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Abstract

Convolutional Neural Networks (CNNs) are widely used for machine learning tasks
but often come with high computational costs due to their reliance on resource-
intensive Multiply-Accumulate (MAC) operations. As a more efficient alternative,
AdderNet (AddNN) replaces these MAC operations with simpler Sum-of-Absolute-
Difference (SAD) operations, employing an ℓ1-norm-based approach. While this
architecture reduces computational expenses, it has not yet achieved the same level of
hardware optimization as CNNs, particularly in areas such as effective quantization,
accelerator design, and efficient use of FPGA resources like DSP slices.

This thesis presents an efficient quantized implementation of the AddNN ResNet20
architecture using an 8-bit fixed-point quantization scheme. Developed with the
Brevitas framework, this approach significantly reduces memory usage and computa-
tional overhead, enabling efficient deployment on FPGAs. The model’s hyperparam-
eters were fine-tuned and trained on the CIFAR-10 dataset, achieving an accuracy of
86.61%. The architecture was represented in a custom QONNX format to detail the
layers, input-output quantization, and connections.

Additionally, a tailored high-level synthesis (HLS) code generation pipeline was
created to transform the Python-based model into an FPGA bitstream using Vitis
HLS. The implementation and validation of this architecture were demonstrated
on the Kria KV260 FPGA board, utilizing ResNet20 on the CIFAR-10 dataset to
showcase the efficiency of the proposed solution.

The contributions of this research aim to enhance the performance and flexibility
of AddNNs in embedded systems, particularly those leveraging FPGA hardware,
through innovations in both architectural design and implementation methodologies.
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Chapter 1

Introduction

1.1 Machine Learning and Deep Learning

Artificial Intelligence (AI) is an innovative computer science field, enabling com-
puters and digital devices to learn and perform tasks that optimize their chances
of achieving specific goals. The remarkable progress in AI over recent years has
significantly impacted various applications, including image recognition, object
detection, language understanding, and problem-solving.

Machine Learning (ML) can be considered a sub-field of AI. It adopts algorithms
trained on datasets to create self-learning models that are capable of predicting
outcomes and classifying information without human intervention. ML methods are
generally categorized into three primary types:

• Supervised Learning: This approach involves training a machine to predict
an output value, either continuous (regression) or discrete (classification),
corresponding to an input. Algorithms are trained on labeled datasets that
include tags describing each piece of data. This means that the training phase
is based on example pairs of inputs and outputs to instruct the machine on the
correct output for each input.

• Unsupervised Learning: In this method, algorithms are trained on unlabeled
datasets with no tags. This means that the machine has to identify on its own
patterns and similarities within the data to categorize it into groups, without
predicting a specific output value.
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Fig. 1.1 Types of Learning

• Reinforcement Learning: This technique addresses sequential decision prob-
lems where the future state of the systems is determined by its current state
and the action taken. The objective is to develop autonomous agents that
select actions to achieve specific goals, with a "reward function" measuring
the quality of the chosen action in order to reinforce the desirable behavior.

Deep Learning (DL) refers to a type of machine learning that employs multi-layered
structures. What distinguishes DL is its ability to autonomously recognize high-level
features from the input data, unlike traditional machine learning algorithms that rely
on features designed by humans.
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Fig. 1.2 ML, DL, AI visualization

1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are mathematical models inspired by the structure
of human brain neurons. In feedforward neural networks, each neuron performs an
algebraic operation on its input xi, represented by the equation:

yi = wi · xi +bi

where wi and bi are the weight and bias of the i-th neuron, respectively. The
output yi is thus a linear function of the input xi.

ANNs consist of neurons organized in layers, with each layer’s neurons intercon-
nected in a sequence-like structure.
Considering a neuron with multiple inputs, the equation can be generalized as:



4 Introduction

yi =
n

∑
j=1

wi j · x j +bi

Fig. 1.3 Neuron: details

1.3 Neural Networks on Edge Devices

The advent of powerful Graphics Processing Units (GPUs) has made possible to
deploy increasingly complex neural networks, reducing training and inference times
in a significant way. However, the high power consumption of GPUs makes them
impractical for edge devices like mobile phones and cameras, which have limited
memory and computational capacity.

Edge computing is crucial for applications requiring real-time data processing,
privacy, and low latency. Consequently, research has focused on optimizing neural
networks for edge devices through techniques such as:

• Pruning: This technique reduces the size of neural networks by removing
redundant neurons or connections, thereby decreasing memory usage and
speeding up computations.

• Quantization: This method optimizes data and weight representation, balanc-
ing memory usage and accuracy.

• Model Architecture Design: Developing alternative neural network structures
to create more efficient models.
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1.3.1 The Evolution of Neural Networks

The evolution of neural networks has reached several important milestones. Early
models, like the perceptron, struggled with non-linear problems. The creation of
multi-layer perceptrons (MLPs) brought in hidden layers, allowing these networks to
understand non-linear relationships. Still, MLPs faced challenges with computational
efficiency and training deep architectures.

The early 2000s saw a major breakthrough with the introduction of deep learning,
as deep neural networks (DNNs) began to deliver exceptional performance in a range
of tasks. Improvements in hardware, particularly with GPUs, along with techniques
like dropout and batch normalization, have significantly boosted the training and
generalization abilities of these networks.

1.3.2 Applications of Neural Networks

Neural networks have revolutionized numerous fields. For instance, they play a
crucial role in image processing, for tasks such as classification, object detection,
and segmentation. In natural language processing (NLP), neural networks underpin
models for translation, sentiment analysis, and text generation. Autonomous systems,
including self-driving cars and robotic control, rely heavily on neural networks to
interpret sensor data and make decisions in real-time.

1.3.3 Challenges and Limitations

Even with their achievements, neural networks encounter various challenges. The
training process demands substantial computational resources and a vast amount of
labeled data. Overfitting is a major concern, as it occurs when a model excels on
training data but struggles with new, unseen data. Additionally, neural networks are
frequently regarded as "black boxes," making their decision-making processes hard
to understand.
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1.4 Convolutional Neural Network

Convolutional Neural Networks (CNNs) have achieved state-of-the-art results in
many tasks, including computer vision and speech recognition. This success is
due to the high accuracy and performance of convolutional layers, which are more
computationally efficient and require less memory bandwidth than fully connected
layers. The choice of hardware for implementing convolutional layers has a signif-
icant impact on their applicability. Central Processing Units (CPUs) are versatile
and easy to program, but are relatively inefficient due to their architecture. GPUs
are designed for high levels of parallelism, they can handle multiple computations
simultaneously, which is well suited to the parallel nature of CNNs at the cost of
increased power consumption. Application-specific integrated circuits (ASICs) and
field-programmable gate arrays (FPGAs) offer different trade-offs between cost and
flexibility for algorithm acceleration. While FPGAs are less powerful and energy
efficient due to their reprogrammability, they have lower design costs and can be
customised for specific applications.

Given an image as input, the CNN recognizes the elements in the image and
classifies them, by giving as output the probability that that image belongs to a
particular class (as person, bike, cat, dog, car, ...). Some CNNs are able also to detect
the position of the detected object in the image.

Fig. 1.4 Example of Fully Connected Layers
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CNNs are made of different layers, each one with a specific function, that are
repeated several times, depending on the CNN implementation. In order to classify
the image, the CNN takes as input the related matrix1, called Feature Map (FM),
and makes it flow into these layers, where the FM is convoluted and the learnable
parameters, called weights, are updated. Convolutional Neural Networks are a
specialized type of ANN designed for processing structured grid data, such as images.
CNNs have achieved remarkable success in tasks such as image classification and
object detection.
A CNN typically comprises several types of layers:

• Convolutional Layers: These layers apply convolution operations to the input,
using filters (kernels) to detect features such as edges, textures, and patterns.

• Activation Layers: These layers introduce non-linearity into the network,
enabling it to model complex relationships.

• Pooling Layers: These layers reduce the spatial dimensions of the feature
maps, thereby decreasing the computational load and helping to prevent over-
fitting.

• Fully Connected Layers: These layers connect every neuron in one layer to
every neuron in the next layer, typically used in the final stages of the network
for classification tasks.

1.5 Convolutional Layers

Convolutional Layers are used to detect any kind of shapes in an image. In order to
do that, the image, represented by a nA ×nA ×3 matrix (RGB coding), is convoluted
with specific filter matrices, also called kernels, which store the learnable parameters
of the network, i.e. the weights. The kernels are used to detect specific shapes inside
an image, such as horizontal and vertical lines and, as the image, they are represented
by square matrices, with different weights, depending on which shapes they have to

1CNN and, more in general, computer see images as matrices of pixels: if the image is coded
in RGB, then CNN will decode it as a H×W×3 matrix, where H and W represent height and width
respectively, while 3 is the number of channels, where every of them stores the value of the Red,
Green, Blue color, which goes from 0 to 255.
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Fig. 1.5 Example of a 2D Convolution

detect. In order to understand what convolution is and how it works, an example is
here reported. Considering two matrices (called tensor in Pytorch), A for the image
and K for the kernel, both with dimensions 3×3 the convolution is given by:

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,K =

k11 k12 k13

k21 k22 k23

k31 k32 k33



(A∗K)i j =
3

∑
m=1

3

∑
n=1

ai+m−1, j+n−1km,n

1.5.1 Padding and Stride

In convolutional neural networks, padding and stride are fundamental parameters
that affect the spatial dimensions and computational characteristics of feature maps.
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Padding involves adding extra rows and columns of zeros around the input
matrix before performing convolution. This ensures that the spatial dimensions of
the output feature map are preserved. Mathematically, if I represents the input size
(width or height) and P denotes the amount of padding applied, the output size O of
the feature map after convolution can be expressed as:

O =

⌊
I +2P−F

S

⌋
+1

where F is the filter size and S is the stride. Zero-padding (padding with zeros) is
commonly used to maintain spatial dimensions and control the size of the output
feature map.

Fig. 1.6 Padding explained visually

Stride, on the other hand, determines the number of pixels the convolutional
filter moves across the input matrix in each step. A stride of S = 1 means the
filter moves one pixel at a time, resulting in overlapping receptive fields and higher
computational intensity. Conversely, larger stride values S > 1 cause the filter to skip
pixels, reducing the output size more quickly. The output size O can be computed
using the formula above.

1.6 Normalization Layers

Batch normalization (BN) is a widely used technique in deep neural network training,
introduced by Ioffe and Szegedy in 2015, to address the problem of internal covariate
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Fig. 1.7 Strides example with sw = 2 and sh = 3

shift. This phenomenon refers to the changes in the distribution of layer inputs during
training, which can slow convergence and reduce stability. By normalizing the inputs
of each layer to maintain consistent distributions, BN stabilizes and accelerates the
training process.

