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Summary

This thesis explores the integration of conditional generative models, specifically
diffusion models, with Cosplace, a model designed for visual geolocation tasks.
The primary objective is to enhance the explainability of geolocation models
by generating images that visualize how these models interpret spatial features.
Leveraging the Pittsburgh dataset, the conditional model was trained to generate
images based on embeddings produced by Cosplace, offering valuable insights into
the internal decision-making process of geolocation networks.
Throughout the study, we demonstrate that the conditional generative approach
yields impressive results, even at early stages of training, with the generated images
closely resembling the original scenes. However, certain limitations in the model’s
ability to capture dynamic elements, such as moving vehicles and pedestrians, as
well as finer architectural details, were observed. These challenges were largely
attributed to the constraints of the Cosplace embeddings and the computational
limitations encountered during training.
Key challenges included the need to reduce the model complexity due to hardware
restrictions and limitations on image resolution and batch size. Despite these
constraints, the integration of latent diffusion models for explainability proved to
be highly innovative and effective, offering a novel method to visualize and interpret
the workings of complex AI models.
This research not only advances the explainability of AI-driven geolocation systems
but also paves the way for broader applications of generative AI across a wide
range of disciplines, offering new opportunities for interpreting complex data and
enhancing model transparency. The findings underscore the potential of diffusion
models to provide interpretable, human-understandable outputs in a variety of
AI-driven tasks, offering valuable insights across multiple domains.
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“The real risk with AI isn’t malice but incompetence.”
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Chapter 1

Introduction to Artificial
Intelligence

1.1 Overview of Artificial Intelligence

1.1.1 Definition and historical background of AI
Artificial Intelligence refers to the ability of machines, particularly computers,
to perform tasks that traditionally require human intelligence. These tasks include
reasoning, problem-solving, learning, perception, and natural language understand-
ing. AI is broadly categorized into two types: narrow AI (or weak AI), which is
designed for specific tasks such as image recognition or playing chess, and general
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AI (or strong AI), which aspires to achieve a level of intelligence that matches or
surpasses human capabilities across a wide range of tasks.
The roots of AI date back to the 1950s when computer scientists first began explor-
ing the idea of creating machines that could simulate human thought. The term
"Artificial Intelligence" was coined in 1956 by John McCarthy at the Dartmouth
Conference, which is widely considered the birth of AI as an academic discipline.
Early efforts in AI focused on symbolic reasoning and logic-based systems. Notable
milestones include Alan Turing’s development of the Turing Test in 1950 to
evaluate a machine’s ability to exhibit intelligent behavior, and the creation of
the first AI programs such as the Logic Theorist (1955) and the General Problem
Solver (1957).
Over the decades, AI has experienced periods of both rapid progress and stagnation,
commonly referred to as "AI winters". These periods of low funding and interest
occurred due to the gap between high expectations and the actual capabilities of
AI systems. However, the field witnessed a resurgence in the 1990s and 2000s,
primarily due to advancements in computational power, the availability of large
datasets, and new approaches such as machine learning and neural networks. Today,
AI plays an integral role in various sectors, driving innovations in automation,
intelligent decision-making, and human-computer interaction.

1.1.2 Key concepts: agents, machine learning, and decision-
making

AI is grounded in several foundational concepts, three of which are particularly
central to its modern applications: intelligent agents, machine learning, and decision-
making systems.

Agents

In AI, an agent refers to any system that perceives its environment and acts upon
it to achieve specific goals. Agents can be as simple as a thermostat or as complex
as an autonomous vehicle. They operate based on three components: perception,
which allows them to observe their surroundings through sensors; processing, where
they use algorithms to make sense of the information they perceive; and action,
which is the execution of tasks based on the decisions they make.
Agents are categorized as either reactive (responding directly to stimuli without
reasoning about the future) or deliberative (planning actions by reasoning about
future states). Advanced AI agents often incorporate elements of both, allowing
them to act reflexively in some situations while engaging in more complex, long-term
planning in others.
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Machine Learning

Machine learning (ML) is a subset of AI focused on developing algorithms that
allow computers to learn from data. Instead of being explicitly programmed for
each task, ML algorithms detect patterns and make predictions or decisions based
on data inputs. This approach enables AI systems to improve their performance
over time without human intervention.
Machine learning is typically divided into three types:

• Supervised learning, where the system is trained on labeled datasets and
learns to map inputs to specific outputs (e.g., image classification).

• Unsupervised learning, where the system analyzes data without predefined
labels to find hidden patterns or relationships (e.g., clustering).

• Reinforcement learning, where an agent learns by interacting with its
environment and receiving feedback through rewards or penalties, refining its
actions to maximize long-term success (e.g., game playing or robotic control).

The growth of machine learning, particularly deep learning, has revolutionized AI in
recent years. Deep learning models, which mimic the structure of the human brain
using artificial neural networks, have achieved remarkable results in complex tasks
such as language translation, image recognition, and even autonomous driving.

Decision-Making

Decision-making in AI involves selecting the optimal course of action from a set
of alternatives based on available data and objectives. AI systems use various
decision-making algorithms, including optimization techniques, rule-based systems,
and probabilistic reasoning, to choose actions that maximize outcomes or minimize
risks. In many cases, decision-making systems work in uncertain environments,
requiring them to make predictions about future states or account for incomplete
information.
The process of decision-making can be broadly categorized into deterministic and
stochastic methods. Deterministic decision-making assumes certainty in outcomes
and operates under fixed rules, while stochastic decision-making incorporates el-
ements of randomness and probability, making it more suitable for real-world
environments where uncertainty and variability are common.
In complex AI systems, such as autonomous robots or self-driving cars, decision-
making involves balancing multiple objectives, often under real-time constraints.
These systems must consider factors such as safety, efficiency, and ethical implica-
tions, making decision-making one of the most critical and challenging areas in AI
research.
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1.2 Shallow Learning vs Deep Learning
In the realm of machine learning, a distinction is made between shallow learning
and deep learning methods. Shallow learning refers to traditional machine learning
algorithms that often rely on handcrafted features and simpler structures. In
contrast, deep learning involves complex, multilayered neural networks that auto-
matically extract features from raw data. This section explores the key differences
between these approaches, focusing on the respective methodologies, architectures,
and real-world impacts.

1.2.1 Overview of Shallow Learning methods (SVMs, Deci-
sion Trees, etc.)

Shallow learning methods are traditional machine learning techniques
that typically rely on a limited number of layers or decision processes. These
algorithms excel in scenarios with smaller datasets and well-defined features, where
computational efficiency is crucial. Common shallow learning algorithms include:

Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are a powerful supervised learning algorithm
used for classification and regression tasks. SVMs work by finding the optimal
hyperplane that separates different classes in the data. In a high-dimensional
space, this hyperplane maximizes the margin between the nearest data points from
each class, known as support vectors. SVMs are particularly effective in binary
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classification problems and are known for their ability to handle high-dimensional
feature spaces. However, they require careful tuning of parameters and feature
selection to achieve optimal performance.

Decision Trees

Decision Trees are another popular shallow learning method used for both
classification and regression tasks. A decision tree builds a model by recursively
splitting the data into subsets based on the value of input features, creating a
tree-like structure. Each node in the tree represents a decision based on a feature,
and each leaf node corresponds to a predicted output or category. Decision Trees are
easy to interpret and implement, making them ideal for tasks where transparency
and explainability are important. However, they can be prone to overfitting,
especially when the tree becomes too deep.

k-Nearest Neighbors (k-NN)

The k-Nearest Neighbors (k-NN) algorithm is a simple, instance-based learning
method used for classification and regression. In this approach, predictions are
made by finding the "k" closest data points (neighbors) to a given query point
and determining the majority class or average value of those neighbors. k-NN is
intuitive and easy to implement, but it becomes computationally expensive with
large datasets, as it requires calculating distances between the query and all other
points.

Naïve Bayes

Naïve Bayes[1] is a probabilistic classifier based on Bayes’ Theorem, with the as-
sumption that features are conditionally independent given the class label. Despite
the "naïve" assumption, this method often performs well on real-world data, partic-
ularly for text classification tasks like spam detection or sentiment analysis. Naïve
Bayes is highly efficient and can be used with large datasets, but its performance
may degrade if features are highly correlated.
Shallow learning methods are effective for many applications, particularly when
the feature space is well-understood and smaller datasets are available. However,
they often struggle with high-dimensional data and complex feature interactions,
which is where deep learning approaches come into play.
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1.2.2 Deep Learning advancements: Neural Networks and
their architectures

Deep learning, a subset of machine learning, uses artificial neural networks (ANNs)
with multiple layers to automatically extract features from raw data and make
predictions. The "depth" in deep learning refers to the number of layers in the
neural network, which allows it to model complex relationships and learn hier-
archical representations of data. Over the past decade, deep learning has led to
breakthroughs in areas such as computer vision, natural language processing, and
reinforcement learning.

Neural Networks

At the core of deep learning are artificial neural networks (ANNs)[2], which
are computational models inspired by the structure and function of the human
brain. A neural network consists of interconnected nodes (neurons), organized
into layers: an input layer, one or more hidden layers, and an output layer. Each
neuron receives inputs, processes them through an activation function, and sends
the output to the next layer. The network learns by adjusting the weights of the
connections between neurons through a process called backpropagation.
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Architectures in Deep Learning

Several specialized neural network architectures have emerged to address specific
types of data and tasks:

• Convolutional Neural Networks (CNNs): CNNs are designed to process
grid-like data structures, such as images. They use convolutional layers
to automatically detect spatial hierarchies of features, making them highly
effective for image recognition, object detection, and video analysis.

• Recurrent Neural Networks (RNNs): RNNs are used for sequential
data, such as time series or natural language. They maintain a memory of
previous inputs through feedback loops, allowing them to capture temporal
dependencies in data. Long Short-Term Memory (LSTM) networks are a type
of RNN specifically designed to address the problem of vanishing gradients in
long sequences.

• Transformer Networks: Transformers have revolutionized natural language
processing (NLP) tasks. Unlike RNNs, transformers do not process data
sequentially but rely on an attention mechanism to focus on different parts of
the input. This allows them to process text and other sequential data more
efficiently, and models like BERT and GPT have set new benchmarks in NLP.

Deep learning’s ability to automatically learn features from vast amounts of data,
along with the availability of large datasets and powerful hardware (e.g., GPUs),
has driven its success in solving complex, high-dimensional problems.

1.3 Importance of AI in Modern Applications
The advancements in both shallow and deep learning have cemented AI’s role in
modern applications across various domains. AI’s ability to process and analyze
large volumes of data, identify patterns, and make informed decisions is reshaping
industries and enabling new possibilities.

