_length *
direction

162 segment_id = f"{self.id}_{i+1}"
163 segments . append (Segment (segment_id , segment_start .

tolist (), segment_end . tolist ()))
164

165 # If the total distance is less than the segment length ,
create a segment with the total distance

166 if total_distance < self. segment_length :
167 segment_id = f"{self.id}_1"
168 segments . append (Segment (segment_id , start_position .

tolist (), end_position . tolist ()))
169

170 # If there is a remaining distance after the last full
segment , create a segment for the remaining distance

171 elif total_distance % self. segment_length != 0:
172 segment_start = start_position + num_segments * self.

segment_length * direction
173 segment_end = end_position
174 segment_id = f"{self.id}_{ num_segments +1}"
175 segments . append (Segment (segment_id , segment_start .

tolist (), segment_end . tolist ()))
176

177 return segments
178

179 def load_stokes_cache (self):
180 # Load stokes parameters data from cache if it exists
181 cache_file = f"cache/ stokes_cache / stokes_parameters_ {self.

id}. npy"
182 if os.path. exists (cache_file):
183 return np.load(cache_file)
184 return None
185

186 def save_stokes_cache (self):
187 # Ensure stokes_cache directory exists
188 os. makedirs ("cache/ stokes_cache ", exist_ok =True)
189 # Save the stokes parameters to cache
190 cache_file = f"cache/ stokes_cache / stokes_parameters_ {self.

id}. npy"
191 np.save(cache_file , self. stokes_evolution)
192

193 def load_SOPAS_cache (self):
194 # Load stokes parameters data from cache if it exists
195 cache_file = f"cache/ SOPAS_cache / SOPAS_ {self.id}. npy"
196 if os.path. exists (cache_file):
197 return np.load(cache_file)
198 return None

78

elements.py

199

200 def save_SOPAS_cache (self):
201 # Ensure stokes_cache directory exists
202 os. makedirs ("cache/ SOPAS_cache ", exist_ok =True)
203 # Save the stokes parameters to cache
204 cache_file = f"cache/ SOPAS_cache / SOPAS_ {self.id}. npy"
205 np.save(cache_file , self. sop_angular_speed)
206

207

208 def calculate_max_distance (magnitude):
209 """
210 #TODO: Fix the formula to calculate the maximum distance (it

was 10 ** (0.05 * magnitude) * 1000 # Convert to meters)
211 Calculate the maximum distance from the epicenter of an

earthquake , in case it is
212 higher than the maximum distance the earthquake has no effect

on the network .
213 """
214 return 10 ** (0.05 * magnitude) * 1000 # Convert to meters
215

216

217 def calculate_angle (segment , earthquake_position):
218 segment_vector = np.array(segment . end_position) - np.array(

segment . start_position)
219 earthquake_vector = np.array(segment . start_position) - np.

array(earthquake_position)
220 segment_unit_vector = segment_vector / np. linalg .norm(

segment_vector)
221 earthquake_unit_vector = earthquake_vector / np. linalg .norm(

earthquake_vector)
222 dot_product = np.dot(segment_unit_vector ,

earthquake_unit_vector)
223 angle = np. arccos (dot_product)
224 return angle
225

226

227 def midpoint (start , end):
228 lat1 , lon1 = start
229 lat2 , lon2 = end
230 lat1 , lon1 , lat2 , lon2 = map(radians , [lat1 , lon1 , lat2 , lon2

])
231 dlon = lon2 - lon1
232 Bx = cos(lat2) * cos(dlon)
233 By = cos(lat2) * sin(dlon)
234 lat3 = atan2(sin(lat1) + sin(lat2), sqrt ((cos(lat1) + Bx) * (

cos(lat1) + Bx) + By * By))
235 lon3 = lon1 + atan2(By , cos(lat1) + Bx)
236 return math. degrees (lat3), math. degrees (lon3)
237

79

elements.py

238

239 def calculate_displacement (total_displacement , angle):
240 parallel_displacement = total_displacement * np.cos(angle)
241 orthogonal_displacement = total_displacement * np.sin(angle)
242 return parallel_displacement , orthogonal_displacement
243

244

245 def calculate_attenuation (distance , magnitude):
246 """
247 Calculate the attenuation factor based on distance from the

epicenter using an empirical model.
248

249 Parameters :
250 distance (float): Distance from the epicenter .
251 magnitude (float): Magnitude of the earthquake .
252

253 Returns :
254 float: Attenuation factor .
255 """
256 # Realistic attenuation model , e.g., exponential decay
257 alpha = 0.003 # Example coefficient ; this should be

determined based on empirical data
258 return math.exp(-alpha * distance)
259

260

261 class Network :
262 def __init__ (self , nodes , lines , segment_length =100 ,

waveplate_interval =4):
263 self.nodes = nodes
264 self.lines = lines
265 self. segment_length = segment_length
266 self. waveplate_interval = waveplate_interval
267 self. tot_num_segments = sum ([len(line. segments) for line

in self.lines])
268

269 @staticmethod
270 def load_from_json (file_path , segment_length ,

waveplate_interval =4):
271 with open(file_path , ’r’) as f:
272 data = json.load(f)
273 nodes = Node. load_from_json (file_path)
274 node_dict = {node.id: node for node in nodes}
275 lines = Line. load_from_json (file_path , node_dict ,

segment_length , waveplate_interval)
276 return Network (nodes , lines , segment_length ,

waveplate_interval)
277

278 def apply_earthquake_strain (self , earthquake):
279 # Check if the network has lines

80

elements.py

280 if not self.lines:
281 raise ValueError (" Network has no lines")
282

283 # Check if the earthquake parameters are valid
284 if earthquake . magnitude <= 0 or earthquake . duration <= 0

or earthquake . velocity <= 0:
285 raise ValueError (" Invalid earthquake parameters ")
286

287 # Find the segment furthest from the earthquake within the
earthquake ’s range

288 furthest_segment , furthest_distance = self.
calculate_furthest_segment_in_radius (earthquake)

289

290 if furthest_segment is None:
291 raise ValueError ("No segments within the earthquake ’s

effective radius ")
292

293 # Calculate the maximum distance at which the earthquake
has significant effects

294 max_distance = calculate_max_distance (earthquake . magnitude
)

295

296 # Define time step size in seconds
297 time_step_size = 0.1 # 0.1 second per time step
298

299 ’’’ OLD CODE
300 # Calculate the maximum number of time steps considering

the earthquake duration
301 max_time = max_distance / earthquake . velocity + earthquake

. duration
302 num_time_steps = int(max_time / time_step_size) + 1
303 ’’’
304

305 max_time = furthest_distance / earthquake . velocity +
earthquake .wave.shape [0] * 0.1

306 num_time_steps = int(max_time / 0.1) + 1
307 # Initialize strain evolution for each segment in the

network
308 for line in self.lines:
309 for segment in line. segments :
310 segment_position = midpoint (segment . start_position

, segment . end_position)
311 distance_to_earthquake = haversine_distance (

segment_position , np.array(earthquake . position))
312

313 if distance_to_earthquake <= max_distance :
314 arrival_time = distance_to_earthquake /

earthquake . velocity

81

elements.py

315 segment . timestamp = earthquake . start_time +
timedelta (seconds = arrival_time)

316 arrival_time_steps = int(arrival_time /
time_step_size)

317

318 # Initialize strain evolution array with zeros
319 segment . initialize_strain_evolution (

num_time_steps)
320

321 # Calculate attenuation factor based on
distance using a realistic model

322 attenuation_factor = calculate_attenuation (
distance_to_earthquake , earthquake . magnitude)

323 conversion_factor = 116 / 11.6 # nm of
displacement to nStrain

324 # Apply the strain based on the earthquake
wave and attenuation

325 for time_step in range(arrival_time_steps ,
num_time_steps):

