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Abstract

The extensive documentation required during the early phases of space mis-
sion design, which must be reviewed and analyzed by systems engineers, of-
ten slows down the design process. Given the time-intensive nature of this
stage, integrating a Virtual Assistant (VA) can significantly enhance the ef-
ficiency of information retrieval. Recent advancements in Natural Language
Processing (NLP), particularly the development of Large Language Mod-
els (LLMs), have created opportunities for non-invasive question-answering
VAs. However, the limited technical knowledge of LLMs in the space do-
main and their lack of up-to-date information pose significant challenges
for real-world applications. Retrieval-Augmented Generation (RAG) offers
a solution by incorporating an external knowledge source, from which a re-
triever selects the most relevant information based on the user’s query. In
this thesis, we enhance the retriever component by fine-tuning it on space-
domain data using supervised and Multi-Task Learning (MTL) approaches,
demonstrating how improvements in the retriever impact the performance
of the generator. In the MTL setting, we combined supervised with self-
supervised tasks showing how the network benefits from the addition of
complementary tasks. Finally, we tested the enhanced RAG pipeline during
a Concurrent Engineering (CE) session at the Argotec Advanced Concept
Laboratory (ACLab), yielding promising results in a real-world scenario.

Keywords: Large Language Models, Multi-Task Learning, Information
Retrieval, Concurrent Engineering



Contents

1 Introduction 8

2 Related works 11
2.1 AI for Space Mission Design . . . . . . . . . . . . . . . . . . 11
2.2 Transformer-based Models and Augmentation . . . . . . . . 12
2.3 Fine-tuning of embedding models . . . . . . . . . . . . . . . 14

3 Retrieval-Augmented Generation 16
3.1 Overview of the RAG pipeline . . . . . . . . . . . . . . . . . 16
3.2 Transformer-based models . . . . . . . . . . . . . . . . . . . 17

3.2.1 The Attention Mechanism . . . . . . . . . . . . . . . 17
3.2.2 Positional Embeddings . . . . . . . . . . . . . . . . . 19
3.2.3 The Transformer . . . . . . . . . . . . . . . . . . . . 19

3.3 Retrieval phase . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 BERT Architecture . . . . . . . . . . . . . . . . . . . 22
3.3.2 Sentence Transformers . . . . . . . . . . . . . . . . . 23
3.3.3 Back to RAG: Retriever . . . . . . . . . . . . . . . . 24

3.4 Generation phase . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 The Llama family . . . . . . . . . . . . . . . . . . . . 27
3.4.2 The Mistral family . . . . . . . . . . . . . . . . . . . 28

3.5 RAG systems . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Pre-retrieval stage . . . . . . . . . . . . . . . . . . . 29
3.5.2 Post-retrieval stage . . . . . . . . . . . . . . . . . . . 30
3.5.3 Pipeline rearrangements . . . . . . . . . . . . . . . . 30

4 Embedding model fine-tuning 32
4.1 Supervised . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Multiple Negative Ranking Loss . . . . . . . . . . . . 32
4.2 Self-supervised . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 TSDAE . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Unsupervised SimCSE . . . . . . . . . . . . . . . . . 35
4.2.3 Contrastive Tension . . . . . . . . . . . . . . . . . . . 35

4.3 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Multi-Task Auxiliary Learning . . . . . . . . . . . . . 37

CONTENTS 2



CONTENTS

5 Experiments 39
5.1 Knowledge Base and Datasets . . . . . . . . . . . . . . . . . 39
5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Retriever Metrics . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Generator Metrics . . . . . . . . . . . . . . . . . . . 43

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . 48

5.4.1 Embedding models fine-tuning . . . . . . . . . . . . . 48
5.4.2 Impact of scale factor in MTL . . . . . . . . . . . . . 48
5.4.3 Impact of training set size . . . . . . . . . . . . . . . 49
5.4.4 Generator evaluation . . . . . . . . . . . . . . . . . . 52
5.4.5 Real case scenario on mission design . . . . . . . . . 52

6 Conclusion 55

A Appendix title 57
A.1 Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.1 Prompts for QA generation . . . . . . . . . . . . . . 57
A.1.2 Prompt for the RAG generator . . . . . . . . . . . . 58
A.1.3 Prompts to assess RAG generator . . . . . . . . . . . 59

A.2 Results on real case scenario . . . . . . . . . . . . . . . . . . 61

CONTENTS 3



Acronyms

ACLab Advanced Concepts Laboratory.

AI Artificial Intelligence.

ANN Approximate Nearest Neighbor.

BGE BAAI General Embedding.

CA Cross-attention.

CE Concurrent Engineering.

CT Contrastive Tension.

HNSW Hierarchical Navigable Small World.

IR Information Retrieval.

KB Knowledge Base.

LLM Large Language Model.

MHA Multi-head Attention.

MLM Masked Language Modeling.

MNRL Multiple Negative Ranking Loss.

MTAL Multi-Task Auxiliary Learning.

MTL Multi-Task Learning.

NLP Natural Language Processing.

NSP Next Sentence Prediction.

OCR Optical Character Recognition.

PLM Pre-trained Language Model.

Acronyms 4



Acronyms

RAG Retrieval-augmented Generation.

SA Self-attention.

SWA Sliding Window Attention.

VA Virtual Assistant.

Acronyms 5



List of Figures

1.1 ACLab high-level methodology together with the task prior-
itization and RAG integrations. . . . . . . . . . . . . . . . . 10

2.1 A high-level overview of the RAG process applied to question
answering [42]. . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 The workflow of the RAG process, highlighting the offline
and online stages. . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The encoder block architecture. . . . . . . . . . . . . . . . . 19
3.3 Simplified version of the transformer architecture. . . . . . . 21
3.4 Pre-training and fine-tuning procedures for BERT [11] . . . 23
3.5 Training objective functions for Sentence-BERT. . . . . . . . 24
3.6 Retriever offline stage: (1) Chunking of the documents, (2)

Compute sentence embeddings, and (3) store and index em-
beddings and metadata in a vector database. . . . . . . . . . 25

3.7 Comparison between the traditional attention mechanism and
the SWA [44]. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Comparison of the bi-encoder and cross-encoder architectures. 30
3.9 Three types of RAG pipelines (iterative, recursive, and adap-

tive) [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Computation of similarity in the MNRL. On the diagonal,
there are the positive pairs that ideally should have the high-
est values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Architecture of TSDAE [33]. . . . . . . . . . . . . . . . . . . 34
4.3 Unsupervised SimCSE architecture [31]. . . . . . . . . . . . 35
4.4 Architecture of CT [29]. . . . . . . . . . . . . . . . . . . . . 36

5.1 Workflow for synthetic QA generation. . . . . . . . . . . . . 40
5.2 Performance variation for the bge-base model versus the scal-

ing factor variation on the TSDAE task in MTL. . . . . . . 50
5.3 Performance variation for the bge-base model versus different

training set sizes for supervised fine-tuning. . . . . . . . . . . 51

LIST OF FIGURES 6



List of Tables

5.1 Groundedness and standalone scores provided by the Prometheus
2 judge model on synthetically generated samples. . . . . . . 40

5.2 Split of train, validation, and test sets for the qap triples and
sentences datasets. . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Comparison of IR metrics between baseline (B) models, and
fine-tuned models, supervised-only (S) and MTL (M). Where
the embedding dimension is not specified the model’s original
one is intended. . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Comparison between the MTL setting with different self-
supervised tasks (TSDAE, SimCSE, CT). . . . . . . . . . . . 52

5.5 Impact of the best embedding model (snowflake-arctic-embed-
l) on generators performance. . . . . . . . . . . . . . . . . . 53

5.6 Impact of the bge-base embedding model on generators per-
formance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 Human evaluation on four criteria (coverage, consistency, cor-
rectness, and clarity, of the responses generated by the RAG
pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Samples of questions, generated answers, and reference an-
swers from the 16 questions of the mission design study. . . . 54

A.1 Mean scores for each question in the real case scenario test
on the coverage, consistency, correctness, and clarity metrics. 61

LIST OF TABLES 7



Chapter 1

Introduction

Space mission design is a challenging problem for several reasons; among
those, there is a substantial volume of documentation involved in the design
process that has to be analyzed and studied by systems engineers. This task
is strongly time-consuming but essential during trade-space exploration and
early phase design. To optimize this process, different studies [13, 18, 35]
have proposed virtual assistants (VAs), which are helpful in knowledge man-
agement of the aerospace sector, leveraging Machine Learning and Natural
Language Processing (NLP) methods.

The NLP field has garnered significant attention in recent years, pri-
marily due to the rise of Large Language Models (LLMs). These advanced
models demonstrate exceptional capabilities in understanding and generat-
ing human-like text, and their versatility extends to solving a wide range
of tasks. Thus LLMs are becoming the first building block for creating an
artificial general intelligence that can take to the next step the development
of new VAs. These VAs can provide context-aware, precise, and efficient
support, thereby significantly enhancing productivity and decision-making
processes.

One sector where LLM-based virtual assistants could make a substantial
impact is within the framework of concurrent engineering (CE), a method-
ology that is becoming increasingly prevalent in space mission design. CE
facilitates efficient and effective mission design through real-time collabo-
rative design sessions involving multi-disciplinary teams. This stands in
contrast to the traditional sequential approach, which often leads to delays,
and inconsistencies: indeed, in the conventional method, each specialist de-
velops a subsystem design independently, which restricts the potential for
interdisciplinary solutions and significantly increases the time required to
conduct comprehensive studies.

The significance of a robust software infrastructure in the concurrent
engineering approach cannot be neglected. According to [2], having a well-
integrated software system is a critical component of CE. Within this con-
text, the integration of a virtual assistant can add substantial value to the
process, particularly as a documentation support system. Given the vast
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CHAPTER 1. INTRODUCTION

amount of internal and external documentation involved in space mission
design, investing in an efficient Information Retrieval (IR) system becomes
crucial. Such a system would enable quick and precise searches for spe-
cific information, thereby streamlining the design process and enhancing
the overall efficiency of concurrent engineering efforts.

Argotec, an Italian aerospace engineering company, is currently im-
plementing a CE framework, called the Advanced Concepts Laboratory
(ACLab) to improve the efficiency and effectiveness of its processes for
mission formulation and design. Along with building the ACLab facil-
ity, Argotec is investing in novel approaches to further improve the effi-
ciency of the design process; among those, there is the development of a
Retrieval-Augmented Generation (RAG) [26] pipeline to support IR during
the trade-space exploration and early phase design and the design of a task
prioritization approach to estimate the time required for various tasks and
plan the CE sessions.

RAG addresses several key issues of standalone LLMs, including the
problem of hallucination, the need for domain-specific accuracy, and the
requirement for up-to-date information. It works by combining a retriever
model, which searches a Knowledge Base (KB) to find relevant documents,
with a generator model that uses this retrieved information to produce more
accurate and contextually appropriate responses. This approach ensures
that the generated text is grounded in real data, enhancing reliability and
relevance, especially in specialized fields like aerospace.

