POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

&~
b

4
'n? ﬂ _A?%“:’

‘ T T AT 22 #
{‘Illﬁ T

1 1859 J"
=\ ol
- -" '#

Master’s Degree Thesis

Spiker-V: bringing Neuromorphic
Intelligence at the edge through the
optimized integration of a SNN Hardware
Accelerator with a Low-Power RISC-V

Processor
Supervisors Candidate

Prof. Alessandro SAVINO
Dott. Alessio CARPEGNA

October 2024

Summary

Spiking Neural Networks (SNNs) represent the latest advancement in Artificial
Neural Network development, designed to realistically mimic brain behavior. The
innovative aspect of this technology lies in its use of spike signals, unlike traditional
neural networks that rely on continuous signals, to encode data and the artificial
implementation of a model that emulates membrane potential, which helps extract
information from the incoming data. A spike signal can be digitally represented
by a single bit indicating, for instance, that an event occurred. Various models
implement the membrane potential using ditferent approaches.

This thesis explores the integration of a Spiking Neural Network hardware ac-
celerator into a RISC-V processor to enable energy-efficient computation. The goal
is to develop a system optimized for low-power consumption while maintaining
real-time data processing capabilities. Neuromorphic computing, inspired by the
brain’s event-driven nature, offers an alternative to traditional deep learning, which
is computationally expensive and energy-intensive. By mimicking biological neu-
rons that communicate through spikes, SNNs promise improved energy efficiency,
especially for edge computing devices. Furthermore, the open-source nature of
the processor allows hardware customization to meet specific requirements for size,
performance, and power consumption.

This thesis presents a new framework to demonstrate the efficiency of this so-
lution, using an FPGA that hosts both the RISC-V processor and dedicated
hardware to implement the Spiking Neural Network accelerator. This setup enables
an easily programmable and controllable platform, which allows direct debugging of
the processor core, enabling rapid prototyping and testing. Additionally, the open-
source nature of the RISC-V processor allows extensive hardware customization,
making it adaptable to specific requirements such as size, processing performance,
and power consumption. This level of flexibility is crucial in developing specialized,
low-power computing systems.

II

The framework uses an AMD FPGA, specifically the Zynq UltraScale+ MP-
SoC ZCU102 Evaluation Kit, which supports all major peripherals and interfaces,
enabling development for a wide range of applications. This type of device contains
both a dedicated system for data processing and communication handling, as well
as a programmable component. The programmable logic of the device can be
directly programmed through a software suite exploiting a hardware description of
the IP. As such, the PULP platform was chosen as the microcontroller to be im-
plemented within the FPGA. More specifically, PULPissimo, a 32-bit open-source
microcontroller that can support various types of RISC-V cores, is implemented
in the FPGA. Finally, inside the microcontroller SoC a peripheral acting as an
adaptor between the core and the hardware accelerator is allocated. This module
consist of two interfaces, the first one is exploited for reading the incoming spikes
from the memory and provides the data to the accelerator, while the second one is
used to write the accelerator results to the memory. In addition these interfaces are
in charge of the management of the controls signals used to master the accelerator.

Along this thesis work a full framework is deseribed in its fundamental elements
showing strengths and weakness of this solution. The goal is to prove that this kind
of solution can guarantee at the same time a good performance and a cost-effective
implementation mainly focused on power saving. The final outcome is a low-power
system, flexible and reconfigurable, able to enhance the RISC-V domain by the
power of neuromorphic computing,

III

Acknowledgements

IV

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction
1.1 Motivations e e e e e e e e
1.2 State-of-the-art
1.3 Contribution e e e e e e e

2 Background

21 FPGA
211 History.
2.1.2 Working principle oo o000 oL
2.2 Reduced Instruction Set Computer
2.2.1 More complex more power?
2.2.2 RISC: changing of approach
223 Howitworks?,
224 RISCVo
2.3 Parallel Ultra Low Power Platform
2.3.1 Software development kit
24 Spiking Neural Network
241 Biological network model
242 Neuronmodel,
3 Related work
4 Preliminary work
4.1 FPGA programming
4.1.1 ZCU-102 e

VIII

IX

XIT

4.1.2 PULPissimo repository
4.1.3 Environment setup
4.2 Hardware designingo
421 Wide ALUexample
4.3 Software developingo oo
44 RISC-V programming
5 Methods
6 Results
6.1 Software simulationo 000
6.2 FPGA implementation
A Bender
B Regtool
Bibliography

43

47
47
52

54

56

59

List of Tables

2.1 RISC-V base instruction formats

VIII

List of Figures

1.1

2.1

2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
213
2.14
2.15
2.16
217
2.18

4.1
4.2
4.3
4.4
4.5
4.6

5.1

Supervised learning in spiking neural networks: A review of algo-
rithms and evaluations [6] 2

A semi-log plot of transistor counts for microprocessors against dates

of introduction, nearly doubling every two years [13] 6
Programmable logic device schematic 8
Maecrocell schematic. L0 oL 9
Logic element schematic 9
Switch matrix: on the right there is the detailed view of a switch . . 10
Basic five-stage pipeline in a RISC machine [19] 12
Instruction formato L Lo 14
PULP platform overview 17
PULPissimo architecture [27] 19
PULP software tools [28] 20
PULP SDK organization [28] 20
Schematic of biological neural network([33] 23
Leaky integrate and fire equivalent circuit 24
Integrate and fire equivalent cirenit 0L L. 24
Ideal behavior of the integrate and fire circuit with constant current 25
Ideal behavior of the integrate and fire circuit with spike current . . 26
Output current with constant current source 26
Output current with constant spike source 27
ZCUL02 [42] . . . o e 31
ZCU102 block diagramo 0oL 32
PULPissimo project organization 33
PULP System on Chip [43]. 35
Repository organization 0L 37
JTAG Chain block diagram [45] 41
System on Chip schematic 43

5.2
5.3
5.4

6.1
6.2
6.3
6.4

Spiker adapter detailed schematic 44

Spiker schematic 45
Spiker WAvVEs L L e e e e e e e e e 45
Network simulation wave graph 49
Intel Questasim simulation 52
Power reporto 53
Report FPGA utilization 53

Acronyms

CPU

Central processing unit

RISC

reduced instruction set architecture

Al
Artificial intelligence

ANN

artificial neural network

SNN

spiking neural network

IoT
Internet of things

FPGA
Field programmable gate arrays

PS

Processing system

PL

Programmable logic

RTL
Register transfer level

XIT

PLD

Programmable logic device

IC

Integrated circuit

ASIC
Application specific integrated circuit

CAD

Computer-aided design

SPICE
Simulation Program with Integrated Circuit Emphasis

CPLD

Complex programmable logic device

FF
Flip-flop

LuT
Look-Up Table

SRAM

Static random access

CLB
Configurable Logic Block

LE

Logic element

VLSI

Very-large-scale integration
HLL
High-level languages

KIII

ISA

Instruction set architecture

PULP
Parallel Ultra Low Power

uDMA

micro Direct Memory Access

SDK

Software Development kit

HWPE

Hardware Processing Engine

MPSoC
Multi-processor System on Chip

HDL
Hardware description language

TCL
Tool Command Language

IP
Intellectual property

TCDM
Tightly Coupled Data Memory

AXI

Advanced Extensible Interface

GVSoC
Generic Virtual System on Chip

GUI
Graphic USer INterface

HIV

ELF
Executable and Linkable Format

EDA

Electronic Design Automation

XV

Chapter 1

Introduction

According to [1] it is possible to define an Artificial Neural Network (ANN) as a
try to emulate the architecture and the information handling system typical of the
biological nervous system. Further advances in the field of neuromorphic intelligence
have been brought about by the spiking neural network (SNN). The introduction
of time information represents a meaningful step forward regarding the paral-
lelism with the actual biological model. Then, a hardware accelerator is tasked to
handle the actual implementation of the theoretical model through a custom design.

This chapter presents a brief overview of artificial neural networks to understand
better the reasons that have led to the choice of a hardware accelerator. Firstly,
the neural network working mechanism is explained. Then, the approach of spiking
signals is focused, highlighting the motivations behind this choice. Finally, the use
of a hardware accelerator and RISC-V processor is motivated.

1.1 Motivations

The common architecture of an Artificial neural network is characterized by a set
of nodes and interconnections between them. The purpose of this approach is to
efficiently solve complex problems, such as prediction or modeling, by a divide and
conguer technique. The nodes are in charge of receiving inputs and producing
outputs according to a certain function. These computational units act like the neu-
rons inside the brain that receive signals, also known as action potentials, through
synapses situated on the dendrites. If the signal surpasses a defined threshold, the
neuron is activated and a new signal is propagated towards other nerve cells. On
the other hand, the connections between nodes determine how the information
flows in the network. This linking behaves like the axons that connect the neurons.
As a result, the model of artificial neurons and interconnections highly abstracts

1

Introduction

the real neuron complexity.

Over the years, ANNs reached a higher level of similarity to the real nervous
system and also the computational power is increased [2]. The third-generation
ANN, known as the Spiking neural network, represents significant progress due
to the introduction of time-space information analysis, but can further improve
the technologies already implemented into the previous generation, as it has been
demonstrated in [3]. This improvement is clearly shown in Figure 1.1 where the
improvement among the different generations from multilayer perceptron [4] is
represented. Indeed, at each time step, if the input reaches a certain threshold the
neuron generates a spike signal [5]. Then, both input and output can be seen as
spike trains. This information can also be read as binary data:

(1) = In the current time step a spike signal is generated

« (0) = In the current time step no spike signal is generated

Third-gencration ANNs

Inloemation IEmsmissn Spike train Real vahwe Barary value

|
. Nemnbbcbeyr s | Mgt Al & Towipisepiom i
3 |
S - |
7 / % 'S :
4\: 1
T /{* :
___Biclgicalvewen | Spiking neuron __:_ ___ Anificidloewren MPoewen

|
L !

R eath ’ ! C 1] [j o, 1
|
1
1

Biological nervous system

Figure 1.1: Supervised learning in spiking neural networks: A review of algorithms
and evaluations [6]

In order to efficiently develop an architecture that is accurately shaped by the
biological model, a custom hardware implementation can be the better solution,
instead of a software-based answer. This kind of implementation is called hardware
accelerator because the primary purpose is to enhance performance achieving also
an acceptable power consumption. Then, to handle the entire platform that hosts
the implementation of an SNN a RISC- V core is customized. The dominant
reason behind this solution is the possibility of entirely modifying the open-source
hardware to optimize the final result.

Introduction

1.2 State-of-the-art

As stated by [7], [8] and [9], dedicated hardware for general-purpose spiking neural
networks is hardly procurable due to the heterogeneous requirements in terms of
network architectures, encoding methods, and neuron models.

Another approach, followed in the past, consists of implementing a software-based
network. This kind of implementation is not suitable in the case of a few power
computational units, as explained in [10], despite features like high parallelism and
event-driven computation due to the sparse nature of the SNNs. SpiNNaker is a
noteworthy example of large network models that aspire to achieve a massively
parallel million-core computation and according to [11] is suited to the modeling of
large-scale spiking neural networks in biological real time. This scope is achieved
through 18 ARM968 processor nodes, which guarantee also good energy manage-
ment sacrificing some performance.

Although significant computational power can be achieved by exploiting a massive
amount of resources, design tools and simulators are not well-suited for implement-
ing real-time systems. Additionally, it is erucial to consider that Internet of Things
(IoT) and wearable devices require compact size and efficient power management.
As a result, custom hardware designed for a specific task can become the most
viable solution.

Field Programmable Gate Arrays (FPGAs) are programmable logic devices com-
posed of configurable logic blocks and a connecting grid. By modifying these
connections, FPGAs can perform a wide range of digital functions. FPGAs offer
not only cost reduction but also greater flexibility. Additionally, they are valuable in
embedded system applications because they can concurrently handle both hardware
and software development.

In order to integrate the hardware accelerator inside the FPGA there are two
LENED

« Exploiting the Processing System (PS) to handle the communication interfaces
towards the external world, while the Programmable Logic (PL) is exclusively
committed to the accelerator engine.

+ The design is entirely implemented inside the PL, in this situation, an addi-
tional core is needed to manage the data and control the accelerator.

The last alternative has the benefit of allowing the customization of the design
at the Register transfer level (RTL). Thus, this solution enable the realization of

3

Introduction

optimized interfaces between the core, the memory and the accelerator. In addition,
it is possible to include unique instructions to configure and manage the hardware
proficiently. Specifically, a custom RISC-V processor can be synthesized through
the programmable logic to meet the SNN requirements and save area.

1.3 Contribution

Precisely in this perspective, the purpose of this thesis is to present the potential
of a fully implemented framework for an SNN. The features of the project insist
on achieving better results in terms of specialized power computation with the
minimum effort in terms of area occupied and power consumption. In order to
fulfil this purpose the following means are employed:

FPGA: All the inner components are implemented inside the PL of the FPGA
to exploit to the maximum the potentiality in terms of customization.

RISC-V-based microcontroller: In order to handle the communications
to the outside world some peripherals surround the core. In particular, these
modules are used to receive data and, after the processing, can send the
computation result.

RISC-V core: It is in charge of programming other modules according the
instructions, feeding with data, and receiving results.

Hardware accelerator: This unit is responsible for receiving data, perform-
ing computations, and giving results.

SNN engine: Inside this module, the data are used in the neural network to
produce outcomes.

In chapter 2 an overview of these subjects is detailed, while in chapter 4 the setup
of the environment is delineated. Thus, the hardware accelerator is focused on in
chapter 5 and its results are presented in 6.

Chapter 2

Background

This chapter provides a brief overview of the main topics that are required to fully
understand not only the potentiality of the framework but also the limitations.
Indeed, firstly it depicts the creation and growth of FPGA technology highlighting
the motivation behind a progressive rise. Then, the eternal fight between RISC
and CISC architectures will be discussed from the RISC point of view. After that,
an emerging solution for the realization low power devices known as the PULP
platform will be explained. Lastly, the Spiking neural network will be discussed.

2.1 FPGA

FPGAs are commercial programmable devices that allow the realization of custom
hardware implementation thanks to a flexible platform and ensure a low development
cost. These devices are a subset of a family of logic devices known as Programmable
logic devices (PLDs) that embrace other solutions such as Programmable array
logic (PAL) and Programmable logic array (PLA).

