
POLITECNICO DI TORINO

Master of Science in Ingegneria Informatica
(Computer Engineering)

Master Degree Thesis

Edge-Cloud Platform
for Cybersecurity Data Analysis

leveraging K3s and Federated Learning

Supervisors Candidate
prof. Marco Mellia Andrea Sordello
prof. Idilio Drago

Academic year 2023-2024

Acknowledgements

Desidero esprimere la mia profonda gratitudine a tutte le persone che hanno contribuito
alla realizzazione di questa tesi. In primo luogo, ringrazio i miei genitori, Giancarlo e
Tiziana, per avermi dato l’opportunità di seguire i miei sogni e per il loro incessante
sostegno durante tutto il percorso. Questa tesi è dedicata a voi.

Esprimo inoltre la mia sincera gratitudine ai miei relatori, Marco Mellia e Idilio Drago,
per la guida e il supporto costante nello sviluppo di questo lavoro. Ringrazio Rodolfo
Vieira Valentim per i preziosi consigli e contributi che hanno arricchito questa ricerca. Un
grazie va anche al gruppo di ricerca SmartData@Polito, per il supporto, la collaborazione
e l’ambiente stimolante che hanno reso possibile la realizzazione di questo progetto.

Summary

Cyberattacks are growing in complexity due to the adoption of more sophisticated tech-
niques to exploit vulnerabilities. Their identification has become a complex challenge,
and novel detection approaches become necessary.

A popular approach is based on the monitoring of network’s traffic, which is cru-
cial to observe and distinguish new cyberattacks patterns. In this approach, distributed
platforms are generally adopted, since they can significantly enhance attacks detection
through the federation of multiple measurement points. These nodes can be strategically
placed within different networks to improve coverage and effectiveness. Moreover, they
can actively attract advanced attacks when they act as darknets, i.e., ranges of IP ad-
dresses without any host active, and honeypots i.e., decoy and vulnerable hosts that log
attackers’s action, rather than merely traffic sniffer.

In parallel, Artificial Intelligence (AI) and Machine Learning (ML) offer significant
opportunities to develop innovative techniques for automated detection. Intuitively, using
self-supervised approaches, it is possible to train Neural Network and use the internal
representation they create as features for specific tasks. Examples are i-DarkVec and
DANTE, both are Artificial Neural Network used to analyze time evolving network’s
traffic, and to identify potential cyber-threats. When considering multiple monitoring
platform, the issue of how to create a common model arise. In fact, sharing data between
different measurement points is not simple due to amount of data and privacy implications.
This does not allow to leverage the benefits of a broader and collaborative analysis.

This limitation can be address using the Federated Learning (FL) approach. In fact,
FL offers the possibility to build a common AI/ML model without sharing data with
participants. This brings several advatages, e.g., the amount of data transmitted and
risks of privacy violations are reduced, and model accuracy is increased thanks to the
larger amount of data that can be used during training. This approach is implemented by
training a model in each node with its own collected data. Then, each node shares its own
model’s parameters. The shared models are aggregated in one single model which it is
sent back to the nodes for the next round of training. After some rounds, the aggregated
model have an accuracy comparable to a model trained using the entire dataset with the
standard ML approach.

Although FL could provide broader insights, its use need to be adapted to time evolv-
ing models. The network’s traffic evolves over time, e.g., new IPs addresses are discovered.
Therefore, models need to update their model’s structure to adapt over-time to classify
new traffic with new labels. This approach is quite different from typical ML scenarios,

I

where the labels are known at the beginning and the model is created accordingly and
kept fixed.

The contribution of this thesis is threfold: At first, we focus on the improvement of
node’s management and applications’s deployment for a platform developed in a previous
work. Then, we design an application to train dynamical models using the federated ap-
proach. Finally, we conduct some experiment with the application with different AI/ML
models. This is done in preparation for the deployment of the application within the
platform, capable of training the i-DarkVec’s model using Federated Learning.

Considering the creation of a distributed and flexible platform to collect and process data,
we build our platform on a previous proposal to manage several measurement points. In
that work, the solution used was K3s, a lightweight Kubernetes distribution, in order to
create a cluster with local machines only. In this thesis, we improve how nodes config-
uration thanks to the use of Ansible playbooks. These support both local and remote
machines configuration.

On the nodes, various applications can be deployed on demand. According to the
application, the node can function as darknet, honeypot, or simply packet sniffer. The
previous work’s use K3s’s manifest files for the deployment. This approach do not scale
well with a large number of nodes, it offers limited customization settings, and it does
not support template creation. For this reason, we propose an optimization of the de-
ployment based on Helm charts. Thanks to these optimizations, we were able to create
the distributed platform with third-party organization nodes involved e.g., universities.
Moreover, we are able to easily control the applications running on the nodes thanks to
the use of Ansible and Helm, which allow us to activate or remove applications seamlessly.

Considering the second contribution, we develop, step by step, an application to train
the dynamical models using the federated approach. The first step is to choose a FL
framework. We conduct an initial survey, in which we explore the available frameworks.
At the end, we choose Flower as framework, since it offers the possibility to be easily
customized to support the model’s architectures evolving over time, it is lightweight, and
it is a good-fit to develop our application for resource-constrained edge nodes.

Despite its flexibility, Flower assumes the model’s architecture fixed. Given our need
to let the model’s architecture evolve over time, we modify Flower to include the support
for dynamic architecture feature, by adding new data structures and new methods. Our
solution introduce additional server-client interactions to make the clients propose updates
on model’s architecture. Examples of proposals are to add layers, to remove layers or to
tweak connections. These proposals are processed by the server to update the model’s
architecture. Once the aggregation is performed, the updated model is sent to clients for
the training phase as usual. Note that we implement the library to be generic as possible
and not context-specific.

II

To demonstrate the flexibility of this newly introduced capability, we validate the en-
hanced Flower’s implementation with two experiments, i.e. Convolutional Neural Network
(CNN) for image classification, and i-Darkvec for malicious traffic identification.

We consider the first experiment as initial benchmark to check the correctness of the
new model’s architecture update process. We use a CNN as model, and MNIST images
dataset in which each image can have 1 of 10 possible labels rappresenting digits. In
this experiment, each client splits its dataset to generate 10 subsets containing the same
digit. At each FL’s iteration, a client adds, to its own dataset, one of the subsets obtained
at the beginning. Then, the client inform the server about the labels contained in the
actual dataset, and the server updates the CNN classification layer accordingly to the
labels received. At this point, the client receives the models, and it trains the updated
model using its own dataset. We investigate and compare different scenarios’s performance
related to the choice of subset’s labels from clients. As example, two clients could propose
the same label over the iterations, or they could choose their label randomly.

We consider the second experiment to check the correctness of i-DarkVec model. We
compare the obtained model with a model trained with the traditional ML approach. We
obtain similar performance metrics. Moreover, we perform a detailed analysis to investi-
gate the resource consumption e.g., CPU and RAM usage , and of client-server interaction
duration. Overall, the results show the benefits of the proposed approach.

The improvements of the initial distributed platform enabled third-party organizations
to seamlessly join their machines. With the use of Ansible Playbooks and Helm Charts,
node and application management has become straightforward. The application we de-
veloped has shown in the two experiment we conducted excellent result both in term of
effectiveness and good quality of the metric’s performance obtained.

Finally, we discuss several potential directions for future work. The distributed plat-
form should be tested capturing real network traffic from the distributed nodes. Moreover,
a pre-processing phase needs to be implemented to transform the captured data into a
suitable format for real-time training of the AI/ML model. Increasing the types of honey-
pots used will improve the quality of traffic analysis. The Federated Learning application
could be optimized by reducing the data transferred during client-server interactions,
which currently has a significant impact, particularly when the model grows.

III

Contents

1 Introduction 1
1.1 Context . 1
1.2 Challenges . 1
1.3 Research Questions . 2
1.4 Previous Work . 3

1.4.1 Management of Distributed Physical Machines 3
1.4.2 Threats Identification with i-DarkVec 3

1.5 Contributions . 5
1.6 Index . 5

2 Distributed Platform Design and Deployment 6
2.1 Introduction . 6
2.2 Technologies used . 6

2.2.1 Ansible . 6
2.2.2 Helm . 7

2.3 Definition of a Configuration File . 7
2.4 Ansible Playbook Configuration . 7
2.5 Helm Deployment . 8
2.6 Current Platform Nodes . 9
2.7 Conclusion . 10

3 Introduction to Artificial Intelligence 11
3.1 Machine Learning . 11

3.1.1 Data Preprocessing . 11
3.1.2 Model Selection . 12
3.1.3 Model Training . 12
3.1.4 Model Testing . 12

3.2 Artificial Neural Networks . 12
3.2.1 I-Darkvec Model . 14

3.3 Federated Learning . 14
3.3.1 Introduction to Federated Learning 14
3.3.2 Federated Learning Advantages . 15
3.3.3 Federated Learning Scenarios . 15
3.3.4 Federated Learning Classifications 16

IV

3.3.5 Federated Learning challeges . 17

4 Frameworks for Federated Learning 19
4.1 NVIDIA FLARE . 19

4.1.1 Federated Learning Simulator . 20
4.2 FATE . 21
4.3 OpenFL . 21
4.4 Tensorflow FL . 22
4.5 Flower . 23

4.5.1 Flower Infrastructure . 23
4.5.2 Flower Networking . 24

4.6 Conclusion . 24

5 Enabling Federated Learning for evolving scenarios 25
5.1 Dynamic Model’s Architecture . 25

5.1.1 i-DarkVec Scenario . 25
5.1.2 Other Scenarios . 26

5.2 Changes Proposed for Federated Learning 27
5.3 Flower Current Limitations . 28
5.4 Flower Implementation of the Changes Proposed 28

5.4.1 Data Structures . 28
5.4.2 Server Side Library . 29
5.4.3 Client Side Library Implementation 31

5.5 Conclusion . 32

6 Results 33
6.1 Federated Image Classification . 33

6.1.1 Description . 34
6.1.2 Results . 34
6.1.3 Comments . 36

6.2 Federated i-DarkVec . 38
6.2.1 Dataset . 38
6.2.2 Training . 38
6.2.3 Federated Learning versus Traditional Machine Learning 39
6.2.4 Benchmark & Resource Usage . 41
6.2.5 Operations Timing . 42

6.3 Conclusion . 43

7 Conclusions and Future Works 44
7.1 Conclusions . 44
7.2 Future Works . 45

V

Chapter 1

Introduction

1.1 Context
Cyberattacks are growing in complexity due to the adoption of more sophisticated tech-
niques to exploit vulnerabilities. Their identification has become a complex challenge,
and novel detection approaches have become necessary.

A popular approach is based on the monitoring of network’s traffic, which is cru-
cial to observe and distinguish new cyberattacks patterns. In this approach, distributed
platforms are generally adopted, since they can significantly enhance attacks detection
through the federation of multiple measurement points. These nodes can be strategically
placed within different networks to improve coverage and effectiveness. Moreover, they
can actively attract advanced attacks when are act as darknets and honeypots, rather
than merely traffic sniffer.

