
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Methodology and Measurements of

Privacy Mechanisms for Online

Advertising: The Case of Google’s Topics

API

Advisors

Prof. Marco MELLIA

Prof. Martino TREVISAN

Dr. Nikhil JHA

Candidate

Alberto VERNA

October, 2024

Acknowledgements

Un sincero ringraziamento va ai miei relatori, prof. Marco Mellia, prof. Martino
Trevisan e Nikhil Jha, per la loro costante disponibilità e gentilezza. Il loro prezioso
supporto ha reso questo progetto di tesi un’esperienza arricchente e stimolante,
alleviando anche le difficoltà della stesura.

Un enorme grazie va alla mia famiglia, in particolare a papà Claudio, per il
sostegno incondizionato e per avermi permesso di coltivare la mia passione durante
il mio intero percorso universitario. È anche grazie al vostro amore, fiducia
e incoraggiamento, specialmente nei momenti più difficili, che ora siamo qui a
festeggiare questo traguardo.

Abstract

In recent years, the Web industry has been moving towards the abandonment
of third-party cookies in favour of more privacy-oriented solutions for targeted
online advertising. Among the proposed alternatives, Google’s Topics API – a
core component of the Privacy Sandbox framework – stands above the rest. It is
a browser-based solution for providing a user’s topics of interest to a third-party
service (e.g. a digital advertising platform) without revealing the websites they
visit. As the initial experimentation phase concludes, all components of the Privacy
Sandbox, including the Topics API, have now reached general availability. However,
some scepticism remains among researchers and privacy advocates who caution
that, despite being a better approach than third-party cookies, this new solution
may still lead to re-identification attacks and other privacy leaks. For this reason,
Google is currently limiting the usage of the Privacy Sandbox family to select
third-party services that must undergo an enrolment process. This thesis aims
to quantify the adoption of the Topics API within the Web ecosystem, identify
third parties that enable its usage, and examine the practices they employ. Given
the handling of personal user information, said practices must also be taken in
compliance with local privacy regulations.

The analysis was performed by deploying a Chromium-based web crawler to visit
the most popular 50,000 websites worldwide, recording the usages of the Topics
API on each website. Because the crawling was performed in the EU, where the
GDPR is in place, the crawler mimics the behaviour of a user accepting the privacy
policy, by finding and clicking the “Accept” button of any banner found inside the
visited page. This approach allows to distinguish the usages before and after user
consent is provided, only in those websites where a privacy banner is found.

The results of the crawling show that a substantial number of third parties
are already experimenting with the new features offered by the Topics API, in
preparation of the future phase-out of third-party cookies. However, it’s evident
that there is still some form of A/B testing taking place on a restricted amount
of websites and users, most likely by the third parties. The same results show
a significant number of questionable or even anomalous usages: some websites
witness Topics API calls that (i) occur before the user accepts the privacy banner,
even on European domains, or (ii) come from a third party that has not yet
undergone the enrolment process, although the browser is expected to deny calls
from unauthorised domains. This latter issue occurs due to an implementation
bug found in Chromium’s source code, which allows to bypass the browser’s
authorisation checks by manually deleting or corrupting a specific configuration
file. Moreover, the majority of unauthorised domains appear to be same websites

visited by the crawler, hinting at some popular JavaScript libraries accessing the
Topics API erroneously.

While this new technology has the potential to replace third-party cookies as
the de facto standard for interest-based advertising, it is still in its early phases
of deployment. The crawling results highlight several issues that are typically
associated with early implementation: privacy regulation violations, implementation
bugs that allow circumvention of abuse protections, and deployment errors.

Table of Contents

List of Figures III

Acronyms V

1 Introduction 1

1.1 Context . 1
1.1.1 Introduction to online advertising 1
1.1.2 Third-party cookies and privacy concerns 2
1.1.3 Shifting away from third-party cookies: FLoC and the Topics

API . 2
1.2 Motivations and methodology . 3
1.3 Thesis structure . 4

2 Background 5

2.1 Third-party cookies . 5
2.2 Google’s Privacy Sandbox . 8
2.3 FLoC . 10

3 The Topics API 12

3.1 Terminology . 12
3.2 The algorithm . 13
3.3 Internal data structures . 15

3.3.1 BrowsingTopicsState . 16
3.3.2 BrowsingTopicsSiteData . 16
3.3.3 PrivacySandboxAttestations 17

3.4 Authorised callers and attestations 18
3.5 Usage types . 20

3.5.1 JavaScript . 20
3.5.2 Fetch . 21
3.5.3 IFrame . 21

I

4 Methodology for data collection 23

4.1 The Priv-accept Web crawler . 25
4.2 Modifications to the Chromium browser 27
4.3 Domain extraction and attestation 30
4.4 Topic analysis . 31

5 Dataset and results 33

5.1 Enrolment timeline . 35
5.2 Legitimate usage . 36
5.3 Anomalous usage . 40

5.3.1 Bypassing Chromium’s check for the Allowed domains . . . 40
5.3.2 Identifying the sources and causes of anomalous calls 41

5.4 Questionable usage . 43
5.4.1 Correlation with the websites’ geographical region 44
5.4.2 Correlation with improper privacy banner configuration . . . 45

5.5 Longitudinal measurements . 47

6 Conclusions 51

6.1 Limitations and future work . 52

A Modified Chromium Source code 53

Bibliography 57

II

List of Figures

2.1 Example showing an advertiser using third-party cookies to track a
user’s activity across two websites they visit. 7

2.2 Simplified schema of FLoC’s mechanisms. 11

3.1 Simplified diagram of the Topics API’s mechanisms. 14
3.2 Simplified schema showing the cross-site user re-identification threat

model within the Topics API. 15
3.3 ER model of the BrowsingTopicsSiteData database. 17

4.1 Overview of the data collection process. 24
4.2 Updated ER diagram of the BrowsingTopicsSiteData database. . 28
4.3 Dependency graph of functions that call OnBrowsingTopicsApiUsed

and were modified for the purpose of this analysis. 29

5.1 Timeline showing the enrolment date of third parties that are present
in both the Attested and Allowed sets. 35

5.2 Distribution of the Topics API calls among the websites visited in
After-Accept. 36

5.3 Number of websites where Allowed and Attested third-party services
were present, and the subset where a call to the Topics API was
recorded. 37

5.4 Top-15 Allowed and Attested CPs with the largest enabled percentage. 38
5.5 Distribution of Topics API usages in DAA, separately by CP. 39
5.6 Example showing the difference between a browsing topic and a

script’s source. 42
5.7 Number of websites where a Topics API call was recorded in Before-

Accept for each CP. 43
5.8 Percentage of websites where a Topics API call was recorded in

Before-Accept, separately for each TLD. 45

III

5.9 Number of total websites where the top-15 most popular CMPs are
present during the Before-Accept visit, and the subset of websites
where a questionable call was recorded. 46

5.10 Comparison of P (CMP = x) and P (CMP = x | questionable call) . 47
5.11 Evolution of the Allowed and Attested third parties collected over

the 9 weeks of measurements from the browser’s local allow-list. . . 48
5.12 Evolution of the percentage of websites where at least one legitimate

Topics API call occurs. 49
5.13 Evolution of the number of legitimate, questionable and anomalous

CPs found over the nine-week measurement period. 49
5.14 Top-15 CPs with the largest average enabled percentage, along with

its min-max value range calculated over the measurement period. . 50

IV

Acronyms

IBA

Interest-Based Advertising

GDPR

General Data Protection Regulation

CCPA

California’s Consumer Privacy Act

LGPD

Lei Geral de Proteção de Dados

CMP

Consent Management Platform

FLoC

Federated Learning of Cohorts

FQDN

Fully Qualified Domain Name

CP

Calling Party

GTM

Google Tag Manager

TLD

Top-Level Domain

V

2LD

Second-Level Domain

VI

Chapter 1

Introduction

1.1 Context

1.1.1 Introduction to online advertising

The rise of online advertising has forever changed the global landscape of promo-
tional content, redefining how businesses and organizations communicate with their
audience and allowing companies to reach consumers with never-before-seen levels
of scale. Online advertising, compared to its traditional counterpart, leverages the
Internet as a mean of displaying advertisements to online users, where advertis-
ers—companies wishing to promote their own products—partner with publishers,
usually websites and other digital platforms willing to host ads inside their own
page in exchange for revenue. The rapid growth of online advertising has given
way to the birth of full-fledged advertisement networks, with the primary goal of
interconnecting advertisers and publishers. One of the main challenges for these
platforms is matching advertisers and publishers effectively, making sure that the
right advertisements are provided to the right people who would be interested in
buying the promoted products. The efforts to find more effective advertising strate-
gies led to IBA (Interest-Based Advertising), where the advertisement networks
and platforms take the consumer’s interests into consideration when delivering
ads, thereby personalising the user’s ad-viewing experience while also increasing
the odds that they buy the promoted products. A relatively simple way to infer
an Internet user’s interests is to observe what they browse on the Web and how
they do it. This is done through online tracking, where platforms actively collect
information about the users’ browsing habits.

1

Introduction

1.1.2 Third-party cookies and privacy concerns

For many years, online tracking was accomplished through the use of third-party
cookies — small chunks of text that are stored locally in the client’s browser,
created by a domain different from the one that the user is currently visiting.
These domains are usually linked to advertisers, embedded within the publishers’
pages. However, the use of cookies has raised significant privacy-related concerns
from users, as they potentially allow an advertiser to reconstruct one’s browsing
behaviour with worrying levels of detail [1, 2, 3]. The central issue lies in the
ability of advertising platforms to control the data being stored inside a third-party
cookie, which may include sensitive information such as the specific pages a user
visits. If present in a large amount of websites, an advertiser can leverage this
information to partially reconstruct a user’s browsing history. In response to these
concerns, several countermeasures to online tracking have been introduced, such
as tracker blockers [4, 5, 6], privacy-friendly browsers [7] and search engines [8].
Additionally, legislators have introduced new laws which mandate platforms to
obtain user consent before selling or collecting any of their personal information.
The most widely recognised of these are the EU’s GDPR (General Data Protection
Regulation) [9], California’s CCPA (California’s Consumer Privacy Act) [10] and
Brazil’s LGPD (Lei Geral de Proteção de Dados) [11]. As a result, companies
such as Mozilla, Apple and Google were encouraged to take measures against the
usage of third-party cookies on their respective browsers — Firefox, Safari and
Chrome. The former two are already blocking them by default [12, 13], whereas
Google remains hesitant towards their full deprecation. Despite beginning a phase-
out process, whose completion has undergone several postponings [14, 15], the
company’s current standing on third-party cookies is towards preserving them,
while offering users with a more informed choice about their usage [16].

1.1.3 Shifting away from third-party cookies: FLoC and

the Topics API

The threat to third-party cookies’ existence posed a challenge for the online
advertising ecosystem, forcing companies to look for alternative paradigms. Google,
a major player in the field, has proposed a collection of privacy-preserving tools
that are included directly within the browser, known as the Privacy Sandbox. This
framework was introduced to create a healthier ecosystem for online advertising,
by offering platforms useful tools for effectively displaying ads inside Web pages
while respecting the users’ privacy. One of its main components is designed to
help advertisers understand the consumers’ interests, while keeping their privacy
intact: the FLoC (Federated Learning of Cohorts) was Google’s first attempt at it,
which classified the users into different groups based on their interests using tools

2

Introduction

directly embedded within the browser. However, following concerns that the rising
technology could potentially be exploited to identify users [17, 18, 19], Google
abandoned its development and proposed its successor: the Topics API, which will
be the main focus of this thesis.

This component takes advantage of the browser’s local history to extract the
websites the user visits during a certain time interval (at the moment of writing,
one week) and maps them into a collection of topics, effectively building a dynamic
profile for the user based on their interests. The browser then discloses a controlled
subset of topics to authorised third parties (e.g., advertising platforms) that request
it. This process is done completely within the browser, so that no data other than
the intended topics can be disclosed to third parties. Overall, the Topics API allows
advertisers to learn some of the users’ topics of interest, thereby helping them
improve the efficiency of their advertising, while preventing sensitive information
such as their browsing history from being disclosed.

Although it represents an improvement over third-party cookies and the FLoC,
the Topics API is still viewed with scepticism from researchers and privacy advocates,
as previous studies have shown that user identification remains a viable exploit
[20].

1.2 Motivations and methodology

The Topics API, much like the other components of the Privacy Sandbox, has
reached general availability and, at the moment of writing, is available to at least
99% of Chrome users [21, 22], thus encouraging online advertisement companies
to start experimenting with this new technology. As this delicate process of
experimentation takes place, an important aspect is to determine what is the
current state of its deployment in real-world applications, including what third
parties are using it, how often it is invoked across websites, and whether its
adoption is increasing over time. Additionally, given its role in collecting user
sensitive information, it is also important to determine whether third parties are
using it legitimately and in compliance with existing privacy laws and regulations.
This thesis addresses these aspects by painting a global picture of the Topics API’s
usage in the wild.

We achieve this through an extended measurement campaign that employs a
Web crawler based on a headless browser, built for a previous work of research
[23]. This crawler is adapted in order to collect extended information regarding the
Topics API’s usages, recorded from a custom-built version of the Chromium browser.
We visit the top 50,000 most popular websites and present results showing which
entities are currently experimenting with this new technology. These results will
also highlight any instances of unexpected behaviour, typical of technologies in their

3

Introduction

early stages of production, ranging from inconsistent deployments and questionable
integration with privacy regulations to outright erroneous implementations.

Moreover, this thesis work aims to raise awareness among practitioners about
the implementation of this new technology and its implications. In fact, the findings
in the following chapters will demonstrate the presence of several issues that derive
from incorrect configuration, which can be addressed rather easily with a minimal
understanding of the Topics API’s operation.

1.3 Thesis structure

This thesis is structured as follows:

• Chapter 2 provides an exhaustive explanation of previous ad-related technolo-
gies and their issues, addressed by the Topics API.

• Chapter 3 focuses on the Topics API itself, detailing its algorithm, data
structures and internal mechanisms that allow the building and disclosure of
user profiles based on their topics of interest.