2.1.1 History

The first device that it is possible to recognize as a forerunner of the modern
FPGAs was produced by Xilinx in 1984 and is known as XC2064 [12]. At that time,
before the adoption of the fabless model, only an integrated device manufacturer
could create its chips. As a consequence, in addition to the design requirements
also huge investments in facilities and skilled staff were indispensable to entry into
IC business or to comply with Moore's Law. This empirical relationship between
the number of transistors and the time stated that the number of in an integrated
circuit (IC) doubles about every two vears. A representation of these phenomena
is shown in figure 2.1. The changeover began in the mid-1980s when the engineer

5

Background

Moore's Law: The number of transistors on microchips doubles every bwo vears [&

Transistor count

Figure 2.1: A semi-log plot of transistor counts for microprocessors against dates
of introduction, nearly doubling every two years [13]

Ross Freeman formerly working at Zilog, the microelectronic company founded
by Federico Faggin and Ralph Ungermann was sure that each function realized
through an Application-Specific Integrated Circuit (ASIC) could be replaced by
the same piece of silicon. Freeman was able to persuade both Jim Barnett and
Bernie Vonderschmitt to leave Zilog and found a new start-up, named Xilinx.

In pursuit of Vonderschmitt’s vision, Xilinx focused exclusively on its best re-
sult: the design of the best ICs on the market. On the other hand, Xilinx had
to partner with other actors to gain access to skills and assets within the chip
manufacturing area. Thanks to Vonderschmitt’s ability to persuade his friend
Saburo Kusama, fellow fab-management executives at Japan's Seiko Corp., Xilinx
succeeded in delegating their IC fabrication to Seiko.

Another former Zilog employee, Bill Carter, was in charge of actually designing the
first functional FPGA. Carter has to figure out a way to deal with challenging situ-
ations as the realization of a never-designed-before IC with an IC fab on the other
side of the Pacific, overcoming barriers of language and culture. Vonderschmitt
knew that the unique fabless approach united with a first-of-its-kind chip could
scare off customers, then regularly advised Carter to keep risk to a minimum and
not try anything “too clever or exotic”[14].

6

Background

In this perspective, XC2064 would be a 1,000-ASIC-gate equivalent with a working
frequency of 18 MHz. As a consequence, Carter required that Seiko completely
characterize its process to provide minimum feature widths to include all the FPGA
features as closely as possible.

To deal with Vonderschmitt's concerns about risks, Carter realized the imple-
mentation through one modular configurable logic block (CLB) and one modular
I/0 block, with slight variations in some specific positions. This decision allowed
the designers to manually verify the logic design instead of relying on premature
and unreliable versions of computer-aided design (CAD). Most of the time was
spent verifving the few unconventional blocks through Simulation Program with
Integrated Circuit Emphasis (SPICE). An example of this attitude was Carter’s
decision to employ fewer p-channels and more n-channels in his CMOS design in
order to improve performance and save space.

After the manufacturing by Seiko, 25 FPGA wafers were delivered to Carter
to be carefully tested by means of probes and a homemade debugger. Unfortu-
nately, only one wafer did not show dead short, although it sutfered a significant
current draw. On the other hand, this single wafer was useful to understand that
an insufficient etching was the main failure cause. Moreover, the usable chips were
utilized to successtully run a simple bit stream implementing an inverter.

Finally, after working hard to solve the etching and other problems, Xilinx and
Seiko made XC2064 the first commercially available FPGA in the world. This
remarkable step was just the beginning of the fruitful relationship between the two
companies that changed the history of IC manufacturing and more.

2.1.2 Working principle

Nowadays, programmable logic technology represents an advantageous trade-off
between high per-unit costs and, on the other side, outstanding performances and
power consumption. As a result, custom digital hardware represents the best choice
for low-volume design and prototyping, because the same design can be used for
different applications. At the same time, the unit cost is kept low thanks to a large
volume of production.

To understand the key advantages of choosing an FPGA as PLD and how it works,
it is possible to briefly evaluate Complex programmable logic devices (CPLD).
This top-down approach stems from exploiting programmable array logic, in other
words, this basic block has a programmable AND plane and a fixed OR plane. A

7

Background

schematic example of PAL is shown in figure 2.2, where there are 3 inputs and
2 outputs resulting from how the interconnections are programmed. [n addition,
feedback connection can increase the complexity of the implemented logic functions
at the cost of consuming more resources and introducing higher delays. The main

-]

2

< ¥

U
:

P

—

Wi
\r

Figure 2.2: Programmable logic device schematic

disadvantage of this choice is the lack of solutions to implement sequential functions.
A feasible workaround can be a macrocell shown in figure 2.3, a configurable logic
circnit made of PLA where each output is coupled with a flip-flop and a multiplexer
allows to select among different functions:

« Combinational bypass (direct and inverted)
« Latched output (direct and inverted)

Therefore, a collection of macrocells makes a macroblock to implement more ad-
vanced features. With the same approach, a complex programmable logic device is
set up by some macrocell and increases the number of inputs and outputs. Asa
consequence, the complexity of routing signals and programming interconnections
increases and the number of flip-flops can become unatfordable.

In order to satisfy the large storage demand for temporary data, FPGA is a

8

Background

Figure 2.3: Macrocell schematic

better choice because they are programmable logic devices based on Look-Up
Tables (LUT). A LUT is a small memory used to implement combinational logic
functions with a limited number of inputs and outputs. Nowadays, the most
suitable technology to implement these devices is SRAM, static random access
memory. LUTs and optional FFs are grouped in Configurable Logic Block (CLB)
or Logic Element (LE). Then, A collection of many CLBs or LEs, organized as a
matrix array of rows and columns, with configurable I/0 blocks to connect to the
external world create an FPGA. Moreover, programmable interconnections allow
the route signals from one CLB to another. The LE architecture depicted in figure

V

in o——1 SRAM

u
iy e—] LUT - n
Vsl — L i
n
C

[FA S— [=]

(=0 s

Figure 2.4: Logic element schematic

2.4 is similar to a macrocell, but the 4-input l-output LUT, written only during
configuration, substitutes the logic gates.

The other innovative logic element of the FPGA design is the switch matrix
drawn in figure 2.5 The purpose of these pass transistors is to prevent conflicts.
Specifically, if a transistor is not connected, adjacent segments may belong to

9

Background

= [~ V%EI

Figure 2.5: Switch matrix: on the right there is the detailed view of a switch

different interconnections. This approach enhances flexibility and simplifies rout-
ing. However, the switch matrix also increases both delay and the area occupied.
Therefore, it is crucial to assess the optimal trade-oft between cost, performance,
and fexibility.

2.2 Reduced Instruction Set Computer

Increasing the processor bandwidth is no longer sufficient to improve the number
of instructions processed in a given time due to the physical limitations of current
technology, united with the increasing challenges of heat dissipation. Then, alter-
native technologies and architectures can be explored to use the actual knowledge
more efficiently. RISC architecture represents a significant example of this approach
because cutting-edge modules can be used to greatly increase performance.

2.2.1 More complex more power?

In the 1980s and 1990s chip area and processor design complexity were the primary
constraints, these factors have still a considerable impact on the hardware cost-
effectiveness of computer architects. As stated by David A. Patterson and David
R. Ditzel in [15], the trend that relates the additional complexity with a profitable
increase in performance is not always cost-effective. They proposed to take the
opposite path: a Reduced instruction set computer, in other words, reduce the
complexity of the architecture to enhance the performance.

10

Background

The first proof in support of Patterson and Ditzel's approach was given by W.G.
Alexander and D.B. Wortman in [16]. In this paper, the authors demonstrated
that for a specific compiler, IBM 370, 10 instructions accounted for 20% of all
instructions executed and 99% can be reached with only 30 instructions. Then, is
clear that the entire architecture is not fully exploited in most of the cases. In the
same direction, Andrew S. Tanenbaum in 1978 [17]| empirically demonstrated that
for a particular architecture, a smaller instruction can often do the same work as
longer and more complex instructions.

Nevertheless, the complexity of computers continues to increase. In their paper,
Patterson and Ditzel attempted to explain the motivation behind this phenomenon.
Memory was a major concern at the time, as designers had to address both the
imbalance between CPU and memory speeds, as well as prohibitively high costs.
As a result, increasing code density to save space and using single instructions to
perform complex operations emerged as the most cost-effective solution. However,
from another perspective, increasing complexity to achieve higher code density can
be a double-edged sword. The savings from increased complexity are negated if
the resulting CPU becomes prohibitively expensive.

In addition, it is important to emphasize that the primary goal of a computer
company is not necessarily to design the most cost-effective computer, but rather
to maximize profits. From this perspective, adding new and more powerful in-
structions has a positive impact on potential customers, who may not be able
to objectively assess cost-effectiveness. Furthermore, the easiest way to maintain
upward compatibility is to add features rather than making fundamental changes
to the architecture.

2.2.2 RISC: changing of approach

With the rise of Very-large-scale integration (VLSI) focusing the research effort on
cutting-edge architecture implementation became even more critical. First of all, a
low-complexity implementation needs a smaller area to be implemented, then also
in the 80s, a single chip would have been able to contain the entire CPU design.
For the same reason keeping up with Moore's law became more feasible because
that design time is considerably reduced. The possibility of exploiting in a more
efficient way the same area enables the implementation of techniques like pipelining
to exploit instruction-level parallelism and caches to take advantage of spatial and
temporal locality.

In particular, pipeline implementation was an innovative way to think about

11

Background

the CPU working. About this subject, Shlomo Weiss and James E. Smith in [18]
studied a variety of hardware pipeline scheduling in order to find the possible
trade-offs to achieve high scalar performance. In a pipelined computer, instruction
processing is broken into segments, and processing proceeds in an assembly line
fashion with the execution of several instructions being overlapped. A schematic
example is shown in figure 2.6 where a five-stage pipeline is represented:

« Instruction fetch (IF): Instructions are read from the memory using the
program counter (PC), a special register, to retrieve the address.

« Instruction decode (ID): Instruction bits are decoded in simple combinational
logic to produce control signals.

« Execution (EX): The Execute stage is where the actual computation occurs.
« Memory (MEM): During this stage is possible to access the memory.

» Write back (WB): The result is written into the register file.

IF | ID [EX [MEM
/| IF | ID|EX WB |
I IF | ID MEM WB
IF EX |MEM| WB

ID | EX [MEM| WB |

Figure 2.6: Basic five-stage pipeline in a RISC machine [19]

This approach theoretically can achieve high throughput, but hazards and memory
bottlenecks can reduce the etfectiveness unless proper countermeasures are taken.
As effectively demonstrated after around 10 years by [20] and [21] the advantages
of the RISC approach would have led to significant advancements in computer
architectures. Thus, even the most skeptical designers were convinced that the
implementation benefits of RISC concepts could overcome the advantages of complex
instructions.

2.2.3 How it works?

Then, it is important to highlight how the RISC concepts were implemented and
the following improvements. In order to briefly give an overview of an actual
implementation it is possible to bring up the Berkeley RISC I as a case in point
[22]. First of all, some ideas were taken as cornerstones:

12

Background

+ One clock cycle instructions. Then, micro instructions become useless saving
area committed to decoder and increasing performance.

s All instructions are the same size.

« Only load and store instructions access the memory. Getting rid of complex
addressing modes makes the design more simple.

« Ensure high-level language (HLL) support with a special consideration for C
and Pascal.

Regarding the last point, the frequency and impact of HLL statements were evalu-
ated to determine which required hardware support to ensure optimal performance.
The analysis identified the CALL procedure as the most time-consuming operation,
primarily due to the reliance on subroutines to replace complex instructions. To
address this, a register window structure was implemented to accelerate the CALL
function and minimize memory accesses. Instead of relying on a single set of
registers for all operations, the CPU utilizes multiple sets of registers, known as
register windows, with each function or procedure call assigned its own window.

In other words, the first ten registers (from 0 to r9) are known as global registers
and they are not saved or restored. Then, the other registers (from r10 to r31)
are broken in three part:

« 26 - 31 (HIGH): are reserved to parameters from the calling procedure.
« 16 - 25 (LOCAL): are reserved to the local scalar storage.
« 10 - 15 (LOW): are reserved to parameters to the called procedure.

To preserve information during a CALL procedure, the lower registers of the calling
frame are hardware-overlapped with those of the called frame. Additionally, a
specific routine must be executed when no free registers are available.

To implement these architectural improvements, the initial instruction set had to
be limited in size, comprising only 32 instructions, which can be categorized into
the following types:

« Arithmetic and logic operations performed on the registers.

+ Memory access instructions like load, store to move data between registers
and memory.

« Branch instructions like call, return, conditional and unconditional jumps.

s Miscellaneous.

13

Background

Regarding data and addresses size, the first version of RISC architecture allows
32-bit addresses and 8-, 16- and 32-bit data, then all the registers are 32-bit wide.
In particular figure 2.7 shows the format for register-to-register instructions:

« OPCODE: Operation code field keep the information about instruction to be
performed.

« SCC: Determines if the condition codes are set.
« DEST: Select one of the 32 registers as destination of the result of the operation.
« SOURCE 1: Hold the source register used in the operation.

« IMM: If it is higher then one, it represents the immediate value used instead
of register, otherwise, indicates that SOURCE2 has a special function.

« SOURCE 2:

— If IMM = 0: The five least significant bits indicate the second source
register.

— if IMM = 1: Express a sign extended 13-bit constant.

qa 6 T L i7 18 21

g I
CRECODE] DEET SOURCE 1 M SOURCE 2
] M

Figure 2.7: Instruction format

2,24 RISC-V

RISC development began to experience healthy growth and innovation in the
1980s, becoming a key area of focus due to its groundbreaking concepts. Then,
universities like Stanford and Berkeley decided to pursue research in this field, but
also major companies like IBM believed in RISC’s potential. However, when new
improvements stagnated, it could underperform compared to competitors, causing
its impact to diminish and receive less attention in the broader context.

Arm and Sun (now part of Oracle) have been the main players in the RISC
scenery since the 1980s. In particular, Arm, which stands for Advanced RISC
Machines, focused its research on developing low-costs and low-power processors to
establish itself as the main solution for portable devices and embedded systems.
On the other hand, SPARC architecture was developed to power computer work-
stations and servers as happened for Sun-4. However, despite their contributions,

14

Background

each of these architectures faced challenges in maintaining their competitive edge,
particularly as technology evolved and new competitors emerged.