1.3.1 AI’s impact across industries and real-world applica-
tions

AI’s influence extends across multiple industries, providing innovative solutions to
long-standing challenges and opening new avenues for growth.

• Healthcare: In healthcare, AI systems are improving diagnostic accuracy by
analyzing medical images, patient records, and genetic data. Deep learning
models are used for tasks like detecting cancerous tumors in radiology scans
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or predicting patient outcomes. AI is also accelerating drug discovery by
analyzing vast chemical datasets and predicting potential drug compounds
faster than traditional methods.

• Finance: In finance, AI enhances fraud detection systems by identifying
unusual patterns in transaction data. Machine learning models predict stock
market trends, optimize portfolio management, and automate trading. AI-
powered chatbots and virtual financial advisors offer personalized services,
improving customer engagement and satisfaction.

• Transportation and Autonomous Systems: The transportation industry
is leveraging AI for autonomous vehicles, where deep learning models process
visual and sensor data to enable self-driving cars. AI algorithms control
navigation, detect obstacles, and make real-time decisions, enhancing the
safety and efficiency of transport systems. AI is also used in smart traffic
management to reduce congestion and improve urban mobility.

• Entertainment and Media: In the entertainment industry, AI has trans-
formed content creation, recommendation systems, and user experience. Stream-
ing platforms use AI-driven recommendation engines to curate personalized
content for users based on their viewing habits. AI is also used in video game
development to create intelligent, adaptive virtual environments.
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Chapter 2

Generative Artificial
Intelligence

Generative Artificial Intelligence (Generative AI) is a rapidly evolving field
within AI that focuses on creating models capable of generating new data similar
to the data they were trained on. Unlike traditional AI, which often centers around
recognizing patterns or making decisions based on existing data, generative AI can
produce novel outputs, including text, images, audio, and even video. This section
explores the core principles of generative AI, including key concepts of generative
models and how they differ from discriminative AI.
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2.1 What is Generative AI?
Generative AI refers to a class of artificial intelligence models that can learn from
training data to create new, similar data that did not exist in the original dataset.
These models capture the underlying distribution of the input data, enabling
them to generate new instances that share key characteristics of the training data.
Applications of generative AI range from generating realistic images, synthesizing
human-like text, creating music, and even simulating complex environments for
use in scientific research or virtual worlds.

2.1.1 Definition and key concepts of generative models
Generative models are a subset of machine learning models designed to generate
new data points. These models do not simply learn to classify or label data; instead,
they learn the probabilistic distribution of the data and use that knowledge to
produce new instances that resemble the training data. Key concepts in generative
models include:

• Probability Distribution: Generative models learn the joint probability
distribution P (X, Y ) of input features X and their corresponding labels Y .
By understanding this distribution, the model can generate new data points,
predict missing information, or simulate various possible outcomes.

• Latent Space: In many generative models, data is often mapped to a
lower-dimensional latent space, which encodes the essential features and
characteristics of the data. The model then generates new data by sampling
from this latent space and transforming the sample back to the original high-
dimensional space. This approach is commonly seen in models like Variational
Autoencoders (VAEs).

• Training through Generative Adversarial Networks (GANs): One of the
most prominent approaches in generative AI is through Generative Adversarial
Networks (GANs). GANs consist of two neural networks: a generator that
creates new data and a discriminator that tries to distinguish between real
data from the training set and the data produced by the generator. These
two networks are trained in tandem, with the generator improving its output
to fool the discriminator, resulting in increasingly realistic generated data.

• Autoregressive Models: These models, such as GPT (Generative Pre-
trained Transformer), generate data by predicting the next element in
a sequence based on previously generated elements. Autoregressive models
are widely used in natural language processing tasks like text generation and
language translation.
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2.1.2 Differences between Discriminative and Generative
AI

The distinction between discriminative and generative AI lies in their approach to
learning and utilizing data.

• Discriminative AI focuses on learning the boundary between different classes
in the data. A discriminative model learns to predict the label Y given the
features X, modeling the conditional probability P (Y |X). Examples of dis-
criminative models include logistic regression, support vector machines (SVMs),
and neural networks used for classification. These models are primarily con-
cerned with distinguishing between different categories or outcomes based on
existing data. Discriminative Models are optimized for tasks like classification,
where the goal is to predict the correct label for a given input. They excel at
drawing clear boundaries between classes, but they cannot generate new data.
Discriminative models focus on mapping inputs to outputs without capturing
the overall distribution of the data.

• Generative AI, on the other hand, models the joint probability distribution
P (X, Y ). It not only classifies data but also learns how to generate new
instances of the data. By learning the underlying structure and distribution
of the input data, generative models can create new data that fits the same
distribution. For example, a generative model trained on images of faces
could generate new, realistic-looking faces. Generative Models are designed
to capture the data’s internal structure and distribution, allowing them to
generate new samples. They can be used not only for classification (by
using the joint distribution) but also for tasks like data generation, anomaly
detection, and unsupervised learning.

Key Differences:
• Objective: Discriminative models classify or label existing data, while gen-

erative models focus on generating new data that resembles the training
set.

• Probabilistic Approach: Discriminative models estimate P (Y |X), whereas
generative models estimate P (X, Y ), which allows them to generate new
instances.

• Capabilities: Discriminative models are limited to tasks like classification and
regression, whereas generative models can perform additional tasks like data
augmentation, unsupervised learning, and generating new, unseen examples.

Discriminative models are often simpler and more efficient for tasks like image
classification or sentiment analysis. However, generative models open up new
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possibilities for creativity, simulation, and unsupervised learning, making them
central to many cutting-edge applications in AI, including image synthesis, text
generation, and virtual environment creation.

2.2 Applications of Generative AI
Generative AI has rapidly expanded across various fields, showcasing its versatility
in creating novel content, improving efficiencies, and offering innovative solutions
in areas ranging from art to scientific research. By leveraging its ability to generate
realistic and creative data, Generative AI is reshaping industries and inspiring new
ways of thinking about content creation, problem-solving, and human-computer
interaction. This section explores some of the most prominent applications of
generative AI, focusing on examples in art, image synthesis, natural language
processing, and more.

2.2.1 Examples in art, image synthesis, natural language
processing, and more

Generative AI is being applied in numerous domains, where it has unlocked new
capabilities for creativity, automation, and problem-solving. Below are key examples
of how it is utilized across various fields:

12
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Art and Creativity

Generative AI has made a significant impact on the world of art, giving rise to
new forms of creative expression. AI-powered tools, such as deep learning-based
image generators and style transfer algorithms, allow artists to produce artwork
that merges their own styles with those learned from vast datasets of existing art.

• AI-Generated Art: Tools like DeepArt and Artbreeder enable users to
create entirely new visual artwork by blending styles or generating images
from scratch. These platforms utilize generative models, such as Generative
Adversarial Networks (GANs), to create images that are not only visually
compelling but also novel. Artists have begun to collaborate with AI to
co-create artwork, blurring the lines between human and machine creativity.

• Music and Audio Synthesis: Generative AI is also transforming the music
industry. Models like OpenAI’s Jukebox can generate original songs by learning
from vast datasets of music, producing lyrics, melodies, and harmonies. AI-
based music composition tools provide musicians with a new medium for
generating inspiration or automating background scores for films and video
games.
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Image Synthesis

In the domain of image generation, GANs have emerged as a revolutionary tech-
nology, allowing for the creation of highly realistic images from scratch. Image
synthesis has several key applications:

• Deepfakes: GANs can generate hyper-realistic images and videos by learning
from existing visual data. Deepfake technology, while controversial, demon-
strates the capability of generative AI to synthesize human faces and voices
with remarkable accuracy. Although it poses ethical challenges, it also holds
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promise for applications like virtual actors, digital avatars, and film production.

• Super-Resolution and Image Restoration: Generative AI is also ap-
plied to enhance the quality of images. Models such as SRGAN (Super-
Resolution GAN)[3] can take low-resolution images and generate high-
resolution versions by filling in missing details. This technology is widely used
in areas like medical imaging, satellite imagery, and improving archival photos
and videos.

• Text-to-Image Generation: Tools like DALL·E and MidJourney use deep
generative models to create images from textual descriptions. Users can input
a phrase or sentence, and the AI will generate a highly detailed image based
on the description. This has opened up new opportunities in content creation,
design, advertising, and entertainment.

Natural Language Processing (NLP)

Generative AI has made tremendous strides in Natural Language Processing
(NLP), particularly in the field of text generation. Large language models, such as
GPT (Generative Pre-trained Transformer), have transformed the way machines
understand and generate human language, enabling a wide range of applications.

• Text Generation and Writing Assistance: GPT models and similar
language models can generate coherent and contextually relevant text based
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on user prompts. These models are used to create blog posts, articles, creative
writing, and even code. AI-powered writing tools, such as Grammarly and
Copy.ai, assist users in drafting emails, essays, and social media posts by
suggesting improvements and generating alternative content.

• Conversational Agents and Chatbots: Virtual assistants like OpenAI’s
ChatGPT and Google’s Bard utilize generative language models to conduct
meaningful, human-like conversations. These chatbots are used in customer
service, education, and personal productivity applications, helping users answer
questions, schedule appointments, and perform various tasks through natural
language interactions.

• Machine Translation and Summarization: Generative AI models power
sophisticated translation services, enabling seamless communication across
languages. Tools like Google Translate and DeepL use deep learning models
to generate accurate translations. Additionally, AI is used to automatically
summarize lengthy documents, making it easier for users to process large
volumes of text efficiently.

Scientific Research and Simulation

Generative AI is also making significant contributions to scientific research by help-
ing researchers simulate complex processes, generate synthetic data, and accelerate
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discovery:

• Molecular and Drug Discovery: In the pharmaceutical and chemical indus-
tries, generative models are used to predict the structure of new molecules and
simulate their behavior. Generative models like DeepMind’s AlphaFold[4]
can predict protein folding structures, aiding in drug discovery and the under-
standing of biological systems. This has the potential to drastically reduce
the time and cost required for developing new treatments.

• Climate Modeling and Data Augmentation: In environmental science,
generative models are used to simulate climate scenarios, predict weather
patterns, and model ecosystems. These models help researchers fill in missing
data or simulate hypothetical scenarios that can aid in disaster preparedness
and environmental conservation efforts.

Gaming and Virtual Environments

Generative AI is transforming the gaming industry by enabling the creation of
realistic and dynamic virtual environments. Procedural content generation powered
by AI allows developers to create immersive game worlds that adapt to player
interactions:

• Procedural Content Generation: AI models can autonomously generate
game levels, characters, and storylines based on predefined rules or datasets.
This allows for more personalized and engaging gaming experiences, as well as
reducing the manual labor required to design complex virtual environments.