• Chapter 4 concentrates on how the data was collected, detailing the imple-
mentation of the Web crawler employed for the analysis and the modifications
done to it and to the Chromium browser in order to collect extensive usage
information.

• Chapter 5 illustrates the results obtained during the first crawling iteration,
giving a global picture of the Topics API usage within the Web ecosystem and
highlighting its evolution over an extended period of time. This chapter will
also identify some questionable and outright anomalous behaviour exhibited
from the browser during the crawling.

• Chapter 6 serves as a conclusion, concentrating on possible directions for
future research.

4

Chapter 2

Background

2.1 Third-party cookies

In the context of Internet browsing, cookies are defined as small chunks of text
that are created by a Web server and stored locally in the device of a user visiting
a Web page with a browser. They were originally introduced in 1994 to address
the inherent statelessness of the HTTP protocol. Statelessness refers to the fact
that HTTP, by design, does not remember any information exchanged in previous
interactions between a client (browser) and a server: each request sent to the server
is independent, with no built-in way for the server to track session information and
user interactions. This limitation posed challenges for scenarios requiring persistent
data, such as user authentication, shopping carts and settings that span across
multiple pages. To solve this problem, cookies were introduced as a mechanism
to store information about the state of an HTTP interaction within the user’s
device. This information can be then sent back to the server with every subsequent
interaction, allowing the server to “remember” it across multiple requests. A server
can create a cookie by commanding the browser to store it using the Set-Cookie

header in its HTTP response. Similarly, the client can communicate its stored
cookies to the server using the Cookie header in its requests. Nowadays, cookies
are primarily used to store data related to the user’s authentication state, site-
wide settings and interactions with a website, improving their overall browsing
experience.

Cookies can be classified based on their persistence:

• Session cookies only last for the duration of a browser session and are deleted
when the user closes the browser.

• Persistent cookies remain across multiple browser sessions, so they are not
deleted when the user closes the Web browser. A common use case is the

5

Background

storage of a user’s access token in a persistent way, so that they can remain
logged in even after closing the browser.

Cookies can also be classified based on the domain of the Web server that creates
them:

• First-party cookies are directly created by the website that the user is visiting.

• Third-party cookies are created by a different domain from the one the user is
visiting.

Persistent third-party cookies have been the primary solution used by advertising
platforms to store and track information about the users’ browsing habits. When a
user visits a web page that displays ads, their browser performs an HTTP exchange
with an advertising service—a third party. During this exchange, the advertiser can
instruct the browser to create a third-party cookie containing information relevant
to the user’s browsing behaviour. This information usually includes the pages a
user visits, the time spent on each page, and the objects being interacted with.
When the same advertiser appears on multiple websites visited by the user, it can
then retrieve the same cookie and update it with new collected information during
each visit. Over time, the advertiser can build a profile for the user, with varying
levels of detail. This profile can then be leveraged for several purposes, including
the provision of personalised ads relevant to the user’s interests. This process is
commonly known as profiling.

In recent years, significant privacy concerns about cookies and profiling have
emerged, as the user profiles created by advertisers have reached alarming levels
of detail [1, 2, 3]. The main cause is that third parties have full control over the
data stored inside the cookies they create, which may include global user identifiers
(such as IP addresses) and detailed lists of specific pages visited. Advertisers can
then collect this information on a large scale, often without user knowledge or
consent [24, 25], in order to not only build detailed user profiles, but also partially
reconstruct their browsing history. This history becomes increasingly more accurate
as the advertiser is embedded into more websites the user visits. An example of
this exploit is shown in Figure 2.1. Once obtained, this browsing history—whether
complete or partial— can be used by advertisers to gain more accurate customer
insights, thus improving the predictions for future behaviour and increase the
effectiveness of targeted advertising. However, it has also the potential to reveal
very sensitive details about users, such as their political views, health conditions
and personal relationships. Such data can be sold to other companies for monetary
gain, or even be exploited by malicious entities for social engineering attacks,
through targeted phishing e-mails and other fraudulent communications.

In response to these concerns, regulatory frameworks such as the GDPR [9], the
CCPA [10] and the LGPD [11] were introduced in Europe, California and Brazil,

6

Background

visits visits

advertiser.com creates advertiser.com creates

retrieved by retrieved by

reconstructs

 UserHistory

 User identifier
 website1.com/page1 1

 website1.com/page2 2

 website2.com/page1 3

 website2.com/page2 4

 Third-party Cookie

 User identifier
 website2.com/page1 3

 website2.com/page2 4

 Third-party Cookie

 User identifier
 website1.com/page1 1

 website1.com/page2 2

 User

 website1.com website2.com

 advertiser.com

Figure 2.1: Example showing an advertiser using third-party cookies to track a
user’s activity across two websites they visit. It is implied that both the websites
embed the same advertiser inside their page.

respectively. The GDPR and LGPD share similar principles, aimed at giving users
the rights to access, correct and delete their personal data while requiring informed
consent before third parties can collect this data for profiling. In contrast, the
CCPA provides California residents the rights to know about, delete and opt-out

7

Background

of the sale of their data to external companies.
Typically, user consent is gathered by means of privacy banners — Web page

elements that present users with the option to allow or deny the use of their
browsing information through first- and third-party cookies, often accompanied by
a link to the website’s privacy or cookie policy. However, these banners tend to
be invasive, and research has shown that users usually deny consent when given
the choice [26], which can be harmful to advertising companies. The introduction
of privacy banners has also led to the creation of CMPs (Consent Management
Platforms) — services that simplify the creation, customization and embedding of
privacy banners inside a first-party website. Well-known examples of CMPs are
OneTrust [27], HubSpot [28] and CookieBot [29].

The growing concerns about the potential abuse of third-party cookies encour-
aged major companies like Mozilla, Apple and Google to shift away from them,
and look for alternative solutions for their respective browsers. Each company has
taken a different approach:

• Mozilla began blocking third-party cookies by default in Firefox and introduced
a new feature called Privacy-Preserving Attribution (PPA), which aims to
help advertisers measure ad effectiveness while preserving user privacy, by
relying on attribution reports generated directly by the browser [30].

• Apple, like Mozilla, has also implemented the default blocking of third-party
cookies in Safari and added a new browser setting called Privacy Preserving
Ad Measurement, which behaves similarly to Firefox’s PPA [31].

• Google, in contrast, has taken a different approach by building a complete
privacy-preserving framework in substitution to third-party cookies, known
as the Privacy Sandbox. Its components and functionalities will be detailed
in Section 2.2. Google had initially aimed at gradually deprecating their
usage through a phase-out process, starting from affecting 1% of Chrome users
[14]. However, in July 2024, the company abruptly interrupted the phase-out,
instead opting to preserve the usage of third-party cookies and provide users
with a more informed choice on their usage [16].

2.2 Google’s Privacy Sandbox

The Privacy Sandbox is a family of components designed to create a heathier
advertising ecosystem, as a replacement to the current one based on third-party
cookies and other profiling techniques, such as browser fingerprinting [32, 33]. It
provides advertisers with tools that allow them to display relevant ads based on
user interests and measure their effectiveness, while also providing stronger privacy

8

Background

boundaries for information sharing across websites, resulting in greater protection
of the users’ personal data. Together with the Topics API, these tools include:

• Attribution Reporting API : this component allows advertisers to measure
the effectiveness of their ads without revealing the individual users’ data, by
generating aggregated reports directly from the browser. It serves as Chrome’s
alternative to Firefox’s PPA and Safari’s Preserving Ad Measurement.

• Private State Tokens API : designed to combat spam and fraud on the Internet,
this tool allows services to distinguish humans from bots through tokens created
without the need of passive tracking, like that being used by CAPTCHA
services.

• Related Website Sets API : it provides a way for companies to declare rela-
tionships between multiple domains, so that browsers can allow the partial
sharing of third-party cookies between related sites. This is particularly useful
for companies with multiple registered domains (e.g., advertiser.it and
advertiser.com).

• Shared Storage API : this component introduces a new form of shared browser
storage that can be accessed from multiple websites. To prevent data leakage,
the stored data can only be accessed from a secure JavaScript environment,
known as a shared storage worklet.

• CHIPS (Cookies Having Independent Partitioned State) API : this component
partitions third-party cookies based on the website the user is visiting, meaning
that a single third party will have separate cookie storage for each website
where it is present. This prevents the third party from using the same cookie
across different sites, therefore limiting cross-site tracking, while still allowing
certain necessary use cases like login status, preferences, or shopping carts to
function correctly in scenarios that span multiple domains.

• Fenced Frames API : this component introduces a new <fencedframe> HTML
element, which embeds content similarly to an iframe but prevents the sharing
of data between the embedding page (the website) and the embedded content
(the advertiser).

• Federated Credential Management API : this component allows users to log
into sites using federated authentication (e.g., “Sign in with...”) without
sharing personal information with the identity service or the site. The browser
facilitates the user’s login from a graphical interface that lets them choose
their identity. After that, the browser will perform the login with the Identity
Provider without sharing cookies with it.

9

Background

• Protected Audience API : this component enables IBA while protecting the
users’ privacy. Users are assigned into interest groups, based on the websites
they visit and their interactions. Then, when a user visits a page that displays
ads, the website (the “seller”) runs an auction within the browser to choose the
most appropriate ad to display based on the user’s interests. Only the winning
ads are shown to the user, and the advertiser (the “buyer”) can optionally
request the browser for a report on the auction’s outcome.

• FLoC (Federated Learning of Cohorts)—discontinued: similarly to the Pro-
tected Audience API, FLoC has the main objective of providing IBA in a
privacy-friendly manner. Instead of interest groups, users are automatically
placed into cohorts by the browser, based on the websites they visit. The
user’s cohort is usually shared with the advertiser, so that it can select the
most appropriate ad to display. This component, detailed in Section 2.3, is
considered as the predecessor of the Topics API.

At the moment of writing, all listed components, except FLoC, have reached the
status of general availability, meaning that they are already available to at least
99% of all current Chrome users [21].

2.3 FLoC

FLoC (Federated Learning of Cohorts) was Google’s first attempt at offering a
privacy-preserving solution for interest-based advertising. Introduced in March
2021 as a component of the Privacy Sandbox framework (discussed in Section
2.2), it was designed as an alternative to third-party cookies for tracking the users’
interests while respecting their privacy.

The functioning principle of FLoC revolves around clustering the users into
cohorts, based on their browsing history. This is achieved by means of a clustering
algorithm developed by Google. Each cohort englobes a large amount of users,
making it difficult to identify a single person based solely on the cohort they belong
in.

Whenever a user visits a website, a third-party platform can interrogate the
browser to retrieve the cohort the user belongs in, by invoking a specific function
from a script (namely, document.interestCohort()). The user’s cohort and the
set of possible cohorts are updated weekly. This allows external advertising services
to draw conclusions on the user’s interests based on their cohort, without receiving
any information about the specific websites visited.

FLoC has been heavily criticised throughout its lifetime [17, 18, 19]. While it
offered improvements over traditional third-party cookie tracking, there were still
concerns about potential user identification across multiple websites. Although

10

Background

User's browser

request <html>

 <script>
 // Retrieve cohort
 const cohort = await document.interestCohort();

 // Send the cohort to the ad server using a POST request
 const response = await fetch("https://advertiser.com/...", {
 method: "POST",
 body: JSON.stringify({ cohort })
 });

 // Use the response to display the personalised ad

 </script>
 </html>

request

Web Page

 advertiser.com

 B

ro
w

si
ng

 H
is

to
ry

 website.com

response

 C

lu
st

er
in

g
M

od
el

User Cohort

Figure 2.2: Simplified schema of FLoC’s mechanisms.

a single cohort is linked to many users, the set of cohorts the user belongs to
becomes increasingly unique as time passes. Therefore, a malicious third party
could collect a user’s cohorts over an extended period of time across multiple
websites and cross-reference the collected lists: the longer the overlap, the greater
the probability that the same user has visited the those websites. For this reason,
Google discontinued the development of FLoC starting from January 2022, in
favour of the Topics API. Chapter 3 provides an in-depth view on how the new
successor works.

11

Chapter 3

The Topics API

The Topics API [34, 35] is the evolution of the FLoC inside the Privacy Sandbox.
Similarly to its predecessor, this component was introduced to provide a privacy-
friendly solution for interest-based advertising. Compared to FLoC, the Topics API
replaces user cohorts with pre-defined topics of interest. A user can have multiple
topics assigned, based on the websites they visit during a given amount of time.
To preserve their privacy, both the amount of topics assigned to users and the ones
disclosed to an advertising platform is limited.

At the time of writing, the Topics API is available on two main platforms:
the Web and Android. The Web version is intended to support interest-based
advertising within Web applications, preventing the usage of third-party cookies
for cross-site tracking. It is currently only available on the mobile and desktop
versions of Chromium and Chrome browsers, starting from version 101 released in
March 2022. On the other hand, the Android version provides the same features
of its Web counterpart, but is designed for mobile applications running on the
Android operating system, preventing advertisers from tracking users across multiple
applications. This chapter will focus on the Web version, detailing its mechanisms
in the following sections.

3.1 Terminology

This section will introduce some key terms needed to fully comprehend how the
Topics API works.

• A topic represents the classification of a website with a user’s topic of interest.

• A taxonomy is a comprehensive list of topics that follows a hierarchy, grouping
multiple topics into categories. For example, a topic of interest defined in the
taxonomy is News, which refers to news platforms in general. This topic also

12

The Topics API

represents a category, optionally allowing more detailed classifications such
as News/Local News and News/World News to identify the specific types of
news. At the moment of writing, the most recent taxonomy version used by
Google is 21.

• A caller or CP (Calling Party) refers to a third-party service that performs
a call to the Topics API. This role is usually taken by advertisers that are
embedded in a website.

• An epoch refers to a certain time interval, which defaults to one week but
can be customised by an advanced user by setting a configuration flag inside
the browser. The initial time of each epoch is randomised separately for each
caller and website.

• An override list refers to a data structure that maps pre-defined domains with
their “true” topics. At the moment of writing, the topics are mapped for the
top 10,000 websites by popularity according to Google.