After several years, in 2008, began a new five-year project based on RISC ar-
chitecture to advance parallel computing, the Par Lab. This project was based at
Berkeley under the supervisor of Professor Krste Asanovié and Professor David
Patterson as chair of the Computer Science Division and carried on by graduate
students Yunsup Lee and Andrew Waterman. The interest in this project brought
generous funding from Intel, Microsoft, and also the Defense Advanced Research
Projects Agency (DARPA). Although, all the projects in the Par Lab were open
source using the Berkeley Software Distribution (BSD) license [23]. The purpose of
the project has been carried on by the RISC-V Foundation which has worked to
build an open, collaborative community of software and hardware innovators based
on the RISC-V ISA since 2015.

The foundations of this project are summarized inside the instruction set ar-
chitecture (ISA)[24], the abstract model where all the information required to use
a CPU is defined. First of all, the purpose and the principles of their work are
declared, and then a technical review is presented. It is important to highlight the
decision to keep the standard open, allowing both scientists to work free of charge
and both companies to develop their versions without fees.

Moving on the technical side, the member of the project settled to design a small
general-purpose [SA that could support up-to-date features such as the revised
2008 IEEE 754 floating-point standard and both 32-bit and 64-bit address space
variants. Moreover, their architecture should support both 32-hit, known as RV32,
and 64-bit, known as RV64, address space variants and efficient dense instruction
encoding to address performance, power consumption, and code density issues.
In addition to these features, also user-level ISA extensions had to be guaranteed[25].

The register set consists of 31 general-purpose registers holding fixed-point 32- or
64-bit values (from x1 to x31), while the register x0 is fixed to 0. Floating-point
values can be expressed with single or double precision and are stored inside 32
registers f0-f31 64-bit wide. In addition, the pe register holds the address of the
current instruction, while fsr holds the address of the current instruction.

As mentioned earlier, RISC-V is designed to work with 32-bit instructions, but
it also supports both compressed instructions and extensions, provided that are
aligned on 16-bit. The basic instructions can be grouped in six sets:

« R-type: has 2 source registers and an optional 10-bit function field. Integer
computational instructions are part of this group.

15

Background

« R4-type: the only has 3 source registers, then only five bits are available for
the function field. This format is only used by some floating-point instructions.

« [-type: instead of a second source register, an 11-bit immediate value is
provided, then only three bits are reserved for function field.

« B-type: it is similar to I-type group, but ditfers about the immediate encoding.
Conditional branches follow this encoding,

« L-type: only the destination register is specified, while the others bits are
dedicated to the upper immediate to be loaded. In fact, lui is the only
instruction with this format.

« J-type: the main field holds the target address stored as the offset from
program counter. In fact, this format encoded the unconditional jumps.

In the table 2.1 is shown how the 32-bit are filled according to the organization of
the micro-architecture.

RISC-V is a byte-addressable load-store architecture so only Load and Store
instructions can access memory, while other instructions have to use CPU registers.
In particular, Load and store instructions transfer a value between the registers
and memory. Loads are encoded in the I-type format, and stores are B-type.
The effective byte address is obtained by adding register rsf to the sign-extended
immediate. Loads write to register rd a value in memory. Stores write to memory
the value in register rs2.

31 27 26 22 21 17 16 12 11 10 9 7 6 0
rd rsl rs2 funct10 opcode | R-type
rd ral ra2 rs3 | functh opcode | R4-type
rd rsl | imm [11:7] imm [6:0] funct3 | opeode | L-type
imm [11:7] | rsl rs2 imm [6:0] funct3 | opcode | B-type
rd LUI immediate [19:0] opeode | L-type
jump offset [24:0] opeode | Jtype

Table 2.1: RISC-V base instruction formats

2.3 Parallel Ultra Low Power Platform

In the wake of RISC-V growing, the Integrated Systems Laboratory (IIS) of ETH
Ziirich and the Energy-efficient Embedded Systems (EEES) group of the University
of Bologna started together to explore and develop new and efficient computing

16

Background

architectures based on the RISC-V open ISA. The Parallel Ultra Low Power (PULP)
Platform was born in 2013 with the aim of realize low-power devices, but it has now
realizing high-performance devices and also multi-core systems. In less than ten
years PULP became one of the most well-known open-source projects worldwide,
as proved by more than 50 ASICs realized and the successful projects stemmed
from this work like Ariane or Zeroriscy [26].

An overview of the environment is proposed in picture 2.8 where it is possible to
distinguish the following main section:

« Core: this is the hear of each system and specific solutions are available, even
a 64-bit version known as Ariane.

« Peripherals: this group includes the interfaces towards the outside world
enabling both communication and control of the device.

« Interconnect: different kinds of solution are implemented according to the
aim, for example reach a custom module or address a peripheral.

« Platform: assembling the previous components with a proper memory system
it is possible to build from single core to Multi-cluster implementation.

+ Accelerator: this component is not mandatory, but nowadays is one of the
most useful part.

ores . Interconnect
RISCY | Micro | Zero 'Ariane Logarithmic interconnect

S0 | a2
22k 39h 298 APB - Peripheral Bus

AXl4 = Interconnect

. ..
.
E (mfmim
| siorcoenect |
gl - DEO
Single C Multi :
sorpr DR B cumer
+ PULPissimo = Mr. Wolf + Hero
Accelerators

=
(ML) (crypto) (1% order opt)

Figure 2.8: PULP platform overview

17

Background

The choice of the right processor is strictly related to the purpose of the system.
In fact, RISCY, also known as CV32E40P, is a four-stage 32-bit core supporting
instruction set extension for digital signal processing operation and a 32-bit floating
point unit used to enhance performance. On the other hand, Zero and Micro riscy
are aimed at achieving a minimal area. Ariane was designed to reach a critical
path length of about 20 gate delays.

The simplest PULP-based systems are single-core microcontrollers called PULPino
and PULPissimo. Cluster-based systems are implemented to increase performance
and basically consist of some cores and memories, but also a SoC that houses
a larger second-level memory, peripherals for input and output, and a complete
PULPissimo microcontroller for power management and basic operations. The
most powerful solution is implemented through a compound of clusters connected
to a regular computing node.

An in-depth look at the PULPissimo microcontroller is provided to highlight
the platform s typical features. First of all, PULPissimo is a single-core microcon-
troller, so it combines all the necessary elements of a microcomputer system onto a
single piece of hardware so the architecture as shown in figure 2.9 includes:

« Main core like RISCY or Micro riscy (Ibex).

« Micro Direct Memory Access controller (uDMA) to make the Input/Output
system autonomous.

« Memory subsystem.

« Simple interrupt controller.

« Peripherals.

« Support for Hardware Processing Engine (HWPE).
« Software Development Kit.

On one side, RISCY is an in-order, single-issue core and thanks to a four-stage
pipeline stage it can reach about one instruction per clock cycle. It supports the
base integer instruction set (RV32I), compressed instructions (RV32C), and multipli-
cation instruction set extension (RV32M). In addition, it can be configured to have
a single-precision floating-point instruction set extension (RV32F). It implements
several ISA extensions such as hardware loops, post-incrementing load-and-store
instructions, bit-manipulation instructions, MAC operations, support fixed-point
operations, packed-SIMD instructions, and the dot product. It has been designed
to increase the energy efficiency of ultra-low-power signal processing applications.

18

Event Unit

APB | Peripheral Interconnect

Clock | Reset
Generator

FLLs

Figure 2.9: PULPissimo architecture [27]

On the other side, Ibex, formerly Zero-riscy, is an in-order, single-issue core with
two pipeline stages. It has full support for the base integer instruction set (RV321
version 2.1) and compressed instructions (RV32C version 2.0). It can be configured
to support the multiplication instruction set extension (RV32M version 2.0) and
the reduced number of registers extension (RV32E version 1.9). Ibex was originally
designed at ETH to target ultra-low-power and ultra-low-area constraints.

2.3.1 Software development kit

From the software point of view, it is crucial to have the possibility to test the
entire hardware implementation with powerful debug tools and to save the signif-
icant amount of time needed by the syntheses. This scope is even more urgent
when the main actor is a lightweight and flexible micro-controller as PULPissimo
in order to break the speed and design effort bottlenecks. Among the several
solutions powered by the PULP platform summarized in figure 2.10, the most pow-
erful solution is represented by the Software development kit distributed through
a GitHub repository at [29]. It provides tools, libraries, and APIs for writing,
compiling, and debugging software on various PULP-based chips. The organiza-
tion is schematized in figure 2.11 where the three steps of the process are highlighted.

19

Background

i !
ECT T e T T
CVI2E40P [32b) Ibex (32b) Sniteh (32b) | CVAG (64b)
Ciptimized far infegers | Cptimizedfor | Linus-capabis

 floating-polrt |

Figure 2.10: PULP software tools [28]

Firstly, the toolchain itself should be configured according to the desired platform
through the use of JSON configuration files, which define the specific parameters
and settings for the target architecture. Once configured, the toolchain must be
built in order to generate all the necessary tools based on the RISC-V ISA for
the development process, including compilers, linkers, and libraries tailored to the
specific PULP-based platform.

PULP Software Environment
Buiking/Compiling
SDK

Compiing App Executing App

GVEel
C App
Code =
JEON Files Cos Madels
B :

Figure 2.11: PULP SDK organization [28]

The heart of the SDK engine is the Generic Virtual System on Chip (GVSOC),
an open-source simulator specifically designed for simulating PULP architectures.

20

Background

GVSO0C is capable of simulating complex full-platform systems, offering developers
a virtual environment that accurately mimics the behavior of the hardware. As
noted by the developers in [30], the primary advantages of this simulator lie in its
ability to provide a highly configurable and timing-accurate simulation, utilizing
an event-driven model. This approach ensures that the simulator can capture the
intricacies of hardware execution in a manner that is both realistic and flexible.

GVSOC achieves this by leveraging both Python and C++ in its architecture.
Python is primarily used for the high-level configuration and control of the simula-
tion environment, while C++ handles the low-level, performance-critical parts of
the simulation, ensuring efficient execution of the simulation process. This combi-
nation allows developers to fine-tune and customize the simulation according to
their needs while maintaining the necessary performance for accurate event-driven
simulations.

The process of executing a program in this simulated environment involves trans-
lating the C code into instructions that the PULP platform can execute. This
is accomplished through the PMSIS (PULP Microcontroller Software Interface
Standard), which provides a set of low-level drivers that facilitate communication
between the software and the hardware or, in this case, the simulated platform.
PMSIS acts as the bridge that allows developers to write high-level code, which
can then be translated into instructions for the PULP architecture.

Once the code is translated, it is executed within the GVSOC environment. In
addition to providing simulation capabilities, GVSOC also includes a debugging
interface that allows developers to step through their code, set breakpoints, and
monitor the behavior of their applications. This integrated debugging environment
is crucial for identifying and resolving issues early in the development process, en-
suring that the software runs correctly when eventually deployed on actual hardware.

If only a standard simulation of the implementation is needed, using the stand-alone
PULP routine would be a time-saving alternative. This solution can turn out to
be effective for situations like the simulation of a simple application implemented
on the PULP platform. Unlike the SDK toolchain, this tool mainly relies on the
GNU compiler.

21

Background

2.4 Spiking Neural Network

In this era dominated by remarkable progress in the vast field of Artificial Intelli-
gence (Al) energy efficiency is one of the most relevant concerns. As stated in [31]
larger models translate to greater computing demands and, by extension, greater
energy demands. Indeed, on one hand, deep learning models succeeded in various
aspects of an ordinary and extraordinary life, from video games to medical tasks.
On the other hand, the trade-off between power consumption and performance still
elevates the human brain as the best player in computational effort. Thus, the
most reasonable conclusion is to be inspired by biology to realize the most efficient
way to perform computation, in other words, Neuromorphic computing[32].

2.4.1 Biological network model

The way used by the body to sense the external world is by imitated creating
artificial sensors inspired by biological sensors like retina or cochlear, as outlined in
2.12. The eclectic signal generated from the sensor in response to an event is known
as a spike and carries the information. Then, the observation of phenomena can
be coded through a spike signals train, where the single bit represents if an event
happens, so the bit is equal to 1, or not. The models developed with this approach
are called Spiking neural networks and, according to the spike characteristic, are
focused on the evolution over time despite the intensity. From the hardware point of
view, using a spike means having less data movement, which can lead to increased
power and reduced latency concerning the same task on conventional hardware.

Once understand the general idea behind the word SNN, this section will be
presented a brief overview of the actual model of SNN. One of the main actors in
the human brain is the spike signal, which is an electrical impulse, known as action
potentials, of approximately 100mV in amplitude. These signals move around
the body thanks to the nerve fibers, also known as axons, that are long, slender
projections of a nerve cell. At the end of the link, the signals are received by the
cell body, a bulbous, non-process portion of the neuron called soma.

This mechanism is implemented in an all-or-nothing way using only one bit and
weight in order to make the routing and computation task easier. In spite of
using one bit instead of continuous values, SNNs are highly different from binary
networks. Indeed, the spike timestamp is used to transfer information and can
be implemented using clock signals that are already distributed across a digital
circuit. This approach shows one great gain concerning the memory occupation.
In fact, the biological neurons are rarely activated, while they rest for most of the
time, leading to a large amount of zeros between two ones. Thus, it is much more

22

Background

{a) Biological Neural Network {BNN)

>

Sensory Sensory Sensory Spike Information
Stimuli Orgon Transduction Neuran Encoding Processing
|l
____-"?:_?7"_' - TT—— __.--!._'
r &P
P =< '
L = \\‘n . (...\r 11 11 e
.- # g -1

= [;
— / Ty

11! ¢
" B [
o e U

{b) Bio-inspired Artificial Neural Network

W

Stirmuli Sensors Encoders Processors

Extemu.r.f @ Newromorphic Neuromarphic Neuromaorphic

{e) Spiking Neuromorphic System (This Werk)

wihite i Biomimetic Mo5, based Spiking Neural
LED Phetodiode MNeural Encoder Network

Figure 2.12: Schematic of biological neural network[33]

convenient in terms of memory occupation, and then cost, to store the activation
information through the moment in which it happens assuming that in the other
instants, there are no events. This model results in a fast response system capable
of suppressing static events.