In parallel, Machine Learning (ML) and Artificial Intelligence (AI) offer significant
opportunities to develop innovative techniques the automated detection.

1.2 Challenges
Distributed platforms are used to collect network’s traffic data in order to identify cy-
berattaks. This poses several problems when measurement points are situated across
different organizations. In fact, network’s traffic contains sensitive information such as
IP addresses and unencrypted payloads, which cannot be typically shared between par-
ties due to privacy regulations. Moreover, the volume of the captured data is typically
enormous, and data transfer is challenging. As result of these issues, the collected data
is generally retained in the organization that gathered them. Hence, the use of Artificial
Intelligence (AI) and Machine Learning (ML) technologies is limited to the local dataset
of each measurement points, without the possibility to leverage the benefits of a broader
and collaborative analysis.

The limitation related to local datasets can be address using a Federated Learning
(FL) approach. The idea is to train a model in each node with its own collected data,
and to share the parameters of the model to each other. The shared models are then

1

Introduction

aggregated to build one single model, with an accuracy comparable to a model trained on
the entire dataset. This approach ensures that the local dataset remains private, and it
enables a comprehensive and collective analysis across all nodes.

Although Federated Learning could provide broader insights, its application needs
further developments. The network’s traffic evolves over time e.g. new IPs addresses are
discovered. Therefore, there is the need of models capable to update their structure to
adapt over-time to classify new traffic with new labels. This approach is quite different
from typical Machine Learning scenarios, where labels are known at the beginning and
the static model is created accordingly. Federated Learning existing implementation are
typically based on static models, therefore this additional challenge shall be faced.

1.3 Research Questions
In this section, we outline the key questions to be addressed throughout this thesis.

• How are these measurements points managed in a distributed computing
scenario with third-party organizations involved?

The definition of the distributed scenario and nodes management is addressed in
the related work presented in 1.4, but this solution is limited to local machines at
Politecnico di Torino. We take a further step to significantly improve how nodes
configurations are handled, allowing third-party nodes to join our cluster seamlessly.
Moreover, we propose a scalable method to deploy applications across the nodes. A
more detailed discussion of this topic is provided in Chapter 2.

• What are frameworks and libraries already implement Federated Learn-
ing?

We conducted a survey to identify frameworks and libraries that implements feder-
ated learning approaches. Our analysis explores their capabilities and their rationale
behind. Thanks to this analysis, we chose the framework used to implement our so-
lution. These frameworks are presented in Chapter 4.

• How can we adapt Federated Learning to accommodate the evolving
structure of our trained model?

Initially, we identified the information necessary to update the model structure on
the fly. Then, we explored how to incorporate this requirement into the federated
learning process. Finally, we proposed and apply the solution using a specific frame-
work. Further details can be found in Chapter 5.

• How did we assess the effectiveness of our proposed solutions?

We assessed the effectiveness of our proposed solutions through experiments using a
1) Convolutional Neural Network (CNN) model for image classification, and 2) the i-
DarkVec model, presented in (10), for network traffic analysis. A detailed discussion
of these experiments is presented in Chapter 6.

2

Introduction

1.4 Previous Work

The foundations of this thesis are built upon the prior work presented in (8; 10). The
first one offers a solution to manage distributed physical machines, meanwhile the second
one presents the Machine Learning model i-DarkVec to identify threats. An introduction
is given in the following sections.

1.4.1 Management of Distributed Physical Machines

The work presented in (8) offers a solution to manage distributed physical machines, in
particular how to instruct them to perform specific actions. The solution proposed is to
use a K3s1 cluster. This choice allows to operate at cluster-level, since it abstracts the
complexities of the physical layer. Furthermore, it simplifies applications management
through the use of pods2 which can be easily deployed or removed from a node. Commu-
nication between nodes within the cluster is secured using WireGuard VPN. The Figure
1.1 shows the different abstraction used to simplify the management of distributed nodes.

The setup of the physical machines is handled through Bash scripts to facilitate con-
figuration management, such as to either join an existing K3s cluster or establishing a
new one by properly install all the necessary dependencies on the physical machines.

The captured network traffic is stored locally on each node, and the use of any machine
learning solution to process data is not implemented yet.

1.4.2 Threats Identification with i-DarkVec

The work presented in (10) introduces a Machine Learning model, known as i-DarkVec, to
analyze time-evolving traffic and to identify potential cyber-threats. i-DarkVec employes a
clustering technique to group unknown IP addresses, either associating them with known
malicious actors or uncovering new sources conducting similar attack patterns. An ex-
ample of result related to attacks identification is shown in Figure 1.2. The learning
approach allows to dynamically adapt the model structure, in order to handle large-scale
traffic effectively. A more detailed explanation of i-Darkvec’s model will presented in 3.2.1.

1K3s is a lightweight Kubernetes distribution, specifically designed for IoT and Edge computing.
2A pod is the basic unit running a containerized application.

3

Introduction

Cluster layer

Applications layer

Physical layer

Figure 1.1: The figure describes the plaftform’s infrastructure presented in (8). The
network is rappresented on three different horizontal layers. The vertical lines rappresents
instead the relations between physical machines, cluster agents, and applications.

Figure 1.2: The figure shows an example of clusters activity discovered by i-DarkVec.
Each cluster is identified by the identifier Cx, where x ∈ N is a number used to indentify
the cluster itself. Credits: (10).

4

Introduction

1.5 Contributions
In this section, we list the main contributions of this thesis.

• Optimized Node Management. We improved the management process of nodes
within the platform and the deployment of applications, by leveraging Ansible and
Helm technologies .

• Survey of Federated Learning Frameworks. We conducted a comprehensive
survey on the state of the art of Federated Learning frameworks.

• Extension of the used Federated Learning Framework. We proposed an en-
hancement of Flower, which is the chosen Federated Learning framework to support
potential updates to the model structure.

• Training of a Convolutional Neural Network (CNN) using Federated Learn-
ing supporting evolving class. The application we developed is built on the en-
hanced framework that supports updating the model’s architecture during training.

• Training of i-DarkVec using Federated Learning. We created a scenario with
i-DarkVec for network’s traffic classification. We integrated it using the enhanced
Flower framework.

• Performance Analysis. We conducted performance analyses to assess the effi-
ciency of the implemented models.

1.6 Index
In this section, we summarize the topics covered in each chapter of this thesis.

In chapter 2, we present how we manage the platform with third-party organizations.
Chapter 3 explores the concepts of Machine Learning and Federated Learning. In Chapter
4, we conduct a comprehensive survey of existing frameworks, evaluating their strengths
and weaknesses in relation to our objective. Chapter 5 focuses on the integration of
model’s structure update in Federated Learning. Chapter 6 presents results related to the
federated training of a Convolutional Neural Networks (CNN) for image classification, and
i-DarkVec for network’s traffic classification. Finally, Chapter 7 summarize the thesis’s
work, and suggests idea for future research.

5

Chapter 2

Distributed Platform Design
and Deployment

2.1 Introduction
In this chapter, we improve the current configurations script and deployment process of
applications within the platform proposed in (8).

These improvements are necessary because we want to build the platform using ma-
chines belonging to other third-part organizations, rather than machines only at Politec-
nico di Torino.

For this reason, we present a straightforward installation process to be independently
executed by each organization , without our intervention. Furthermore, since we may not
be able to connect to these machines remotely, the proposed solution need to be a user-
friendly for the third-party owners, which need to configure their machines to join in the
platform. The solution we propose is to use Ansible playbooks to handle the installation
process because they are a good-fit to configure at the same time multiple local-or-remote
machines.

We propose an alternative solution to optimize the deployment of the application within
the platform. The current management approach, using K3s’s manifest files, does not scale
well. Each change requires locating and manually editing the correct manifest file, which
becomes unsustainable with a large number of nodes and applications. Furthermore, K3s’s
manifests offer limited customization options and do not support template creation. For
this reason we decide to adopt Helm charts for the deployment of applications.

2.2 Technologies used
2.2.1 Ansible
Ansible is an open-source automation tool to simplify tasks such as configuration man-
agement, application deployment, and orchestration. It allows users to automate complex
processes efficiently across multiple systems, from configuring machines to running scripts

6

Distributed Platform Design and Deployment

on them. It operates with a simple, agent-less architecture. It uses playbooks in the the
YAML format to define tasks. A key component is its inventory i.e., an external YAML
which contains variables and details about the managed system. Further details can be
found in the documentation (1).

2.2.2 Helm
Helm is an open-source package manager for K3s, which simplifies the deployment and
management of applications in clusters. It uses preconfigured templates, known as charts,
to define K3s resources and to streamline the deployment process. Users can version,
update, and roll back applications easily. For this reason, it is an essential tool to automate
the deployment of complex K3s applications and to manage them consistently across
environments. From an architectural point of view, Helm charts are composed by two
parts. The first one lists the collection of template files used to define K3s’s resources
to be deployed. The second one contains the values with which the template’s files are
populated. Moreover, when the deployment is created, Helm offers the possibility to assign
additional values on-the-fly. Further details can be found in the documentation (14).

2.3 Definition of a Configuration File
We propose the creation of a single configuration file to consistently manage node and ap-
plication deployment. This centralized configuration simplifies the management of nodes
and modifications of the applications running on them. This approach becomes particu-
larly beneficial as the number of nodes increases.

The file’s format is YAML to be capable of being recognized as inventory by Ansible.
The file’s structure is divided in two main sections as shown in Figure 2.1. The first section
is used by Ansible to manage the nodes. It contains the connections settings of each node
of the network, and the parameters of the WireGuard VPN which has been used. The
second section is used by Ansible to instruct Helm how to deploy the applications. It
contains the settings for applications deployed for each node. These applications include
the Docker registry, darknets, honeypots, and the enhanced Flower framework used for
our Federated Learning training.

.

2.4 Ansible Playbook Configuration
As discussed in the section 1.4, current configuration process relies on several Bash scripts
to be manually executed on each node physical machine to configure the system. This
process is inefficient and prone to errors as the number of nodes grows and when updates
are required. Ansible playbooks were adopted to improve the configurability and the
management of the platform. This permits to handle several scenarios such as

• the initial creation of the platform,
• the addition and the removal of a node from the platfrom,

7

Distributed Platform Design and Deployment

• the enablement and disablement of an applications on specific nodes thank to the
cooperation with Helm.

Configuration file (.yaml)

Part 1

Part 2

Application 1

Application n

Figure 2.1: The figure shows the structure of the configuration file.

2.5 Helm Deployment

Regarding the application deployment, the previous work presented in (8), used an ap-
proach based on the K3s manifest files, which contain all the needed information hard-
coded. This approach has lack of flexibility and customization. For this reason, a new
and powerfull tool, known as Helm, is adopted. Helm allows to create parameterized de-
ployments, referred as Helm Charts, which can be easily integrated with the configuration
file presented in the section 2.3.