• A classifier model is a machine learning model that associates a user-visited
domain to zero or more topics. At the time of writing, the model used by
Google for this task is built upon the override list and is based on BERT, a
natural language processing model developed by them [36]. Currently, the
only input of the model is the website’s domain name, leading to possible
inaccuracies in the assigned topics, especially if the domain name is ambiguous
or misleading [37].

3.2 The algorithm

This section will provide an overview of how the Topics API collects the users’
topics of interest and how they are disclosed to the advertising platforms.

First, the browser passively monitors the user’s browsing activity, saved locally
within Chrome’s user profile folder2 as a local database named History. Each
website is then assigned a set of topics: if the website appears in the override list,
its corresponding topics are chosen; otherwise, the browser uses Google’s BERT
classifier model [38] to estimate the domain’s topics.

1The complete taxonomy can be found at https://github.com/patcg-individual-drafts/

topics/blob/main/taxonomy_v2.md

2This folder is typically located at %localappdata%\Google\Chrome\UserData\Default

on Windows, /Users/<username>/Library/ApplicationSupport/Google/Chrome/Default on
Mac and ~/.config/google-chrome/Default on Linux.

13

The Topics API

At the end of each epoch, the browser computes the top-5 most visited topics by
the user and stores them inside a local list, detailed in Section 3.3.1. For each topic,
a collection of observers is saved, i.e., the third parties that performed a Topics
API call on a website whose domain is classified with that specific topic. This
information can be easily viewed from the chrome://topics-internals page.

When a user visits a website, an authorised caller (details in Section 3.4) can
call the Topics API in one of three ways, listed in Section 3.5. The browser will
then randomly select a topic for each of the previous three epochs at most, and
then disclose the selections to the caller. It’s important to note that, during a
given epoch, a caller can only learn the topics that have been observed by it in
any of the previous three epochs. Therefore, an advertiser that calls the Topics
API for the first time inside a browser will not receive any topics, as none were
observed by it in the previous epochs. Figure 3.1 illustrates the overall process of
topic derivation and disclosure.

User's browser

 <html>

 </html>

To
pi

cs
 A

PI
 D

at
ab

as
e

Topics

Observers

Week 1

Topics

Observers

Week 3

Topics

Observers

Week 2

 B

ro
w

si
ng

 H
is

to
ry

 C

la
ss

ifi
er

 M
od

el

request

call

Topics API caller

 advertiser.com

Web Page request website.com

response

Figure 3.1: Simplified diagram of the Topics API’s mechanisms. In the above
example, out of the three topics chosen by the browser, only two are disclosed to
the advertiser, because the topic drawn in week 3 was not previously observed by
them.

To further protect the users’ privacy, an element of plausible deniability is
introduced: there is a 5% chance that the topic will be randomly selected among

14

The Topics API

the entire taxonomy instead of the top-5 list. In that case, the selected topic will be
disclosed regardless of whether it had been previously observed by the caller. This
makes it more challenging for a malicious entity to build a user’s profile and identify
them across multiple websites. However, it has been shown that it remains feasible
to perform cross-site user identification, by leveraging topic information collected
over a long period of time [20, 37, 39, 40]. The process is very similar to what has
already been discussed in Section 2.3: a malicious entity could collect the user’s
topics over several epochs and across multiple websites, then cross-reference these
lists to identify the same user across different sites. As more topics are collected,
the probability of correctly identifying the user increases. Figure 3.2 illustrates the
threat model of user re-identitification through the Topics API. To circumvent the
plausible deniability aspect, the attacker could apply a filter that eliminates the
topics that appear less frequently inside the collection, as they may potentially
refer to randomly selected topics [20].

Ex
po

se
d

To
pi

cs

Website 2

User 4

User 5

User 6

Ex
po

se
d

To
pi

cs

Website 1

User 1

User 2

User 3

?

Attacker

Figure 3.2: Simplified schema showing the cross-site user re-identification threat
model within the Topics API.

3.3 Internal data structures

This section will detail the data structures used by the Topics API to store persistent
information locally within the user’s machine.

15

The Topics API

3.3.1 BrowsingTopicsState

This JSON file, located inside Chrome’s user profile folder, stores the top-5 topics for
each epoch. As shown in Listing 3.1, the file consists of the following information:

• The time at which the top-5 list was calculated.

• Metadata regarding the version of the classifier model, the browser’s configu-
ration and the taxonomy.

• The list of top-5 observed topics, each containing the list of observers, in
hashed form.

• The index of the list from which topics have been generated at random. This
happens whenever the user has visited less than 5 topics during the epoch.

{

" epochs ": [

{

" calculation_time ": "123456" ,

" config_version ": 2,

" model_version ": "5" ,

" padded_top_topics_start_index ": 2,

" taxonomy_version ": 2,

" top_topics_and_observing_domains ": [

{

" hashed_domains ": [

123456 ,

...

],

" topic ": 123

},

...

]

}

]

}

Listing 3.1: Example showing the structure of the BrowsingTopicsState file.

3.3.2 BrowsingTopicsSiteData

This file-based relational database, located in Chrome’s user profile folder, keeps
track of the websites that invoke the Topics API. Its entity-relationship diagram is
shown in Figure 3.3. Specifically, this database keeps track of:

16

The Topics API

• The context domain, i.e., the 2LD (Second-Level Domain) of the browsing
context that invokes the Topics API. A browsing context [41] refers to the
environment where a browser displays a document. In modern browsers, this
is typically a tab, a window or an iframe.

• The main frame host, i.e., the website where the Topics API call took place.

• The timestamp of the latest usage, separately by context domain and main
frame host.

• Various meta information, such as the version of the database.

An important aspect of this database is that it only keeps track of successful
Topics API calls. If a call fails or is blocked for any reason, it will not be recorded.

browsing_topics_api_hashed_to_unhashed_domain

hashed_context_domain INTEGER PK

context_domain TEXT

browsing_topics_api_usages_complete

hashed_context_domain INTEGER PK,FK

hashed_main_frame_host INTEGER PK

last_usage_time INTEGER

meta

key LONGVARCHAR PK

value LONGVARCHAR

Figure 3.3: Entity-relationship model of the BrowsingTopicsSiteData database.

3.3.3 PrivacySandboxAttestations

This data structure is used by the browser to keep track of the third parties that
are allowed to call each component of the Privacy Sandbox. It’s contained inside a
configuration file named privacy-sandbox-attestations.dat, located inside the
PrivacySandboxAttestationsPreloaded folder of Chrome’s local configuration3.

3This folder is typically located at %localappdata%\Google\Chrome\UserData\Default on
Windows, /Users/<username>/Library/ApplicationSupport/Google/Chrome on Mac and ~/

.config/google-chrome on Linux.

17

The Topics API

The contents of this file are encoded as a protocol buffer, a binary format designed
by Google [42]. Listing 3.2 shows an example of its contents, converted to a
human-readable format.

all_apis : ATTRIBUTION_REPORTING

all_apis : PRIVATE_AGGREGATION

all_apis : PROTECTED_AUDIENCE

all_apis : SHARED_STORAGE

all_apis : TOPICS

sites_attested_for_all_apis : " https ://360 yield .com"

[...]

sites_attested_for_all_apis : " https :// yelp.com"

site_attestations {

key: " https ://a-mo.net"

value {

attested_apis : PRIVATE_AGGREGATION

attested_apis : PROTECTED_AUDIENCE

attested_apis : SHARED_STORAGE

attested_apis : TOPICS

}

}

[...]

Listing 3.2: Example of privacy-sandbox-attestations.dat’s contents, shown
in a human-readable format.

3.4 Authorised callers and attestations

Since the Privacy Sandbox handles sensitive user information and could be ex-
ploited to potentially breach user privacy, all of its components, Topics API
included, are restricted to select third-party platforms that have completed an
enrolment process [43]. Upon its completion, each platform receives an attestation
file—a JSON file containing details such as which Privacy Sandbox components
the third party is allowed to use, on which platform and for how long. The
structure of the JSON, exemplified in Listing 3.3, is organized in one or more
privacy_sandbox_api_attestations, each containing the following information:

• The attestation_parser_version, which helps determine the properties
that are expected within this object. At the moment of writing, the most
recent version is 2, featuring minor updates from the first version.

• An attestation_version, usually a number that increments with each ele-
ment in the privacy_sandbox_api_attestations collection.

18

The Topics API

{

" privacy_sandbox_attestations ": [

{

" issued_time_since_epoch ": 123456 ,

" expired_time_since_epoch ": null ,

... ,

" platform_attestations ": [

{

" platform ": " chrome ",

" attestations ": {

" topics_api ": {

" ServiceNotUsedForIdentifyingUserAcrossSites ": true

},

...

}

},

...

]

}

]

}

Listing 3.3: Structure of a valid attestation JSON file.

• A privacy_policy, specified as a list of URLs to textual documents.

• An enrollment_id and ownership_token, used by Google for verification
purposes.

• The enrollment_site, which specifies the domain of the third party allowed
to call the Privacy Sandbox components. Interestingly, we have noticed
that the enrolment site does not always coincide with the domain where the
attestation file is placed.

• The time window of validity, defined by the fields issued_time_since_epoch

and expiry_time_since_epoch. The latter field is optional.

• A collection of platform_attestations, JSON objects detailing for each
platform (e.g. Chrome, Android) a list of the Privacy Sandbox components
that the third party is allowed to invoke. For each component, the third-party
platform states through an attestation in the form of a boolean property
(namely, ServiceNotUsedForIdentifyingUserAcrossSites) that it will not
exploit the component for cross-site user identification.

This file must be made publicly accessible at a specific path within the platform’s do-
main, namely <domain>/.well-known/privacy-sandbox-attestations.json.

19

The Topics API

In theory, failure to do so should result in the revocation of permission to use any
Privacy Sandbox component. Overall, this mechanism provides a way to easily
determine who can access the Topics API and other components of the Privacy
Sandbox. This information is not only available to Google for access control
purposes, but also to users for transparency.

The browser maintains a local record of every authorised third party, along
with the specific Privacy Sandbox components each is allowed to use, inside the
privacy-sandbox-attestations.dat data structure, described in Section 3.3.3.
When any component of the Privacy Sandbox is called, the browser compares the
caller’s domain against the list: the request is processed only if the domain appears
in the list and is allowed to call the specific API. The sandbox attestation list is
automatically kept up to date by the browser, as its contents are updated daily
by Google. In theory, only platforms that have completed the enrolment process
and correctly exposed the JSON attestation file within their domain are granted
inclusion in this list. Conversely, failing to do so, even after being included, should
result in their removal from the list.

3.5 Usage types

The Topics API can be called from the browser in any of three ways. Each of them
will be listed and detailed in this section.

3.5.1 JavaScript

The Topics API can be called by means of an asynchronous JavaScript function
(namely, document.brosingTopics()). This function resolves with an array of up
to 3 objects, representing the user’s topics of interest. This result can then be
shared with the third party’s server through an HTTP exchange. The following
code snippet shows a simplified example of implementation:

1 // Retrieve the topics

2 const topicsArray = await document . browsingTopics ();

3

4 // Send the topics to the Ad server

5 const response = await fetch (" https :// advertiser .com/get -ad", {

6 method : "POST",

7 body: JSON. stringify ({ topics : topicsArray })

8 });

9

10 // Use the response to display the Ad ...

Each object in the topicsArray contains:

20

The Topics API

• The topic, represented as an integer identifying the topic in the taxonomy.

• The version, which is usually expressed as three separate properties (namely
configVersion, modelVersion and taxonomyVersion), but this information
can also be contained in a unique property concatenating the three values.

3.5.2 Fetch

The Topics API can be called directly through JavaScript’s fetch function, by
setting the dedicated browsingTopics boolean option. The previous example code
can be re-written as the following:

1 // Send the topics to the Ad server

2 const response = await fetch (" https :// advertiser .com/get -ad", {

3 method : "GET",

4 browsingTopics : true

5 });

6

7 // Use the response to display the Ad

Behind the scenes, the browser sets a dedicated HTTP header in the request,
containing the user’s topics of interest and version information. An example value
of this header, containing topics 123 and 456, is the following:

Sec-Browsing-Topics:(123 456);v=chrome.2:2:2, ();p=P000...

The p value in the header serves as a padding, to ensure that the header’s length
remains consistent. The server can then read the contents of this header and return
an appropriate ad to show the user. In order to have the browser mark the topics
as observed by the third party, the server must contain the following HTTP header
in its response:

Observe-Browsing-Topics:?1

3.5.3 IFrame

The Topics API can be called directly from the HTML of the website’s page, by
integrating an iframe tag with the browsingtopics attribute set. Following the
previous example, the JavaScript code can be omitted in favour of the following
iframe tag inside the Web page’s HTML:

1 <iframe src=" https :// advertiser .com/get -ad" browsingtopics ></

iframe >

21

The Topics API

Behind the scenes, the same header introduced in Section 3.5.2 is set inside the
request to the server. Therefore, this method allows to perform the same operations
as in Section 3.5.2 while writing less code, if the advertiser returns an HTML page
for display.

22

Chapter 4

Methodology for data

collection

This chapter will describe in detail the methods adopted to collect measurements
related to the Topics API across the Web. The data collection process is performed
in form of a measurement campaign, divided into multiple steps. Each step,
summarised in Figure 4.1, will be briefly explained below and further detailed in
the following sections.

1. Website crawling with Priv-Accept: each website is crawled using Priv-Accept,
a Selenium-based Web crawler created for a previous study [23]. This tool was
modified to allow the collection of data related to the Topics API. For each
website visited, the crawler outputs a JSON file containing useful information
collected during the crawling, such as the third parties encountered and the
Topics API calls recorded. Section 4.1 provides details on how the crawler
works and how it was adapted for this campaign.

2. Extract contacted domains: this stage extracts, starting from the previous
stage’s outputs, the entire list of websites and third parties contacted during
the crawling process. The reasons for this step are detailed in Section 4.3.