2.4.2 Neuron model

In order to translate the interactions that happen inside the human body into
precise electrical circuits a mathematical model is needed. The leaky-integrate-and-
fire (LIF) model provides a first approximation of how the membrane potential
behaves. The purpose behind this model developed by Louis Lapique is to treat
the membrane of the neuron as a leaky capacitor, in other words, an ideal capacitor

23

Background

with resistance in parallel. To emulate the input signals coming from the synapses
it is used a current source, the entire starting circuit is depicted in figure 2.13. Thus,

I (D §RM Var (= Cu

Figure 2.13: Leaky integrate and fire equivalent circuit

as a consequence of a spike pulse train, the capacitor can increase its potential
over a certain threshold only if the period between the signals is short enough.
This behavior likely simulates how the membrane potential is overcome when the
number of incoming signals is sufficiently high.

Intending to making the mathematical analysis easier without changing the final
result, it is possible to consider the capacitor as ideal removing the resistance as in
figure 2.14. Thus, it is immediate to write the equation of this circuit 2.1a, but can
be also viewed from the Voltage point of view as in 2.1b highlighting the evolution
along the time.

In (T) Vir |——Cu

Figure 2.14: Integrate and fire equivalent circuit

dv,
I(t] = Cff] CM [2.1&]
t
1
Vo= g [Tt (2.1b)

From the equation describing the voltage change across time it is possible to see
how applying a constant current, the response is expected to increase linearly until
the threshold is reached and then it is reset.

24

Background

'lh!. & et €t Bar ,

oa

Eu.ﬂ -
Baal
; L4 o

] 1 1 I 1 1 1 L _.-"""T"—“"

a o1 o2 L] s s ns o7 oa og 1

T (5]
2 it Cu et fram tha Source
T T T T

Tl
¥
E
a 1
E.uﬂ -

a 1 1 1 1 1 1 1 1 1

a o1 o2 L] s s ns o7 oa og 1

T (5]
18 Dutgnit Csrramnt dhirkn g Dischi g
T T T

F
¥
L
1
§a

a L

a o1 o2 L] s s ns o7 oa og 1

Tirww {5

Figure 2.15: Ideal behavior of the integrate and fire circuit with constant current

This description depicted in figure 2.15 can represent a realistic situation for
the discharging phase, but it is not suitable due to the input current behavior. In
fact, the most accurate kind of signal to describe the input synapses is a spike
impulse. The reaction of the membrane when the potential reaches the threshold
is shown in figure 2.16. In this scenario the input current i,y is the sum of all
the signal coming to the neuron, while the output current I, represents the
eventual response at the stimuli.

Thus, it is possible to focus on the Leaky integrate-and-fire model to have a
better representation of the neuron. In fact, the figures 2.17 shows how the currents
and voltages change when a leakage, emulated by a resistance, is considered in the
model. Thus, the model represented in the figure 2.18 obtained with a spiking cur-
rent, can adapt the artificial neuron to the the membrane potential that decreases
when it is not stimulated.

The LIF neuron is the most widely used spiking neuron model in the context
of deep learning. This popularity stems from its balance between biological realism
and computational simplicity, making it efficient for simulating neural activity
while maintaining manageable computational costs. However, the LIF neuron is
just one model among many available in the family of spiking neuron models, each

25

I Ty, =aay
1
ua [T 1
a 1 1
a w1 E] 03 ns 0s 08 [E] ua [T 1
Tirste:)
Dtput L urren during Do hang
i“‘ T T T T
al
¥
il
4,0
§ r
a 1 1 1 1 1 1 1 1 1
a w1 E] 03 ns 0s ns [E] ua [T 1
Tirste:)

Figure 2.16: Ideal behavior of the integrate and fire circuit with spike current

. Sutput Curmnt during Dischargs (Onky IV == ¥
T T T T T T T

Figure 2.17: Output current with constant current source

with different characteristics and capabilities.

Other models can be employed to fulfill the needs of specific neural network
tasks, depending on the desired level of biological realism, complexity, and the
network’s functional requirements. For example, the Integrate-and-Fire (IF) neuron

26

Background

Spika Curra it Input [Changing)
T T T

1
T A
£l
3
wal
o L L L L L L L L
]] i Bd L (&1 B2 w14 ALY 51} [}
ek {5
. Wialtag s A res Capaditer |Changing and Dischanging]
T T T T T T 'vh-u.au
[T
z
asl
gm-
wal
o L L L L L
]] i Bd L (&1 B2 w14 ALY 51} [}
ek {5
- Output Currant during Dischar ga (Only IV == V
i 1 T T T T T T T T T
asl
!
o
wal
asl
s, L

1 1 1 1
812 a4 L%] LA 8.2

g
3
!
g
H

Tiewek: {5

Figure 2.18: Output current with constant spike source

is a simpler variant that excludes the leaky term, making it even less computation-
ally demanding, though at the expense of less biological accuracy. On the other
end of the spectrum, more complex models like the Hodgkin-Huxley (HH) [34]
neuron model simulate the detailed ionic mechanisms underlying action potential
generation, making it highly accurate for biological neural activity but far more
computationally intensive.

Additionally, the Izhikevich model [35] offers a middle ground between biolog-
ical realism and computational efficiency. It is capable of reproducing a wide
variety of spiking behaviors seen in biological neurons, such as bursting, regu-
lar spiking, and fast spiking, while remaining computationally lighter than the
Hodgkin-Huxley model. Similarly, the FitzHugh-Nagumo [36] [37] model provides a
simplified representation of neuronal activity, capturing essential features of spiking
and excitation without requiring the full complexity of ionic channel dynamics.

In summary, while the LIF' neuron is commonly used due to its simplicity and
efficiency in the deep learning context, alternative spiking neuron models like the
IF, Hodgkin-Huxley, Izhikevich, and FitzHugh-Nagumo models offer varying levels
of complexity and biological fidelity, allowing neural networks to be tailored to the
specific demands of different tasks and applications.

27

Chapter 3

Related work

In recent years, there has been a rapidly growing interest in developing low-power
embedded systems capable of efficiently handling deep-learning computations. This
surge is driven by the increasing need for Al and machine learning applications
to be deployed in resource-constrained environments such as IoT devices, mobile
platforms, and edge computing systems. Traditional deep-learning models require
significant computational power and energy, which is not feasible for embedded
systems that often operate on limited battery life and processing capabilities. As
a result, researchers and engineers are focusing on optimizing neural network ar-
chitectures and developing energy-efficient hardware accelerators to reduce the
computational complexity and power consumption of deep-learning tasks on em-
bedded platforms.

One of the first efforts in achieving a hardware accelerator IP for Neural net-
work was presented at the 2018 Embedded System Week by Conti et al. [38] which
earned them the Best Paper award. That work aimed to design and Binary neural
network accelerator, the XNOR Neural Engine, tightly integrated within a micro-
controller and evaluate its integration in a simple, yet powerful, microcontroller
system. The IP block, even if compact, is designed to overcome several limitations
typically associated with software-based implementations. One of the key challenges
in software-based implementations is the high storage requirements, which stem
from the need to handle large amounts of data, weights, and intermediate results
during computation. However, by incorporating optimized hardware buffers within
the IP block, data management is handled more efficiently, significantly reducing
the overall storage requirements. These bufters allow for faster data access and
minimize the need to constantly read and write data from external memory, which
can be slow and power-hungry. Additionally, software-based implementations often
require the addition of complex instructions to the ISA, not needed for a hardware
accelerator.

28

Related work

Another key component actively explored by researchers to achieve optimized
management of resources and data in embedded deep-learning systems is the mi-
crocontroller. The growing demand for studying more complex phenomena - such
as vibrations, audio signals, video processing, or biological data - has led to the
necessity of handling larger datasets and performing more intricate computations in
real time. Traditional methods, where computations were centralized in a network-
based solution, are increasingly inadequate due to the sheer volume of data being
transmitted. These centralized approaches require sending raw data from edge
devices to a central server or cloud platform, leading to excessive bandwidth usage,
higher latency, and potential bottlenecks in communication.

A more effective approach to addressing this problem involves shifting the com-
putation towards the “edge” - moving data processing closer to where the data is
generated, at the end nodes, such as sensors or microcontrollers. In this scenario,
the key challenge is to retain the low-power characteristics of a microcontroller while
simultaneously handling the heavy computational workloads typically managed by
digital signal processors or parallel processors.

To address this issue, Pullini et al. developed Mr. Wolf [39], a state-of-the-art mi-
crocontroller that integrates a fabric controller powered by a highly programmable
parallel processing engine, specifically designed for flexible multi-sensor data analy-
sis. The system-on-chip (SoC) architecture relies on a power-optimized processor
and an I/O subsystem, meticulously designed to efficiently and rapidly move large
volumes of data between components. This careful design ensures that data can be
processed with minimal delays and energy consumption. Additionally, the system
features eight fully programmable processors that are equipped with digital signal
processing (DSP) extensions and a shared floating-point unit (FPU), allowing it to
handle complex computational tasks - such as signal filtering, image processing, or
machine learning inference - while maintaining low power consumption.

Additionally, the use of Spiking Neural Networks has sparked significant interest
in the field of edge computing applications due to their low power consumption
and sparse data processing characteristics. One implementation that covers several
aspects already discussed in this chapter is in given in [7]. In this review Barocci
et al. present an integration of the ReckOn digital neuromorphic processor with the
PULPissimo RISC-V single core microcontroller to enable edge IoT applications.
The choice of using ReckOn, one of the open-source spiking recurrent neural network
processors developed by Frenkel and Indiveri [40], lies in a greater energy efficient
joined with a higher number of neurons and synapses per core.

20

Chapter 4

Preliminary work

Moving on to the practical aspect of this thesis, the first step in implementing the
framework is to outline the workflow. In this type of activity, it is essential to
verity, step by step, that each component can effectively interact with the others. It
is also crucial to maintain a comprehensive view of the entire development process
s0 that incompatible components can be identified and replaced as needed. The
strategy applied consisted of the following steps:

« Evaluating of the available choices in terms of working platform and developing
boards.

« Building a dummy version of the framework to test the components compati-
hility.

« Powering the device with the hardware accelerator.

Before beginning the hands-on work, the PULP platform was selected to host the
framework, given that its implementation was feasible with some of the FPGAs
available at the university laboratory. Within the PULP environment, several
options were considered, but the most reasonable choice needed to be both stable
and capable of delivering acceptable performance, particularly for Al applications.
As a result, the optimal trade-off appeared to be the PULPissimo microcontroller.
The next step involved verifying its compatibility with the available board.

As stated in the GitHub repository of PULPissimo [41], inside the target/fpga
section, there are ready-made scripts for Synthesis and Implementation for Xilinx
Vivado for the following development boards:

« Digilent Genesys2
« Xilinx ZCU104
30

Preliminary work

Xilinx ZCU102

Xilinx VCU108

Digilent Nexys Board Family

ZedBoard

Considering that the ZCU102 board has all the features needed to host the frame-
work, it appeared to be the best choice. After the preliminary conclusions regarding
the working environment, it is possible to move to fieldwork programming the
FPGA.

4.1 FPGA programming

First of all, it is useful to briefly introduce the development board, the Zynq
UltraScale+ MPSoC ZCU102 shown in picture 4.1.

PO Sweiches 50 Card St i Preod W0+ 00 Pl Gy ok (il | 0 TR

Byl
G R R Ta o+ e Gk

PL W0 Acceas S - AN Tracs

FAIC 1 LA D + BGTH

ZI8EG (ACZUNES IFFWEHISE] = 12 4 56 Cagen b2 8 GTH)
L=

LS Bl (N LLPY el 1 GTRY
I T (LA B = BITH]

DM Companeni PL 18081 BATA {1 1 GTH)

DL G Bl |

PO JThG

Figure 4.1: ZCU102 [42]

4.1.1 ZCU-102

This board with the rest of the Zynq line has been produced by the historic com-
pany Xilinx until 2022 when AMD completed the acquisition, then all the products
are branded under AMD. The Zynq™ UltraScale+™ provides a Multi-processor
System on Chip (MPSoC) with a powerful PS and user PL into the same device.

31

Preliminary work

The PS features a quad-core or dual-core processor as an Accelerated processing

unit (APU), a dual-core real-time processor (RPU), and a graphical processor unit
(GPU).

In particular, the ZCU102 whose block diagram is shown in 4.2 is powered by the
XCZUOEG-2FFVEB1156E MPSoC as concerns the PS side, while the PL can exploit
up to 600 hundred of LUTs. The hoard configuration is carried out by onboard
JTAG, through USB, ARM 20-pin header, or PC4 header, but also SD card and
(QSPI can be used for programming. In addition, communication protocols like
UART and 1/O ports shuch as HDMI, SATA, and Ethernet are integrated with
the board. The PL can be accessed and then programmed using the software suit

Procassing System | TiC |

ﬂpl_l
G
W Mali-00 WP
— 1
Cammas-A53 |Conax-A53) 1Colax-a53] Fonax-A53
Conn-RE L-\.-N- Z2¥BID || REBLD || 2 KB LD || 322KB LD
mED D
nm o [| 13E To [] ¥ (] ¥ | sevB L2 |
I =1
L J * | ACF | | 1 ME L2 |
l Lo Posesr Shwitch .;

56 HE ""l SMMuCC PCin Gand
DM al, w2, of w4

11 BATA -

-

e 2 = 158 3,00 ™ _
[+ =B

[]

B

E
PE-GTR

L J
HAND <t
OMFI3.1
-_ iy 7
2y 5030 =L Lo
e e e
2 Bt 5P - Centenl - —
B = L - Smitch _ 420 b
FEER] .
2% CAN ﬁ:‘ — i
2120 Ml -
== —
la—wll 24 USRT —
—-—| LHI—DHAI Imu*l_..\. a—|° Pmgrammabin
GO - Logps
SYEMON . P
FrTy = ;
g 100G
- g Efwmat
[0 oFC -]
d s
MES-GCM
ey B mw
[mmew] | DOREC (DOREIL, LPODRIM) AR — ,;"Er'f,

3d-nE4-ni

L =5] i 5
=l -] v =

Figure 4.2: ZCU102 block diagram

32

Preliminary work

Vivado, developed by AMD. This powerful tool allows to synthesis and analysis of
hardware description language (HDL) devices thanks to a toolchain that converts
C code into programmable logic. The suite has four components:

« Vivado High-Level Synthesis compiler: Enables C, C++ and SystemC to be
used inside Xilinx devices without the need to manually create RTL.