In our proposed solution, the deployment process is still managed via Ansible play-
books. A initial playbook determines, from the configuration file, which application has
to be installed. After that, it invokes additional playbooks to install the applications that
extract still from the configuration file the values to be used by Helm for the deployment.
The process is shown in Figure 2.2.

8

Distributed Platform Design and Deployment

Initial Playbook

Application 1 Application 2 Application n

Figure 2.2: The figure illustrates the application deployment process. An initial playbook
triggers the application’s playbooks, which these invokes the corresponded Helm Chart to
manage the deployment.

2.6 Current Platform Nodes

The use of Ansible playbooks allows us to seamlessly integrate machines from external
organizations into our platform. As shown in Figure 2.3, the current platform consists in
multiple nodes connected to the central server at Politecnico di Torino.

The server acts as the K3s master and WireGuard VPN server. It hosts the Docker
registry, which maintains and distributes the containerized applications. On-demand ap-
plications can be activated as needed, such as the Federated Learning server, which is
used to perform Federated Learning tasks.

Each measurement’s point is connected to the central server via VPN, and it is config-
ured to be a K3s’s agent. Within these nodes are activated several applications according
to the needs specified in the configuration’s file presented in Section 2.3. Once the file
is configured, it is required to execute the Ansible Playbook related to the applications
management. The applications running on the nodes are automatically updated.

9

Distributed Platform Design and Deployment

Figure 2.3: The figure shows five different nodes within the platform, the poli_master_00
is the server, while the others are clients placed in different networks respect to the server’s
network. Note that in this figure we have only two Federated Learning clients connected
to the server on the poli_master_00 machine.

2.7 Conclusion
In this chapter, we presented significant enhancements to the configuration and deploy-
ment processes of the platform presented in (8).

We streamlined the installation and management of applications across both local
and third-party nodes thanks to the transition from Bash script to Ansible playbooks.
This simplifies the on-boarding process for third-part organizations, and it reduces the
likelihood of errors related to configuration. In particular, we adopted an approach with
a single configuration file to simplify management as the number of nodes grows.

The adoption of Helm charts allowed us to create parameterized deployments, enhanc-
ing flexibility and customization when deploying applications within the K3s environment.

These improvements allowed us to integrate third-party machines into the platform.
This made possible to and build a large-scale plaftorm able to collect and to process
malicious traffic.

The Ansible playbooks and other files related to the platform are contained in the
Github repository at https://github.com/SmartData-Polito/hiac.

10

https://github.com/SmartData-Polito/hiac

Chapter 3

Introduction to Artificial
Intelligence

Artificial Intelligence (AI) refers to the use of technologies to build machines and comput-
ers that have the ability to mimic cognitive functions associated with human intelligence,
such as being able to see, understand, and respond to spoken or written language, analyze
data, make recommendations, and more (3).

The most popular subfield of Artificial Intelligence (AI) is Machine Learning (ML)
will be introduced in section 3.1. In particular, we will focus on Artifical Neural Network
(ANN) models to which the section 3.2 is dedicated. In our applications, a great attention
is given to i-DarkVec, which is a particular ANN architecture used for malicious traffic
identification. For this reason, it is presented in section 3.2.1. Finally, the federated
approach for training is presented in section 3.3. This is usefull since the models presented
in our results are trained in a distributed way, typical of this approach.

3.1 Machine Learning
Machine learning (ML) is a subset of AI that consist in algorithms that learn new informa-
tion from data without being explicit programmed. Rather than relying on hard-coded
rules, machine learning algorithms leverage patterns, trends, and relationships in data
to make predictions, decisions, or classifications (3). ML has also found widespread ap-
plications in industries such as healthcare, finance, transportation, entertainment and
cybersecurity.

The development of a ML model is based on a well-established key phases after data
has been collected: i) data processing ii) model selection iii) model training and iii) model
testing.

3.1.1 Data Preprocessing
The initial step is data preprocessing, which involves transforming raw data into a suitable
format for the model. Common preprocessing tasks include handling missing values,

11

Introduction to Artificial Intelligence

scaling features to a consistent range, and encoding categorical variables into numerical
data. During this stage, the dataset is splitted into training and testing sets. The training
set is used to train the model, while the testing set checks how well the model performs
on new, unseen data. A common split ratio is 80% for training and 20% for testing.

3.1.2 Model Selection
Once the dataset is prepared, the appropriate model is selected based on the task and
the nature of the data as different models perform better on different types of data and
problems. For instance, regression models may be suitable for predicting continuous
outcomes, while classification models are used for categorical outputs.

3.1.3 Model Training
Next, the model is trained by feeding the training data and adjusting its parameters to
improve the model’s performance.

Eventually, in the training phase can be insert an additional phase known as model
validation. This phase is used i) to optimize model’s parameters which cannot be trained
during the training phase known as hyperparameters, ii) to avoid overfitting and under-
fitting. Note this requires an additional split of the training set data in two set: a new
training set with which the model will be effectively trained, and a validation set to be
used for the model validation.

3.1.4 Model Testing
At the end, the model is tested using the testing set to estimate how well it will perform
on new, unseen data. Various metrics can be employed to assess performance. The most
used metrics are presented below for a classification problem with two possible outcomes.

• Accuracy is the proportion of correctly predicted instances out of the total number
of instances.

• Precision is the proportion of true positives among all predicted positives.

• Recall is the proportion of true positives among all actual positives.

• F1-Score is the harmonic mean of precision and recall.
These metrics can be extented to classification problems with more than 2 classes.

3.2 Artificial Neural Networks
Artificial Neural Networks (ANNs) are a particular class of machine learning models.
These consists in connected nodes, called neurons, where each node performs the mathe-
matical operation

y = f

A
nØ

i=1
ωixi + b

B
,

12

Introduction to Artificial Intelligence

where y is the neuron output, xi is the i − th input, ωi ∈ R is known as i − th weight,
b ∈ R is known as bias, and the non-linear function f is known as activation function.
Most used ANN models operates are feed-forward ANN i.e., the output of each node is
connected to the input other nodes without creating loops and internal states. The typical
architecture is organized using several layers of interconnected neurons. This includes an
input layer which is feeded with input data, an output layer which provides the results
of the internal operations, and eventually a group of intermediate layers known as hidden
layers. An example is depicted in Figure 3.1.

Input layer Hidden layer Hidden layer Hidden layer Output layer

Figure 3.1: The figure shows an example of ANN. The first layer is known as input layer,
the last layer is known as output layer. The central layers are known as hidden layers.

This feed-forward ANN models are trained by adjusting the weights and the biases of
the network nodes so that the inputs of the training set are close to the outputs of the
training set. This can be formalized as the minimization of the loss function, which is an
error function between data outputs and network outputs computed from data inputs.

The most used algorithm is known as Backpropagation, which is an iterative algorithm
that minimize a loss function step by step by adjusting weights and biases. Each step
usually consider a subset of data with which a loss function is built. Now, some definitions
usually related to this training algoritm are given.

• The batch is the subset of data processed at each step. The batch size is the number
of training samples in the batch.

• The epochs defines a single pass through the entire training dataset.

More informations can be found at (11).

13

Introduction to Artificial Intelligence

3.2.1 I-Darkvec Model
Different ANN architectures have been proposed for differents tasks. Here, we present
i-DarkVec which is an architecture, presented in (10), used for the pattern extraction of
malicious traffic. This is based on Word2Vec, a Natural Language Processing technique
based on ANN. This technique uses the words as input by using an word-to-vector analogy
i.e. allows each word to be identified by a vector. To do it, a vocabulary of N possible
words is used. Several word-to-vector maps have been proposed, but the most popular
is based on one-hot-encoding. The vector obtained is then used as ANN input, and the
output is the word embedding which is a representation of the word in a smaller vector
space with dimension e≪ N . Two words close in the word embedding space are similiar
in meaning. Note that the weights of the ANN that goes from vector space to embedding
words space are known as embeddings.

i-Darkvec exploit the Word2Vec approach, but it uses IPs addresses instead of using
words from human sentences. More details are presented in (10).

3.3 Federated Learning

3.3.1 Introduction to Federated Learning
As machine learning continues to evolve, new methodologies and paradigms emerged to
address limitations and enhance its capabilities.

One of major limitations is that a large number of architecture are data-hungry i.e.
requires a large training dataset to be stored in a single machine. This data can be also
collected from other machines, and then sent to a central machine, e.g. a server, which
will train the model using data provided by the other nodes. Although this approach is
easy to be implement, it has two main drawbacks:

• There is significant network bandwidth usage, since each node must upload their
entire dataset in the server. This can be time-consuming and resource-intensive.

• There are privacy concerns due to the data visibility over the entire network. This
raises issues related to privacy regulations.

Federated Learning addresses these limitations with a new approach. Instead of group
data of every node on a single centralized server and train a single model, federated
learning use a different approach. In this case, a model is trained in each node with data
locally available, then the parameters, e.g. weights and biases for an ANN, are sent to the
central node where all the differents models are assembled into single one. As last step, the
parameters of the aggregated model are sent back to the nodes which continue to adjust
the model using data locally available. Note that to evaluate the performances of the
aggregated model, in each node can be computed a testing metric using the agggregated
model and the testing dataset locally available. This information is sent to the central
node. The difference of the classical approach and the federated approach is illustrated
in the Figure 3.2.

14

Introduction to Artificial Intelligence

Figure 3.2: The picture on the left shows the classical Machine Learning approach. The
picture on the right shows the Federated Learning approach. In each of the two system
the data are collected on the nodes.

3.3.2 Federated Learning Advantages
As discussed in (12), federated learning has several advantages. Some of them are listed
and discussed below.

• Privacy by Design. The most important advantage is to guarantee data privacy. In
fact, models are trained on decentralized data without sharing any raw data between
nodes. For this reason, the risk of data leakage or exposure is significantly reduced.

• High scalability. In the classical approach, data-scaling becomes impractical. Feder-
ated Learning is inherently more scalable because it leverages local computation on
distributed devices or servers, avoiding the bottlenecks of central data collection.

• Reduced network usage. Federated Learning reduces the amount of data shared. In
fact, data dimension of model parameters is tipically much lower than the dataset
size with which the model is trained.

3.3.3 Federated Learning Scenarios
Federated Learning is increasingly applied across multiple fields. Some examples are
presented below.

• Google Gboard is a widely used Android keyboard application. GBoard uses Feder-
ated Learning to train the Next Word Prediction (NWP) model which provides the
suggested next words to appear above the keyboard while typing. More details can
be found at (13).

• Hospitals are often constrained by strict privacy regulations. In such cases, band-
width and computational resources are rarely a problem compared to data privacy.
A practical usage of federated learning in this sector is for analyze chest computed
tomography scan performed by different hospitals. More details can be found at
(23).

15

Introduction to Artificial Intelligence

3.3.4 Federated Learning Classifications

Federated Learning implementations can be classified either by the topology of the network
created by nodes or by how features1 and samples of data are distributed among the nodes.

