
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Multi-Lingual Knowledge Editing in
Large Language Models

Supervisors

Prof. Aldo LIPANI

Prof. Paolo GARZA

Candidate

Saeedeh JAVADI

September 2024



Abstract

The use of large language models (LLMs) as dynamic repositories of knowledge is
becoming increasingly prevalent. However, these models face significant challenges
in managing outdated, erroneous, or privacy-sensitive information. The capacity to
edit knowledge in an expedient manner within these models, without recourse to
costly retraining, has emerged as a pivotal area of investigation. The existing tech-
niques for editing knowledge are, on the whole, effective; however, they frequently
lack robustness, particularly when applied across multiple languages. This thesis
explores the domain of multilingual knowledge editing using Multi Lingual models
like Llama-2, with a particular focus on enhancing the models’ ability to update
their knowledge efficiently and accurately in a multilingual context.

Our approach makes use of MEMIT (Mass-Editing Memory in Transformers),
which enables the large-scale updating of the internal memory of transformer-based
models. MEMIT enables the simultaneous editing of thousands of memories within
LLMs, thereby providing a scalable solution for the correction of outdated or
erroneous information. To further enhance this process, we integrate MEMIT with
in-context learning (ICL), a technique that enables models to generalise knowledge
from a few examples during inference. The objective is to integrate these two
powerful methods in order to achieve precise and extensive knowledge updates
across languages, thereby addressing one of the key challenges in multi-lingual
LLMs.

Furthermore, this thesis incorporates prompt engineering as a technique to
enhance the accuracy of the model’s behaviour following knowledge edits. By
carefully designing prompts, we guide the model’s responses to ensure that updated
information is both accurate and contextually appropriate for the target language.
This mitigates issues such as over-editing, where unintended changes affect related
knowledge, and instability, where the model struggles to retain the edited infor-
mation across tasks and languages. Furthermore, by exploring the transformer
architecture in detail, we examine how knowledge flows through the model’s layers
during the editing process.

Empirical testing on Multi Lingual models like Llama-2 shows that our combined
approach significantly improves the performance of multi-lingual knowledge editing
tasks. We evaluate the models on several languages, demonstrating enhanced
accuracy and consistency in their ability to update and retain information.





Summary

In recent years, large language models (LLMs) have emerged as a highly significant
advancement in the field of natural language processing (NLP). LLMs such as
BERT, LLaMA-2, and GPT-4 have been developed through extensive pre-training
on vast quantities of data, enabling them to perform a wide range of tasks with
impressive accuracy and fluency. Such tasks include, but are not limited to,
translation, question answering, summarization, and even the generation of human-
like conversations.

One of the important reasons for the success of LLMs is their capacity to store
vast quantities of factual knowledge. These models are trained to predict the
next token in a sequence, helping them develop a deep understanding of linguistic
structures and facts. However, despite their capabilities, LLMs are subject to
a significant limitation: the knowledge they learn is static and often becomes
outdated or irrelevant over time.

This static nature presents a critical issue for real-world applications of LLMs.
Since the information encoded within the models is based on the data available
at the time of their training, they cannot incorporate new knowledge dynamically
without undergoing extensive retraining or fine-tuning. For example, an LLM
trained in 2020 would not have knowledge of world events that occurred after
its training period. Furthermore, LLMs sometimes generate factual errors or
reflect outdated information, compromising their reliability, especially in contexts
where up-to-date knowledge is essential, such as healthcare, legal advice, or news
generation.

The need to efficiently update LLMs without retraining from scratch led to the
development of knowledge editing techniques, which focus on altering or updating
specific pieces of knowledge stored within the model. This allows models to adapt
to new facts or correct erroneous information without the high computational cost
of retraining. Traditional methods of updating LLMs, such as fine-tuning, require
access to large datasets and computational resources, often risking catastrophic
forgetting, where the model loses knowledge it previously acquired.

Knowledge editing has emerged as a solution to these challenges, allowing
specific facts to be updated, deleted, or corrected within a model’s parameters
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without affecting the rest of its knowledge. While initial research in this area
primarily focused on monolingual knowledge editing, the growing global demand
for multilingual language models necessitates extending these techniques to handle
multiple languages.

Moreover, multilingual LLMs like LLaMA and GPT have introduced new ad-
vantages and challenges. These models are designed to operate across various
languages, expanding their usability for diverse global applications. However, the
multilingual nature of these models means that the effectiveness of knowledge
editing techniques must be evaluated across different languages. For instance, when
a knowledge update is made in one language, it is not guaranteed that the change
will be accurately reflected in another language, leading to the need for cross-lingual
knowledge editing approaches.

Contributions
This thesis explores multilingual knowledge editing within LLMs, addressing the
urgent need for models capable of incorporating new facts and correcting errors
without extensive retraining. The key contributions include:

1. Extension of the MzsRE Dataset: This work expands the MzsRE dataset
through paraphrasing, generating multiple linguistic variants that enhance its
utility for cross-lingual tasks.

2. Application of Few-Shot In-Context Learning (ICL): The research
adapts few-shot ICL for the first time in cross-lingual editing, integrating
multilingual similarity retrieval to select relevant examples. This approach
facilitates robust knowledge updates across languages, particularly in low-
resource contexts.

3. Comprehensive Evaluation of Knowledge Editing Techniques: The
thesis evaluates techniques such as ICL, zero-shot learning, and Tailored Knowl-
edge Editing (TailoredKE) in multilingual settings, demonstrating significant
advancements in cross-lingual knowledge transfer.

4. Development of a Scalable Framework: This framework employs retrieval-
augmented techniques and dynamic layer selection to ensure that knowledge
updates are consistently applied across languages. Tests are conducted sepa-
rately during the evaluation phase to assess the effectiveness of the proposed
methods.
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Background
LLMs rely on transformer architectures, which allow them to efficiently process
and generate text. Despite their remarkable capabilities, these models struggle to
maintain the relevance of their internal knowledge, as facts can quickly become
outdated. Traditional approaches to updating LLMs, such as fine-tuning, are
computationally intensive and may lead to catastrophic forgetting. This research
emphasizes the necessity for effective knowledge editing strategies, especially in
multilingual contexts where changes in one language must accurately reflect in
others.

Methodology
The methodology focuses on integrating advanced knowledge editing techniques
within LLMs, emphasizing few-shot and zero-shot approaches along with Tai-
loredKE. Key components include:

• Few-Shot In-Context Learning (ICL): This approach utilizes a few-shot
paradigm where the model is presented with a small number of examples during
inference to facilitate dynamic knowledge updates. By selecting examples
through multilingual similarity retrieval, the model can effectively generalize
updates across languages, enhancing its performance in multilingual contexts.

• Zero-Shot Learning: This technique allows the model to perform tasks
without prior examples. By leveraging the inherent knowledge stored in the
LLMs, zero-shot learning enables the model to handle knowledge editing tasks
based on contextual cues provided in prompts, making it particularly useful
in situations where training data is scarce or unavailable.

• Tailored Knowledge Editing (TailoredKE): This method focuses on the
strategic selection of layers within the transformer architecture to optimize the
knowledge editing process. By identifying which layers to modify, TailoredKE
enhances the precision and effectiveness of updates, ensuring that knowledge
changes are accurately reflected across various languages.

• Extension of the MzsRE Dataset: A significant aspect of this research
involves expanding the MzsRE dataset through paraphrasing. This extension
generates multiple linguistic variants of existing examples, enriching the dataset
for cross-lingual tasks. The enhanced dataset provides a more comprehensive
testbed for evaluating the effectiveness of few-shot and zero-shot approaches
in multilingual knowledge editing.
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Evaluation
The evaluation assesses the proposed methods’ effectiveness in multilingual knowl-
edge editing, focusing on two primary areas: multilingual knowledge editing and
cross-lingual knowledge editing.

1. Multilingual Knowledge Editing: This section presents results from
experiments using the MzsRE dataset with the LLaMA-2 backbone, comparing
three different methods: Memit, TailoredKE (Targeted), and TailoredKE
(Rephrase). The evaluation utilizes Exact Match (EM) metrics to assess
consistency, efficacy, and generalization across various languages.

2. Cross-Lingual Knowledge Editing: This evaluation investigates the effec-
tiveness of the developed knowledge editing techniques when edits are made
in one language (English) and tested in other target languages.

Overall, the evaluation demonstrates that the integrated approach of using
few-shot and zero-shot learning, along with tailored knowledge editing techniques,
significantly enhances the performance of multilingual knowledge editing tasks.
The findings emphasize the potential of these methods to address the challenges of
static knowledge in LLMs, paving the way for more adaptable and responsive AI
systems in diverse linguistic environments.

Conclusion
In conclusion, while LLMs have revolutionized NLP, their static nature limits their
long-term usefulness, particularly in fast-evolving domains. Knowledge editing
offers a promising alternative to costly retraining, enabling LLMs to incorporate new
facts efficiently. The next challenge is to extend these techniques to multilingual
and cross-lingual contexts, ensuring that updated knowledge is consistent across
different languages. This thesis addresses the pressing need for effective multilingual
knowledge editing in LLMs, offering scalable solutions that enable dynamic updates
without extensive retraining. The findings underscore the potential of integrating
ICL and TailoredKE to enhance the accuracy and reliability of LLMs in rapidly
changing domains. Future research should continue to explore the challenges of
knowledge editing in multilingual settings, paving the way for more adaptable and
responsive AI systems.
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Chapter 1

Introduction

Knowledge is a fundamental aspect of human intelligence and civilization [1]. Its
organized structure allows us to represent real-world entities or explain concepts
through symbolic means, enabling the expression of complex behaviors or tasks [2, 3,
4]. From birth, humans continuously acquire and adapt knowledge, applying lessons
from this extensive reservoir in various situations. The study of knowledge—how it
is acquired, stored, and interpreted—remains a compelling focus for researchers.
This exploration is not only a technical endeavor but also a quest to replicate the
intricate nature of human cognition, communication, and intelligence [5, 6, 7, 8, 9].

Large Language Models (LLMs) have become a cornerstone in natural language
processing (NLP), being used across various domains such as translation, question
answering, summarization, and more. These models, like GPT-4 [10], LLaMA-2
[11] , and others, exhibit remarkable capabilities by leveraging vast amounts of
pre-trained knowledge. However, a critical challenge in maintaining the usability
of these models lies in their static nature. Once trained, LLMs contain knowledge
that can become outdated, incorrect, or incomplete. Retraining or fine-tuning
these models to reflect new information is resource-intensive and often impractical,
leading to the emergence of knowledge editing as a promising alternative [12, 13,
14]

LLMs function as vast repositories of knowledge, where facts, linguistic rules,
and contextual information are embedded within their neural architectures. This
embedded knowledge allows them to perform tasks such as answering factual
questions or generating coherent and contextually appropriate text. However, one
of the major challenges of using LLMs is maintaining the accuracy and relevance
of this knowledge over time [15, 13, 14].

Although LLMs excel at generalization from training data, they are inherently
static once trained. The world evolves—facts change, new information arises, and
previously unknown events occur. For example, a model trained before 2020 will
not know about the COVID-19 pandemic unless it is retrained with updated data.
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Similarly, specific knowledge embedded in these models can become outdated,
incorrect, or incomplete as the knowledge landscape changes over time.

This static nature raises a critical challenge: how can we update or correct
knowledge in these massive models without retraining them entirely? Retraining
is computationally expensive, time-consuming, and often impractical, particularly
for models with billions of parameters [12, 15]. Moreover, even when retrained, it
is not guaranteed that the model will incorporate the new knowledge effectively
without losing existing valuable information [14].

In response to these challenges, knowledge editing has emerged as a promising
solution. Knowledge editing allows for the injection or modification of specific
pieces of information in an LLM without the need for complete retraining. This
targeted approach ensures that models can stay up to date with current facts while
preserving their overall performance and capabilities in areas that don’t require
updates. Methods like KN [16], MEMIT [17], and ROME [18] have been developed
to perform efficient and scalable knowledge updates within these models.

While knowledge editing is well-explored in monolingual settings, especially
English, most mainstream LLMs such as GPT-4 and LLaMA-2 are inherently
multilingual. This capability allows them to process and generate text in multiple
languages, yet the knowledge editing methods applied to these models have often
been limited to a single language. In real-world applications, especially for globally
deployed models, the ability to edit knowledge across languages is crucial. For
instance, an edit made in English should ideally propagate to other languages,
ensuring consistent behavior across multilingual environments [19].

Multilingual models face additional challenges related to entity alignment, lin-
guistic nuances, and consistency across languages. Editing knowledge in one
language and expecting consistent results in another remains a difficult task.

As discussed, the static nature of LLMs has led to the development of knowledge
editing techniques aimed at updating or modifying specific pieces of knowledge
within a model without needing to retrain the entire system. Knowledge editing
focuses on altering the model’s internal representations of factual information,
allowing for precise and targeted changes.