3. Extract Attested domains: this stage filters the Attested domains from the list
obtained in the previous step. This is done by verifying the presence of the
relative attestation file at the ./well-known/... path, mentioned in Section
3.4. More information about how a domain is classified as Attested can be
found in Section 4.3.

4. Extract Allowed domains: the set of Allowed domains is extracted from
the privacy-sandbox-attestations.dat list using a protocol buffer library.
Further details can be found in Section 4.3.

23

Methodology for data collection

Priv-Accept

{...} output.json

Extract contacted domains

Topic analysis

 contacted_domains.txt

Extract Attested domains

 attested_domains.csv

 analyze-topics-
outputs.csv

 https://<domain>/.well-
known/...

 privacy-sandbox-
attestations.dat

Extract Allowed domains

 allowed_domains.txt

Figure 4.1: Overview of the data collection process.

5. Topic analysis: this final stage filters the most relevant information for the
study and saves it into a more compact JSON file for each website crawled.
Specifically, it stores the list of Topics API usages detected, the list of Attested
and Allowed domains encountered, and whether a privacy banner was found
and clicked by the crawler. The various final outputs can then be further
compacted into a single CSV file. More details on this step can be found in
Section 4.4.

24

Methodology for data collection

4.1 The Priv-accept Web crawler

Priv-Accept is a Selenium-based Web crawler. It was developed for a previous study
that analysed the behaviour of Web pages before and after a user has provided
consent for data collection [23]. The crawler has the unique feature of searching
for privacy banners on websites and clicking the “Accept” button, thus mimicking
the behaviour of a user accepting a website’s privacy policy. This step is of utmost
importance when studying the Topics API in real-world applications, especially
because the measurements are performed from Europe, where the GDPR is in
effect. Given the role of the Topics API in handling sensitive user information, we
expect that the technology must follow the same regulatory frameworks for privacy
protection as third-party cookies. In practice, this means that users must agree to
a website’s privacy policy and explicitly authorise the use of their personal data
before any third party can collect information after a Topics API call. Moreover,
[23] shows that a significant amount of trackers and other third-party services
are contacted only after accepting the visited website’s privacy policy, if present.
Therefore, following this approach would lead to more accurate results, and would
also allow to compare the third parties’ behaviour before and after accepting a
website’s privacy policy.

The original version of Priv-Accept used in [23] performs the crawling in the
following steps:

1. Optional warm-up visit: the crawler loads the website in advance, to populate
the browser cache. While useful for [23], it’s not essential in this case, as the
cache will be cleared before every visit.

2. First visit: the crawler loads the website for the first time, collecting statistics
such as the contacted third parties. We call this step Before-Accept, as in [23].

3. Search privacy banner and click the “Accept” button: the crawler searches
for a privacy banner, by scanning the page for “Accept”-like words. These
words reflect the possible labels of a consent banner’s “Accept” button and
are defined in a customisable list. If an “Accept” button is found, the crawler
attempts to click it.

4. Second visit: after clicking the “Accept” button, the crawler refreshes the page
and collects the same set of statistics as in Before-Accept. We call this step
After-Accept, as in [23].

25

Methodology for data collection

5. Optional additional visits: the crawler visits a custom number of internal
pages, randomly chosen from the internal links1 found within the visited page.
The same statistics as in Before-Accept and After-Accept are collected for
each internal page visit. This step is not very significant for this study, as the
number of third parties does not typically increase after visiting the internal
pages.

Priv-Accept was modified in order to allow the recording of Topics API calls. To
permit the reproducibility of our results, we leave the edited source code available
to the public.2

The method of collection takes advantage of the BrowsingTopicsSiteData

database described in Section 3.3.2: its contents are retrieved using a SQLite
library [44] and then converted into JSON format, which can be saved into the
crawler’s final output. To expand upon the limited information originally collected
from this database, we modified Chromium’s source code and built a custom version
that stores additional information. The specific details of the modifications will be
provided in Section 4.2. Using this customised version of Chromium, we are now
able to collect the following information from the local database for each Topics
API invocation:

• The context origin, i.e., the FQDN of the browsing context where the call
takes place.

• The caller source or usage type, as outlined in Section 3.5.

• The timestamp of the call.

The crawler outputs one JSON file per visited website, containing detailed
information about each stage of the crawling:3

• The collection of URLs that have been contacted by the browser during the
visit, including the website itself and any third parties.

• The list of cookies set during the visit, along with relevant information such
as their value, expiration, and source. This data is sufficient to determine, for
instance, the type of cookie (i.e., persistent or session, first- or third-party).

• The list of Topics API usages detected.

1Internal links refer to links that have the same FQDN (Fully Qualified Domain Name) as the
visited website.

2Available at https://github.com/Novant8/priv-accept-topics.
3The stages are, in order: pre-visit, first, click, second, internal. The first and the

last of them are optional.

26

Methodology for data collection

Additionally, the output contains a list of DOM elements that have been found to
be candidates for a possible “Accept” button, and which of them—if any—has been
clicked. This information will be used to determine whether a privacy banner was
found. Finally, the output file contains page loading statistics and the crawler’s
logs, for troubleshooting purposes.

It must be noted that Priv-Accept has some limitations. Primarily, its privacy
banner detection is not entirely accurate, as our current “Accept” keyword list
supports only five languages: English, French, Spanish, German and Italian. Since
we are considering a list of global websites, there is a high chance that websites
in other languages will appear. In such cases, Priv-Accept may fail to recognise
the “Accept” button even if a privacy banner is present, and the result will appear
indistinguishable from that of a website without one. Moreover, the measurement
campaign is conducted exclusively from Europe, which could result in websites
being blocked by local security mechanisms such as firewalls and other domain-
blocking services running on the Interner Service Provider’s (ISP) part. For that
reason, the actual number of websites that produce results will probably be lower
than 50,000. A potential topic of future research could involve the conduction of
the same campaign from different locations, to see how the results compare.

4.2 Modifications to the Chromium browser

As introduced in Section 4.1, the crawler uses a customised version of Chromium
that obtains additional Topics API usage information that are useful for this study.
This section details the specific modifications performed to the C++ source code
of Chromium, version 122.0.6261.128 [45].

The primary goal of these modifications is to expand the already existing
BrowsingTopicsSiteData database by adding fields that may be useful for this
and other relevant studies. The new fields include:

• The context origin, i.e., the FQDN of the third party that performed the call.

• The caller source, i.e., the usage type as introduced in Section 3.5.

In addition to these new fields, the modifications allow to save the information
related to every call, instead of just the most recent one for a given party, as is
currently the case.

To achieve this, it is necessary to modify the existing database’s structure:
the target structure’s entity-relationship model is shown in Figure 4.2. To reach
this schema, the context origin and caller source can simply be added inside the
browsing_topics_api_usages table as new attributes. However, to allow the
collection and saving of every call, a unique usage_id attribute must be introduced
as the new primary key. To prevent breaking other browser components that

27

Methodology for data collection

may depend on the old database structure, all new and existing attributes are
saved inside a physical table called browsing_topics_api_usages_complete. The
original browsing_topics_api_usages table is then redefined as a virtual view of
the complete table.

browsing_topics_api_hashed_to_unhashed_domain

hashed_context_domain INTEGER PK

context_domain TEXT

browsing_topics_api_usages_complete

usage_id INTEGER PK

hashed_context_domain INTEGER FK

hashed_main_frame_host INTEGER

context_origin TEXT e.g. 'https://sub.website.com'

caller_source TEXT 'javascript' | 'fetch' | 'iframe'

usage_time INTEGER

browsing_topics_api_usages

hashed_context_domain INTEGER PK,FK

hashed_main_frame_host INTEGER PK

last_usage_time INTEGER

meta

key LONGVARCHAR PK

value LONGVARCHAR

Figure 4.2: Updated entity-relationship diagram of the BrowsingTopicsSiteData

database. The browsing_topics_api_usages entity represents a virtual view over
the browsing_topics_api_complete table.

The database is managed by the BrowsingTopicsSiteDataStorage class.4 This
class contains two key functions for the database’s management:

• Function CreateSchema5 is invoked whenever the browser is opened and the
database is either corrupted or not available. Its purpose is to initialize
the database, by defining its structure. In fact, it contains the Data Defini-
tion Language (DDL) that creates the needed tables and does not take any
parameters.

• Function OnBrowsingTopicsApiUsed6 is invoked on every Topics API call by

4The implementation of this class is available at https://source.chromium.org/

chromium/chromium/src/+/refs/tags/122.0.6261.128:content/browser/browsing_

topics/browsing_topics_site_data_storage.cc

5The source code of this function is available at https://source.chromium.org/

chromium/chromium/src/+/refs/tags/122.0.6261.128:content/browser/browsing_

topics/browsing_topics_site_data_storage.cc;l=309

6The source code of this function is available at https://source.chromium.org/

chromium/chromium/src/+/refs/tags/122.0.6261.128:content/browser/browsing_

topics/browsing_topics_site_data_storage.cc;l=169

28

Methodology for data collection

an authorised party. It inserts or updates a usage entry in the database and
takes three parameters: the digest of the main frame host, the context domain
and its hashed form.

Both functions were modified to reflect the new database structure. While modify-
ing CreateSchema was relatively simple, OnBrowsingTopicsApiUsed was more
complex, due to its parameters not supporting the retrieval of the required
information. For this reason, we adapted the code to leave the task of col-
lecting the context origin and caller source to the other functions that invoke
OnBrowsingTopicsApiUsed, shown in Figure 4.3. The retrieved fields are then
passed down to OnBrowsingTopicsApiUsed as extra function parameters.

calls

calls

writes on

calls (async)

BrowsingTopicsServiceImpl::HandleTopicsWebApi

BrowsingTopicsPageLoadDataTracker::OnBrowsingTopicsApiUsed

BrowsingTopicsSiteDataStorage::OnBrowsingTopicsApiUsed

BrowsingTopicsSiteData

BrowsingTopicsSiteDataManagerImpl::OnBrowsingTopicsApiUsed

Figure 4.3: Dependency graph of functions that call OnBrowsingTopicsApiUsed

and were modified for the purpose of this analysis.

The full code snippets of the most relevant functions modified are available
in Appendix A. Moreover, the full changes to Chromium’s code, with respect to
version 122.0.6261.128, are left available to the public.7

After the applied modifications, we built the new version of Chromium by
following their guide [46].

7The changes are available at https://github.com/Novant8/priv-accept-topics/blob/

main/chromium-changes.patch. They can be applied to Chromium’s source code by running
Linux’s patch command at its root folder.

29

Methodology for data collection

4.3 Domain extraction and attestation

When a Web browser visits a website, numerous files are downloaded from multiple
sources, many of which represent third-party services such as online advertisers.
One of the key aspects of this study is determining which of these third parties
are authorised to invoke the Topics API. As outlined in Section 3.4, there are two
main ways for demonstrating this:

• Verifying whether the 2LD of the third party contains a valid attestation file
at the .well-known/... path.

• Checking whether the 2LD of the third party is present inside the local
privacy-sandbox-attestations.dat list downloaded by the browser.

We will use both methods, to detect possible inconsistencies. For clarity, we refer
to domains meeting the first condition as Attested and those meeting the second
condition as Allowed.

To determine the set of Attested websites, all domains encountered during the
measurement campaign need to be contacted. To avoid contacting the same domain
multiple times, this process is performed on the set of unique domains retrieved
from all of Priv-Accept’s outputs. This set is saved into a text file called contacted_

domains.txt. For each domain in this list, a Python script sends an HTTP request
to the URL https://<domain>/.well-known/privacy-sandbox-attestations.

json. If the server responds with some content, the script verifies whether it is a
JSON file with the same structure as described in Section 3.4. Specifically, for a
domain to be considered Attested, the attestation JSON must contain a non-expired
Privacy Sandbox attestation with an attestation object for Chrome’s platform for
the Topics API. In other terms, all the properties shown in Listing 3.3 must be
present, with expired_time_since_epoch’s value being null or greater than the
current time. The set of Attested domains is saved into a separate CSV file called
attested_domains.csv which contains, for each row, the Attested domain and the
full content of the JSON attestation file.

To determine the set of Allowed websites, the process is more straightforward:
the list can be retrieved directly from the privacy-sandbox-attestations.dat

file, introduced in Section 3.3.3, using a protocol buffer library [42]. Since not all
the domains listed in the file are authorised to use the Topics API, it is necessary
to filter out those that lack the permissions for the component. This step outputs
a text file called allowed_domains.txt, containing one Allowed domain per row.

30

Methodology for data collection

4.4 Topic analysis

Priv-Accept’s outputs can become particularly large, especially when full request
and response logging is enabled. Since only a limited amount of the information
stored in these outputs is actually needed for this study, this final step of the
anaysis is introduced to filter out the unnecessary data, producing a more compact
final output. This is done by means of a Python script, whose behaviour can be
summarised in the following three operations:

• Extract Allowed and Attested domains: for each website and visit, we extract
the list of Attested and Allowed websites. This is done by cross-referencing
the domains contacted during the visit with the overall list of Attested and
Allowed domains, obtained as explained in Section 4.3.

• Extract banner data: this step obtains directly from the output of Priv-Accept
whether the privacy banner was found and clicked, for each website visited.

• Extract Topics API usages: for each website and visit, the list of Topics API
usages is collected directly from the Priv-Accept output.

The structure of the final output for each visited website is summarised in
Listing 4.1. This format allows the file to be easily converted into the row of a
CSV file, for more efficient storage.

31

Methodology for data collection

{

"url ": " https :// website .com",

" banner_clicked ": true ,

" first ": {

" attested_domains ": [

" advertiser .com",

...

],

" allowed_domains ": [

" advertiser .com",

...

],

" topics_api_usages ": [

{

" context_origin_url ": " https :// sub. advertiser .com",

" caller_source ": " javascript ",

" usage_time ": 123456 ,

" possible_callers ": [

{

"url ": " https :// advertiser .com/ script .js",

" reason ": "browsing -topics -in - script "

},

...

]

},

...

]

},

" second ": {

...

}

}

Listing 4.1: Example showing the final output’s JSON structure relative to a
single visited website. The first property refers to the Before-Accept visit, while
second refers to the After-Accept visit.