« Vivado Simulator: It is a compiled-language simulator that supports mixed-
language, TCL scripts, encrypted IP and verification.

« Vivado IP integrator: allows to quickly integrate and configure IP.
« Vivado TCL store: can be used for developing add-ons to Vivado.

To work with Vivado suite it is possible to download on your own computer with
GNU-Linux or Microsoft operating system, even if it is easier to exploit scripting
inside the Linux environment. In addition, it is important to clarify that the
evaluation boards contain a license that is necessary to download the enterprise
version, on the contrary, the license has to be bought.

4.1.2 PULPissimo repository

A briefly overview of the PULPissimo hierarchy is given to introduce the structure of
the platform and in particular the SoC is detailed. The module pulpissimo.sv is the

pulpissimo.sv

| _pulp_domain.sv

pulp_soc.sv

| _fc_subsystem.sv

| f c_hwpe.sv
L _sSoc_interconnect_wrap.sv
soc_interconnect.sv

interleaved_crossbar.sv
contiguous_crossbar.sv

| dmi_jtag.sv

| _tcdm_arbiter 2xi.sv

| __apbZper.sv

| _padframe_adapter

| _addr_decode

| rst_gen

, _clk gen

Figure 4.3: PULPissimo project organization

33

Preliminary work

defanlt top-level entity of PULPissimo used as the basis for ASIC implementations
and RTL simulation. It instantiates the clock generation and pad multiplexing
IP as well as the soc_domain (which wraps almost the entire logic of pulpissimo
from the external pulp soc repository) it is instantiated through the pulp domain
module. In addition, also the default features of the microcontroller are defined:

« CORE _TYPE: define which core using

— 0: CV32E40P (default)
— 1: IBEX RV32IMC (formerly ZERORISCY)
— 2: IBEX RV32EC (formerly MICRORISCY)

« USE XPULP: default 1, means that extension is enabled.
« USE FPU: only for CV32E40P, include the FPU inside the design.
« USE_HWPE: enable the Hardware processing engine.

Inside the top-level entity, pulp domain module is instantiated and all the connec-
tions are made, while it is described separately in pulp domain.sv. This module
aims to tie off unnecessary signals and expose only the signals required for PULPis-
simo, then pulp soc retrieved from another repository is instantiated.

The module pulp soec sketched in 4.4 is the actual heart of the PULPissimo
SoC and contains the key modules inside the architecture:

« fc_subsystem: includes all the IP related to the fabric controller and particu-
larly the HWPE [38] that will be covered in 4.2.

= soc_interconnect wrap: encloses the soc interconnect module, but also the
interfaces to do connect memory, core and peripherals.

« dm_top: Top-level of debug module. This is an AXI-Slave.

+ There are also an APB-to-Peripheral interconnect protocol adapter and Tightly
Coupled Data Memory (TCDM) multiplexer.

Inside soc interconnect wrap there are Advanced extensible interface AXI and
TCDM buses, but the main module is soc_interconnect. This module handles the
different memory regions but also peripherals. The first stage of interconnection is
a demultiplexer dedicated to L2 memory, where the first slave port routes to the
axri crossbar, the second slave port routes to the contiguous crossbar and the third
slave port connects to the interleaved crossbar.

34

Preliminary work

|
| '
| fiy= roacoal

HWEE Pt [
I i i
i g i

i

i i
'

r Interieaved
—1 Lefilnt

l‘.‘uru'.lpuws . '

==
LE—

|
| | .
froon Chster | s Fart Addr. |
o | TComM it Bant AOM
| p
i /
i

'
TCDM L :
| toSol peripherals
1 b AX| XRAR, o il -
A | 3
' o aes ||
i . |
i E to Chusten
i =

Figure 4.4: PULP System on Chip [43]

The AXI crossbar accepts a set of address-to-slave port mapping rules and de-
codes the transaction address accordingly. Illegal addresses that do not map to
any defined address space are answered with a decode error and Read Responses
contain the data "0xBADCABIE'. A continuous crossbar is a fully connected bus
with combinational arbitration (logarithmic Interconnect). Internally, there is an
address decoder that matches each master port address against a number of address
range to output port mapping rules. Addresses not matching any of the address
mapping rules will end up on a default port that always grants the request and in
the case of a read access, responds with the word "0xBADACCES". Interleaved
Crossbar is a fully connected crossbar such as the contignous one. It arbitrates
from the master ports from the L2 demultiplexer and the interleaved-only master
ports (ports that do not have access to the other address spaces) to the TCDM
slaves with address interleaving. That is, the least significant bits of the address
are used to select the slave port. This results in a more equal load on the SRAM
banks when the master sequentially accesses memory regions. Slaves that cannot
respond within a single cycle must appropriately delay the assertion of the gnt
(grant) signal.

35

Preliminary work

4.1.3 Environment setup

The primary goal is to integrate the PULP microcontroller into the FPGA, and
there are two approaches available for this purpose. The first approach is the simpler
option, as it involves downloading the bitstream from the repository and loading
it into the Programmable Logic. This method provides a ready-to-use version of
the environment for running programs but does not allow modifications, making it
unsuitable for implementing a hardware accelerator. The second approach, known
as the full flow, is detailed in the repository’s README page and involves locally
building the sources before synthesizing the device. Although this approach is more
complex, it allows for full customization of the device, including the addition of
custom modules and configuration changes. The integration of new intellectual
properties (IPs) is streamlined by using Bender, as described in Appendix A.

To begin, one can either download a release version of PULPissimo or fork and
clone the most up-to-date version. The PULP platform provides Makefile targets
to facilitate standard tasks such as building, synthesis, and bitstream generation.
Once the process is complete, the bitstream file for the JTAG configuration of
the FPGA can be loaded using Vivado's hardware manager. The purpose of the
Makefile target is to verify the correct version of each IP required by the top-level
module and then traverse the hierarchy to resolve all dependencies. This task is
managed by the Bender software, which relies on independent GitHub repositories
to ensure that source files are either up-to-date or properly archived.

Alternatively, the simulation platform for the PULPissimo platform can also be
built to conduct simulations. This can be achieved using the Makefile targets, but
it requires simulation tools such as Questasim or Xcelium. Similar to the FPGA
process, the source files must first be verified and updated if necessary, based on
the standard files associated with each IP. Once this verification is complete, the
simulation platform can be built, leveraging the scripts provided by Bender to
streamline the process.

4.2 Hardware designing

Once understood how the FPGA can be programmed to host the PULP platform
it is time to customize PULPissimo with, at first, a dummy module to understand
the integration process as suggested in [43]. First of all, a GitHub repository can
be the right choice to keep the source under control and, at the same time, exploit
the powerful features provided by Bender. The repository can be organized as in
figure 4.5, the purpose of the modules inside the rtl directory is just to notify the
success of the integration procedure. Thus, the top-level entity can be instantiated

36

Preliminary work

dummy_ip/
| rtl/
dummy_top.sv
dummy submodule.sv
| include/
dummy header.svh
dummy_ip/
|__Bender.yml

Figure 4.5: Repository organization

within the pulp soc module without requiring any special connections. Within
the sub-module, common cells are instantiated to ensure the proper declaration of
dependencies, as managed by Bender software according to the configuration file
Bender.yml. Finally, the hardware can be verified through software simulation, as
detailed in Section 4.3. Although this initial approach is relatively straightforward,
it provides valuable experience in managing [Ps, particularly with Bender. Addi-
tionally, the integration process clarifies the role of key components in PULPissimo,
such as the pulp soc module.

4.2.1 Wide ALU example

After the first integration experience it is possible to increase the level of the training
in order to realize a realistic but simple module, following the indications presented
in [44]. The purpose of this module is to accept two numbers up to 256-bit wide
and perform some arithmetic or logic operation. In this example is needed to move
data in order to reach the hardware module, so an AXI bus is used to perform the
link. In addition, the tool regtool.py, detailed in the appendix B, is used to describe
the data structure required by the module instead of manually connecting each port.

First of all, inside the pulp soc module an additional AXI bus is instantiated
an then connected on the axi slove port of the wide alu top IP.

ff MY WIDE ALU IP

AXI_BUS #(
.AXI_ADDR_WIDTH (32),
.AXI_DATA_WIDTH (32),
JAXI_ID_WIDTH (AXI_ID_OUT_WIDTH),
.AXI_USER_WIDTH (AXI_USER_WIDTH)

) e_wide_alu_bus ();

ar

Preliminary work

wide_alu_top #(
_AXI_ADDR_WIDTH (
_AXI_ID_WIDTH (
. AXI_USER_WIDTH (

} i_wide_alu
celk_i (
.ret_ni {
.test_mode_1i {
.axi_slave {

)

AXI_ADDR_WIDTH),
AXI_ID_OUT_WIDTH),
AXI_USER_WIDTH)

soc_clk_i ¥,

soc_retn_synced_i),
dft_test_mode_i ¥,
g_wide_alu_bus)

In the soc_interconnect wrap module there is the configuration of the AXI crossbar
rules, needed to correctly address the data. In addition, one extra master port
reserved to the wide alu slave is added, then the port is included also inside the

soc__interconnect module.

module socc_interconnect_wrap
import pkg_scc_interconnect::addr_map_rule_t;

#0...0¢(
AXI_BUE .Master wide_alu_slave // MY WIDE ALU TIP
)

localparam NR_RULES_AXI_CROSSEAR = 3;
localparam addr_map_rule_t [NR_RULES_AXI_CROSSBAR-1:0]
AXI_CROSSEAR_RULES = °{
'{ idx: 0, start_addr: °‘SOC_MEM_MAP_AXI_PLUG_START_ADDR,
end_addr: ‘SOC_MEW_MAP_AXI_ PLUG_END_ADDR},
'{ idx: 1, start_addr: ‘SOC_MEM_MAP_ PERIPHERALS_START_ADDR,
end_addr: ‘SO0C_MEM_MAP_PERIPHERALS_END_ADDR}},
'{ idx: 2, start_addr: °‘SOC_MEM_MAP_WIDE_ALU_START_ADDR,
end_addr: ‘SO0C_MEM_MAP WIDE_ALU_END_ADDR}};
AXI_BUS #(
.AXI_ADDR_WIDTH ({ 32
.AXI_DATA _WIDTH { 32
.AXI_ID _WIDTH { pkg_soc_interconnect::AXI_ID_OUT_WIDTH
.AXI_USER_WIDTH (AXI_USER_WIDTH
) axi_slaves [3]1();

-

-

e
-

*AXI_ASSIGN (axi_slave_plug, axi_slaves [0])
*AXI_ASSIGN(axi_to_axi_lite_bridge, axi_slaves[1])
*AXI_ASSIGN(wide_alu_slave , axi_slaves [2])

The wide alu top module is used to wrap the input and out signals, but also
instantiate the required interfaces between the AXI bus and the registers, and

38

1r

Preliminary work

configure the register file defined separately. The core of the IP is the wide alu
entity, where an three stages finite state machine (FSM) is exploited to handle the
operations.

In addition to the hardware description, this example gives the opportunity to
practise also the use of the software level. Indeed, in order to perform the desired
operation through the wide alu a driver in needed and has to be compiled within
the main application.

4.3 Software developing

The software side of the implementation can be achieved by exploiting the C
language and the header file produced by regiool to easily address the memory
mapped-peripherals. Firstly, inside the main.c file the memory is reserved for the
input and output fields, and then two values are set to prepare an example.

uint32_t al[32];
uint32_t b[32];

3luint32_t result [64];

:|memset (a, 0, sizeof (a));
ilmemset (b, 0, sizeof (b));

memset (result, 0, sizeof (result));

alo] = 3;
b[0] = &;

Thus, with the aim of show how it is possible to configure the hardware, a decelerator
factor is set with the function set delay exploiting again the register interface
produced by regtool.

void set_delay{uint8_t delay)
{

3luint32_t volatile # ctrl2_reg = (uint32_t=#) (

WIDE_ALU_CTRL2_REG_OFFSET + WIDE_ALUO_BASE_ADDR);

sluintd2_t ctrl2_old_value;

//Read old value
ctrl2_eold_value = *ctrl2_reg;

//O0verwrite operation bits
*ctrl2_reg = ctrl2_old_value | (delay & WIDE_ALU_CTRLZ_DELAY_MASK)

2|}

39

Preliminary work

Inside the wide alu code it is useful to highlight the role of the function pool done
where it is used the status register to know if the hardware is idle, pending or shows
SOme errors.

int poll_done(void)
{

3luint32_t volatile #* status_reg = (uint32_t#*) (

WIDE_ALU_STATUS_REG_OFFSET + WIDE_ALUO_BASE_ADDR) ;
uint32_t current_status;

aldo {

current_status = (*status_reg)&WIDE_ALU_STATUS_CODE_MASK;
} while{current_status == WIDE_ALU_STATUS_CODE_VALUE_PENDING);

if {(current_status == WIDE_ALU_STATUS_CODE_VALUE_IDLE)
return 0;

else
return current_status;

}

Thus, similarly, the result is written by the hardware an saved in memory to be
printed as a confirm of the right behavior of the implementation.

In order to evaluate the performance of the device and check the accuracy of
the result it is possible to exploit the PULP runtime routine to compile and simu-
late the module inside the PULPissimo microcontroller. This operation is performed
sourcing the makefile in the directory <PULP_RUNTIME HOME> finstall/rules/
pulp _rt.mk specifying the parameters like the desired input-output method, e.g.
UART'. This file includes another file specific to the target, PULPissimo, and
defines the parameters used during the compilation and simulation. In the end,
the application is run according to the desired specification.

4.4 RISC-V programming

After the software programming, the last section is entirely focused on the way to
access, program, and debug the core from the computer interface. The first step, as
said previously, is to load the bitstream exploiting the Vivado hardware manager
either by the graphic user interface (GUI) or the batch mode. This action consists
of effectively programming the hardware to execute the desired functionality. Thus,
the next crucial step is to establish communication between the FPGA and the

40

Preliminary work

computer. This can be achieved through various interfaces, such as JTAG.