Knowledge editing can be broadly categorized into several methods, each with
distinct advantages and limitations:

• Parameter-modifying methods involve updating the model’s internal
parameters directly to reflect new knowledge. This approach allows for the
injection of specific facts into the model’s memory without disturbing unrelated
knowledge. Techniques such as MEMIT and ROME have been developed to
modify the parameters of models while maintaining their general performance.

• Memory-based methods store external knowledge in memory modules that
can be accessed during inference without changing the model’s core parameters.
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This allows the model to reference new or corrected facts dynamically without
risking catastrophic forgetting. Each of these approaches offers distinct trade-
offs between computational cost, scalability, and precision.

One of the primary challenges in knowledge editing lies in maintaining locality,
which refers to the ability to make a specific edit without unintentionally affecting
other parts of the model’s knowledge. Generality, or the model’s ability to apply
updated knowledge to semantically related queries, is another critical factor. Addi-
tionally, the reliability and portability of edits—whether the updated knowledge
can generalize across different contexts and languages—pose significant hurdles for
knowledge editing techniques.

While current knowledge editing methods represent significant advancements,
they are primarily designed for monolingual scenarios. Extending these models to
work in multilingual or cross-lingual contexts involves additional complexities, such
as ensuring that the updated knowledge is accurately reflected across languages.

The primary challenge in multilingual knowledge editing is ensuring that changes
made in one language are accurately reflected in other languages. This issue stems
from language modeling gaps, where LLMs might perform well in one language
(often English) but poorly in others, particularly in low-resource languages. When
knowledge is edited in one language, the model may not generalize this update
effectively across different languages, leading to inconsistencies.

For instance, when a fact is edited in English, a cross-lingual system must ensure
that the edited knowledge is reflected accurately in languages like Chinese, Spanish,
or French [20, 21]. One method for facilitating this is through ICL, which uses
prompts to provide updated knowledge and allows the model to apply the changes
across languages. However, ICL alone may not be sufficient for ensuring consistency
across languages, particularly in low-resource settings.

A crucial component of multilingual and cross-lingual knowledge editing research
is the availability of appropriate datasets. One such dataset is MzsRE, which is
a multilingual extension of the Zero-shot Relation Extraction (ZsRE) dataset.
MzsRE has been translated into 12 languages, including English, Chinese, Spanish,
French, and more, and serves as a valuable resource for evaluating the cross-lingual
capabilities of LLMs.

Datasets like Bi-ZsRE and MzsRE have been critical for evaluating the perfor-
mance of knowledge editing methods in multilingual and cross-lingual contexts.
These datasets allow researchers to test how well a model transfers knowledge
from one language to another, ensuring that edits made in a source language (e.g.,
English) are consistently reflected in a target language (e.g., Chinese). [20]

As the need for multilingual and cross-lingual LLMs grows, so too does the
demand for efficient and accurate knowledge editing methods. Several approaches
have been developed to address the unique challenges of knowledge editing in
multilingual settings, each with its own strengths and weaknesses.
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One of the leading methods in this field is Retrieval-augmented Knowledge
Editing. The ReMaKE [15] framework, for example, enhances the knowledge
editing process by retrieving relevant information from a multilingual knowledge
base and feeding it into the model as part of the prompt. By incorporating
retrieved knowledge directly into the editing prompt, ReMaKE avoids the need
for parameter updates and ensures that the edited knowledge is available across
multiple languages.

ReMaKE outperforms traditional knowledge editing methods, particularly in
multilingual settings where ensuring consistency across languages is a major chal-
lenge. In experiments, ReMaKE showed significant improvements over baseline
methods like SERAC and MEND, particularly in low-resource languages.

The primary objective of this thesis was to extend existing knowledge editing
methods to function effectively in multilingual and cross-lingual settings. Building
on established techniques such as MEMIT, ICL, and ReMaKE, this research focuses
on improving the scalability, accuracy, and consistency of knowledge updates across
diverse linguistic contexts. The following key contributions highlight the advances
made through this work:

• Extension of the MzsRE Dataset with Paraphrasing: One of the
significant contributions of this thesis is the expansion of the MzsRE dataset,
a multilingual extension of the zsRE dataset, to better accommodate cross-
lingual knowledge editing tasks. Using the GPT API, approximately 20
sentences from the original dataset were paraphrased to generate multiple
linguistic variants. These paraphrased sentences were then utilized in the
ICL approach, enriching the dataset and providing a more comprehensive
testbed for multilingual knowledge editing. This dataset extension allows for
improved evaluation of how well knowledge edits generalize across paraphrases
and alternate expressions in multiple languages.

• Application of Few-Shot In-Context Learning (ICL) in Multilingual
Settings: Another important contribution is the adaptation of few-shot ICL
to support multilingual knowledge editing. By incorporating multilingual
similarity retrieval methods, the few-shot ICL approach was enhanced with
semantically similar examples from various languages, significantly improving
the model’s ability to generalize knowledge updates across different linguistic
contexts. The use of carefully selected few-shot examples, based on cosine simi-
larity, proved to be the most effective strategy for achieving robust cross-lingual
knowledge editing, particularly in low-resource languages where traditional
methods struggle.

• Evaluation of Knowledge Editing Techniques in Multilingual Con-
texts: This thesis also provides a comprehensive evaluation of the adapted
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knowledge editing techniques—MEMIT, ICL, and TailoredKE—in a multilin-
gual context. The experiments conducted on the MzsRE dataset highlighted
the advantages of combining layer selection with MEMIT for cross-lingual
knowledge transfer. The results demonstrated that the few-shot ICL approach
significantly outperforms zero-shot methods in both high-resource and low-
resource languages, showcasing the potential of these techniques to enable
accurate and scalable multilingual knowledge editing.

• Development of a Scalable Framework for Cross-Lingual Knowledge
Editing: By addressing key challenges such as knowledge transfer across
languages, the thesis presents a scalable framework for cross-lingual knowledge
editing. This framework leverages retrieval-augmented techniques and dynamic
layer selection to ensure that knowledge injected in one language is consistently
applied across other languages. The integration of multilingual similarity
retrieval with Sentence-BERT embeddings for selecting semantically similar
examples further enhances the efficiency of the knowledge editing process in
cross-lingual tasks.

Together, these contributions advance the field of multilingual knowledge editing
by providing a robust framework that combines state-of-the-art techniques like
MEMIT, ICL, and TailoredKE. The innovations in dataset expansion, layer selec-
tion, and retrieval-augmented few-shot learning push the boundaries of existing
methods, offering new insights into how large language models can be updated and
adapted for multilingual and cross-lingual tasks. This research paves the way for
further exploration of scalable and accurate knowledge editing in diverse linguistic
environments.
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Chapter 2

Background

This chapter delves into the foundational concepts and developments in Large
Language Models (LLMs) and their applications, particularly in multilingual
contexts. In this section, we first explore the transformer architecture, the core
framework behind modern LLMs, and how it enables these models to process vast
amounts of information efficiently.

We then shift focus to multilingual language models, examining models such
as GPT-4, LLaMA-2, and Mistral, which aim to bridge the gap between high-
and low-resource languages. While these models offer powerful solutions for mul-
tilingual tasks, they also present unique challenges, particularly in maintaining
consistent knowledge across languages. The chapter also discusses the mechanisms
of knowledge storage and retrieval in LLMs, shedding light on how models internally
organize information and respond to factual queries.

Finally, the section will cover knowledge editing techniques, which are crucial
for updating and refining the knowledge stored in LLMs without full retraining.
This includes a discussion on the mechanisms used to modify, add, or remove
knowledge, and the particular difficulties of achieving these edits in multilingual
and cross-lingual environments. These topics form the backbone of this thesis and
provide the necessary background for understanding the challenges and innovations
introduced in multilingual knowledge editing and cross-lingual transfer.

2.1 Large Language Models

2.1.1 Transformers for LLMs
LLMs are constructed upon the Transformer architecture, which was first introduced
by Vaswani et al. (2017), and represent a significant departure from the recurrent
models that have previously been used in the field of natural language processing
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(NLP). The transformer architecture is founded on the self-attention mechanism,
which enables the model to assess the relevance of distinct tokens within an input
sequence. This mechanism enables the model to process tokens in parallel, thereby
markedly enhancing its efficiency in comparison to older models, which processed
sequences one token at a time [22].

As shown in Figure 2.1, the Transformer architecture consists of encoder and
decoder stacks, each composed of multiple layers of multi-head self-attention and
feed-forward neural networks. The self-attention module ensures that each token
within a sequence can attend to every other token, effectively capturing long-range
dependencies.

The self-attention mechanism (depicted in Figure 2.2, left) operates by computing
attention scores for each token with respect to all other tokens in the input sequence.
This enables the model to weigh the relevance of each token when generating the
output. Additionally, the multi-head attention mechanism (Figure 2.2, right)
involves running multiple parallel attention operations, allowing the model to
capture different aspects of the relationships between tokens [22].

This parallelization and ability to understand context over longer distances
have led to the widespread use of transformers in modern LLMs. Furthermore,
each transformer layer consists of a feed-forward neural network (FFN), which
introduces non-linear transformations to enhance the model’s capacity to represent
complex relationships. Transformers have laid the groundwork for LLMs such as
BERT, GPT, and their multilingual versions, which aim to capture relationships
not only within one language but across multiple languages [23, 24].

2.1.2 Multilingual Large Language Models

The continuous progress in LLMs has greatly influenced various aspects of NLP,
enabling models to perform tasks such as translation, summarization, and sentiment
analysis with remarkable precision. As the demand for global applications increases,
the need for Multilingual Large Language Models (MLLMs) has become more
crucial. These models are designed to work seamlessly across different languages,
promoting inclusivity and improving access in diverse linguistic environments.
Leading MLLMs, such as GPT-4 [10], LLaMA-2 [11], and Mistral [25], offer distinct
features and capabilities that enhance multilingual language processing.

GPT-4

GPT-4, which was developed by OpenAI, is widely recognised as one of the most
prominent multilingual language models. GPT-4 has been trained on a larger and
more diverse corpus, thereby enabling it to handle multiple languages with a high
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Figure 2.1: The Transformer model architecture, including the encoder and
decoder stacks with multi-head self-attention and feed-forward layers [22].

degree of proficiency. GPT-4 displays robust capabilities in cross-lingual and multi-
lingual tasks. Although GPT-4 continues to demonstrate superior performance in
English, it has also exhibited notable advancements in the handling of low-resource
languages and the ability to generalise across diverse linguistic structures.
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Figure 2.2: (Left) Scaled Dot-Product Attention mechanism, and (Right) Multi-
Head Attention with multiple parallel attention layers [22].

GPT-4’s strength lies in its ability to leverage large-scale, diverse data for
multilingual training. This enables the model to transfer knowledge from high-
resource languages, like English, to low-resource languages, which often suffer
from limited training data. However, one of the ongoing challenges in GPT-4 is
ensuring that knowledge edits made in one language are accurately reflected in
others, particularly in less-resourced languages.

LLaMA-2

LLaMA-2 (Large Language Model Meta AI), released by Meta, represents another
important advancement in multilingual modeling. LLaMA-2 has been optimized
for performance across various tasks, including cross-lingual tasks, by training on a
broad set of multilingual corpora. LLaMA-2 has been specifically designed to offer
improved performance in low-resource languages compared to earlier models, thus
helping bridge the gap between languages with abundant resources and those with
limited ones.

One of LLaMA-2’s key contributions is its ability to efficiently handle code-
switching—a phenomenon common in multilingual environments where speakers
mix languages in conversation. By training on data that includes such linguistic
variations, LLaMA-2 enhances the model’s robustness in dealing with real-world
multilingual interactions. However, like GPT-4, LLaMA-2 faces challenges in
maintaining consistency when edits or updates are made to the model’s knowledge
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base across different languages.

Mistral

Mistral, a recent multilingual model, focuses on efficiency and performance, partic-
ularly in multilingual settings. Mistral is designed to be a lightweight yet powerful
model, optimizing both the speed of inference and resource efficiency. This makes
it ideal for deployment in environments where computational resources are limited
but multilingual support is critical.

Mistral places an emphasis on scalability and adaptability across languages,
enabling users to fine-tune the model for specific cross-lingual tasks without the
need for extensive computational overhead. It is particularly useful for real-time
applications that require fast and reliable language processing across multiple
languages. Mistral also incorporates recent advances in retrieval-augmented genera-
tion, which allows the model to access external knowledge bases dynamically, thus
improving its accuracy in tasks involving factual information across languages.