BN can be inserted immediately before or after the activation function. The
positioning of BN in relation to the activation function can influence the model’s
performance; typically, placing BN before non-linear activations like ReLU helps in
preserving the learned features’ distribution.

For each hidden layer, the mean value µB (Eq. 1.1) and the variance σ2
B (Eq. 1.3)

of the activation values on the batch are computed:

µB =
1
m

m

∑
i=1

xi (1.1)

Then the input is normalized as:

x̂i =
xi −µB√

σ2
B + ε

(1.2)

where

σ
2
B =

1
m

m

∑
i=1

(xi −µB)
2 (1.3)

The parameter ε is used to prevent division by zero if σB becomes null during the
training phase.
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Finally, the output of the layer is calculated using two trainable parameters (γ
and β ) to perform a linear transformation:

yi = γ x̂i +β (1.4)

In each step, the model calculates µB and σ2
B, and updates the trainable parameters

γ (scale) and β (bias) using gradient descent. These parameters restore the network’s
representational capacity after normalization, ensuring that BN does not limit the
network’s ability to learn complex patterns. During the evaluation phase, instead of
batch-specific statistics, the mean value and variance are computed using the running
averages accumulated during the training phase, allowing for consistent predictions
across varying batch sizes.

Fig. 1.8 Batch Norm explained visually
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1.7 Activation Layers

After the convolutional layer, an activation layer is typically applied. The primary
function of the activation layer is to introduce non-linearity into the network, which
is critical for enabling the network to model and learn complex patterns in the data.
The most commonly used activation function is the Rectified Linear Unit (ReLU),
defined as:

ReLU(x) = max(0,x)

Fig. 1.9 ReLU and ReLU6 activations

As shown in Figure 1.9, ReLU and ReLU6 are commonly used in deep neural
networks. ReLU is adopted because of its computational efficiency and its role in
overcoming the vanishing gradient problem, which was prevalent in earlier activation
functions like sigmoid and tanh. ReLU introduces non-linearity by outputting the
input value when it is positive, and zero otherwise, allowing the network to efficiently
propagate gradients during training. However, a potential drawback is the dying
ReLU problem, where neurons can become inactive and slow down learning.

ReLU6 is a variant of ReLU and limits the maximum output to 6. This mod-
ification can improve model stability in certain scenarios, such as low-precision
computing environments (e.g., mobile or embedded systems), by controlling the
range of activations and increasing computational efficiency.
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1.8 Pooling Layers

Pooling layers are integral components in convolutional neural networks, particularly
effective in managing large input images by reducing their dimensionality. By
downsampling the spatial dimensions of feature maps, pooling layers not only reduce
computational complexity but also help retain essential spatial hierarchies, which is
critical for learning robust features across varying scales. This reduction in spatial
dimensions also reduces the risk of overfitting by making the network less sensitive
to small shifts or biases in the input data.

Similar to convolutional layers, pooling layers are defined by a kernel with
specific parameters such as kernel size nK and stride s. However, unlike convolutional
layers, which use learnable filters, pooling layers act as sliding windows over the
feature map, aggregating values within the defined kernel region without introducing
new parameters.

Fig. 1.10 Example of a pooling layer applied to a 4x4 tensor. The result depends on the
chosen pooling method.

As illustrated in Figure 1.11, pooling layers reduce the size of the input tensor
by summarizing the values in each window. The two primary pooling techniques
are max pooling and average pooling. Max pooling selects the maximum value
within the kernel window, which helps the model focus on the most prominent
features. Max pooling is commonly used in practice because it emphasizes strong
activations and helps detect key spatial features. Average pooling, on the other
hand, computes the mean value of the elements within the window, resulting in a
smoothed representation of the features. This method can be advantageous when a
more generalized, less feature-specific summary is desired.
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1.9 Fully Connected Layers

In CNNs, the final layer typically consists of a fully connected layer responsible
for classification. Prior to this layer, the network processes input through convo-
lutional and pooling layers to extract hierarchical features. The output of the last
convolutional layer is a three-dimensional feature map. To prepare for classification,
this feature map is flattened into a one-dimensional vector, preserving extracted
features while discarding spatial relationships. The flattened vector is then fed into
the fully connected layer, which computes weighted sums of its inputs to generate
class predictions or scores. This layer’s architecture matches the number of classes,
enabling the network to output probabilities or scores for each class, facilitating
classification based on learned features.

Fig. 1.11 Fully Connected Artificial Neural Network



Chapter 2

AdderNet

2.1 Introduction

The rapid progress of neural networks over the recent years has led to significant
breakthroughs in different fields such as image recognition, natural language pro-
cessing, and autonomous driving. However, these developments come at the cost
of higher computational complexity and power consumption. This is particularly
the case of Convolutional Neural Networks where the convolution operations are
multiplication-intensive. AdderNet represents an innovative solution by substituting
these multiplications with additions, which are computationally less expensive [1].
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2.2 Adder Layers: Theory and Implementation

The core innovation in AdderNet is the adder layer, which replaces the traditional
convolution operation. Instead of computing the dot product between input features
and filters, the adder layer calculates the ℓ1 norm of their differences. Formally, for
an input feature map X and a filter W, the adder operation is defined as:

Yi, j,k =−
M

∑
m=1

N

∑
n=1

C

∑
c=1

∣∣Xi+m−1, j+n−1,c −Wm,n,c,k
∣∣+bk

where M and N are the height and width of the filter, C is the number of input
channels, k indexes the filter, and bk is the bias term.

2.3 Gradient Computation in AdderNets

The training of AdderNet involves backpropagation, where gradients must be com-
puted for weight updates. Given the loss function L, the gradient of the weights W
with respect to the loss can be derived using the chain rule. The gradient of the adder
operation can be expressed as:

∂L
∂Wm,n,c,k

= ∑
i, j

∂L
∂Yi, j,k

· sign(Xi+m−1, j+n−1,c −Wm,n,c,k)

where sign denotes the sign function. This gradient computation leverages the
absolute differences, allowing for efficient weight updates while maintaining the
simplicity of addition operations.

2.4 Adaptive Learning Rate in AdderNets

To enhance the training efficiency of AdderNet, an adaptive learning rate strategy
is employed. This strategy adjusts the learning rate based on the magnitude of the
gradients, ensuring stable convergence, using a cosine annealing schedule. Given an
initial learning rate ηmax, the learning rate ηt at epoch t is calculated as follows:
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ηt = ηmin +
1
2
(ηmax −ηmin)

(
1+ cos

(
tπ

Tmax

))
where:

• ηmin is the minimum learning rate.

• ηmax is the maximum learning rate (usually the initial learning rate).

• t is the current epoch.

• Tmax is the maximum number of epochs.

For the given scheduler:

ηt = 0.001+
1
2
(ηmax −0.001)

(
1+ cos

( tπ
400

))

2.5 Skip Connections in AdderNet

Skip connections, also known as residual connections, are crucial in AdderNet for
enabling efficient training of deep networks. These connections help in mitigating
the vanishing gradient problem by allowing gradients to flow directly through the
network layers.

In AdderNet, a residual block can be defined as:

Y = F (X,{Wi})+X

where X is the input to the residual block, F (X,{Wi}) represents the series of
adder layers within the block, and Y is the output. The addition of X ensures that
the gradients can bypass certain layers during backpropagation, thus enhancing the
training stability and efficiency.
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Fig. 2.1 Basic Blocks: comparison between CNN and AddNN

Fig. 2.2 ResNet20 Architecture

2.6 Comparisons with CNNs

Extensive experiments have been conducted to evaluate the performance of AdderNet
compared to traditional CNNs.

Metrics such as classification accuracy and loss are considered. Results demon-
strate that AdderNet achieves competitive accuracy with significantly reduced com-
putational costs. Table 2.1 summarizes the key performance differences.

Table 2.1 Comparison between CNN and AddNN on a ResNet20 with CIFAR-10 and CIFAR-
100

ResNet20 CIFAR-10 CIFAR-100

Accuracy (%) Loss Accuracy (%) Loss

CNN 92.3 0.28 68.4 1.35
AddNN 91.8 0.35 66.8 1.45

AdderNets do not inherently reduce the number of parameters or memory usage.
The main advantage of this approach is that, when batch normalization layers are
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Fig. 2.3 CNN Kernel Fig. 2.4 AdderNet Kernel

Fig. 2.5 CNN Kernel compared to AddNN Kernel

excluded, the model eliminates multiplications entirely. Although this may result in
a slight loss of accuracy, AdderNet provides a faster computational model.

Furthermore, unlike multiplication operations, the results of addition (or subtrac-
tion, in this context) do not require rescaling, as the weights, inputs, and outputs
typically remain within the same range. This characteristic not only conserves logic
resources but also contributes to a reduction in power consumption.

2.7 Hardware Implementation

It is important to recognize that modern GPUs are specifically optimized for con-
volution operations, particularly through dedicated modules that execute multiply-
accumulate operations. Consequently, AdderNet exhibits slower performance com-
pared to convolutional neural networks on such hardware, especially during the
training phase.

Nevertheless, GPUs are notably costly in terms of energy consumption, with
their power requirements far exceeding the capabilities of current mobile and edge
devices. By implementing an adder kernel on hardware that is capable of executing
additions more efficiently, such as FPGAs or ASICs, both the time and resource
usage can be significantly minimized compared to CNNs. The fundamental structure
of a convolutional kernel relies on a MAC unit, while the adder layer can utilize
either a comparator and an adder or two adders.

This architecture is organized into four key components: a data storage unit
along with an input/output port, a data path control module, structures for auxiliary
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operations (such as pooling and batch normalization), and a parallel kernel operation
core. The latter typically has the highest cost in terms of logic resources due to
the Single Instruction Multiple Data (SIMD) architecture characteristic of FPGAs.
Notably, with a data parallelism of 16 bits and 64 input channels aggregated in the
adder tree, AdderNet could potentially utilize 81.6% less logical resources and power
compared to convolutional networks [2].

However, the accurate energy benefit estimation of AdderNet still remains a chal-
lenge. The overhead associated with data transfer is a critical factor in implementing
the model on FPGAs, as the transfer of data from dynamic random-access memory
(DRAM) to computational resources represents the primary bottleneck in terms of
both energy consumption and time.

Fig. 2.6 Architecture of the universal AdderNet accelerator
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2.8 Applications and Future Work

AdderNet represents a significant advancement in neural network design by reducing
the computational cost associated with traditional CNNs.
By replacing multiplications with additions, AdderNet achieves lower power con-
sumption and faster inference times, making it suitable for deployment in resource-
constrained environments.

The promising results and potential for further optimization suggest that Adder-
Net could play a decisive role in the next generation of AI applications, particularly
in edge computing scenarios where power efficiency is crucial.