326 time = time_step * time_step_size -
arrival_time

327 wave_index = int(time / time_step_size)
328 if 0 <= wave_index < len(earthquake .wave):
329 attenuated_displacement = earthquake .

wave[wave_index] * attenuation_factor
330 angle = calculate_angle (segment ,

earthquake . position)
331 parallel_displacement ,

orthogonal_displacement = calculate_displacement (
332 attenuated_displacement , angle)
333 parallel_strain = self.

convert_displacement_to_strain (parallel_displacement ,
334

conversion_factor)
335 orthogonal_strain = self.

convert_displacement_to_strain (orthogonal_displacement ,
336

conversion_factor)
337 segment . strain_evolution [time_step] =

[parallel_strain , orthogonal_strain]
338 else:
339 # After the earthquake duration , no

more strain is applied
340 segment . strain_evolution [time_step] =

[0, 0]
341 else:
342 # The segment is out of the earthquake ’s range

, so it does not experience strain

82

elements.py

343 segment . initialize_strain_evolution (
num_time_steps)

344

345 def apply_earthquake_strain_with_receiver (self , earthquake):
346 # Check if the network has lines
347 if not self.lines:
348 raise ValueError (" Network has no lines")
349

350 # Check if the earthquake parameters are valid
351 if earthquake . magnitude <= 0 or earthquake . duration <= 0

or earthquake . velocity <= 0:
352 raise ValueError (" Invalid earthquake parameters ")
353 start_time = time.time ()
354 num_segment_processed = 0
355 for line in self.lines:
356 for segment in line. segments :
357 segment . load_strain_cache ()
358 if segment . strain_evolution is not None:
359 segment . timestamp = earthquake . start_time
360 break
361 num_segment_processed += 1
362 eta = (self. tot_num_segments -

num_segment_processed) * (
363 time.time () - start_time) /

num_segment_processed if num_segment_processed > 0 else 0
364

365 # Convert ETA to minutes and seconds
366 eta_minutes = eta // 60
367 eta_seconds = eta % 60
368 eta_hours = eta_minutes // 60
369 eta_minutes = eta_minutes % 60
370

371 # Prepare the output message
372 if eta_hours > 0:
373 # Include hours , minutes , and seconds
374 eta_message = f"ETA: { eta_hours } hours"
375 if eta_minutes > 0 or eta_seconds > 0: #

Include minutes if greater than 0 or seconds are present
376 eta_message += f" and { eta_minutes :.0f}

minutes "
377 if eta_seconds > 0:
378 eta_message += f" and { eta_seconds :.0f}

seconds "
379 else:
380 if eta_minutes > 0:
381 # Include only minutes and seconds
382 eta_message = f"ETA: { eta_minutes :.0f}

minutes "
383 if eta_seconds > 0:

83

elements.py

384 eta_message += f" and { eta_seconds :.0f
} seconds "

385 else:
386 # Only seconds
387 eta_message = f"ETA: { eta_seconds :.0f}

seconds "
388

389 # Print the processing status
390 print(f" Processing segment { num_segment_processed }

out of {self. tot_num_segments } "
391 f"({(num_segment_processed / self.

tot_num_segments) * 100:.2 f}%). { eta_message }")
392

393 segment . load_segment_wave_cache ()
394 if segment . segment_wave is None:
395 # Load wave data if not cached
396 segment . segment_wave = earthquake .

generate_syngine_wave_for_segment (segment)
397 segment . save_segment_wave_cache () # Save wave

data to cache
398 segment_wave = segment . segment_wave
399 else:
400 segment_wave = segment . segment_wave # Use

cached wave data
401

402 # Initialize strain evolution array with zeros
403 segment . initialize_strain_evolution (len(

segment_wave))
404 segment . timestamp = earthquake . start_time
405 # conversion_factor = 116 / 11.6 # nm of

displacement to nStrain
406 conversion_factor = self. waveplate_interval
407 # Apply the strain based on the earthquake wave

and attenuation
408 for time_step in range(len(segment_wave)):
409 angle = calculate_angle (segment ,

earthquake . position)
410 parallel_displacement ,

orthogonal_displacement = calculate_displacement (
411 segment_wave [time_step], angle)
412 parallel_strain = self.

convert_displacement_to_strain (parallel_displacement ,
413

conversion_factor)
414 orthogonal_strain = self.

convert_displacement_to_strain (orthogonal_displacement ,
415

conversion_factor)

84

elements.py

416 segment . strain_evolution [time_step] = [
parallel_strain , orthogonal_strain]

417 segment . save_strain_cache () # Save strain
evolution to cache

418

419

420 def convert_displacement_to_strain (self , displacement_matrix ,
conversion_factor = None):

421 if conversion_factor is None:
422 conversion_factor = self. waveplate_interval
423 #add
424 displacement_matrix = displacement_matrix * 1e-1
425 #end add
426 strain_m = displacement_matrix / conversion_factor
427 strain_matrix = strain_m * 1e-9 # Convert from nanostrain

to strain
428 return strain_m
429

430 def calculate_furthest_segment_in_radius (self , earthquake):
431 max_distance = calculate_max_distance (earthquake . magnitude

)
432 furthest_distance = 0
433 furthest_segment = None
434

435 for line in self.lines:
436 for segment in line. segments :
437 segment_position = midpoint (segment . start_position

, segment . end_position)
438 distance_to_earthquake = haversine_distance (

segment_position , np.array(earthquake . position))
439

440 if max_distance >= distance_to_earthquake >
furthest_distance :

441 furthest_distance = distance_to_earthquake
442 furthest_segment = segment
443

444 return furthest_segment , furthest_distance
445

446

447 def process_strain_in_wp_model (self):
448 for j, line in enumerate (self.lines):
449 print(" Process strain in WP in line ",j+1,"out of",

len(self.lines), " - ","{:.2f}". format ((j+1) / len(self.lines)
* 100) , "%")

450 num_waveplates = line. num_waveplates
451 num_segments = len(line. segments)
452 # Initialize the strain evolution matrix for all the

segments in the line

85

elements.py

453 strain_matrix = np.zeros ((line. segments [0].
strain_evolution .shape [0], num_segments))

454

455 for i, segment in enumerate (line. segments):
456 if segment . strain_evolution is not None:
457 strain_matrix [:, i] = segment . strain_evolution

[: ,0] # Use only the parallel component
458

459 waveplate_strain = np.zeros ((strain_matrix .shape [0],
num_waveplates))

460

461 for wp in range(num_waveplates):
462 # calculate the position of the waveplate
463 waveplate_position = wp * line. waveplate_interval
464 # determine the segment index where the waveplate

is located
465 segment_index = int(waveplate_position // line.

segment_length)
466 waveplate_strain [:, wp] = strain_matrix [:,

segment_index]
467

468 data = waveplate_strain
469 print(data.shape)
470 n_samples = data.shape [0] # Number of samples
471

472 SpaceSampling = line. waveplate_interval # lr in meter
distance between waveplates

473 sampling_rate = 10
474

475 l = np. arange (0, len(data [1, :])) * (SpaceSampling /
1000)

476 #print (" number of waveplates :", len(l))
477 t1 = np. linspace (0, n_samples / sampling_rate ,

n_samples)
478 #print (" Time Interval for STRAIN vs TIME in seconds :",

t1 [-1])
479

480 #fig = plt. figure (figsize =(8, 8))
481 #ax = fig. add_subplot (111 , projection =’3d ’)
482 #vis. draw_empty_sphere (ax)
483

484 jones_vector = np.array ([1, 1]) / np.sqrt (2) # +45
degree polarization

485 S = jones. jones_to_stokes (jones_vector)
486 #vis. draw_stokes_poincare (S, ax=ax , color=’red ’, s

=200)
487

488 lr = SpaceSampling # distance between waveplates
489 lb = 15

86

elements.py

490 lc = 20
491 lc_steps = int(lc / lr)
492 Birefringence = 2 * np.pi * lr / lb
493