While these models demonstrate impressive multilingual capabilities, there are
still several challenges in multilingual knowledge representation and cross-lingual
transfer learning. Ensuring that edits or updates to the model’s knowledge base are
propagated effectively across all languages remains a significant research challenge.
Moreover, the issue of bias in multilingual models—where high-resource languages
dominate model behavior—continues to be a concern. Future directions in the
development of MLLMs like GPT-4, LLaMA-2, and Mistral will likely focus on
improving the balance between languages, enhancing fine-grained knowledge editing
capabilities, and reducing the computational footprint for real-time multilingual
tasks.

2.1.3 Mechanism of Knowledge Storage in LLMs
The success of LLMs is not just due to the Transformer architecture but also to
their ability to store vast amounts of world knowledge within their parameters.
Researchers have explored how these models store and retrieve information, re-
vealing that knowledge is distributed across layers in the model, with Figure 2.3
illustrating some of these research findings. Early layers tend to capture shallow,
syntactic information, while deeper layers focus on semantic and factual knowledge
[18].

For instance, studies suggest that phrase-level linguistic features are stored in
lower layers, whereas semantic and factual knowledge reside in higher layers. The
FFN layers, particularly, are thought to function as a form of key-value memory
system, where specific neurons correspond to particular facts or knowledge items.
This key-value system allows models to recall knowledge when relevant inputs are
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Figure 2.3: The mechanism of knowledge storage in LLMs.[17, 18, 16, 26].

presented [26].
LLMs like GPT-3 and GPT-4 demonstrate emergent behaviors such as the ability

to answer factual questions by leveraging this internal knowledge base. However,
the exact mechanism by which LLMs organize and store knowledge remains an area
of ongoing research. Research into knowledge localization has found that certain
neurons are activated by specific factual prompts, indicating that factual knowledge
is distributed but still localized within specific components of the model [16].

2.2 Knowledge Editing in LLMs
Knowledge editing refers to the process of modifying, adding, or removing specific
knowledge from an LLM without retraining the entire model. This task is critical
as LLMs are often used in dynamic environments where facts and knowledge evolve
over time. For example, as geopolitical events or scientific discoveries emerge,
models need mechanisms to update their internal knowledge base without affecting
their overall performance on unrelated tasks [27].

Current techniques for knowledge editing can be divided into three categories:
resorting to external knowledge, merging new knowledge into the model, and editing
intrinsic knowledge. These techniques draw from cognitive learning processes, such
as recognition, association, and mastery, to systematically modify the model’s
knowledge base.

By employing methods such as causal tracing or localized gradient updates,
researchers can identify specific neurons or layers responsible for storing particular
pieces of information, allowing for targeted interventions [18]. This approach
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ensures that changes to the model are minimal and do not degrade its general
performance.

2.2.1 Mathematical Definition of Knowledge Editing
Given an LLM parameterized by θ, the objective of knowledge editing is to update
the model so that it generates new, correct outputs for certain input prompts
related to the knowledge being edited, without disrupting its overall performance.
Formally, let the LLM be defined as a function fθ(x), where x represents the input,
and θ are the learned parameters of the model. The goal of knowledge editing is to
update θ such that for a specific input x′, the model outputs a desired target y′,
i.e.,

fθ′(x′) = y′,

where θ′ is the updated parameter set after editing, and y′ is the corrected or
updated output. The key requirement is that the updated parameters θ′ should
maintain the model’s performance on unrelated inputs x, so that:

fθ′(x) ≈ fθ(x) for all x /= x′.

In other words, knowledge editing seeks to make localized changes that only
affect the specific knowledge being targeted while preserving the overall performance
and integrity of the model.

Knowledge editing methods can generally be classified into three categories based
on how they modify the model’s internal or external representations of knowledge:

• External Knowledge Methods: In this approach, additional knowledge is
provided at inference time through external resources such as databases or
retrieval systems. These methods augment the model’s output without directly
altering its parameters. For instance, if the model encounters a prompt that
contains outdated information, it queries an external source to provide the
correct answer. This ensures that the original parameters θ remain unchanged.

• Merging Knowledge into the Model: This approach modifies the model’s
internal representations by combining new information with pre-existing knowl-
edge. The goal here is to adjust the model’s output layers or embeddings
such that the new knowledge is integrated while keeping the model’s overall
architecture intact. Mathematically, this can be seen as finding a mapping
function that adjusts the output probabilities conditioned on new facts:

P (y|x; θ′) = Pnew(y|x),

12



Background

where Pnew(y|x) reflects the updated knowledge embedded in the modified
parameters θ′.

• Intrinsic Knowledge Editing: This method involves directly editing the
parameters of the model to encode new or corrected knowledge. This can be
mathematically formulated as a constrained optimization problem, where we
aim to find an updated parameter set θ′ that satisfies:

θ′ = arg minθ L(fθ(x′), y′) + λ L(fθ(x), y),

where L is a loss function that penalizes deviations from the desired output for
the edited input x′, while λ controls the regularization to prevent deviations
from the original outputs on unrelated inputs x.

Knowledge editing in LLMs holds promise in various fields, including AI-driven
systems that need to remain up-to-date with real-time information or correct past
mistakes. For example, an LLM used in medical diagnosis may require regular
updates to incorporate new research findings, while a chatbot might need to be
corrected for any biased or incorrect statements it may generate.

However, knowledge editing is a challenging task, particularly due to the dis-
tributed nature of knowledge in LLMs. There is always a risk that updating one
piece of knowledge might inadvertently alter other unrelated facts stored within the
model. Therefore, the design of robust methods that can isolate and edit specific
knowledge with minimal side effects is a key research area. Techniques such as
fine-tuned regularization and careful parameter control help mitigate these risks,
but achieving optimal performance remains an open problem in the field.

2.2.2 Methods
The capabilities of LLMs have evolved to closely mimic human cognitive processes,
especially when it comes to learning and knowledge acquisition. Inspired by the
way humans learn, these stages can be applied to the process of editing LLMs,
as illustrated in Figure 2.4. Research in education and cognitive science [s1, s2,
s3] suggests that human knowledge acquisition occurs in three distinct phases:
recognition, association, and mastery. This framework provides a useful lens
through which to understand how knowledge editing functions in LLMs, as shown
in Table 2.1.

• Recognition Stage: In the recognition stage, the model is introduced to
new knowledge within a specific context, much like how humans first become
familiar with new information. For example, by providing the model with
sentences that demonstrate an updated fact, it can begin to recognize the
knowledge that needs to be adjusted.
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Figure 2.4: Applying Human Learning Phases to Knowledge Editing in LLMs:
This figure illustrates the analogy between human learning phases and knowledge
editing in LLMs, organizing current methods into the stages of recognition, associ-
ation, and mastery.

• Association Stage: During this stage, the model starts linking the newly
introduced knowledge with its existing knowledge base, much like humans
connect new ideas to prior experiences. In this stage, the output or intermediate
representation h may be adjusted by incorporating or substituting it with a
knowledge representation hknow.

• Mastery Stage: The final stage, mastery, occurs when the model fully
integrates the new information into its parameters and can reliably utilize
it without external support, akin to a human achieving expertise. This
process typically involves directly updating the model’s weights, W , allowing
it to independently handle tasks without additional interventions or external
assistance.

2.2.3 Multilingual and Cross-lingual Editing in LLMs
MLLMs extend the capabilities of LLMs by supporting multiple languages. These
models, such as mBERT, XLM-R, and BLOOM, are trained on multilingual corpora,
enabling them to handle tasks across different languages [28, 29]. The challenge in
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MLLMs is to maintain high performance in both high-resource and low-resource
languages.

In multilingual and cross-lingual settings, LLMs must balance knowledge repre-
sentation across languages. Recent research shows that multilingual models often
develop language-independent neurons, which store abstract representations that
can generalize across languages. This ability to share knowledge across languages
is critical for tasks such as cross-lingual knowledge editing, where information must
be updated in one language and reflected across others [30].

Multilingual models also encounter challenges related to language-specific knowl-
edge conflicts, where facts or interpretations differ across cultural or linguistic
contexts. Addressing these challenges requires advanced techniques for knowledge
editing that can handle multiple languages simultaneously, without introducing
bias or degrading performance in lower-resource languages [18].

2.3 Related Techniques
LLMs have inspired various techniques aimed at efficient model adaptation, knowl-
edge augmentation, and continual learning. These techniques play a crucial role in
enhancing model performance and updating factual knowledge without requiring
full-scale retraining. This section provides an overview of related techniques in the
domain of knowledge editing, parameter-efficient tuning, knowledge augmentation,
continual learning, and machine unlearning.

2.3.1 Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning techniques, such as Adapters and Low-Rank Adapta-
tion (LoRA), aim to reduce the computational costs associated with fully fine-tuning
LLMs. These techniques focus on updating only a small subset of parameters,
thereby maintaining overall model performance while minimizing resource usage.

Adapter-based Methods: Adapters introduce additional trainable parameters
into the model. By attaching these adapters to various layers, the model can learn
task-specific knowledge without modifying the core parameters, as discussed by
Houlsby et al. (2019) [31].

LoRA: This method introduces low-rank matrix approximations to existing
layers, enabling efficient updates with fewer trainable parameters. LoRA focuses
on updating a limited number of weights while retaining most of the model’s
general-purpose knowledge [32].

While these techniques have been successful in task-specific fine-tuning, their
direct application to knowledge editing remains underexplored. Parameter-efficient
tuning could be adapted for more precise and localized knowledge updates.
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2.3.2 Knowledge Augmentation
Knowledge-augmented methods supplement LLMs with external knowledge sources
to address limitations such as missing or outdated information. The most common
approach in this domain is Retrieval-Augmented Generation (RAG). RAG retrieves
relevant documents from external knowledge sources, such as databases or the web,
and combines them with model-generated outputs.

Input-level Retrieval Augmentation: Retrieved information is concatenated
with the input prompt, enabling the model to generate more accurate responses
based on updated context [33, 34].

Intermediate and Output Layer Augmentation: Retrieval-based compo-
nents can also be incorporated into intermediate layers or blended with the output
token distribution, allowing the model to correct misinformation during inference
[35, 36].

While knowledge augmentation provides immediate solutions for generating
accurate outputs, it does not update the internal knowledge of the model. Therefore,
it is primarily useful for inference-time knowledge updates, leaving long-term
knowledge storage unchanged.

2.3.3 Continual Learning
Continual learning techniques aim to enable LLMs to learn new information while
retaining previously acquired knowledge. This approach is essential for models
deployed in dynamic environments where new facts emerge frequently.

Memory-based Systems: These systems store knowledge in external memory
modules that the model can access during inference, thus maintaining previously
learned information without overfitting to new tasks.

Regularization-based Methods: These methods incorporate constraints
during training to prevent catastrophic forgetting, ensuring that updates do not
degrade the model’s existing knowledge [37, 38].

Continual learning has become an important approach in managing the dynamic
nature of knowledge. However, it remains computationally expensive and less
efficient for fine-grained knowledge editing tasks.

2.3.4 Machine Unlearning
Machine unlearning is a growing area of research focused on removing specific
knowledge from models without retraining. This technique is particularly useful
in compliance scenarios, such as Right to be Forgotten regulations, where specific
data needs to be erased. Selective forgetting methods identify and suppress the
weights associated with specific knowledge to eliminate its influence on the model’s
outputs.
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2.4 Knowledge Editing Models

This section explores several prominent approaches, each with unique strategies to
enhance accuracy, scalability, and flexibility in knowledge editing across different
tasks.

This section explores several prominent approaches, each with unique strategies
to enhance accuracy, scalability, and flexibility in knowledge editing across different
tasks. Table 2.1 provides a comparative overview of representative knowledge
editing methods for LLMs. It highlights key aspects such as the area of the
model being edited, whether additional training is required, and the ability to
perform batch edits, helping to differentiate between the methods based on their
functionalities and use cases.

2.4.1 Semi-Parametric Editing with a Retrieval-Augmented
Counterfactual Model (SERAC)

SERAC [27] is a memory-based method developed for efficient and precise knowledge
editing in large language models. In contrast to conventional gradient-based
techniques that alter model parameters, SERAC preserves the original model
by employing an external memory system. This system retains user-provided
modifications, such as input-output examples or supplementary utterances, without
necessitating any alterations to the model’s fundamental architecture.

At the heart of SERAC is the ability to distinguish when an input requires
modification and how to apply that modification. This is achieved through two
main components: the scope classifier and the counterfactual model. The scope
classifier evaluates whether a given input falls within the scope of the stored edits by
estimating its relevance. If the input is deemed relevant, the counterfactual model
predicts the appropriate output based on both the new input and the relevant edit
stored in memory. When no applicable edits are found, the base model’s original
output is returned.