• NPCs and Interactive Dialogue: Generative AI is used to create more
lifelike non-playable characters (NPCs) with dynamic dialogue and behavior.
By using natural language models, NPCs can respond more naturally to player
actions, creating a more immersive and interactive gaming experience.

2.3 Ethical and Societal Implications
As generative AI continues to advance, it brings with it profound ethical and societal
challenges. While the ability of AI to generate novel content offers tremendous
opportunities, it also raises critical questions about its responsible use, potential
misuse, and long-term impacts on society. This section explores the ethical and
societal concerns surrounding generative AI, focusing on the challenges of bias,
misinformation, and deepfakes, as well as the broader consequences for privacy,
employment, and trust in digital content.
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2.3.1 Challenges and concerns in the use of generative AI
Generative AI introduces several complex ethical issues that require careful consid-
eration, particularly in terms of bias, authenticity, and misuse. Below are some of
the key challenges and concerns in the use of this technology:

Bias and Fairness in Generative AI

Bias in AI models is a significant ethical concern, especially in generative AI, which
learns from large datasets that may contain underlying biases. These biases can be
unintentionally propagated, or even amplified, by AI models, leading to unfair or
discriminatory outcomes.

• Training Data Bias: Generative models, such as those used in natural
language processing or image generation, are trained on vast amounts of data
sourced from the internet or other repositories. If the training data reflects
societal biases—such as gender, racial, or cultural stereotypes—the AI can
generate outputs that reinforce these biases. For instance, AI-generated art
might disproportionately represent certain ethnicities or genders in particular
roles, and language models could produce biased or harmful text reflecting
prejudiced attitudes present in the data.

• Algorithmic Amplification of Bias: Once trained on biased data, genera-
tive AI can unintentionally amplify these biases when creating new content.
For example, language models might perpetuate biased narratives, and image
generators could produce outputs that disproportionately exclude or misrepre-
sent marginalized groups. Addressing this issue requires not only more diverse
and representative datasets but also the development of techniques to actively
mitigate bias during model training and generation.

Bias in generative AI poses a risk in many domains, including automated content
generation, media creation, and decision-making systems. Ensuring fairness, trans-
parency, and inclusivity in AI systems is crucial to avoid perpetuating existing
inequalities.

Misinformation and Deepfakes

One of the most alarming applications of generative AI is its potential for creating
highly realistic yet fake content, especially in the form of deepfakes. Deepfakes
are AI-generated images, videos, or audio recordings that convincingly imitate real
people, often with malicious intent.

• Misinformation and Disinformation: Deepfakes can be used to spread
misinformation by fabricating events, statements, or actions involving public
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figures. This has serious implications for politics, media, and public trust. For
example, a deepfake video of a politician making inflammatory remarks could
spark social unrest, undermine democratic processes, or manipulate public
opinion.

• Erosion of Trust: As generative AI becomes more adept at creating indistin-
guishable fake content, it becomes harder to discern what is real and what is
fabricated. This erosion of trust in digital media can have far-reaching effects
on society, including diminishing confidence in journalism, public discourse,
and even legal evidence.

• Misuse for Personal Harm: Beyond public figures, deepfakes can also
be weaponized to harm individuals through non-consensual content, such
as deepfake pornography or maliciously altered videos intended to damage
someone’s reputation. These unethical uses of generative AI pose significant
risks to personal privacy and safety.

To mitigate the risks associated with deepfakes and misinformation, researchers
are developing deepfake detection algorithms and advocating for stricter regulatory
frameworks. However, the rapid pace of AI advancement means that countermea-
sures often lag behind the technology, leaving society vulnerable to new forms of
digital manipulation.

Intellectual Property and Ownership

Generative AI blurs the lines between human creativity and machine output, raising
complex legal and ethical questions around intellectual property (IP) and content
ownership.

• Authorship and Attribution: When AI models generate art, music, text,
or code, it is often unclear who should be credited as the author. Should the
creator of the model, the user who inputted the prompts, or the AI itself receive
recognition? This ambiguity in authorship creates challenges in determining
copyright and IP rights, especially when generative AI is used commercially.

• Training on Copyrighted Data: Many generative models are trained on
datasets that include copyrighted materials, such as images, music, or text.
This raises concerns about the legality of using such models to generate new
content that may resemble or incorporate elements of the original works. Legal
frameworks have yet to fully address the implications of using copyrighted
material in AI training processes, creating uncertainty around the use and
ownership of AI-generated content.
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Privacy Concerns

Generative AI also introduces concerns related to privacy and data security, partic-
ularly in the context of generating personal data or imitating individuals without
consent.

• Synthetic Data Generation: AI can generate realistic synthetic data,
including personal details such as faces, voices, or other identifiable information.
This raises privacy concerns when AI-generated content is used to impersonate
individuals or when personal data is synthesized without explicit permission.

• Data Collection for Model Training: Generative AI models often require
large datasets for training, which may include personal information scraped
from public and private sources. If the data is not properly anonymized,
individuals’ privacy could be compromised, especially in models designed to
simulate personal identities or behaviors.

Societal and Economic Impact

Generative AI could also have broad societal and economic implications, affecting
employment, the creative economy, and social interactions:

• Job Displacement: As generative AI becomes more capable of creating
content autonomously, there is growing concern about its impact on industries
such as journalism, art, design, and even programming. AI systems that can
generate articles, design graphics, or write code could displace human workers
in these fields, leading to potential job losses and economic disruption.

• Redefinition of Creativity and Human Roles: Generative AI challenges
traditional notions of creativity and originality, raising questions about what
it means to be a creator in the age of AI. While some see AI as a tool for
augmenting human creativity, others worry that it may diminish the value of
human contribution in creative processes, shifting societal perceptions of art,
literature, and other forms of expression.
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Chapter 3

Introduction to Generative
Models

Generative models are a cornerstone of modern artificial intelligence, focusing on
learning the underlying patterns of data to create new, realistic outputs. Unlike
discriminative models, which aim to classify data points, generative models capture
the probability distribution of a dataset, allowing them to generate new data
points similar to those in the original dataset. This section provides an overview of
generative models and delves into the most popular types, including Generative
Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Diffusion
models.

3.1 Overview of Generative Models
Generative models are designed to model the distribution of data P (X), where
X represents the features of the dataset. By learning this distribution, these
models can generate new data points that are statistically similar to the original
training data. This is in contrast to discriminative models, which learn P (Y |X),
the probability of a label Y given the input features X.
The ability of generative models to create novel data has made them pivotal in
various applications, including image synthesis, text generation, and even drug
discovery. Key applications include:

• Image Generation: Creating realistic images from random noise or based
on text descriptions.

• Data Augmentation: Generating additional training data to improve ma-
chine learning models.
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• Text Generation: Producing coherent and contextually accurate text in
natural language processing tasks.

Several types of generative models have emerged, each with unique architec-
tures and mechanisms for generating data. The most prominent among them are
Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and
Diffusion Models.

3.1.1 Types of generative models: GANs, VAEs, and Dif-
fusion models

Generative models come in various forms, with each type having distinct archi-
tectures and methods for generating data. Below, we explore three of the most
commonly used generative models in modern AI: GANs, VAEs, and Diffusion
Models.

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs)[5], introduced by Ian Goodfellow
and his colleagues in 2014, represent a class of generative models that use two neural
networks—a generator and a discriminator—trained together in an adversarial
setup.

• Architecture: GANs consist of two components:

– The Generator learns to produce realistic data by mapping random noise
(usually sampled from a Gaussian distribution) to the data distribution.

– The Discriminator is a classifier that attempts to distinguish between real
data (from the training set) and fake data (generated by the generator).

These two models are trained in a competitive game: the generator improves
by learning to "fool" the discriminator, while the discriminator improves by
better detecting fake data. Over time, the generator becomes proficient at
producing high-quality, realistic data.

• Applications: GANs have been revolutionary in areas such as:

– Image synthesis: Creating realistic faces, landscapes, and objects.
– Deepfakes: Generating realistic yet artificially created videos or images

of individuals.
– Data augmentation: Increasing the size of training datasets with syn-

thetic data.
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• Challenges: While GANs produce highly realistic outputs, they are notorious
for instability during training and issues like mode collapse, where the generator
produces limited types of outputs.

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs)[6], introduced in 2013 by Kingma and
Welling, are a type of generative model that uses an encoder-decoder architecture
to learn a latent space representation of the input data, from which new data points
can be generated.

• Architecture: VAEs consist of two main components:

– The encoder maps input data to a probability distribution in a latent space,
typically parameterized as a multivariate Gaussian distribution. Each
input is encoded into a mean and variance, which define the distribution
of the latent variable.

– The decoder then samples from this latent space and reconstructs the
input data.

The key innovation in VAEs is the use of variational inference, a technique
that forces the learned latent space to follow a known distribution (usually
Gaussian), enabling smooth interpolation and sampling from the latent space.

• Applications: VAEs are widely used in tasks like:

– Data compression: Compressing data into a lower-dimensional latent
representation.

– Image generation: Generating images by sampling from the learned latent
space.

– Anomaly detection: Detecting outliers by analyzing how well the model
can reconstruct data points.

• Challenges: While VAEs are more stable and easier to train than GANs,
they often produce blurrier outputs due to the smoothness imposed on the
latent space, making them less ideal for tasks requiring high fidelity.

Diffusion Models

Diffusion models are a relatively newer class of generative models that have gained
popularity for their ability to generate high-quality images. These models are based
on a probabilistic diffusion process, where data is gradually transformed into
noise, and the model learns to reverse this process to generate new samples.
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• Architecture: Diffusion models work by slowly adding noise to training
data in a step-by-step manner, eventually converting the data into pure noise.
The model is then trained to reverse this process, learning how to gradually
"denoise" the noisy data to recover realistic samples.

– This process of learning to denoise makes diffusion models highly effective
at capturing fine details in the generated data, often outperforming GANs
in terms of image quality.

• Applications: Diffusion models are used in:

– Image synthesis: Producing high-resolution images with fine details.
– Text-to-image generation: Models like DALL·E 2 and Stable Dif-

fusion[7] use this approach to generate images from textual descriptions.

• Advantages and Challenges: Diffusion models often outperform GANs in
generating photorealistic images and are more stable during training. However,
they tend to be computationally expensive and slow during the generation
process, as the denoising process requires multiple steps.

3.2 GANs (Generative Adversarial Networks)
Generative Adversarial Networks (GANs)[5] have emerged as one of the
most influential types of generative models in AI, excelling in tasks such as image
synthesis, data augmentation, and content generation. Introduced by Ian Good-
fellow and his collaborators in 2014, GANs are designed around the concept of
adversarial training, where two neural networks—the generator and the discrimi-
nator—compete against each other. This section delves into the architecture of
GANs and explores the challenges associated with training them, including mode
collapse and instability.