494 pd. set_option (’display . max_rows ’, None)
495

496 theta_values_at_lc = [np. random . uniform (-np.pi / 2, np
.pi / 2) for _ in range (0, data.shape [1], lc_steps)]

497 x = np. arange (0, data.shape [1], lc_steps)
498

499 # Interpolate the theta values
500 f = interp1d (x, theta_values_at_lc , kind=’linear ’,

fill_value =" extrapolate ")
501 xnew = np. arange (data.shape [1])
502 theta_values = f(xnew)
503 #print(pd. DataFrame (theta_values , columns =["

theta_values "]))
504 output_polarization = [] # temporal evolution of the

output polarization
505

506 for i in range(data.shape [0]): # time
507 jones_matrices_list = []
508 for j in range(data.shape [1]): # space
509 theta = theta_values [j]
510

511 d_prime = Birefringence * (1 + 1 * data[i, j])
512 Rout = np.array ([[np.cos(theta), -np.sin(theta

)],
513 [np.sin(theta), np.cos(theta)

]])
514 inverseRout = np. linalg .inv(Rout)
515 Rin = np.array ([[np.cos(theta), -np.sin(theta)

],
516 [np.sin(theta), np.cos(theta)

]])
517 Md = np.array ([[np.exp (1j * d_prime / 2), 0],

[0, np.exp (-1j * d_prime / 2)]])
518 jones_matrices = inverseRout @ Md @ Rin
519 jones_matrices_list . append (jones_matrices)
520

521 J = np.eye (2)
522 for j in reversed (jones_matrices_list):
523 J = j @ J
524 Pout = J @ jones_vector
525 output_polarization . append (Pout)
526

527 Vcos2nu_list = []
528 Vsin2nu_list = []
529 Vdelta_list = []

87

elements.py

530

531 for Pout in output_polarization :
532 AAx = np.abs(Pout [0])
533 BBx = np.abs(Pout [1])
534 AAy = AAx / np.sqrt(AAx ** 2 + BBx ** 2)
535 BBy = BBx / np.sqrt(AAx ** 2 + BBx ** 2)
536 Vcos2nu = (AAy ** 2 - BBy ** 2) / (AAy ** 2 + BBy

** 2)
537 Vcos2nu_list . append (Vcos2nu)
538 Vsin2nu = 2 * AAy * BBy / (AAy ** 2 + BBy ** 2)
539 Vsin2nu_list . append (Vsin2nu)
540 Vdelta = np.angle(Pout [0]) - np.angle(Pout [1])
541 Vdelta_list . append (Vdelta)
542 XX = Vcos2nu_list #

S1 at the end of the Line
543 YY = np.cos(np.array(Vdelta_list)) * Vsin2nu_list #

S2 at the end of the Line
544 ZZ = np.sin(np.array(Vdelta_list)) * Vsin2nu_list #

S3 at the end of the Line
545

546 line. initialize_stokes_parameters (len(XX))
547 line. stokes_evolution =np.array ([XX , YY , ZZ]).T
548 line. initial_polarization_state = jones_vector
549 line. final_polarization_state = output_polarization

[-1]
550

551 def process_strain_in_wp_model_matricial (self):
552 start_time = time.time ()
553 for num_lin , line in enumerate (self.lines):
554 line. load_stokes_cache ()
555 if line. stokes_evolution is not None:
556 break
557

558 # Calculate the ETA PART
559 ETA = (time.time () - start_time) * (len(self.lines) -

num_lin) / num_lin if num_lin > 0 else 0
560

561 # Convert ETA to minutes and seconds
562 eta_minutes = ETA // 60
563 eta_seconds = ETA % 60
564 eta_hours = eta_minutes // 60
565 eta_minutes = eta_minutes % 60
566

567 # Prepare the output message
568 if eta_hours > 0:
569 # Include hours , minutes , and seconds
570 eta_message = f"ETA: { eta_hours } hours"
571 if eta_minutes > 0 or eta_seconds > 0: # Include

minutes if greater than 0 or seconds are present

88

elements.py

572 eta_message += f" and { eta_minutes :.0f}
minutes "

573 if eta_seconds > 0:
574 eta_message += f" and { eta_seconds :.0f}

seconds "
575 else:
576 if eta_minutes > 0:
577 # Include only minutes and seconds
578 eta_message = f"ETA: { eta_minutes :.0f} minutes

"
579 if eta_seconds > 0:
580 eta_message += f" and { eta_seconds :.0f}

seconds "
581 else:
582 # Only seconds
583 eta_message = f"ETA: { eta_seconds :.0f} seconds

"
584

585 # Print the processing status
586 print(f" Process strain in WP in line { num_lin + 1} out

of {len(self.lines)} - "
587 f"{(num_lin + 1) / len(self.lines) * 100:.2 f}%.

{ eta_message }")
588

589 # get number of waveplates and segments
590 num_waveplates = line. num_waveplates
591 num_segments = len(line. segments)
592

593 # create strain matrix for all segments
594 strain_matrices = xp.array ([
595 xp.array(segment . strain_evolution [:, 0]) if

segment . strain_evolution is not None else xp.zeros(
596 line. segments [0]. strain_evolution .shape [0])
597 for segment in line. segments
598]).T
599

600 # calculate waveplate positions and corresponding
strain

601 waveplate_positions = xp. arange (num_waveplates) * line
. waveplate_interval

602 segment_indices = (waveplate_positions // line.
segment_length). astype (int)

603 waveplate_strain = strain_matrices [:, segment_indices]
604

605 # keep everything on GPU for faster computation
606 data = xp.array(waveplate_strain)
607 n_samples = data.shape [0] # num of samples
608 SpaceSampling = line. waveplate_interval # distance

between waveplates in meters

89

elements.py

609 sampling_rate = 10
610 lr = SpaceSampling
611 lb = 15 # beat length (fixed)
612 lc = 20 # coupling length (fixed)
613 lc_steps = int(lc / lr)
614 Birefringence = 2 * xp.pi * lr / lb # birefringence

calculation
615

616 # generate theta values
617 theta_values_at_lc = xp. random . uniform (-xp.pi / 2, xp.

pi / 2, len(data [1]) // lc_steps + 1)
618 xp_values = xp. linspace (0, len(data [1]) - 1, num=len(

theta_values_at_lc))
619 theta_values = xp. interp (xp. arange (len(data [1])),

xp_values , theta_values_at_lc)
620

621 # compute rotation matrices based on theta values
622 rotation_matrices = xp.array(
623 [[[xp.cos(theta), -xp.sin(theta)], [xp.sin(theta),

xp.cos(theta)]] for theta in theta_values]
624)
625 inv_rotation_matrices = xp. linalg .inv(

rotation_matrices)
626

627 # process everything on GPU and accumulate
polarization changes

628 jones_vector = xp.array ([1, 1]) / xp.sqrt (2) # +45
degree polarization

629

630 # calculate d_prime in matrix form for all samples and
points simultaneously

631 d_prime = Birefringence * (1 + data) # d_prime will
have shape (n_samples , data.shape [1])

632

633 # create the diagonal matrix Md in matrix form for all
samples

634 Md = xp.zeros ((n_samples , data.shape [1], 2, 2), dtype=
xp. complex128) # 4D tensor

635 Md[:, :, 0, 0] = xp.exp (1j * d_prime / 2) # fills
main diagonal

636 Md[:, :, 1, 1] = xp.exp (-1j * d_prime / 2) # fills
opposite diagonal

637

638 # multiply all inv_rotation_matrices , md , and
rotation_matrices in matrix form

639 inv_rotation_matrices_expanded = xp. broadcast_to (
inv_rotation_matrices , (n_samples , data.shape [1], 2, 2))

640 rotation_matrices_expanded = xp. broadcast_to (
rotation_matrices , (n_samples , data.shape [1], 2, 2))