SERAC offers several advantages over existing knowledge editing techniques.
By separating the process of identifying when an edit should be applied from how
the model’s behavior should change, SERAC minimizes the risk of unintended side
effects. This approach allows SERAC to efficiently handle multiple simultaneous
edits, a challenge for many other editing frameworks. The model has demonstrated
superior performance in tasks like fact-checking, question-answering, and dialogue
generation, where precise and scalable model edits are essential.
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2.4.2 Knowledge Embedding (KE)
Knowledge Embedding (KE) methods embed factual knowledge into the parameters
of LLMs, focusing on the attention mechanisms and feed-forward networks. KE
achieves high performance in knowledge editing by introducing auxiliary models
that can efficiently adapt the weight matrices in transformer models. This approach
ensures that knowledge updates are reflected across layers without degrading the
model’s original performance. It strikes a balance between edit precision and
computational efficiency [39].

2.4.3 Precise Model Editing in Transformers (PMET)
Precise Model Editing in a Transformers (PMET) introduces a novel approach to
model editing by improving the precision of weight updates within transformer
models. Existing techniques, such as ROME and MEMIT, rely on optimizing
transformer layer hidden states to memorize target knowledge and update the
weights of the FFN. However, these methods overlook that transformer layer
hidden states contain information from multi-head self-attention (MHSA), FFN,
and residual connections, leading to imprecise weight updates[40].

PMET improves upon this by simultaneously optimizing the hidden states of
both MHSA and FFN. Despite this joint optimization, it restricts the actual weight
updates to the FFN layer, leaving the MHSA weights unchanged. The rationale
behind this is that MHSA primarily functions as a general knowledge extractor,
encoding patterns of knowledge extraction rather than storing specific factual
knowledge. As a result, PMET leverages the optimized FFN hidden states to
perform more precise weight updates, thus enhancing the accuracy of knowledge
edits while maintaining the model’s overall reliability.

2.4.4 Knowledge Neurons (KN)
The Knowledge Neurons framework (KN) [16] aims to identify and manipulate
specific neurons within a large-scale pretrained transformer model responsible for
encoding factual knowledge. These neurons are critical in expressing relational
facts stored in the model. The central idea is that factual knowledge in transformer
models, like BERT, is distributed across FFNs. These FFNs can be viewed as
key-value memory structures, where neurons act as keys storing specific pieces
of information, and their activation allows the model to retrieve and express this
knowledge.

To identify knowledge neurons, the authors propose a knowledge attribution
method that tracks how individual neurons contribute to a model’s predictions
during a fill-in-the-blank task. This method is based on integrated gradients, a
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technique that measures the contribution of each neuron to the output by examining
how the model’s predictions change when the neuron’s activations are altered.

Two significant applications of knowledge neurons are: updating factual knowl-
edge and erasing specific relations. By identifying and modifying the activations
of particular neurons, the model’s internal knowledge can be updated without
retraining. For example, changing the knowledge about a fact (like the capital of
a country) can be achieved by modifying a small number of key neurons respon-
sible for encoding that information. Similarly, factual relations, such as personal
information like birthplace, can be erased by suppressing the activations of related
neurons. This neuron-level intervention demonstrates that knowledge neurons are
not only useful for understanding how transformer models store factual knowledge
but also for enabling fine-grained editing of this knowledge without the need for
extensive retraining. These insights make knowledge neurons a promising tool for
model interpretability and targeted knowledge editing.

2.4.5 In-Context Learning (ICL)
In-Context Learning (ICL) is an efficient approach for knowledge editing that
operates during inference time. Rather than modifying the model’s parameters, ICL
allows knowledge to be injected into the model through prompt-based interactions.
This makes it particularly useful for scenarios where frequent knowledge updates
are required, as no model retraining is needed. ICL-based methods are gaining
popularity for their flexibility in injecting and modifying knowledge across tasks
without compromising model fluency [41, 42, 43].

2.4.6 Rank-One Model Editing (ROME)
Rank-One Model Editing (ROME) is a targeted knowledge editing model that
uses rank-one updates to the feed-forward neural networks in transformers. By
applying causal tracing, ROME identifies the precise layers and neurons that
need modification, ensuring that factual knowledge can be edited with minimal
disruption to other parts of the model. While powerful for single-fact updates,
ROME struggles with bulk or multiple simultaneous edits [18].

2.4.7 Mass Editing Memory in a Transformer (MEMIT)
Mass Editing Memory in a Transformer (MEMIT) extends the capabilities of models
like ROME by supporting bulk edits across multiple facts. It does this by utilizing
a more distributed update mechanism that spans across several layers. This ensures
that multiple factual updates can be performed simultaneously without harming
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the overall performance of the model. MEMIT is highly effective for large-scale
knowledge management [17].

2.4.8 Model Editing Networks with Gradient Decomposi-
tion (MEND)

MEND [44] is a model-editing approach designed to enable rapid, localized edits to
LLMs using minimal computational resources. Unlike traditional fine-tuning, which
can be computationally intensive and prone to overfitting when applied to single
input-output corrections, MEND allows for efficient edits by leveraging gradient
decomposition. This method employs small auxiliary networks to transform the
fine-tuning gradient, making edits scalable even to models with over 10 billion
parameters.

MEND operates by learning to modify the gradient obtained from standard
fine-tuning. It uses a low-rank decomposition of this gradient, which reduces
the complexity of parameterizing the transformation. These transformations are
learned through auxiliary networks that take the raw gradient and output a targeted
update to the model’s weights, ensuring that the edits affect only the desired areas
of the model’s behavior while preserving performance on unrelated tasks. This
approach allows MEND to maintain edit locality, reliability, and generality.

One of the key strengths of MEND is its ability to handle very large models,
such as GPT and T5, without requiring retraining or access to the entire dataset
during the editing process. By transforming the gradient in a computationally
efficient manner, MEND can apply rapid edits even to models with billions of
parameters, making it an ideal solution for scenarios where fast model updates are
necessary without compromising the model’s overall accuracy.

2.4.9 Transformer-Patcher (T-Patcher)
Transformer-Patcher [45] is a novel model editing technique developed to handle
mistakes made by large transformer-based language models, especially in real-world
scenarios where models are continuously deployed. Unlike previous approaches that
focused on correcting single mistakes at a time, Transformer-Patcher introduces the
concept of Sequential Model Editing (SME), which aims to fix errors as they occur,
in an ongoing fashion. The approach works by adding and training a small number
of neurons, referred to as patches, within the last FFN layer of a transformer model.
These patches modify the model’s behavior for specific problematic inputs while
preserving its overall accuracy on irrelevant or already correct inputs.

One of the key strengths of Transformer-Patcher is its ability to maintain
reliability, meaning that after an edit, the model produces the correct output for
the modified input. Furthermore, the method ensures generality, as it enables the
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edited model to generalize its corrections to similar inputs, such as paraphrased
versions of the problematic input. Importantly, it achieves locality, ensuring that
the edits do not degrade the model’s performance on unrelated examples.

The underlying mechanism of Transformer-Patcher works by freezing the pa-
rameters of the original model and introducing patches into the last FFN layer to
adjust the output accordingly. This method allows for efficient error correction
without the need for retraining the entire model, making it highly suitable for
dynamic and real-time industrial applications in natural language processing.

2.5 Advanced Techniques in Large Language Mod-
els: Prompt Engineering and In-Context Learn-
ing

As large language models (LLMs) like GPT-3 and GPT-4 have evolved, they now
excel at performing a broad spectrum of tasks across domains. However, simply
deploying these models with raw inputs does not always unlock their full potential.
To effectively harness their capabilities for specific tasks, two key techniques are
widely employed: prompt engineering and in-context learning. These techniques
are essential for achieving optimal performance without the need for extensive
task-specific fine-tuning. Instead, they allow for quick adaptation to diverse tasks
by utilizing the deep language understanding that these models develop during
pretraining.

Among these techniques, prompt engineering stands out as a powerful method
for guiding LLMs toward desired outputs. It involves crafting clear, well-structured
prompts that effectively frame the task for the model. By controlling how the task is
presented, prompt engineering can lead to more accurate and task-specific responses
without requiring additional training or modification of the model. This approach is
particularly valuable because it leverages the general language knowledge embedded
in LLMs, enabling efficient adaptation to new tasks with minimal computational
effort [24, 58].

2.5.1 Prompt Engineering
Prompt engineering involves designing and crafting specific input text prompts that
guide the model toward generating the desired output. The concept stems from
the realization that language models are highly sensitive to the way instructions
or tasks are presented. Even slight variations in the phrasing or formatting of
a prompt can lead to significantly different outputs [58]. This sensitivity makes
prompt engineering a powerful, yet sometimes challenging, technique to master.
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Table 2.1: Comparison of key approaches for knowledge editing in LLMs. "No
Training" indicates methods that do not require extra training, while "Batch Edit"
refers to whether the method can handle multiple edits simultaneously.

Category/Method Edit Area Edit Function No
Training

Batch
Edit

A
ssociation

Stage

MemPrompt[46] Memory+Retriever Input → [Mem : Input] ✓ ✓

SERAC[27] Memory+Classifier Output → Modelc(x) ✓ ×

MeLLo[42] Memory+Retriever +Auxil-
iary Model

Input → [Mem : Input] × ×

IKE[41] Memory+Retriever Input → [Mem : Input] ✓ ×

ICE[43] Prompt Input → [Mem : Input] ✓ ×

PokeMQA[47] Memory+Retriever Input → [Mem : Input] × ×

R
ecognition

Stage

CaliNET[48] FFN+params Output head +params ✓ ✓

T-Patcher[45] FFN+params h → h + FFNadd(x) × ✓

REMEDI[49] Auxiliary Model h → REMEDI(x) × ✓

GRACE[50] FFN+codebook h → GRACE(x) × ✓

LoRA[51] Attn or FFN h → h + s : LoRA(x) × ✓

MELO[52] Attn or FFN h → h + s : LoRA(x) × ✓

M
astery

Stage

FT-
Constrained[53]

Any W → W′ × ×

ENN[54] Any W → W′ × ×

KE[39] Attn or FFN +Auxiliary
Model

W → W′ × ×

SLAG[55] Attn or FFN +Auxiliary
Model

W → W′ × ×

MEND[44] FFN +Auxiliary Model Wdown → W′
down × ✓

KN[16] FFN Wdown → W′
down ✓ ×

ROME[18] FFN Wdown → W′
down ✓ ×

MEMIT[17] FFN Wdown → W′
down ✓ ✓

PMET[40] FFN Wdown → W′
down ✓ ✓

MALMEN[56] FFN Wdown → W′
down ✓ ✓

BIRD[57] FFN Wdown → W′
down × ✓
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2.5.2 The Role of Prompts in LLMs
Large language models are trained to predict the next word in a sequence based on
the context provided by the preceding words. During inference, the input (prompt)
serves as the context, and the model generates a response based on this context. For
example, if the prompt is "Translate the following sentence into French: ’Hello, how
are you?’", the model generates the appropriate translation as "Bonjour, comment
ça va?". The success of the response is directly influenced by how well the prompt
communicates the task.

The core idea of prompt engineering is to create an input that clearly specifies
the task for the model [brown2020language]. There are two main strategies in
prompt engineering:

• Zero-shot prompting: In this method, the model is given the task in a single
instruction without any examples. The model is expected to understand and
perform the task solely based on the instructions. For instance, "Summarize
the following text:" followed by a paragraph provides the model with no prior
examples but asks for a summary directly.

• Few-shot prompting: In contrast to zero-shot, few-shot prompting provides
the model with several examples of how the task is performed before asking
it to generate the output for a new instance. For example, providing a few
question-answer pairs followed by a new question allows the model to infer the
structure and pattern from the provided examples [brown2020language].
This method can significantly improve performance on tasks where the model
might struggle to understand the desired output format.

2.5.3 The Importance of Effective Prompts
Effectively designing prompts is crucial because it determines whether the model
generates an accurate and relevant response. In many cases, slight modifications to
the wording or structure of a prompt can lead to improved or deteriorated results.
Researchers have found that inserting clarifying instructions, structuring the task
in a clear and logical manner, and sometimes even including extraneous details
(like listing "steps" or "instructions") can help the model better grasp complex tasks
[59].

One interesting innovation that arose from prompt engineering is chain-of-
thought prompting, which involves structuring prompts to guide the model through
a reasoning process. This is particularly useful for tasks that require multi-step
reasoning, such as solving math problems or performing logical deductions. In
chain-of-thought prompting, instead of asking the model for a direct answer, the
prompt encourages the model to explain the steps involved in reaching the answer
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[59]. For example, in a math word problem, a chain-of-thought prompt might
guide the model to first identify the variables, apply the necessary operations, and
then generate the final answer. This step-by-step breakdown often leads to more
accurate results in tasks that require complex thinking.

Example of chain-of-thought prompting:
"If Tom has 3 apples and buys 2 more, how many apples does he have
now? First, calculate how many apples Tom had initially. Then, add the
number of apples he bought."