Figure 1.1 shows the high-level workflow of the ACLab methodology,
together with the task prioritization and RAG integrations. Before starting
the study, the ACLab workflow requires iterations with the client to consoli-
date or define the study’s objectives and constraints. This step is crucial for
a better understanding of the client’s needs and to avoid studies with unclear
objectives. Once the study is approved, a study lead is assigned. The study
lead is responsible for understanding the client’s requests, preparing the
study, and guiding discussions during the sessions. During this preparatory
phase, the study lead identifies the required areas of expertise, assembles the
team, and plans the sessions. A task prioritization approach is used to help
the study lead plan the sessions and allocate resources effectively. After the
study preparation, the design sessions can begin. The preparatory phase is
concluded with the mission objectives flow-down, while the first in-session
stage corresponds to trade space exploration, in particular concepts gen-
eration and selection. During this phase, engineers can leverage the RAG
knowledge base to quickly find information useful for the design. Finally,
the point design phase consists of the actual design of the previously ex-
plored concepts. It is relevant to note that the study report produced at the
end of the CE sessions is given in input to the KB, keeping the architecture
knowledge constantly up-to-date.

The aim of this thesis is the development of a RAG pipeline tailored
for space-related data, with particular emphasis on improving the retriever

9



CHAPTER 1. INTRODUCTION

Figure 1.1: ACLab high-level methodology together with the task prioriti-
zation and RAG integrations.

component by fine-tuning the embedding model for domain adaptation in
the aerospace sector. Besides the traditional supervised and self-supervised
methods, we have also explored multi-task learning approaches. The work is
organized as follows: in chapter 2 related works on the NLP domain and on
the development of previous VAs in the space domain are discussed; chapter
3 describes in detail how the RAG pipeline works, starting from an overview
of the working principle of transformer-based models, and then focusing on
the retrieval and generation stages; chapter 4 is dedicated to fine-tuning of
the embedding model; chapter 5 shows the experimental setup, the experi-
ments and the obtained results; finally, in the last chapter the conclusions
are drawn.

10



Chapter 2

Related works

This chapter focuses on a description of related works; starting with the
analysis of previous VAs in the space domain, we move to an overview of
the recent advancements in the NLP fields and then we focus on fine-tuning
methods of embedding models.

2.1 AI for Space Mission Design

The integration of Artificial Intelligence (AI) in the design and analysis of
space missions is a growing area of research, particularly focusing on improv-
ing the efficiency and capabilities of CE. Several projects have explored the
use of AI-powered virtual assistants to aid engineers during spacecraft mis-
sion design. Among those, the most recent and promising are Daphne [18],
the Design Engineering Assistant (DEA) [13] and SpaceQA [35]. Daphne
is a virtual assistant for designing Earth observation distributed spacecraft
missions. Its comprehensive question-answering system and cognitive assis-
tance features were assessed through a study at NASA’s JPL involving nine
people. The findings suggest that Daphne can improve performance during
system design tasks compared to traditional tools. The system follows a mi-
croservices approach and it consists of three main parts: a web front-end, a
front-end server (called the Daphne Brain) that directs all user requests to
the third part, the roles, which are software snippets that interface with dif-
ferent backends and data sources. In [13] is shown how the field of knowledge
representation and reasoning can be successfully employed at the start of
the space mission life cycle via an expert system used as a DEA, especially
during CE sessions. It emphasizes the utility of converting unstructured
data into structured data to be stored into a knowledge graph; the KG can
be used by an inference engine to support the generation of initial design
inputs and provide easy and quick access to previous designs. This study
makes use of ontology learning methods to automate the knowledge base
generation and population. SpaceQA is an open-domain question-answering
system specifically designed for space mission design. Developed under ESA
initiative, SpaceQA utilizes an architecture combining a dense retriever and

11
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a neural reader, following the same workflow of a RAG pipeline. Due to
the scarcity of domain-specific annotated data, the work relies on transfer
learning rather than fine-tuning. Preliminary evaluations indicate the ef-
fectiveness of this generative IR system in facilitating access to information
about space mission design.

Collectively, these works underscore the transformative potential of AI-
driven tools in streamlining and augmenting the complex processes involved
in space mission design, paving the way for more efficient and informed
decision-making within concurrent design facilities.

2.2 Transformer-based Models and Augmen-

tation

The invention of the transformer architecture [10] marked an important
milestone in the NLP field. Indeed, with respect to previous neural lan-
guage models [6], [8], [7], allows more parallelization making it possible to
pre-train very big language models on a large amount of data on GPUs.
Transformer relies entirely on self-attention enabling the capture of long-
range dependencies between tokens.

The Transformer-based Pre-trained Language Models (PLMs) can be
grouped into three categories based on the arrangement of the encoder and
decoder components. The encoder-decoder, or sequence-to-sequence cate-
gory, presented in the original paper to tackle machine translation tasks,
takes the input sequence from the encoder and produces a fixed-size vector
representation of it, which is fed into the decoder to generate the output
sequence. Additionally to self-attention, the decoder uses cross-attention
to apply the attention mechanism to the output of the decoder and the
input of the decoder. Popular PLMs in this category are T5 [27] and BART
[16]. Encoder-only, or autoencoding models, are primarily used for language
understanding tasks, such as text-classification and sentence-pair regression
tasks. The most popular transformer model of this category is BERT [11],
which is the starting point of other variants such as RoBERTa [17], AL-
BERT [15], and DeBERTa [25]. Unlike the encoder-decoder architecture,
the transformer encoder is only concerned with the input sequence and does
not generate any output sequence. It applies self-attention mechanism to
the input tokens, allowing it to focus on the most relevant parts of the input
for the given task. Finally, decoder-only, or autoregressive models, are suit-
able for text generation tasks since they leverage on prior tokens to predict
the next token iteratively. The most widely used models of this category
are the ones of the GPT family ([14], [19], [23], [40]). Among the autore-
gressive models, are worth mentioning the open-source LLaMA and Mistral
families which achieve comparable results with the proprietary models of
OpenAI, allowing domain-specific research and usage from companies that
are constrained by privacy requirements.

2.2. TRANSFORMER-BASED MODELS AND AUGMENTATION 12
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Figure 2.1: A high-level overview of the RAG process applied to question
answering [42].

Even if the most recent LLMs proved high capabilities in terms of world
knowledge they are still affected by limitations, that depending on the use
case, require augmentation with some external means. Indeed, LLMs have
stale information meaning that their knowledge is limited to the data present
in the training set. As a result, their knowledge is limited to the time when
they were trained. Moreover, LLMs are trained to predict the next to-
ken from a probability distribution without sensing the truthfulness of the
generated output, resulting in plausible but misleading answers: this phe-
nomenon is called “hallucination”. This problem has been deeply analyzed
in [43].

To address the limitation of the lack of up-to-date knowledge or access
to private or specific information, particularly useful for enterprise usage of
LLMs, RAG comes into play [26]. An overview of RAG is shown in Figure
2.1.

The idea behind RAG is to combine the parametric memory of a PLM
with an external source of non-parametric memory. The process involves
extracting a query from the input prompt and using that query to retrieve
relevant information from an external knowledge source. The relevant infor-
mation is extracted based on the semantic similarity between the sentence
embeddings, created by a sentence transformer model [20], of the query and
the documents in the knowledge base. The retrieved relevant information
is then added to the original prompt and fed to the generator in order to
generate the final response. This approach is the most simplistic one and is
defined Naive RAG [42].

From the naive implementation [59] reports several enhancements that
can be applied to the different components of the pipeline: input, retriever,
generator, and the entire pipeline. When RAG is used on domain-specific

2.2. TRANSFORMER-BASED MODELS AND AUGMENTATION 13
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and technical data (e.g. medical, space, biology, etc) it is worth performing
a fine-tuning of the architecture. In [26] the pipeline is trained end-to-
end, specifically fine-tuning the query encoder and the generator. In [47] is
explored a joint training of the entire retriever (query encoder and passage
encoder) showing promising results but with a high computational cost.
However, they achieved improvements by fine-tuning the retriever alone on
domain-specific data. Given the high performances and the big size of the
latest LLMs, training the entire pipeline is computationally demanding; for
this reason, focusing on the fine-tuning of the embedding model used in
the retrieval stage on domain-specific data is a reasonable trade-off between
computational cost and improvement of the pipeline.

2.3 Fine-tuning of embedding models

The most used approaches for fine-tuning embedding models heavily rely
on labeled data. In [20] propose three different objectives to update the
model weights such that the produced sentence embeddings are semanti-
cally meaningful. The classification objective function concatenates two
sentence embeddings with their element-wise difference multiplied by the
trainable weight and finally optimizes the cross-entropy loss; the regression
objective function computes the cosine-similarity between two sentence em-
beddings and uses the mean-squared error loss as the objective function to
be minimized; finally, the triplet objective function is based on an anchor,
a positive and a negative sentence and minimizes the distance between the
anchor and the positive such that their distance is smaller than the distance
between the anchor and the negative sentence. In [9] present an effective
loss function, called Multiple Negative Ranking Loss (MNRL), when work-
ing only on positive pairs; if training an embedding model for retrieval the
positive pairs can be the query and the relevant passage.

Although the supervised learning approach is the most effective, the
scarcity of domain-specific labeled data makes it necessary to leverage self-
supervised training methods. One of the most popular is Masked Language
Modeling (MLM), the same task used to pre-train BERT, which consists of
minimizing the cross-entropy loss on predicting randomly masked tokens. In
[33] is shown the effectiveness of MLM for domain adaptation and presents
TSDAE that works as a reconstruction task: a noise is added to the input
sequence, like the deletion of random words, then the damaged sentences
are encoded, and then reconstructed into the original form. SimCSE [31]
explores a contrastive learning approach that takes an input sequence and
predicts itself in a contrastive objective, with only standard dropout used
as noise.

Finally, [29] introduces a method called Contrastive Tension (CT). CT
builds two independent encoders initialized with the same weights and uses
them to encode sentences. The method is based on the finding that if the
two models encode the same sentence then the dot product should be large,

2.3. FINE-TUNING OF EMBEDDING MODELS 14
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and small otherwise.
An alternative approach that is deeply analyzed in [30] is Multi-Task

Learning (MTL); of particular interest for the purpose of this thesis is aux-
iliary MTL where auxiliary tasks are introduced to improve the performance
of a primary task. Moreover, the survey shows different methods for the loss
construction for MTL; for example, proposes to combine losses by assigning
different weights to each of them, making some tasks prevalent compared
to others.

Another way to address the data scarcity problem in domain-specific sce-
narios is proposed by [49]; they show how high-quality text embeddings can
be obtained by training a model using only synthetic data. This approach
has been widely adopted in recent years thanks to the capabilities of the
latest LLMs, in particular, proprietary ones, that can generate high-quality
synthetic data.

2.3. FINE-TUNING OF EMBEDDING MODELS 15



Chapter 3

Retrieval-Augmented
Generation

In this chapter, we analyze in depth the working principles of the RAG
pipeline, dividing the workflow into the retrieval and generation phases,
and we review the transformer architecture being the core component of
the Language Models used in this thesis.