The ZCU102 evaluation board can be connected to the host computer exploiting
the Digilent JTAG 2 NC connector to load the bitstream, while the PMOD GPIO
header it is used to reach directly the RISC-V, these pins are mapped to the core
during the syntheses. This configuration is available thanks to the JTAG chain
depicted in figure 4.6.

]

JTAG U

Haaer 1TAG
TOGO
TOO = sur [T
Tl =
i 2x1DAMm JTAG male pin headar
U1 LI21: Diigant USE JTAG moduls
TG JB: 227 2 ahrowdad, keyed JTAG
Kodule P Nal cabie connecior
L1: KCZUSEG MPSol
TOOD =
T |
]
JTAG SPET Bus Swibch SPET Bus Switch
Heater LT 24
1
H.C. NG,
TOOD (=
TOI |
J5 Jd
1 FMIC HPCO MG HPCT
oG Connacion Cannecion
F UG
JTAG
ol | DO
oo = auF s TOI TDD o O DO -
1.8V | 3.3V

EEIEE

Figure 4.6: JTAG Chain block diagram [45]

With the FPGA programmed and communication established, debugging can
begin. As previously said 2.3.1, a modified RISC-V GNU toolchain is included to
power the framework with a tool used to generate an Executable and Linkable
Format (ELF) file, from the desired application. Thus, the Open On-Chip Debugger
(OpenOCD), created by Dominic Rath, is exploited in conjunction with GDB to
communicate with the internal RISC-V debug module. PULP platform provides
several standard configuration files for some boards in order to ease the use of the
debugger interface. The configuration file is related to the programming device used
to link the host computer with the board. In the listing 4.4 it is shown the settings
used to communicate with the HS2 programming cable, a high-speed programming

41

Preliminary work

solution for Xilinx FPGAs.

adapter_kh= 1000

al# Digilent JTAG-HS1

interface ftdi

s|ftdi_vid_pid 0x0403 0x6014
| ftdi_channel O

ftdi_layout_init 0Ox00e8 O0x60eb
set _CHIPNAME riscv

jtag newtap $_CHIPNAME unknown0 -irlen & -expected-id 0xEfffedb3

| jtag newtap $_CHIPNAME cpu -irlemn & -expected-id 0x50001db3

set _TARGETNAME $_CHIPNAME.cpu

s| target create $_TARGETNAME riscv -chain-position $_TARGETNAME -

coreid Ox3e0

gdb_report_data_abort enable

:| gdb_report_register_access_error enable

riscv set_reset_timecut_sec 120
riscv set_command_timeocut_sec 120

1|# prefer to use sba for system bus access

riscv set_prefer_sba on

26| # dump jtag chain

scan_chain

init
halt
eche "Ready for Remote Connections"

In a separate terminal, it is possible to launch the customized version of GDB
provided by the PULP platform passing the ELF file as an argument. In a third
terminal launch a serial port client on Linux is used to redirect the UART output. In
conclusion, it is possible to debug the program using the following GDB command:

target remote localhest:3333
load

i| continue

42

Chapter 5
Methods

A detailed description of the architecture can be introduced through the schematic
view presented in figure 5.1. Firstly, as introduced in Chapter 2, the only interface

/ ;[JLP‘hlhnnSm: ‘\
/ s >~
| g b \

mot_clk_| 3

—oc ren syncad)

=_gpikar_acapber_bug

‘ﬂ:b

A%y REG

R, Ragisier file SPIKER

| \ / |
\ . = !

_ . —

Figure 5.1: System on Chip schematic

between the IP and the rest of the SoC is represented by the AXI bus, referred to as
the s spiker adapter wbus The other two signals are the clock and reset signals.
The AXI bus enables connection to the memory and facilitates both requests and
responses handled by the CPU. Additionally, the overall organization of the Spiker
adapter module can be seen, featuring its three main components:

43

Methods

« AXI to REG interface: This component contains several macro and in-
terfaces used to pack and unpack the data according to the AXI protocol,
minimizing unnecessary signals.

+ Register file: As previously introduced, it is generated exploit the regtool
software.

« Spiker: The main component of the IP, which includes both the modules re-
sponsible for managing data and control movement, as well as the computation
engine.

Figure 5.2 presents an exploded view of the bridge between the AXI slave input
and the register file to highlight the connections between the different modules.
[ht] The first module called the AXI to REG interface, adapts the AXI protocol

'//".Spllmm \
/ 4 > Y
axi_slave
ANl o REG
riornzn
g_ﬁb_lﬂ_'n [:
Fegistar tika SPIKER
: ip_to_reg_file
rom_reg_fila_res
]
ps /
5, ;

Figure 5.2: Spiker adapter detailed schematic

to the register file structure while preserving the interface’s nature. Specifically,
the conversion from the interface to two separate structs, which allows easy access
to the internal fields, is handled by the REG BUS ASSIGN. Finally, these are
connected to the auto-generated register, while two other structs perform a similar
function for the core of the IP, Spiker which is further exposed in figure 5.3. Thus,
the module Spiker Reader is responsible for unrolling the registers that hold the
incoming data and presenting all the bits in parallel to the input port of the
network. Moreover, it is in charge of notifying the Spiker engine whenever a new
sample is ready to be processed through the Sample Ready signal, while the signal

44

Methods

" Splkes ™
£ M
[
™y .
rag_fi Ia_m_-:i Ip_u_w_hlq.
| eata_in data_os
FAMple sample
Spikar Spiker
reader sampila BaiRot e weritir
read
| Y gty |
whart oty
— = —*
LS A 5,

A 4

Figure 5.3: Spiker schematic

called Start is used at the beginning of the task. On the other side of the Spiker
schematic, the Spiker Writer module is implemented to divide the computation
result into multiple registers, while the control signals allow the Network to know
when it is ready to receive new data. The core of the computation is the Network

T T T T T T T T T T T T R T A
| |
UESY 1 Y3 Y 3y + Y 8 Y & ¥y T ¥ 8 { @ y w Y n

OUT reaut i - ER i

In_sample_reacy f

EFKER

cut._roacy ‘) |
cut_sample (N W VO WA A WO WA W A YOS W W A

Figure 5.4: Spiker waves

module, which contains all the hardware responsible for analyzing incoming spikes
and processing responses. The behavior of this component is illustrated in Figure
5.4, showing the input and output signals. Specifically, when the Network module
is started, if the sample ready signal has already been received, it notifies the rest
of the framework that it is ready. For each incoming data point, the sample signal
acknowledges that the information has been correctly received. At the end of the
burst, when the sample ready signal is deactivated, the ready signal confirms the

45

Methods

successful completion of the exchange.

The accelerator consists of two layers used to process incoming and outgoing
signals between the spiking core of the network and the external modules. Addi-
tionally, a clock-driven mechanism updates the membrane potential at each elock
cycle, providing a purely event-driven architecture. There is also an arbitrary
number of hidden layers connected in a feed-forward structure, designed to perform
computations organized into temporal steps. When the inner architecture is ready,
it notifies the CU, which sends a new set of spikes and initiates the computation.
Similarly, when the computation ends, the CU is notified again, allowing a new
computation to begin.

46

L=

10

Chapter 6

Results

In order to verify the correctness of the implemented model, a step-by-step verifica-
tion has been performed. Firstly, the Network module has been tested separately
from the rest of the architecture with the aim of finding an input value suitable
to be used as a test case to prove the implementation. Then, a software-based
simulation performed through the QQuestasim software and provided by the Pulp
platform is exploited to check the behavior of the entire [P at the register-transfer
level. In conclusion, the bitstream is downloaded inside the FPGA in order to
simulate the hardware implementation, accessing the core thanks to GDB.

6.1 Software simulation

To demonstrate how the Network module should realistically function, the mock-up
testbench shown in listing 6.1 is used to stimulate the module and observe the
results. The testbench achieves its goal by changing the value of the input signal at
each sample according to the protocol expected by the module. Additionally, the
simulation begins only when the ready signal indicates that the Network is ready
to receive the samples. At the end of the simulation, the sample ready signal is
set to zero to stop the operation. Meanwhile, a monitor is used to display useful
debugging information for the architecture.

/f Cleck gemeratiom
initial begin

clk = 0;

forever #6 clk = ~¢clk; // 100 MHz clock
end

/f 8timulus generation
initial begin
//f Initialize signals
ret_non = 0;

47

Results

input_signal = 4°'hF;
sanple_ready = 1;
start = 0;

/{ Apply reset
#10

ret_non = 1;
@(posedge ready);
start = 1;

/f Wait for sample to go high
@(posedge sample) ;
input_signal = 4’'he;

@(posedge sample) ;
input_signal = 4°'hd;

@(posedge sample) ;
input_signal = 4’'hc;

@(posedge sample) ;
input_signal = 4°'hf;
@(posedge sample) ;
input_signal = 4°'hf;
@(posedge sample) ;
input_signal = 4°'hf;

#10
@(posedge ready);
sanple_ready = 0;

end

// Monitor outputs
initial begin
$monitor ("At time %t, start = }h, input_signal = %h,
output_signal = %h, sample_ready = fh, ready = %h, sample = %h"
y $time , start, input_signal, output_signal , sample_ready,
ready, sanple);
end

As a result, the waveforms in Figure 6.1 illustrate the internal behavior of the
accelerator and its response to the stimuli provided by the testbench. The desired
proof, which demonstrates that the input signals have been processed and produce
a valid non-zero output, is obtained after 625 ps, when the output signal equals
2. Subsequently, the Network module is integrated into the Pulp SoC to validate
the entire architecture within a simulated environment built using (Questasim

48

Figure 6.1: Network simulation wave graph

software and driven by C-based source code. This simulation aims to replicate the
same stimuli as in the previous test, but with the microcontroller managing the
configuration and operation of the modules based on instructions provided by the
source code reported in listing 6.1.

#include <stdint.h>

:(#include <stdie.h>
|#include "pulp.h"

#include "spiker_adapter.h"

o|#define SPIKER_ADAPTER_BASE_ADDR 0Ox1A400000

#define SPIKER_ADAPTER_CTRL1_MASK 0Ozx1

olint _ _rt_fpga_fc_frequency = 20000000;
|int _ _rt_fpga_periph_frequency = 10000000;

Firstly, the base address for the memory mapped peripheral called Spiker adapter
and the mask used for the fields inside the control register are defined. Then, the two
weekly defined variable related to the fabric controller and the peripheral frequency
are redefined according to the values set during the FPGA implementation.

(4

int main ()
printf ("Hello World!in");

1int32 t buffer [SPIKER_ADAPTER_SPIKES MULTIREG_COUNTI];
memset (buffer, 0, sizeof (buffer));

buffer [0] = Ox89ABCDEF;

printf ("Buffer [0] content is ¥z\n", buffer [0]);

49

Results

printf ("The address of buffer is ¥z\n", &buffer);

Subsequently, the buffer used to hold the stimuli for the simulation is initialized
and can be immediatly checked during the debug,.

// Set up the pointers te the registers

uint32_t volatile #*spiker_adapter_ctrll = (uint32_t =*)(
SPIEER_ADAPTER_BASE_ADDR + SPIKER_ADAPTER_CTRL1_REG_OFFSET);
uint3d2_t volatile #*spiker_adapter_status = (uint32_t #*)(
SPIEER_ADAPTER_BASE_ADDR + SPIKER_ADAPTER_STATUS_REG_OFFSET);

// Set up the pointers to the DATA registers

uint32_t volatile #*spiker_adapter_reg = (uint32_t *){
SPIKER_ADAPTER_BASE_ADDR + SPIKER_ADAPTER_SPIKES_0_REG_OFFSET) ;
uint32_t volatile #*spiker_adapter_res = (uint32_t *){
SPIKER_ADAPTER_BASE_ADDR +
SPIKER_ADAPTER_SPIKES_RESULT_O_REG_OFFSET) ;

The base address already mentioned and the offsets defined in the auto-generated
header file called spiker adapter.h are used to address the fields of the register file
for both control signals and data.

/f Write to the accelerator interface (spiker_reg)
for (size_t i = 0; i < SPIKER_ADAPTER_SPIKES_MULTIREG_COUNT -
23; i++)
{
spiker_adapter_reg[i] = buffer[i];
asn volatile ("": : : "memory");

}

// BAMPLE _READY <= 1 (Accelerator can read the data)
uint32_t old_ctrll = #*spiker_adapter_ctrlil;
*gpiker_adapter_ctrll = old_ectrll | (1 <<
SPIKER_ADAPTER_CTRL1_SAMPLE_READY_BIT);

printf ("Sanples are ready (sample_ready) ctrll = Yx\n", =*
epiker_adapter_ctrll);

ff START <= 1

old_ctrll = #*spiker_adapter_ctrll;

*gpiker_adapter_ctrll = old_ctrll | (1 <<
SPIKER_ADAPTER_CTRL1_START_BIT);

printf("I’ve started the accelerator (start) ctrll = ¥x\n", =*
epiker_adapter_ctrll);

50

10
11
12

14

Results

After the configuration phase, the bufter is used to write the register file, including
also an optional memory break to further ensure the right behavior. Thus, the
Network module can be started and produce a result. Lastly, the result is read
again checked through the debugger.

// CHECKE STATUS OF THE ACCELERATOR WAITING FOR READY
while ((*spiker_adapter_status & 0x1) != 1)
{
printf ("Waiting for the accelerator to be ready\t status =
%x\n", #spiker_adapter_status) ;

}

// READ FROM MEMORY
for (size_t i = 0; i < 4; i++)
{
printf ("Check: reg[hi]l = ¥z\n", i, spiker_adapter_res[i]);
}

printf (" JOE DONE\n");

return 0;

The source code is subsequently compiled and used as the basis for hardware
simulation, replacing the testbench. This approach mirrors the one used during
FPGA implementation, reliably emulating the implemented solution. The resulting
waveform is shown in figure 6.2, highlighting how the hardware accelerator's result
is written into the register file and then becomes available for reading by the rest
of the architecture.