By guiding the model through intermediate steps, prompt engineering enables
models to perform tasks that were previously difficult to address through simple
commands.

2.5.4 In-Context Learning (ICL)
In-context learning is a paradigm in which models "learn" from examples provided
within the input prompt, rather than being explicitly trained on labeled data
through gradient-based updates. Essentially, in-context learning allows models
to adapt to new tasks on the fly, purely based on the context provided by a
few examples. This approach leverages the model’s general language understand-
ing, enabling it to perform new tasks without altering its underlying parameters
[brown2020language].

2.5.5 Mechanism of In-Context Learning
In in-context learning, the model is provided with a series of input-output pairs
within the prompt. By observing these pairs, the model infers the pattern or
structure of the task, allowing it to generalize to new inputs within the same
prompt context. This method relies on the model’s pretraining, during which it
learns to recognize patterns across vast datasets [60].

An example of in-context learning would be as follows:

Translate the following sentences:
English: "The sky is blue." → Spanish: "El cielo es azul."
English: "I am hungry." → Spanish: "Tengo hambre."
English: "Good morning!" → Spanish:

In this example, the model uses the prior translations in the prompt to infer
the task and provide the correct translation for the new sentence "Good morning!"
without requiring additional training data.
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2.5.6 Advantages of In-Context Learning
The primary advantage of in-context learning is its flexibility and efficiency. In
traditional supervised learning, models must be fine-tuned on labeled datasets
to perform well on specific tasks. However, with in-context learning, models can
adapt to new tasks simply by observing a few examples provided at inference time
[brown2020language].

Furthermore, in-context learning is particularly useful in scenarios where labeled
data is scarce or unavailable. For instance, in low-resource language tasks or
domain-specific tasks, it may be impractical to fine-tune a model on limited data.
In such cases, providing a few labeled examples directly within the prompt can
allow the model to generalize and perform the task with a high degree of accuracy.

In-context learning also allows models to handle a variety of tasks simultaneously
without needing to be retrained for each new task. This opens up possibilities for
rapid deployment of models in real-world applications, such as customer service,
translation services, and content generation.

2.6 Applications and Impact
The combination of prompt engineering and in-context learning has led to numerous
breakthroughs in NLP applications, particularly in tasks that benefit from minimal
training data and flexible task adaptation. Some notable applications include:

• Cross-lingual translation: By providing examples of how sentences are
translated between languages, models can perform translation tasks with high
accuracy. This is particularly valuable in cases where traditional machine
translation systems may struggle due to lack of training data in certain
languages.

• Question answering systems: Carefully crafted prompts can guide models
to answer questions more accurately by specifying the format or encouraging
the model to focus on relevant information from a text.

• Text summarization: In tasks where users need concise summaries of
documents or articles, prompts can be structured to instruct the model to
provide a high-level overview, summarizing key points while ignoring irrelevant
details.

• Content generation and storytelling: In the creative industries, prompt
engineering is used to generate stories, articles, and even poetry. In this
context, prompts can be designed to specify tone, style, or genre, giving
creative control to the user while the model generates coherent and contextually
relevant content.
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The flexibility and adaptability of these techniques make them integral to the
development of advanced AI applications that are highly responsive to user input.

2.7 Challenges and Future Directions
While prompt engineering and in-context learning offer powerful tools for interacting
with large language models, they also present some challenges. One of the main
issues is the sensitivity of models to slight variations in prompts. Small changes in
phrasing or formatting can lead to drastically different results, making it difficult
to consistently achieve the desired outcome [58]. Additionally, in-context learning
relies on the assumption that the model can correctly infer the task from a limited
number of examples, which may not always be the case for more complex or
ambiguous tasks.

Another challenge is the lack of standardization in prompt design. Users often
rely on trial and error to determine which prompts work best for a given task.
Future research could focus on developing more robust and consistent methods
for designing prompts, potentially incorporating automatic prompt generation
techniques that optimize for task performance [59].

Finally, as LLMs continue to grow in size and complexity, the computational
costs associated with these models remain a concern. More efficient methods for
prompt processing and task adaptation may be necessary to scale these models for
widespread use in industry.

2.8 Conclusion
Prompt engineering and in-context learning have revolutionized the way we interact
with large language models. These techniques allow models to be applied to a wide
variety of tasks with minimal training, making them versatile tools for natural
language understanding and generation. As research in this area continues to
evolve, we can expect further improvements in the efficiency and accuracy of these
methods, paving the way for more advanced applications of LLMs in real-world
scenarios.
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Chapter 3

Methodology

3.1 Overview

The rapid advancement of large language models has enabled them to store and
generate vast amounts of factual knowledge. However, as the world changes, these
models often hold outdated or incorrect information. Addressing this issue without
retraining the entire model is crucial, especially in multilingual environments where
the knowledge needs to propagate across different languages. The focus of this
thesis is on multilingual knowledge editing, which aims to update LLMs with new
facts in a way that ensures consistency and accuracy across multiple languages.
This research explores an efficient combination of MEMIT (Mass-Editing Memory
in Transformers), in-context learning (ICL), and retrieval-augmented techniques,
extending them to multilingual settings.

The MEMIT method is particularly useful for updating factual knowledge within
specific layers of the model, allowing for precise control over what information
is altered. This method helps inject new facts or correct outdated knowledge
without significantly affecting unrelated information. MEMIT’s ability to edit
large amounts of information across different layers simultaneously makes it highly
scalable [17].

To complement this approach, ICL [41, 42, 43] offers a flexible, non-intrusive
way of influencing model behavior by including demonstration examples within the
input context. ICL has proven to be an effective technique for knowledge editing
in situations where direct parameter updates are either undesirable or impractical.
This thesis adapts ICL to the multilingual setting, allowing for knowledge edits
in multi languages. However, challenges remain in ensuring that knowledge edits
performed in one language (e.g., English) can be effectively applied and queried in
another [20, 21].

Addressing the challenges of cross-lingual knowledge editing, a retrieval-augmented
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solution called ReMaKE (Retrieval-augmented Multilingual Knowledge Editor) is
also incorporated. ReMaKE combines multilingual retrieval with in-context learn-
ing to improve the efficiency and scalability of knowledge edits across languages
[15]. The MzsRE dataset, a multilingual extension of the zsRE dataset, is used in
this research to evaluate the effectiveness of cross-lingual knowledge transfer across
languages [20, 15, 21].

By combining these methodologies, this thesis presents a framework that ad-
dresses key challenges in multilingual knowledge editing, such as ensuring con-
sistency across languages, maintaining generalization, and improving scalability
without compromising accuracy.

3.2 Knowledge Editing with MEMIT
Mass-Editing Memory in Transformers (MEMIT) [17] is a knowledge-editing tech-
nique that modifies specific transformer parameters to update factual associations
within a model’s memory. MEMIT operates by identifying the critical path of
Multi-Layer Perceptron (MLP) layers that mediate factual recall, and then mod-
ifying these layers to insert new factual memories. This process is illustrated in
Figure 3.1, where MEMIT updates critical MLP layers based on causal mediation
analysis.

Figure 3.1: MEMIT adjusts the parameters of transformers involved in the key
steps of MLP-driven factual recall. In the early layers, attention modules collect
subject names into vector representations, while MLPs in crucial layers interpret
these encodings and introduce memories into the residual stream. These memories
are subsequently processed by attention modules to generate the final output. [17,
18]

MEMIT works by calculating the vector associations that we want the critical
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MLP layers to remember and spreading these associations across multiple layers.
Unlike single-edit methods, MEMIT allows for the simultaneous editing of thousands
of memories by distributing the desired changes across the layers, ensuring that
each memory is accurately reflected without overwriting unrelated information.

Figure 3.1 shows the core mechanism where early attention modules gather
subject information, and critical MLP layers insert the memory into the residual
stream. This ensures that the inserted knowledge is accessible across multiple
contexts, improving the scalability and precision of the edits.

In this thesis, MEMIT is used to inject new knowledge into the model and
update outdated facts. For example, when factual information (such as the current
president of a country) needs to be updated, MEMIT locates the relevant parameters,
modifies them, and verifies that the new fact is accurately represented across
different contexts and queries. This is particularly beneficial for tasks involving
factual knowledge that evolves over time, such as current events or updates in
encyclopedic data.

One of the key advantages of MEMIT is its ability to scale. Traditional knowl-
edge editing approaches, such as fine-tuning or gradient-based methods, require
significant computational resources and often lead to overfitting or unintended side
effects, such as forgetting previously stored knowledge. MEMIT overcomes these
issues by focusing on parameter-specific updates, avoiding unnecessary alterations
to other parts of the model. This ensures that only the target knowledge is modified,
while unrelated facts remain unaffected.

To evaluate the effectiveness of MEMIT in a multilingual setting, the method
was applied to update facts in models capable of generating responses in multiple
languages. This ensures that the injected knowledge can be queried across different
languages with consistent accuracy. The approach was tested on the MzsRE
dataset, a multilingual extension of the zsRE dataset, which was used to validate
the generalization and retention of the edited knowledge across various languages
[21, 20, 15].

Overall, MEMIT serves as a powerful tool in this thesis for managing large-
scale knowledge updates in multilingual LLMs, ensuring that new information is
integrated without disrupting the model’s existing knowledge base.

3.3 In-Context Learning for Knowledge Editing
In-Context Learning (ICL) is an innovative approach that enables language models
to perform specific tasks by providing examples within the input context, without
requiring any changes to the model’s parameters. In ICL, task-specific instructions
and examples are presented as part of the model’s input, guiding it to generate the
desired output. This makes ICL highly versatile and a non-intrusive method for
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knowledge editing, as it avoids the need for parameter updates or fine-tuning [43].
Traditional knowledge editing techniques involve modifying model parameters to

inject or update factual knowledge. However, this requires computationally expen-
sive fine-tuning, especially for large models. In contrast, ICL offers a parameter-free
approach to knowledge editing, where the language model learns to adjust its
responses based on the provided examples or demonstrations in the input. This
flexibility makes ICL a highly effective tool for temporary or context-specific knowl-
edge updates, allowing the model to maintain accuracy for evolving knowledge
without requiring any retraining or permanent modifications [41].

Figure 3.2 illustrates how ICL can be employed to inject new knowledge into a
model by providing contextual demonstrations. These examples help the model
learn and apply updated facts without modifying its internal parameters.

Figure 3.2: In-Context Learning workflow for knowledge editing. Demonstrations
of new, updated, and retained facts guide the model to generate accurate outputs
without parameter updates [41].

ICL operates by providing a series of demonstrations (or examples) that include
the desired knowledge updates, guiding the model to adopt the new information
during its inference process. These demonstrations act as references for the model
to generate correct responses without altering its internal weights. This makes ICL
particularly useful in black-box settings, where direct parameter modification is
not possible.

The ICL-based knowledge editing process typically involves three types of
demonstrations:

1. Copying: Demonstrations that provide the model with the exact new fact to
be learned, ensuring that the model can replicate this fact in its responses.
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2. Updating: These demonstrations focus on showing different rephrasings or
variations of the fact to ensure that the model can generalize the new knowledge
across different prompts and contexts.

3. Retaining: Demonstrations that present unrelated knowledge to guide the
model in preserving its original knowledge outside the scope of the edited fact.
This helps avoid over-editing or knowledge forgetting [42].

Figure 3.3 provides a visual example of the different types of ICL demonstrations
used in knowledge editing. The demonstrations are formatted to ensure that new
knowledge is injected, updated, and retained across various contexts without
altering unrelated facts.

Figure 3.3: Example of in-context demonstrations for knowledge editing. Demon-
strations include facts that are copied, updated, and retained to guide the model’s
output [41].

ICL has been shown to be highly effective for knowledge editing in large models
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such as GPT-J, achieving a competitive success rate compared to gradient-based
approaches, with the added benefit of fewer side effects such as over-editing or
knowledge forgetting [41]. Moreover, ICL is scalable and applicable to larger
language models, making it an efficient alternative to parameter-updating methods,
especially in black-box or service-oriented model environments.

In this thesis, ICL is evaluated in the context of multilingual knowledge editing.
By providing demonstrations in different languages, ICL can be adapted to ensure
that updated knowledge generalizes across languages. This allows for knowledge up-
dates to be effectively transferred between high-resource and low-resource languages,
ensuring consistency and accuracy in the model’s responses [21].

3.4 Interpretability-based Tailored Knowledge
Editing (TailoredKE)

The original approach presented in the Interpretability-based Tailored Knowledge
Editing in Transformers paper introduces a method called TailoredKE for editing
factual knowledge in large language models. This method focuses on understanding
the internal information flow of models and strategically selecting the layers to
modify, in order to enhance the precision of knowledge edits and minimize over-
editing. Unlike existing knowledge-editing methods that apply uniform layer
modifications, TailoredKE tailors the edits to specific transformer layers based on
the unique properties of the knowledge being modified.