3.1 Overview of the RAG pipeline

Figure 3.1 depicts a high-level overview of the RAG workflow, for both the
offline and online stages.

Figure 3.1: The workflow of the RAG process, highlighting the offline and
online stages.

The offline stage starts by selecting the set of documents that consti-
tute the Knowledge Base (KB); those can have different formats (e.g. PDF,

16
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HTML, PowerPoint, Markdown, etc.) which are then converted into a uni-
form plain text format. After, each document is segmented into smaller
chunks in order to respect the context limitation of the used language mod-
els, but also to reduce the impact of the inference speed due to a large input
and to make more accessible to the user the context that the generator uses
for generating the response. All the N chunks, or passages, are then input
into an embedding model E(·) which creates semantically meaningful vector
representations Y = {y1, y2, ..., yN} ready to be stored in a vector database.

The online stage begins with the user query being encoded with the
same embedding model E(·). The resulting query embedding x and the
encoded passages yi are then used to compute the similarity score S(x, yi),
∀i ∈ [1, N ] (the most used similarity scores are the cosine similarity and the
dot product). Finally, the top k passages for similarity score are retrieved
and, together with the original user query, given in input to an LLM, which
has the role of the generator. The generator is prompted to answer the
query considering only the retrieved passages.

3.2 Transformer-based models

All the models that build the RAG method are based on the transformer
architecture proposed by [10], or of one of its variations. The original
transformer architecture was introduced for sequence-to-sequence tasks, e.g.
machine translation; for this reason, it is formed by two components, the
encoder and the decoder. Considering that the decoder adds only some
variations to the encoder, we start by describing the encoder’s functionality
and then point out the differences between the two architectures.

3.2.1 The Attention Mechanism

Before diving into the structure of the encoder it is necessary to introduce
the concept of attention, being the most important building block of trans-
former models. We start by denoting as X ∈ Rn×e a sentence composed of
n tokens embedded in e-dimensional vectors and define as xi the token at
position i. Then we define three matrices, composed by trainable weights,
W k ∈ Rk×e, W v ∈ Rv×e, and W q ∈ Rk×e, where k and v are chosen hyper-
parameters. By using these matrices we can define the key, value, and query
tokens:

ki = W kxi (3.1)

vi = W vxi (3.2)

qi = W qxi (3.3)

3.2. TRANSFORMER-BASED MODELS 17
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Then, the attention scores hi for token xi are defined as:

hi =
n∑

j=1

softmaxj(g(qi,kj))vj (3.4)

where g(·) is referred to as the attention scoring function that defines a
measure of similarity between tokens and softmax is defined as:

[softmax(z)]i =
exp(zi)∑N
j=1 exp(zj)

. (3.5)

The attention scoring function is usually expressed as the dot product:

g(xi,xj) = x⊺
ixj. (3.6)

The reason for using the softmax is to have values between 0 and 1 and to
ensure nonnegative values. For completeness the softmax definition for a
generic vector z ∈ RN is defined at 3.5.

If we use the dot-product as the attention scoring function we can rewrite
the key, value, and query in matrix form for all tokens:

K = XW k (3.7)

V = XW v (3.8)

Q = XW q (3.9)

and define the Self-Attention layer (SA) for X as:

SA(X) = softmax

(
QK⊺

√
k

)
V (3.10)

where we assume the softmax is applied row-wise. In [10] Equation 3.10 is
defined as scaled dot-product attention. The scaling factor

√
k is inserted

to ensure that the variance of the dot-product remains at 1 regardless the
size of k.

Having just one SA layer allows modeling one single set of dependencies
across tokens. However, if we think about a complex sentence in natural
language it is easy to understand that one word could have different rela-
tionships with other words; hence, we want to have different SA layers that
work in parallel, forming a Multi-Head Attention layer (MHA). The number
of heads (i.e., the SA layers), is controlled by the hyper-parameter h. The
MHA is simply obtained by concatenating the h heads of SA. When work-
ing with MHA we need to define an additional matrix of trainable weights,
W o ∈ Re×hv, which is used for the concatenation of the h heads. At the
end, the MHA layer for input X is defined as:

MHA(X) = [ SA1(X) || SA2(X) || . . . || SAh(X) ]W o (3.11)

3.2. TRANSFORMER-BASED MODELS 18



CHAPTER 3. RETRIEVAL-AUGMENTED GENERATION

where each key, query, and value matrix of each SA layer has its own matrix
of trainable weights.

3.2.2 Positional Embeddings

Before describing the entire encoder we need to define an additional com-
ponent: positional embeddings. Indeed, we need a way to take into consid-
eration the order of the sequence, by inserting some information about each
token absolute position or relative position of tokens. In [10] the author
use deterministic absolute position encodings of dimensionality e, such that
can be summed with the embeddings. So, the operation that is performed
before entering the MHA layer is:

X ′ = X + P (3.12)

where P ∈ Rn×e are the positional embeddings. In the original transformer
paper are introduced sinusoidal position embeddings, which for token i are
defined as:

Si =
[
sin(ω1i), cos(ω1i), sin(ω2i), cos(ω2i), . . . , sin(ωe/2i), cos(ωe/2i)

]
(3.13)

where ωi =
1

10000i/e
.

3.2.3 The Transformer

Finally, The encoder schema is shown in Figure 3.2. The Feed-Forward

Positional 
Embeddings

Multi-head Attention

+

+

Inputs

Layer normalization

Feed-Forward Layer

Layer normalization

+

Figure 3.2: The encoder block architecture.
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Layer is defined as:

FFN(x) = ReLU(xW 1 + b1)W 2 + b2, ReLU(x) = max(0, x) (3.14)

where x ∈ Re is a token embedding, W 1,2 ∈ Rp×e, and b1,2 ∈ Re, are
trainable parameters. While layer normalization for a generic vector a ∈ Rn

is defined as:

LayerNorm(a) = γ
a− µ

σ
+ β (3.15)

where µ and σ are the mean and standard deviation of a and γ and $beta
are learnable parameters. In the end, what happens inside the encode block
is the following:

1. Define an input sequence of n tokens as X ∈ Rn×e.

2. Add the positional encodings to the input: X ′ = X + P .

3. Compute the MHA on X ′ with formula 3.11

4. Add a residual connection to the MHA output and pass it to the
normalization layer.

5. Move the output to the FFN layer as in 3.14.

6. Finally, add the second residual connection and perform normalization
again.

Note that at the end of the encoder block is usually added an additional
head depending on the task, eg. classification.

Note that even if the original transformer architecture is an encoder-
decoder model, it is possible to have encoder-only models that follow the
same working principle described above.

Now we can proceed by describing the changes needed to pass from the
encoder to the decoder architecture. Indeed, the decoder must have a way
to condition is output based on the encoder’s output and must be causal,
i.e. at each step its output depends only on previous elements, in order
to perform autoregression. The first addition is addressed by introducing
cross-attention (CA). Let’s define H ∈ Rn×e the output of the encoder’s
block and X ∈ Rn×e the input of the decoder; then the CA between X and
H is:

CA(X,H) = softmax

(
XW qW

⊺
kH

⊺

√
k

)
HW v = softmax

(
QXK

⊺
H√

k

)
V H

(3.16)
The interpretation is that the embeddings X are updated based on their
similarity with keys and values provided by H . Note that if we want to
build a decoder-only model we do not need a CA layer. The second problem
of making the decoder block causal is solved by properly masking the MHA,
so that the prediction of token i depends only on tokens in positions less
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Figure 3.3: Simplified version of the transformer architecture.

than i, i.e. we do not consider “future” tokens. We can accomplish this by
defining a mask matrix M ∈ Rn×n, where:

Mi,j =

{
−∞ if i > j

0 otherwise
(3.17)

, and then multiplying the mask matrix element-wise with softmax’s argu-
ment numerator in SA:

Masked-SA(X) = softmax

(
QK⊺ ⊙M√

k

)
V (3.18)

Once, the two components to make the decoder causal and dependant
from the encoder’s output, we can put together what we have seen so far
and build the entire transformer architecture, as depicted in Figure 3.3
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3.3 Retrieval phase

The retrieval phase of the RAG pipeline is responsible for fetching relevant
information from a large corpus of data using as the only source the user’s
prompt. In order to compute the relevancy between the user’s query and
the documents chunks, or passages, we need a function f(·) that given a
query q and the passages pi , ∀i ∈ N , where N is the total number of
passages, computes a meaningful vector representation of them, such that
they can be compared. Based on the type of function f(·) that is used
we can categorize dense and sparse retrievers. Dense retriever methods
represent queries and passages using dense embedding vectors, i.e. mainly
composed of non-zero values, and are typically computed using transformer-
based PLM, like BERT; on the other side, sparse retriever methods leverage
word statistics and lexical matching to project a text to a sparse vector, i.e.
most of the elements are zero: among those, there are methods like TF-IDF
[1] and BM25 [5]. Since the dense retriever models used in this work are
based on BERT, an overview of the model is proposed in the following.

3.3.1 BERT Architecture

BERT, which stands for Bidirectional Encoder Representations from Trans-
formers, is an encoder-only transformer based on the implementation of the
original transformer model that has been discussed in section 3.2. The
bidirectionality of BERT comes from the usage of the encoder only which
leverages the entire self-attention to capture the relationship between all the
tokens in the context. One of the novelties introduced by BERT is about
the input and output representations. Indeed, Devlin et al. introduce a
special classification token [CLS] at the beginning of every sentence that,
in its final hidden state, is used to aggregate sequence representation for
classification tasks. Moreover, the special token [SEP] is used to separate
two sentences that are packed together into a single sequence. Since the
model can process multiple sentences divided by the [SEP] token, they in-
troduced a new type of embeddings, segment embeddings S ∈ Rn×e, that
indicates to which sentence a token belongs to. Segment embeddings add
up with the token and position embeddings; then, Equation 3.12 can be
written as:

X ′ = X + P + S (3.19)

To pre-train the bidirectional model they leverage the Masked Language
Modeling (MLM) procedure combined with Next Sentence Prediction (NSP).
MLM is needed to train a bidirectional model because the task of predict-
ing the next word is not feasible since the model’s bidirectionality allows
each token to know which the next word is, making the prediction of the
target trivial. Instead, in MLM a percentage of the input sentence tokens
is replaced with a [MASK] token and then the final hidden state is used
to predict the original token with cross-entropy loss. However, since the
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[MASK] token does not appear during fine-tuning, to mitigate the mismatch
between pre-training and fine-tuning, only 80% of the token chosen for pre-
diction is replaced with the special token, while a 10% is replaced with a
random token, and the remaining ones are left unchanged. The goal of NSP
is to make the model understand sentence relationships. Specifically, the
task consists of labeling the sentence after the [SEP] token as the next or
not the next sentence and using the last hidden state of the [CLS] token
for prediction.

In addition to pre-training the model can be fine-tuned on specific down-
stream tasks, eg. question answering, named entity recognition, starting
from the pre-trained model parameters. Figure 3.4 shows a high-level
overview of the pre-training and fine-tuning tasks.

Figure 3.4: Pre-training and fine-tuning procedures for BERT [11]
.