3.2.1 Architecture: Generator vs. Discriminator
At the heart of every GAN is a dual-network architecture, consisting of two
neural networks: the generator and the discriminator. These networks play a zero-
sum game, where the success of one depends on the failure of the other, leading to
a dynamic and competitive learning process.

• Generator: The generator’s primary objective is to create realistic data that
can fool the discriminator. It takes in a random vector, usually sampled from
a simple probability distribution (such as Gaussian noise), and maps it to the
data space, aiming to generate outputs indistinguishable from real data.
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– Input: A random noise vector (e.g., from a Gaussian distribution).
– Output: Synthetic data resembling real examples from the training set

(e.g., images, text, or other structured data).
– Objective: Minimize the discriminator’s ability to correctly classify

generated data as fake, effectively improving its capacity to generate
realistic outputs.

• Discriminator: The discriminator is a classifier that attempts to distinguish
between real data (from the training set) and fake data (generated by the
generator). Its role is to improve its ability to detect generated (fake) data
while recognizing authentic (real) data.

– Input: A mix of real data and synthetic data produced by the generator.
– Output: A probability score indicating whether the input is real or fake

(usually between 0 and 1).
– Objective: Maximize the probability of correctly classifying real data as

real and fake data as fake, essentially making it harder for the generator
to fool it.

• Adversarial Training Process: GANs rely on an adversarial learning
process where both the generator and the discriminator improve iteratively:

– The generator learns to generate increasingly realistic data by trying to
"trick" the discriminator.

– The discriminator learns to improve its ability to distinguish between real
and generated data.

Mathematically, the training process can be represented as a minimax game,
where the generator tries to minimize the discriminator’s ability to classify
fake data, and the discriminator aims to maximize its success in detecting
fakes.
This can be expressed by the following objective function:

min
G

max
D

V (D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log (1−D(G(z)))]

Here, G represents the generator, D is the discriminator, Pdata(x) is the
distribution of real data, and Pz(z) is the distribution of the noise input.

3.2.2 Challenges with GANs (mode collapse, training in-
stability)

Despite their groundbreaking success, GANs are notoriously difficult to train, often
facing several key challenges that can hinder their performance. Among these,
mode collapse and training instability are the most prominent issues.
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Mode Collapse

Mode collapse occurs when the generator fails to capture the full diversity of the
data distribution, producing only a limited set of outputs. Instead of generating a
wide range of data points, the generator repeatedly outputs very similar or identical
samples, which reduces the overall quality and variety of generated content.

• Cause: Mode collapse typically arises when the generator finds a way to
consistently fool the discriminator by producing a small subset of realistic
outputs. Although these outputs may initially deceive the discriminator, they
lack diversity, failing to represent the entire distribution of the data.

• Example: In the case of image generation, mode collapse might result in
the generator producing images of the same object or person repeatedly, even
though the training dataset contains diverse examples.

• Solutions: To address mode collapse, several techniques have been developed,
including:

– Minibatch discrimination: This technique introduces diversity by
encouraging the generator to produce a wider variety of outputs. It does
this by comparing groups of generated samples, discouraging the generator
from producing identical or highly similar outputs.

– Unrolled GANs: This method helps the generator anticipate the future
steps of the discriminator during training, reducing the likelihood of
collapsing onto a single mode.

Training Instability

GANs are also known for their training instability, which can result from the
adversarial nature of their training process. Unlike traditional neural networks,
GANs require the careful balancing of two models, each with opposing objectives.
This creates several challenges that can lead to erratic training behavior.

• Non-convergence: Since the generator and discriminator are constantly
improving to outsmart each other, the training process can sometimes fail to
converge to a stable equilibrium. Instead, the generator and discriminator
may enter into oscillating patterns where neither model consistently improves.

• Vanishing Gradient Problem: If the discriminator becomes too strong, it
easily identifies the generator’s outputs as fake, providing little useful feedback
to the generator. As a result, the generator struggles to improve, and the
training process stalls due to vanishing gradients—when the error signal that
guides learning becomes too small for the generator to update meaningfully.
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• Exploding Gradients: On the other hand, if the discriminator is too weak,
it fails to provide meaningful feedback, causing the generator to produce
poor-quality outputs. This imbalance can result in exploding gradients, where
the model updates are too large, leading to unstable and erratic training.

• Solutions: Addressing training instability often involves carefully tuning the
architecture and optimization process. Some solutions include:

– Improved loss functions: Techniques like Wasserstein GAN[8] modify
the loss function to improve the stability of training by measuring the
distance between the real and generated data distributions more effectively.

– Gradient penalty: Adding a gradient penalty can stabilize training by
ensuring that the discriminator’s gradients remain within a reasonable
range, preventing both vanishing and exploding gradients.

– Feature matching: Instead of optimizing to directly fool the discrimina-
tor, the generator can be trained to match the features of real data at an
intermediate layer in the discriminator, which often leads to more stable
learning and less aggressive competition between the two models.

3.3 Diffusion Models
Diffusion models[9] are a relatively new class of generative models that have
gained significant attention due to their ability to produce high-quality, diverse
data and their more stable training processes compared to Generative Adversarial
Networks (GANs). These models are based on the idea of modeling the gradual
transformation of data into noise, then learning to reverse this process to generate
realistic data. This section covers the physical origins of diffusion models, the core
concept of forward and reverse diffusion processes, and the strengths of diffusion
models over GANs, particularly in terms of diversity and stability.

3.3.1 Physical Origins
The underlying principles of diffusion models are rooted in thermodynamics and
statistical physics, particularly in processes like Brownian motion and heat diffusion.
In physics, diffusion refers to the process by which particles spread out from areas
of high concentration to areas of low concentration, such as when molecules in a gas
move from a dense region into empty space. In generative modeling, the concept of
diffusion refers to gradually introducing noise into data and then learning how to
reverse this noisy transformation.

• Brownian Motion and Heat Diffusion: These physical phenomena involve
particles undergoing random motion as they interact with their environment.
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Over time, this leads to the gradual "diffusion" of particles until they reach a
state of equilibrium. Similarly, diffusion models in AI simulate this process
by progressively corrupting data with noise and then reversing the process to
recover the original, structured data.

• Connection to Variational Inference: From a probabilistic perspective,
diffusion models can be seen as a form of variational inference, where the model
learns a probabilistic path from noise to data. This approach draws from the
physical intuition that complex systems can be described probabilistically and
can evolve through small, reversible steps between different states.

3.3.2 Concept: Forward and reverse diffusion processes

The core mechanism of diffusion models revolves around two complementary
processes: the forward diffusion process and the reverse diffusion process. Together,
these processes enable the generation of new data by systematically introducing
and then removing noise.
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Forward Diffusion Process

In the forward diffusion process, noise is gradually added to real data through
a series of steps, transforming it into pure noise by the end of the process. Each
step introduces a small amount of Gaussian noise, progressively corrupting the
structure of the original data.

• Process Description: Starting from a data point x0 (which could be an
image, text, or other types of data), the model adds noise at each time step
t, resulting in a sequence of increasingly noisy data points x1, x : 2, . . . , xT

until the data is indistinguishable from pure Gaussian noise at time step T .
Mathematically, this forward process can be expressed as:

xt =
ñ

1− βt · xt−1 +
ñ

βt · ϵt

where βt controls the amount of noise added at each step, and ϵt is Gaussian
noise.

• Goal of Forward Diffusion: The purpose of the forward diffusion process
is to transform the data into a latent space of pure noise. Once this trans-
formation is complete, the reverse process can be applied to generate new
samples.

Reverse Diffusion Process

The reverse diffusion process aims to undo the forward process by removing
noise step by step, eventually recovering realistic data from the pure noise state.

• Process Description: Starting from a sample of pure noise, the model learns
to reverse each step of the forward diffusion process. This involves learning
a parameterized function that predicts the distribution of the previous state
xt−1 given the current noisy state xt, allowing the model to "denoise" the data
over time. the reverse process can be written as:

xt−1 = 1√
1− βt

·
3

xt −
ñ

βt · ϵθ(xt, t)
4

+ ϵ

where ϵθ represents the model’s learned noise estimation, ϵ is Gaussian noise.

• Learning the Reverse Process: The key challenge for diffusion models is
learning the reverse process, which involves approximating the conditional
distribution of each step. This is typically done through neural networks that
predict how to remove the noise, based on the current state and the time step
t.
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Sampling and Generation

Once the reverse diffusion process has been trained, new samples can be generated
by starting with pure noise and progressively denoising it using the learned model.
The end result is a data point that resembles the original data distribution, such
as a generated image or text sample.

3.3.3 Strengths over GANs: improved diversity and stabil-
ity

Diffusion models have shown several advantages over GANs, particularly in terms of
diversity of outputs and training stability. These strengths have made diffusion
models a competitive alternative to GANs in fields such as image synthesis and
natural language generation.

Improved Diversity

One of the major drawbacks of GANs is mode collapse, where the generator
produces limited variations of data, reducing the diversity of the outputs. Diffusion
models, by contrast, excel at generating diverse samples due to their probabilistic
nature and the smoothness of the latent space they learn.

• Diverse Output Generation: Diffusion models are less prone to mode
collapse because they model the entire data distribution rather than attempting
to trick a discriminator, as in GANs. This results in the generation of a wide
range of outputs that better reflect the diversity of the training data.

• Smooth Latent Space: The stepwise nature of diffusion models creates a
smoother latent space, enabling the generation of intermediate data points that
reflect subtle variations. This leads to more continuous and diverse sampling,
even when small changes are made to the noise input.

Enhanced Training Stability

Training GANs can be notoriously unstable due to the adversarial nature of the
generator-discriminator interaction. GANs often face issues such as exploding
gradients, vanishing gradients, and non-convergence. Diffusion models, however,
avoid these issues by relying on a simpler and more stable learning process.

• No Adversarial Training: Unlike GANs, diffusion models do not involve
adversarial training between two networks, which eliminates the instability
caused by the competition between the generator and the discriminator. As a
result, diffusion models tend to converge more reliably during training.
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• Well-Defined Objective Function: Diffusion models benefit from having a
well-defined, log-likelihood-based objective function, making the optimization
process more straightforward compared to the minimax game in GANs. This
leads to fewer issues with oscillations or collapse during training.

High-Quality Output

Diffusion models are capable of producing high-resolution and detailed images,
often surpassing GANs in terms of visual quality. This is because the reverse
diffusion process enables the model to focus on fine details during the denoising
steps, gradually refining the output.

• Fine-Grained Generation: The gradual nature of the reverse diffusion
process allows diffusion models to capture intricate details in data generation.
This can result in crisper, more realistic images compared to those generated
by GANs, which sometimes produce artifacts due to unstable training.