Future work involves exploring advanced quantization techniques, optimizing
the adder layer for different hardware platforms, and expanding the application scope
to include more complex tasks such as object detection and segmentation.



Chapter 3

Quantization-Aware Training using
Brevitas

The primary objective of this research project is to create an 8-bit fixed-point quan-
tized version of the AddNN ResNet20 network [A], while preserving its original
structure and features. In order to achieve this, the classes and functions from the
Brevitas library have been adopted as tools for quantization.

Brevitas [3] is a PyTorch library specifically designed for neural network quanti-
zation, providing extensive support for both post-training quantization (PTQ) and
quantization-aware training (QAT). It serves a diverse range of users and purposes.
Regarding the creation of quantized models, Brevitas facilitates two primary ap-
proaches:

• Creating a quantized model manually involves using Brevitas’ specialized
quantized layers found in the brevitas.nn module. This process may require
adjustments to an existing PyTorch model that was initially designed for
floating-point operations.

• Automated generation, on the other hand, involves inputting a floating-point
model, which allows Brevitas to automatically create a quantized model defi-
nition based on the criteria set by the user.

Once a quantized model is created through either of these methods, it can be
used for various applications:
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• PTQ (Post-Training Quantization): Starting from a pre-trained floating-point
model, the quantized model can undergo post-training quantization;

• QAT (Quantization Aware Training): The quantized model can be utilized for
training from scratch or fine-tuning, either independently or on a pre-trained
floating-point model;

• PTQ followed by QAT fine-tuning: This approach combines the strengths of
both post-training quantization and quantization-aware training for optimal
performance.

3.1 Quantization in Brevitas

The Brevitas library is built upon the PyTorch framework, enabling quantization of
standard PyTorch layers by providing them with quantized parameters. Considering
the following implementation of QuantConv2d, it is evident that the layer is built
up by inheriting the standard PyTorch Conv2d layer and instantiating a quantization
class called QuantWBIOL (QuantWeightBiasInputOutputLayer). This class receives
the input, bias, and weights of the Conv2d layer and returns their quantized ver-
sions, ensuring that the convolution performed by Conv2d operates with quantized
parameters.� �

1 import math

2 from typing import Optional, Tuple, Type, Union

3

4 import torch

5 from torch import Tensor

6 from torch.nn import Conv1d

7 from torch.nn import Conv2d

8 from torch.nn import functional as F

9

10 from brevitas.function.ops import max_int

11 from brevitas.function.ops_ste import ceil_ste

12 from brevitas.inject.defaults import

Int8WeightPerTensorFloat

13 from brevitas.quant_tensor import QuantTensor

14
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15 from .quant_layer import ActQuantType

16 from .quant_layer import BiasQuantType

17 from .quant_layer import QuantWeightBiasInputOutputLayer

as QuantWBIOL

18 from .quant_layer import WeightQuantType

19

20 __all__ = ['QuantConv1d', 'QuantConv2d']

21 [...]

22 class QuantConv2d(QuantWBIOL, Conv2d):

23

24 def __init__(

25 self,

26 in_channels: int,

27 out_channels: int,

28 kernel_size: Union[int, Tuple[int, int]],

29 stride: Union[int, Tuple[int, int]] = 1,

30 padding: Union[int, Tuple[int, int]] = 0,

31 dilation: Union[int, Tuple[int, int]] = 1,

32 groups: int = 1,

33 padding_mode: str = 'zeros',

34 bias: Optional[bool] = True,

35 weight_quant: Optional[WeightQuantType] =

Int8WeightPerTensorFloat,

36 bias_quant: Optional[BiasQuantType] = None,

37 input_quant: Optional[ActQuantType] = None,

38 output_quant: Optional[ActQuantType] = None,

39 return_quant_tensor: bool = False,

40 device: Optional[torch.device] = None,

41 dtype: Optional[torch.dtype] = None,

42 **kwargs) -> None:

43 # avoid an init error in the super class by

setting padding to 0

44 if padding_mode == 'zeros' and padding == 'same'

and stride > 1:

45 padding = 0

46 is_same_padded_strided = True

47 else:

48 is_same_padded_strided = False
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49 Conv2d.__init__(

50 self,

51 in_channels=in_channels,

52 out_channels=out_channels,

53 kernel_size=kernel_size,

54 stride=stride,

55 padding=padding,

56 padding_mode=padding_mode,

57 dilation=dilation,

58 groups=groups,

59 bias=bias,

60 device=device,

61 dtype=dtype)

62 QuantWBIOL.__init__(

63 self,

64 weight_quant=weight_quant,

65 bias_quant=bias_quant,

66 input_quant=input_quant,

67 output_quant=output_quant,

68 return_quant_tensor=return_quant_tensor,

69 **kwargs)

70 self.is_same_padded_strided =

is_same_padded_strided

71 [...]
 	
Listing 3.1 Brevitas implementation of QuantConv2d

Brevitas already provides several quantizers (located in the brevitas.quant folder
in [4]), each of which is widely configurable by the user according to their re-
quirements. Each quantizer is characterized by different parameters that define its
functionality; the main ones are:

• Quant Type: The type of quantization implemented for the parameter. The
most commonly used types are:

– QuantType.INT: Integer quantization implemented by the IntQuant()
module. Given an input tensor, IntQuant() performs scaled, shifted,
uniform integer quantization based on the parameters scale, zero-point,
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and bit-width, which are provided as arguments. It returns the quantized
tensor in a de-quantized format.

– QuantType.BINARY: Binary quantization implemented by the Bina-
ryQuant() module. It returns the quantized output in the de-quantized
format, along with the scale, zero-point, and bit width, which is 1 in this
case,

– QuantType.TERNARY: Ternary quantization implemented by the
TernaryQuant() module. Given an input tensor, it returns its quantized
output in de-quantized format, with scale, zero-point, and bit width,
which is always 2 in this case.

• Bit Width: The number of bits used to quantize the original parameter.

• Narrow Range: A boolean parameter that, if set to True, implements the value
in a range from (−2N−1+1) to (2N −1), instead of −2N−1 to (2N −1), where
N corresponds to the bit width. For instance, if N=8 and narrow range=True,
the quantized value will range from -127 to 127 instead of -128 to 127; this
enhances hardware inference efficiency.

• Signed: If set to True, the quantized value can be both positive and negative.

In the specific case of the QuantConv2d layer, it is used by default the Int8Weight-
PerTensorFloat quantizer for the weights parameter. As reported in [4], this is an
"8-bit narrow per-tensor signed integer weight quantizer with a floating-point scale
factor computed from backpropagated statistics of the weight tensor," meaning the
convolution kernel weights are quantized to 8 bits in a range from -127 to 127, with
a floating-point scale factor.

The formula used by Int8WeightPerTensorFloat to compute the scale is:

scale =
th

int th

where th is the threshold defined as the maximum absolute value in an input tensor
X :

th = max
i, j=1,...,dim(X)

{|xi, j|}
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and int th is the integer threshold given by:

int th =

2N−1 −1 if signed=True

2N −1 if signed=False

The quantization is then performed by dividing the floating-point value by the scale
factor:

IntW =
FPW
scale

Considering the following numerical example, where quantization is performed
on 8 bits with signed=True, the steps are:

FPW =

 6.789 2.310 7.938
−4.567 1.234 0.876
−2.345 5.678 −6.789



th = max |FPWi j|= 7.938

int th = 2N−1 −1 = 28−1 −1 = 127

scale =
th

int th
=

7.938
127

= 0.0625

To compute the quantized weight:

IntW =
FPW
scale

≈

109 37 127
−73 20 14
−38 91 −109


It is important to note that during network training, both the quantized parameters

and scales are recalculated each time the optimizer updates the original non-quantized
parameters (FPW in the example). Also, it is crucial to highlight that the convolution
is not performed between the input and the integer representation of the weight, but
with the quantized weight in the de-quantized format. The quantizer, given the scale,
zero point, bit width, and input tensor X , computes its integer representation yint, but
then returns the quantized parameter in the de-quantized float representation. Thus,
during training, the quantized layers’ operations are performed among floating-point
values.
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The de-quantized format of the weights is given by:

DeQuantW = IntW · scale

which in this specific case is:

DeQuantW= IntW·scale=

109 37 127
−73 20 14
−38 91 −109

·0.0625=

 6.789 2.310 7.938
−4.567 1.234 0.876
−2.345 5.678 −6.789


When inferring the network on FPGA, the weights are exported and stored in the

integer quantized format, and to maintain the same accuracy as during training, the
output feature map (FM) will be multiplied by the scale factor, since:

InputFM∗DeQuantW = InputFM∗ IntW · scale

A similar layer construction is adopted for other Brevitas layers. The following
table outlines several quantized layers and their corresponding unquantized PyTorch
equivalents.

PyTorch Layer Brevitas Layer
Convolutional Layers

nn.Conv1d QuantConv1d
nn.Conv2d QuantConv2d

nn.ConvTranspose1d QuantConvTranspose1d
nn.ConvTranspose2d QuantConvTranspose2d

Pooling Layers
nn.MaxPool1d QuantMaxPool1d
nn.MaxPool2d QuantMaxPool2d
nn.AvgPool2d QuantAvgPool2d

nn.AdaptiveAvgPool2d QuantAdaptiveAvgPool2d
Non-linear Activations

nn.Hardtanh QuantHardTanh
nn.ReLU QuantRelu

nn.Sigmoid QuantSigmoid
nn.Tanh QuantTanh

Dropout Layers
nn.Dropout QuantDropout

Table 3.1 Mapping of main PyTorch layers to available Brevitas layers
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3.1.1 Quantization Classes

Brevitas provides various quantization classes, which are tailored for different aspects
of neural networks. These include Int8WeightPerTensorFixedPoint for weight quan-
tization and Int8ActPerTensorFixedPoint for activation quantization, each offering
specific benefits in terms of precision and computational efficiency.

3.1.2 Quantizers

In a broad context, a quantizer refers to any implementation of a quantization
technique. Brevitas offers flexibility in employing various quantization methods.
To be compliant with Brevitas documentation, a quantizer is a subclass of brevi-
tas.inject.ExtendedInjector that contains a tensor_quant attribute. This attribute
refers to an instance of a torch.Module responsible for managing quantization.
Quantizers in Brevitas define the process of converting floating-point numbers into
fixed-point integers suitable for deployment on hardware accelerators. They aim
to minimize loss in model accuracy while optimizing the efficiency of hardware
utilization.

3.1.3 Quantization Function

The quantization function in Brevitas integrates smoothly into the forward pass of the
neural network, applying quantization to weights, activations, and biases according
to what has been defined by the user. This functionality is crucial for maintaining
model performance across different quantization schemes.