3.3.2 Sentence Transformers

For the retriever purpose, it is needed an embedding that contains the se-
mantic meaning of an entire sentence; from the BERT model, it is trivially
achieved by either averaging the output word embeddings or by using the
[CLS] token as the vector representation of the sentence: this operation is
called pooling. However, this approach alone yields rather bad results; for
this reason, [20] presented Sentence-BERT, a bi-encoder architecture of the
BERT network using siamese and triplet networks, in order to fine-tune the
base model, such that the produced sentence embeddings are semantically
meaningful and can be compared with a similarity function (eg. cosine-
similarity). Additionally, to the previously described pooling methods, they
tried also to compute the max-over-time of the output vectors. However,
from their experiments, they found that computing the average of the word
embeddings yields the best results overall.

The proposed structures and objective functions are shown in Figure 3.5.
In the Classification Objective function, the two sentence embeddings u and
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Figure 3.5: Training objective functions for Sentence-BERT.

v are concatenated with the element-wise difference |u− v| and multiplied
by a trainable matrix W t ∈ R3n×k, where n is the dimension of the sentence
embedding and k is the number of labels. Then the output is given in input
to the softmax:

o = softmax(W t(u,v, |u− v|)) (3.20)

and optimized using the cross-entropy loss. The Regression Objective Func-
tion simply computes the cosine-similarity of the sentence embeddings and
minimizes the mean-squared error loss. Finally, the Triplet Objective Func-
tion leverages three sentences: an anchor sentence a, a positive sentence p,
and a negative sentence n. The goal is to tune the network by reducing the
distance between a and p such that it becomes smaller than the distance
between a and n. Given the sentence embeddings sa|p|n the objective is to
minimize the following:

max(||sa − sp|| − ||sa − sn||+ ϵ, 0) (3.21)

where ϵ is a margin which ensures that sp is at least ϵ closer to sa than sn.

3.3.3 Back to RAG: Retriever

Once the function f(·) = E(·) to create semantic meaningful representations
of sentences is defined, all the textual documents that form the KB must
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Figure 3.6: Retriever offline stage: (1) Chunking of the documents, (2)
Compute sentence embeddings, and (3) store and index embeddings and
metadata in a vector database.

be stored in a vector database for efficient retrieval: this stage is performed
offline, i.e. before the actual usage of the RAG pipeline. An overview of the
offline stage of the retriever is reported in Figure 3.6.

In the first step of this phase, (1) all the documents are split into small
chunks, also called passages. Even if recent LLMs can handle long contexts,
chunking remains an essential step in the pipeline because maintaining a
constrained piece of information allows faster inference speed and quicker
locates the original reference from which the generated content is extrapo-
lated. Then (2) all the chunks are given in input to the sentence embedding
model E(·), and (3) the embeddings are stored in a vector database. When
storing the embeddings it is useful to add metadata to them, such as the
title of the document, the section, and others. Metadata could be used for
filtering: for example, in the case of one person knowing exactly in which
document the information is looking for belongs, he can filter out all the
irrelevant chunks reducing the noise of irrelevant retrieved passages. In ad-
dition to the common functionalities that a database offers, vector databases
are built to improve the search and retrieval of vector embeddings by ar-
ranging them in a special data structure called vector index. To quickly
search large datasets of vectors quickly, vector indexes rely on a class of al-
gorithms called Approximate Nearest Neighbor (ANN) search, which given
a query point finds a set of points close to the query. It is important to note
that the speed of retrieval is paid in terms of the accuracy of the result,
hence it is fundamental to make a trade-off based on the use case. Note
that the creation of the index is done every time new passages are added
to the database, but not during the RAG pipeline runtime. In this thesis
project, we relied on the Qdrant vector database [32] that leverages the
Hierarchical Navigable Small World (HNSW) [12] algorithm, which creates
a hierarchical tree-like structure where each node of the tree represents a
set of vectors and the edges the similarity between vectors.

The online stage of the retrieval starts with the user query to be encoded
using the same embedding model E(·) that was used during the offline stage.
Then, the query’s embedding is compared by similarity with the vector index

3.3. RETRIEVAL PHASE 25



CHAPTER 3. RETRIEVAL-AUGMENTED GENERATION

of the database to retrieve the top-k similar matches. Given two vectors u
and v, the most common metrics to compute the similarity are the cosine
similarity 3.22 and the dot product 3.23.

SC =
u · v

||u||||v||
(3.22)

u · v = ||u||||v|| cos θ (3.23)

The difference between the two is that cosine similarity considers only the
direction of the vectors while the dot product varies based also on the mag-
nitude. However, both are equally valid, and the choice should be made
based on the similarity metric that was used during the training of the
model.
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3.4 Generation phase

In a RAG framework, the generator is responsible for creating the final out-
put based on the most relevant information retrieved by the retriever, by
synthesizing them into a coherent and contextually relevant response. This
means that the final output should not be a mere collection of relevant in-
formation but should be presented in a way that addresses the requests of
the user’s query. Originally, in the RAG architecture proposed by [26], the
generator used was a sequence-to-sequence model. The rationale is that the
decoder must be strongly conditioned by the encoder output that includes
the query and the retrieved documents. However, most recent works lever-
age state-of-the-art LLMs, both proprietary (e.g. GPT-4, Claude, etc.) and
open-source (e.g. Llama 3, Mistral, etc.), which are typically autoregressive
models. Since we tested the LLama and Mistral models as generators, we
provide an overview of the main variations that they apply compared to the
traditional transformer model described in Section 3.2.

3.4.1 The Llama family

Llama [48] is a family of decoder-only models that is trained using only
publicly available datasets. Moreover, it introduces some variations with
respect to the original transformer model.

First of all, instead of normalizing the output of each transformer sub-
layer, they add a pre-normalization of the input. Moreover, they moved
from the LayerNorm normalizing function defined in Equation 3.15 to the
RMSNorm function [21]. The RMSNorm for a generic vector a ∈ Rn is:

RMSNorm(a) =
a

RMS(a)
γ, where RMS(a) =

√√√√ 1

n

n∑
i=1

a2i (3.24)

and γ is a parameter.
The second variation is the replacement of the ReLU non-linearity, de-

fined in Equation 3.14 with the SwiGLU activation function [28] defined
as:

SwiGLU(x,W, V, b, c) = Swishβ(xW + b)⊗ (xV + c),

where Swishβ(x) = xσ(βx),

and σ is the sigmoid function.
Finally, they replaced the absolute positional embeddings with the rota-

tory positional embeddings [57]. This new approach of positional encoding
consists of rotating the token embeddings in a multi-dimensional space with
each dimension being rotated by an angle that is proportional to the token’s
position.
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3.4.2 The Mistral family

Mistral 7B [44] is based on the Llama architecture, but introduces an im-
portant change to handle longer sequences more effectively at a reduced
computational cost. This new feature is called Sliding Window Attention
(SWA) and allows the model to process large inputs by focusing on smaller,
overlapping chunks of the sequence, rather than attending to the entire se-
quence at once. In practice, each token can attend to at most W tokens
from the previous layer, where W is the window size. Formally, the hid-
den state in position i of the layer k attends to all hidden states from the
previous layer with position in [i −W, i]. Figure 3.7 shows the comparison
between the traditional attention mechanism and the SWA with W = 3 and
the recursive process of attending hidden states from previous layers.

Considering that the vanilla attention has a quadratic complexity with
the sequence length O(n2) the SWA mechanism reduces the complexity to
O(n ·W ).

Figure 3.7: Comparison between the traditional attention mechanism and
the SWA [44].
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3.5 RAG systems

The RAG system presented above is the most simplistic one and is com-
monly known as Naive RAG. Even if it reduces common problems of LLMs,
like hallucinations and outdated knowledge, it incurs other challenges to be
addressed. Firstly, an ineffective retrieval phase leads to the selection of
irrelevant documents affecting the entire pipeline. Then, even if the halluci-
nation issue is reduced is not entirely solved, as the generator can produce
irrelevant answers not supported by the retrieved content. Finally, the gen-
erator might repeat as it is the retrieved information without synthesizing,
making the response impractical for the user. To address these issues more
complex variations of the naive RAG have been introduced, by introducing
new stages, like pre-retrieval and post-retrieval, or rearranging the pipeline
[42].

3.5.1 Pre-retrieval stage

Most of the methods employed in the pre-retrieval stage involve modifying
the user’s query to improve the retrieval performance. Query transformation
leverages the idea of modifying the original query of the user to formulate
it in a clearer and more precise way and improve the retrieval performance.
A simple approach is to follow a “rewrite-retrieve-read” paradigm, in which
the user’s query is, at first, given in input to an LLM, assigned with the
rewrite role, and then the rewritten query is used for retrieval. When asking
the LLM to rewrite the query for information retrieval it is fundamental to
leverage on few shot prompting or train a model for this purpose, as done
in [45]. Another transformation technique, called step-back prompting [51],
consists of deriving a more general and easier question from the original
query to retrieve a first set of relevant contexts and then combining them
with the retrieved documents of the original query in the generation step.
In the end, this method is composed of two steps: the abstraction, which
is the generation of the step-back question and the retrieval of relevant
documents about the generic question, and the reasoning, which is the final
generation based on the information retrieved in the previous step. Another
solution to handle complex queries is to decompose the original request into
smaller problems [39]. This method is called least-to-most prompting and
consists of two stages: the first one is the decomposition, which is done with
a few shot prompting by providing some examples of decomposed queries,
while the second is the subproblems solving. This second stage is again
supported by a few shot prompting by providing some examples, and for
each subproblem is appended the solution of the previous subproblem.

While previous methods modify directly the user’s query, HyDE, pre-
sented in [34], leverages the query to create a fake document that helps
in the retrieval of the relevant information. Specifically, HyDE generates
a hypothetical document from a query using an instructed LLM; the fake
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Figure 3.8: Comparison of the bi-encoder and cross-encoder architectures.

document does not have to contain the correct information, just to capture
the relevance pattern to be the most similar to the real document.

3.5.2 Post-retrieval stage

The post-retrieval stage has the objective of improving the information that
the generator uses to generate the final answer. This can be achieved by
modifying the rank of the retrieved documents through reranking, which is
a reordering of the retrieved chunks to improve the rank of the most rel-
evant ones. A common and effective way to perform reranking is through
cross-encoder models [20]. Compared to bi-encoder models, described in
Section 3.3.2, in cross-encoders the two sentences are passed simultaneously
to the same transformer network. A comparison of the two architectures is
reported in Figure 3.8. Cross-encoders perform a full self-attention opera-
tion on both the two sentences and since they compare two inputs directly
tend to have higher accuracy respect to bi-encoders. However, this increase
in performance comes with a higher price in terms of computation efficiency.
Indeed, they have to recompute the encoding for every new sentence. For
example, in the case of information retrieval, where a query has to be com-
pared with many documents, we have to recompute the encoding of the
query for each document. Because of their high performance and slow com-
putational time, they are usually used in IR systems to rerank a set of
documents retrieved by a bi-encoder model.