51

Results

I R T T i i i W

B e e ey TR DR T T RPN RO R T i i w)

Figure 6.2: Intel Questasim simulation

6.2 FPGA implementation

The final step is carried out to verify that this implementation can effectively
provide a reliable solution to reduce the impact of network computation on power
consumption. A realistic implementation of the network, powered by a T48 bit
input and producing a 10-bit output, is verified with the goal of obtaining accurate
results. The Vivado suite is once again utilized to generate the power report starting
from the implementation performed for the ZCU102 board, as shown in figure
6.3. Notably, the overall power consumption of the microcontroller aligns with the
expectations for a low-power neuromorphic application, measuring just 902 mW.
In addition, Figure 6.4 presents a representation of the FPGA area utilization in
both graphical and textual formats. This result demonstrates that the choice of the
ZCU102 Evaluation Kit provides a reasonable safety margin, although a smaller
development board could also be sufficient.

52

Results

Summary

Fower aialysis from Implemented netlist, &ctivity on-Chip Power

darivad rom constraints files, simulation files ar

vectarless analysis, Oymamic: 0,230 W

Total On-Chip Power: 0.902 W e g: ' B clocks LOIOW (5
Design Power Budget: Mot Specified 5% | Signals no1T W i
Process: VR Logic 0.01LW (5%
Power Judget Margin: MNiA B e 0.008 W
Junction Temperature: 25.9°C DR, 0.001 W
Tharmal Margin: 74.1°C (74.0W) 74% B oLMoM: 0176w (768
Ambient Tempearature: 25.0°C o 0010 W s
Effectve J1a: L.o°Ciw 3%

Power sapplied to off-chip devices: OW Device Static: 0672 W B

Confidence lawveal: Wadiurm

ch “ow straint Advisor ta find and fic
invalid satching sctivity

Figure 6.3: Power report

Summary
Aesaurce Utitzation Avalabla LHilzation %
LuT dAEAL 274080 17.83
LUT2AM 13 144000 0.01
FF 2701 S4a160 4,94
R a2 012 8.90
DSF 1z 2520 d.4e
[} 0]] 11.8%
ARG 33 404 8.17
MMM 2 1l 54,00
wr "
wrRake 1%
FF
BAaM
DSR4 1
o 12,
BUF G-
HMCH S8t
o &= =0 75 100

Utization [%6)

Figure 6.4: Report FPGA utilization

H3

Appendix A
Bender

Bender is a dependency management tool designed by PULP platform with the
aim of provide an efficient way to define and ensure the right dependency between
different IPs in the same hardware device. On the other hand, Bender offers
other features to verify that the source files are valid for EDA tools without any
assumptions about the specific software.

First, Bender collects all the source files of a hardware IP, maintaining the required
order and supporting both SystemVerilog and VHDL. It also manages include
directories. Additionally, Bender tracks the Git hash of each dependency and stores
this information in the Bender.lock file, enabling reproducible builds.

package:
name: spiker_adapter
authors:
- "Renatoc Belmonte <renatoc.belmonte@studenti.pelite.it"
dependencies:

commen_cells:

{ git: "https://github.con/pulp-platforn/conmon_cells.git",
version: 1.21.0 }

axi:

{ git: "httpe://github.con/pulp-platforn/axi.git", version:
0.39.2 }

register_interface:

{ git: "httpe://github.con/pulp-platforn/register_interface .git"
, version: 0.4.1 }

spiker:

{ git: "httpe://github.con/RenatoBelmonte /epiker.git", rev:
main" }

BOUrces :

#spiker_adapter

defines:

files:

54

Bender

- gen_sv/spiker_adapter_reg_pkg.sv
- gen_sv/spiker_adapter_reg_top.sv
- rtl/epiker_writer.sv
- rtl/epiker_reader.sv
- rtl/epiker_adapter.sv

vlieg_opts:
- -L register_interface_lib

Listing A shows the Bender file used in the Spiker adapter repository. After an
initial section containing package information, the dependencies are listed in the
dependencies section of the package manifest. These sources are retrieved from
the specified GitHub repositories, and can be referenced using either a version or a
target, such as main. The source section defines the source files or groups of source
files used in the design, with the option to specify which files or groups to include
or exclude.

More information, including the source code, examples and a comprehensive list of
available commands, can be accessed from the official documentation [46]

55

(5L B S - - N

("= SRS =]

Appendix B

Regtool

The register tool is part of OpenTitan, the open source secure silicon ecosystem
administered by lowRISC CIC. It is used to construct register documentation,
register RTL and header files. Specifically, the standalone version relies on python3
to read configuration and register descriptions in a variant of the JavaScript Object
Notation (JSON) format, HISON, and generate various output formats. A more
comprehensive explanation of the tool it is provided by OpenTitan on the official
website [47]

Specifically, the example in B demonstrates how the register file for the Spiker
adapter module is generated. The primary information, such as the clock name and
the interface used, is declared at the beginning of the file. The registers are then
described either individually or in groups, known as multireg, using a combination of
optional and mandatory fields. The optional fields provide significant customization
of the register behavior, allowing, for example, enhanced security or reliability of
the stored data. To this end, the swaceess and hwaccess fields control access to the
information within the registers.

{
name: "spiker_adapter",
clock_primary: "clk_1i",
reset_primary: "rst_ni",
bus_interfaces: [{ protocol: "reg_iface", direction:
"device"1],

regwidth: "32",
registers: [
{ multireg:

50

10
11
12
12
14
15
16
17
18
19

21
22
23
24
25
26
a7
28
29
a0
a1
a2
a3
a4
a5

a6

a7
a8
29
40
41

42
42
44
45
46
47
48

Regtool

{ name: "SPIKES",
desc: "Subword of Spikes",
count: "2&E",
cname: "SPIKES",
swaccess: "rw",
fields:
{ bits: "31:0"
}
1,
}
},
{ multireg:
{ name: "SPIKES_RESULT",
desc: "Subword of results.",
count: "4",
cname: "SPIKES_RESULT",
swaccess: "ro",
hwaccess: "hwo",
hwext: "true",
fields:
{ bits: "31:0"
}
1,
}
},
{ name: "CTRLA1i",
desc: "Controls handshaking signal of the
accelerator.",
swaccess: "rw",
hwaccess: "hro",
fields: [
{ bits: "O", name: "SAMPLE_READY",
desc: "Signals the presence of a new
samnple."
}
{ bits: "1", name: "START",
desc: "Signals that SPIKER camn start."
}
]
},
{ name: "STATUS",

7

Regtool

49

51
52
53
54

56

57

58
59

i1

62 T

desc: "Contains the current status of the
accelerator.",
swaccess: "rw",
hwaccess: "hwo',
fields: [
{ bits: "0", name: "SAMPLE",
desc: "Signals that SPIKER is ready for
the next sample."
}
{ bits: "1i", name: "READY",
desc: "Signals that SPIKER is has a new
result."”
}
]
}

HE8

Bibliography

[]

S. 5. Udpa and L. Udpa. « NDT Techniques: Signal and Image Processings.
In: Encyclopedia of Materials: Science and Technology. Ed. by K. H. Jiirgen
Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard [lschner, Edward
J. Kramer, Subhash Mahajan, and Patrick Veyssiere. Oxford: Elsevier, Jan.
2001, pp. 6033-6035. 13BN: 975-0-08-043152-9. por: 10.1016/B0-08-043152-
6/01064-0. URL: https: //www.sciencedirect.com/science/article/
pii/B0080431526010640 (visited on 07,/30,/2024) (cit. on p. 1).

Samanwoy Ghosh-Dastidar and Hojjat Adeli. «Third Generation Neural
Networks: Spiking Neural Networks». en. In: Advances in Computational
Intelligence. Ed. by Wen Yu and Edgar N. Sanchez. Berlin, Heidelberg:
Springer, 2009, pp. 167-178. ISBN: 978-3-642-03156-4. DOT: 10.1007/978-3-
642-03156-4_17 (cit. on p. 2).

Alberto Dequino, Alessio Carpegna, Davide Nadalini, Alessandro Savino, Luca
Benini, Stefano Di Carlo, and Francesco Conti. « Compressed Latent Replays
for Lightweight Continual Learning on Spiking Neural Networks». In: 2024
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). ISSN: 2159-
3477, July 2024, pp. 240-245. pot: 10.1109/ISVLSI61997.2024.00052. URL:
https://ieeexplore.ieee.org/abstract/document/ 10682744 (visited on
10/11,/2024) (cit. on p. 2).

Xiangwen Wang, Xianghong Lin, and Xiaochao Dang. « Supervised learning in
spiking neural networks: A review of algorithms and evaluations». In: Neural
Networks 125 (May 2020), pp. 258-280. pol: 10.1016/).neunet.2020.02.
011 (cit. on p. 2).

Sanaullah, Shamini Koravuna, Ulrich Riickert, and Thorsten Jungeblut. «Ex-
ploring spiking neural networks: a comprehensive analysis of mathematical
models and applications». English. In: Frontiers in Computational Neuro-
science 17 (Aug. 2023). Publisher: Frontiers. 1ssN: 1662-5188. por: 10.3389/
fncom.2023.1215824. URL: https://www.frontiersin. org/journals/
computational-neurcoscience/articles/10.3389/fncom.2023.1215824/
full (visited on 07/31/2024) (cit. on p. 2).

59

https://doi.org/10.1016/B0-08-043152-6/01064-0
https://doi.org/10.1016/B0-08-043152-6/01064-0
https://www.sciencedirect.com/science/article/pii/B0080431526010640
https://www.sciencedirect.com/science/article/pii/B0080431526010640
https://doi.org/10.1007/978-3-642-03156-4_17
https://doi.org/10.1007/978-3-642-03156-4_17
https://doi.org/10.1109/ISVLSI61997.2024.00052
https://ieeexplore.ieee.org/abstract/document/10682744
https://doi.org/10.1016/j.neunet.2020.02.011
https://doi.org/10.1016/j.neunet.2020.02.011
https://doi.org/10.3389/fncom.2023.1215824
https://doi.org/10.3389/fncom.2023.1215824
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2023.1215824/full
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2023.1215824/full
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2023.1215824/full

BIBLIOGHAPHY

[10]

[11]

[12]

Three generations of artificial neural networks (ANNs). MLP, multilayer...
| Douwnload Scientific Diagram. en. URL: https://www.researchgate.net/
figure/Three-generations-of —artificial -neural -networks - AllNs -
MLP-multilayer-perceptron-MP_fig2 339481763 (visited on 07/31,/2024)
(cit. on p. 2).

Michelangelo Barocci, Vittorio Fra, Enrico Macii, and Gianvito Urgese. «Re-
view of open neuromorphic architectures and a first integration in the RISC-V
PULP platform». In: 2023 IEEE 16th International Symposium on Embed-
ded Multicore/Many-core Systems-on-Chip (MCSoC). ISSN: 2771-3075. Dec.
2023, pp. 470-477. por: 10.1109/MCSoC60832 . 2023 . 00076. URL: https:
//1eeexplore.ieee.org/document /10387816 (visited on 08/04,/2024) (cit.
on pp. 3, 29).

Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. «Spiker: an
FPGA-optimized Hardware accelerator for Spiking Neural Networkss. In:
2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). July
2022, pp. 14-19. por: 10.1109/ISVLSI54635.2022.00016 (cit. on p. 3).

Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. Spiker+: a
framework for the generation of efficient Spiking Neural Networks FPGA
accelerators for inference at the edge. Jan. 2024. DOI: 10.48550/arXiv.2401.
01141. URL: http://arxiv.org/abs/2401.01141 (visited on 01,/26,/2024)
(cit. on p. 3).

Dario Padovano, Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo.
«sSpikeExplorer: Hardware-Oriented Design Space Exploration for Spiking
Neural Networks on FPGA». en. In: Electronics 13.9 (Jan. 2024), p. 1744.
135N: 2079-9292. poI: 10.3390/electronics13091744. URL: https://www.
mdpi . com/2079-9292/13/9/1744 (visited on 09/06,/2024) (cit. on p. 3).

Germain Haessig, Francesco Galluppi, Xavier Lagorce, and Ryad Benosman.
¢ Neuromorphic networks on the SpiNNaker platformy . In: 2019 IEEE Inter-
national Conference on Artificial Intelligence Circuits and Systems (AICAS).
Mar. 2019, pp. 86-91. por: 10.1109 /AICAS . 2019.8771512. URL: https:
//1eeexplore.ieee.org/document/8771512 (visited on 08,/04,/2024) (eit.
on p. 3).

Peter Alfke, Ivo Bolsens, Bill Carter, Mike Santarini, and Steve Trimberger.
«It's an FPGA!» In: IEEFE Solid-State Circuits Magazine 3.4 (2011). Confer-
ence Name: [EEE Solid-State Circuits Magazine, pp. 15-20. 1835N: 1943-0590.
Dol 10.1109/MSSC. 2011 .942449. URL: https://ieeexplore.icee.org/
document /6069771 (visited on 08/10/2024) (cit. on p. 5).

60

https://www.researchgate.net/figure/Three-generations-of-artificial-neural-networks-ANNs-MLP-multilayer-perceptron-MP_fig2_339481763
https://www.researchgate.net/figure/Three-generations-of-artificial-neural-networks-ANNs-MLP-multilayer-perceptron-MP_fig2_339481763
https://www.researchgate.net/figure/Three-generations-of-artificial-neural-networks-ANNs-MLP-multilayer-perceptron-MP_fig2_339481763
https://doi.org/10.1109/MCSoC60832.2023.00076
https://ieeexplore.ieee.org/document/10387816
https://ieeexplore.ieee.org/document/10387816
https://doi.org/10.1109/ISVLSI54635.2022.00016
https://doi.org/10.48550/arXiv.2401.01141
https://doi.org/10.48550/arXiv.2401.01141
http://arxiv.org/abs/2401.01141
https://doi.org/10.3390/electronics13091744
https://www.mdpi.com/2079-9292/13/9/1744
https://www.mdpi.com/2079-9292/13/9/1744
https://doi.org/10.1109/AICAS.2019.8771512
https://ieeexplore.ieee.org/document/8771512
https://ieeexplore.ieee.org/document/8771512
https://doi.org/10.1109/MSSC.2011.942449
https://ieeexplore.ieee.org/document/6069771
https://ieeexplore.ieee.org/document/6069771

BIBLIOGHAPHY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Moore’s law. en. Page Version ID: 1238717785. Aug. 2024. URL: https://en.
wikipedia.org/w/index.php7title=Moore}27s_lawkoldid=1238717785
(visited on 08/10/2024) (cit. on p. 6).