90

elements.py

641 jones_matrices = xp. matmul (xp. matmul (
inv_rotation_matrices_expanded , Md), rotation_matrices_expanded
)

642

643 # J represents the accumulated jones matrix
644 J = xp.eye (2, dtype=xp. complex128)[None , :, :] #

expand j to support samples
645

646 # accumulate the jones matrix for each sample across
space

647 for j in reversed (range(data.shape [1])):
648 J = xp. einsum (’ijk ,ikl ->ijl ’, jones_matrices [:, j,

:, :], J)
649

650 # calculate output polarization for all samples
651 output_polarization = xp. einsum (’ijl ,l->ij’, J,

jones_vector)
652

653 # Convert to SOP (Stokes Parameters)
654 abs_output_polarization = xp.abs(output_polarization)
655 normalized_output_polarization =

abs_output_polarization / xp. linalg .norm(
abs_output_polarization , axis =1,

656

keepdims =True)
657

658 Vcos2nu_list = (normalized_output_polarization [:, 0]
** 2 - normalized_output_polarization [:, 1] ** 2)

659 Vsin2nu_list = 2 * normalized_output_polarization [:,
0] * normalized_output_polarization [:, 1]

660 Vdelta_list = xp.angle(output_polarization [:, 0]) - xp
.angle(output_polarization [:, 1])

661

662 XX = Vcos2nu_list
663 YY = xp.cos(Vdelta_list) * Vsin2nu_list
664 ZZ = xp.sin(Vdelta_list) * Vsin2nu_list
665

666 # Store Stokes parameters in the line
667 line. initialize_stokes_parameters (len(XX))
668 line. stokes_evolution = xp.stack ([XX , YY , ZZ], axis =1)
669 line. initial_polarization_state = jones_vector
670 line. final_polarization_state = output_polarization

[-1]
671 line. save_stokes_cache ()
672

673

674 def calculate_sop_angular_speed (self):
675 for line in self.lines:
676 line. load_SOPAS_cache ()

91

elements.py

677 if line. stokes_evolution is not None and line.
sop_angular_speed is None:

678 # Extract the S1 , S2 , and S3 components from the
segment ’s Stokes parameters

679 S1 = line. stokes_evolution [:, 0]
680 S2 = line. stokes_evolution [:, 1]
681 S3 = line. stokes_evolution [:, 2]
682

683 if use_gpu and not isinstance (S1 , np. ndarray):
684 S1 = S1.get ()
685 S2 = S2.get ()
686 S3 = S3.get ()
687

688 # Construct the Stokes vectors at time k
689 S_k = np.array ([S1 , S2 , S3], dtype=xp. float64).T
690 # Construct the Stokes vectors at time k-1 by

shifting the S1 , S2 and S3 values by one
691 S_k_minus_1 = np.array ([np.roll(S1 , 1), np.roll(S2

, 1), np.roll(S3 , 1)]).T
692 # Calculate the dot product of S(k) and S(k -1) for

each time step
693 dot_product = np.sum(S_k [1:] * S_k_minus_1 [1:] ,

axis =1)
694 # Calculate the norms of S(k) and S(k -1) for each

time step
695 norms_product = np. linalg .norm(S_k [1:] , axis =1) *

np. linalg .norm(S_k_minus_1 [1:] , axis =1)
696 # Calculate the cosine of the angle between S(k)

and S(k -1) for each time step
697 cos_angle = dot_product / norms_product
698 # Ensure all values of cos_angle are within -1 to

1.
699 cos_angle = np.clip(cos_angle , -1, 1)
700

701 # Calculate the SOP angular speed (SOPAS) in
radians /sec

702 fs = 10 # sampling frequency , since it’s 10
sample per second

703 Ts = 1 / fs # sampling period
704 SOPAS = np. arccos (cos_angle) / Ts
705

706 # Save SOPAS in the Line
707 line. sop_angular_speed = SOPAS
708 line. save_SOPAS_cache ()
709

710

711 class Earthquake :
712 def __init__ (self , position , magnitude , duration =30, velocity

=6000 , start_time =None , type=’syngine ’):

92

elements.py

713 self.st = None
714 self. position = position
715 self. magnitude = magnitude
716 self. duration = duration
717 self. velocity = velocity
718 self. num_periods = None
719 self.wave = None
720 self. start_time = start_time if start_time is not None

else datetime .now ()
721 self. end_time = self. start_time + timedelta (seconds =self.

duration) if self. duration else None
722 self.type = type
723 if self.type == ’syngine ’:
724 # Generate Syngine wave
725 self.wave = self. generate_syngin_wave ()
726 else:
727 # Generate square wave
728 self. generate_square_wave ()
729

730 def generate_square_wave (self):
731 self. num_periods = 10
732 # Number of time steps , considering 0.1 second per step
733 num_time_steps = int(self. duration * 10) + 1
734 self.wave = np.zeros(num_time_steps)
735

736 # Calculate the length of each period and half period
737 period_length = num_time_steps // self. num_periods
738 half_period_length = period_length // 2
739

740 # Generate the square wave
741 for i in range (0, num_time_steps , period_length):
742 end = min(i + half_period_length , num_time_steps)
743 self.wave[i:end] = self. magnitude
744

745 def generate_syngin_wave (self , receiver_pos =None , label=’
STANDARD ’):

746 source_moment_tensor = self. magnitude_to_moment_tensor ()
747 source_type = " moment_tensor " # it could be "

moment_tensor ", " double_couple " or "force"
748 url = self. generate_syngine_url (source_type ,

source_moment_tensor , receiver_pos = receiver_pos , label=label)
749 sac_file_path = self. download_and_extract_sac_files (url ,

label)
750 if sac_file_path :
751 # Read the seismic data
752 file = sac_file_path
753 self.st = read(file)
754 self.st. detrend (type=’demean ’)
755 self.st. filter (" lowpass ", freq =0.9)

93

elements.py

756 self.st. filter (" highpass ", freq =0.9)
757 # Convert from m to nm
758 for tr in self.st:
759 tr.data = tr.data * 1e9
760 # Extract the wave data from the seismic data
761 return self.st [0]. data
762

763 def generate_syngine_url (self , source_type , source_params ,
label , source_depth =2500 , receiver_pos =None):

764 if receiver_pos is None:
765 receiver_pos = self. position
766 base_url = "https :// service .iris.edu/ irisws / syngine /1/

query"
767 params = {
768 " format ": " saczip ",
769 "label": label ,
770 " components ": "ZRT", #only transverse component
771 "units": " displacement ",
772 "dt": "0.1",
773 " kernelwidth ": "8",
774 "scale": "1.0",
775 " receiverlatitude ": receiver_pos [0],
776 " receiverlongitude ": receiver_pos [1],
777 " network ": "IU",
778 " station ": "ANMO",
779 " stationcode ": "D1Z1",
780 " sourcelatitude ": self. position [0],
781 " sourcelongitude ": self. position [1],
782 " sourcedepthinmeters ": source_depth ,
783 " nodata ": "404"
784 }
785 ’’’ #not working properly , in this way it uses a standard

duration
786 " origintime ": self. start_time . isoformat (), #

time of origin of the earthquake
787 " starttime ": self. start_time . isoformat (), #

time of start of data
788 " endtime ": self. end_time . isoformat (), #

time of end of data
789 ’’’
790

791 if source_type == " moment_tensor ":
792 params [" sourcemomenttensor "] = source_params
793 elif source_type == " double_couple ":
794 params [" sourcedoublecouple "] = source_params
795 elif source_type == "force":
796 params [" sourceforce "] = source_params
797

94

elements.py

798 url = base_url + "?" + "&".join ([f"{key }={ value}" for key ,
value in params .items ()])

799 return url
800

801 def download_and_extract_sac_files (self , url , label ,
output_dir =" resources / sac_files "):

802 # check if a .sac file that starts with the label already
exists

803 for file_name in os. listdir (output_dir):
804 if file_name . endswith (’.sac ’) and file_name . startswith

(label):
805 print(f"file { file_name } already exists . returning

the file path.")
806 return os.path.join(output_dir , file_name)
807

808 # if the file does not exist , download and extract the .
sac file

809 response = requests .get(url)
810 if response . status_code == 200:
811 zip_path = f"{ output_dir }/ sac_files .zip"
812 with open(zip_path , "wb") as f:
813 f.write(response . content)
814 print("sac files: ", label , " downloaded successfully .