3.5.3 Pipeline rearrangements

Another way to improve the RAG performance, rather than only adding
new stages, is to rearrange the pipeline. Three possible rearrangements,
iterative, recursive, and adaptive, are shown in Figure 3.9. An iterative
solution has been proposed in [46]. With this approach retrieval and gener-
ation are repeated iteratively for T iterations. In particular, in addition to
the classic retrieval-augmented generation paradigm, the architecture ben-
efits from a generation-augmented retrieval stage. In this stage, retrieval is
enhanced by appending the generated output of the previous iteration to
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Figure 3.9: Three types of RAG pipelines (iterative, recursive, and adaptive)
[42].

the query. The rationale behind this technique is to reduce the semantic
gap between the query and the relevant document. Even if the generated
content of the first iteration is not correct, it should be similar, in structure,
to what might be needed to answer the question decreasing the semantic
gap.

The recursive approach, as the iterative leverages a feedback loop to
improve performance, involves modifying the search queries based on the
results of the previous iteration. Hence, leverages some sort of query trans-
formation to refine the user’s query for better retrieval. An example of this
methodology has been proposed in [38] where the author proposes a method
to improve multi-step question-answering, based on an iterative approach of
retrieval and reasoning through chain-of-thought prompting. After the first
retrieval step, a language model performs reasoning with chain-of-thought
on the question and the retrieved documents, and then the last generated
sentence of the process is used as a query to retrieve more passages. The
method ends when the set number of iterations is reached or when, during
the chain-of-thought process, the string “The answer is:” is found.

Finally, the adaptive pipeline consists of automatically detecting when to
leverage the additional information provided by the retriever or to rely only
on the parametric memory of the generator. Self-RAG [41], besides deter-
mining if retrieval is useful given a query, critiques the retrieved documents
to check if they are relevant, and the model’s response for its usefulness
and if it is supported by the context. This is done by generating special
reflection tokens. In particular, the first step is to make a specific language
model predict the reflection token to determine if continue on retrieval or
move directly to the generation; then, if retrieval is needed, the documents
are retrieved and answer generated; finally, the relevancy and the support
score of the answer is predicted through others reflection tokens and the
answer ranked based on the tokens values.
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Embedding model fine-tuning

In this chapter, we analyze the fine-tuning methods used in this work to
improve the performance of the sentence embedding model in the retrieval
stage. In particular, we describe supervised and self-supervised approaches
and finally, we show how different tasks can be combined in an MTL setting.

4.1 Supervised

When fine-tuning with a supervised approach it is crucial to keep in mind
the final role of the model. In our scenario, we need to boost the perfor-
mance of IR on data in the space domain. In other words, we have to
retrieve the relevant passage given a query. In practice, if we consider the
vector representations of the relevant passage p+ ∈ Re and of the query
q ∈ Re, where e is the embedding size, we want that q is closer to p+ in the
embedding space rather than to non-relevant passages p−.

4.1.1 Multiple Negative Ranking Loss

The MNRL is an optimal choice since it minimizes the distance between
an anchor and a positive sentence, and maximizes the distance between the
anchor and the negative sentence. A great advantage of this method is that
it needs to define only the positive example because the negative ones are
the other samples in the batch. A batch is composed of B question passage
pairs (q1, p1), (q2, p2), . . . , (qB, pB), where for (qi, pi), pi = p+, i.e.is a positive
pair, and for (qj, pj) with i ̸= j, pj = p−, i.e. are negative pairs. Hence, the
loss for a single batch can be computed as:

L(q, p) = − 1

B

B∑
i=1

[
S(qi, pi)− log

B∑
j=1

eS(qi,pj)

]
. (4.1)

Here, S(·) is the cosine similarity defined in Equation 3.22. In practice,
the model is rewarded for reducing the angle between the embeddings of
positive pairs and maximizing the angle between non-pair embeddings. A
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Figure 4.1: Computation of similarity in the MNRL. On the diagonal, there
are the positive pairs that ideally should have the highest values.

graphical representation of the comparison between questions and passages
is shown in Figure 4.1. Ideally, we would like to have a similarity equal
to one on the diagonal and zero otherwise. Since in each batch, there are
B−1 randomly sampled negative passages, a large batch size during training
usually benefits the learning. Moreover, to make the training more effective
it is important to ensure that no duplicate samples belong to the same batch
to avoid redundancy.
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4.2 Self-supervised

The advantage of self-supervised fine-tuning methods is that they do not
require labeled training data. If on one side they allow training a model on
domains where there are not labeled datasets, on the other side they perform
rather poorly compared to a supervised approach. In the following, we
analyze three self-supervised methods designed ad-hoc for training sentence
embeddings.

4.2.1 TSDAE

The main idea behind TSDAE is to train sentence embeddings by adding
a noise (e.g. deletion of words) to input sentences, encoding the damaged
sentences into embeddings, and then reconstructing the embeddings into
the original input. The training objective function of the reconstruction
task for a single sample is formally defined as:

L(x,h) =
l∑

i=1

log
exp(h⊺

i xi)∑N
k=1 exp(h

⊺
i xk)

, (4.2)

where x,h ∈ Rl×e are respectively the word embedding of the input sentence
with l tokens and the hidden state, and N is the vocabulary size.

Even if this encoder-decoder architecture seems similar to the one pre-
sented in Section 3.2, there is an important difference in the decoder. In-
deed, if in the original transformer, the decoder takes into account all the
encoder’s output word embeddings, in the TSDAE case, the decoder has
only access to the sentence representation produced by the encoder. This is
the case because as shown in Figure 4.2 a pooling layer is introduced after
the encoder. Formally, the output of the encoder’s block in Equation 3.16
is defined as H ∈ R1×s, where s is the sentence embedding size.

Figure 4.2: Architecture of TSDAE [33].
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Figure 4.3: Unsupervised SimCSE architecture [31].

4.2.2 Unsupervised SimCSE

SimCSE is a contrastive learning framework to train sentence embeddings
with an unsupervised approach. The objective of contrastive learning is
to learn effective representations by pulling semantically close neighbors
together and pushing apart non-neighbors. While the choice of negative
samples is usually done in-batch, i.e. by considering non-neighbors all the
samples in the same batch except for the only positive instance, the con-
struction of neighbors is more complex. A common approach is to apply
some sort of augmentation; for example, when working with images, posi-
tive instances can be created by flipping, rotating, or cropping the reference
image. SimCSE leverages the standard dropout at the end of each sub-layer
and to the sum of embeddings and the positional encodings in the trans-
former. In practice, they feed the same input to the encoder twice and get
two embeddings with different dropout masks. A visual representation of
the SimCSE architecture is depicted in Figure 4.3. Calling z and z′ the two
random dropout masks, the training objective function for SimCSE is:

Li = − log
exp(S(hzi

i ,h
z′i
i )/ τ)∑N

j=1 exp(S(h
zi
i ,h

z′i
i )/ τ)

, (4.3)

where hz
i is the hidden state for sentence i with dropout mask z, S(·) is

the cosine similarity defined in Equation 3.22, τ is a temperature hyperpa-
rameter, and N is the number of sentences in batch. The default dropout
probability is set to pdrop = 0.01.

4.2.3 Contrastive Tension

The CT method leverages two independent models, initialized with identical
weights. The two models are set to minimize the dot product of the sentence
embeddings of different sentences and maximize the dot product for identical
sentences. As in previous methods, the negative samples are the sentences
in the same batch of the reference sentence, based on the assumption that
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Figure 4.4: Architecture of CT [29].

two randomly selected sentences are very likely to be dissimilar. Figure 4.4
reporters a schema of the CT architecture. Given two sentences s1 and s2
and the two independent models f1(·) and f2(·), the CT objective is defined
as:

z = f1(s1)
⊺ · f2(s2)

L(z, s1, s2) =

{
− log σ(z) if s1 = s2

− log σ(1− z) if s1 ̸= s2
,

where σ(·) refers to the sigmoid function.
The tension referred to in the method’s name is between the two models

that have to obtain similar representations for identical sentences and at the
same time distinguish their representation for different sentences. Doing so
they act as anchors to each other remaining synchronized. After training
the second model is usually used for inference.
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4.3 Multi-task learning

Multi-task learning is a training paradigm in which a model is trained on
multiple tasks simultaneously to learn them jointly. This approach can
result in increased data efficiency, reducing the amount of data to train
the network, a better generalization, and a reduction of overfitting through
shared representations. Nevertheless, learning multiple tasks at once brings
some challenges that if not handled properly make MTL ineffective. For ex-
ample, trying to learn tasks that have conflicting needs yields performance
improvements on one task and a performance degradation on the other.
This phenomenon is referred as destructive interference or negative trans-
fer. Moreover, MTL opens a lot of possible settings and configurations to
combine multiple tasks, increasing the number of hyperparameters involved.
An exisiting partition of MTL methods is based on how the parameters of
the model are shared among multiple tasks. The first partition, called hard
parameter sharing, involves those methods in which multiple weights are
shared between multiple tasks so that each weight is trained to jointly min-
imize multiple loss functions. Secondly, in soft parameter sharing different
tasks have individual task-specific models with separate weights. In this
case, the distance between the model parameters of different tasks is added
to the objective function [24].

4.3.1 Multi-Task Auxiliary Learning

Multi-Task Auxiliary Learning (MTAL) is a subset of MTL in which tasks
are distinguished based on their importance regarding the model’s final
usage. The main or primary tasks are those that are required for the ap-
plication output, while auxiliary tasks serve only to enrich the learning of
the model and help it to better generalize. The objective of this approach
is to optimize the generalization performance of a deep neural network on
a main task Tm, jointly trained with one or more auxiliary tasks Ta. In
general, this results in a multi-task loss that is a linear combination of task
losses Li:

L(j)
MTL =

Nt∑
i=1

λiLi(θ
(j)
s , θ

(j)
i ), (4.4)

where Nt = |Tm|+ |Ta| is the total number of tasks, λi is the scaling factor,
or weight, for task loss i, and θs, θi are the respectively the shared model
parameters and the task-specific parameters of task i. During training at
step j all parameters are updated through standard gradient descent:

θ(j+1) = θ(j) − η∇L(j)
MTL, (4.5)

where η is the learning rate.
An interesting feature in this scenario is the choice of the task-specific

weight λi. In the simplest configuration, the weights can be set to one for all
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tasks resulting in tasks’ equivalently weighted. Otherwise, the weights can
be set statically before training, for example by assigning smaller weights
to the auxiliary tasks, in order to change the relative importance that tasks
have during optimization.
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Chapter 5

Experiments

This chapter is focused on the experimental part, starting from the defini-
tion of the data used as the KB and for training in Section 5.1, we move
then to Section 5.2 to a description of the metrics used for the evaluation
of the retriever and generator components. Finally, after reporting the ex-
perimental setup, the results of the experiments are shown and discussed.
In particular, in Subsection 5.4.1, we study how fine-tuning on a supervised
and MTL setting improves the performance compared to baseline models;
then, in Subsection 5.4.2 we analyze the impact of the weight factor in MTL
in order to find the value that lead to the best results; Subsection 5.4.3 ob-
jective is to determine how much the training set size affects the model’s
performance and to check if the amount of data collected for this work is
enough for obtaining the best results; in Subsection 5.4.4 is discussed the
variation of the generator’s performance when embedding models with dif-
ferent capabilities are used, in order to determine how much the retriever
component affects the generation phase; finally, Subsection 5.4.5, is a study
on the usefulness of the entire RAG pipeline in a mission design during a
CE session.