3.1.4 Model Optimization

Quantization-aware optimization techniques in Brevitas, such as the integration of
quantized layers and functions, contribute to minimizing computational overhead
and memory usage without compromising model accuracy. This optimization is
particularly beneficial for resource-constrained deployment scenarios.
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3.1.5 Deployment Support

Brevitas supports deployment on various platforms and accelerators by ensuring
compatibility with ONNX, an open format for AI models. This support enables the
integration into existing software ecosystems and facilitate an efficient execution on
hardware.

3.2 AddNN ResNet20 Quantization using Brevitas

The chosen strategy includes an initial step involving the creation of a custom
layer tailored for the quantized version of the adder2d, which is currently un-
available in the Brevitas library. Regarding the existing Brevitas quantized lay-
ers [4], they have been substituted for the unquantized counterparts, as needed,
with the main exception of the nn.BatchNorm2d quantized alternative, named
BatchNorm2dToQuantScaleBias.
This exception is made to ensure the integrity and convergence of the neural network
during training. Presented below is the code for the final quantized network, AdNN
QuantResNet20.

3.2.1 AddNN QuantResNet20 Code

As evident from the provided code, the chosen quantization method utilizes the
Int8WeightPerTensorFixedPoint quantizer for weights and Int8ActPerTensorFixedPoint
for input and output activations. The former, as described in [4], is an "8-bit narrow
per-tensor signed fixed-point weight quantizer with the radix point computed from
backpropagated statistics of the weight tensor."

Meanwhile, the latter is defined as an "8-bit per-tensor signed int activations
fixed-point quantizer with learned radix point initialized from runtime statistics." The
quantized model of AddNN ResNet20, named QuantResNet20, has been developed
with the following code:
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� �
1 import torch

2 import torch.nn as nn

3 import brevitas

4 import brevitas.nn as qnn

5 from QuantAdd2d import QuantAdd2d

6 from brevitas.quant import Int8WeightPerTensorFixedPoint

7 from brevitas.quant import Uint8ActPerTensorFixedPoint

8 from brevitas.quant import Int8ActPerTensorFixedPoint

9

10

11 def conv3x3(in_planes, out_planes, stride=1):

12 " 3x3 convolution with padding "

13 return QuantAdd2d(in_planes, out_planes, kernel_size

=3, stride=stride, padding=1, bias=False)

14

15 class BasicBlock(nn.Module):

16 expansion=1

17

18 def __init__(self, inplanes, planes, stride=1,

downsample=None):

19 super(BasicBlock, self).__init__()

20 self.conv1 = conv3x3(inplanes, planes, stride =

stride)

21 self.bn1 = nn.BatchNorm2d(planes)

22 self.relu = qnn.QuantReLU(bit_width=8, act_quant

=Uint8ActPerTensorFixedPoint, input_quant=

Uint8ActPerTensorFixedPoint,

return_quant_tensor=True)

23 self.conv2 = conv3x3(planes, planes)

24 self.bn2 = nn.BatchNorm2d(planes)

25 self.downsample = downsample

26 self.stride = stride

27 self.input_quant = qnn.QuantIdentity(

28 act_quant=Int8ActPerTensorFixedPoint

29 )

30

31 def forward(self, x):
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32 residual = x

33

34 out = self.conv1(x)

35 out = self.bn1(out)

36 out = self.relu(out)

37

38 out = self.conv2(out)

39 out = self.bn2(out)

40 out = self.input_quant(out)

41

42 if self.downsample is not None:

43 residual = self.downsample(x)

44

45 residual = self.input_quant(residual)

46

47 out += residual

48 out = self.relu(out)

49

50 return out

51

52

53 class ResNet(nn.Module):

54

55 def __init__(self, block, layers, num_classes=10):

56 super(ResNet, self).__init__()

57 self.inplanes = 16

58 self.conv1 = qnn.QuantConv2d(3, 16, kernel_size

=3, stride=1, padding=1, bias=False,

weight_quant=Int8WeightPerTensorFixedPoint,

59 input_quant=Int8ActPerTensorFixedPoint,

60 output_quant=Int8ActPerTensorFixedPoint)

61 self.bn1 = nn.BatchNorm2d(16)

62 self.relu = qnn.QuantReLU(bit_width=8, act_quant

=Uint8ActPerTensorFixedPoint, input_quant=

Uint8ActPerTensorFixedPoint,

return_quant_tensor=True)

63 self.layer1 = self._make_layer(block, 16, layers

[0])
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64 self.layer2 = self._make_layer(block, 32, layers

[1], stride=2)

65 self.layer3 = self._make_layer(block, 64, layers

[2], stride=2)

66 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

67 self.fc = qnn.QuantConv2d(64 * block.expansion,

num_classes, 1, bias=False, weight_quant=

Int8WeightPerTensorFixedPoint,

68 input_quant=Int8ActPerTensorFixedPoint,

69 output_quant=Int8ActPerTensorFixedPoint)

70 self.bn2 = nn.BatchNorm2d(num_classes)

71

72 for m in self.modules():

73 if isinstance(m, nn.BatchNorm2d):

74 m.weight.data.fill_(1)

75 m.bias.data.zero_()

76

77 def _make_layer(self, block, planes, blocks, stride

=1):

78 downsample = None

79 if stride != 1 or self.inplanes != planes *

block.expansion:

80 downsample = nn.Sequential(

81 QuantAdd2d(self.inplanes, planes * block

.expansion, kernel_size=1, stride=

stride, bias=False),

82 nn.BatchNorm2d(planes * block.expansion)

83 )

84

85 layers = []

86 layers.append(block(inplanes = self.inplanes,

planes = planes, stride = stride, downsample

= downsample))

87

88 if stride != 1:

89 input_quant = qnn.QuantIdentity(act_quant=

Int8ActPerTensorFixedPoint)

90 layers.append(input_quant)
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91

92 self.inplanes = planes * block.expansion

93 for _ in range(1, blocks):

94 layers.append(block(inplanes = self.inplanes

, planes = planes))

95

96 return nn.Sequential(*layers)

97

98 def forward(self, x):

99

100 x = self.conv1(x)

101 x = self.bn1(x)

102 x = self.relu(x)

103

104 x = self.layer1(x)

105 x = self.layer2(x)

106 x = self.layer3(x)

107

108 x = self.avgpool(x)

109 x = self.fc(x)

110 x = self.bn2(x)

111

112 return x

113

114

115 def resnet20(**kwargs):

116 return ResNet(BasicBlock, [3, 3, 3], **kwargs)
 	
Listing 3.2 Python Code for QuantAddResNet20

As highlighted by the code, the standard PyTorch layers such as Conv2d and ReLU
have been substituted with their Brevitas counterparts. However, the BatchNorm2d
layer from PyTorch has been retained for reasons delineated in Section 3.2.5, while
the Global AvgPool AdaptiveAvgPool2d (used instead of the classical Avg-
Pool2d of the CNN ResNet20) has been left unchanged, since there is no need to
quantize its values. Furthermore, the activation function has been quantized to 8 bits.
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Specifically, the QuantReLU layer operates similarly to the conventional ReLU
layer, with the primary distinction that its output is quantized to 8 bits.

3.2.2 Quantization of adder2d in Brevitas

The development of a quantized adder2d layer has sparked numerous experiments,
commencing with the creation of a bespoke QuantAdd2d akin to QuantConv2d.
Regrettably, neither the compiler during the initial training phase nor subsequent
export functions could recognize this product. This is likely due to the inherent limi-
tation of the built-in class QuantWeightBiasInputOut putLayer, commonly referred
to as QuantWBIOL, which is designed to operate exclusively on layers native to the
PyTorch library.
To address this significant obstacle, the selected approach involved extending the
original adder2d [B] class definition to incorporate novel functionalities for the
quantization of weights, biases, input, and output activations.
Below is the code excerpt for the finalized QuantAdd2d.

3.2.3 QuantAdd2d Code� �
1

2 import torch

3 import torch.nn as nn

4 import numpy as np

5 from torch.autograd import Function

6 import math

7 import brevitas.nn as qnn

8 from brevitas.quant import Int8WeightPerTensorFixedPoint

9 from brevitas.quant import Int8ActPerTensorFixedPoint

10

11 def adder2d_function(X, W, stride=1, padding=0):

12 n_filters, d_filter, h_filter, w_filter = W.size()

13 n_x, d_x, h_x, w_x = X.size()

14

15 h_out = (h_x - h_filter + 2 * padding) / stride + 1

16 w_out = (w_x - w_filter + 2 * padding) / stride + 1

17
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18 h_out, w_out = int(h_out), int(w_out)

19

20 X_col = torch.nn.functional.unfold(X.view(1, -1, h_x

, w_x), int(h_filter), dilation=1, padding=

padding, stride=stride).view(n_x, -1, h_out*w_out

)

21 X_col = X_col.permute(1,2,0).contiguous().view(X_col

.size(1),-1)

22 W_col = W.view(n_filters, -1)

23

24 out = adder.apply(W_col,X_col)

25

26 out = out.view(n_filters , h_out, w_out, n_x)

27 out = out.permute(3, 0, 1, 2).contiguous()

28

29 return out

30

31

32 class adder(Function):

33 @staticmethod

34 def forward(ctx, W_col, X_col):

35 ctx.save_for_backward(W_col,X_col)

36 output = -(W_col.unsqueeze(2)-X_col.unsqueeze(0)

).abs().sum(1)

37 return output

38

39 @staticmethod

40 def backward(ctx,grad_output):

41 W_col,X_col = ctx.saved_tensors

42 grad_W_col = ((X_col.unsqueeze(0)-W_col.

unsqueeze(2))*grad_output.unsqueeze(1)).sum

(2)

43 grad_W_col = grad_W_col/grad_W_col.norm(p=2).

clamp(min=1e-12)*math.sqrt(W_col.size(1)*
W_col.size(0))/5

44 grad_X_col = (-(X_col.unsqueeze(0)-W_col.

unsqueeze(2)).clamp(-1,1)*grad_output.

unsqueeze(1)).sum(0)
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45

46 return grad_W_col, grad_X_col

47

48 class QuantAdd2d(nn.Module):

49 def __init__(self, input_channel, output_channel,

kernel_size, stride=1, padding=0, bias=False):

50 super(QuantAdd2d, self).__init__()

51 self.stride = stride

52 self.padding = padding

53 self.input_channel = input_channel

54 self.output_channel = output_channel

55 self.kernel_size = kernel_size

56 self.adder = torch.nn.Parameter(nn.init.normal_(

torch.randn(output_channel, input_channel,

kernel_size, kernel_size)))

57 self.bias = bias

58 if bias:

59 self.b = torch.nn.Parameter(nn.init.uniform_

(torch.zeros(output_channel)))