Network topology classification

Federated Learning can be implementeed using different network topologies.
The most used topology is the centralized one. In this setup, a central node manages

the communication with the clients nodes.
In contrast, decentralized topology eliminates the need of a central node by enabling

all the participants to communicate directly with one another. In this approach, each
node shares the model’s parameters with neighbors, forming a peer-to-peer network.

In some scenarios, hybrid topology are prefered. These combines elements of centralized
and decentralized approaches.

Figure 3.3: The figure shows the centralized and decentralized topologies used in federated
learning. Credits: (20).

1A data instance is represented by a collection of its features.

16

Introduction to Artificial Intelligence

Data distribution classification

Federated Learning can be classified, according to (24), looking at distribution of the
data samples and data features present in different nodes. Three type of distribution are
presented below, and shown in Figure 3.4.

In Horizontal Federated Learning (HFL), data of different nodes shares the same fea-
tures but they can contain differents samples of data. This distribution comes out in cases
where organizations have similar types of data but distinct sets of users or objects.

In Vertical Federated Learning (VFL), data of different nodes shares the same samples
of data, but each sample can contain different features. This distribution comes out in
cases where differents organizations hold complementary data on the same users.

In Federated Transfer Learning (FTL), data of different nodes can not shares the same
features, and can contain different samples.

Figure 3.4: The figure shows the difference between horizontal federated learning, vertical
federated learning and federated transfer learning. Credits: (24).

3.3.5 Federated Learning challeges
According to (2), Federated Learning approach has some drawbacks. Some of them are
listed and discussed below.

• Systems heterogeneity. Federate Learning network consists of nodes with differents
storages, computational powers, and communication capabilities. Therefore, the
training process must be adapted to the capabilities of the least performing device.

• Model Poisoning. Nodes might intentionally or accidentally mislead the server with
malicious model’s parameters.

17

Introduction to Artificial Intelligence

• Data Distribution. Data contained in the local dataset are not independent and
identically distributed. Machine learning tecniques typically relies on this assump-
tion, therefore more sophisticated techniques must be developed to handle statistical
heterogeneity.

• Federated Fairness. Federated learning does not guarantee fairness between nodes.
Factors like connection quality, device kind, geographic location, and dataset size
may influence how samples are selected in the process.

18

Chapter 4

Frameworks for Federated
Learning

In this chapter, we present some of the most known frameworks and libraries which imple-
ment the essential logic and communication mechanisms required for Federated Learning.
An overview of their capabilities and characteristics is provided. As conclusion, we choose
Flower as framework, and we explain why it is the best fit for our solution.

4.1 NVIDIA FLARE

NVIDIA Federated Learning Application Runtime Environment (NVIDIA FLARE) (5)
is an a open-source development kit (SDK) designed to facilitate the implementation of
Federated Learning solutions. It is highly flexible and business-ready, but it is not user-
friendly at the beginning (21).

The framework consists of several key components. The most important is the FLARE
API, which serves as the foundation for running a Federated Learning application. Others
components include a Federated Learning Simulator for prototyping and testing workflows,
and the FLARE Dashboard, which is used to manage and monitor deployments.

The central concept of FLARE is a unit of work, known as Task, used to define specific
steps in the federated learning process. Tasks can be executed by both clients and servers.
Example of tasks are to train, to aggregate, and to evaluate. The worflow defines the
sequence and order of tasks that has to be performed. One example of workflow is the
Scatter and Gather as shown in Figure 4.1.

The collaboration between clients and servers is facilitated through controller-worker
interactions. The controller assigns tasks to workers, processes the results returned, and
makes decisions about the next steps. The Figure 4.2 shows how a controller and a worker
interact.

19

Frameworks for Federated Learning

Figure 4.1: The figure shows the tasks performed during Scatter and Gather workflow.
Credits: (5).

Figure 4.2: The figure shows the interaction between a controller and a worker. Credits:
(5).

4.1.1 Federated Learning Simulator

The Federated Learning Simulator is a lightweight tool for a running a NVIDIA FLARE
deployment, and it allows researchers to test and debug their application without provi-
sioning a real project.

This simulator is designed to allow to implements federated learning systems using
single machines, such as laptops. Once the application has been developed and debugged,
it can be directly deployed on a production system without any change.

20

Frameworks for Federated Learning

4.2 FATE
FATE (17) is an open-source project launched by WeBank’s AI Department. It is designed
to provide a secure computing framework for the Federated Learning ecosystem. It in-
cludes numerous modules for data preprocessing and various machine learning algorithms.
It offers backends for popular Deep Learning libraries like PyTorch and TensorFlow.

The application is composed by several modules. These includes the ones listed below.
• FederatedML is the core machine learning library. It contains algorithms to facilitate

Federated Learning.

• FATE Cloud is designed to scale federated learning tasks, deploy across different
cloud providers, and manage resources dynamically. It is compatible with cloud-
native technologies like Kubernetes and Docker.

• FATE Board is as a visualization tool. It provides an interface to monitor and evalu-
ate key metrics such as loss, accuracy, and other performance indicators throughout
the model training process.

• FATE Flow is the workflow engine used to orchestrate Federated Learning tasks,
manage job scheduling, execute tasks, and manage models.

Figure 4.3: The figure shows the FATE basic components. Credits: (18).

4.3 OpenFL
Open Federated Learning (OpenFL) (19) is an open-source project developed by Intel. It
offers a modular, flexible, and secure platform to implement Federated Learning.

The architecture includes several key component which are listed below.

21

Frameworks for Federated Learning

• A collaborator is a client which performs the training and owns the data in the
experiment.

• An aggregator is the central server responsible for coordinating and aggregating
model updates from collaborators.

• A task runner is a component which execute tasks like data preprocessing, model
training, and the communication to the orchestrator of the trained model updates.
Moreover, it defines the training and testing settings.

In the Figure 4.4, it is shown how the components works together.

Figure 4.4: The figure shows the OpenFL components and how they interact. The collab-
orator uses a local dataset to train a model, while the aggregator receives model updates
from collaborators, and combines them to form an aggregated model. Credits: (19).

OpenFL supports four ways to set up experiments. These are shown below.
• The Task Runner API is recommended for production scenarios where workload

verification is required before execution.
• The Python Native API provides a streamlined Python interface intended for simu-

lations.
• The Interactive API simplifies the setup of a federation and introduces long-lived

components such as the Director and Envoy.
• Workflow API offers increased flexibility for researchers and developers.

4.4 Tensorflow FL
TensorFlow Federated Learning (Tensorflow FL) (6) is a framework developed by Google,
and it is integrated with the known TensorFlow ecosystem. This helps to take advantage

22

Frameworks for Federated Learning

of the related Machine Learning tools and libraries.
The architecture of the framework consists of the two layers described below.

• Federated Learning API is a layer which offers high-level interfaces to allow develop-
ers to apply pre-built Federated Learning implementations to existing TensorFlow
models.

• Federated Learning Core is the layer which provides lower-level interfaces to express
custom algorithms of Federated Learning.

Although the framework shows great potential, it is relatively new, and studies such
as (15) pointed out it still lacks of several essential components. Currently, it can only
operate in simulation mode, since remote mode is not fully developed yet.

4.5 Flower
Federated Learning Framework (Flower) (22) is an open-source framework designed by
Adap. It facilitates Federated Learning across various environments, including edge de-
vices, mobile devices, and cloud infrastructure. It is highly flexible. For this reason, it
is popular choice for researchers and developers. It allows to work with several machine
learning libraries like TensorFlow, PyTorch, and JAX. Moreover, it allows to define own
strategies for client selection, aggregation of model updates, and communication protocols.
Finally, it offers detailed documentation and tutorials.

As side note, Flower is a very active project going through a lot of changes. The
information reported are based on version 1.8. We do not guarantee everything will work
as expected in more recent versions.

4.5.1 Flower Infrastructure
Flower framework has several components to build Federated Learning systems. We now
describe the most important components.

Flower Client

A client is a Python class implemented with one method to train the model, and one
method to evaluate the model. This class is built upon one abstract class which can be
chosen from two alternatives. The first one is NumpyClient and it uses Numpy Python
library to handle models parameters. The second one is Client, and it offers more flexibility
by representing the models parameters using list of bytes.

Flower Server

A flower server is an instance invoked by a method, which waits clients to connect. This
is not a class, in contrast to flower clients. However, the server does not permit any
customization which is managed through another component known as flower strategy.

23

Frameworks for Federated Learning

Flower Strategy

A flower strategy is a class which defines the logic and details of the tasks performed
by the server. They can be implemented to accommodate various aggregation rules,
optimization criteria, and the number of clients involved in each operations. Therefore,
this allows significant customization of the server behaviour. However we can only modify
certain parameters of the server.

4.5.2 Flower Networking
Flower facilitates communication between server and clients using gRPC1 or HTTP net-
working technologies. It operates in a star topology, in which the server serves as the
central hub. The flower networking architecture is shown in 4.5.

Figure 4.5: This picture shows the flower networking architecture.

4.6 Conclusion
In this chapter, we explored several known frameworks and libraries for Federated Learn-
ing. For each of them we provided an overview of their capabilities and their components.
After a thorough comparison, we selected Flower as the most suitable framework for this
project. It was considered the best choice due to its flexibility, framework-agnostic design,
and ease of integration with popular machine learning libraries such as PyTorch and Ten-
sorFlow. Moreover, its ability to handle Federated Learning across different environments,
including edge devices, aligns with the needs of this project. Finally, the well maintained
documentation and the activity community are additional benefits.

1gRPC is a remote procedure call (RPC) framework. It uses HTTP/2 and Protocol Buffers.

24

Chapter 5

Enabling Federated Learning
for evolving scenarios

In this chapter, we propose a solution to accommodate changes in model architecture
during training within Federated Learning.

In section 5.1, we present some scenarios with a model’s architecture evolving over
time. These scenario are not strictly related to our cybersecurity context, but they are
considered to approach the problem. In particular, we focus on i-DarkVec since it is one
of the work which inspired this thesis.

In section 5.2 we propose an high-level solutions to be used in scenarios previously
identified.

Then, in section 5.3, we analyze how Flower, chosen as Federated Learning framework,
handles model’s architectures during training. In particular, we identify its limitations.
Finally, in section 5.4, we implement our solution within the Flower library. We introduce
additional data structures and new functions to accommodate dynamic model updates.

5.1 Dynamic Model’s Architecture

5.1.1 i-DarkVec Scenario
In this section we present a scenario based on i-DarkVec. As already explained in section
3.2.1, i-DarkVec is a Machine Learning model which leverages Word2Vec. However, i-
DarkVec method is in contrast with the traditional method used to define a Word2Vec
model. The latter one defines the model by using the number of words in the vocabulary,
which were already been defined a-priori. This approach is not possible in our context
for two main reasons. In one hand, we don’t know all the possible IPs to be encountered
during our traffic capture. In the other hand we can not define an embedding size of
all possible IPs addresses. Note that IPv4 has 232 ≈ 49 possible addresses, and IPv6 has
2128 ≈ 338 possible addresses. For this reason, i-DarkVec adds a new IPs to the vocabulary
once detected. This results in an update of the embedding of the model i.e. an update
on the model’s architecture. The approach related to i-DarkVec is shown in Figure 5.1.