3.4.1 Knowledge Editing through Layer Selection
TailoredKE builds upon insights from previous research, which identified that the
middle layers of transformer models—particularly the feed-forward Multi-Layer
Perceptrons (MLPs)—serve as key-value memories for storing factual knowledge
[17]. By focusing on these layers, the method aims to modify parameters selectively,
ensuring that only the relevant information is edited. This helps to prevent over-
editing, where unrelated facts might be unintentionally altered.

One of the core innovations in TailoredKE is the Dynamic Editing Window,
which selects specific layers for editing based on the characteristics of the knowledge
being modified. Instead of fixing the edit layers across all tasks, as done in methods
like MEMIT or ROME, TailoredKE observes the information flow related to the
specific knowledge in question. By analyzing how entity representations evolve
across layers, the method pinpoints the layers where the entity’s attributes are
recalled most effectively, and edits are applied only in these layers.

Figure 3.4 illustrates the overall process of TailoredKE, highlighting the three
steps involved: strengthening the new memory, locating the key layers, and injecting
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the new knowledge into the selected layers.

Figure 3.4: Overview of the TailoredKE process, involving the strengthening of
the new memory, dynamic layer selection, and knowledge injection into selected
layers.

3.4.2 Layer Selection and Entity Representation

TailoredKE’s layer selection strategy is based on the idea that different layers in
a transformer model recall different attributes of an entity. For example, shallow
layers might associate an entity like “iPod” with generic attributes such as "device"
or "music," while deeper layers might recall more specific associations like "Apple"
or "iPhone." By observing this process, the method chooses layers that are most
responsible for recalling the specific attributes being edited.

This approach reduces the likelihood of over-editing and ensures that the model
can retain unrelated facts. For example, when editing the fact that "iPod is a
product released by Microsoft," the method ensures that other related facts about
"iPhone" or "Macbook" remain unaffected.
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3.5 Multilingual Setting and Challenges
Adapting knowledge editing techniques to multilingual settings introduces several
significant challenges, as models trained on multiple languages often display incon-
sistent behavior when edited in one language and queried in another. This section
outlines the key difficulties encountered when extending the knowledge editing
methods—such as MEMIT and TailoredKE—across languages and the strategies
employed to address these challenges.

2. Generalization and Locality Issues: A significant issue with multilingual
knowledge editing is the balance between generalization and locality. Generalization
ensures that the edited knowledge applies across multiple linguistic contexts, while
locality ensures that unrelated knowledge remains unaffected by the edit. In
multilingual settings, this balance is difficult to achieve. The risk of over-editing
is heightened, particularly when languages share lexical or syntactic similarities.
For example, updating a fact about “Paris” in English might inadvertently alter
related facts in French, where the representation of “Paris” shares attributes with
the English version [21].

2. Data Scarcity and Low-Resource Languages: Another challenge is
the lack of sufficient training data for low-resource languages. In such cases, even
well-designed knowledge editing methods like MEMIT or TailoredKE may struggle
to apply changes effectively across these languages. This is because the model has
not learned robust representations for entities and relationships in low-resource
languages, leading to poorer performance when attempting to edit or inject new
knowledge into these languages [61].

3. Cross-lingual Transfer of Knowledge Edits: Ensuring that knowledge
edited in one language is transferable to others is a complex task. Since different
languages often have unique syntactic and semantic structures, a knowledge edit
applied in English might not translate seamlessly to a language like Arabic, which
has a distinct morphology. This cross-lingual inconsistency complicates the task of
verifying that the knowledge injected or updated in one language is also correctly
reflected in others [14, 42].

3.5.1 Addressing Multilingual Challenges
To overcome these challenges, the following strategies were employed:

1. Dynamic Layer Selection for Multilingual Models: Building upon
the TailoredKE approach, the method was extended to include Dynamic Editing
Windows tailored to each language. By observing how knowledge is represented
and recalled in different languages, the layer selection process dynamically adjusts
based on the unique structure and attributes of each language. This strategy helps
ensure that edits applied in one language can be appropriately transferred and
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localized in others without over-editing or loss of unrelated knowledge [17].
2. Use of Multilingual Datasets for Evaluation: The MzsRE dataset,

a multilingual extension of the zsRE dataset, was employed to test cross-lingual
generalization of the knowledge edits. This dataset was instrumental in identifying
inconsistencies and guiding improvements in the knowledge editing process.

3. Retraining and Adaptation for Low-Resource Languages: To address
the scarcity of data in low-resource languages, data augmentation techniques were
used to generate paraphrased and translated versions of the knowledge to be
injected. This strategy improves the robustness of the edits by exposing the model
to more varied representations of the knowledge across languages. In cases where
the model exhibited poor performance in certain languages, additional retraining
was performed using synthetic data to strengthen the model’s understanding of
these languages [61].

3.6 Multilingual Similarity Retrieval Task
Multilingual Similarity Retrieval refers to the process of retrieving semantically
similar text across multiple languages using machine learning models. This task is
essential in many natural language processing (NLP) applications, including cross-
lingual search engines, machine translation, multilingual knowledge management,
and information retrieval. With the increasing globalization of digital content,
systems must understand and retrieve semantically similar information across
languages without requiring translations.

At its core, multilingual similarity retrieval focuses on determining the closeness
or similarity of sentence pairs from different languages, which can be represented
as embedding vectors in a high-dimensional space. The goal is to ensure that
similar concepts expressed in different languages map to nearby points in this
shared embedding space. Techniques such as cosine similarity are commonly used
to measure how similar the embeddings of two sentences are, with a higher cosine
similarity indicating greater semantic similarity.

To perform multilingual similarity retrieval, various pre-trained models have
been developed to encode text from different languages into a common semantic
space. These models typically use transformer-based architectures, which are highly
effective in capturing contextual information and relationships between words and
sentences. Some prominent models used for multilingual sentence embeddings
include:

• Sentence-BERT (SBERT): Sentence-BERT [62] is a modification of the
BERT (Bidirectional Encoder Representations from Transformers) model.
It has been fine-tuned for producing sentence-level embeddings that can be
efficiently compared using cosine similarity. Multilingual versions of SBERT,
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such as paraphrase-xlm-r-multilingual-v1, are widely used for tasks that
involve matching sentences from different languages. These models ensure
that semantically similar sentences across languages are positioned close to
one another in the embedding space.

• LASER (Language-Agnostic SEntence Representations): LASER [63],
developed by Facebook AI, is another model designed for multilingual tasks.
It supports over 90 languages and is particularly effective in cross-lingual
settings where there is no overlap between languages in the training data.
LASER encodes sentences from different languages into a single embedding
space, allowing for direct comparison across languages.

• XLM-R (Cross-lingual Language Model-RoBERTa): XLM-R [28]is a
robust model for multilingual tasks, trained on a large corpus in 100 languages.
XLM-R is particularly useful for similarity retrieval because of its ability to
generate high-quality sentence embeddings. In the context of multilingual
similarity retrieval, models like distiluse-base-multilingual-cased-v2
leverage XLM-R to produce embeddings that are comparable across languages.

3.6.1 Cosine Similarity in Multilingual Retrieval
Once sentence embeddings are generated using models like SBERT, LASER, or
XLM-R, the next step is to compute the similarity between sentences. Cosine
similarity is the most common metric for this task, as it measures the cosine of
the angle between two vectors (representing sentences). If the vectors are aligned
closely, their cosine similarity will be near 1, indicating high similarity. Conversely,
if they point in different directions, the cosine similarity will be near 0, indicating
little to no similarity.

Given a query sentence in one language (e.g., English), the system can calculate
its similarity with sentences in multiple other languages, enabling it to retrieve the
most semantically similar sentences. This method eliminates the need for machine
translation, making it efficient for multilingual systems.

Some applications of multilingual similarity retrieval are:

• Cross-lingual Information Retrieval: Allows users to submit queries in
one language and retrieve relevant content in various other languages without
the need for translation.

• Multilingual Question Answering: Helps match questions to the most
semantically relevant answers, regardless of language, enhancing the usability
of global-scale information systems.
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• Cross-lingual Document Matching: Used in applications like plagia-
rism detection or document clustering, where documents written in different
languages need to be compared based on their content.

Multilingual similarity retrieval plays a crucial role in enabling cross-lingual tasks
by leveraging multilingual sentence embeddings and cosine similarity. It facilitates
efficient comparison of text across languages without relying on translation models.
As technology evolves, multilingual similarity retrieval will continue to advance,
broadening its impact in various NLP applications.

3.7 Retrieval-augmented in-context learning
ICL is a non-intrusive method for supplying additional information to LLMs
without altering their internal parameters. This approach works by appending
relevant context to an existing prompt, which helps guide the language generation
process. Additionally, retrieval-augmented ICL has been introduced, allowing the
model to pull information from external databases when necessary. Off-the-shelf
search engines are commonly employed to enhance this method [64, 65], locating
semantically similar examples to improve LLM performance in few-shot learning
scenarios. In cross-lingual cases, the search engine uses a sample from a low-
resource language as a query to find the most semantically similar sample from
a high-resource language. The retrieved high-resource language sample is then
combined with the input to create a prompt for the LLM.

For example, Nie et al.[66] utilize semantically similar cross-lingual sentences
as prompts to enhance sentiment classification in low-resource languages. While
ICL is helpful for supporting cross-lingual tasks, the challenge of knowledge editing
across different languages remains unexplored.

3.7.1 Zero-Shot and Few-Shot Knowledge Editing
In the context of ICL, two approaches are commonly used for knowledge editing:

• Zero-shot knowledge editing

• Few-shot knowledge editing

1. Zero-Shot Knowledge Editing

In the zero-shot approach, new knowledge is combined with the user-provided
input, also referred to as the “test input,” to create what is known as the “zero-shot
prompt.” This prompt serves as the primary input to guide the model in predicting
the output P (yl1|xl1, ki∗l2). Unlike few-shot learning, the zero-shot method does
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not rely on additional examples for guidance; instead, the model directly applies
the new knowledge to the test input, depending solely on the context provided in
the prompt.

The zero-shot approach is highly efficient, especially in cases where example
data is either unavailable or minimal. By concatenating the new knowledge with
the input, the model is tasked with predicting the most appropriate outcome based
only on the provided context. This approach allows the model to generalize the
application of new knowledge without additional guidance, making it ideal for
quick, direct knowledge editing tasks.

The prediction process can be expressed with the formula:

P (yl1|xl1, ki∗l2),

where yl1 is the target output in the desired language l1, xl1 represents the test
input, and ki∗l2 is the new knowledge added to the prompt.

In practice, zero-shot knowledge editing is particularly useful for applying new
information without needing to fine-tune the model or provide extensive training
examples, leveraging the model’s pre-existing generalization capabilities.

2. Few-Shot Knowledge Editing

In contrast, the few-shot approach incorporates additional context by introducing
a set of bilingual examples S = {(s1

l1, s1
l2), ..., (sq

l1, sq
l2)}, where sj

l1 and sj
l2 are the

same statement in two different languages, l1 and l2. These bilingual examples
are positioned between the new knowledge and the test input, resulting in a more
comprehensive prompt, referred to as the “few-shot prompt.”

The few-shot prompt is created by concatenating the "new knowledge," "bilingual
examples," and "test input." This additional context helps the model to form stronger
associations between the new knowledge and the input, thereby improving the
accuracy of its predictions. The formula for predicting the output in this scenario
is:

P (yl1|xl1, ki∗l2, S),

where S represents the bilingual examples added to provide further context and
guide the model in applying the new knowledge.

Few-shot learning enhances the model’s ability to generalize across languages
and tasks by giving it more examples to work with, allowing it to better understand
how the test input and the new knowledge relate to each other. This makes few-shot
learning particularly effective in multilingual settings, where the model must handle
complex relationships between languages.

38



Methodology

Selecting Examples for Few-Shot Learning

For the few-shot setting, it is crucial to select appropriate examples that are
semantically similar to the test input. In this approach, we use a multilingual
similarity retrieval method to identify the most relevant examples from a training
corpus spanning 12 languages. The examples are chosen based on their cosine
similarity to the input sentences, using the multilingual Sentence-BERT model.

These semantically similar examples are incorporated into the few-shot prompt,
improving the model’s ability to predict the correct output by leveraging examples
that closely match the input. By selecting high-quality examples, the model
can learn more effectively during in-context learning, allowing for more accurate
knowledge editing in cross-lingual scenarios.

The few-shot approach, with its reliance on carefully selected examples, signifi-
cantly boosts the model’s performance, particularly in scenarios where a deeper
understanding of linguistic nuances is required.