Daniel Nenni, Paul McLellan, and Cliff Hou. Fabless: The Transformation
of the Semiconductor Industry. Inglese. www.SemiWiki.com, Apr. 2014. URL:
https://semiwiki . com/books /Fabless202019%20Version20PDF . pdf
(visited on 08/12/2024) (cit. on p. 6).

David A. Patterson and David R. Ditzel. « The case for the reduced instruction
set computers. In: SIGARCH Comput. Archit. News 8.6 (1980), pp. 25-33.
ISSN: 0163-5964. poL: 10.1145/641914.641917. URL: https://dl.acm.org/
do1/10.1145/641914.641917 (visited on 08,/18/2024) (cit. on p. 10).

W.G. Alexander and D.B. Wortman. «Static and Dynamic Characteristics of
XPL Programs». In: Computer 8.11 (Nov. 1975). Conference Name: Computer,
pp- 41-46. 1SsN: 1558-0814. por: 10.1109/C-M. 1975.218804. URL: https:
//1eeexplore.ieee.org/document/1649280 (visited on 08,/19/2024) (ecit.
on p. 11).

Andrew S. Tanenbaum. «Implications of structured programming for machine
architecture» . In: Commun. ACM 21.3 (Mar. 1978), pp. 237-246. 1ssN: 0001-
0782. por: 10.1145/359361 .359454. URL: https://dl.acm.org/doi/10.
1145/359361.359454 (visited on 08/18,/2024) (cit. on p. 11).

Weiss and Smith. «Instruction Issue Logic in Pipelined Supercomputerss. In:
IEEE Transactions on Computers C-33.11 (Nov. 1984). Conference Name:
IEEE Transactions on Computers, pp. 1013-1022. 158N: 1557-9956. por: 10.
1109/TC. 1984 .1676375. URL: https://ieecexplore.ieee.org/document/
1676375 (visited on 08/19/2024) (cit. on p. 12).

Classic RISC pipeline. en. Page Version ID: 1191069658. Dec. 2023. URL:
https://en.wikipedia.org/w/index.php?title=Classic_RISC_pipelin
eko01did=1191069658 (visited on 08/19/2024) (cit. on p. 12).

J.E. Smith and A .R. Pleszkun. «Implementing precise interrupts in pipelined
processorsy. In: IEEE Transactions on Computers 37.5 (May 1988). Confer-
ence Name: IEEE Transactions on Computers, pp. 562-573. 18sN: 1557-9956.
DoL: 10.1109/12.4607. URL: https: //ieeexplore.ieece.org/document/
4607 (visited on 08/19/2024) (cit. on p. 12).

Dileep Bhandarkar and Douglas W. Clark. «Performance from architecture:
comparing a RISC and a CISC with similar hardware organization». In:
Proceedings of the fourth international conference on Architectural support for
programming languages and operating systems. ASPLOS IV. New York, NY,
USA: Association for Computing Machinery, Apr. 1991, pp. 310-319. ISBN:

61

https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=1238717785
https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=1238717785
https://semiwiki.com/books/Fabless%202019%20Version%20PDF.pdf
https://doi.org/10.1145/641914.641917
https://dl.acm.org/doi/10.1145/641914.641917
https://dl.acm.org/doi/10.1145/641914.641917
https://doi.org/10.1109/C-M.1975.218804
https://ieeexplore.ieee.org/document/1649280
https://ieeexplore.ieee.org/document/1649280
https://doi.org/10.1145/359361.359454
https://dl.acm.org/doi/10.1145/359361.359454
https://dl.acm.org/doi/10.1145/359361.359454
https://doi.org/10.1109/TC.1984.1676375
https://doi.org/10.1109/TC.1984.1676375
https://ieeexplore.ieee.org/document/1676375
https://ieeexplore.ieee.org/document/1676375
https://en.wikipedia.org/w/index.php?title=Classic_RISC_pipeline&oldid=1191069658
https://en.wikipedia.org/w/index.php?title=Classic_RISC_pipeline&oldid=1191069658
https://doi.org/10.1109/12.4607
https://ieeexplore.ieee.org/document/4607
https://ieeexplore.ieee.org/document/4607

BIBLIOGHAPHY

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

978-0-80791-380-5. por: 10.1145/106972.107003. URL: https://dl.acm.
org/doi/10.1145/106972.107003 (visited on 08,/19/2024) (cit. on p. 12).

David A. Patterson and Carlo H. Sequin. « RISC I: A Reduced Instruction Set
VLSI Computers. In: Proceedings of the 8th annual symposium on Computer
Architecture. ISCA '81. Washington, DC, USA: [EEE Computer Society Press,
1981, pp. 443-457. (Visited on 08,/19/2024) (cit. on p. 12).

History — RISC-V International. en-US. URL: https://riscv.org/about/
history/ (visited on 08/26/2024) (cit. on p. 15).

Krste Asanovié and David A. Patterson. Instruction Sets Should Be Free: The
Case For RISC-V. Tech. rep. UCB/EECS-2014-146. Aug. 2014. URL: http:
//www2 .eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146 . html
(eit. on p. 15).

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovié.
The RISC-V Instruction Set Manual, Volume I: Base User-Level I54. Tech.
rep. UCB/EECS-2011-62. May 2011. URL: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2011/EECS-2011-62.html (cit. on p. 15).

Frank K Giirkaynak and Luca Benini. «10 years of making PULP chips». en.
In: () (cit. on p. 17).

Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Alfio Di Mauro,
Francesco Conti, and Luca Benini. « Quentin: an Ultra-Low-Power PULPissimo
SoC in 22nm FDX». In: 2018 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S). 2018, pp. 1-3. Dor: 10.1109/535.2018.
8640145 (cit. on p. 19).

Getting started with PULP: SW point of view. URL: https://pulp-platform.
org/pulp_sw.html (visited on 09/30,/2024) (cit. on p. 20).

pulp-platform /pulp-sdk. original-date: 2018-02-07T12:22:18Z. Sept. 2024. URL:
hteps: //github. com/pulp-platform/pulp-sdk (visited on 09/23/2024)
(cit. on p. 19).

Nazareno Bruschi, Germain Haugou, Giuseppe Tagliavini, Francesco Conti,
Luca Benini, and Davide Rossi. «GVSoC: A Highly Configurable, Fast and
Accurate Full-Platform Simulator for RISC-V based [oT Processorsy. In:
2021 IEEE 39th International Conference on Computer Design (ICCD).
arXiv:2201.08166 [cs, eess|. Oct. 2021, pp. 409-416. por: 10.1109/ICCDE3
106.2021.00071. URL: http://arxiv.org/abs /2201 .08166 (visited on
09/24,/2024) (cit. on p. 21).

62

https://doi.org/10.1145/106972.107003
https://dl.acm.org/doi/10.1145/106972.107003
https://dl.acm.org/doi/10.1145/106972.107003
https://riscv.org/about/history/
https://riscv.org/about/history/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html
https://doi.org/10.1109/S3S.2018.8640145
https://doi.org/10.1109/S3S.2018.8640145
https://pulp-platform.org/pulp_sw.html
https://pulp-platform.org/pulp_sw.html
https://github.com/pulp-platform/pulp-sdk
https://doi.org/10.1109/ICCD53106.2021.00071
https://doi.org/10.1109/ICCD53106.2021.00071
http://arxiv.org/abs/2201.08166

BIBLIOGHAPHY

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

David Patterson, Joseph Gonzalez, (Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. Carbon
Emissions and Large Neural Network Training. arXiv:2104.10350 [cs]. Apr.
2021. por: 10.48550/arXiv.2104.10360. URL: http://arxiv. org/abs/
2104.10350 (visited on 09/04,/2024) (cit. on p. 22).

Jason K. Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu.
Training Spiking Neural Networks Using Lessons From Deep Learning. en. Sept.
2021. URL: https://arxiv.org/abs/2109.12894v6 (visited on 09/07,/2024)
(cit. on p. 22).

«Fig. 1: Biomimetic neuromorphic computing. | Nature Communicationss.
en. In: (). URL: https://www.nature. com/articles/s41467-021-22332-
8/figures/1 (visited on 09/07,/2024) (cit. on p. 23).

A. L. Hodgkin and A. F. Huxley. «A quantitative description of membrane
current and its application to conduction and excitation in nerves. In: The
Journal of Physiology 117.4 (Aug. 1952), pp. 500-544. 18sN: 0022-3751. URL:
https://www.ncbi.nlm.nih.gov/pnc/articles/PMC1392413/ (visited on
09/24/2024) (cit. on p. 27).

E.M. Izhikevich. «Simple model of spiking neuronss. In: [EEE Transactions
on Neural Networks 14.6 (Nov. 2003). Conference Name: IEEE Transactions
on Neural Networks, pp. 1569-1572. 1ssN5: 1941-0093. por1: 10.1109/TNN.
2003.820440. URL: https: //ieeexplore. icee . org/document /1257420
(visited on 09/24,/2024) (cit. on p. 27).

Richard FitzHugh. «Mathematical models of threshold phenomena in the
nerve membraney. In: The bulletin of mathematical biophysics 17 (1955).
Publisher: Springer, pp. 257-278 (cit. on p. 27).

Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. «An active pulse
transmission line simulating nerve axony». In: Proceedings of the IRE 50.10
(1962). Publisher: IEEE, pp. 2061-2070 (cit. on p. 27).

Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. XNOR Newural
Engine: a Hardware Accelerator IP for 21.6 fJ/op Binary Neural Network
Inference. en. July 2018. por1: 10.1109/TCAD . 2018 .2857019. URL: https:
//arxiv.org/abs/1807.03010v1 (visited on 10/05/2024) (cit. on pp. 28,
34).

Antonio Pullini, Davide Rossi, Igor Loi, Giuseppe Tagliavini, and Luca Benini.
«Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for
10T Edge Processingy. In: IEEE Journal of Solid-State Circuits 54.7 (July
2019). Conference Name: IEEE Journal of Solid-State Circuits, pp. 1970
1981. 18sN: 1558-173X. por: 10.1109/J38C. 2019.2912307. URL: https://

63

https://doi.org/10.48550/arXiv.2104.10350
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2109.12894v6
https://www.nature.com/articles/s41467-021-22332-8/figures/1
https://www.nature.com/articles/s41467-021-22332-8/figures/1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://ieeexplore.ieee.org/document/1257420
https://doi.org/10.1109/TCAD.2018.2857019
https://arxiv.org/abs/1807.03010v1
https://arxiv.org/abs/1807.03010v1
https://doi.org/10.1109/JSSC.2019.2912307
https://ieeexplore.ieee.org/document/8715500/citations#citations
https://ieeexplore.ieee.org/document/8715500/citations#citations

BIBLIOGHAPHY

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

ieeexplore.ieee.org/document,/8715500/citations#citations (visited
on 10/05,/2024) (cit. on p. 29).

Charlotte Frenkel and Giacomo Indiveri. «ReckOn: A 28nm Sub-mm2 Task-
Agnostic Spiking Recurrent Neural Network Processor Enabling On-Chip
Learning over Second-Long Timescaless. In: 2022 IEEE International Solid-
State Circuits Conference (ISSCC). Vol. 65. ISSN: 2376-8606. Feb. 2022, pp. 1-
3. por: 10.1109/I53CC42614 .2022.9731734. URL: https://ieeexplore.
ieee.org/document /9731734 (visited on 10/05,/2024) (cit. on p. 29).

pulp-platform /pulpissimo. original-date: 2018-02-09T10:24:02Z. Aug. 2024.
URL: https : / /github . com/ pulp - platform / pulpissimo (visited on
08/31,/2024) (cit. on p. 30).

Zyng UltraScale+ MPSoC ZCU102 Evaluation Kit. en. URL: https://www.
x1linx.com/products/boards-and-kits/ek-ul-zcul02-g.html (visited
on 08/31,/2024) (cit. on p. 31).

PULP Platform. A Deep Dive into HW/SW Development with PULP - Part 1.
Mar. 2021. URL: https://www.youtube.com/watch?v=B7BtaYh3VqI (visited
on 09/03,/2024) (cit. on pp. 35, 36).

PULP Platform. A Deep Dive into HW/SW Development with PULP - Part 2.
Mar. 2021. URL: https://www.youtube.com/watch?v=0GdsS2hq0zM (visited
on 09/03,/2024) (cit. on p. 37).

«ZCU102 Evaluation Board User Guide». en. In: (2023). URL: https://docs.
amd . com/v/u/en-US/ugl182-zcul02-eval-bd (cit. on p. 41).

pulp-platform/bender. original-date: 2018-05-17T08:24:217. Sept. 2024. URL:
hteps : //github . com/pulp-platform/bender (visited on 10/06,/2024)
(cit. on p. b5).

reggen & regtool: Register Generator - OpenT'itan Documentation. URL: https:
//opentitan . org/book/util/reggen/ (visited on 10/06/2024) (cit. on
p. 56).

64

https://ieeexplore.ieee.org/document/8715500/citations#citations
https://ieeexplore.ieee.org/document/8715500/citations#citations
https://ieeexplore.ieee.org/document/8715500/citations#citations
https://doi.org/10.1109/ISSCC42614.2022.9731734
https://ieeexplore.ieee.org/document/9731734
https://ieeexplore.ieee.org/document/9731734
https://github.com/pulp-platform/pulpissimo
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.youtube.com/watch?v=B7BtaYh3VqI
https://www.youtube.com/watch?v=0GdsS2hq0zM
https://docs.amd.com/v/u/en-US/ug1182-zcu102-eval-bd
https://docs.amd.com/v/u/en-US/ug1182-zcu102-eval-bd
https://github.com/pulp-platform/bender
https://opentitan.org/book/util/reggen/
https://opentitan.org/book/util/reggen/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivations
	State-of-the-art
	Contribution

	Background
	FPGA
	History
	Working principle

	Reduced Instruction Set Computer
	More complex more power?
	RISC: changing of approach
	How it works?
	RISC-V

	Parallel Ultra Low Power Platform
	Software development kit

	Spiking Neural Network
	Biological network model
	Neuron model

	Related work
	Preliminary work
	FPGA programming
	ZCU-102
	PULPissimo repository
	Environment setup

	Hardware designing
	Wide ALU example

	Software developing
	RISC-V programming

	Methods
	Results
	Software simulation
	FPGA implementation

	Bender
	Regtool
	Bibliography