25

Enabling Federated Learning for evolving scenarios

Figure 5.1: The figure shows the i-DarkVec incremental approach. Credits: (10).

i-Darkvec & Federated Learning

The i-DarkVec approach works well when the model is trained on a single node. Novel
problems arises going federated. In this case, dataset is distributed across different clients,
and each client has a unique set of IP addresses. As a result, each client creates has its
own local vocabulary, and it creates the model’s embeddings based on their own dataset.

With Federated Learning, each client sends its model parameters to the server for
aggregation. However, the size of model’s parameters varies between clients because each
one builds the model based on its own vocabulary. This makes more difficult for the server
to aggregate the parameters since vocabularies are different. The solution proposed is to
establish a common vocabulary for clients and the server, and so a common architecture is
determined. This makes easier to merge the same embeddings related to different models.

5.1.2 Other Scenarios

In this section, we present other scenarios where model’s architecture may change per
clients or server requests. These scenarios are listed below.

• In an online topology optimization, the server may decide to change the hidden layers
of the topology e.g. online hyperparameter optimization.

• In continuous learning, a client may request to add a new class, so that the output
layer can grow e.g. new application in traffic classification.

• In word-embedding with unknown dictionary, the clients may request to add new
tokens, so that the internal connections and the input and output need to change.

26

Enabling Federated Learning for evolving scenarios

5.2 Changes Proposed for Federated Learning

In this thesis we addressed the problem related to changes in model’s architecture in the
context of Federated Learning. Our idea consist of an additional step before the usual
training phase. The server asks clients to send in their proposals for model’s update. The
format of the proposals depends on the specific use case. These proposals contains request
i) to add nodes, ii) to remove nodes, or iii) to tweak the parameters in the network. Once
the server has received these proposals, they are used to refine the model accordingly. This
process of proposal’s aggregation is tailored to the specific use case, and it may require a
shared understanding of how features are mapped across clients. Finally, the server sends
the architecture and the parameters of the updated model to the clients for training. The
clients then update their local instance of the models with the new one received from the
server and proceeds as usual in the training process. Once training is complete, the clients
send back the updated parameters, and the server aggregates these parameter as usual.

Client2Client1Server

par

par

loop [N rounds]

Proposal Request

Proposal

Proposal Request

Proposal

Update Topology

Fit Request

Result

Fit Request

Result

Figure 5.2: The figure shows our solution to support the model’s architecture to changes.

27

Enabling Federated Learning for evolving scenarios

5.3 Flower Current Limitations
Although Flower offers great flexibility and customization, it has some limitations de-
scribed in the following list.

• There is the assumption that all flower clients use the same model architecture.
• If one flower client has a different model’s architecture from other clients, then

the joining process fails.
• One random picked client’s model is used to initialize the models of all the other

clients.
• Flower server role is limited to aggregate the parameters received from flower

clients.
• The messages used by flower server to communicate with flower clients offers

limited customization.
• Flower server is the only one to have the privileges to initiate interactions. Flower

clients remain idle until prompted by the server and cannot send data unless it is
for a reply for a server’s request.

5.4 Flower Implementation of the Changes Proposed
In this section we describe our solution based on Flower.

In this section, we analyze our implementation proposed in Section 5.2. We first
examine how the Flower library currently manages client-server operations, and then we
describe the integration of our solution into the library.

5.4.1 Data Structures
In this section we present our proposed implementation for data structures. The file
trasport.proto contains the format’s definition of the client-server messages to be ex-
changed. This definition is given using Protocol Buffers1. This file is compiled using a
simple application provided by Flower, known as flwr_tool.protoc. More details on the
compilation process are presented in (7).

The four types of messages implement are presented within this section.

Server request for proposal - PropIns

PropIns is the message sent by the server to the clients to ask for their proposal. When
a client receives this message, it has to formulate the proposal. We decided to include
the possibility to insert some optional configurations for clients to customize the way they
generate a proposal. Two examples are to ask for features that appear more than a certain
number of times, or to limit the number of features returned.

1Protocol Buffers are language-neutral, platform-neutral extensible mechanisms for serializing struc-
tured data.

28

Enabling Federated Learning for evolving scenarios

Client reply with the proposal - PropRes

PropRes is a message sent by clients to reply to PropIns message. The message contains
the proposals of the client and the status of the reply. The latter is used by Flower itself
for error signaling and it is present in all the reply messages.

Server request for training with the new Model - ArchitectureFitIns

ArchitectureFitIns is the message sent by the server to the clients to start the train-
ing process. This is sent after the server has aggregated their proposal and updated
the aggregated model. The fields within ArchitectureFitIns are similar to the original
FlowerFitIns message. ArchitectureFitIns contains the parameters and the architec-
ture of the aggregated model, the vocabulary as defined by the server with an word-index
map, and a optional fields related to hyperparameters configuration. This map is required
for clients to map their input data to the corresponding indexes. Note that in i-DarkVec
case, the word are IPs.

Client response after training with the new model - FitRes

FitRes is a message sent by the clients to respond after local training. This message con-
tains the information related to local trained model. The message is already implemented
in Flower, and no changes were required.

5.4.2 Server Side Library
The server-side library customization focuses on the implementation of methods to request
client’s proposals, to update the model after the proposals have been received, and to
instruct the clients to train using the updated model.

Flower implementation of the Federated Learning server-side process is structured as
a loop. At each iteration, the server requests clients to train the model, and subsequently
asks for an evaluation of the aggregated model. We modified this process by introducing
new functions within the loop. These functions request client proposals, and update the
model with these proposals before training starts. The implementation is outlined in
Algorithm 1, and the methods are described in this section.

Request the client’s proposal - request_proposal_round()

request_proposal_round() is the method used to request the client’s proposal. It is
shown in Algorithm 2.

The initial phase selects the clients which will participate in the operation, and it
configures necessary settings. Once this preparation is complete, a new thread is created
for each selected client to allow interactions with it. Each thread executes a function
that effectively contacts the client. This function is responsible for sending the serialized
PropIns request to the client. Once the requests is sent, the function waits for the client’s
reply, which is deserialized once receipt. Note that serialization and deserialization use
the Protocol Buffer format. Finally, the thread returns the reply. When the replies from

29

Enabling Federated Learning for evolving scenarios

Algorithm 1 The algorithm shows the basic operations of Federated Learning made by
the Flower server.

1: function Perfom_Fed_Lern ▷ It is called once server is activated.
2: for i < Round_Number do
3: Request_proposal_round() ▷ It asks proposals to clients.
4: Compute_new_topology() ▷ It updates model.
5: Fit_round() ▷ It asks client to train the mode.l
6: To aggregate parameters;
7: Evaluate_round() ▷ It asks client to evalutate the model.
8: end for
9: end function

all the clients are received, they are collected and passed to the function responsible for
computing the new model’s architecture.

Algorithm 2 The algorithm show how proposals are used to update the model.
1: function Request_Proposal_round
2: To select clients for the operation;
3: To set configuration and parameters;
4: for each client do ▷ Each thread is associated with one client.
5: To spawn a thread with the topology_update() task;
6: end for
7: To collect reply from clients;
8: end function

1: function Topology_update ▷ This function is called for each client.
2: proto_msg ← serialize(req_msg) ▷ It serializes the message.
3: reply ← request(proto_msg) ▷ It send the message to the client.
4: reply_msg ← deserialize(reply) ▷ It deserializes the reply.
5: end function

Update model architecture - compute_new_topology()

compute_new_topology() is the method which updates model’s architecture. It is shown
in Algorithm 3.

The method uses the proposals received from the clients to modify the model. The
details of the implementation is up to the developer, since it depends on the application
context.

Train using the updated model - fit_round()

fit_round() is the method which ask the clients to train the model. This function is al-
ready implemented in Flower, but it has been edited to use the message ArchitectureFitIns,

30

Enabling Federated Learning for evolving scenarios

Algorithm 3 The algorithm shows how proposals are used to update the model.
1: function Compute_new_topology
2: changes ← proposals received from clients;
3: for each change do
4: To update model architecture using the proposed change;
5: end for
6: end function

instead of FitIns of the original implementation.

5.4.3 Client Side Library Implementation
The Flower library’s client-side implementation is responsible for receiving messages from
the server, for processing them, and for replying with the results. It operates within a
loop. The implementation is outlined in Algorithm 4.

Once a message is received from the server, it is deserialized using the Protocol
Buffer format. The message is processed by extracting its type, such as PropIns or
ArchitectureFitIns. The corresponding local function defined in the Flower client is
invoked based on the message type.

Our development in the client-side library focuses on adding the support for a new mes-
sage’s type. We connected the new message’s type with the appropriate flower client
function, which implements the required operation. The function is implemented by lever-
aging the original flower client abstract classes. Furthermore, a small adjustment is
made to the flower client function responsible for training the model. The modified
function handles the new message type ArchitectureFitIns, which contains both the
parameters and the architecture of the model, instead of the only FitIns message which
includes just the parameters.

31

Enabling Federated Learning for evolving scenarios

Algorithm 4 The algorithm shows how clients handles messages.
1: function start_client_internal() ▷ It is invoked when the Flower client starts.
2: To connect to the server;
3: while the client is connected to the server do
4: message ← receive() ▷ It waits and it deserialize the message received from

the server.
5: reply ← process(message)
6: send(reply) ▷ It serializes and it send the message to the server.
7: end while
8: end function

1: function process(message)
2: message_type ← message.type ▷ It extracts the message type;
3: To call the corresponding method according to the message_type;
4: result ← client.fn(message) ▷ It calls the local function.
5: end function

5.5 Conclusion
In this chapter we presented some scenario in which the model’s architecture evolves
over time. In particular, we focused on i-DarkVec’s model. We proposed an high-level
solution to support the changes of the model’s architecture in the Federated Learning.
We discussed our implementation based on Flower, the framework we chose to manage
Federated Learning.

Finally, we were able to use this library to build applications that utilize Federated
Learning to train models with a dynamic architecture. Some examples of these applica-
tions are presented in Chapter 6.

32

Chapter 6

Results

In this chapter, we validate the enhanced Flower’s implementation with two experiments
by using a Convolutional Neural Network (CNN) for image classification, and i-Darkvec
for malicious traffic identification.

We consider the first experiment, presented in 6.1, as initial benchmark to check the
correctness of the new model’s architecture update process.

The second experiment, presented in 6.2, is made using i-DarkVec. The aim of the ex-
periment is to verify the correctness of i-DarkVec’s model trained using Federated Learn-
ing.

6.1 Federated Image Classification
In this scenario, we use a simple Convolutional Neural Network (CNN) for image classifi-
cation. The architecture of the CNN is shown in Figure 6.1. An important feature of this
CNN is its final layer, which is responsible for classifying the image labels. The size of
this layer corresponds to the number of labels in the dataset, making it straightforward to
update and to add new classes. The CNN can divided in to two main parts. The first part
handles the feature extraction, by identifying important details in the image.The second
part performs the classification, assigning a label to the image.