32

Chapter 5

Dataset and results

We conduct the first iteration of the measurement campaign on March 30th, 2024,
from a single machine part of the Politecnico di Torino’s computing cluster. The
crawler visited the top 50,000 websites by popularity according to the Tranco list,
as of March 26th, 2024 [47]. The campaign lasted for about 36 hours.

At the end of this first iteration, we identify two main datasets:

• Out of the total 50,000 attempted visits, 43,405 successfully produce an output
for at least the Before-Accept visit. The remaining websites fail mainly due to
domain name resolution and connection-related errors. It also includes 19,534
third parties encountered during the crawling. We refer to this dataset as
DBA.

• Of the websites in DBA, only 14,719 (about 30%, which appears to be in
line with [23]) contained a privacy banner that Priv-Accept was able to find
and provide consent to the usage of personal information. As mentioned in
Section 4.1, this does not reflect the true number of websites with a privacy
banner, as the crawler could have missed the keyword or visited a website in
an unsupported language. We refer to this dataset as DAA.

With regard to the Topics API calls, we find a total of 1,337 callers during
Before-Accept, and 2,662 during After-Accept. From this point, they will be referred
to as CPs (Calling Parties). Table 5.1 summarises the most interesting numbers
obtained:

• 193 domains appear to be Allowed. In theory, these should be the only ones
able to perform a Topics API call.

• Out of the 193 Allowed domains, 181 expose the attestation file at the correct
path, while 12, erroneously, do not. We analyse the enrolment timeline of the
181 Attested and Allowed third parties in Section 5.1.

33

Dataset and results

CP Allowed Attested

- 6 - 193
- 6 : 12

D
A

A

6 6 6 47
: 6 6 105
6 : 6 1

6 : : 2,614

D
B

A 6 6 6 28

6 : 6 1

6 : : 1,308

Table 5.1: Overall status of the Topics API callers encountered during the
measurement campaign. Each row counts the number of third parties encountered,
taking into account whether they are CPs, and whether they are inside the Allowed
and Attested sets. The first collection of rows refers to the information obtained
from the local browser allow-list (Section 3.3.3) and the JSON attestation files
(Section 3.4). The other two groups refer to the third parties present inside the
DAA and DBA datasets, respectively. We highlight, in red, the anomalous usage
and, in blue, the questionable usage.

• During the crawling process, we encounter a total of 152 allowed third parties
in DAA, out of which only 47 call the Topics API. We detail the legitimate
usages performed by these CPs in Section 5.2.

• Surprisingly, we find a very large number—thousands—of websites and CPs
that call the Topics API, even if they are not part of the Allowed or the Attested
set. These anomalous usages and the possible reasons of their existence will
be discussed in Section 5.3.

• We find that one CP—namely dstillery.com—contains a valid attestation
file, issued in November 2023, but is not contained in the Allowed set. This
possibly reflects that the attestation process is still ongoing, or that Dstillery
is not interested in completing it. At the moment of writing, the status of this
CP remains unchanged.

• In DBA, we would expect to encounter no call to the Topics API, given that
the user hasn’t accepted the privacy policy yet. However, we find a total of
1,337 parties that performed a call before the privacy policy was accepted.
Out of these, 28 are from CPs that are Allowed, 1,308 are from CPs that
are not Allowed or Attested, and one—namely, tail.digital—is from a CP

34

Dataset and results

that is Attested but not Allowed.1 We discuss the possible reasons of these
questionable usages in Section 5.4.

The following sections will provide a global picture of the Topics API’s presence
in the current Web ecosystem, providing insights on legitimate, questionable and
anomalous usages detected during this first iteration of the measurement campaign.

5.1 Enrolment timeline

This section concentrates on the 181 domains that are present in both the Attested
and Allowed sets. By processing the JSON attestation file described in Section
3.4, we can visualise the onboarding process over time by extracting the issue date
from each attestation file. Figure 5.1 shows a timeline of the onboarding, which
counts the number of enrolments on a daily basis.

20
23

/0
7/

01

20
23

/0
8/

01

20
23

/0
9/

01

20
23

/1
0/

01

20
23

/1
0/

17

20
23

/1
1/

01

20
23

/1
2/

01

20
24

/0
1/

01

20
24

/0
2/

01

20
24

/0
3/

01

20
24

/0
4/

01

20
24

/0
5/

01

Enrolment date

0

10

20

30

40

50

E
n
ro
ll
ed

d
o
m
ai
n
s

First enrolment Upgraded enrolments

Figure 5.1: Timeline showing the enrolment date of third parties that are present
in both the Attested and Allowed sets. In red, the number of third-party services
that have received the attestation file for the first time. In blue, the number of
services that have renewed the enrolment from the second time onwards.

We can deduce from the figure that the enrolments kicked off in June 2023, with
the first attestations being generated on the 16th. Until May 2024, the enrolment

1This domain is a different case from dstillery.com: by analysing its attestation file, we
notice that the enrollment_site is tailtarget.com, which is in the Allowed set. This likely
means that the two domains are registered under the same company. On the other hand, Dstillery’s
domain and the enrollment_site in its attestation file match.

35

Dataset and results

process proceeds at a very slow pace, with only approximately a dozen new domains
obtaining an attestation file per month. Curiously, the timeline shows a peak of
updates to the attestation files on October 17th, 2023. Upon further analysis, we
notice that this peak coincides with the update of the attestation version, which
included the addition of the enrollment_site field and other minor changes. This
update was performed by 45 third parties, out of the 61 total that were already
enrolled—and thus, already had an attestation file—before that date.

5.2 Legitimate usage

In this section, we concentrate on the legitimate uses of the Topics API. Therefore,
we only consider the invocations that were performed by the 47 CPs that are both
present in the Allowed and Attested sets, only on those websites where the crawler
was able to accept the privacy policy (DAA dataset). In particular, we focus on
what are the most popular advertisement platforms that adopt the Topics API.

10
0

10
1

10
2

10
3

10
4

Website rank (by number of calls)

0

2

4

6

8

10

12

C
al
li
n
g
P
ar
ti
es

Figure 5.2: Distribution of the Topics API calls among the websites visited in
After-Accept. The graph counts the amount of CPs found within each website,
sorted by this number in descending order.

First, we analyse how the Topics API calls are distributed among the visited
websites: Figure 5.2 counts the number of CPs that invoked the Topics API for each
visited website. It appears that 12 is the most CPs embedded by a single website,
with the other top-10 websites at 11. The top-100 websites by number of embedded
CPs host 8 or more, while the top 1,000 hosts 4 or more. From this graph, we
can observe around 6,500 websites with at least one call to the Topics API: this
is around 45% of the total 14,719 websites visited in After-Accept, meaning that

36

Dataset and results

almost one every two websites hosts a legitimate call to a CP. This hints that the
authorised third parties are already showing interest towards the new technology.

go
og
le-
an
aly

tic
s.c
om

do
ub
lec
lic
k.n

et

bin
g.c
om

rub
ico

np
roj
ect

.co
m

pu
bm

ati
c.c
om

cri
teo

.co
m

cas
ale

me
dia

.co
m

3li
�.c

om

op
en
x.n

et

tea
ds.
tv

tab
oo
la.
com

ad
for

m.
ne
t

ind
exw

w.c
om

qu
an
tse
rve

.co
m

ya
ho
o.c
om

�ird Parties

0

2500

5000

7500

10000

W
eb
si
te
s

�ird party present and called

�ird party present but not called

Figure 5.3: Number of websites where Allowed and Attested third-party services
were present, and the subset where a call to the Topics API was recorded, sorted
in descending order by the number of websites where the third-party service was
found. Dataset DAA is considered for this graph.

Next, we move onto the third-party services, discovering which ones among the
most popular tend to invoke the Topics API. Figure 5.3 details the number of
websites where the most popular Attested and Allowed third parties are present,
shown in red. In blue, we highlight the subset of websites where the same third party
also invokes the Topics API, and can therefore be considered a CP. It appears that
the top-10 third parties, all of which are well-known, perform some calls, except for
two of them—namely, google-analytics.com and bing.com. This is logical, as
both Google Analytics and Bing are not ad-related services. The CPs that appear to
perform the most calls are doubleclick.net, criteo.com, rubiconproject.com

and casalemedia.com. However, none of these CPs appear to invoke the Topics
API on every website. On the contrary, calls seem to appear with different levels of
frequency for each CP: criteo.com performs a call on about three websites every
four it is embedded in, rubiconproject.com and casalemedia.com on about half
of them, while doubleclick.com only on about one third of them. In general, these
results show that the most major ad-related third parties have started employing
the Topics API in their own production environment, although not consistently.
This is a clear hint that there is some ongoing testing process from most of the
observed platforms.

An effective way to investigate this aspect is by further examining the frequency
with which the various CPs call the Topics API on the websites they appear in, that

37

Dataset and results

au
tho

riz
ed
va
ult
.co
m

cri
teo

.co
m
cp
x.t
o

op
en
x.n

et

ya
nd
ex.

com

tab
oo
la.c

om

cas
ale

me
dia

.co
m

rub
ico

np
roj
ect

.co
m
tea

ds.
tv

3li
�.c

om

un
rul

ym
ed
ia.
com

cre
ati
vec

dn
.co
m

do
ub
lec
lic
k.n

et

ou
tbr

ain
.co
m

po
str
ele

ase
.co
m

Calling Parties

0

25

33

50

66

75

100

E
n
ab
le
d
[%
]

218 2274 114 1433 210 1129 1953 2481 1190 1511 189 595 8293 810 622

Figure 5.4: Top-15 Allowed and Attested CPs with the largest enabled percentage.
The enabled percentage is the percentage of times a CP performs a call to the
Topics API over the total number of websites it appears in (shown in the top
row), sorted in descending order by this value. For a clearer result, only the most
meaningful CPs were considered, i.e., those that were found in at least 100 websites.
The dataset considered for this graph is DAA.

is the ratio between the amount of calls recorded from a given CP and the total
number of websites it appears in. Figure 5.4 shows the CPs with the highest enabled
percentages, which highlights some fractions on the y-axis to simplify reading the
results and details the total number of times the CP is observed on the top.
We can notice some interesting behaviours: for instance, authorizedvault.com,
present on 218 websites, is the only CP that calls the Topics API amost every
time. In contrast, criteo.com and cpx.to perform a call around 75% of the time,
yandex.com around 66% of the time, casalemedia.com and rubiconprpject.com

almost exactly 50% of the time and so on. This pattern of percentages further
demonstrates that there probably is some sort of A/B testing going on with these
platforms, with percentages that look predetermined. This process can be highly
beneficial for companies, as it would allow them to compare the effectiveness of the
Topics API paradigm with that of the current one based on third-party cookies for
their business metric.

To further verify the occurrence of A/B testing, we run repeated tests on
select websites to observe the policy CPs use to enable or disable the Topics API.
Specifically, we perform 100 consecutive visits to 5 websites for each of the top-10
CPs shown in Figure 5.4, with the websites manually selected based on the presence
of the respective CP. We notice consistent alternative periods: for some time, CP,
and website, the usage of the API appears to be called for all visits, followed by

38

Dataset and results

some time when it appears disabled. This is consistent with common patterns of
A/B testing, where the CP considers the same population and websites but at
different times.

au
tho

riz
ed
va
ult
.co
m

cri
teo

.co
m
cp
x.t
o

ya
nd
ex.

com

op
en
x.n

et

tab
oo
la.c

om

cas
ale

me
dia

.co
m
tea

ds.
tv

cre
ati
vec

dn
.co
m

rub
ico

np
roj
ect

.co
m

un
rul

ym
ed
ia.c

om

3li
�.c

om

lad
sp.
com

do
ub
lec
lic
k.n

et

ou
tbr

ain
.co
m

Calling Parties

0

25

50

75

100

U
sa
g
es

o
f
ty
p
e
[%
] JavaScript (fetch)

IFrame

JavaScript (document.browsingTopics)

Figure 5.5: Distribution of Topics API usages in DAA, separately by CP. The
CPs shown are the same displayed in Figure 5.4.

Next, we concentrate on what usage types (introduced in Section 3.5) are the
most prominent among the various CPs. Considering only the Attested and Allowed
CPs in DAA, we find that the JavaScript and Fetch usage types are used about
equally, accounting for 47.6% and 48.8% of total calls, respectively. In contrast,
the Iframe usage type is the least common, found in only 3.6% of calls. Interesting
results emerge if we compute this percentage separately by CP. Figure 5.5 shows
these percentages, calculated for each CP that appears in Figure 5.4. We find some
CPs that exclusively adopt one of the types between JavaScript and Fetch, while
others such as criteo.com, openx.net and taboola.com seem to alternate between
the two types. The figure also highlights how doubleclick.net appears to be the
only one among the 15 listed that adopts all three usage types. This is somewhat
expected, given that DoubleClick has been acquired by Google, the creators of
the Topics API. These results suggest that different CPs are experimenting with
different usage types, experimenting on which would be more effective for them.
Overall, these patterns show even further evidence that most Topics API adopters
are conducting some sort of A/B testing, where the usage type represents another
parameter being taken into account.

39

Dataset and results

5.3 Anomalous usage

In this section, we concentrate on the 2,615 CPs in DAA that access the Topics
API despite not being in the Allowed set. The presence of these domains arises
two main questions:

• How did over 2,000 unauthorised CPs successfully perform a Topics API call
if, as explained in Section 3.4, the browser is supposed to block all calls from
them? We found an implementation error in Chromium’s code that allows a
CP to bypass the browser’s Allowed domain check, further detailed in Section
5.3.1.

• Who are the CPs that perform these anomalous calls? Is there an underlying
reason behind these calls? We attempt to answer these questions in Section
5.3.2.