Diffusion models represent a powerful class of generative models that offer sig-
nificant advantages over GANs, particularly in terms of improved diversity and
stability. By leveraging the forward and reverse diffusion processes, these models
can generate high-quality, diverse samples while avoiding many of the training
challenges associated with GANs. Their origins in physical processes like diffusion
and their probabilistic foundation make them an exciting area of research and
application in generative AI.
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Chapter 4

Diffusion Models and Latent
Diffusion

4.1 Introduction to Diffusion Models
In the domain of machine learning, diffusion models, also referred to as diffusion
probabilistic models or score-based generative models, represent a class of latent
variable generative models. These models aim to model a diffusion process for
a given dataset, enabling the generation of new elements that follow the same
distribution as the original data. A diffusion model typically comprises three major
components: the forward process, the reverse process, and the sampling procedure.
The overall objective is to learn a process that generates data by simulating a
random walk with drift through the space of all possible data points.
Diffusion models have several equivalent formalisms, including Markov chains,
denoising diffusion probabilistic models (DDPM), noise-conditioned score networks,
and stochastic differential equations (SDEs) . These models are predominantly
trained using variational inference techniques . The model tasked with denoising
during the reverse process is often referred to as its "backbone", and typical choices
for this architecture include U-nets or transformers.

4.1.1 Applications of Diffusion Models
As of 2024, diffusion models are primarily used in computer vision tasks such
as image denoising, inpainting, super-resolution, image generation, and video
generation. The standard procedure in these applications involves training a neural
network to iteratively denoise images that have been blurred by Gaussian noise .
Once trained, these models are capable of generating images by starting from a
noise-filled image and applying the learned denoising process.
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One prominent application is in image generation, where diffusion-based image
generators such as Stable Diffusion and DALL-E have gained significant commercial
interest. These models often integrate diffusion techniques with text-encoders and
cross-attention modules to enable text-conditioned image generation, making them
versatile tools for creative applications.
Beyond computer vision, diffusion models have also made inroads in natural
language processing (NLP) for tasks like text generation , summarization , and
more recently in areas such as sound generation and reinforcement learning.

4.2 Denoising Diffusion Models
4.2.1 Non-equilibrium Thermodynamics
Non-equilibrium thermodynamics is a field that focuses on systems that are
not in thermodynamic equilibrium. Unlike equilibrium thermodynamics, which
deals with systems in a steady state, non-equilibrium thermodynamics describes
systems that evolve over time and can be characterized by macroscopic variables
that extend those used in equilibrium conditions. This branch is particularly
concerned with transport processes and the rates of chemical reactions.
Most natural systems are not in equilibrium; they are constantly changing or can be
altered by external forces. These systems are subject to fluxes of matter and energy
and undergo chemical reactions, both continuously and intermittently. Many of
these processes can be locally approximated as being in equilibrium, allowing them
to be analyzed with the tools of equilibrium thermodynamics. However, some
systems remain beyond the reach of equilibrium methods due to non-variational
dynamics, where the concept of free energy no longer applies.
The study of non-equilibrium systems requires broader principles than those found
in equilibrium thermodynamics. One major distinction lies in how inhomogeneous
systems behave. Unlike homogeneous systems studied in equilibrium thermodynam-
ics, non-equilibrium systems require understanding reaction rates. Additionally,
defining entropy at any given moment in non-equilibrium systems is challenging
in macroscopic terms, though it can be defined locally. In such cases, the total
entropy of the system can be described as the integral of these localized entropy
densities. Remarkably, even systems far from global equilibrium often still follow
local equilibrium rules.
In 2015, diffusion models were introduced as a way to learn from highly complex
probability distributions, utilizing principles from non-equilibrium thermodynamics,
particularly diffusion.
Consider the example of modeling the distribution of all natural images. Each
photo can be represented as a point in the space of all possible images, where the
distribution forms a "cloud." By adding noise repeatedly to the images, the cloud
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diffuses throughout the entire image space, eventually resembling a Gaussian
distribution N(0, I).
A model capable of reversing this diffusion process can sample from the original
distribution. This process is relevant to non-equilibrium thermodynamics because
the initial distribution is not in equilibrium, while the final distribution is.
The equilibrium distribution in this context is the Gaussian distribution N(0, I),
with the probability density function P(x) ∝ e− 1

2 ∥x∥2 . This mirrors the
Maxwell-Boltzmann distribution for particles in a potential well V (x) = 1

2∥x∥
2

at temperature 1. The initial distribution, being far from equilibrium, diffuses
toward this equilibrium state through biased random steps. These steps are a
combination of pure randomness (like Brownian motion) and a gradient descent
toward the potential well. Randomness is crucial here: without it, the particles
would collapse into a single point at the origin, eliminating the distribution entirely.

4.2.2 Denoising Diffusion Probabilistic Model (DDPM)
The Denoising Diffusion Probabilistic Model (DDPM), introduced in a 2020 paper,
is an improvement on prior generative models using variational inference techniques.

Forward Diffusion Process

The forward diffusion process gradually adds noise to an initial data point, denoted
as x0 ∼ q, where q is the distribution we want to learn. The noise is added step
by step until the data is completely transformed into pure noise, specifically a
Gaussian distribution N(0, I).
To explain this process, we introduce several variables:

• β1, . . . , βT ∈ (0,1) are predefined constants that control the noise scale.

• αt := 1− βt

• ᾱt := rt
i=1 αi

• σt :=
√

1− ᾱt

• σ̃t := σt−1

σt

√
βt

• µ̃t(xt, x0) :=
√

αt(1− ᾱt−1)xt +
√

ᾱt−1(1− αt)x0

σ2
t

• N(µ, Σ) is the normal distribution with mean µ and variance Σ, and N(x|µ, Σ)
is the probability density at x.
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at each timestep t, we apply the transformation that adds noise repeatedly:

xt =
ñ

1− βtxt−1 +
ñ

βtzt

where z1, . . . , zT ∼ N(0, I) are independent and identically distributed (IID) Gaus-
sian noise sample. As t increases, xt converges towards a standard Gaussian
distribution N(0, I), ensuring that the original data x0 becomes indistinguishable
from noise after enough steps:

lim
t→∞

xt|x0 → N(0, I)

The full process can be written as:

q(x0:T ) = q(x0)
TÙ

t=1
q(xt|xt−1) = q(x0)

TÙ
t=1

N(xt|
√

αtxt−1, βtI)

Here, each transition q(xt|xt−1) is a Gaussian distribution with mean √αtxt−1 and
variance βtI.
It can be rewritten as:

ln q(x0:T ) = ln q(x0)−
TØ

t=1

1
2βt

....xt −
ñ

1− βxt−1

....2
+ C

It can be osserved x1:T |x0 form a Gaussian process, allowing for flexibility in
reparametrization.
Specifically, through standard Gaussian process manipulations, we have:

xt|x0 ∼ N(
√

ᾱtx0, σ2
t I)

and
xt−1|xt, x0 ∼ N(µ̃t(xt, x0), σ̃2

t I)

Notice that as t increases, xt|x0 ∼ N(
√

ᾱtx0, σ2
t I) converges to N(0, I). This

implies that after a sufficiently long diffusion process, the variable xT approaches
N(0, I), effectively erasing any information from the original x0 ∼ q.
Since xt|x0 ∼ N(

√
αtx0, σ2

t I) we can directly sample xt|x0 in one step without
needing to compute the intermediate steps x1, x2, . . . , xt−1.

Reparameterization Derivation

We begin with the knowledge that xt−1|x0 and xt|xt−1 are both Gaussian distribu-
tions and independent of each other.
Therefore, we can express the following reparameterization:
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xt−1 =
ñ

ᾱt−1x0 +
ñ

1− ᾱt−1z

xt = √αtxt−1 +
√

1− αtz
′

where z and z′ are independent, identically distributed Gaussian random vari-
ables.
Now, we have five variables: x0, xt−1, xt, z, and z′, governed by two linear equa-
tions. The randomness comes from z and z′, which can be reparameterized through
rotation, taking advantage of the rotational symmetry of the IID Gaussian
distribution.

First Reparameterization

By substituting xt−1 into the equation for xt, we can simplify:

xt =
√

ᾱtx0 +
√

αt − ᾱtz +
√

1− αtz
′ü ûú ý

σtz′′

Here, z′′ is a new Gaussian variable with zero mean and unit variance, representing
a linear combination of z and z′.

Second Reparameterization via Rotation

To find the second reparameterization, we rotate the Gaussian variables z and
z′ using a rotational matrix. The relationship between the new variables z′′ and
z′′′ is given by: C

z′′

z′′′

D
=


√

αt−ᾱt

σt

√
βt

σt

−
√

βt

σt

√
αt−ᾱt

σt

 Cz
z′

D

Since the inverse of a rotational matrix is its transpose, we can solve for z and z′:C
z
z′

D
=


√

αt−ᾱt

σt
−
√

βt

σt√
βt

σt

√
αt−ᾱt

σt

 Cz′′

z′′′

D

Final Expressions

Substituting back into the original equations, we arrive at the final simplified forms:

xt =
√

ᾱtx0 + σtz
′′

xt−1 = µ̃t(xt, x0)− σ̃tz
′′′

These equations describe the reparameterized diffusion process, with the
randomness encoded in the rotated Gaussian variables z′′ and z′′′.
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Backward Diffusion

The core idea behind DDPM is to train a neural network, parameterized by θ, to
reverse the forward diffusion process. The network takes two inputs: xt and t, and
outputs a mean vector µθ(xt, t) and a covariance matrix Σθ(xt, t). These outputs
are used to approximate the reverse process by sampling xt−1 from a Gaussian
distribution:

xt−1 ∼ N(µθ(xt, t), Σθ(xt, t))

This defines the backward diffusion process pθ as follows:

pθ(xT ) = N(xT |0, I)

pθ(xt−1|xt) = N(xt−1|µθ(xt, t), Σθ(xt, t))

The goal is to learn the parameters θ such that the distribution pθ(x0) closely
matches the data distribution q(x0). To achieve this, we use maximum likelihood
estimation via variational inference.

Variational Inference

The Evidence Lower Bound (ELBO)[10] inequality provides the foundation for
optimizing this process:

ln pθ(x0) ≥ Ex1:T ∼q(·|x0) [ln pθ(x0:T )− ln q(x1:T |x0)]

Taking the expectation over the data distribution q(x0), we get:

Ex0∼q [ln pθ(x0)] ≥ Ex0:T ∼q [ln pθ(x0:T )− ln q(x1:T |x0)]

Maximizing the right-hand side provides a lower bound on the likelihood of the
observed data, allowing us to perform variational inference.