60

61

62 self.adder_quant = qnn.QuantIdentity(

63 weight_quant=Int8WeightPerTensorFixedPoint,

64 act_quant=Int8ActPerTensorFixedPoint

65

66 )

67

68 self.input_quant = qnn.QuantIdentity(

69 act_quant=Int8ActPerTensorFixedPoint

70 )

71

72 self.output_quant = qnn.QuantIdentity(

73 act_quant=Int8ActPerTensorFixedPoint

74 )

75

76 def forward(self, x):

77 x_quant = self.input_quant(x)
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78 adder_quant_output = self.adder_quant(self.adder

)

79

80 output = adder2d_function(x_quant,

adder_quant_output, self.stride, self.padding

)

81

82 if self.bias:

83 output += self.b.unsqueeze(0).unsqueeze(2).

unsqueeze(3)

84

85 output_q = self.output_quant(output)

86

87 return output_q
 	
Listing 3.3 Python Code for QuantAdd2d Layer

The given code demonstrates the implementation of the custom adder2d layer,
leveraging both PyTorch and Brevitas libraries to facilitate quantization. The primary
function, adder2d_function, defines the forward pass of the adder layer, calculating
the output dimensions based on input dimensions, filter size, stride, and padding. It
utilizes PyTorch’s unfold function to convert the input tensor into column format for
efficient matrix multiplication with the weight tensor, followed by a custom adder
function to perform element-wise addition and subsequent operations. The adder
class inherits from torch.autograd.Function to enable the implementation of both
forward and backward passes. In the forward pass, the method computes the output
as the sum of absolute differences between input and weights, whereas the backward
pass calculates the gradients with respect to the input and weight tensors, ensuring
gradient flow during backpropagation.

The QuantAdd2d class, derived from nn.Module, integrates quantization into the
custom adder layer. The constructor initializes various parameters, including stride,
padding, input and output channels, kernel size, and an optional bias.
It also defines the quantization operations using Brevitas’ QuantIdentity with
Int8WeightPerTensorFixedPoint and Int8ActPerTensorFixedPoint quantizers for both
weights and activations. During the forward pass, the input tensor is first quantized,
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followed by quantization of the adder parameters. The custom adder2d_function
then computes the output, which is subsequently quantized before being returned.

3.2.4 Training process and results

The training process of the quantized AdderNet on ResNet20 involved rigorous
optimization experiments over 500 epochs to achieve the best performance. Initial
configurations using the SGD optimizer faced significant issues, such as loss function
and gradient explosions, which impeded effective training. Similarly, using the Adam
optimizer with the CyclicCosAnnealingLR scheduler resulted in early model stalling,
indicating that this learning rate schedule was not conducive to stable training. The
combination of AdamW optimizer with a StepLR scheduler also proved challenging
due to an unstable loss function.

Subsequent tests with the Adam optimizer and ReduceLROnPlateau scheduler
produced an accuracy of 57% accuracy, indicating insufficient improvement with
adaptive learning rate adjustments. Additionally, using the Adam optimizer with a
lower learning rate of 0.001 and the CosineAnnealingLR scheduler resulted in an
accuracy of 81%. The Adam optimizer with the CyclicLR scheduler achieved an
accuracy of 82%, suggesting that cyclical learning rate adjustments were not optimal
for this model.

The final training process for the quantized AdderNet on ResNet20 utilized this
optimal configuration with the Adam optimizer and cosine annealing scheduler.
Despite applying dataset augmentation techniques during preprocessing to enhance
robustness, these did not lead to significant performance gains. The final training
regimen, which involved gradually decreasing the learning rate from 0.01 to 0.001
over 500 epochs, achieved an accuracy of 86.61%, compared to the base architec-
ture’s accuracy of 91.4%. This result underscores the AdderNet’s ability to balance
computational efficiency with competitive accuracy, highlighting its potential for
deployment in resource-constrained environments.
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Fig. 3.1 Training result: Accuracy

Fig. 3.2 Training result: Loss
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3.2.5 Quantization of BatchNorm2d in Brevitas

Batch normalization (BN) fusion offers a practical solution for implementing resource-
efficient CNN accelerators without adding hardware overhead. During inference, the
running mean and variance parameters of BN layers are fixed and can be realized
using 1 × 1 convolutions. These fixed BN layers can be fused with the preceding
convolutional layers, further reducing hardware and runtime costs. Subsequently,
post-training quantization can be applied to the fused weight parameters to minimize
hardware expenses, with negligible loss in inference accuracy. However, BN fusion
is unsuitable for AdderNet due to the incompatibility between the Sum of Absolute
Difference operation in AdderNet and the 1 × 1 convolution operation in the fixed
BN layer.

To prevent excessive consumption of DSPs in subsequent hardware implemen-
tations, it is necessary to quantize the Batch Normalization (BN) layers. However,
given that Brevitas is a relatively new research tool, the provided quantized version,
BatchNorm2dToQuantScaleBias, has been widely reported to exhibit malfunction-
ing behavior. This issue was corroborated by the undersigned, as the introduction
of this version caused the model to lose all prediction accuracy drastically. Conse-
quently, alternative approaches were considered, including the PyTorch quantization
library and the onnxruntime quantization tools. However, it was found that the
PyTorch library currently does not support the quantization of BatchNorm2d either
statically or dynamically, and the same limitation applies to the onnxruntime.

Drawing from the insights provided in [5], in response to the pivotal challenge
at hand, a strategic adaptation has been undertaken. Specifically, all BatchNorm2d
layers, with the notable exception of the initial and terminal ones, which can be
still merged in their previous Conv2d layers respectively, have been substituted with
Conv2d depthwise counterparts, realized through 1x1 convolutions. The replace-
ments have been done respecting the relation among the two different kind of layers’
parameters. Notice that child is the label of the original BatchNorm2d layer, while
conv1x1 is the new Conv2d layer’s label.

scale =
child.weight√

child.running_var+ child.eps
(3.1)

weight_tensor = scale.view(num_features,1,1,1) (3.2)
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conv1x1.weight.copy_(weight_tensor) (3.3)

bias_tensor = child.bias− scale× child.running_mean (3.4)

conv1x1.bias.copy_(bias_tensor) (3.5)

Following this manipulation, the revised model underwent evaluation to make
sure that no performance degradation occurred, compared to its predecessor. Notably,
the prediction accuracy remained unchanged, affirming the logical equivalence
between the model before and after the substitution was carried out.
Having circumvented the BN quantization challenge, different alternatives for the
quantization of the newly inserted Conv2d layers have been explored. Regrettably,
neither the PyTorch nor the ONNX Runtime libraries currently offer support for
quantizing Conv2d depthwise layers. Consequently, Brevitas emerges as the primary
solution once more. Nevertheless, distinguishing itself from the aforementioned
implementations, a per-channel quantization strategy has been adopted for the layers’
weights, while input, output activations, and bias persist in being quantized via a
per-tensor approach.
This decision stems from the observation that varying numbers of input/output
channel groups can result in weights exhibiting high variances across groups. Such
discrepancies can lead to a significant reduction in accuracy when employing a per-
tensor quantization approach for weights. In contrast, the selected strategy mitigates
this issue, thereby preserving the final model performance. However, this comes
at the expense of slightly increased memory usage due to the larger number of
parameters that need to be stored.

In consideration of resource optimization, a conventional batch normalization
layer has been adopted for future steps despite the potential advantages of the pro-
posed Conv2D quantized per-channel approach. This decision stems from concerns
over the operational efficiency of DSP slices, where the adoption of the depthwise
Conv2d quantized per-channel strategy could lead to an increase in floating-point
operations (Float8), potentially offsetting the resource savings achieved through
quantization of the AdderNet. This cautious approach aims to balance the preserva-
tion of model performance with the efficient utilization of FPGA resources. While
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the per-channel quantization strategy offers benefits in mitigating weight variances
across input/output channel groups, its implementation would necessitate careful
management to avoid excessive resource consumption and maintain the overall effi-
ciency of the FPGA-based system. In summary, due to considerations of trade-offs,
it has been determined that Float32 BN is likely to be the most significant bottleneck
in the design.



Chapter 4

ONNX

ONNX can be compared to a programming language specialized in mathematical
functions. It defines all the necessary operations a machine learning model needs
to implement its inference function with this language. ONNX aims at providing
a common language any machine learning framework can use to describe its mod-
els. The first scenario is to make it easier to deploy a machine learning model in
production. An ONNX interpreter (or runtime) can be specifically implemented and
optimized for this task in the environment where it is deployed. With ONNX, it is
possible to build a unique process to deploy a model in production and independent
from the learning framework used to build the model .onnx implements a python
runtime that can be used to evaluate ONNX models and to evaluate ONNX operators.

4.1 Model Exportation in ONNX

The transformation of the quantized ResNet20 model into an ONNX representation
is essential for deploying and performing inference on hardware accelerators.
Python code is presented for exporting a quantized ResNet20 model to the ONNX
format. The QuantResNet20 model is instantiated and loaded with weights from
the trained model checkpoint using PyTorch. Subsequently, the model is set to
evaluation mode and an ONNX export path is specified. To facilitate the export, a
dummy input tensor is generated to define the input shape required by the model (1,
3, 32, 32).
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� �
1

2 import os

3 import torch

4 from brevitas.export import export_onnx_qcdq

5 from QuantResNet20 import resnet20

6

7 # Best Accuracy-Checkpoint's Path

8 checkpoint_path = './output/checkpoint.pth'

9

10 # Loading of QuantResNet20 Model

11 net = resnet20().cuda()

12

13 # Loading of the Best Accuracy-Checkpoint's Weights

14 checkpoint = torch.load(checkpoint_path)

15 net.load_state_dict(checkpoint['model_state_dict'])

16

17 # Exporting the ONNX model

18 net.eval() # Model has to be set in evaluation model

19 export_onnx_path = "./output/QuantResNet20.onnx" # Path

of the exported ONNX file

20 input_shape = (1, 3, 32, 32) # Shape of the inputs

required by the proposed model

21 dummy_input = torch.randn(input_shape, device='cuda')

# Random input for the model to be exported

22 export_onnx_qcdq(net, dummy_input, export_path=

export_onnx_path, opset_version=13) # Final export

instruction
 	
Listing 4.1 Python Code for Exportation

4.2 ONNX Model Visualization

To visualize the exported ONNX model, Netron has been utilized.
Netron is a neural network, deep learning and machine learning models visualization
tool developed basing on the Electron platform [6].
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It supports the visualization of many mainstream AI framework models and supports
multiple platforms (such as Mac, Windows, and Linux).