5.3.1 Bypassing Chromium’s check for the Allowed do-

mains

While inspecting Chromium’s code, we found a function called IsSiteAttested2

that behaves as shown in Algorithm 1. Basically, if the file is absent or corrupted,
and a specific browser feature is enabled, then the site will be automatically
considered Allowed. This feature is enabled by default in a fresh browser installation.
Therefore, if a possibly malicious entity finds a way to delete or corrupt the allow-list,
it would allow any caller to access the API, regardless of whether Allowed or not,
permitting them to collect the user’s topics and possibly abuse this information.3

Moreover, we have noticed that the browser does not download the allow-list
right after it’s opened, but it takes several minutes. In some cases, the list was
not downloaded until after having closed and re-opened the browser. In any
case, the crawling of each website consisted was peformed independently within
separate disposable Docker containers [48], which were re-created for each visited
website. Given that, on average, the crawling of a single website takes only
about two minutes, the browser likely didn’t have sufficient time to download
the privacy-sandbox-attestations.dat list before the crawl finished, and the

2The source code of this function can be viewed at https://source.chromium.org/

chromium/chromium/src/+/refs/tags/122.0.6261.128:components/privacy_sandbox/

privacy_sandbox_attestations/privacy_sandbox_attestations.cc;l=275

3The actual feasibility of the attack goes beyond the scope of this thesis. At the moment of
writing, Google and Chromium developers have been notified about the error. They acknowledged
the problem and declared to fix it in a future release. At the moment of writing, the bug is still
present in Chrome and Chromium’s latest version.

40

Dataset and results

Algorithm 1 Simplified logic of the IsSiteAttested function.
function IsSiteAttested(site, ...)

status, allowList← ReadAllowList(. . .)
if status is FileNotPresent or FileCorrupted then

if feature DefaultAllowPrivacySandboxAttestations is enabled then

return Allowed

else

return status

end if

else

if site in allowList then

return Allowed

else

return Denied

end if

end if

end function

relative container was disposed of. As a result, the crawler was able to record the
calls from every CP instead of only from the ones in the Allowed set.

5.3.2 Identifying the sources and causes of anomalous calls

While investigating the nature of the anomalous calls, we observe that 72% out
of the 3,450 total anomalies was generated from the same website being visited,
meaning that the website and the CP’s 2LD coincide (e.g., www.website.com

and ad.website.net). A manual check on the remaining 28% reveals similar
situations, where i) the same company owns the two domains (e.g. windows.com

and microsoft.com) or ii) the visited website redirects to a second website which
then calls the API, where both websites are owned by the same company.

Additionally, we observe that all anomalous calls were performed through
JavaScript’s browsingTopics function, hinting at one or more popular JavaScript
libraries erroneously implementing the API call. If these libraries were downloaded
by the browser from an external source but placed directly within the website’s
page (e.g., a <script> tag with a src attribute), the relative calls would indeed
result as originating not from the script’s source but from its browsing context [41]
which, in this case, would be the website itself. Figure 5.6 clarifies the difference
between the browsing context and the script’s source.

To find a possible culprit, we observe on 95% of the websites containing an
anomalous call the presence of GTM (Google Tag Manager). By manually inspecting

41

Dataset and results

Figure 5.6: Example showing the difference between a browsing topic and a
script’s source. In this example, two scripts are downloaded from the browser: one
is part of the HTML code of website.com, while the other is embedded inside an
iframe that downloads content from platform.org. If both scripts contain a call
to browsingTopics, the corresponding Topics API call from the one downloaded
from advertiser.org will have platform.org as its browsing context, whereas
the call that originates from library.com’s script will appear as incoming from
website.com.

its source code we notice that it, indeed, contains a call to the browsingTopics

function. This is rather strange, as GTM is neither Attested nor Allowed.
In websites where GTM is present, the <script> tag is included directly within

the HTML of their page. Whenever a user connects to one of these websites, the
browser downloads a script from a link similar to https://googletagmanager.

com/gtm.js?id=<ID>. When the browsingTopics function is reached, the call
occurs, but since the script is executed within the root browsing context, the call’s
context origin will be set to the website instead of GTM. This is the exact scenario
shown in Figure 5.6, where library.com is replaced with GTM’s domain.

GTM is the most prominent example of this issue, but likely not the only one:
the remaining 5% of anomalous calls detected were probably triggered from other,
less popular libraries that made the same mistake. This problem is relevant for
both the Topics API itself, as it could pose complications for its deployment,4 but
also websites that implement third parties such as GTM, as they may potentially

4We have contacted Google about this issue as well, but at the moment of writing we did not
receive any response.

42

Dataset and results

cause unexpected and unwanted privacy issues.

5.4 Questionable usage

This final section will concentrate on the Topics API calls that were performed
during the Before-Accept visit, thus examining the DBA dataset. Since we performed
the measurements from Europe, where the citizens are protected by the GDPR, we
would expect no usage of the Topics API in this stage of the crawling, not having
yet accepted any privacy policy. Yet, we find over 1,300 CPs that have performed
at least one, out of which only 28 are Allowed. These usages are considered
questionable and can be seen as a violation of European regulations, since the
disclosure of topics can be seen as equivalent to third-party cookies.5

ya
nd
ex.

com

cri
teo

.co
m

tab
oo
la.
com

op
en
x.n

et

cas
ale

me
dia

.co
m

cre
ati
vec

dn
.co
m

tea
ds.
tv

3li
�.c

om

ou
tbr

ain
.co
m

ya
nd
ex.

ru

rub
ico

np
roj
ect

.co
m

pu
bm

ati
c.c
om

po
str
ele

ase
.co
m

au
tho

riz
ed
va
ult
.co
m

un
rul

ym
ed
ia.
com

Calling Parties

0

200

400

600

800

W
eb
si
te
s

Figure 5.7: Number of websites where a Topics API call was recorded in Before-
Accept, for each Allowed CP. The graph shows this statistic for the top-15 CPs
with the highest count.

Concentrating on the 28 Allowed CPs that invoke the Topics API in Before-
Accept, Figure 5.7 illustrates the top-15 CPs that perform a questionable call. We
observe that yandex.com performs the largest amount of these calls (611 in Before-
Accept), despite not being among the top callers overall (1,414 in After-Accept).
Although we do find some of the major callers in this graph (e.g., criteo.com),
there seems to be little correlation with the service’s popularity. For instance,
doubleclick.net, the top caller in After-Accept as shown in Figure 5.3, does not

5This thesis will not discuss whether this could be considered an actual violation of the GDPR,
but the fact that some services respect this interpretation reinforces these claims.

43

Dataset and results

perform any call in Before-Accept. This further validates the expectation that no
calls should be issued during Before-Accept visits.

There are two main cases that can justify this behaviour:

• The website is hosted outside the European Union and does not include any
privacy banner, thereby allowing any privacy-invasive technology in every
visit. This aspect would still account as a GDPR violation, which protects
European citizens even when accessing services outside the EU. We discuss
the correlation between questionable calls and the geographical region of a
website in Section 5.4.1.

• The website does not correctly implement their privacy banner. Most websites
tend to adopt the use of a CMP (Consent Management Platform) to handle
the technical aspects of web privacy. However, these platforms often need to
be configured by the website administrator, and an incomplete configuration
could lead to potential violations of privacy regulations. The correlation
between questionable calls and privacy banner misconfiguration is discussed
in Section 5.4.2.

5.4.1 Correlation with the websites’ geographical region

In this section, we investigate a possible correlation between the presence of a
questionable call and the geographic location of a website. We do this by checking
the TLD (Top-Level Domain) of the websites where we observe a questionable
call, as the TLD (Top-Level Domain) of a website can give a rough estimation
of its country. Figure 5.8 highlights the differences of questionable call frequency
between the most relevant TLDs, effectively breaking down questionable calls by
geographic region: international (.com), Japan (.jp), Russia (.ru), the EU (30
TLDs of countries where the GDPR is in force), and the remaining less popular
TLDs. We can first observe that the presence of CPs strongly varies in different
regions. For example, Yandex, a Russian company, is unsurprisingly very prevalent
in Russia, while being almost absent in the EU and not appearing at all in Japan.
On the other hand, Criteo, based in France, has more of a global presence. The
same stands for Taboola and OpenX, both based in the United States, although in
smaller numbers compared to Criteo. While this difference in deployment can be
caused by different strategies from websites and the advertisement companies, the
graph shows no significant correlation between the frequency of questionable calls
and the geographical region. Interestingly, we even observe several questionable
calls within websites in the EU, where we would definitely expect no questionable
calls originating from.

44

Dataset and results

.com .jp .ru EU Other

Website top-level domains

0

20

40

60

80

100

E
n
ab
le
d
[%
]

379 0 1088 13 537828 140 24 104 420

712 81 11 54 297448 33 3 26 192

yandex.com criteo.com taboola.com openx.net

Figure 5.8: Percentage of websites where a Topics API call was recorded in
Before-Accept, separately for each of the most relevant classes of TLDs and for the
top-4 questionable CPs shown in Figure 5.7. The numbers on the top show the
total amount of websites of the given TLD where the CP was found.

5.4.2 Correlation with improper privacy banner configura-

tion

Since the analysis of geographical regions did not give significant results, we next
investigate whether this questionable behaviour is influenced by the incorrect
configuration of privacy banners by the website administrators. To this end, we try
to paint a picture of the presence of CMPs (Consent Management Platforms) within
websites where a questionable call occurs. CMPs are commercial products which
simplify the implementation of privacy banners and offer libraries that control
the third parties embedded within the websites (such as advertisers or trackers),
blocking them until the user has consented to the Privacy Policy. These plugins
require minimal configuration from the website administrator, through either code
or a control panel. If this is incomplete, the CMP may block only some—or even
none—of the third-party trackers before the user has provided consent (i.e., in the
Before-Accept visit), thus violating the GDPR [23]. We assume that the Topics
API should follow the same regulations as other privacy-intrusive features such as
third-party cookies. Therefore, the presence of a Topics API call during the Before-
Accept visit could be due to incorrect CMP configuration, or even implementation
errors on the CMP’s part.

The information about the presence of CMPs within a website can be retrieved
from Priv-Accept’s output, scanning for the domain names of the most popular
CMPs within the contacted third parties. These domains are then mapped to the

45

Dataset and results

On
eT
rus

t

Hu
bS
po
t

Co
ok
ieb

ot

Di
do
mi

Tr
ust

Ar
c

Liv
eR
am

p

So
urc

ep
oin

t

Us
erc

en
tri
cs
Os
an
o

Co
ok
ieY

es

Iub
en
da

Co
ok
ieS

cri
pt
Civ

ic

Cr
ow

np
eak

Te
rm

ly

Consent Management Platforms

0

1000

2000

3000

4000

5000

W
eb
si
te
s

CMP present and questionable call recorded

CMP present

Figure 5.9: Number of total websites where the top-15 most popular CMPs
are present during the Before-Accept visit, and the subset of websites where a
questionable call was recorded.

corresponding CMP, thanks to the list offered by Wappalyzer [49]. Figure 5.9 shows
the most prevalent CMPs encountered during the Before-Accept visits, highlighting
the number of websites where a questionable Topics API call was recorded. We
observe that OneTrust is the most prevalent CMP by far, appearing in almost
5,000 websites. HubSpot and CookieBot are also adopted quite often, from around
1,500 and 1,000 websites, respectively. However, we observe that only OneTrust
and HubSpot have a significant amount of websites that witness a questionable call,
at around 300 each. This sparks some suspicion: given the difference in number of
appearances between OneTrust and HubSpot, we would ideally expect a similar
difference with the number of recorded questionable calls. However, this does not
seem to be the case, as they appear similar. In other words, we would expect
the probability of encountering a certain CMP over any website, which we will
indicate as P (CMP = x), to be independent of the probability of witnessing a
questionable Topics API call, indicated as P (questionable call). On the contrary,
we find evidence that there may be some correlation between the two events.

We examine the likeliness of this correlation by comparing separately for each
CMP the value of P (CMP = x) with the probability of observing the same
CMP within a website where a questionable call was recorded, indicated as
P (CMP = x | questionable call). Figure 5.10 shows this comparison. In an ideal
scenario, we would expect the two values to be equal. While many of the CMPs
show very similar probabilities, we do find some odd cases. Primarily, HubSpot
shows a probability of being the CMP in use given a questionable call which is about
3 times the probability of observing it, hinting towards a possible mishandling of

46

Dataset and results

On
eT
rus

t

Hu
bS
po
t

Liv
eR
am

p

Co
ok
ieb

ot

Tr
ust

Ar
c

Di
do
mi

So
urc

ep
oin

t
Os
an
o

Iub
en
da

Co
ok
ieY

es

Us
erc

en
tri
cs

Co
ok
ieS

cri
pt

Civ
ic

Co
ok
ie
Inf
orm

ati
on

SF
BX

Consent managers

0

5

10

P
ro
b
ab
il
it
y
[%
]

P (CMP=x) P (CMP=x | questionable call)

Figure 5.10: Comparison of the probability to encounter a given CMP (in
red) and the probability to encounter that CMP in a website where a ques-
tionable call was recorded (in blue), for the CMPs with the highest value of
P (CMP = x | questionable call).

the Topics API. The same holds true for LiveRamp.
Overall, it is likely that CMPs have yet to properly integrate the support for

the Topics API, leading to possible violations of privacy regulations.

5.5 Longitudinal measurements

In this section, we analyse the results of the same measurement campaign performed
over an extended period of time, on a weekly basis. This analysis aims to provide
a clearer idea of the evolution of the Topics API’s deployment over time. The
measurements were taken starting at midnight on every Monday, over the top
50,000 websites according to the latest version of the Tranco list at the time of each
crawl. We discuss the results collected from August 12th to October 14th, 2024,
totaling 9 weeks of measurements. We could not perform the crawling on August
26th due to technical malfunctions.