")
815

816 # read the contents of the zip file
817 with zipfile . ZipFile (zip_path , ’r’) as zip_ref :
818 extracted_files = zip_ref . namelist ()
819 sac_files = [f for f in extracted_files if f.

endswith (’.sac ’)]
820 if not sac_files :
821 raise FileNotFoundError ("no sac files found in

the zip.")
822

823 # sort the list of sac files alphabetically
824 sac_files .sort ()
825

826 # extract only the first sac file
827 first_sac_file = sac_files [0]
828 zip_ref . extract (first_sac_file , output_dir)
829 print("sac file: ", first_sac_file , " extracted

successfully .")
830

831 # return the path of the extracted sac file
832 return os.path.join(output_dir , first_sac_file)
833 else:
834 print("error downloading sac files", response .

status_code)
835 return None

95

elements.py

836

837 def magnitude_to_moment_tensor (self):
838 # Convert magnitude to seismic moment (M0)
839 M0 = pmt. magnitude_to_moment (self. magnitude)
840

841 # Define strike , dip , and rake angles
842 strike = 130 # example values
843 dip = 40
844 rake = 110
845

846 # Create moment tensor using pyrocko
847 mt = pmt. MomentTensor (strike =strike , dip=dip , rake=rake ,

scalar_moment =M0)
848

849 # Get moment tensor components (not normalized)
850 m6 = [mt.mnn , mt.mee , mt.mdd , mt.mne , mt.mnd , mt.med]
851

852 # Return components joined by commas (not normalized)
853 return ’,’.join(f’{m:.17e}’. replace (’e+’, ’e’). replace (’e-

’, ’e-’) for m in m6) # Convert the components to scientific
notation without spaces in the exponent

854 # return "1.04 e22 , -0.039 e22 ,-1e22 ,0.304 e22 , -1.52 e22 , -0.119
e22"

855

856 def generate_syngine_wave_for_segment (self , segment):
857 return self. generate_syngin_wave (receiver_pos = midpoint (

segment . start_position , segment . end_position), label= segment .id
)

858

859 def plot(self , wave=None):
860 if wave is None:
861 wave = self.wave
862 # Plot the wave data
863 plt. figure (figsize =(10 , 4))
864 plt.plot(wave , label=’Synthetic Seismogram ’)
865 plt. xlabel (’Time (s)’)
866 plt. ylabel (’Amplitude (nm)’)
867 plt.title(’Synthetic Seismogram Generated by Syngine ’)
868 plt. legend ()
869 plt. savefig (f"{ output_dir }/ syngine_wave_mag_ {self.

magnitude }. png", dpi =600)
870 plt.close () # Close the plot to avoid displaying it
871

872

873 def haversine_distance (coord1 , coord2):
874 R = 6371000 # Radius of the Earth in meters
875 lat1 , lon1 = np. radians (coord1)
876 lat2 , lon2 = np. radians (coord2)
877 dlat = lat2 - lat1

96

elements.py

878 dlon = lon2 - lon1
879 a = np.sin(dlat / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.

sin(dlon / 2) ** 2
880 c = 2 * np. arctan2 (np.sqrt(a), np.sqrt (1 - a))
881 distance = R * c
882 return distance
883

884

885 def select_random_segments (network , num_segments):
886 # Get all segments
887 all_segments = [(line_index , segment_index)
888 for line_index in range(len(network .lines))
889 for segment_index in range(len(network .lines[

line_index]. segments))]
890

891 # Select a random sample of segments
892 selected_segments = random . sample (all_segments , num_segments)
893 return selected_segments
894

895

896 class SimulationManager :
897 def __init__ (self , network , earthquake):
898 self. network = network
899 self. earthquake = earthquake
900 self. resource_dir = " resources "
901 self. cache_dir = "cache"
902 self. sac_files_dir = os.path.join(self. resource_dir , "

sac_files ")
903 self. log_file = os.path.join(self. resource_dir , "

simulation_log .json")
904

905

906 def initialize_simulation (self):
907 print(" Currently executing : initialize_simulation ’s part."

)
908 # Check if the cache directory exists , if not , create it
909 if not cache_path . exists ():
910 print("Cache directory not found , creating it ...")
911 cache_path .mkdir(parents =True , exist_ok =True)
912

913 # Check if the results directory exists , if not , create it
914 if not results_path . exists ():
915 print(" Results directory not found , creating it ...")
916 results_path .mkdir(parents =True , exist_ok =True)
917

918 # Check if cache needs to be cleared based on the log file
919 if not os.path. exists (self. log_file) or self.

should_clear_cache ():

97

elements.py

920 print(" Changes detected or log file missing . Clearing
cache and re - downloading .sac data ...")

921 self. clear_cache ()
922 self. check_and_create_cache_directories ()
923 # Save current state to the log file after clearing

cache
924 self. save_current_state ()
925 else:
926 print("Using cached data from previous simulation ...")
927 self. create_output_directory ()
928

929 def create_output_directory (self):
930 global output_dir
931 earthquake_coords = f"{self. earthquake . position [0]}_{self.

earthquake . position [1]}"
932 output_dir = os.path.join(results_path , earthquake_coords)
933 os. makedirs (output_dir , exist_ok =True)
934

935 def check_and_create_cache_directories (self):
936 # Ensure all cache directories exist
937 os. makedirs ("cache/ wave_cache ", exist_ok =True)
938 os. makedirs ("cache/ strain_cache ", exist_ok =True)
939 os. makedirs ("cache/ stokes_cache ", exist_ok =True)
940

941 def should_clear_cache (self):
942 # Generate a unique hash based on earthquake and network

properties
943 current_state = self. generate_simulation_state ()
944 current_hash = self. calculate_hash (current_state)
945

946 # Check if the log file exists and compare the hash
947 if os.path. exists (self. log_file):
948 with open(self.log_file , "r") as f:
949 previous_state = json.load(f)
950 previous_hash = previous_state .get("hash")
951 if previous_hash == current_hash :
952 return False # Cache is valid , no need to

clear
953 return True # Cache needs to be cleared
954

955 def save_current_state (self):
956 # Generate the current simulation state and its hash
957 current_state = self. generate_simulation_state ()
958 current_hash = self. calculate_hash (current_state)
959

960 # Save the hash and state in the log file
961 with open(self.log_file , "w") as f:
962 json.dump ({"hash": current_hash , "state":

current_state }, f)

98

elements.py

963

964 def generate_simulation_state (self):
965 # Create a dictionary with the earthquake and network

parameters
966 return {
967 " magnitude ": self. earthquake .magnitude ,
968 " position ": self. earthquake .position ,
969 " duration ": self. earthquake .duration ,
970 " segment_length ": self. network . segment_length ,
971 " waveplate_interval ": self. network . waveplate_interval ,
972 " node_positions ": [node. position for node in self.

network .nodes]
973 }
974

975 def calculate_hash (self , state):
976 # Calculate a hash for the given state
977 return hashlib .md5(json.dumps(state , sort_keys =True).

encode ()). hexdigest ()
978

979 def clear_cache (self):
980 # Clear the cache directory and the sac_files directory
981 for directory in [self.cache_dir , self. sac_files_dir]:
982 try:
983 if os.path. exists (directory):
984 shutil . rmtree (directory)
985 os. makedirs (directory) # Recreate the empty

directory
986 print(f" Cleared and recreated directory : {

directory }")
987 else:
988 print(f" Directory does not exist , creating it:

{ directory }")
989 os. makedirs (directory)
990 except Exception as e:
991 print(f"Error clearing directory { directory }: {e}"

)
992

993

994 def run_simulation (self):
995 print(" Currently executing : running_simulation ’s part.")
996 # Apply earthquake strain to the network
997 if self. earthquake .type == ’syngine ’:
998 self. network . apply_earthquake_strain_with_receiver (

self. earthquake)
999 else:

1000 self. network . apply_earthquake_strain (self. earthquake)
1001 # Process strain in WP model for each line
1002 self. network . process_strain_in_wp_model_matricial ()
1003 # Calculate SOP angular speed for each line

99

elements.py

1004 self. network . calculate_sop_angular_speed ()
1005

1006 def visualize_results (self):
1007 print(" Currently executing : visualize_results ’ part.")
1008 self.draw ()
1009 self. earthquake .plot ()
1010 # Plot strain evolution for some segments
1011 print(" Saving strain evolution plots ... 25%")
1012 self. plot_strain_evolution ()
1013 # Plot Stokes parameters for selected lines
1014 print(" Saving Stokes parameters plots ... 50%")
1015 self. plot_stokes_parameters ()
1016 # Plot Stokes parameters on Poincare sphere for selected

lines
1017 print(" Saving Stokes parameters on Poincare sphere plots

... 75%")
1018 self. plot_stokes_evolution_on_poincare ()
1019 # Plot SOP Angular Speed for selected lines
1020 print(" Saving SOP Angular Speed plots ... 100%")
1021 self. plot_sop_angular_speed ()
1022

1023 def plot_strain_evolution (self):
1024 # Iterate over all lines in the network
1025 for line in self. network .lines:
1026 # Select 3 random segments for the current line
1027 num_segments = 3
1028 segments_to_plot = random . sample (line.segments , min(

num_segments , len(line. segments)))
1029

1030 # Create a plot with 3 rows and 1 column (one column
per segment)

1031 num_rows = 3
1032 num_cols = 1
1033 fig , axs = plt. subplots (num_rows , num_cols , figsize

=(10 , 5 * num_rows)) # 1 column and 3 rows
1034 axs = axs. flatten () # Flatten in case of a 2D array
1035

1036 for ax , segment in zip(axs , segments_to_plot):
1037 strain_evolution = np.array(segment .

strain_evolution)
1038 parallel_strain = strain_evolution [:, 0]
1039 orthogonal_strain = strain_evolution [:, 1]
1040

1041 # Create the time array using the segment ’s
timestamp

1042 start_time = segment . timestamp
1043 end_time = start_time + timedelta (seconds =len(

parallel_strain) * 0.1) # 0.1 seconds per time step

100

elements.py

1044 time = np. arange (start_time , end_time , timedelta (
seconds =0.1))

1045

1046 # Create the plot for the current segment
1047 ax.plot(time , parallel_strain , label=’Parallel

strain ’)
1048 ax.plot(time , orthogonal_strain , label=’Orthogonal

strain ’)
1049 ax. set_title (f’Strain Evolution for Line {line.id

}, Segment { segment .id}’)
1050 ax. set_xlabel (’Time (UTC)’)
1051 ax. set_ylabel (’Strain ’)
1052 ax. legend ()
1053

1054 # Save the plot for the current line
1055 plt. subplots_adjust (hspace =0.5) # Adjust space

between subplots
1056 plt. savefig (f"{ output_dir }/ strain_evolution_line_ {line

.id}_mag_{self. earthquake . magnitude }. png", dpi =600)
1057 plt.close(fig) # Close the plot to avoid memory leaks
1058

1059 def plot_stokes_parameters (self):
1060 # Iterate over all lines in the network
1061 for line in self. network .lines:
1062 stokes_evolution = line. stokes_evolution
1063 if use_gpu and not isinstance (stokes_evolution , np.

ndarray):
1064 stokes_evolution = stokes_evolution .get ()
1065

1066 # Use the line ’s timestamp to create the time array
1067 start_time = line. segments [0]. timestamp
1068 end_time = start_time + timedelta (
1069 seconds =(len(stokes_evolution) * 0.1)) # Assuming

time_step_size of 0.1 seconds
1070 time = np. arange (start_time , end_time , timedelta (

seconds =0.1))
1071

1072 # Create a plot with 3 rows and 1 column (one row for
S1 , S2 , and S3)

1073 num_rows = 3
1074 num_cols = 1
1075 fig , axs = plt. subplots (num_rows , num_cols , figsize

=(10 , 5 * num_rows)) # 1 column , 3 rows
1076 axs = axs. flatten () # Flatten in case of a 2D array
1077

1078 # Plot S1 , S2 , and S3
1079 axs [0]. plot(time , stokes_evolution [:, 0], label=’S1’)
1080 axs [0]. set_title (f’S1 for Line {line.id}’)
1081 axs [0]. set_xlabel (’Time (UTC)’)

101

elements.py

1082 axs [0]. set_ylabel (’S1’)
1083 axs [0]. legend ()
1084

1085 axs [1]. plot(time , stokes_evolution [:, 1], label=’S2’)
1086 axs [1]. set_title (f’S2 for Line {line.id}’)
1087 axs [1]. set_xlabel (’Time (UTC)’)
1088 axs [1]. set_ylabel (’S2’)
1089 axs [1]. legend ()
1090

1091 axs [2]. plot(time , stokes_evolution [:, 2], label=’S3’)
1092 axs [2]. set_title (f’S3 for Line {line.id}’)
1093 axs [2]. set_xlabel (’Time (UTC)’)
1094 axs [2]. set_ylabel (’S3’)
1095 axs [2]. legend ()
1096

1097 # Save the plot for the current line
1098 plt. subplots_adjust (hspace =0.5) # Adjust the space

between subplots
1099 plt. savefig (f"{ output_dir }/ stokes_evolution_line_ {line

.id}_mag_{self. earthquake . magnitude }. png", dpi =600)
1100 plt.close(fig) # Close the plot to avoid memory leaks
1101

1102 def plot_stokes_evolution_on_poincare (self):
1103 # Iterate over all lines in the network
1104 for line in self. network .lines:
1105 stokes_evolution = line. stokes_evolution
1106 if use_gpu and not isinstance (stokes_evolution , np.

ndarray):
1107 stokes_evolution = stokes_evolution .get ()
1108

1109 # Normalize the Stokes parameters
1110 norm = np. linalg .norm(stokes_evolution , axis =1)
1111 s1 = stokes_evolution [:, 0] / norm
1112 s2 = stokes_evolution [:, 1] / norm
1113 s3 = stokes_evolution [:, 2] / norm
1114

1115 # Create a new 3D plot for each line
1116 fig = plt. figure (figsize =(8, 8))
1117 ax = fig. add_subplot (111 , projection =’3d’)
1118

1119 vis. draw_empty_sphere (ax)
1120 ax.grid(True)
1121 ax. scatter (s1 , s2 , s3 , color=’blue ’, label=f’Line {

line.id}’)
1122 ax. scatter (s1[-1], s2[-1], s3[-1], color=’black ’, s

=200)
1123

1124 ax. set_xlim (-1, 1)
1125 ax. set_ylim (-1, 1)

102

elements.py

1126 ax. set_zlim (-1, 1)
1127 ax. legend ()
1128 ax. set_title (f’Polarization Evolution for Line {line.

id}’)
1129

1130 # Save the plot for the current line
1131 plt. savefig (f"{ output_dir }/ poincare_sphere_line_ {line.

id}_mag_{self. earthquake . magnitude }. png", dpi =600)
1132 plt.close(fig) # Close the plot to avoid memory leaks
1133