5.1 Knowledge Base and Datasets

In order to develop a RAG pipeline on space-related data, we collected 906
open-access scientific publications on the space domain. Even if the pa-
pers’ topics are diverse the most recurrent ones are about earth observation
missions, in-orbit demonstration and validation missions, Lunar and Deep
Space missions, ground segment and telecommunication systems, and small
satellites.

All the downloaded papers come in a PDF format and they must be con-
verted into plain text in order to be preprocessed. To do that we leverage
the Unstructured library [58], an open-source library that provides several
tools for ingesting and pre-processing images and text documents, which
uses Optical Character Recognition (OCR) techniques to convert text doc-
uments into machine-encoded text. The tool arranges the text into a JSON
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Figure 5.1: Workflow for synthetic QA generation.

Score Score 1 Score 2 Score 3
Groundedness 761 3465 5900
Standalone 1071 3734 5375

Table 5.1: Groundedness and standalone scores provided by the Prometheus
2 judge model on synthetically generated samples.

format whose keys are the type of content (title, subtitle, narrative text,
etc) of the file. After noticing some noise in the plain text we filtered out
the pieces of text shorter than 10 characters. Even if by doing so the output
is acceptable, in future steps it is important to spend more time on the data
cleaning at this first step. Moreover, the data are now limited to PDF files
only, but they can be easily extended to other textual sources.

After reading the PDF files, the next step is to divide the documents into
smaller chunks. The Langchain library [55] provides a simple and efficient
method to split the text recursively by using a set of chosen characters. In
the end, we obtained 10126 chunks that compose the KB, where each chunk
has a maximum size of 512 tokens, based on the BERT tokenizer.

For our purposes, two datasets have been created: one containing ques-
tion, answer, and passage triples (qap triples), which is needed for the
pipeline evaluation and the fine-tuning supervised, and the second one sim-
ply made by sentences extracted from the papers (sentences), which is used
for the self-supervised training. Driven by the findings of [49] who achieved
good results by fine-tuning models on synthetic data only, we generated
synthetic question-answer pairs from the passages of the KB, excluding the
creation of an ad-hoc human-labeled dataset due to its heavy time and re-
source requirements. As the synthetic generator was used the Llama 8B
model. Figure 5.1 shows the workflow for synthetic QA generation. Due
to some noise and incorrect synthetic pairs, we exploited the Prometheus
[54] LLM-as-a-judge model to score how much a question is standalone, i.e.
if the question relies on additional information to be understood, and the
groundedness, i.e. how much the question is grounded on the context. The
judge model provides a score between 1 to 3, where the higher the score the
better, and the triples which scored less than 2 were filtered, obtaining in
the end 8348 valid samples. The distribution of the scores is depicted in
table 5.1, while the prompts used for the synthetic data generator and the
judge model can be found in the appendix A.1.1. To further make sure that
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the samples used for testing are reliable, they have been human-validated
and modified when needed.

To obtain the sentences dataset we trivially extracted sentences by trun-
cating at every period and and filtering those shorter than 25 characters.
The final number of sentences that compose the dataset is 95730.
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5.2 Evaluation Metrics

In this section are described the metrics used for the evaluation of the
retriever and generator components.

5.2.1 Retriever Metrics

The retriever is evaluated with the following metrics:
Accuracy@k. Accuracy determines the average of the presence of a

relevant document in the top k retrieved documents across the user’s queries.
In formulas can be defined as:

accuracyk =
1

|Q|

|Q|∑
i=1

reli (5.1)

where Q are the user’s queries and reli ∈ 0, 1 takes value 1 if at least a
relevant document is present in the k retrieved results and 0 otherwise.

Normalized Discounted Cumulative Gain. NDCG is a ranking
quality metric for information retrieval systems, based on the assumption
that documents appearing earlier in a search result list, i.e. have higher
ranks, are more relevant than documents that have lower ranks. The NDCG
is determined by dividing the Discounted Cumulative Gain (DCG) by the
ideal DCG (IDCG), which is the maximum possible DCG. Before describing
the DCG, we introduce the concept of Cumulative Gain (CG) defined as:

CGk =
k∑

i=1

gi (5.2)

where k is the cutoff point for looking at relevant items and gi is the gain, or
relevance score, of the result at position i. While the CG does not take into
account the order of the search results, by adding a discount it is possible
to penalize search results with low ranks. Then, the DCG is:

DCGk =
k∑

i=1

gi
log2(i+ 1)

(5.3)

In the formula above the logarithmic penalty makes dividing the gain by
growing numbers as you move down the list of the search result list. To
compute a score that is independent of the length of the result list, the
DCG is normalized by the IDCG, which is the DCG computed when all
relevant documents in the corpus are sorted by their relative relevance:

IDCGk =

|relk|∑
i=1

gi
log2(i+ 1)

(5.4)
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where relk is the list of relevant documents in the corpus up to position k.
Finally, the NDCG is calculated as:

NDCGk =
DCGk

IDCGk

(5.5)

Mean Reciprocal Rank. The MRR is, again, a ranking quality metric
that considers the position of the first relevant item in the search result
list. In particular, the MRR is the mean of reciprocal ranks, which are
computed as the inverse of the position of the first relevant item, across all
user’s queries:

MRRk =
1

|Q|

|Q|∑
i=1

1

ranki
(5.6)

where Q are the user’s queries and ranki is the position of the first relevant
item for query i.

5.2.2 Generator Metrics

The automatic evaluation of generated text is still an open point in the
research community. A good trade-off could be the combination of tradi-
tional n-gram overlap metrics, like the BLEU [3] and ROUGE [4] scores,
semantic similarity scores, such as BERTScore [22] and SemScore [52], and
LLM-as-a-judge [60, 54] evaluation.

BLEU. The Bilingual Evaluation Understudy (BLEU) algorithm was
originally invented for evaluating machine translation tasks. In general, the
score assesses how similar the candidate’s text is to reference texts. The
metric leverages a modified n-gram precision which is computed by counting
the maximum number of times a word occurs in the reference, clipping the
total count of each candidate word by its maximum reference count, adding
them up, and dividing by the total number of candidate words. Formally:

pn =

∑
C∈Candidates

∑
gn∈C Countclip(gn)∑

C′∈Candidates

∑
g′n∈C′ Count(g′n)

(5.7)

where gn is an n-gram. In order to punish candidate strings that are to
short a brevity penalty is introduced:

BP =

{
1 if c > r

e(i−r/c) if c <= r
(5.8)

being c the candidate’s length and r the reference corpus size. Finally, the
BLEU score is obtained:

BLEU = BP exp

(
N∑

n=1

wn log pn

)
(5.9)
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where wn is a weight drawn by a chosen probability distribution.
ROUGE. Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

measures the quality of a generated text with respect to reference texts, by
counting the number of overlapping units (n-grams, word sequences, word
pairs) between the two. The most common ROUGE measures are ROUGE-
N and ROUGE-L. We define as R the set of reference texts, as gn the gram
of length n, then:

ROUGE-N =

∑
r∈R
∑

gn∈r Cmatch(gn)∑
r∈R
∑

gn∈r C(gn)
(5.10)

where Cmatch(gn) is the number of n-grams overlapping in the candidate
and reference texts, while Cgn is the total number of n-grams in a piece
of text. Instead, ROUGE-L is based on the longest common subsequence
between the generated text and the reference, i.e. the longest sequence of
words that is shared between both. It is calculated by simply change the
numerator of equation 5.10 with the longest common subsequence, while
the denominator is left unchanged for n = 1.

BERTScore. The metric computes the similarity score for each token,
represented by an embedding, in the candidate sentence with each token in
the reference sentence. Let us define xi as the embedding of token xi of the
reference sentence, and x̂i as the embedding of token x̂i of the candidate
sentence. Then, the recall, precision, and F1 scores are computed as:

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

SC(xi, x̂j) (5.11)

PBERT =
1

|x̂|
∑
xj∈x̂

max
xi∈x

SC(xi, x̂j) (5.12)

FBERT = 2
PBERT ×RBERT

PBERT +RBERT

(5.13)

where SC(·) is the cosine similarity as defined in equation 3.22.
SemScore. This score is based on the comparison between the model

output and a target response using semantic textual similarity. The model
output and the target response are given in input to the same sentence
transformer and then the cosine similarity is computed:

SemScore = Sc(x, x̂) (5.14)

where x is the target response and x̂ is the generated response.
METEOR. Metric for Evaluation of Translation with Explicit Ordering

(METEOR) is used to evaluate the quality of machine translation outputs
by comparing them with reference translations, and was designed to improve
the BLEU score previously described. Initially, the unigram precision P and
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unigram recall (R) are computed as:

P =
Number of matched words in candidate

Total number of words in candidate
(5.15)

R =
Number of matched words in candidate

Total number of words in reference
(5.16)

and then are combined using the harmonic mean:

Fmean =
P ×R

αP + (1− α)R
(5.17)

where in the original paper α = 0.9. To take into account longer matches,
a penalty is calculated as:

Penalty = γ(
c

m
)β (5.18)

where c are groups of unigrams, called chunks, such that the unigrams in
each chunk are in adjacent positions in the model’s output and are also
mapped to unigrams that are in adjacent positions in the reference text, m
is the number of unigrams matched, and the tunable parameters are set to
γ = 0.5 and β = 3. Finally, the METEOR score is computed as:

METEOR = Fmean(1− Penalty) (5.19)

LLM-as-a-judge. This unconventional evaluation approach, proposed
in [60], makes use of an LLM to judge the responses of the tested model. The
method is found to consistently agree with human preferences in addition
to being capable of better evaluating open-ended tasks in comparison with
traditional metrics. There are three proposed variations of the LLM-as-
a-judge. The first one is the pairwise comparison, in which the judge is
presented with a question and two answers, and tasked to determine which
one is better. The second is a single answer grading, where the judge directly
assigns a score to a single answer. Finally, in the reference-guided grading
variation, the judge scores the answer in comparison to a reference solution.
Even if this evaluation approach was initially proposed leveraging powerful
proprietary models (e.g., GPT-4), in [54] the author proposes an open-
source alternative called Prometheus 2, which has been used in this thesis
work.
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5.3 Experimental Setup

The sentence embedding models used for the experiments are the base and
large versions of the BAAI General Embeddings (BGE) [50] family, and the
medium and large versions of the snowflake-arctic-embed [56] models. The
choice of these models is due to their high rank on the MTEB leaderboard
[37] and their limited size with respect to top performers that are in the order
of 7 billion of parameters. As generators, we tested the instruct versions of
the Llama 3 8B and the Mistral 7B models.