Figure 6.1: The figure shows the CNN model used for image classification.

The images we use for training/validating the model come from the MNIST dataset
(16), which is a large set of handwritten digits. Some images are shown in Figure 6.2.

When working with a CNN model for images classification, we typically define the last
layer in advance. This layer has 10 output classes, one for each digit from 0 to 9. For our

33

Results

Figure 6.2: The figure shows some handwritten digits taken from the MNIST dataset.

experiment, we make the size of the last layer to growth as new labels are proposed by
clients, instead to define the last layer at the beginning with already 10 classes. Note that
the hidden layers, responsible for features extraction, maintain the same architecture.

6.1.1 Description

For our experiment, we use two clients, each with half of the MNIST dataset. We define
the procedure on how client discover new labels from the dataset. This procedure consists
of each client splitting its own dataset to generate 10 subsets containing the same digits.
At each Federate Learning’s iteration, a client adds, to its own dataset, one of the subsets
obtained at the beginning. Then, the client inform the server about the labels contained
in the actual dataset, and the server updates the CNN classification layer accordingly to
the labels received. At this point, the client receives the models, and it trains the updated
model using its own dataset.

We propose several ways for a client to choose the subset’s labels to be added in its
dataset. As example, two clients could propose the same label over the iterations, or they
could choose their label randomly.

We perform some benchmark with different label’s discovery strategies. The results
are presented in Section 6.1.2, and they are analyzed in Section 6.1.3.

6.1.2 Results

In this section we present the experiment’s results in Table 6.1, Table 6.2, Table 6.3, and
Table 6.4.

34

Results

All labels known in advance

Round Local model Aggregated model LabelsLoss Accuracy Loss Accuracy
1 0.0828 0.9755 0.3107 0.9695 [0,1,2,3,4,5,6,7,8,9]
2 0.0551 0.9827 0.0442 0.9862 [0,1,2,3,4,5,6,7,8,9]
3 0.0506 0.9847 0.0313 0.9903 [0,1,2,3,4,5,6,7,8,9]
4 0.0341 0.9885 0.0239 0.9915 [0,1,2,3,4,5,6,7,8,9]
5 0.0285 0.9907 0.0253 0.9911 [0,1,2,3,4,5,6,7,8,9]
6 0.0245 0.9920 0.0191 0.9943 [0,1,2,3,4,5,6,7,8,9]
7 0.0260 0.9921 0.0209 0.9938 [0,1,2,3,4,5,6,7,8,9]
8 0.0323 0.9905 0.0234 0.9927 [0,1,2,3,4,5,6,7,8,9]
9 0.0313 0.9914 0.0212 0.9934 [0,1,2,3,4,5,6,7,8,9]
10 0.0210 0.9943 0.0168 0.9954 [0,1,2,3,4,5,6,7,8,9]

Table 6.1: In this scenario, all labels are known in advance and the model’s architecture,
once defined, is keep fixed for all ten rounds. The clients train the CNN using all subsets
since the first round. The table shows the metrics’s performance before and after the
model aggregation. The performance of this scenario is used as a reference for other
scenarios.

Same Labels Discovered

Round Local model Aggregated model LabelsLoss Accuracy Loss Accuracy
1 0.0000 1.0000 0.0000 1.0000 [0]
2 0.0036 0.9991 0.0160 0.9962 [0, 1]
3 0.0207 0.9930 0.0179 0.9936 [0, 1, 2]
4 0.0136 0.9954 0.0141 0.9949 [0, 1, 2, 3]
5 0.0255 0.9934 0.0229 0.9944 [0, 1, 2, 3, 4]
6 0.0326 0.9910 0.0264 0.9935 [0, 1, 2, 3, 4, 5]
7 0.0432 0.9868 0.0440 0.9878 [0, 1, 2, 3, 4, 5, 6]
8 0.0544 0.9839 0.0450 0.9878 [0, 1, 2, 3, 4, 5, 6, 7]
9 0.0794 0.9797 0.0921 0.9819 [0, 1, 2, 3, 4, 5, 6, 7, 8]
10 0.1279 0.9726 0.1691 0.9726 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Table 6.2: In this scenario, the two clients propose the same label at each round e.g.,
at round 1, each client propose the labels 0. The table shows the metrics’s performance
before and after the model aggregation.

35

Results

Orthogonal label discovery

Round Local model Aggregated model LabelsLoss Accuracy Loss Accuracy
1 0.0000 1.0000 2.2882 0.5128 [0, 5]
2 0.0425 0.9904 0.9034 0.6741 [0, 5, 1, 6]
3 0.0162 0.9940 0.5041 0.9491 [0, 5, 1, 6, 2, 7]
4 0.0253 0.9920 0.6152 0.8700 [0, 5, 1, 6 ,2, 7, 3, 8]
5 0.0289 0.9922 0.8624 0.7968 [0, 5, 1, 6 ,2, 7, 3, 8, 4, 9]
6 0.0227 0.9926 0.4883 0.8518 [0, 5, 1, 6 ,2, 7, 3, 8, 4, 9]
7 0.0157 0.9950 0.2618 0.9285 [0, 5, 1, 6 ,2, 7, 3, 8, 4, 9]
8 0.0137 0.9960 0.2360 0.9309 [0, 5, 1, 6 ,2, 7, 3, 8, 4, 9]
9 0.0220 0.9940 0.2498 0.9223 [0, 5, 1, 6 ,2, 7, 3, 8, 4, 9]
10 0.0131 0.9962 0.2103 0.9341 [0, 5, 1, 6 ,2, 7, 3, 8, 4, 9]

Table 6.3: In this scenario, the first client has a subset of labels {0,1,2,3,4} different from
the labels {5,6,7,8,9} of the second client. In this way, each client propose a label that
other client does not have. After five rounds, the two clients have proposed all their
subset’s labels. In the following rounds any, new label is propose. The table shows the
metrics performance before and after the model aggregation.

Random label discovery

Round Local model Aggregated model LabelsLoss Accuracy Loss Accuracy
1 0.0000 1.0000 0.6296 0.5683 [3, 2]
2 0.0363 0.9857 0.8939 0.6559 [3, 2, 4, 5]
3 0.0413 0.9882 0.7585 0.7662 [3, 2, 4, 5, 9, 8]
4 0.0409 0.9850 0.9615 0.6771 [3, 2, 4, 5, 9, 8, 6]
5 0.0458 0.9850 0.4387 0.8720 [3, 2, 4, 5, 9, 8, 6]
6 0.0458 0.9883 0.9004 0.7458 [3, 2, 4, 5, 9, 8, 6, 1]
7 0.0543 0.9833 1.0324 0.6865 [3, 2, 4, 5, 9, 8, 6, 0, 1, 7]
8 0.0430 0.9867 0.4609 0.8310 [3, 2, 4, 5, 9, 8, 6, 0, 1, 7]
9 0.0443 0.9881 0.1592 0.9461 [3, 2, 4, 5, 9, 8, 6, 0, 1, 7]
10 0.0377 0.9898 0.0306 0.9916 [3, 2, 4, 5, 9, 8, 6, 0, 1, 7]

Table 6.4: In this scenario, the two clients randomly pick a new label for each round. In
some round the label proposed are already proposed by the other client. The table shows
the metrics performance before and after the model aggregation.

6.1.3 Comments

In this section, we compare the different scenarios presented in the Section 6.1.2. We
analyze their metric’s performance obtained in terms of loss and accuracy.

36

Results

Fixed labels vs Dynamic labels

The first comparison is done between Table 6.1 and Table 6.2. This comparison is shown
in Figure 6.3.

In the scenario of Table 6.1, we observe that the model starts with low accuracy and a
high loss. However, during training, the accuracy improves, and the loss decreases. This
behavior aligns with expectations.

In the scenario 6.2, we observed the opposite behaviour i.e., the model starts with a
very high accuracy and low loss. In the initial rounds, the number of labels is limited,
which allows the model to easily identify images, even though the hidden layers are not
well-trained. However, as new labels are added, the model accuracy decrease. This occurs
due to the introduction of additional labels which complicate the identification process.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7 8 9 10

Lo
ss

Round

Fixed
Dynamic

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Round

Fixed
Dynamic

Figure 6.3: The figure shows the comparison between the scenario of Table 6.1 and Table
6.2. We refer to scenario of Table 6.1 as fixed, and to the one of Table 6.2 as dynamic.
We compare the loss on the left picture, and the accuracy on the right picture.

Dynamic labels discovery

The second comparison is between the three different dynamic approach Table 6.2, Table
6.3, and in Table 6.4. This comparison is shown in Figure 6.4.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10

Lo
ss

Round

Same
Casual

Orthogonal

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Round

Same
Casual

Orthogonal

Figure 6.4: The figure shows the comparison between the scenario of Table 6.2, Table 6.3,
and Table 6.4. We refer to the scenario of Table 6.2 as same, to the one of Table 6.3 as
orthogonal, and to the one of Table 6.4 as casual. We compare the loss on the left picture,
and the accuracy on the right picture.

37

Results

6.2 Federated i-DarkVec
In this experiment, verify the correctness of i-DarkVec’s model training in a Federated
Learning context. For this experiment we use two clients. In Section 6.2.1, we present
the dataset used for this experiment. In Section 6.2.2, we discuss how clients generate the
vocabulary, and how the server aggregates them to update the models. In Section 6.2.3,
we compare the performance metrics of the model trained using Federated Learning with
the performance of a model trained using a traditional Machine Learning approach based
on a single dataset. In section 6.2.4, we analyze the resources consumed during training
e.g., RAM and CPU. This is done to understand if the model could be trained on resource-
constrained edge devices. Finally, in Section 6.2.5, we look at how much time is taken for
the vocabulary request’s phase and to train the model. This is done to understand if the
additional client-server interaction impacts on the overall timing of training.

6.2.1 Dataset
The dataset used to train i-DarkVec consists of traffic’s capturs from two different net-
works. Each client utilizes different network traffic capture dataset. The datasets are
stored in 31 files, one for each day of traffic’s capture. The traffic’s trace are normalized
into the format presented in Table 6.5.

Timestamp Source
IP

Source
port

Destination
IP

Destination
port Protocol

1619827200.160742 92.63.196.13 57340 130.192.166.135 11676 6
1619827200.2047381 172.245.79.122 57026 130.192.166.46 23 6
1619827200.312591 1.85.44.226 38567 130.192.166.84 1433 6

Table 6.5: The table shows some example of data contained in the dataset used to train
i-DarkVec’s model.

6.2.2 Training
At each round of Federated Learning, the clients select one file corresponding to one day’s
traffic capture as their dataset. They generate the vocabulary, they send the vocabulary
to the server, and from the server they obtain the model to be train for that round. Then,
at each new round of Federated Learning, the clients choose the next file as their dataset,
generating the new vocabulary for that round.