1134 def plot_sop_angular_speed (self):
1135 # Iterate over all lines in the network
1136 for line in self. network .lines:
1137 if line. sop_angular_speed is not None:
1138 # Use the line ’s timestamp to create the time

array
1139 start_time = line. segments [0]. timestamp
1140 end_time = start_time + timedelta (
1141 seconds =len(line. sop_angular_speed) * 0.1) #

Assuming time_step_size of 0.1 seconds
1142 time = np. arange (start_time , end_time , timedelta (

seconds =0.1))
1143

1144 # Create a new plot for each line
1145 fig , ax = plt. subplots (figsize =(10 , 5))
1146

1147 ax.plot(time , line. sop_angular_speed , label=’SOP
Angular Speed ’)

1148 ax. set_title (f’SOP Angular Speed for Line {line.id
}’)

1149 ax. set_xlabel (’Time (UTC)’)
1150 ax. set_ylabel (’SOP Angular Speed (rad/s)’)
1151 ax. legend ()
1152

1153 # Save the plot for the current line
1154 plt. subplots_adjust (hspace =0.5)
1155 plt. savefig (f"{ output_dir }/ SOPAS_evolution_line_ {

line.id}_mag_{self. earthquake . magnitude }. png", dpi =600)
1156 plt.close(fig) # Close the plot to avoid memory

leaks
1157

1158

1159 def draw(self , filename =None):
1160 nodes_lat = [node. position [0] for node in self. network .

nodes]
1161 nodes_lon = [node. position [1] for node in self. network .

nodes]
1162 node_ids = [node.id for node in self. network .nodes]
1163

103

elements.py

1164 lines = []
1165 for line in self. network .lines:
1166 lines. append ({
1167 ’lat ’: [line. start_node . position [0], line. end_node

. position [0]] ,
1168 ’lon ’: [line. start_node . position [1], line. end_node

. position [1]] ,
1169 ’id’: line.id
1170 })
1171

1172 earthquake_lat = self. earthquake . position [0]
1173 earthquake_lon = self. earthquake . position [1]
1174

1175 fig = go. Figure ()
1176

1177 for line in lines:
1178 fig. add_trace (go. Scattermapbox (
1179 lat=line[’lat ’],
1180 lon=line[’lon ’],
1181 mode=’lines ’,
1182 line=dict(width =2, color=’blue ’),
1183 name=f"Line {line[’id ’]}"
1184))
1185

1186 fig. add_trace (go. Scattermapbox (
1187 lat=nodes_lat ,
1188 lon=nodes_lon ,
1189 mode=’markers +text ’,
1190 marker =dict(size =10, color=’red ’),
1191 text=node_ids ,
1192 textposition ="top right",
1193 name=’Nodes ’
1194))
1195

1196 fig. add_trace (go. Scattermapbox (
1197 lat =[earthquake_lat],
1198 lon =[earthquake_lon],
1199 mode=’markers ’,
1200 marker =dict(size =15, color=’yellow ’),
1201 name=’Earthquake ’
1202))
1203

1204 # Calculate the maximum distance at which the earthquake
has significant effects

1205 max_distance = calculate_max_distance (self. earthquake .
magnitude) / 1000 # convert to kilometers

1206 print("Max Distance : ", max_distance , "km")
1207 # Define the number of concentric circles based on the

earthquake magnitude

104

elements.py

1208 num_circles = min(int(self. earthquake . magnitude), 10)
1209

1210 for i in range(num_circles + 1):
1211 circle_radius = max_distance * i / num_circles
1212 circle = go. Scattermapbox (
1213 lat =[earthquake_lat + circle_radius * np.cos(theta

) / 111 for theta in np. linspace (0, 2 * np.pi , 100)],
1214 lon =[earthquake_lon + circle_radius * np.sin(theta

) / (111 * np.cos(np. deg2rad (earthquake_lat))) for
1215 theta in np. linspace (0, 2 * np.pi , 100)],
1216 mode=’lines ’,
1217 line=dict(color=’red ’),
1218 showlegend =False
1219)
1220 fig. add_trace (circle)
1221

1222 # Calculate bounds to set the map view
1223 lat_min = min(nodes_lat + [earthquake_lat])
1224 lat_max = max(nodes_lat + [earthquake_lat])
1225 lon_min = min(nodes_lon + [earthquake_lon])
1226 lon_max = max(nodes_lon + [earthquake_lon])
1227

1228 # Define zoom level based on the bounding box
1229 lat_range = lat_max - lat_min
1230 lon_range = lon_max - lon_min
1231 zoom = 12 - max(lat_range , lon_range) * 1 # Adjust

the factor for zoom sensitivity
1232

1233 fig. update_layout (
1234 mapbox =dict(
1235 style=’open -street -map ’,
1236 center =dict(lat=np.mean(nodes_lat), lon=np.mean(

nodes_lon)),
1237 accesstoken =’’,
1238 zoom=zoom
1239),
1240 showlegend =True ,
1241 margin =dict(l=0, r=0, t=0, b=0)
1242)
1243

1244 # Filename includes earthquake magnitude for PNG
1245 png_filename = f"{ output_dir }/ map_plot_mag_ {self.

earthquake . magnitude }. png"
1246

1247 # Save as PNG image
1248 fig. write_image (png_filename)
1249 print(f"Saved map as image")
1250

1251 # Show the map

105

elements.py

1252 #fig.show ()

106

Bibliography

[1] BBC News. Earthquake Early Warning Systems: Saving Lives and Reducing
Damage. 2024. url: https://www.bbc.com/news/science-environment-
56789012 (cit. on p. 1).

[2] Antonio Costanzo Salvatore Scudero and Antonino D’Alessandro. «Urban
Seismic Networks: A Worldwide Review». In: Applied Sciences 13.24 (2023).
doi: 10.3390/app132413165. url: https://www.mdpi.com/2076-3417/
13/24/13165 (cit. on p. 1).

[3] Luis Costa - Siddharth Varughese - Pierre Mertz - Valey Kamalov and
Zhongwen Zhan. «Localization of seismic waves with submarine fiber optics
using polarization-only measurements». In: Nature Communications 14 (2023).
doi: 10.1038/s44172-023-00138-4. url: https://www.nature.com/
articles/s44172-023-00138-4 (cit. on p. 1).

[4] Hasan Awad, Fehmida Usmani, Emanuele Virgillito, Rudi Bratovich, Roberto
Proietti, Stefano Straullu, Rosanna Pastorelli, and Vittorio Curri. «Seismic
detection through state-of-polarization analysis in optical fiber networks». In:
Proc. SPIE Photonics West 2024. San Francisco, California, United States,
Jan. 2024, 27 January –1 February. doi: 10.1117/12.3007808 (cit. on pp. 2,
7, 23).

[5] Hasan Awad, Fehmida Usmani, Emanuele Virgillito, Rudi Bratovich, Roberto
Proietti, Stefano Straullu, Francesco Aquilino, Rosanna Pastorelli, and Vitto-
rio Curri. «Environmental Surveillance through Machine Learning-Empowered
Utilization of Optical Networks». In: Sensors 24.3041 (May 2024). Received:
12 March 2024; Revised: 5 May 2024; Accepted: 9 May 2024; Published: 10
May 2024. doi: 10.3390/s24103041 (cit. on pp. 4, 6).

[6] Zhongwen Zhan, Mattia Cantono, Valey Kamalov, Antonio Mecozzi, Rafael
Müller, Shuang Yin, and Jorge C. Castellanos. «Optical polarization-based
seismic and water wave sensing on transoceanic cables». In: Science 374.6567
(2024), pp. 1234–1238. doi: 10.1126/science.abe6648. url: https://www.
science.org/doi/full/10.1126/science.abe6648 (cit. on pp. 4, 6).