Datasets. The two datasets used during the experiments are the qap triples
and sentences dataset. To totally separate the training and test sets, the
test samples come from 20 papers that are not present in the training set.
The resulting split in training, validation, and test set is reported in table
5.2.

Supervised fine-tuning. Each model has been fine-tuned with a su-
pervised approach using the qap triples dataset and the Multiple Negative
Ranking Loss function. We trained the models for 20 epochs with a batch
size of 32, learning rate lr = 2e−05, with weigh decay 0.001, a linear sched-
uler for the learning rate variation, no warmup steps, and using the AdamW
optimizer. Moreover, we ensure that no duplicate samples are present in
a batch. Leveraging Matryoshka Representation Learning [36], the models
have been evaluated on the 512 and 256 embedding dimensions.

MTL fine-tuning. In the MTL approach, we made a linear combi-
nation of the self-supervised loss (TSDAE, SimCSE, CT) on the sentences
dataset with the supervised loss. The models have been trained for 10
epochs with a batch size of 32, a learning rate lr = 3e−06, with weigh decay
0.001, a linear scheduler for the learning rate variation, no warmup steps,
and the AdamW optimizer. Moreover, we multiplied the self-supervised
loss by a scale factor and assessed the impact for different values in the
range [0.01, 1]. As for the supervised setting, we leverage Matryoshka Rep-
resentation Learning to evaluate the models on the 512 and 256 embedding
dimensions.

Hardware componenets. All the experiments were done on two
Nvidia Tesla V100 SXM2 with 32 GB of VRAM. Computational resources
provided by hpc@polito, which is a project of Academic Computing within

qap triples dataset
Train Validation Test
7232 804 312

sentences dataset
Train Validation Test
67011 9573 19146

Table 5.2: Split of train, validation, and test sets for the qap triples and
sentences datasets.
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the Department of Control and Computer Engineering at the Politecnico di
Torino (http://www.hpc.polito.it)
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5.4 Results and discussion

In this section, we report and discuss the results of the fine-tuning of the
embedding models described above, then we report some ablation studies,
and finally, we show the results of a real case scenario during which the
RAG pipeline has been tested on a mission design in Argotec.

5.4.1 Embedding models fine-tuning

Table 5.3 reports the results of the four tested models fine-tuned with a
supervised and an MTL approach, using TSDAE as the self-supervised task,
compared with the non-trained models’ baseline, on different embedding
dimensions.

In the MTL setting, the scaling factor on the self-supervised loss is set
to λ = 0.01. We evaluated the accuracy at k = 5 because it is the num-
ber of passages that are given in input to the generator, while NDCG and
MRR at k = 10 to have a general overview of the retriever performance.
The MTL method outperforms all the others for all metrics, up to 3.86%
increase, except for the arctic-m model where it achieves better results only
on the NDCG@10 and MRR@10 metrics for the 768 embedding dimen-
sion. However, from the results is visible how fine-tuning the models with
a supervised approach leads to a big improvement in the performance with
respect to the baseline. Noteworthy, the arctic-embed model family, which
performs poorly on our dataset, achieves the best results on all metrics after
fine-tuning. Finally, the best-performing model on all metrics and embed-
ding dimensions is the arctic-l fine-tuned with MTL. Considering the cost
in terms of memory requirements due to the embedding dimension, a good
trade-off between memory occupied and performance is the arctic-l model
with embeddings truncated at 512, given the almost equivalent results with
respect to the original size of 1024. In general, the degradation of perfor-
mance between the original embedding dimension of the model and 512 is
quite low, making it a good choice for all models.

In table 5.4, is reported the comparison between MTL fine-tuning us-
ing the TSDAE, SimCSE, and CT self-supervised tasks. While SimCSE
is the lowest-performing method, TSDAE and CT obtain the best results
for six cases each. In particular, the CT method performs better on the
BGE family while TSDAE on the snowflake-arctic-embed family. Even if
SimCSE achieves lower performance, its results are still comparable with
other methods.

5.4.2 Impact of scale factor in MTL

Figure 5.2 depicts the variation of accuracy@5, NDCG@10, and MRR@10
for the fine-tuned bge-base model on the MTL setting with TSDAE as the
self-supervised task, versus the scaling factor on the self-supervised loss.
The main finding is that for all the scaling factor values, MTL brings an
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Model Type
Accuracy@5 NDCG@10 MRR@10

Emb Dimension Emb Dimension Emb Dimension
- 512 256 - 512 256 - 512 256

bge-base
B 76.28 75.64 70.19 67.63 66.28 61.80 62.04 60.64 55.84
S 83.01 83.01 82.05 73.87 73.86 71.90 68.07 68.47 66.35
M 86.87 85.58 84.30 74.44 74.53 73.40 68.83 68.85 68.58

bge-large
B 84.94 81.73 79.17 75.09 72.09 68.45 70.29 66.37 63.14
S 87.82 86.86 83.33 76.97 76.54 74.62 71.79 71.55 69.23
M 89.42 88.78 84.30 78.23 77.80 75.34 72.75 72.30 70.20

arctic-m
B 15.38 14.10 09.62 12.99 12.18 08.92 11.34 10.21 07.65
S 91.99 90.71 88.46 79.76 79.54 77.52 74.56 74.43 71.98
M 90.06 88.78 87.50 80.42 78.63 77.22 75.53 73.74 72.43

arctic-l
B 13.78 13.14 12.18 12.42 11.63 11.47 10.57 10.19 09.33
S 92.31 92.95 90.06 80.90 80.46 78.10 75.99 75.30 73.04
M 92.63 93.60 90.39 81.68 81.35 79.08 76.72 76.38 73.82

Table 5.3: Comparison of IR metrics between baseline (B) models, and fine-
tuned models, supervised-only (S) and MTL (M). Where the embedding
dimension is not specified the model’s original one is intended.

improvement with respect to supervised-only fine-tuning (except for the
NDCG@10 with scaling factor λ = 1). In general, the lowest performance
is obtained when λ = 1, i.e. when the supervised and self-supervised tasks
have the same importance. The rationale could be that the self-supervised
task, which is an additional task of embedding reconstruction, adds too
much noise to the supervised task, which is the main one for information
retrieval. Instead, when the self-supervised task is scaled it works as a
regularization factor improving the overall performance.

5.4.3 Impact of training set size

The lack of labeled data for specific domains is a huge problem. For this
reason, we studied how the performance varies by changing the training set
size for supervised fine-tuning. Since the drawn conclusions are valid for all
models, only the tests on the bge-base model are reported. Considering the
original training set dimension of 7232 samples, we tested the accuracy@5,
NDCG@10, and MRR@10 metrics for 100, 1000, and 5000 training samples.
The results are shown in Figure 5.3. Noteworthy, 100 samples are enough
to improve all the metrics compared to the baseline, of at least 1%. More-
over, the three plots follow a trendline, in which the improvements increase
quickly and then level out. However, the limitation of our maximum train-
ing size does not allow to see where the metrics reach convergence, meaning
that a bigger training set could have further improved the performance of
the model.

5.4. RESULTS AND DISCUSSION 49



CHAPTER 5. EXPERIMENTS

(a) Accuracy@5

(b) NDCG@10

(c) MRR@10

Figure 5.2: Performance variation for the bge-base model versus the scaling
factor variation on the TSDAE task in MTL.
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(a) Accuracy@5

(b) NDCG@10

(c) MRR@10

Figure 5.3: Performance variation for the bge-base model versus different
training set sizes for supervised fine-tuning.

5.4. RESULTS AND DISCUSSION 51



CHAPTER 5. EXPERIMENTS

Model Method Accuracy@5 NDCG@10 MRR@10

bge-base
TSDAE 86.87 74.44 68.83
SimCSE 85.90 74.44 68.97

CT 85.90 75.16 69.41

bge-large
TSDAE 89.42 78.23 72.75
SimCSE 87.82 75.32 69.70

CT 90.06 78.52 73.30

arctic-m
TSDAE 90.06 80.42 75.53
SimCSE 90.39 79.20 73.68

CT 91.35 79.39 73.80

arctic-l
TSDAE 92.63 81.68 76.72
SimCSE 92.95 80.92 75.98

CT 91.99 80.44 75.41

Table 5.4: Comparison between the MTL setting with different self-
supervised tasks (TSDAE, SimCSE, CT).

5.4.4 Generator evaluation

To assess the impact of the retriever performance on the generator, we eval-
uated the generated answer using the metrics described in Section 5.2.2.
Regarding the usage of the Prometheus 2 model as a judging LLM, we
define three metrics: the correctness, to assess if the generated answer is
correct according to the reference answer, the faithfulness, to determine
how much the model’s output is supported by the context of the retrieved
documents, and the relevancy, to evaluate how well the generated response
aligns with the intent of the initial query. The prompts given in input to the
judge model can be found in Appendix A.1.3. As a first study, we compared
the Llama 3 and Mistral performance using our best embedding model (the
snowflake-arctic-embed-l fine-tuned on the MTL setting with TSDAE) and
its baseline. The results are reported in Table 5.5. For both generators the
usage of our model lead to a great improvement of the metrics, confirm-
ing the importance of a good retrieval stage for the entire RAG pipeline
performance. However, since the baseline of the tested embedding model
performs quite poorly according to Table 5.3, we run the experiment using
the bge-base model fine-tuned on MTL setting and its baseline since the dif-
ference between the two is lower. For this second test, the results are shown
in Table 5.6. Again, the fine-tuned version leads to an improvement, even
if smaller compared to the previous case, demonstrating the importance of
further fine-tuning on domain-specific data in an already high-performing
model.

5.4.5 Real case scenario on mission design

To assess the effectiveness of the RAG pipeline, it has been tested with ques-
tions that have been already answered during a real mission design session.
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Generator Emb. Model Corr. Faith. Relev. BERTScore SemScore Rouge-L BLEU METEOR

Llama3 8B
arctic-l 2.099 2.370 2.308 56.69 73.22 18.00 6.27 26.73
arctic-l-space 4.048 3.468 4.112 69.33 82.81 39.02 14.65 58.26

Mistral 7B
arctic-l 2.318 2.599 2.683 56.61 73.58 16.13 4.49 26.13
arctic-l-space 4.061 3.388 4.218 66.88 81.70 31.94 11.17 51.19

Table 5.5: Impact of the best embedding model (snowflake-arctic-embed-l)
on generators performance.

Generator Emb. Model Corr. Faith. Relev. BERTScore SemScore Rouge-L BLEU METEOR

Llama3 8B
bge-base 3.865 3.385 3.987 66.84 81.53 34.72 12.71 52.61
bge-base-space 3.974 3.503 4.035 67.98 82.22 37.32 13.37 56.13

Mistral 7B
bge-base 3.856 3.304 4.196 64.73 80.33 28.01 9.45 46.71
bge-base-space 4.141 3.321 4.279 66.14 81.22 29.77 10.37 48.70

Table 5.6: Impact of the bge-base embedding model on generators perfor-
mance.