Vocabulary and models

In order to generate the vocabulary, we filtered the dataset with an approach explained
in (9). The remaining IPs form the vocabulary sent from the client to the server. The
server receives these vocabularies, and they are aggregated according to the Algorithm
5. The Figure 6.6 shows how many IPs are contained in the client vocabularies and, the
size of the aggregated vocabulary created at each round. Note that the clients propose

38

Results

the vocabulary extracted from a single day of capture, while the aggregated vocabulary
contains also the vocabularies of the previous days. It is important to notice that, there
is no procedure to forget IPs. For this reason, the model’s embedding continues to grow.

Figure 6.6 shows the size of the model after one round of Federated Learning and after
thirty-one round of Federated Learning. The size of the embeddings for is 7842 on the
first round, and it increase to 127664 on the thirty-one round. These sizes correspond also
to the sizes of the aggregated vocabulary for that rounds.

Algorithm 5 Aggregation process of the vocabularies proposed by the clients.
1: IPs ← IPs contained in the clients’ vocabularies received;
2: To sort the IPs; ▷ Optional
3: for each IP in IPs do
4: if IP not in vocabulary then
5: To add IP to the vocabulary;
6: end if
7: end for

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f

IP
s

Round

Client 1
Client 2

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f

IP
s

Round

Aggregated

Figure 6.5: The picture on the left shows the size of the vocabularies proposed by clients
during rounds. The picture on the right shows the size of the aggregated vocabulary on
the server.

6.2.3 Federated Learning versus Traditional Machine Learning

In this section, we compare the performance of an i-DarkVec model trained using tradi-
tional Machine Learning with an i-DarkVec model trained using the Federated Learning.
For the traditional Machine Learning training, we create a single dataset by combining the
datasets used in Federated Learning approach. We train the Federated Learning model
with 5 rounds. Each round represent a day of traffic capture. We compared the two
approaches using a k-Nearest Neighbors (k-NN). The results are shown in Table 6.6.

We can notice that the performance obtained from the federated model is similar to
the one obtained from the traditional approach. Moreover, we notice that the traditional
model is able to classify more IPs than the federated model.

39

Results

Figure 6.6: The picture on the left shows the i-DarkVec model after one round of Federated
Learning. The picture on the right shows the i-DarkVec model after thirty-one round of
Federated Learning.

Category Traditional Machine Learning Federated Learning
Precision Recall F1-Score Support Precision Recall F1-Score Support

shadowserver 1.00 1.00 1.00 574.0 1.00 1.00 1.00 574.0
rapid7 1.00 1.00 1.00 344.0 1.00 1.00 1.00 344.0
censys 0.97 1.00 0.99 334.0 0.97 1.00 0.99 334.0
internetcensus 0.98 0.99 0.99 169.0 0.94 1.00 0.97 169.0
onyphe 0.99 0.99 0.99 147.0 0.98 0.98 0.98 147.0
netsystems 1.00 1.00 1.00 88.0 1.00 1.00 1.00 88.0
shodan 1.00 0.89 0.94 53.0 1.00 0.77 0.87 53.0
binaryedge 1.00 0.77 0.87 35.0 1.00 0.94 0.97 34.0
ipip 1.00 0.26 0.41 31.0 0.78 0.23 0.35 31.0
alphastrike 1.00 0.50 0.67 24.0 NaN NaN NaN NaN
u_mich 1.00 1.00 1.00 20.0 0.95 1.00 0.98 20.0
recyber 1.00 0.14 0.25 14.0 1.00 0.29 0.44 14.0
pnap 1.00 1.00 1.00 6.0 1.00 1.00 1.00 6.0
cymru 0.00 0.00 0.00 3.0 0.00 0.00 0.00 3.0
intrinsec 0.00 0.00 0.00 2.0 0.00 0.00 0.00 2.0
u_caida_ark 1.00 1.00 1.00 2.0 0.00 0.00 0.00 2.0
arbor 0.00 0.00 0.00 2.0 0.00 0.00 0.00 2.0
errata 0.00 0.00 0.00 1.0 0.00 0.00 0.00 1.0
leakix 0.00 0.00 0.00 1.0 0.00 0.00 0.00 1.0
inversepath 0.00 0.00 0.00 1.0 0.00 0.00 0.00 1.0
cybergreen 0.00 0.00 0.00 1.0 0.00 0.00 0.00 1.0
threatsinkhole 0.00 0.00 0.00 1.0 0.00 0.00 0.00 1.0

Weighted
Average 0.99 0.96 0.96 1853.0 0.98 0.96 0.96 1828.0

Macro
Average 0.63 0.52 0.55 1853.0 0.55 0.49 0.50 1828.0

Micro
Average 0.99 0.96 0.97 1853.0 0.98 0.96 0.97 1828.0

Table 6.6: The table shows the performance metrics obtained for an i-DarkVec model
trained using traditional Machine Learning, and for an i-DarkVec model trained using
Federated Learning approach.

40

Results

6.2.4 Benchmark & Resource Usage
In this section we analyze the resource consumption during the training of i-DarkVec’s
model with 31 rounds of Federated Learning, and 2 clients involved.

RAM Usage

Figure 6.7 shows the 2 clients’s and server’s RAM consumption. Overall, the RAM con-
sumption stays under 5 GB. If we look the behaviour of clients’s RAM, we can identify
the round of training and the curve change in correspondence to the start of the round.
The consumption of RAM of the server is smaller than the one required by the clients,
since the server keep in memory only the vocabulary and the model’s parameters.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10000 20000 30000 40000 50000 60000

M
e
m

o
ry

 (
G

iB
)

Time[s]

Client 1 RAM usage
Client 2 RAM usage

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10000 20000 30000 40000 50000 60000

M
e
m

o
ry

 (
G

iB
)

Time[s]

Server RAM usage

Figure 6.7: The picture on the left shows the RAM consumption of the two clients. The
picture on the right shows the RAM consumption of the server.

CPU Usage

Figure 6.8 shows the consumption of CPU of clients and server. The peak of client’s CPU
usage occurs at the start of a new training round, since the dataset is being loaded. The
lowest usage is observed at the end of the training round, when the clients are waiting
for the server. The CPU usage of the server is very limited. the peak corresponds to
the phase of proposal requests and during aggregation of model’s parameters. Moreover,
when the clients are training, the server’s CPU consumption is close to 0.

Disk Usage

Figure 6.9 shows clients’s disk usage. The disk is mainly used to read the dataset and to
write logs. The read operations increase on the last rounds of training, due to the fact
that i-DarkVec IPs filtering’s process needs to read the files related to previous days, in
order to remove rare IPs from the dataset. The write operations of the clients, are limited
to write the logs of the Federated Learning process.

Figure 6.10 shows server disk’s usage. The server has to write on disk the following
data: clients’s proposed vocabularies, aggregated vocabulary, clients’s model parameters,
aggregated model’s parameters. The server does not performs any significant read oper-
ation from disk.

41

Results

 0

 100

 200

 300

 400

 500

 600

 700

 0 10000 20000 30000 40000 50000 60000

C
P
U

 u
sa

g
e
 (

%
)

Time[s]

Client 1 CPU usage
Client 2 CPU usage

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10000 20000 30000 40000 50000 60000

C
P
U

 u
sa

g
e
 (

%
)

Time[s]

Server CPU usage

Figure 6.8: The picture on the left shows the CPU consumption of the two clients. The
picture on the right shows the CPU consumption of the server.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000

R
e
a
d
 -

 D
is

k
U

sa
g

e
 (

M
B

)

Time[s]

Client 1
Client 2

 0

 1

 2

 3

 4

 5

 6

 7

 0 10000 20000 30000 40000 50000 60000

W
ri

te
 -

 D
is

k
U

sa
g

e
 (

M
B

)

Time[s]

Client 1
Client 2

Figure 6.9: The picture on the left shows the disk usage to read operations by the client.
The picture on the left shows the disk usage to write operation by the client

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10000 20000 30000 40000 50000 60000

W
ri

te
 -

 D
is

k
U

sa
g

e
 (

M
B

)

Time[s]

Write on disk

Figure 6.10: The figure shows the cumulative write disk operations performed by the
server.

Network usage

Figure 6.11 shows the cumulative data sent over the network by the clients and server.

6.2.5 Operations Timing
In this section, we analyze how much time each client-server interaction takes to be per-
formed. With this analysis, we understand if the additional phase introduced with our

42

Results

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000 60000
D

a
ta

 s
e
n
t

[G
b

it
]

Time[s]

Client 1
Client 2
Server

Figure 6.11: The figure shows the cumulative network usage for clients and server.

solution has an impact on the overall Federated Learning training timing.

Proposal request

The operation of generate a proposal request PropIns from the server takes 0.2 ms.
The transmission and the consequent reception of PropIns takes less than 1 ms. The
generation of a vocabulary from clients takes from 27 s to 94 s. This time is required to
read the dataset, to filter and to extract the IPs. The transmission of PropRes with the
vocabulary takes from 50 ms to 100 ms, depending on the size of the vocabulary. The
aggregation of these vocabularies on the server takes less than 1 ms.Overall, the proposal
request phase takes from 28 s to 95 s.

Training process

The operation of generate a training request ArchitectureFitIns from the server takes
1 ms. The transmission and the consequent reception of ArchitectureFitIns takes
from 0.1 ms to 3 s. The training operation on the clients takes from 249 s to 2713 s.
The transmission of FitRes with the model’s parameters takes from 0.1 ms to 3 s. The
aggregation of models’s parameters on the server takes from 2 ms to 3 s. Overall, the
training process phase takes from 250 s to 2720 s.

6.3 Conclusion
These experiments demonstrated the effectiveness of our proposed solution and its imple-
mentation using our enhanced Flower library. In particular, the i-DarkVec experiment’s
results offered several key insights listed below.

• The performance achieved is comparable to a traditionally trained model, confirming
that the federated nature of our approach does not compromise accuracy or efficiency.

• The model’s training does not request excessive resources, showing that the solution
is feasible even in environments with limited computational resources.

• The proposal phase introduces minimal overhead, and it did not substantially impact
the overall training time.

43

Chapter 7

Conclusions and Future Works

7.1 Conclusions
In this thesis, we presented an improvement of a distributed platform for network traffic’s
analysis, and we proposed a solution to use Federated Learning with dynamic Machine
Learning models for the same scope.

The improvement of the distributed platform allows third-party organizations to join
with their machines. Thanks to Ansible Playbooks we developed, the process to add these
nodes was seamlessly. Morever, Helm Charts enabled us to easily control and deploy
applications on the platform. The available applications within the platform allows i)
to collect network’s traffic, ii) to activate darknets and honeypots, and iii) to use the
application we developed to analize the captured traffic using a Machine Learning model
with Federated Learning.

We successfully developed an application capable of training ML models with dynamic
architectures using Federated Learning. This application was developed upon an existing
framemork, known as Flower, which we selected conducting a survey. This application
is capable of collect proposals regarding model’s update from the clients, to update the
model accordingly, and to distribute this model to clients for further training.