Loss Function

We define the loss function L(θ) as:

L(θ) := −Ex0:T ∼q [ln pθ(x0:T )− ln q(x1:T |x0)]

The goal is to minimize this loss using stochastic gradient descent. Simplifying
the loss, we obtain:

L(θ) =
TØ

t=1
Ext−1,xt∼q [− ln pθ(xt−1|xt)] + Ex0∼q [DKL(q(xT |x0) ∥ pθ(xT ))] + C
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Since pθ(xT ) = N(xT |0, I) is parameter-independent, the Kullback-Leibler di-
vergence term can be ignored. This reduces the loss function to:

L(θ) =
TØ

t=1
Lt

with each Lt defined as:

Lt = Ext−1,xt∼q [− ln pθ(xt−1|xt)]

The overall goal is to minimize this loss L(θ) over time.

Noise Prediction Network

In the DDPM framework, we model the reverse process as:

xt−1|xt, x0 ∼ N(µ̃t(xt, x0), σ̃2
t I)

This suggests that the reverse mean µθ(xt, t) should ideally match µ̃t(xt, x0). How-
ever, since the model doesn’t have direct access to the original data point x0, it
must estimate it. We know that:

xt|x0 ∼ N(
√

ᾱtx0, σ2
t I)

which can be rewritten as:
xt =

√
ᾱtx0 + σtz

where z is some unknown Gaussian noise.
Therefore, estimating x0 becomes equivalent to estimating the noise z.
To address this, the network is designed to output a noise vector ϵθ(xt, t), predicting
the noise component directly. With this, we can express µθ(xt, t) as:

µθ(xt, t) = µ̃t

A
xt,

xt − σtϵθ(xt, t)√
ᾱt

B
= xt − ϵθ(xt, t)βt/σt√

αt

Next, we design Σθ(xt, t), the covariance matrix. The original DDPM paper
found that learning this covariance matrix led to unstable training and poorer
sample quality. Instead, they fixed it to a predefined value:

Σθ(xt, t) = ζ2
t I

where ζ2
t can either be βt or σ̃2

t , both yielding similar performance.
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Loss Function simplification

The loss function for the model simplifies to:

Lt = β2
t

2αtσ2
t ζ2

t

Ex0∼q;z∼N(0,I)
è
∥ϵθ(xt, t)− z∥2

é
+ C

This can be minimized using stochastic gradient descent. Empirically, the DDPM
paper found that an even simpler loss function produced better results:

Lsimple,t = Ex0∼q;z∼N(0,I)
è
∥ϵθ(xt, t)− z∥2

é
This simpler formulation significantly improves model performance and stability
during training.

Backward Diffusion Process

Once the noise prediction network is trained, it can be used to generate data points
from the original distribution through an iterative process. The steps for each
iteration are as follows:

1. Estimate the noise:
ϵ← ϵθ(xt, t)

Here, ϵθ(xt, t) is the predicted noise for the current time step t and data point
xt.

2. Estimate the original data point:

x̃0 ←
xt − σtϵ√

ᾱt

This step computes an estimate x̃0 of the original data point based on the
predicted noise.

3. Sample the previous data point:

xt−1 ∼ N(µ̃t(xt, x̃0), σ̃2
t I)

The previous data point xt−1 is sampled from a Gaussian distribution with
mean µ̃t(xt, x̃0) and variance σ̃2

t .

4. Update the time step:
t← t− 1

Decrease the time step and repeat the process until t = 0.

This loop continues until the data point x0 is recovered, completing the backward
diffusion process and generating a new sample from the original data distribution.
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4.2.3 Generation
Denoising Diffusion Implicit Model (DDIM)

The original Denoising Diffusion Probabilistic Model (DDPM)[11] generates high-
quality images but is relatively slow because it typically requires around 1000
steps in the forward diffusion process for the distribution of xT to closely resemble
Gaussian noise. This results in the backward diffusion process also requiring 1000
steps, as each step in the backward process depends on the previous one. For
example, sampling xt−2|xt would require marginalizing over xt−1, which is generally
computationally intractable.
To address this issue, DDIM was introduced as a method to accelerate the
generation process by skipping steps. It takes a model trained with DDPM
loss and allows for skipping diffusion steps, trading off an adjustable amount of
quality. Unlike DDPM, which is a Markovian process, DDIM operates in a
non-Markovian setting, making the reverse diffusion process deterministic when
the variance is set to zero. As a result, DDIM can generate images with fewer steps
than DDPM, and often outperforms DDPM in scenarios with limited sampling
steps.

Key Concepts

1. Forward Diffusion Process: The forward process remains the same as
DDPM:

xt =
√

ᾱtx0 + σtϵ

where x0 is the original image and ϵ is Gaussian noise.

2. Backward Diffusion Process: During the backward process, given xt and
the predicted noise ϵθ(xt, t), the model first estimates the original image x′

0 as:

x′
0 = xt − σtϵθ(xt, t)√

ᾱt

From this point, instead of performing the usual backward process step-by-step,
DDIM allows jumping to any step s, where 0 ≤ s < t, by computing the next
denoised sample:

xs =
√

ᾱsx
′
0 +

ñ
σ2

s − (σ′
s)2ϵθ(xt, t) + σ′

sϵ

Here, σ′
s is a flexible parameter within the range [0, σs], and ϵ ∼ N(0, I) is

newly sampled Gaussian noise.

3. Deterministic Process: When all σ′
s = 0, the backward process becomes

fully deterministic, allowing DDIM to generate images with fewer steps. In
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some cases, it can generate comparable results to DDPM with as few as 20
steps instead of 1000.

4. Eta Parameter (η): The DDIM paper introduces a single "eta value" η ∈
[0, 1], where σ′

s = ησ̃s. - η = 1 corresponds to the original DDPM. - η = 0
results in fully deterministic DDIM. - Intermediate values of η interpolate
between the two methods.

5. Eta Parameter (η): The DDIM paper introduces a single "eta value" η ∈
[0, 1], where σ′

s = ησ̃s. - η = 1 corresponds to the original DDPM. - η = 0
results in fully deterministic DDIM. - Intermediate values of η interpolate
between the two methods.

Applicability

The DDIM algorithm can also be applied to score-based diffusion models, offering
a flexible and efficient alternative for generating high-quality images.

Training and Inference of LDM

The Latent Diffusion Model (LDM) is trained using a process that gradually adds
noise to training images via a Markov chain, and the model learns to reverse this
process. Here’s a clearer breakdown of the training and inference stages:

Training

1. Forward Diffusion Process: Starting with a real image x0, a sequence of
progressively noisier latent variables x1, x2, . . . , xT is generated. Gaussian
noise is added at each step following a predefined "noise schedule."

2. Reverse Diffusion Process: Beginning with a highly noisy image xT , the
model is trained to predict and remove the noise added at each previous step,
eventually recovering the original image x0.

3. Loss Function: The training objective is to minimize the difference between
the model’s predicted noise and the actual noise applied at each step. This is
typically done using a mean squared error (MSE) loss function, ensuring the
model effectively learns the noise distribution.
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4.3 Latent Diffusion Models

The Latent Diffusion Model (LDM), developed by the CompVis group at
LMU Munich, is a diffusion model architecture designed to improve upon tradi-
tional diffusion models.
Diffusion models, first introduced in 2015, are trained to remove Gaussian noise
that is gradually applied to images. LDM enhances this approach by conducting
the diffusion process in a compressed latent space, which is more efficient. Addi-
tionally, it incorporates self-attention and cross-attention conditioning for
more effective learning.
LDM has become the foundation for many diffusion models in use today, including
the popular Stable Diffusion versions from 1.1 to 2.1.
Diffusion models were first introduced in 2015 as a way to sample from complex
probability distributions using techniques from non-equilibrium thermodynamics,
with an initial implementation in Theano. In 2019, the Noise Conditional Score
Network (NCSN) improved this approach using score-matching with Langevin
dynamics. This was followed by the Denoising Diffusion Probabilistic Model
(DDPM) in 2020, which further enhanced the method with variational inference.
In December 2021, the Latent Diffusion Model (LDM) was introduced, leading
to the release of Stable Diffusion versions starting from 1.1 in August 2022. These
versions, ranging from SD 1.1 to 1.5, refined the LDM architecture by training on
increasingly aesthetic datasets, with version 1.5 being released by RunwayML in
October 2022.
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4.3.1 Architecture
The Latent Diffusion Model (LDM) can generate various types of data, but for
clarity, let’s focus on its application in conditional text-to-image generation.
LDM consists of three main components: a variational autoencoder (VAE), a
modified U-Net, and a text encoder.

1. VAE Encoder: It compresses the input image from pixel space into a lower-
dimensional latent space, capturing the image’s core semantic information.
During the forward diffusion process, Gaussian noise is progressively added to
this latent representation.

2. Modified U-Net: Built with a ResNet backbone, the U-Net is responsible
for denoising the noisy latent representation during the reverse diffusion process.
This step refines the latent representation, progressively removing noise to
recover the core image features.

3. VAE Decoder: Once the denoised latent representation is obtained, the VAE
decoder reconstructs the final image by converting it back to pixel space.

In text-to-image generation, the denoising process is conditioned on text prompts
or other types of input data, such as images. The conditioning data is encoded
and introduced to the U-Net through a cross-attention mechanism. For text-based
conditioning, a pretrained CLIP ViT-L/14 text encoder is used to transform
text prompts into a corresponding embedding space.

4.3.2 Variational Autoencoder
In Latent Diffusion Models, a Variational Autoencoder is used to compress
image data into a more manageable form. The VAE is trained on a large dataset of
images to learn how to map high-dimensional image data into a lower-dimensional
latent space while preserving the essential features.

1. Encoder: The VAE’s encoder takes an input image and transforms it into
a latent representation, a compressed version of the image. This latent
representation captures the core semantic content of the image in fewer
dimensions, making it easier for subsequent processing.

2. Latent Representation: This compressed latent space is then passed to the
U-Net model, which performs the task of denoising and refining the latent
data during the diffusion process.

3. Decoder: After the diffusion process is completed, the VAE’s decoder is
used to reconstruct the latent representation back into an image. The decoder
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learns to reverse the encoding process, converting the abstracted latent data
back into pixel space, producing a high-quality image.

The VAE thus acts as a bridge, encoding images into a latent space where they can
be efficiently manipulated and decoded back into their original form or a modified
version. By using this latent representation, LDMs can reduce computational
complexity while maintaining the quality of the generated images.

4.3.3 U-Net Architecture in Latent Diffusion Models

The U-Net backbone in Latent Diffusion Models (LDM) processes three key inputs:

1. Latent Image Array: This is the output of the VAE encoder. It has
dimensions like (channels, width, height), where the number of channels is
typically much smaller than a standard RGB image. For example, a latent
image with dimensions (3, 64, 64) could be viewed as a 64x64 image with 3
channels, though it is not meant for direct visualization.