107

https://www.bbc.com/news/science-environment-56789012
https://www.bbc.com/news/science-environment-56789012
https://doi.org/10.3390/app132413165
https://www.mdpi.com/2076-3417/13/24/13165
https://www.mdpi.com/2076-3417/13/24/13165
https://doi.org/10.1038/s44172-023-00138-4
https://www.nature.com/articles/s44172-023-00138-4
https://www.nature.com/articles/s44172-023-00138-4
https://doi.org/10.1117/12.3007808
https://doi.org/10.3390/s24103041
https://doi.org/10.1126/science.abe6648
https://www.science.org/doi/full/10.1126/science.abe6648
https://www.science.org/doi/full/10.1126/science.abe6648

BIBLIOGRAPHY

[7] Charles J. Carver and Xia Zhou. «Polarization sensing of network health and
seismic activity over a live terrestrial fiber-optic cable». In: Communications
Engineering (2024). doi: 10.1038/s44172-024-00237-w. url: https://www.
researchgate.net/publication/382019009_Polarization_sensing_of_
network_health_and_seismic_activity_over_a_live_terrestrial_
fiber-optic_cable (cit. on p. 4).

[8] Zefeng Li, Men-Andrin Meier, Egill Hauksson, Zhongwen Zhan, and Jennifer
Andrews. «Machine learning seismic wave discrimination: Application to
earthquake early warning». In: Geophysical Research Letters 45.10 (2018),
pp. 4773–4779. doi: 10.1029/2018GL077870. url: https://agupubs.onli
nelibrary.wiley.com/doi/full/10.1029/2018GL077870 (cit. on pp. 4, 5,
7).

[9] Fiveable. Surface Waves - Vocab, Definition, and Must Know Facts. 2023. url:
https://library.fiveable.me/key-terms/earth-systems-science/
surface-waves (cit. on p. 5).

[10] Hasan Awad, Fehmida Usmani, Emanuele Virgillito, Rudi Bratovich, Roberto
Proietti, Stefano Straullu, Rosanna Pastorelli, and Vittorio Curri. «A Machine
Learning-Driven Smart Optical Network Grid for Earthquake Early Warning».
In: 2024 24th International Conference on Transparent Optical Networks
(ICTON). Bari, Italy: IEEE, July 2024, pp. 14–18. doi: 10.1109/ICTON62926.
2024.10648206 (cit. on p. 5).

[11] M. Hoshiba, K. Iwakiri, K. Ohtake, J. Iwahashi, and M. Morimoto. «Outline
of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) – Earthquake
Early Warning and Observed Seismic Intensity». In: Earth Planets Space 63.7
(2011), pp. 547–551. doi: 10.5047/eps.2011.05.031 (cit. on p. 6).

[12] J. M. Espinosa-Aranda, A. Cuellar, A. Garcia, G. Ibarrola, R. Islas, and
S. Maldonado. «Evolution of the Mexican Seismic Alert System (SASMEX)».
In: Seismological Research Letters 80.5 (2009), pp. 694–706. doi: 10.1785/
gssrl.80.5.694 (cit. on p. 6).

[13] IRIS Data Services. Syngine - On-Demand Synthetic Seismograms. url:
https://ds.iris.edu/ds/products/syngine/ (cit. on p. 8).

108

https://doi.org/10.1038/s44172-024-00237-w
https://www.researchgate.net/publication/382019009_Polarization_sensing_of_network_health_and_seismic_activity_over_a_live_terrestrial_fiber-optic_cable
https://www.researchgate.net/publication/382019009_Polarization_sensing_of_network_health_and_seismic_activity_over_a_live_terrestrial_fiber-optic_cable
https://www.researchgate.net/publication/382019009_Polarization_sensing_of_network_health_and_seismic_activity_over_a_live_terrestrial_fiber-optic_cable
https://www.researchgate.net/publication/382019009_Polarization_sensing_of_network_health_and_seismic_activity_over_a_live_terrestrial_fiber-optic_cable
https://doi.org/10.1029/2018GL077870
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL077870
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL077870
https://library.fiveable.me/key-terms/earth-systems-science/surface-waves
https://library.fiveable.me/key-terms/earth-systems-science/surface-waves
https://doi.org/10.1109/ICTON62926.2024.10648206
https://doi.org/10.1109/ICTON62926.2024.10648206
https://doi.org/10.5047/eps.2011.05.031
https://doi.org/10.1785/gssrl.80.5.694
https://doi.org/10.1785/gssrl.80.5.694
https://ds.iris.edu/ds/products/syngine/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Context
	Objective
	Structure

	Background and Literature Review
	Introduction
	Seismic Waves Propagation
	Importance of Early Warning Systems
	Related Works
	Distributed Acoustic Sensors (DAS)
	State of Polarization (SOP) Sensing
	Machine Learning Applications
	Final Remarks

	Modeling Fiber Optic Network and Generation of Seismic Events
	Introduction
	Structure of the Digital Twin
	Nodes and Lines Abstraction
	Segment Abstraction and Strain Application
	Syngine Integration for Seismic Events

	Use of Segment Abstraction
	Rationale for Segmenting the Fiber
	Strain Calculation and Application
	Advantages of Segment Abstraction

	Syngine Integration
	Purpose of Syngine Integration
	How Syngine is Integrated
	Ground Motion to Strain Conversion
	Advantages of Using Syngine
	Generation of the Moment Tensor and Seismic Data Processing

	Strain and Waveplate Model Integration
	Introduction
	Strain Evolution
	How Strain is Modeled
	Strain Evolution Over Time
	Code Implementation of Strain Evolution
	Impact on the Waveplate Model

	Strain Application on Segments
	Strain Application with Receiver Consideration
	Strain Application without Receiver Consideration

	Concept of Waveplate Model
	Internal and External Birefringence
	Waveplate Model Representation
	Waveplate Model for Seismic Sensing
	Waveplate Model Implementation

	Matricial Simplification of Strain Processing
	Original Strain Processing
	Matricial Strain Processing
	Key Mathematical Differences
	Performance Improvement

	SOPAS Calculation
	Mathematical Definition of SOPAS
	Computation of SOPAS
	Code Implementation
	Interpretation and Significance

	The Simulation Manager
	Introduction
	Data Preprocessing
	Cache Management
	Loading or Generating SAC Files
	Log File Generation for Change Detection

	Simulation Orchestration
	General Overview
	Earthquake Strain Application
	Strain Processing and Polarization Effects
	Result Handling
	Conclusion on Result Handling

	Error Handling and Robustness
	Cache and Resource Folder Management
	Handling Missing or Corrupt Data
	Re-initialization in Case of Data Deletion

	Summary and Potential Future Improvements
	Summary of the Simulation Manager's Contributions
	Potential Future Improvements

	Visualization Methods for Seismic Data Analysis
	Mapbox Integration for Geographic Visualization
	Strain Evolution Visualization
	SOP Evolution Visualization
	SOPAS Visualization

	Results Analysis
	Introduction
	Case 1: Epicenter Near Node A
	Network and Epicenter Visualization
	Seismic Waveform (Syngine)
	Strain Evolution in Key Lines
	State of Polarization (SOP) Changes
	SOP Angular Speed (SOPAS)

	Case 2: Epicenter Between Node A and Node B
	Network and Epicenter Visualization
	Seismic Waveform (Syngine)
	Strain Evolution in Key Lines
	State of Polarization (SOP) Changes
	SOP Angular Speed (SOPAS)

	Case 3: Epicenter 5 km from Node B Towards Node C
	Network and Epicenter Visualization
	Seismic Waveform (Syngine)
	Strain Evolution in Key Lines
	State of Polarization (SOP) Changes
	SOP Angular Speed (SOPAS)

	Comparison of Results Across Cases

	Conclusion and future developments
	Summary of Key Outcomes
	Challenges and Technical Limitations
	Potential Future Improvements
	Final Thoughts

	elements.py
	Bibliography