Given that the adder2d layer is not part of the original PyTorch library, there is
currently no corresponding operator in the ONNX standard. This presents a potential
obstacle when moving towards the inference stage. However, all the individual
operations comprising the layer are recognized as standard operators by ONNX.
Therefore, the adopted approach involves replacing all the subgraphs related to the
adder2d layers with custom nodes. For simplicity, these custom nodes must align
with the attributes of the standard conv2d operator, as illustrated in Figures 4.1 and
4.2.

To implement this solution, the replacement functions provided by the onnx−
graphsurgeon tool [7] have been adapted and utilized. Initially, some placeholder
Clip nodes were used to substitute the relevant subgraphs, after which the necessary
attributes were assigned to it by defining the new custom node, adder2d. This
custom node’s features are now configurable according to specific requirements.

Fig. 4.1 Standard Node for Conv2d
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Fig. 4.2 Custom Node for adder2d

4.3 QONNX

Quantized ONNX (QONNX) introduces three novel custom operators—Quant, Bipo-
larQuant, and Trunc—to facilitate arbitrary-precision uniform quantization within
the ONNX framework. These operators empower the representation of diverse
quantization schemes, encompassing binary, ternary, 3-bit, 4-bit, 6-bit, or any other
specified precision levels.
Quantization seamlessly integrates into the neural network model, applicable across
parameters or layer inputs.
QONNX offers extensive flexibility in selecting scaling factors and zero-point granu-
larity, essential for optimizing model performance and enhancing accuracy.
It is notable that quantized values adhere to standard floating-point datatypes, en-
suring alignment with ONNX protobuf specifications. As a result, QONNX signifi-
cantly enhances the capabilities of ONNX models, enabling efficient deployment on
resource-constrained platforms while maintaining robust interoperability.
Upon availability of the ONNX model, the corresponding QONNX version can be
exported using the following commands:� �

1 qonnx-cleanup ${ONNX_FILE}_bnfuse.onnx --out-file=${

ONNX_FILE}_clean.onnx

2 qonnx-convert ${ONNX_FILE}_clean.onnx --output-style

quant --output-file=${ONNX_FILE}_clean_quant.onnx
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In the following pictures the major nodes of AddNN basic block are shown in
their QONNX graph representation, visualized on Netron. It is also evident the
aforementioned skip connection.

Fig. 4.3 Detail of the first convolutional layer Conv0
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Fig. 4.4 Detail of the first adder2d layer
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Fig. 4.5 Detail of the second adder2d layer
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Fig. 4.6 Detail of the first Add operation node



Chapter 5

Integer Quantized AdderNet
Implementation

5.1 NN2FPGA Framework

NN2FPGA is a framework developed within the Microelectronics Research Group
at the Politecnico di Torino’s Department of Electronics and Telecommunications.
It is designed to generate quantized convolutional neural network accelerators in
C++ for AMD FPGAs. The primary objective of this project is to provide a reliable
tool that targets embedded FPGAs while maintaining state-of-the-art performance
metrics. This framework supports ResNet-like models and includes optimizations
for skip connections. Additionally, it ensures optimal resource allocation using the
Binary Integer Programming (BIP) algorithm. A notable feature of the project is its
commitment to open science, as it is fully open-source and released under the MIT
license.

5.2 High-Level-Synthesis

High-Level Synthesis (HLS) is an Electronic Design Automation technique that
aims to translate an algorithm description in a high-level software programming
language, such as C and C++, into a HDL description. HLS allows for the design of
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more complex systems in less time than HDL design, and facilitates the co-design of
hardware and software, although it does so at the cost of limited low-level control.

5.3 Vitis HLS

Vitis HLS (High-Level Synthesis) [8] is a design tool developed by Xilinx that
facilitates the conversion of high-level programming languages, such as C and C++,
into hardware description language (HDL). This tool abstracts the complexities asso-
ciated with HDL coding, enabling efficient implementation of hardware algorithms.
Vitis HLS allows for the use of pragmas to guide the synthesis process, optimizing
hardware design for performance, area, or power consumption. A critical feature of
Vitis HLS is its support for streaming data between processes, essential for designing
high-throughput, low-latency systems. Streams in Vitis HLS ensure efficient data
transfer between different blocks of the hardware design, preventing bottlenecks and
maintaining smooth data flow.

Fig. 5.1 Vitis HLS Diagram
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5.3.1 Workflow

The typical HLS workflow is comprised of the following stages:

1. The implementation of the software (SW) is performed at the top-level entity,
which is a C function. The function arguments are the entity ports, and the
functionality is implemented in the SW. In order to guarantee synthesizability,
certain constraints must be respected.

2. The verification of the software can be conducted by developing the testbench
as a simple main function that calls the top-level entity function. Consequently,
the functionality can be verified in a manner analogous to that of any SW,
with the potential to utilise traditional tools, for instance debuggers and print
statements.

3. Hardware synthesis: the synthesizer generates a register-transfer level (RTL)
description of the top-level entity. It is possible to generate different architec-
tures by setting up some parameters through dedicated directives.

4. Hardware verification: the RTL description is simulated to ensure that the
software and hardware outputs are in alignment.

Fig. 5.2 Vitis HLS - Project Composition
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Fig. 5.3 Vitis HLS - Workflow

5.4 Framework and Reproduced CNN ResNet20

The framework used for reproducing the convolutional neural network ResNet20
is fundamental for this resarch. ResNet20, a variant of the Residual Network, is
designed for deep learning tasks, particularly image classification. Reproducing
ResNet20 involves implementing its architecture, including convolutional layers,
batch normalization, and residual connections, using a high-level framework such as
PyTorch. Accurate reproduction of ResNet20 is essential to ensure that subsequent
modifications and experiments are based on a reliable and well-understood model.
This framework allows for easy manipulation and extension of the network, facilitat-
ing the integration of novel components and exploration of new ideas, such as the
transition to AdderNet.

5.5 AdderNet Accelerator

This thesis contributes to the adaptation of the convolutional ResNet20 generated by
the framework to implement the proposed quantized AdderNet. The primary steps,
starting from a CNN ResNet20 generated by the aforementioned Framework, involve
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deactivating the ReLU function, removing intermediate Add operators, and inserting
a newly defined batch normalization function after each convolutional layer through
appropriate modifications. These changes are necessary because BatchNorm2d
layers cannot be merged with the adder2d ones, unlike in traditional CNNs, and
consequently, neither can ReLU layers. The three main types of transformations
performed are as follows:

• Deactivation of ReLU Functions: The ReLU activation functions are deac-
tivated in the convolutional nodes in order to remove their influence on the
overall network.

• Removal of Intermediate Add Layers: The provided intermediate Add nodes
have been removed by deactivating the proper parameters in the convolutional
nodes, to fit the final AdderNet architecture for which a tailored Add function
has been implemented.

• Insertion of Batch Normalization: A custom Batch Normalization function
is introduced after each convolutional layer to ensure network stability and
performance. Two versions of the normalization layer have been developed:
the first, realbn, is designed for standard cases where the scale factor applied
to the data (after a convolutional layer) is less than or equal to 1.
This often occurs when a DeQuant node is applied after the adder2d layer
to convert fixed-point values back to floating-point for further processing.
In this scenario, the scaling is minimal, so the regular batch normalization
operation can be applied directly; the latter, realbn_scaled, is tailored for
situations where the scaling factor exceeds 1. This can happen due to the
limitations of fixed-point arithmetic in hardware. Vitis HLS is not able to
handle such scenarios efficiently, so this function includes additional steps to
handle fixed-point scaling before applying batch normalization.

The implementation of the new functions for the three explicit nodes is detailed
in the codes below.� �

1 template<typename T>

2 T relu(T& input) {

3 T output = input;

4 output = (input > 0) ? input : typename std::

remove_reference<decltype(input)>::type(0);
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5 return output;

6 }

7

8 template<typename data_in_t, typename data_out_t, int CH

, int H, int W, int ch_step, int w_step>

9 void apply_relu(hls::stream<data_in_t> dinStream[w_step

], hls::stream<data_out_t> doutStream[w_step])

10 {

11 for (auto h = 0; h < H; h++) {

12 for (auto w = 0; w < W; w += w_step) {

13 for (auto ch = 0; ch < CH; ch += ch_step) {

14 for (auto ow = 0; ow < w_step; ow++) {

15 data_in_t data = dinStream[ow].read

();

16 data_out_t relu_result;

17 for (auto op = 0; op < ch_step; op

++) {

18 relu_result.data[0][op] = relu(

data.data[0][op]);

19 }

20 relu_result.last = data.last;

21 doutStream[ow].write(relu_result);

22 }

23 }

24 }

25 }

26 }
 	
Listing 5.1 ReLU - Code details� �

1 template<typename data_t, typename data_tt, typename

data_out_t, int CH, int H, int W, int ch_step, int

w_step>

2 void Add(hls::stream<data_t> din1Stream[w_step],

3 hls::stream<data_tt> din2Stream[w_step],

4 hls::stream<data_out_t> doutStream[w_step])

5 { for (auto h = 0; h < H; h++) {

6 for (auto w = 0; w < W; w += w_step) {



58 Integer Quantized AdderNet Implementation

7 for (auto ch = 0; ch < CH; ch += ch_step) {

8 for (auto ow = 0; ow < w_step; ow++) {

9 data_t data1 = din1Stream[ow].read()

;

10 data_tt data2 = din2Stream[ow].read

();

11 data_out_t result;

12 for(auto op = 0; op < ch_step; op++)

{

13 result.data[0][op] = data1.data

[0][op] + data2.data[0][op];

14 }

15 result.last = data1.last;

16 doutStream[ow].write(result);

17 }

18 }

19 }

20 }

21 }
 	
Listing 5.2 Add - Code details� �

1 template <typename data_t_in, typename data_t_out, int

layer, int CH, int H, int W, int ch_step, int w_step>

2 void realbn(hls::stream<data_t_in> dinStream[w_step],

3 hls::stream<data_t_out> doutStream[w_step],

4 const float scale[CH],

5 const float bias[CH],

6 const float mean[CH],

7 const float variance[CH],

8 const float epsilon)

9 {

10 for (int h = 0; h < H; h++)

11 {

12 for (int w = 0; w < W; w += w_step)

13 {

14 for (int ch = 0; ch < CH; ch += ch_step)

15 {
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16 #pragma HLS unroll

17 for (int ow = 0; ow < w_step; ow++)

18 {

19 data_t_in data = dinStream[ow].read

();

20 data_t_out scaled;

21 scaled.last = data.last;

22 for (auto op = 0; op < ch_step; op

++)

23 {

24 float normalized_data = (data.

data[0][op].to_float() - mean

[op + ch]) / std::sqrt(

variance[op + ch] + epsilon);

25 scaled.data[0][op] = scale[ch +

op] * normalized_data + bias[

ch + op];

26 }

27 doutStream[ow].write(scaled);