First, we concentrate on the Allowed third-party services which can be found
in the privacy-sandbox-attestations.dat allow-list, by examining how the
number of these services changes over time and highlighting the presence of new
potential adopters of the Topics API. Figure 5.11 tracks this number over the
nine-week measurement period, while also showing how many of these parties are
also Attested, effectively providing a time-based view of the values present in the
first group of rows in Table 5.1. The graph shows that the number of Allowed
services remain relatively stable during the period in question. However, it also

47

Dataset and results

20
24

/0
8/

12

20
24

/0
8/

19

20
24

/0
8/

26

20
24

/0
9/

02

20
24

/0
9/

09

20
24

/0
9/

16

20
24

/0
9/

23

20
24

/0
9/

30

20
24

/1
0/

07

20
24

/1
0/

14

Date of crawling

150

175

200

225

250

C
al
li
n
g
P
ar
ti
es

Allowed Allowed and A�ested

Figure 5.11: Evolution of the Allowed and Attested third parties collected over
the 9 weeks of measurements from the browser’s local allow-list.

shows an increase of total domains in the allow-list since March: we observe over
200 Allowed third parties in August, compared to 193 in March. Additionally, the
graph shows that some third parties remain Allowed but not Attested, represented
by the interval between the two lines. We notice that this amount has increased
since March: while the number of Allowed domains has increased to 216 according
to the latest measurements, the number of Allowed and Attested domains remains
closely the same, recorded at 186. Therefore, the 12 Allowed and not Attested
parties found in March have more than doubled during this period, reaching a total
of 30. These results suggest that new third-party services are being added to the
local browser allow-list, despite not having correctly exposed the JSON attestation
file witihin their domain.

We now focus on what websites witness Topics API calls, to answer whether
Allowed and Attested third parties are increasingly adopting the new technology.
We achieve this by plotting the changes in percentage of websites that witness at
least one legitimate CP—i.e., an Allowed and Attested third party that calls the
Topics API during the After-Accept visit—shown in Figure 5.12. We observe this
percentage oscillating between 39% and 42%, therefore remaining somewhat stable.
However, these values appear slightly lower compared to the 45% encountered in
March. This difference is probably due to the variance in websites in the Tranco
list, especially towards the bottom: the websites visited in August onwards may
have been very different from the ones visited in March.

Next, we examine the variation in the number of legitimate, questionable, and
anomalous usages over time, as described in the previous sections of this chapter.
These changes are highlighted in Figure 5.13. While the evolution of these numbers

48

Dataset and results

20
24

/0
8/

12

20
24

/0
8/

19

20
24

/0
8/

26

20
24

/0
9/

02

20
24

/0
9/

09

20
24

/0
9/

16

20
24

/0
9/

23

20
24

/0
9/

30

20
24

/1
0/

07

20
24

/1
0/

14

Date of crawling

39

40

41

42

43

T
o
p
ic
s
A
P
I
ca
ll
ed

[%
]

Figure 5.12: Evolution of the percentage of websites where at least one legitimate
Topics API call occurs. A legitimate call refers to those done by an Allowed and
Attested third-party during the After-Accept visit.

20
24

/0
8/

12

20
24

/0
8/

19

20
24

/0
8/

26

20
24

/0
9/

02

20
24

/0
9/

09

20
24

/0
9/

16

20
24

/0
9/

23

20
24

/0
9/

30

20
24

/1
0/

07

20
24

/1
0/

14

Date of crawling

0

250

500

750

1000

C
al
li
n
g
P
ar
ti
es

Anomalous �estionable Legitimate

Figure 5.13: Evolution of the number of legitimate, questionable and anomalous
CPs found over the nine-week measurement period. Legitimate CPs are those that
are both Allowed and Attested and invoked the Topics API during the After-Accept
visit. Questionable CPs refer to those that called the API during the Before-Accept
visit. Anomalous CPs are those that invoked the Topics API in the After-Accept
visit but are not Allowed or Attested.

appears relatively stagnant for all three categories, it seems that the amount of
questionable and anomalous CPs has dropped significantly since March. In fact,
we observe between 500 and 650 anomalous CPs within the graph, while Table

49

Dataset and results

5.1 shows over 2,600 of them in March. This suggests that one or more popular
libraries may have updated their implementation to address the issues described
in Section 5.3.2 between March and August. Questionable CPs seem to follow a
similar trend, as we witness a drop from over 1,300 to just around 250. This may
also suggest that one or more CMPs have addressed their implementation issues
regarding the Topics API during this time. As for legitimate CPs, we notice very
few changes in their numbers, even compared to March’s measurements, which
remain constant at around 50 callers.

au
tho

riz
ed
va
ult
.co
m
cp
x.t
o
ed
kt.
io

op
en
x.n

et

un
rul

ym
ed
ia.
com

cri
teo

.co
m

un
de
rto

ne
.co
m

tab
oo
la.c

om

see
dta

g.c
om

cas
ale

me
dia

.co
m
tea

ds.
tv

ou
tbr

ain
.co
m

rub
ico

np
roj
ect

.co
m

3li
�.c

om

cre
ati
vec

dn
.co
m

Calling Parties

0

25

33

50

66

75

100

E
n
ab
le
d
[%
]

Figure 5.14: Top-15 CPs with the largest average enabled percentage. The
enabled percentage is the percentage of times a CP performs a call to the Topics
API over the total number of websites it appears in. The black bars highlight
the range, from minimum to maximum, of that percentage encountered over the
nine-week measurement period. Like in March’s measurements, this graph only
shows the Allowed and Attested CPs that are found in at least 100 websites.

Finally, we review whether the enabled percentage during the After-Accept visit,
previously displayed in Figure 5.4, is increasing over time, which would indicate
progress in the A/B testing process. Figure 5.14 highlights the CPs with the highest
average enabled percentage, while also highlighting the interval of percentages
recorded over time. Compared to March, these percentages appear to have increased
on average, with low fluctuation over time. We also observe some new callers, such
as edkt.io, undertone.com and seedtag.com. authorizedvault.com remains
the only significant CP that calls the Topics API on every website it appears in,
whereas most of the others still appear to stop at what look like predefined values,
hinting that the A/B testing is still ongoing.

50

Chapter 6

Conclusions

This thesis painted a comprehensive picture of the Topics API’s current status
of deployment, thanks to a measurement campaign conducted with an enhanced
version of an existing Web crawler. This tool allowed us to record the Topics API
usages from third parties during website visits, distinguishing between calls made
before and after a user has provided consent to a website’s privacy policy. We
explored a snaphot of the API’s deployment based on a single day’s measurements,
as well as multiple measurements performed over time to track its evolution. The
collected datasets allowed us to identify which advertising platforms, if any, have
begun experimenting with the Topics API as a tool to facilitate IBA. The collected
information also helped us determine the presence of illegitimate calls, such as
those performed before the user has accepted a website’s Privacy Policy, thereby
violating European regulations.

The results show that most major advertising platforms are already deploying
and experimenting with the Topics API in the real world, given the now precarious
position of third-party cookies. The total number of platforms adopting the
new technology, according to the collected longitudinal measurements, appears
to be growing slowly but steadily. However, they also show clear signs that this
experimentation is being performed in form of A/B tests on controlled subsets of
websites and users. The measurements taken over time suggest that this process is
still ongoing.

Interestingly, we found a significant number of questionable calls from websites
and third-parties before the user has accepted the Privacy Policy, that hint at a
wrong implementation of privacy banners and CMPs. Since this could lead to
violations of regulations such as the GDPR, this thesis serves as a reminder for
website administrators to verify that their privacy banners are properly configured,
as well as for CMPs to carefully evaluate their implementation of the Topics API
within their libraries.

We also find evidence of erroneous implementations of advertising platforms and

51

Conclusions

libraries, resulting in anomalous calls. These cases were discovered thanks to an
implementation bug found in Chromium’s Topics API implementation. We estimate
the underlying source of anomalous calls to be the erroneous implementation of
JavaScript libraries such as GTM, a problem which developers need to be made
aware of.

On a positive note, both numbers of questionable and anomalous calls seem to be
decreasing over time, hinting that the mentioned configuration and implementation
errors are being addressed by at least some of the responsible parties.

Being proposed by one the largest tech giants, the Topics API has the potential
to become the de facto standard for IBA in the future. However, this research
has shown that the technology still exhibits clear signs of being in its early stages
of development. Such signs include bugs and unexpected behaviour, of which all
stakeholders in the system—advertisers, consumers, privacy advocates and even
Google itself—need to be aware of. Furthermore, the general approval of this
technology is still uncertain, as the interests of advertisers, mainly based around
building extensive and fine-grained user profiles, are in contrast with the restrictions
imposed by the Topics API. Overall, the future of this technology remains hard to
predict.

6.1 Limitations and future work

The tools built during this thesis work represent an initial effort of understanding
the deployments of this new technology. However, at the moment of writing, they
have several limitations that present opportunities for future research:

• First, the collected measurements only record the calls performed to the Topics
API, without providing information about their purpose. Future research could
explore how advertisers utilise the retrieved topics to, for instance, provide
different ads based on the disclosed interests.

• Second, the measurements only cover a small time frame of 2024. Given
the early stages of this technology, conducting the same campaign for longer
periods of time would offer a more comprehensive view of its evolution over
time.

• Finally, the measurements were collected from a single location in Europe,
which may be limiting. An interesting topic of future research could involve
gathering the same measurements from different geographical regions, to
determine if any significant changes appear in the technology’s behaviour.

52

Appendix A

Modified Chromium Source

code

1 bool BrowsingTopicsSiteDataStorage :: CreateSchema () {

2 static constexpr char kBrowsingTopicsApiUsagesCompleteTableSql

[] =

3 " CREATE TABLE IF NOT EXISTS

browsing_topics_api_usages_complete ("

4 " hashed_context_domain INTEGER NOT NULL ,"

5 " context_origin_url TEXT NOT NULL ,"

6 " hashed_main_frame_host INTEGER NOT NULL ,"

7 " caller_source TEXT NOT NULL ,"

8 " usage_time INTEGER NOT NULL ,"

9 " PRIMARY KEY (context_origin_url ,

hashed_main_frame_host , usage_time))";

10 if (!db_ -> Execute (kBrowsingTopicsApiUsagesCompleteTableSql))

11 return false;

12

13 static constexpr char kBrowsingTopicsApiUsagesViewSql [] =

14 " CREATE VIEW IF NOT EXISTS browsing_topics_api_usages AS "

15 "(SELECT hashed_context_domain ,"

16 "MAX(usage_time) AS last_usage_time ,"

17 " hashed_main_frame_host "

18 "FROM browsing_topics_api_usages_complete "

19 " GROUP BY hashed_context_domain ,

hashed_main_frame_host)";

20 if (!db_ -> Execute (kBrowsingTopicsApiUsagesViewSql))

21 return false;

22

23 static constexpr char kLastUsageTimeIndexSql [] =

24 " CREATE INDEX IF NOT EXISTS usage_time_idx "

25 "ON browsing_topics_api_usages_complete (usage_time)";

26 if (!db_ -> Execute (kLastUsageTimeIndexSql))

53

Modified Chromium Source code

27 return false;

28

29 static constexpr char kHashedToUnhashedDomainSql [] =

30 " CREATE TABLE IF NOT EXISTS "

31 " browsing_topics_api_hashed_to_unhashed_domain ("

32 " hashed_context_domain INTEGER PRIMARY KEY ,"

33 " context_domain TEXT NOT NULL)";

34 if (!db_ -> Execute (kHashedToUnhashedDomainSql)) {

35 return false;

36 }

37

38 return true;

39 }

Listing A.1: Modified code of BrowsingTopicsSiteDataStorage’s
CreateSchema function.

1 void BrowsingTopicsSiteDataStorage :: OnBrowsingTopicsApiUsed (

2 const browsing_topics :: HashedHost & hashed_main_frame_host ,

3 const browsing_topics :: HashedDomain & hashed_context_domain ,

4 const std :: string & context_origin_url ,

5 const std :: string & caller_source ,

6 const std :: string & context_domain ,

7 base :: Time time) {

8 DCHECK_CALLED_ON_VALID_SEQUENCE (sequence_checker_);

9

10 if (! LazyInit ())

11 return ;

12

13 sql :: Transaction transaction (db_.get ());

14 if (! transaction . Begin ())

15 return ;

16

17 static constexpr char kInsertApiUsageSql [] =

18 // clang - format off

19 " INSERT OR REPLACE INTO

browsing_topics_api_usages_complete "

20 "(hashed_context_domain , hashed_main_frame_host ,

usage_time , context_origin_url , caller_source) "

21 " VALUES (? ,? ,? ,? ,?)";

22 // clang - format on

23

24 sql :: Statement insert_api_usage_statement (

25 db_ -> GetCachedStatement (SQL_FROM_HERE ,

kInsertApiUsageSql));

26 insert_api_usage_statement . BindInt64 (0, hashed_context_domain .

value ());

27 insert_api_usage_statement . BindInt64 (1, hashed_main_frame_host

. value ());

54

Modified Chromium Source code

28 insert_api_usage_statement . BindTime (2, time);

29 insert_api_usage_statement . BindTime (3, context_origin_url);

30 insert_api_usage_statement . BindTime (4, caller_source);

31

32 if (! insert_api_usage_statement .Run ()) {

33 return ;

34 }

35

36 static constexpr char kInsertUnhashedDomainSql [] =

37 // clang - format off

38 " INSERT OR REPLACE INTO

browsing_topics_api_hashed_to_unhashed_domain "

39 "(hashed_context_domain , context_domain) "

40 " VALUES (? ,?)";

41 // clang - format on

42 sql :: Statement insert_unhashed_domain_statement (

43 db_ -> GetCachedStatement (SQL_FROM_HERE ,

kInsertUnhashedDomainSql));

44 insert_unhashed_domain_statement . BindInt64 (0,

hashed_context_domain . value ());

45 insert_unhashed_domain_statement . BindString (1, context_domain)

;

46

47 if (! insert_unhashed_domain_statement .Run ()) {

48 return ;

49 }

50

51 transaction . Commit ();

52 }

Listing A.2: Modified code of BrowsingTopicsSiteDataStorage’s
OnBrowsingTopicsApiUsed function.

1 bool BrowsingTopicsServiceImpl :: HandleTopicsWebApi (

2 const url :: Origin & context_origin ,

3 content :: RenderFrameHost * main_frame ,

4 ApiCallerSource caller_source ,

5 bool get_topics ,

6 bool observe ,

7 std :: vector < blink :: mojom :: EpochTopicPtr >& topics) {

8

9 // [...]