During this process, 16 questions have been given in input to the model. The
three participants in the pilot study assessed the quality of the responses,
providing scores between 1 and 5 based on four criteria [53]: coverage, how
much the model’s response covers all the user’s requests, providing all nec-
essary information; consistency, how much the generated answer is aligned
to the reference context, i.e. the information provided in the document; cor-
rectness, the output states affirmations that are verifiable and within the
scope of user’s information request; clarity, if the response is expressed in a
clear and understandable way. Table 5.7 reports the average scores on the
16 questions, while table 5.8 shows a pair of samples of generated answers
and references. In appendix A.2, table A.1 shows the mean average scores
per question. The results demonstrate that the pipeline effectively satisfies
users’ requests by providing on average complete and correct answers with
clarity. Outputs with low scores were primarily due to missed retrieval of
the correct passages; however, this issue can be mitigated by rephrasing the
question and adding more details.

Coverage Consistency Correctness Clarity
4.21 3.98 4.29 4.44

Table 5.7: Human evaluation on four criteria (coverage, consistency, cor-
rectness, and clarity, of the responses generated by the RAG pipeline.
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Question Generated answer Reference

Which is the NEA scout mission
requirement on the solar phase angle?

According to the provided documents,
the NEA Scout mission requirement on
the solar phase angle is to provide lighting
conditions conducive to imaging, with a
solar phase angle of less than 50 degrees.

Less than 50 degrees

What type of solar sail did the IKAROS
mission have and what is its area?

According to the provided documents,
the IKAROS mission had a square-shaped
solar sail with a side length of 14 meters,
which corresponds to an area of
approximately 196 m2.

IKAROS sail is a disk type sail,
not rigid with an area of 196 m2

Table 5.8: Samples of questions, generated answers, and reference answers
from the 16 questions of the mission design study.
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Conclusion

To summarize, we employed a RAG framework to aid system engineers to
efficiently retrieve information regarding past missions during CE sessions.
In particular, this kind of architecture allows to interrogate external doc-
uments that might go beyond the parametric knowledge of LLMs, like for
example company internal reports. Moreover, due to privacy constraints,
we rely on open-source models both for the generator and retriever side.
However, existing models are usually trained on general-purpose data and
they lack on domain-specific knowledge. For this reason, we decided to in-
vest in the retriever improvement through fine-tuning on space-related data.
We mainly focused on supervised and MTL training and for this reason, we
needed a dataset for training and evaluation. Unfortunately, collecting a
dataset supervised by human operators is extremely expensive and time-
consuming; hence, we discarded this option in Argotec. So we moved to a
quicker alternative to generate synthetic data exploiting LLMs capabilities.
However, to increase the reliability of the results, as synthetic data could
include errors, we human-validated the test set.

The results of fine-tuning on four models show strong improvements
on both the supervised and MTL settings. In particular, the best results
are obtained with MTL and by scaling, with a fixed weight factor, the
self-supervised loss component. We tested MTL with three different self-
supervised methods and found that the best performance is achieved with
TSDAE and CT. Moreover, we tried to assess the impact of the retriever
component, before and after fine-tuning, on the generator, showing an im-
provement for the two tested models. Finally, we tried to assess the useful-
ness of the RAG pipeline within a real session of mission design. To do that,
the engineers involved in the case study evaluated the model’s response on
four criteria. These results are promising but preliminary, and further as-
sessment is required to fully understand the tool’s potential in the context
of CE.

In the future, a crucial improvement would be to invest in explainability
to increase the trust toward the pipeline. Trivially, reporting the documents
attended by the generator to generate the response will avoid searching
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through documentation to check if the model’s answer is correct. Then,
the tool is now limited to IR, but in the next steps, we would like a VA
that helps in the exploration of new ideas in mission design. Moreover, in
this work, we leveraged the naive RAG architecture, but, as described in
Section 3.5, many other enhancements of the pipeline, besides fine-tuning
the retriever, can be performed.

To conclude, this thesis work is the first attempt for Argotec to integrate
NLP techniques inside the company, and the promising results achieved by
this first proof of concept are pushing the company to invest more in this
sector.
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Appendix title

A.1 Prompts

In this section are reported the prompts used during the experiments.

A.1.1 Prompts for QA generation

The prompt used for the generation of synthetic question-answer pairs is:

Your task is to write a question and an answer given a context. Your ques-
tion should be answerable by retrieving information from the context. Your
question should encourage reasoned and discoursive answers, not a simple
retrieval of information from the context. Your answer should be motivated
and concise, but including only the information asked with question. This
means that your question MUST NOT mention something like ”according
to the passage” or ”context”.
Provide your answer as follows:
Output:
Question: (your question)
Answer: (your answer to the question)
Now here is the context.
Context: {context}
Output:::

The prompt used by the Prometheus 2 judge model to assess how much
a question is standalone is:

Task Description:
An instruction (might include an Input inside it), a response to evaluate,
and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly
based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and
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5. You should refer to the score rubric.
3. The output format should look as follows: ”(write a feedback for criteria)
[RESULT] (an integer number between 1 and 5)”
4. Please do not generate any other opening, closing, and explanations.
The instruction to evaluate: Your task is to evaluate how the given question
does not rely on additional information to be understood.
Question: {question}
Score Rubrics: [Does the question make sense by itself?]
Score 1: If the question does not make sense by itself.
Score 2: If the question is partially understendable by itself.
Score 3: If the question make totally sense by itself.
Feedback:

while to assess if the question is grounded on the context is:

Task Description: An instruction (might include an Input inside it), a re-
sponse to evaluate, and a score rubric representing a evaluation criteria are
given.
1. Write a detailed feedback that assess the quality of the response strictly
based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and
5. You should refer to the score rubric.
3. The output format should look as follows: ”(write a feedback for criteria)
[RESULT] (an integer number between 1 and 5)”
4. Please do not generate any other opening, closing, and explanations.
The instruction to evaluate: Your task is to evaluate how well one can an-
swer the generated question unambiguously with the given context.
Generated question: {question}
Context: {context}
Score Rubrics: [Is the question answerable with the given context?]
Score 1: If the question is not answerable with the given context.
Score 2: If the question is partially answerable with the given context.
Score 3: If the question is totally answerable with the given context.
Feedback:

A.1.2 Prompt for the RAG generator

Follows the prompt of the RAG generator used in the experiments.

Using the information contained in the context, give a comprehensive an-
swer to the question.
Respond only to the question asked, response should be concise and relevant
to the question.
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If the answer cannot be deduced from the context, do not give an answer.
Context:
{context}
Now here is the question you need to answer.
Question: {question}

A.1.3 Prompts to assess RAG generator

Here are reported the prompts used to define the metrics of faithfulness,
relevancy, and correctness for the Prometheus 2 model.
Task Description:
An instruction (might include an Input inside it), a context, an answer to
evaluate, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assesses the quality of the response strictly
based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is either 1 or 2 or 3 or 4 or
5. You should refer to the score rubric.
3. The output format should look as follows: ”Feedback: (write a feedback
for criteria) [RESULT] (1 or 2 or 3 or 4 or 5)”
4. Please do not generate any other opening, closing, and explanations.
5. Only evaluate on common things between generated answer and context.
The instruction to evaluate: Your task is to evaluate if the generated answer
is supported by context.
Generated answer: {generated answer}
Context: {context}
Score Rubrics: [Does the generated answer reflects the information con-
tained in the context?]
Score 1: If the generated answer does not contain any information contained
in the context.
Score 2: If the generated answer contain information contained in the con-
text but explained with low clarity.
Score 3: If the generated answer contain information contained in the con-
text but in a inconsistent way.
Score 4: If the generated answer contain information contatined in the con-
text explained with clarity.
Score 5: If the generated answer contain information contained in the con-
text explaind with clarity and consistency.
Feedback:

Task Description:
An instruction (might include an Input inside it), a query, a response to
evaluate, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assesses the quality of the response strictly

A.1. PROMPTS 59



APPENDIX A. APPENDIX TITLE

based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is either 1 or 2 or 3 or 4 or
5. You should refer to the score rubric.
3. The output format should look as follows: ”Feedback: (write a feedback
for criteria) [RESULT] (1 or 2 or 3 or 4 or 5)”
4. Please do not generate any other opening, closing, and explanations.
5. Only evaluate on common things between generated answer and context.
The instruction to evaluate: Your task is to evaluate how well the generated
response aligns with the intent and content of the initial query.
Query: {question}
Generated answer: {generated answer}
Score Rubrics: [Is the generated answer relevant to the intent and content
of the initial query?]
Score 1: If the generated answer is not relevant to the user query.
Score 2: If the generated answer is relevant to the user query but do not
meet the query’s specific requirements.
Score 3: If the generated answer is relevant to the user query and meet only
a subset of query’s specific requirements.
Score 4: If the generated answer is relevant to the user query and meet the
query’s specific requirements but add not requested information.
Score 5: If the generated answer is relevant to the user query and meet all
the query’s specific requirements without adding not requested information.
Feedback:

Task Description:
An instruction (might include an Input inside it), a query, a response to
evaluate, a reference answer that gets a score of 5, and a score rubric rep-
resenting a evaluation criteria are given.
1. Write a detailed feedback that assesses the quality of the response strictly
based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is either 1 or 2 or 3 or 4 or
5. You should refer to the score rubric.
3. The output format should look as follows: ”Feedback: (write a feedback
for criteria) [RESULT] (1 or 2 or 3 or 4 or 5)”
4. Please do not generate any other opening, closing, and explanations.
5. Only evaluate on common things between generated answer and reference
answer.
Don’t evaluate on things which are present in reference answer but not in
generated answer.
The instruction to evaluate: Your task is to evaluate the generated answer
and reference answer for the query: {question}
Generate answer to evaluate: {generated answer}
Reference Answer (Score 5): {reference answer}
Score Rubrics: [Is the generated answer relevant to the user query and ref-
erence answer?]
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Question Mean Coverage Mean Consistency Mean Correctness Mean Clarity
1 5 5 5 4,67
2 5 4,67 5 5
3 4,33 5 5 5
4 4,33 1,33 1,33 5
5 4,33 4,33 4,33 4,33
6 5 5 5 3,66
7 4 4 4,67 3
8 4,33 4,67 5 3,67
9 3,37 3,37 3,67 4,67
10 2 1 2,33 4,67
11 4 4,67 4,67 4,37
12 4,37 4 4,33 4
13 3,33 2,67 3,67 4,67
14 5 5 5 5
15 4,33 4,67 4,67 4,67
16 4,67 4,33 5 4,67

Table A.1: Mean scores for each question in the real case scenario test on
the coverage, consistency, correctness, and clarity metrics.

Score 1: If the generated answer is not relevant to the user query and ref-
erence answer.
Score 2: If the generated answer is according to reference answer but not
relevant to user query.
Score 3: If the generated answer is relevant to the user query and reference
answer but contains mistakes.
Score 4: If the generated answer is relevant to the user query and has the
exact same metrics as the reference answer, but it is not as concise.
Score 5: If the generated answer is relevant to the user query and fully cor-
rect according to the reference answer.
Feedback:

A.2 Results on real case scenario

Table A.1 reports the mean scores of the 16 questions of the real case sce-
nario test on the coverage, consistency, correctness, and clarity metrics.
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