28 }

29 }

30 }

31 }

32 }

33

34 template <typename data_t_in, typename data_t_out, int

layer, int bit_scaling, int CH, int H, int W, int

ch_step, int w_step>

35 void realbn_scaled(hls::stream<data_t_in> dinStream[

w_step],

36 hls::stream<data_t_out> doutStream[w_step],

37 const float scale[CH],

38 const float bias[CH],

39 const float mean[CH],

40 const float variance[CH],

41 const float epsilon)

42 {

43 for (int h = 0; h < H; h++)
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44 {

45 for (int w = 0; w < W; w += w_step)

46 {

47 for (int ch = 0; ch < CH; ch += ch_step)

48 {

49 #pragma HLS unroll

50 for (int ow = 0; ow < w_step; ow++)

51 {

52 data_t_in data = dinStream[ow].read

();

53 data_t_out scaled;

54 scaled.last = data.last;

55 for (auto op = 0; op < ch_step; op

++)

56 {

57 ap_fixed<8, 8, AP_RND_CONV,

AP_SAT> unscaled_data = data.

data[0][op] / (1 <<

bit_scaling);

58 ap_int<8 + bit_scaling>

scaled_data = unscaled_data *

(1 << bit_scaling);

59 float normalized_data = (

scaled_data.to_float() - mean

[op + ch]) / std::sqrt(

variance[op + ch] + epsilon);

60 scaled.data[0][op] = scale[ch +

op] * normalized_data + bias[

ch + op];

61 }

62 doutStream[ow].write(scaled);

63 }

64 }

65 }

66 }

67 }
 	
Listing 5.3 BN - Code details



5.6 DSP Packing 61

The provided detail on batch normalization function demonstrates that all statisti-
cal parameters required by the layer’s computations—mean, variance, bias, epsilon,
and scale factor—are directly supplied as inputs to the function. These parame-
ters are meticulously extracted from the original QONNX model and appropriately
utilized in the defined function.

To convert the current network into the final AdderNet, two essential steps are
required. First, it is necessary to substitute the existing convolutional layers with
the new custom adder2d layers. These layers are key to the AdderNet architecture,
which uses SAD operations instead of traditional MAC ones to learn features in
the network. Next, the input and output parameter types must be adapted to match
those of the Quant nodes, as clearly defined in the final QONNX graph. This
ensures compatibility across layers and maintains the precision required during the
quantization process, allowing the network to function efficiently as an AdderNet.

Following preliminary tests to verify the correctness of these procedures, the
contribution involved introducing new data streams for quantization nodes between
each pair of layers. The type of each stream was derived from the values present in
the final QONNX graph, along with the dimensions of the adder2d accumulators.
These accumulators were specifically adjusted, transitioning from their previous con-
figuration tailored to MAC operations in CNNs, to now supporting SAD operations
typical of AddNN.

5.6 DSP Packing

Digital Signal Processing (DSP) packing with High-Level Synthesis involves a criti-
cal optimization technique aimed at enhancing the efficiency of FPGA-based DSP
applications. HLS tools like Vitis HLS enable developers to convert high-level DSP
algorithms, typically written in languages such as C or C++, into optimized hardware
implementations. DSP packing specifically focuses on maximizing the utilization of
FPGA resources, such as DSP blocks, by efficiently mapping algorithmic operations
onto these specialized hardware units. By packing multiple DSP operations into a sin-
gle DSP block where possible, HLS tools can reduce resource consumption, improve
performance, and minimize power consumption, making FPGA-based DSP imple-
mentations more cost-effective and scalable for a wide range of signal processing
applications. This technique is essential for achieving high-throughput, low-latency
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processing capabilities required in modern digital communication systems, image
and video processing, radar systems, and many other DSP-intensive domains.

Fig. 5.4 FPGA’s DSP slice.

5.6.1 Adopted Solution

To fully leverage all resources on FPGA, various DSP packing techniques have
been explored, ranging from fundamental INT8 Optimization for CNN available for
Xilinx Devices [9]-[10] to the latest methods tailored for AddNN [11]. In the context
of the proposed quantized AdderNet, the main aim is a first optimization of DSP
resources to enable concurrent SAD operations.

DSP48E2 slices in Xilinx FPGAs offer native DSP packing capabilities for
addition operations [12]. In Single Instruction Multiple Data (SIMD) mode, a DSP
slice can support up to Quad-INT12 adder/subtractor/accumulator with four separate
CARRYOUT signals. Given that the proposed AdderNet is quantized to 8-bit, only
the LSB portion of the INT12 adder has been utilized.
DSP packing with Quad INT12 represents an advanced optimization strategy within
High-Level Synthesis (HLS) frameworks like Vitis HLS.

This technique focuses on efficiently utilizing FPGA resources, particularly DSP
blocks, by packing four INT12 operations into a single DSP block. By leveraging
the parallel processing capabilities inherent in FPGA architectures, Quad INT12
packing significantly enhances the throughput and efficiency of DSP applications.
This approach not only improves performance but also conserves FPGA resources
and reduces power consumption, making it highly suitable for demanding signal
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processing tasks such as deep learning inference, image and video processing, and
telecommunications.
The integration of Quad INT12 packing in HLS would facilitate the implementation
of high-performance, low-latency DSP systems on FPGA platforms, meeting the
stringent requirements of modern applications. The following code has been written
in order to implement the Quad INT12 packing strategy.

� �
1 (* use_dsp = "yes" *) module dsp_quadsimd (

2 input logic CLK,

3 input logic RSTP,

4 input logic [29:0] A,

5 input logic [17:0] B,

6 input logic [17:0] C,

7 input logic [26:0] D,

8 output logic [47:0] P

9

10 );

11

12 logic [26:0] X1, X2;

13 logic [26:0] W1, W2;

14 logic [26:0] double1, double2;

15 logic [11:0] sum1, sum2, sum3, sum4;

16

17

18 always_ff @(posedge CLK) begin

19

20 if (RSTP) begin

21

22 X1 <= 27'b0;

23 W1 <= 27'b0;

24 X2 <= 27'b0;

25 W2 <= 27'b0;

26 double1 <= 27'b0;

27 double2 <= 27'b0;

28 sum1 <= 12b'0;
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29 sum2 <= 12b'0;

30 sum3 <= 12b'0;

31 sum4 <= 12b'0;

32

33 P <= 48'b0;

34

35 end else begin

36

37 X1 <= (A[11:0] << 14) + B[11:0];

38 W1 <= (C[11:0] << 14) + C[11:0];

39 double1 <= X1 - W1;

40

41 X2 <= (A[11:0] << 14) + B[11:0];

42 W2 <= (D[11:0] << 14) + D[11:0];

43 double2 <= X2 - W2;

44

45 sum1 <= double1[26:14];

46 sum2 <= double1[11:0];

47 sum3 <= double2[26:14];

48 sum4 <= double2[11:0];

49

50 P <= {sum1, sum2, sum3, sum4};

51

52 end

53 end

54

55 endmodule
 	
Listing 5.4 RTL code for Quad-INT12 DSP packing
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5.6.2 Future Work

Future work will mainly focus on the integration of the aforementioned DSP packing
approach. A consequent implementation strategy would consist in an aggressive
DSP-LUT co-packing to enable Octo-INT8 SIMD operation with one DSP48E2
slice and 16 LUTs on FPGA.
To achieve this desired configuration, the INT12 adder has been further divided
into an 8-bit adder and a 3-bit adder, with one guard bit between them to ensure
accurate addition of both components [13]. The upper 8-bit adder will utilize the
CARRYOUT of the INT12 adder, while the lower 8-bit adder will be combined with
a 5-bit adder implemented using LUTs.
As Vitis HLS lacks native support for packing Quad-INT12 and Octo-INT8 oper-
ations onto a single DSP48E2 slice, a black-box implementation strategy would
be adopted. In that approach, a structural System Verilog RTL representation of
the packed unit would be developed to serve as a well-defined processing element
interface for Octo operations in Vitis HLS.

Fig. 5.5 DSP packing for(a) Dual-INT8 CNN,and DSP packing and DSP-LUT co-packing
for(b) Quad-INT8 and Octo-INT8 AdderNet designs



Chapter 6

Evaluation and Conclusions

6.1 Simulation and Analysis

The simulation and analysis phase is fundamental for validating the modifications
and estimating the adapted network performance. During this phase, various metrics
such as accuracy, latency, and resource utilization are measured and compared against
the original ResNet20 model. Simulation involves running the modified network on
a dataset to observe its behavior and performance. The analysis provides insights
into the effectiveness of the changes, highlighting any improvements or drawbacks.
This process, beside a first network simulation on the CIFAR-10 dataset and final
QONNX inferencing, comprises both synthesis and co-simulation. The results are
presented and commented in the following paragraphs.

6.2 Simulation Environment

The project was developed using Vitis™ HLS 2023.2. Upon adding the include,
source, and testbench files to the workspace, a C simulation was executed to verify
the expected behavior of the input network.

Next, synthesis was initiated to review the key results of the synthesized archi-
tecture by consulting the generated reports. Following this, a C/RTL co-simulation
was performed, allowing the network to be simulated using the HDL-generated
model. At this stage, it is possible to choose between performing the verification
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with Verilog or VHDL. These figures are approximate, as they are derived from
C/RTL Co-Simulation and estimations made during C Synthesis; however, they
remain valuable for recognizing the main trends of the final architecture.

6.3 Experimental Results

The data that has been gathered throughout the overall procedure is primarily focused
on the following aspects:

• Performance: assessed based on metrics such as throughput and latency.
Throughput refers to the number of frames processed per second (FPS), while
latency measures the time required for the network to process a single input
from start to finish. These metrics provide insights into how efficiently the net-
work operates in real-time scenarios, which is crucial for applications requiring
low-latency responses, such as image recognition or edge computing.

• Resource utilization: measured by the quantity of utilized Block RAMs
(BRAMs), Ultra RAM (URAMs), Digital Signal Processors (DSPs), Look-up
Tables (LUTs), and Flip-Flops (FFs). These resources indicate how much of
the FPGA’s available hardware is consumed by the network. Efficient resource
utilization is critical for optimizing the hardware design, as it ensures that the
network can operate within the constraints of the FPGA while maximizing
performance. Higher resource usage, particularly DSPs and BRAMs, can
indicate computational bottlenecks or areas for optimization.

Metric Value Units
Frequency 263.16 MHz

Throughput 8028.25 FPS
Latency 0.125 ms

Table 6.1 Post-Synthesis Performance for AdderNet ResNet-20

It is important to highlight that the final network’s performance is constrained by
the presence, not yet overcome, of unquantized Batch Normalization layers which
represent the actual bottleneck. The principal consequence of this design decision is
a considerable increase in the number of DSP slices required, due to the necessity of
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Resource Usage
DSP 682
LUT 1,263,467
FF 648,373
BRAM 116
URAM 12

Table 6.2 Post-Synthesis Resource Usage for AdderNet ResNet-20

computing all the BN’s multiplications in 32-bit floating point, which represents a
significant cost in terms of higher precision. This cost cannot be currently reduced
for the reasons previously outlined in 3.2.5.