3.8 Implementation Details
In this section, we outline the technical details involved in the implementation
of the proposed multilingual knowledge editing methods—MEMIT, In-Context
Learning (ICL), and the extended TailoredKE. This includes descriptions of the
model architectures, training configurations, and the specific modifications made
to adapt these techniques to multilingual settings.

3.8.1 Model Architectures
For our experiments, we used the following pre-trained LLMs:

• GPT-J (6 billion parameters): GPT-J is an autoregressive language model
pre-trained on English text. It was selected for its robust architecture and
scalability, making it suitable for testing large-scale knowledge edits.

• LLaMA-2 (7 billion parameters): LLaMA-2 is a smaller and efficient
variant of large language models trained on diverse languages. This model
was selected for its multilingual capabilities and was used for testing the mul-
tilingual extensions of TailoredKE. It provides a strong baseline for assessing
the performance of knowledge editing in languages other than English.

• Mistral (7 billion parameters): Mistral was used for its ability to handle
dense multilingual tasks, offering robust performance across high- and low-
resource languages.
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3.8.2 MEMIT Implementation
The MEMIT method was implemented according to the original design, targeting
specific MLP layers within the transformer architecture to update factual knowledge.
MEMIT’s primary advantage is its scalability, allowing for thousands of knowledge
edits simultaneously.

In this implementation:

• We used causal mediation analysis to identify the key-value pairs stored in
the middle layers of the transformer model responsible for factual recall.

• The layer updates were performed on the identified MLP layers, with the edits
spread across multiple layers to prevent overfitting.

• MEMIT was applied to both high- and low-resource languages, with additional
data augmentation for low-resource languages to enhance the model’s ability
to recall and apply the updated knowledge.

3.8.3 ICL Implementation
ICL was implemented by providing demonstrations of factual updates in the input
context of the model. These demonstrations included examples of the new facts,
paraphrases, and unrelated knowledge to guide the model in retaining its original
knowledge. For multilingual tasks, the demonstrations were provided in multiple
languages to ensure that the updated knowledge generalized effectively across
different linguistic contexts.

The ICL prompts followed this format:

• Demonstration 1: An explicit statement of the updated fact.

• Demonstration 2: A paraphrase of the fact in the same language.

• Demonstration 3: The fact translated into another language.

• Demonstration 4: Unrelated facts to guide the model in retaining its
previous knowledge.

3.8.4 Multilingual Similarity Retrieval Implementation
In this section, we will detail the implementation steps for finding the most similar
sentence in Spanish, German, and French and others for each English sentence and
concatenating them together using a pre-trained multilingual embedding model
and cosine similarity. The approach uses Sentence-BERT (SBERT) for generating
multilingual sentence embeddings and cosine similarity for measuring sentence
similarity.

40



Methodology

• Model Selection: We will use a pre-trained multilingual Sentence-BERT
model from the Hugging Face library. Models such as paraphrase-xlm-r-
multilingual-v1 or distiluse-base-multilingual-cased-v2 are capable of embed-
ding sentences from different languages into a shared semantic space, allowing
us to compare sentences from different languages directly.

• Data Preprocessing: The dataset consists of 742 English sentences, each
associated with 20 sentences in Spanish, German, and French and other
languages. We need to structure the data such that for each English sentence,
we have its corresponding 20 sentences in the 12 target languages.

• Generate Embeddings: For each English sentence and its 20 associ-
ated sentences in each languages, we generate embeddings using the selected
multilingual model.

• Cosine Similarity Calculation: Using cosine similarity, we compare the
embedding of the English sentence with the embeddings of the 20 sentences
in each target language (Spanish, German, and other languages). Cosine
similarity provides a measure of how similar the two sentence vectors are.

• Selecting the Most Similar Sentence: For each English sentence, we
select the sentence in each target language with the highest cosine similarity
score. This represents the most semantically similar sentence across languages.

• Concatenating the Sentences: After selecting the most similar sentences
from each language, we concatenate them together with the original English
sentence to form the final result.

3.8.5 TailoredKE Implementation
The implementation of TailoredKE follows the methodology outlined in the origi-
nal paper, with modifications made to accommodate the multilingual extension.
Specifically:

Layer Selection: The Dynamic Editing Window (DEW) was extended to
account for different languages. For each factual edit, we analyzed how the subject
and object representations evolved across transformer layers in the context of
multiple languages. Layers that recalled the factual information most accurately
were selected for editing.

Knowledge Injection Process: The knowledge injection process was per-
formed by applying the identified edits to the selected layers. Edits were applied
using low-rank factorization, which efficiently updates the model’s parameters while
minimizing interference with unrelated knowledge. For each layer, the rank of the
low-rank update was set to 4, as suggested by [17].
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3.8.6 Extending TailoredKE to Multilingual Knowledge
Editing

In this thesis, the TailoredKE approach is extended to handle multilingual knowledge
editing. While the original method is designed for English, the extension introduces
the ability to apply edits across multiple languages.

To achieve this, the multilingual extension adapts the Dynamic Editing Window
to operate across different language-specific representations. For example, the
layers responsible for recalling the attributes of "iPod" in English might differ from
those in Chinese. By dynamically selecting the appropriate layers for each language,
the method ensures that knowledge edits are applied consistently across languages,
reducing the likelihood of inconsistency in knowledge recall.

By combining tailored layer selection with multilingual transfer capabilities, this
thesis presents a robust solution to the challenges of editing factual knowledge
in multilingual language models, ensuring both precision and scalability across
languages.

3.8.7 Hardware and Software
The experiments were conducted on an NVIDIA RTX A6000 GPU with 50 GB of
memory. The implementation of MEMIT, TailoredKE, and ICL was performed
using the Hugging Face Transformers library, along with PyTorch for training and
inference. Model checkpoints were saved after each fine-tuning step, and validation
was conducted using the MzsRE dataset to monitor progress.
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Chapter 4

Evaluation/Results

4.1 Evaluation Metrics
In this section, we describe the metrics used to evaluate the success of knowledge
editing methods on multilingual datasets. These metrics are designed to measure
the model’s ability to inject new knowledge, generalize edits, maintain unrelated
knowledge, and transfer knowledge across languages.

4.1.1 Efficacy
Efficacy is the most direct indicator of the success of knowledge editing. It
measures the model’s ability to correctly generate the newly edited knowledge when
queried with the same prompts encountered during the editing process. A high
efficacy score indicates that the edited knowledge has been successfully injected
into the model.

Efficacy = Ei

5
o∗

i = arg max
oi

fθ∗(oi|p(si, ri))
6

(4.1)

Where o∗
i is the new object, and fθ∗ represents the post-edit model, with si as

the subject, ri as the relation, and p(si, ri) being the input prompt.

4.1.2 Generalization
Generalization measures how well the model can apply the updated knowledge to
paraphrased or alternate formulations of the original queries. A high generalization
score indicates that the model can recognize and apply the edited knowledge across
various linguistic contexts.

Generalization = Ei

5
Ep∈neighbour(si,ri)

5
o∗

i = arg max
oi

fθ∗(oi|p)
66

(4.2)
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Here, neighbour(si, ri) refers to paraphrases or alternate expressions of the query.

4.1.3 Specificity
Specificity evaluates how well the model retains unrelated knowledge after the
edit. A high specificity score means that the knowledge editing process did not
affect unrelated facts or concepts within the model.

Specificity = Ei

C
Ep∈irrelevant(si,ri)

C
arg max

o′
i

fθ(o′
i|p) = arg max

oi
fθ∗(oi|p)

DD
(4.3)

Where fθ(o′
i|p) refers to the pre-edit model’s prediction, ensuring that irrelevant

knowledge is preserved.

4.2 Results
4.2.1 Multi Lingual Knowledge Edditing
This section presents the results of our experiments on the MzsRE dataset using the
LLaMA-2 backbone. We compare three different methods: Memit, TailoredKETargeted
(which uses layer selection without rephrasing), and TailoredKERephrase (which in-
cludes sentence rephrasing but without layer selection). The goal is to assess
how these techniques perform across multiple languages, with Exact Match (EM)
metrics evaluated for consistency, efficacy, and generalization.

Experimental Setup

For each method, we conducted experiments on the following languages: English
(EN), French (FR), Spanish (ES), Czech (CZ), German (DE), Dutch (DU), Por-
tuguese (PT), Russian (RU), Thai (TH), Turkish (TR), Vietnamese (VI), and
Chinese (ZH).

The baseline Memit method tests each language separately without rephrasing
or layer selection. TailoredKERephrase introduces sentence rephrasing without layer
selection, while TailoredKETargeted applies selective layer editing without rephrasing.

Table 4.1 reports the EM scores for consistency across all languages.
Table 4.2 presents the efficacy results. Memit shows strong performance across

most languages, with EM scores consistently above 90% in languages like French
and Portuguese. TailoredKERephrase outperforms Memit in certain low-resource
languages such as Russian and Vietnamese, indicating that sentence rephrasing
can enhance the model’s ability to accurately apply edits, even when training data
for the target language is limited.
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Table 4.1: Exact Match (EM) results for Specificity on the LLaMA-2 backbone
obtained from testing in multiple languages.

Models EN FR ES CZ DE DU PT RU TH TR VI ZH

Memit 48.55 40.36 41.28 41.6 43.54 42.38 41.1 43.62 35.51 39.02 48.11 36.84

TailoredKETargeted 48.39 40.47 40.51 41.69 43.4 42.67 41.02 44.2 36.13 38.66 48.37 36.0

TailoredKERephrase 48.21 40.55 40.65 41.89 43.31 42.49 40.8 43.69 35.96 38.97 48.03 36.05

Table 4.2: Exact Match (EM) results for Efficacy on the LLaMA-2 backbone
obtained from testing in multiple languages.

Models EN FR ES CZ DE DU PT RU TH TR VI ZH

Memit 90.46 91.19 89.79 91.02 89.08 90.45 91.67 90.72 92.27 92.86 91.0 79.89

TailoredKETargeted 83.31 83.94 82.3 83.83 81.91 81.63 84.07 80.77 84.32 84.92 86.67 71.01

TailoredKERephrase 91.97 93.12 92.81 93.77 92.58 92.32 92.41 94.99 92.19 97.74 95.26 81.92
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Table 4.3 shows the EM results for generalization. TailoredKERephrase consistently
outperforms the other methods in languages like Czech, German, and Chinese,
highlighting the importance of rephrasing in generalizing knowledge edits. Memit
performs well in high-resource languages such as English and French but strug-
gles slightly with low-resource languages, demonstrating the need for rephrasing
techniques to aid in generalization.

The analysis reveals that while Memit performed well as a baseline method, espe-
cially in high-resource languages such as English and French, both TailoredKETargeted
and TailoredKERephrase outperformed it in several lower-resource languages.

TailoredKERephrase demonstrated superior efficacy and generalization, particu-
larly in languages like Turkish and Czech, where rephrasing plays a critical role in
ensuring the accurate application of knowledge edits. TailoredKETargeted, on the
other hand, showed notable improvements in Vietnamese and Russian, highlighting
the advantages of layer selection for these languages.

In conclusion, the combination of sentence rephrasing and layer selection of-
fers clear advantages in enhancing the performance of knowledge editing across
languages, particularly in those with fewer training resources. These findings
suggest that incorporating both techniques can lead to more effective cross-lingual
knowledge editing, and they will be further explored in subsequent sections of this
thesis.

Table 4.3: Exact Match (EM) results for Generalization on the LLaMA-2 backbone
obtained from testing in multiple languages.

Models EN FR ES CZ DE DU PT RU TH TR VI ZH

Memit 87.21 88.81 87.92 85.89 85.78 86.17 88.31 88.65 84.35 89.87 86.95 77.58

TailoredKETargeted 76.82 78.28 78.72 74.77 74.67 75.07 77.09 75.14 74.58 78.69 78.1 67.2

TailoredKERephrase 90.34 91.19 90.77 90.74 89.07 89.01 90.76 94.1 87.89 95.94 91.55 78.94
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4.2.2 Layer Selection Distribution Across Languages
In this section, we analyze the distribution of layer selections across various lan-
guages for the LLaMA-2 model. The layer selection refers to the specific transformer
layers chosen during the knowledge-editing process, which could highlight how
different languages engage distinct or overlapping regions of the model.

Layer Selection Distribution Analysis

This section presents the distribution of layer selections for each language, showing
the number of times a particular layer (from Layer 4 to Layer 8) was chosen.
This distribution is visualized in Figure 4.1, which depicts the layer-wise selection
frequency for all languages.

Figure 4.1: Layer Selection Distribution Across Languages for LLaMA-2. The
graph shows how different transformer layers are selected for various languages.