10

11 std :: string context_origin_url = context_origin . GetURL ().spec

();

12

13 std :: string caller_source_str ;

14 switch (caller_source) {

15 case ApiCallerSource :: kJavaScript :

55

Modified Chromium Source code

16 caller_source_str = " javascript ";

17 break ;

18 case ApiCallerSource :: kFetch :

19 caller_source_str = " fetch ";

20 break ;

21 case ApiCallerSource :: kIframeAttribute :

22 caller_source_str = " iframe ";

23 break ;

24 default :

25 caller_source_str = " invalid ";

26 break ;

27 }

28

29 std :: string context_domain =

30 net :: registry_controlled_domains :: GetDomainAndRegistry (

31 context_origin . GetURL () ,

32 net :: registry_controlled_domains ::

INCLUDE_PRIVATE_REGISTRIES);

33

34 HashedDomain hashed_context_domain =

HashContextDomainForStorage (

35 browsing_topics_state_ . hmac_key () , context_domain);

36

37 if (observe) {

38 // Track the API usage context after the permissions check

.

39 BrowsingTopicsPageLoadDataTracker :: GetOrCreateForPage (

main_frame -> GetPage ())

40 -> OnBrowsingTopicsApiUsed (caller_source_str ,

context_origin_url ,

41 hashed_context_domain ,

context_domain ,

42 history_service_);

43 }

44

45 // [...]

46 }

Listing A.3: Modified code of BrowsingTopicsServiceImpl’s
HandleTopicsWebApi function.

56

Bibliography

[1] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. «Detecting and
Defending Against Third-Party Tracking on the Web». In: 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12).
San Jose, CA: USENIX Association, Apr. 2012, pp. 155–168. isbn: 978-931971-
92-8. url: https://www.usenix.org/conference/nsdi12/technical-

sessions/presentation/roesner (cit. on pp. 2, 6).

[2] Steven Englehardt and Arvind Narayanan. «Online Tracking: A 1-million-
site Measurement and Analysis». In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’16. Vienna,
Austria: Association for Computing Machinery, 2016, pp. 1388–1401. isbn:
9781450341394. doi: 10.1145/2976749.2978313. url: https://doi.org/

10.1145/2976749.2978313 (cit. on pp. 2, 6).

[3] Balachander Krishnamurthy and Craig Wills. «Privacy diffusion on the web: a
longitudinal perspective». In: Proceedings of the 18th International Conference
on World Wide Web. WWW ’09. Madrid, Spain: Association for Computing
Machinery, 2009, pp. 541–550. isbn: 9781605584874. doi: 10.1145/1526709.

1526782. url: https://doi.org/10.1145/1526709.1526782 (cit. on pp. 2,
6).

[4] AdBlock Plus. https://adblockplus.org, accessed on 2024-10-17. 2024
(cit. on p. 2).

[5] Ghostery. https://www.ghostery.com, accessed on 2024-10-17. 2024 (cit. on
p. 2).

[6] Disconnect. https://disconnect.me, accessed on 2024-10-17. 2024 (cit. on
p. 2).

[7] Brave. https://brave.com/, accessed on 2024-10-17. 2024 (cit. on p. 2).

[8] DuckDuckGo. https://duckduckgo.com/, accessed on 2024-10-17. 2024
(cit. on p. 2).

57

BIBLIOGRAPHY

[9] European Parliament and Council of European Union. Directive 95/46/EC.
General Data Protection Regulation.
http://data.consilium.europa.eu/doc/document/ST- 5419- 2016-

INIT/en/pdf, accessed on 2024-10-17. 2016 (cit. on pp. 2, 6).

[10] California State Legislature. California Consumer Privacy Act of 2018. https:

//leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_

id=201720180AB375, accessed on 2024-10-17. 2018 (cit. on pp. 2, 6).

[11] Brazilian President of the Republic. Lei Geral de Proteção de Dados Pessoais.
http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/

L13709compilado.htm, accessed on 2024-10-17. 2018 (cit. on pp. 2, 6).

[12] Chris Mills. Saying goodbye to third-party cookies in 2024. https://develop

er.mozilla.org/en-US/blog/goodbye-third-party-cookies/, accessed
on 2024-10-17. 2023 (cit. on p. 2).

[13] John Wilander. Privacy Preserving Ad Click Attribution For the Web. https:

//webkit.org/blog/8943/privacy-preserving-ad-click-attribution-

for-the-web/, accessed on 2024-10-17. 2019 (cit. on p. 2).

[14] Preparing for the end of third-party cookies. https://developers.google.

com/privacy- sandbox/blog/cookie- countdown- 2023oct, accessed on
2024-10-17. 2023 (cit. on pp. 2, 8).

[15] Preparing for the end of third-party cookies. https://privacysandbox.com/

news/update-on-the-plan-for-phase-out-of-third-party-cookies-

on-chrome/, accessed on 2024-10-17. 2024 (cit. on p. 2).

[16] Anthony Chavez. A new path for Privacy Sandbox on the web. https://

privacysandbox.com/news/privacy-sandbox-update/, accessed on 2024-
10-17. 2024 (cit. on pp. 2, 8).

[17] Eric Rescorla and Martin Thomson. «Technical comments on FLoC privacy».
In: Mozilla, June 17 (2021) (cit. on pp. 3, 10).

[18] Alex Berke and Dan Calacci. «Privacy Limitations of Interest-based Adver-
tising on The Web: A Post-mortem Empirical Analysis of Google’s FLoC».
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’22. Los Angeles, CA, USA: Association
for Computing Machinery, 2022, pp. 337–349. isbn: 9781450394505. doi:
10.1145/3548606.3560626. url: https://doi.org/10.1145/3548606.

3560626 (cit. on pp. 3, 10).

[19] Florian Turati. «Analysing and exploiting Google’s FLoC advertising pro-
posal». en. Master Thesis. Zurich: ETH Zurich, 2022. doi: 10.3929/ethz-b-

000539945 (cit. on pp. 3, 10).

58

BIBLIOGRAPHY

[20] Nikhil Jha, Martino Trevisan, Emilio Leonardi, and Marco Mellia. «On the
Robustness of Topics API to a Re-Identification Attack». In: Proceedings on
Privacy Enhancing Technologies. Vol. 2023. Privacy Enhancing Technologies
Symposium, 2023, pp. 66–78 (cit. on pp. 3, 15).

[21] The Privacy Sandbox Timeline. https://privacysandbox.com/intl/en_

us/open-web/#the-privacy-sandbox-timeline, accessed on 2024-10-17.
2024 (cit. on pp. 3, 10).

[22] Preparing to ship the Privacy Sandbox relevance and measurement APIs.
https://developers.google.com/privacy- sandbox/blog/shipping-

privacy-sandbox, accessed on 2024-10-17. 2023 (cit. on p. 3).

[23] Nikhil Jha, Martino Trevisan, Luca Vassio, and Marco Mellia. «The Internet
with Privacy Policies: Measuring The Web Upon Consent». In: ACM Trans.
Web 16.3 (Sept. 2022). issn: 1559-1131. doi: 10.1145/3555352. url: https:

//doi.org/10.1145/3555352 (cit. on pp. 3, 23, 25, 33, 45).

[24] Jonathan R Mayer and John C Mitchell. «Third-party web tracking: Policy
and technology». In: 2012 IEEE symposium on security and privacy. IEEE.
2012, pp. 413–427 (cit. on p. 6).

[25] Hassan Metwalley, Stefano Traverso, Marco Mellia, Stanislav Miskovic, and
Mario Baldi. «The online tracking horde: a view from passive measurements».
In: International Workshop on Traffic Monitoring and Analysis. Springer.
2015, pp. 111–125 (cit. on p. 6).

[26] Nikhil Jha, Martino Trevisan, Marco Mellia, Rodrigo Irarrazaval, and Daniel
Fernandez. «I Refuse if You Let Me: Studying User Behavior with Privacy
Banners at Scale». In: 2023 7th Network Traffic Measurement and Analysis
Conference (TMA). 2023, pp. 1–9. doi: 10.23919/TMA58422.2023.10198936

(cit. on p. 8).

[27] OneTrust. https://www.onetrust.com/, accessed on 2024-10-17. 2024 (cit.
on p. 8).

[28] HubSpot. https://www.hubspot.com/, accessed on 2024-10-17. 2024 (cit. on
p. 8).

[29] CookieBot. https://www.cookiebot.com/, accessed on 2024-10-17. 2024
(cit. on p. 8).

[30] Privacy-Preserving Attribution. https://support.mozilla.org/en-US/kb/

privacy-preserving-attribution, accessed on 2024-10-17. 2024 (cit. on
p. 8).

[31] Safari & Privacy. https://www.apple.com/legal/privacy/data/en/

safari/, accessed on 2024-10-17. 2024 (cit. on p. 8).

59

BIBLIOGRAPHY

[32] Valentino Rizzo, Stefano Traverso, and Marco Mellia. «Unveiling web finger-
printing in the wild via code mining and machine learning». In: Proceedings
on Privacy Enhancing Technologies 2021.1 (2021), pp. 43–63 (cit. on p. 8).

[33] Emmanouil Papadogiannakis, Panagiotis Papadopoulos, Nicolas Kourtellis,
and Evangelos P. Markatos. «User Tracking in the Post-Cookie Era: How
Websites Bypass GDPR Consent to Track Users». In: Proceedings of the Web
Conference 2021. New York, NY, USA: Association for Computing Machinery,
2021, pp. 2130–2141. isbn: 9781450383127. url: https://doi.org/10.

1145/3442381.3450056 (cit. on p. 8).

[34] Topics API. https://developers.google.com/privacy-sandbox/releva

nce/topics, accessed on 2024-10-17. 2024 (cit. on p. 12).

[35] Yao Xiao and Josh Karlin. Topics API: Unofficial proposal draft. https:

//patcg-individual-drafts.github.io/topics/, accessed on 2024-10-17.
2024 (cit. on p. 12).

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova.
«BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding». In: 2018. url: https://arxiv.org/abs/1810.04805 (cit. on
p. 13).

[37] Yohan Beugin and Patrick McDaniel. «Interest-disclosing Mechanisms for
Advertising are Privacy-Exposing (not Preserving)». In: Proceedings on Pri-
vacy Enhancing Technologies. Vol. 2024. Privacy Enhancing Technologies
Symposium, 2024, pp. 41–57 (cit. on pp. 13, 15).

[38] Topics API: Model Execution Demo. https://colab.research.google.

com/drive/1hIVoz8bRCTpllYvads51MV7YS3zi3prn, accessed on 2024-10-17
(cit. on p. 13).

[39] CJ Carey et al. «Measuring Re-identification Risk». In: Proc. ACM Manag.
Data 1.2 (June 2023). doi: 10.1145/3589294. url: https://doi.org/10.

1145/3589294 (cit. on p. 15).

[40] Mário S. Alvim, Natasha Fernandes, Annabelle McIver, and Gabriel H. Nunes.
«A Quantitative Information Flow Analysis of the Topics API». In: WPES ’23.
<conf-loc>, <city>Copenhagen</city>, <country>Denmark</country>,
</conf-loc>: Association for Computing Machinery, 2023, pp. 123–127. isbn:
9798400702358. doi: 10.1145/3603216.3624959. url: https://doi.org/

10.1145/3603216.3624959 (cit. on p. 15).

[41] Browsing context - MDN Web Docs Glossary: Definitions of Web-related
terms | MDN. https://developer.mozilla.org/en-US/docs/Glossary/

Browsing_context, accessed on 2024-10-17. 2024 (cit. on pp. 17, 41).

60

BIBLIOGRAPHY

[42] Protocol Buffers Documentation. https : / / protobuf . dev/, accessed on
2024-10-17 (cit. on pp. 18, 30).

[43] The Privacy Sandbox enrollment attestation model. https://github.com/

privacysandbox/attestation, accessed on 2024-10-17. 2024 (cit. on p. 18).

[44] sqlite3 — DB-API 2.0 interface for SQLite databases. https://docs.python.

org/3/library/sqlite3.html, accessed on 2024-10-17 (cit. on p. 26).

[45] Chromium Source Code, version 122.0.6261.128. https://source.chromium.

org/chromium/chromium/src/+/refs/tags/122.0.6261.128:, accessed
on 2024-10-17 (cit. on p. 27).

[46] Get the Code: Checkout, Build, & Run Chromium. https://www.chromium.

org/developers/how-tos/get-the-code/, accessed on 2024-10-17 (cit. on
p. 29).

[47] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej
Korczyński, and Wouter Joosen. «Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation». In: Proceedings of the 26th Annual
Network and Distributed System Security Symposium. NDSS 2019. Feb. 2019.
doi: 10.14722/ndss.2019.23386 (cit. on p. 33).

[48] Docker. https://www.docker.com/, accessed on 2024-10-17 (cit. on p. 40).

[49] Wappalyzer. https://www.wappalyzer.com/, Accessed on 2024-10-17. 2024
(cit. on p. 46).

61

	List of Figures
	Acronyms
	Introduction
	Context
	Introduction to online advertising
	Third-party cookies and privacy concerns
	Shifting away from third-party cookies: FLoC and the Topics API

	Motivations and methodology
	Thesis structure
	Background
	Third-party cookies
	Google's Privacy Sandbox
	FLoC

	The Topics API
	Terminology
	The algorithm
	Internal data structures
	BrowsingTopicsState
	BrowsingTopicsSiteData
	PrivacySandboxAttestations

	Authorised callers and attestations
	Usage types
	JavaScript
	Fetch
	IFrame

	Methodology for data collection
	The Priv-accept Web crawler
	Modifications to the Chromium browser
	Domain extraction and attestation
	Topic analysis

	Dataset and results
	Enrolment timeline
	Legitimate usage
	Anomalous usage
	Bypassing Chromium's check for the Allowed domains
	Identifying the sources and causes of anomalous calls

	Questionable usage
	Correlation with the websites' geographical region
	Correlation with improper privacy banner configuration

	Longitudinal measurements
	Conclusions
	Limitations and future work

	Modified Chromium Source code
	Bibliography