2. Timestep Embedding: This vector encodes how much noise is present in
the latent image. At the start (t=0), the image is almost noiseless, while at a
high value like t=100, the image has significant noise. This helps the U-Net
understand how much denoising is needed at each step.

3. Modality Embedding: This input provides additional conditioning infor-
mation. For instance, in text-to-image generation, the text is tokenized and
processed by a text encoder (like CLIP), converting it into a sequence of
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embedding vectors that guide the denoising process. Other types of input,
like images, can also be used to condition the U-Net for specific tasks (e.g.,
generating images in the same style as an input).

Denoising Process

The U-Net backbone performs iterative denoising. In each pass, it outputs a
**predicted noise vector**, which is then scaled and subtracted from the latent
image, resulting in a slightly cleaner latent representation. This process is repeated
according to a predefined denoising schedule. Once the latent image has been
denoised sufficiently, the VAE decoder converts it back into a final image.

U-Net Structure

Similar to a traditional U-Net, this backbone consists of downscaling (reducing
the resolution) and upscaling (restoring the resolution) layers. However, it includes
special modules for handling the additional embedding inputs. Here’s an overview
of a single downscaling layer:

1. ResBlock with Time Embedding: The latent array is processed through
a ResNet-style block. The timestep embedding is passed through a simple
feedforward network and added to the latent array after it goes through
convolutional layers. This is repeated to refine the latent representation
further.

2. Spatial Transformer: This module applies attention mechanisms, trans-
forming the latent image based on the modality embedding (e.g., text or
another condition). It operates like a standard Transformer decoder without
causal masking. In cross-attention blocks, the latent array serves as the
query, while the modality embedding serves as both the key and value. If no
embedding is provided, the model defaults to self-attention.
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Pseudocode

Listing 4.1: Python code for U-Net components
1 de f ResBlock (x , time , r e s idua l_channe l s ) :
2 x_in = x
3 time_embedding = feedforward_network ( time )
4 x = concatenate (x , r e s idua l_channe l s )
5 x = conv_layer_1 ( a c t i v a t e ( normalize_1 ( x ) ) ) + time_embedding
6 x = conv_layer_2 ( dropout ( a c t i v a t e ( normalize_2 ( x ) ) ) )
7 re turn x_in + x
8

9 de f Spat ia lTrans former (x , cond ) :
10 x_in = x
11 x = normal ize ( x )
12 x = proj_in ( x )
13 x = cro s s_at t en t i on (x , cond )
14 x = proj_out ( x )
15 re turn x_in + x
16

17 de f unet (x , time , cond ) :
18 r e s idua l_channe l s = [ ]
19 f o r r e sb lock , s p a t i a l t r a n s f o r m e r in downsca l ing_layers :
20 x = re sb l o c k (x , time )
21 r e s idua l_channe l s . append ( x )
22 x = s p a t i a l t r a n s f o r m e r (x , cond )
23

24 x = middle_layer . resblock_1 (x , time )
25 x = middle_layer . s p a t i a l t r a n s f o r m e r (x , time )
26 x = middle_layer . resblock_2 (x , time )
27

28 f o r r e sb lock , s p a t i a l t r a n s f o r m e r in upsca l i ng_laye r s :
29 r e s i d u a l = res idua l_channe l s . pop ( )
30 x = re sb l o c k ( concatenate (x , r e s i d u a l ) , time )
31 x = s p a t i a l t r a n s f o r m e r (x , cond )
32

33 re turn x

Inference

• After training, the model can generate new images by running the reverse
diffusion process. Starting from a random noise sample, the model progressively
removes noise in line with the learned distribution, resulting in a final image.

This method allows the LDM to generate high-quality images from noise by
iteratively refining the noise sample using the learned noise-prediction model.
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4.3.4 Motivation behind Latent Diffusion: computational
efficiency and quality

Latent Diffusion Models (LDMs) were developed to address the challenges of com-
putational efficiency and image quality in generative models. Traditional diffusion
models, operating in pixel space, require significant computational resources due to
the high dimensionality of the data. LDMs overcome this by performing diffusion
in a lower-dimensional latent space, drastically reducing the computational load
without sacrificing image quality. This approach allows for faster training and
inference, while still maintaining the ability to generate high-resolution, detailed
images. Additionally, by conditioning the diffusion process on modalities like text
or images, LDMs enable more control over the generated content, making them
highly versatile for tasks such as text-to-image synthesis.
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Chapter 5

Experiments and
Geo-localization Task

5.1 What is Geo-localization? Problem Defini-
tion and Real-World Importance

Geo-localization is the process of determining the precise geographical location
where an image or video was captured, solely by analyzing the visual content of
the image. Unlike traditional methods that rely on GPS data or other geospatial
sensors, geo-localization through visual cues focuses on comparing the query image
with a large database of geo-tagged reference images to infer its location. This task
has become increasingly important due to the rising demand for location-aware
applications in various industries, such as autonomous systems, smart cities, and
augmented reality.

Problem Definition

In visual geo-localization, the key challenge is to identify the most similar geo-tagged
images from a large database and deduce the query image’s location based on these
comparisons. The problem can be formalized as an image retrieval task, where the
goal is to find reference images from a known geographic region that match the
visual features of the query image. The retrieved images must provide accurate
information about the location, even in the absence of any GPS metadata. The
task is complicated by several factors such as changes in appearance due to time
of day, weather conditions, seasonal variations, structural changes, and occlusions
(e.g., parked vehicles or pedestrians).
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Real-World Importance

Geo-localization has numerous practical applications that impact both industrial
and societal domains. Some of the most critical applications include:

1. Autonomous Driving: In the field of autonomous vehicles, geo-localization
is essential for precise navigation. Autonomous cars need to continuously
determine their location relative to a map, especially in environments where
GPS signals are unreliable or unavailable, such as urban canyons or tunnels.
Visual geo-localization can serve as an alternative or complement to GPS,
providing location estimates by analyzing surrounding visual landmarks.

2. Augmented Reality (AR): Many AR applications require real-time localiza-
tion to overlay digital content in the correct geographic context. For example,
in AR navigation systems, geo-localization enables accurate placement of
directions or points of interest (POI) in the user’s real-world view. AR-based
tourism apps also rely on visual geo-localization to provide information about
historical landmarks or nearby attractions based on the user’s location.

3. Robotics and Drone Navigation: Mobile robots and drones, especially
those operating in indoor or urban environments, often face challenges with
GPS signal loss. Geo-localization using visual information can provide reli-
able positioning for these systems, enabling them to navigate efficiently in
environments like warehouses, disaster zones, or densely populated cities.

4. Social Media and Digital Forensics: In the era of social media, users
frequently share images without providing geographic context. Geo-localization
helps identify where an image was captured, aiding in content verification
and digital forensics. This is particularly useful for investigative journalism,
environmental monitoring, and law enforcement.

5. Visual Assistive Technologies: For visually impaired individuals, geo-
localization-based assistive technologies can provide spatial awareness and
help them navigate unfamiliar environments by describing their surroundings
and offering turn-by-turn navigation based on their current location.

6. Smart Cities: In the context of smart city initiatives, visual geo-localization
enables real-time tracking of infrastructure changes, monitoring of urban
development, and disaster management. City planners can use this technology
to gather data on urban expansion and traffic management by analyzing
images from various sources, including cameras placed around the city.

Overall, geo-localization has emerged as a critical technology for solving real-
world problems, particularly in cases where traditional GPS methods are either
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unavailable or unreliable. Its potential to enhance localization accuracy in both
indoor and outdoor environments makes it indispensable for modern navigation,
safety, and information systems.

5.1.1 Introduction to the Cosplace Datasets and Task Spec-
ifications

The Cosplace datasets[12] have been specifically curated to address the unique
challenges of large-scale visual geo-localization. They were designed by experts in
the field to provide a robust and realistic evaluation platform for geo-localization
algorithms, particularly in urban settings. The datasets include millions of images
collected from various locations across entire cities, capturing diverse environmental
conditions, landmarks, and scenes that are typically encountered in city-wide
geo-localization tasks.

Datasets Overview

The Cosplace datasets are designed to simulate real-world conditions, presenting
a variety of challenges that make geo-localization a complex task. The images
in the datasets are collected from multiple cities, and each image is geo-tagged
with precise latitude and longitude coordinates. This allows for both training and
evaluation of geo-localization models across a wide geographic area. The datasets
include various environmental and temporal variations, such as:

• Time of Day: Images taken during different times of the day, from bright
daylight to nighttime scenes.

• Weather Conditions: The datasets capture images under varying weather
conditions such as sunny, rainy, and foggy environments.

• Seasonal Changes: Seasonal shifts like summer versus winter are reflected in
the dataset, affecting the appearance of vegetation, lighting, and other visual
cues.

• Structural Changes: The datasets also account for permanent or temporary
changes in the environment, such as new buildings, roadworks, or parked
vehicles, which can obscure critical visual features.

• Occlusions: Common obstacles such as pedestrians, cyclists, and cars that
partially block landmarks or important visual information are included, forcing
models to generalize well in challenging conditions.
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5.1.2 Task Specifications

The primary task of the Cosplace datasets is formulated as an image retrieval
problem. Given a query image, the goal is to retrieve the most visually similar
geo-tagged images from a large reference database and use them to estimate the
location of the query image. This task can be broken down into several key
components:

1. Training: Models are trained on a subset of geo-tagged images from the
Cosplace datasets, with the goal of learning to extract robust visual features
that are invariant to environmental changes. The training process involves
using image descriptors that capture key visual information such as shapes,
textures, and spatial relationships between objects. These descriptors are then
compared with those from other images in the dataset.

2. Evaluation: During evaluation, a query image (without any GPS information)
is provided to the model, which must then retrieve the most similar images
from the reference dataset. The performance of the model is typically measured
by how accurately it can estimate the geographic location of the query image,
often using metrics such as mean reciprocal rank (MRR), precision at k, or
recall at specific distance thresholds.

3. Environmental Variation Handling: One of the key challenges for models
using the Cosplace datasets is the ability to handle the wide range of envi-
ronmental changes captured in the images. To succeed in this task, models
must be able to generalize across different times of day, seasons, and weather
conditions. The presence of occlusions and structural changes in the dataset
also necessitates robust feature extraction techniques that can still identify
critical landmarks despite visual noise.
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4. Data Scale: The Cosplace datasets are large-scale, consisting of millions
of images spread across a broad geographic region. This presents additional
challenges in terms of computational efficiency, as the model must process
and retrieve images from a vast database in real time. This requires both
optimized image retrieval techniques and efficient memory management to
ensure scalability.

5. Data Augmentation and Preprocessing: To improve model performance,
data augmentation techniques such as random cropping, rotations, and color
jittering are often applied during training. These augmentations help the
model learn to handle the variability in real-world images. Additionally,
preprocessing steps like feature normalization and dimensionality reduction
are used to streamline the retrieval process, making it computationally feasible
to handle large-scale data.