Relevance of Language Families

A key question in this analysis is whether languages with similar roots (e.g.,
Romance languages such as Portuguese, Spanish, and French) display similar layer
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selection behavior. By comparing the layer selection distributions, we observe that
languages with common linguistic roots tend to exhibit some overlap in the layer
selection patterns. For instance, in Romance languages like Portuguese, Spanish,
and French, we see higher frequencies of selection for Layer 5 and Layer 8. However,
distinct differences still exist, which may be attributed to language-specific nuances
and varying resource availability for training the model.

Both Chinese (zh) and Thai (th) rely heavily on Layer 5, suggesting that middle
layers of the transformer architecture are crucial for managing language features in
these structurally complex languages.

On the other hand, languages from entirely different linguistic families, such
as Chinese (zh) and Russian (ru), display more divergence in their layer selection,
suggesting that the model engages different parts of its architecture depending on
the language’s structural characteristics.

These results show the relevance of language families in selecting layers for
processing, as languages with similar linguistic features or roots tend to exhibit
comparable layer selection patterns. This insight can be used in cross-lingual
settings to enable faster edits, as knowing which layers are likely to be selected
for certain languages can significantly improve the efficiency of knowledge editing
across multiple languages. The implications of these findings and their application
in cross-lingual knowledge editing will be further discussed in the next section.

4.3 Cross-Lingual Knowledge Editing
In this evaluation, we focus on cross-lingual knowledge editing, where the objective
is to perform edits in one language (English) and test the model’s performance in
other target languages. We experimented with four different approaches to assess
the effectiveness of various configurations for cross-lingual knowledge editing:

1. TailoredKERephrase in source language without prompts: Edit in English
using rephrased sentences with no prompts or in-context learning during testing
in the target language.

2. TailoredKERephrase in source and target languages without prompts:
Edit using a combination of rephrased sentences from both English and the
target language without any prompts in testing time.

3. TailoredKERephrase in source language with zero-shot ICL for the
target language: Edit in English and test in the target language using
zero-shot in-context learning.

4. TailoredKERephrase in source language with few-shot ICL for the
target language: Edit in English and test in the target language using
few-shot in-context learning.
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4.3.1 Approach 1: TailoredKERephrase in Source Language
Without Prompts

Initially, we used the TailoredKERephrase method to edit knowledge in English and
tested in the target language without any prompts or in-context learning. This
approach involved providing 20 rephrased sentences in English as context during
the edit process, while the model predicted in the target language. The results were
satisfactory, especially when compared to the results in the ReMaKe paper’s original
mode. However, the absence of prompts during testing limited the cross-lingual
accuracy.

4.3.2 Approach 2: TailoredKERephrase in Source and Target
Languages Without Prompts

In this approach, we combined rephrased sentences from both English (source)
and the target language to edit knowledge, without any prompt in testing time.
Interestingly, this approach did not lead to further improvements; in some cases,
there was even a decrease in performance. This suggests that mixing sentences
from both the source and target languages during the edit phase in a cross-lingual
setting may introduce inconsistencies or noise, which could hinder the model’s
ability to accurately predict new knowledge. This result highlights that combining
source and target language prompts during editing may not be an effective strategy
for improving LLM performance in cross-lingual tasks.

4.3.3 Approach 3: TailoredKERephrase in Source Language
with Zero-Shot ICL

Next, we applied TailoredKERephrase for editing in English and tested in the target
language using zero-shot ICL. This method demonstrated a significant improvement
in performance across all languages, including both low-resource and high-resource
languages. The inclusion of zero-shot ICL allowed the model to better generalize
and apply the edited knowledge in cross-lingual settings.

4.3.4 Approach 4: TailoredKERephrase in Source Language
with Few-Shot ICL

Finally, we employed TailoredKERephrase in English, but used few-shot ICL during
testing in the target language. This configuration yielded the best results across
all approaches. The combination of accurate edits in the source language and
the added context from few-shot prompts enabled more precise predictions in the
target language. To select sentences for the few-shot ICL prompts, we used a
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retrieval-based similarity model to identify the most semantically similar sentences,
which further contributed to improved model performance.

From our experiments, which results showed in Table 4.5 for generalization,
Table 4.4 for efficacy and Table 4.6 for specificity, it is clear that using few-
shot ICL for cross-lingual knowledge editing provides the most robust results,
outperforming both zero-shot and non-prompted approaches. While the zero-
shot ICL method provided significant improvements, combining source and target
language prompts during editing did not lead to further gains and, in some cases,
resulted in performance drops. The use of TailoredKERephrase in the source language
with carefully selected few-shot prompts proved to be the most effective method
for achieving accurate cross-lingual knowledge edits.

Table 4.4: Exact Match (EM) results for Efficacy on the LLaMA-2 backbone
obtained from editing in English and testing in cross_lingual setting.

Models FR ES DE DU CZ PT RU TR TH VI ZH

Approach 1 56.55 53.83 59.95 57.71 56.99 54.79 44.95 50.94 49.95 62.08 47.96

Approach 2 54.44 51.12 57.68 56.54 55.37 52.84 43.89 49.78 48.69 61.12 46.58

Approach 3 73.52 72.26 77.43 74.56 71.35 70.01 65.48 69.73 68.69 79.12 66.79

Approach 4 86.73 85.37 88.28 83.12 81.23 80.35 75.14 85.33 78.69 83.28 78.01

Table 4.5: Exact Match (EM) results for Generalization on the LLaMA-2 backbone
obtained from editing in English and testing in cross_lingual setting.

Models FR ES DE DU CZ PT RU TR TH VI ZH

Approach 1 56.45 54.33 59.76 58.9 55.66 54.23 44.95 50.6 34.27 52.81 43.04

Approach 2 53.69 52.74 58.88 57.13 53.68 51.78 43.67 48.98 33.26 51.39 42.68

Approach 3 72.94 71.13 74.11 72.83 68.74 67.72 58.63 64.58 53.58 67.03 57.48

Approach 4 86.73 84.98 88.28 86.96 79.07 77.09 68.79 86.81 73.64 81.1 77.71
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Table 4.6: Exact Match (EM) results for Specificity on the LLaMA-2 backbone
obtained from editing in English and testing in cross_lingual setting.

Models FR ES DE DU CZ PT RU TR TH VI ZH

Approach 1 40.5 40.88 43.31 42.24 41.72 40.96 43.72 38.89 34.27 38.13 36.6

Approach 2 40.37 40.46 42.36 41.26 40.03 39.85 42.51 37.77 33.59 37.78 35.89

Approach 3 68.51 67.32 69.3 66.35 64.34 64.93 70.03 65.31 59.02 62.16 60.38

Approach 4 73.65 67.86 69.71 68.34 66.93 67.03 71.62 66.82 59.93 63.09 61.41
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Conclusion

5.1 Overview
In this thesis, we addressed the challenges of multilingual knowledge editing for
large language models (LLMs) by combining several innovative methodologies. The
primary focus was on ensuring that knowledge edits performed in one language
could be effectively transferred and applied in other languages, particularly in
multilingual and cross-lingual settings. The approaches explored, including MEMIT,
In-Context Learning (ICL), TailoredKE, and retrieval-augmented methods, were
designed to achieve efficient knowledge updates while maintaining high accuracy and
generalization across languages. Our experiments were conducted using state-of-the-
art LLMs such as LLaMA-2, and validated on the MzsRE dataset, a multilingual
extension of the zsRE dataset.

5.2 Summary of Methodology and Findings
The key contributions of this thesis can be summarized as follows:

5.2.1 Multilingual Knowledge Editing with MEMIT
MEMIT (Mass-Editing Memory in Transformers) proved to be an effective technique
for editing factual knowledge within specific layers of the transformer models. By
identifying critical MLP layers responsible for factual recall, MEMIT was able
to inject new knowledge efficiently while minimizing interference with unrelated
information. This method is scalable and capable of handling thousands of edits
simultaneously, making it highly suitable for large-scale applications.

The multilingual extension of MEMIT was particularly successful, as it al-
lowed knowledge edits to propagate across different languages. The experiments
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demonstrated that MEMIT could consistently apply knowledge updates in both
high-resource and low-resource languages. By spreading edits across multiple layers,
MEMIT preserved the integrity of unrelated facts, ensuring that the model’s overall
performance remained robust across linguistic boundaries.

5.2.2 In-Context Learning (ICL) for Knowledge Editing
In-Context Learning (ICL) emerged as a powerful, non-intrusive method for knowl-
edge editing, particularly in scenarios where direct parameter updates were not
desirable. By providing task-specific demonstrations within the input context,
ICL guided the model to generate accurate outputs without modifying its in-
ternal parameters. This flexibility made ICL highly effective for temporary or
context-specific knowledge updates.

In multilingual settings, ICL demonstrated its potential to support cross-lingual
knowledge transfer. By providing demonstrations in different languages, the model
was able to generalize knowledge updates across both high-resource and low-resource
languages. The use of zero-shot and few-shot ICL approaches further enhanced the
model’s ability to apply updated knowledge to various linguistic contexts. Few-shot
ICL, in particular, significantly boosted performance by incorporating multilingual
examples as prompts, leading to better generalization of edits across languages.

5.2.3 TailoredKE for Selective Layer Editing
TailoredKE introduced a novel method for precise knowledge editing by focusing
on specific transformer layers. The dynamic layer selection mechanism allowed
for more targeted edits, reducing the likelihood of over-editing and preserving
unrelated facts. TailoredKE’s strength lies in its ability to identify the layers most
responsible for recalling factual information and applying edits selectively to those
layers.

In the multilingual extension of TailoredKE, we observed that dynamic layer
selection was crucial for ensuring that knowledge edits applied in one language
could be appropriately transferred to other languages. This method allowed for
a more consistent representation of knowledge across languages, improving the
accuracy of cross-lingual knowledge recall.

5.2.4 Multilingual Similarity Retrieval Task
The multilingual similarity retrieval task, which involved retrieving semantically
similar sentences across languages using models like Sentence-BERT, LASER,
and XLM-R, was essential for improving the performance of few-shot ICL. By
calculating cosine similarity between sentence embeddings, the system identified
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the most relevant examples for each language, enhancing the model’s ability to
generalize knowledge edits across different linguistic contexts.

The use of cosine similarity in combination with pre-trained multilingual embed-
dings proved to be highly effective in matching sentences across languages. This
method allowed the model to bypass the need for machine translation, making
it more efficient in retrieving semantically similar information in a multilingual
setting.

5.3 Evaluation Results

5.3.1 Cross-Lingual Knowledge Editing

The evaluation results highlighted the effectiveness of each approach in cross-lingual
knowledge editing. While MEMIT showed competitive performance in high-resource
languages, the introduction of ICL and TailoredKE significantly improved the
model’s ability to generalize knowledge edits across multiple languages.

The few-shot ICL approach provided the most robust results, particularly in
low-resource languages where the availability of training data was limited. By
selecting high-quality multilingual examples based on cosine similarity, few-shot
ICL demonstrated superior efficacy, specificity, and generalization. This method
outperformed zero-shot approaches and non-prompted editing methods, making it
the most reliable technique for cross-lingual knowledge editing.

The evaluation also revealed that mixing source and target language prompts
during the zero-shot ICL phase did not lead to performance improvements. In
some cases, it even caused a slight decrease in accuracy, suggesting that combining
language prompts can introduce noise, rather than enhancing the model’s ability
to apply knowledge edits across languages.

5.3.2 Generalization and Specificity

Both MEMIT and TailoredKE demonstrated strong generalization capabilities,
allowing the model to apply knowledge edits across different paraphrased queries
and linguistic contexts.

The generalization metric showed that sentence rephrasing, combined with
selective layer editing, allowed the model to retain and apply knowledge edits more
effectively than traditional fine-tuning methods. This capability is crucial for LLMs
operating in multilingual environments, where consistency and accuracy across
languages are essential.
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5.4 Challenges and Future Work
Despite the promising results, several challenges remain in the field of multilingual
knowledge editing. One of the key challenges is ensuring the scalability of these
methods for larger models and more diverse languages. Low-resource languages, in
particular, still pose difficulties due to the lack of sufficient training data. While
data augmentation techniques helped mitigate some of these issues, further research
is needed to improve the robustness of multilingual knowledge editing methods in
low-resource languages.

Future work should also explore more sophisticated retrieval-augmented tech-
niques, such as ReMaKE, to enhance the transferability of knowledge edits across
languages. Additionally, improving the interpretability of layer selection and un-
derstanding how different languages interact with specific transformer layers will
be critical for further advancements in this field.

In conclusion, this thesis has demonstrated that combining ICL, TailoredKE and
zero-shot and few-shot prompts which offers a robust framework for multilingual
knowledge editing in LLMs. The ability to perform scalable, precise knowledge
edits while maintaining consistency and generalization across languages represents
a significant advancement in the field. By addressing the challenges of cross-lingual
knowledge transfer, this research provides valuable insights for future work on
multilingual LLMs and their applications in diverse linguistic environments.
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