We validated the obtained application in two experiments to analyze the behavior of
the trained models collecting metrics. The first experiment was conducted using a Convo-
lutional Neural Network (CNN) to classify images. The results show us that our solution
works fine. The second experiment was conducted using i-DarkVec. We performed an
analysis of several aspects of the model’s training process. We looked at how the vocab-
ularies and embeddings grows during the Federated Learning rounds. We compared the
Federated Learning model with another one trained using a traditional Machine Learning
approach. Finally, we analyzed the resources consumption used during the training. We
looked at how much time it takes the vocabularies proposal phase compared to the overall
time required for training. The most important results are listed below.

• The size of i-DarkVec embeddings continues to grow. Although the embedding size
is acceptable after some rounds of training, the model requires pruning techniques
to maintain a reasonable embedding size over longer periods.

44

Conclusions and Future Works

• The performance achieved was comparable to a traditional model. This provides
the confirmation that the distributed approach does not compromise accuracy or
efficiency.

• The model training does not request excessive resources, showing that the solution
is feasible even in environments with limited computational resources.

• The proposal phase introduces minimal overhead, and it did not substantially impact
the overall training time.

As conclusion, the results demonstrate effectiveness and quality of our proposed solu-
tion and the applications we developed.

7.2 Future Works
In this section, we list some of the possible future works.

The distributed platform should be tested capturing real network’s traffic from the
distributed nodes. Currently, only small and limited traffic’s capture have been performed.
Moreover, it is required to implement pre-processing phase to trasform captured data in
a proper format to train i-DarkVec’s model in real-time.

We employed a limited kinds of honeypots within the platform. Others kinds of hon-
eypots can be integrated into our platform to improve the quality and insight of captured
traffic. Moreover, the reliability of nodes in the platform can be investigated.

Altought we made our analysis by only employing i-DarkVec’s model, other Machine
Learning models can be introduced. An example is DANTE (4).

The Federated Learning application we developed could be optimized by reducing the
amount of data sent during various client-server interactions. Currently, the impact is
quite significant, especially in the i-DarkVe context where the models and vocabularies
grow rapidly.

45

Bibliography

[1] Ansible, Inc. Ansible documentation, 2024. URL https://docs.ansible.com/.

[2] Subrato Bharati, M. Rubaiyat Hossain Mondal, Prajoy Podder, and V. B. Surya
Prasath. Federated learning: Applications, challenges and future directions. Inter-
national Journal of Hybrid Intelligent Systems, 18(1-2):19–35, 2022. doi: 10.3233/
HIS-220006. URL https://arxiv.org/abs/2205.09513.

[3] Google Cloud. Artificial intelligence vs. machine learning, n.d. URL https://cloud.
google.com/learn/artificial-intelligence-vs-machine-learning?hl=en.
Accessed: 2024-10-07.

[4] Dvir Cohen, Yisroel Mirsky, Yuval Elovici, Rami Puzis, Asaf Shabtai, Manuel Kamp,
and Tobias Martin. Dante: A framework for mining and monitoring darknet traffic.
Department of Software and Information Systems Engineering, Ben Gurion Univer-
sity of the Negev, 2024.

[5] NVIDIA Corporation. Nvidia flare documentation. https://nvflare.readthedocs.
io/en/main/index.html.

[6] TensorFlow Developers. Tensorflow: An end-to-end open source machine learning
platform, 2023. URL https://www.tensorflow.org/. Accessed: 2024-10-12.

[7] Flower Framework. Contributor guide: How to create new
messages, 2024. URL https://flowerai.net/docs/framework/
contributor-how-to-create-new-messages.html.

[8] Alejandro Ayala Gil. Honeypot in a box: A distributed cluster network for honeypot
deployment. Master’s thesis, Politecnico di Torino, Corso di laurea magistrale in Ict
For Smart Societies (Ict Per La Società Del Futuro), 2024. Relatori: Marco Mellia,
Idilio Drago.

[9] Luca Gioacchini, Luca Vassio, Marco Mellia, Idilio Drago, Zied Ben Houidi, and Dario
Rossi. DarkVec: Automatic Analysis of Darknet Traffic with Word Embeddings. pages
76–89, December 2021. doi: 10.1145/3485983.3494863. URL https://doi.org/10.
1145/3485983.3494863.

[10] Luca Gioacchini, Luca Vassio, Marco Mellia, Idilio Drago, Zied Ben Houidi, and Dario
Rossi. i-darkvec: Incremental embeddings for darknet traffic analysis. ACM Trans.

46

https://docs.ansible.com/
https://arxiv.org/abs/2205.09513
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning?hl=en
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning?hl=en
https://nvflare.readthedocs.io/en/main/index.html
https://nvflare.readthedocs.io/en/main/index.html
https://www.tensorflow.org/
https://flowerai.net/docs/framework/contributor-how-to-create-new-messages.html
https://flowerai.net/docs/framework/contributor-how-to-create-new-messages.html
https://doi.org/10.1145/3485983.3494863
https://doi.org/10.1145/3485983.3494863

BIBLIOGRAPHY

Internet Technol., 23(3), August 2023. ISSN 1533-5399. doi: 10.1145/3595378. URL
https://doi.org/10.1145/3595378.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[12] Cloud Hacks. Federated learning: A paradigm shift in data privacy and model
training, n.d. URL https://medium.com/@cloudhacks_/federated-learning\
-a-paradigm-shift-in-data-privacy-and-model-training-a41519c5fd7e. Ac-
cessed: 2024-10-07.

[13] Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise Beaufays, Hubert Eichner,
Kanishka Rao, Rajiv Mathews, and Sean Augenstein. Federated learning for mobile
keyboard prediction, 2018. URL https://arxiv.org/abs/1811.03604.

[14] Helm Project. Helm documentation, 2024. URL https://helm.sh/docs/.

[15] Ivan Kholod, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia
Novikova, Evgeny Filippov, and Mats Nordlund. Open-source federated learning
frameworks for iot: A comparative review and analysis. Sensors, 21:167, 12 2020.
doi: 10.3390/s21010167.

[16] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The mnist database of
handwritten digits, 1998. URL http://yann.lecun.com/exdb/mnist/. Accessed:
2024-10-15.

[17] Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang. Fate: An industrial grade platform
for collaborative learning with data protection. 2021.

[18] Yi Liu. Federated learning frameworks: From research to industry. Master’s thesis,
03 2022.

[19] Gianpaolo Reina, Alexey Gruzdev, Patrick Foley, Olga Perepelkina, Igor Davidyuk,
Ilya Trushkin, Maksim Radionov, Aleksandr Mokrov, Dmitry Agapov, Jason Martin,
Brandon Edwards, Micah Sheller, Sarthak Pati, Prakash Moorthy, Shih-han Wang,
Prashant Shah, and Spyridon Bakas. Openfl: An open-source framework for federated
learning. arXiv preprint arXiv:2105.06413, 2021. doi: 10.48550/arXiv.2105.06413.
URL https://arxiv.org/abs/2105.06413.

[20] Sukhveer Sandhu, Hamed Taheri Gorji, Pantea Tavakolian, Kouhyar Tavakolian, and
Alireza Akhbardeh. Medical imaging applications of federated learning. Diagnostics,
13:3140, 10 2023. doi: 10.3390/diagnostics13193140.

[21] Simon Stojanovic. Flower & pysyft – federated learn-
ing frameworks in python. https://medium.com/elca-it/
flower-pysyft-co-federated-learning-frameworks-in-python-b1a8eda68b0d,
2023. Accessed: 2024-09-30.

[22] Flower Team. Flower: A friendly federated learning framework, n.d. URL https:
//flower.ai/. Accessed: 2024-10-07.

47

https://doi.org/10.1145/3595378
http://www.deeplearningbook.org
https://medium.com/@cloudhacks_/federated-learning\ -a-paradigm-shift-in-data-privacy-and-model-training-a41519c5fd7e
https://medium.com/@cloudhacks_/federated-learning\ -a-paradigm-shift-in-data-privacy-and-model-training-a41519c5fd7e
https://arxiv.org/abs/1811.03604
https://helm.sh/docs/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/2105.06413
https://medium.com/elca-it/flower-pysyft-co-federated-learning-frameworks-in-python-b1a8eda68b0d
https://medium.com/elca-it/flower-pysyft-co-federated-learning-frameworks-in-python-b1a8eda68b0d
https://flower.ai/
https://flower.ai/

BIBLIOGRAPHY

[23] Dong Yang, Ziyue Xu, Wenqi Li, Andriy Myronenko, Holger R. Roth, Stephanie
Harmon, Sheng Xu, Baris Turkbey, Evrim Turkbey, Xiaosong Wang, Wentao Zhu,
Gianpaolo Carrafiello, Francesca Patella, Maurizio Cariati, Hirofumi Obinata, Hi-
toshi Mori, Kaku Tamura, Peng An, Bradford J. Wood, and Daguang Xu. Fed-
erated semi-supervised learning for covid region segmentation in chest ct using
multi-national data from china, italy, japan. Medical Image Analysis, 70:101992,
2021. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.2021.101992. URL
https://www.sciencedirect.com/science/article/pii/S1361841521000384.

[24] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learn-
ing: Concept and applications, 2019. URL https://arxiv.org/abs/1902.04885.

48

https://www.sciencedirect.com/science/article/pii/S1361841521000384
https://arxiv.org/abs/1902.04885

	Introduction
	Context
	Challenges
	Research Questions
	Previous Work
	Management of Distributed Physical Machines
	Threats Identification with i-DarkVec

	Contributions
	Index

	Distributed Platform Design and Deployment
	Introduction
	Technologies used
	Ansible
	Helm

	Definition of a Configuration File
	Ansible Playbook Configuration
	Helm Deployment
	Current Platform Nodes
	Conclusion

	Introduction to Artificial Intelligence
	Machine Learning
	Data Preprocessing
	Model Selection
	Model Training
	Model Testing

	Artificial Neural Networks
	I-Darkvec Model

	Federated Learning
	Introduction to Federated Learning
	Federated Learning Advantages
	Federated Learning Scenarios
	Federated Learning Classifications
	Federated Learning challeges

	Frameworks for Federated Learning
	NVIDIA FLARE
	Federated Learning Simulator

	FATE
	OpenFL
	Tensorflow FL
	Flower
	Flower Infrastructure
	Flower Networking

	Conclusion

	Enabling Federated Learning for evolving scenarios
	Dynamic Model's Architecture
	i-DarkVec Scenario
	Other Scenarios

	Changes Proposed for Federated Learning
	Flower Current Limitations
	Flower Implementation of the Changes Proposed
	Data Structures
	Server Side Library
	Client Side Library Implementation

	Conclusion

	Results
	Federated Image Classification
	Description
	Results
	Comments

	Federated i-DarkVec
	Dataset
	Training
	Federated Learning versus Traditional Machine Learning
	Benchmark & Resource Usage
	Operations Timing

	Conclusion

	Conclusions and Future Works
	Conclusions
	Future Works