6.4 Conclusions

In conclusion, while the presented quantized AdderNet ResNet-20 design success-
fully implements the neural network model on FPGA hardware, there is still sig-
nificant room for optimization. The architecture has demonstrated its potential for
resource efficiency and performance improvement, but the results obtained have
not fully met initial expectations. This highlights the need for further refinement to
achieve optimal performance.
Going forward, the primary focus will be on optimising the performance of the
current design, particularly through the integration of the already implemented DSP
packing strategies. As outlined in the literature [14], these methods can significantly
reduce resource overhead and improve efficiency, allowing the architecture to operate
closer to its full potential by making better use of FPGA resources.
In addition, the refinement of quantization strategies will be a crucial area for future
development. This will involve exploring more advanced quantization techniques
and fine-tuning the network to improve results in both loss and accuracy metrics
while maintaining efficiency.
Another key priority will be the optimization of the C++ code that describes the
network, in particular the resource allocations and dependencies between layers,
such as the streams used for quantization nodes.
In summary, while the AdderNet architecture shows promising results, significant im-
provements are both necessary and possible. The future work outlined aims to unlock
the full potential of this architecture for use in resource-constrained environments.



References

[1] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, and
Chang Xu. Addernet: Do we really need multiplications in deep learning?
December 2019.

[2] Addernet and its minimalist hardware design for energy-efficient artificial
intelligence.

[3] Xilinx/brevitas. First Release: January 2021.

[4] Alessandro Pappalardo. Xilinx/brevitas.

[5] A novel fpga-based convolution accelerator for addernet. 2021.

[6] https://github.com/lutzroeder/netron.git.

[7] https://github.com/nvidia/tensorrt/tree/master/tools/onnx-graphsurgeon.

[8] https://docs.amd.com/r/en-us/ug1399-vitis-hls/introduction.

[9] Convolutional neural network with int4 optimization on xilinx devices. June
24, 2020.

[10] Deep learning with int8 optimization on xilinx devices. April 24, 2017.

[11] Dsp-packing: Squeezing low-precision arithmetic into fpga dsp blocks. March
2022.

[12] Ultrascale architecture dsp slice user guide. 2021.

[13] Dsp-packing: Squeezing low-precision arithmetic into fpga dsp blocks. 2022.

[14] Wsq-addernet: Efficient weight standardization based quantized addernet fpga
accelerator design with high-density int8 dsp-lut co-packing optimization.
December 2022.



Appendix A

ResNet

AddNN ResNet20� �
1 import adder

2 import torch.nn as nn

3

4 def conv3x3(in_planes, out_planes, stride=1):

5 " 3x3 convolution with padding "

6 return adder.adder2d(in_planes, out_planes,

kernel_size=3, stride=stride, padding=1, bias=

False)

7

8 class BasicBlock(nn.Module):

9 expansion=1

10

11 def __init__(self, inplanes, planes, stride=1,

downsample=None):

12 super(BasicBlock, self).__init__()

13 self.conv1 = conv3x3(inplanes, planes, stride=

stride)

14 self.bn1 = nn.BatchNorm2d(planes)

15 self.relu = nn.ReLU(inplace=True)

16 self.conv2 = conv3x3(planes, planes)

17 self.bn2 = nn.BatchNorm2d(planes)

18 self.downsample = downsample
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19 self.stride = stride

20

21 def forward(self, x):

22 residual = x

23

24 out = self.conv1(x)

25 out = self.bn1(out)

26 out = self.relu(out)

27

28 out = self.conv2(out)

29 out = self.bn2(out)

30

31 if self.downsample is not None:

32 residual = self.downsample(x)

33

34 out += residual

35 out = self.relu(out)

36

37 return out

38

39 class ResNet(nn.Module):

40

41 def __init__(self, block, layers, num_classes=10):

42 super(ResNet, self).__init__()

43 self.inplanes = 16

44 self.conv1 = nn.Conv2d(3, 16, kernel_size=3,

stride=1, padding=1, bias=False)

45 self.bn1 = nn.BatchNorm2d(16)

46 self.relu = nn.ReLU(inplace=True)

47 self.layer1 = self._make_layer(block, 16, layers

[0])

48 self.layer2 = self._make_layer(block, 32, layers

[1], stride=2)

49 self.layer3 = self._make_layer(block, 64, layers

[2], stride=2)

50 self.avgpool = nn.AvgPool2d(8, stride=1)

51 self.fc = nn.Conv2d(64 * block.expansion,

num_classes, 1, bias=False)
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52 self.bn2 = nn.BatchNorm2d(num_classes)

53

54 for m in self.modules():

55 if isinstance(m, nn.BatchNorm2d):

56 m.weight.data.fill_(1)

57 m.bias.data.zero_()

58

59 def _make_layer(self, block, planes, blocks, stride

=1):

60 downsample = None

61 if stride != 1 or self.inplanes != planes *

block.expansion:

62 downsample = nn.Sequential(

63 adder.adder2d(self.inplanes, planes *

block.expansion, kernel_size=1,

stride=stride, bias=False),

64 nn.BatchNorm2d(planes * block.expansion)

65 )

66

67 layers = []

68 layers.append(block(inplanes=self.inplanes,

planes=planes, stride=stride, downsample=

downsample))

69 self.inplanes = planes * block.expansion

70 for _ in range(1, blocks):

71 layers.append(block(inplanes=self.inplanes,

planes=planes))

72

73 return nn.Sequential(*layers)

74

75 def forward(self, x):

76 x = self.conv1(x)

77 x = self.bn1(x)

78 x = self.relu(x)

79

80 x = self.layer1(x)

81 x = self.layer2(x)

82 x = self.layer3(x)
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83

84 x = self.avgpool(x)

85 x = self.fc(x)

86 x = self.bn2(x)

87

88 return x.view(x.size(0), -1)

89

90 def resnet20(**kwargs):

91 return ResNet(BasicBlock, [3, 3, 3], **kwargs)
 	
Listing A.1 Python Code
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adder2d

adder2d layer� �
1 import torch

2 import torch.nn as nn

3 import numpy as np

4 from torch.autograd import Function

5 import math

6

7 def adder2d_function(X, W, stride=1, padding=0):

8 n_filters, d_filter, h_filter, w_filter = W.size()

9 n_x, d_x, h_x, w_x = X.size()

10

11 h_out = (h_x - h_filter + 2 * padding) / stride + 1

12 w_out = (w_x - w_filter + 2 * padding) / stride + 1

13

14 h_out, w_out = int(h_out), int(w_out)

15 X_col = torch.nn.functional.unfold(X.view(1, -1, h_x

, w_x), h_filter, dilation=1, padding=padding,

stride=stride).view(n_x, -1, h_out*w_out)

16 X_col = X_col.permute(1,2,0).contiguous().view(X_col

.size(1),-1)

17 W_col = W.view(n_filters, -1)

18

19 out = adder.apply(W_col,X_col)
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20

21 out = out.view(n_filters, h_out, w_out, n_x)

22 out = out.permute(3, 0, 1, 2).contiguous()

23

24 return out

25

26 class adder(Function):

27 @staticmethod

28 def forward(ctx, W_col, X_col):

29 ctx.save_for_backward(W_col,X_col)

30 output = -(W_col.unsqueeze(2)-X_col.unsqueeze(0)

).abs().sum(1)

31 return output

32

33 @staticmethod

34 def backward(ctx,grad_output):

35 W_col,X_col = ctx.saved_tensors

36 grad_W_col = ((X_col.unsqueeze(0)-W_col.

unsqueeze(2))*grad_output.unsqueeze(1)).sum

(2)

37 grad_W_col = grad_W_col/grad_W_col.norm(p=2).

clamp(min=1e-12)*math.sqrt(W_col.size(1)*
W_col.size(0))/5

38 grad_X_col = (-(X_col.unsqueeze(0)-W_col.

unsqueeze(2)).clamp(-1,1)*grad_output.

unsqueeze(1)).sum(0)

39

40 return grad_W_col, grad_X_col

41

42 class adder2d(nn.Module):

43

44 def __init__(self,input_channel,output_channel,

kernel_size, stride=1, padding=0, bias = False):

45 super(adder2d, self).__init__()

46 self.stride = stride

47 self.padding = padding

48 self.input_channel = input_channel

49 self.output_channel = output_channel
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50 self.kernel_size = kernel_size

51 self.adder = torch.nn.Parameter(nn.init.normal_(

torch.randn(output_channel,input_channel,

kernel_size,kernel_size)))

52 self.bias = bias

53 if bias:

54 self.b = torch.nn.Parameter(nn.init.uniform_

(torch.zeros(output_channel)))

55

56 def forward(self, x):

57 output = adder2d_function(x,self.adder, self.

stride, self.padding)

58 if self.bias:

59 output += self.b.unsqueeze(0).unsqueeze(2).

unsqueeze(3)

60

61 return output
 	
Listing B.1 Python Code



Appendix C

Dataset

CIFAR-10

The CIFAR-10 dataset, short for the Canadian Institute for Advanced Research,
serves as a pivotal resource in the realm of machine learning and computer vision.
Comprising 60000 32x32 color images distributed across 10 distinct classes, it stands
as a cornerstone dataset in the field, facilitating diverse research endeavors. These
classes encompass airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks, each category comprising 6,000 images.

The dataset is divided into five training batches and one test batch, each with
10000 images. The test batch contains exactly 1000 randomly-selected images from
each class. The training batches contain the remaining images in random order,
but some training batches may contain more images from one class than another.
Between them, the training batches contain exactly 5000 images from each class.

For algorithms designed to discern objects within images, CIFAR-10 proves
invaluable as a teaching tool. Its low-resolution nature enables swift experimenta-
tion with various recognition algorithms, facilitating rapid iteration and analysis of
efficacy. Originating as a labeled subset of the 80 Million Tiny Images dataset from
2008, CIFAR-10 emerged following meticulous labeling efforts, often incentivized
through student compensation. Convolutional neural networks, in their manifold
configurations, consistently excel in recognizing objects within CIFAR-10 images,
cementing their status as the preferred approach for tackling this dataset’s challenges.
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C.0.1 Features Structure� �
1 FeaturesDict({

2 'id': Text(shape=(), dtype=string),

3 'image': Image(shape=(32, 32, 3), dtype=uint8),

4 'label': ClassLabel(shape=(), dtype=int64,

num_classes=10),

5 })
 	
Listing C.1 Characteristics
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