Importance of the Cosplace Dataset

The Cosplace datasets are significant for several reasons.

• First, its large scale and diverse set of images make it a highly realistic
benchmark for evaluating the robustness and scalability of geo-localization
models. It forces models to deal with real-world challenges such as environmen-
tal variability and large-scale image retrieval, which are crucial for practical
applications.

• Second, the Cosplace datasets are designed for urban environments, which
are some of the most challenging settings for geo-localization due to the high
density of visually similar features (e.g., buildings, roads) and the presence
of dynamic objects (e.g., vehicles, pedestrians). The dataset encourages the
development of models that can reliably geo-locate images in these complex
settings, making it highly relevant for applications in autonomous driving, AR
navigation, and urban robotics.

In conclusion, the Cosplace datasets and their associated task specifications provide
a comprehensive platform for developing and testing state-of-the-art visual geo-
localization models. Its focus on real-world variability and scalability ensures that
models trained on this dataset will be well-equipped to handle the challenges of
geo-localization in practical scenarios.

53



Experiments and Geo-localization Task

5.2 Latent Diffusion for Geo-localization

5.2.1 Why Latent Diffusion? Applicability to geo-localization
tasks

Latent diffusion models (LDM)[13] were chosen for this study due to their computa-
tional efficiency and their ability to offer a more lightweight alternative to traditional
diffusion models. Standard diffusion processes are powerful generative models but
tend to be computationally expensive, especially when applied to large-scale tasks
such as image generation or geo-localization. The latent diffusion model alleviates
this by operating within a compressed latent space, thus significantly reducing the
computational load while retaining high-quality generation capabilities.

5.2.2 Applicability to Geo-localization Tasks
The decision to use latent diffusion in the context of geo-localization, particularly
with images of urban landscapes and panoramas sourced from Google Maps, stems
from the need to explore whether the diffusion process can effectively handle
such datasets. Geo-localization tasks involve retrieving and matching specific
geographical features from large databases, and understanding how well diffusion
models can generate or recreate such features is critical to advancing the field.
By testing the unconditional generation of images with latent diffusion, we aimed
to investigate whether the diffusion process can preserve key features present
in urban and panoramic images. The ability of the model to generate realistic,
feature-rich images plays an important role in assessing its potential applicability
to geo-localization tasks. The experiment helps to determine if critical geographical
elements, such as building structures, road layouts, and natural landmarks, are
maintained in the generated images—features that are essential for accurate geo-
localization.
In particular, the following questions are explored:

• Can latent diffusion generate accurate images based on urban en-
vironments? If the diffusion model retains distinct features like buildings,
streets, and other landmarks in its generated outputs, it indicates that the
model could be useful for tasks involving geo-localization.

• Does the model maintain meaningful details in panoramic images?
Panoramic images often cover wide, varied spaces, and the ability of the latent
diffusion model to recreate these expansive views with important detail is
crucial for its success in geo-localization tasks.

54



Experiments and Geo-localization Task

5.2.3 Explainability and Model Understanding in Geo-
localization

Another key motivation for adopting latent diffusion is its potential to enhance
explainability in the Cosplace model. Explainability in machine learning is an
essential tool for understanding what features a model prioritizes during training
and inference, and why it occasionally makes errors. In the case of visual geo-
localization, understanding why a model may misclassify a location or fail to
retrieve the correct image from a large database can offer valuable insights into
model limitations.
Latent diffusion offers an opportunity to probe the Cosplace model and uncover
the specific features it learns during training.
By observing the latent space, which serves as a compressed and meaningful
representation of image features, we can identify:

• What features are most important in the geo-localization task? This
includes visual landmarks like unique building shapes, street signs, and road
structures that the model frequently relies on for matching.

• Why does the model make mistakes? By analyzing the images gener-
ated by latent diffusion and examining cases where the model fails, we can
understand what misleading or absent features may be causing the model to
produce incorrect results.

Errors in geo-localization are often attributable to several factors such as:

• Visual similarity: Areas in different parts of a city, or even different cities,
might appear visually similar, making it difficult for the model to distinguish
between them.

• Occlusions or changes in environment: Temporary or permanent changes,
such as construction, parked cars, or weather conditions, can obscure critical
features, leading to mistakes.

• Lack of distinctive landmarks: Some locations may not have prominent
features that are easy for the model to distinguish, causing ambiguity.

By integrating latent diffusion with Cosplace, we not only enhance the com-
putational efficiency of the diffusion process but also gain a valuable tool for
understanding and refining the geo-localization model. This deeper insight into
the learned features helps inform future improvements, including how to better
handle cases of visual similarity and feature ambiguity, ultimately driving better
performance and fewer localization errors.
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5.2.4 Explanation of the repository used (CompVis/Latent-
Diffusion)

The CompVis/Latent-Diffusion repository is the source from which we obtained
the models used for our geo-localization task. This repository is based on the
Latent Diffusion Models (LDMs) introduced in the paper High-Resolution
Image Synthesis with Latent Diffusion Models by Robin Rombach et al. The
purpose of utilizing these models for our geo-localization task is to take advantage
of LDM’s computational efficiency and its ability to maintain high-quality image
generation. By operating in latent space, LDMs reduce the computational cost
of traditional diffusion models while still capturing important features of images,
making them a good fit for our work on city panoramas and street views.

Purpose of the Paper

The core motivation of the paper is to address the issue of high computational
demands in traditional diffusion models, particularly when operating in pixel space.
LDMs introduce a more efficient approach by conducting the diffusion process in
a lower-dimensional latent space, which allows for faster image generation while
preserving quality. The paper highlights the benefits of this approach, particularly
in cases where high-resolution images are required. Key objectives of the paper are:

• Improving Computational Efficiency: LDMs aim to reduce the number
of operations required during the diffusion process by transforming images
into a compact latent space. This reduces the complexity of the forward and
backward diffusion steps, making the model faster to train and use.

• Maintaining Image Quality: Despite operating in a reduced latent space,
LDMs are designed to preserve the semantic and perceptual quality of the
generated images. The approach ensures that even with fewer diffusion steps,
the output images retain high fidelity.

• Conditional Generation Flexibility: The paper also emphasizes the versa-
tility of LDMs in conditional generation tasks. The model can incorporate
different types of conditioning signals, such as text or image inputs, through
cross-attention mechanisms. This makes it adaptable to a wide range of
generative tasks.

Model Architecture

The architecture of LDMs comprises three major components:

1. Variational Autoencoder (VAE): The VAE compresses high-dimensional
image data into a lower-dimensional latent space, where the diffusion process
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takes place. The encoder part of the VAE transforms the input images into
latent representations, while the decoder reconstructs images from these latent
representations.

2. U-Net Backbone: During the reverse diffusion process, a U-Net model is
used to denoise the noisy latent representations step-by-step. Equipped with
a ResNet backbone, the U-Net refines the latent representation progressively,
eventually producing a clean latent image.

3. Cross-Attention Mechanism: To handle conditional generation tasks such
as text-to-image generation, the model uses cross-attention layers. For example,
text inputs are processed by a CLIP encoder to generate embedding vectors,
which are then used to condition the diffusion process during denoising. This
allows the model to incorporate contextual information effectively.

Performance and Efficiency

The CompVis/Latent-Diffusion repository demonstrates several performance
improvements:

• Faster Training and Inference: Since LDMs operate in a lower-dimensional
latent space, they require fewer computational resources. This makes both
training and inference faster and more feasible, even on large datasets or
high-resolution images.

• High-Quality Image Generation: Despite the reduced computational
cost, LDMs are able to maintain high image quality. They are particularly
well-suited for generating high-resolution images and handling complex tasks
like super-resolution and inpainting.

• Adaptability to Various Tasks: The cross-attention mechanism allows
LDMs to condition the generation process on a variety of inputs, such as
text or images. This makes the model versatile and applicable to different
generative tasks beyond simple image synthesis, including those relevant to
geo-localization.

The CompVis/Latent-Diffusion[14] repository provided us with the founda-
tional models for our geo-localization experiments. Its architecture, designed for
computational efficiency and high-quality image generation, was highly suitable for
our task of understanding whether latent diffusion models could be applied effec-
tively to panoramic and city images for geo-localization purposes. The repository
includes pre-trained models and scripts that facilitated our work, enabling efficient
image generation and serving as a tool for exploring how diffusion models can be
adapted for explainability and feature learning in geo-localization tasks.
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Chapter 6

Results and Analysis

6.1 Unconditional Generation
6.1.1 Explanation of unconditional generation
In the first set of experiments, we applied the method of unconditional generation
of images using diffusion models. Unconditional generation refers to the process
of generating images without providing any additional conditional inputs such as
text prompts, image references, or other external data. The objective is to see how
well the model, trained purely on a dataset of images, can independently generate
samples that reflect the characteristics of the training data. For this purpose, we
used two well-known geo-localization datasets: San Francisco Extra Large and
Pittsburgh 30k.
Both datasets contain a wide variety of images capturing urban landscapes, streets,
buildings, vehicles, and other city-related features. Our goal in starting with
unconditional generation was threefold:

1. Assess the Model’s Ability to Train on City and Street Images:
The first motivation was to examine whether the latent diffusion model
could be trained effectively using images from cities and streetscapes. Urban
landscapes often consist of intricate details like buildings, vehicles, trees, and
pedestrians, which makes it challenging for generative models to learn and
replicate. Starting with unconditional generation allowed us to evaluate the
model’s ability to learn these complex scenes and determine whether it could
handle the diversity of urban elements.

2. Evaluate the Preservation of Characteristics and Details in Gener-
ated Images:
A key reason for this experiment was to understand whether the model could
generate images that maintain the distinct visual characteristics and details
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of the datasets. We wanted to see if the model could successfully recreate
not only the large-scale structural elements like buildings and streets but also
finer details such as cars, trees, and pedestrians. Maintaining these details is
crucial for generating realistic cityscapes and determining the model’s ability
to represent the complexity of real-world urban environments.

3. Assess the Model’s Potential for Conditional Generation and Geo-
localization Task Explainability:
Lastly, this experiment also served as a foundation to explore the model’s
potential for conditional generation, particularly in the context of the
geo-localization task using the Cosplace dataset. If the model can generate
realistic, high-quality images in an unconditional setting, it stands to reason
that it could also perform well in a conditional generation setting. Conditional
generation would allow the model to be guided by specific inputs such as
location-based data or specific features (e.g., streets, landmarks), which could
enhance the accuracy and explainability of the geo-localization task. By
starting with unconditional generation, we aimed to gather insights into how
the model interprets and synthesizes various elements of cityscapes. This would,
in turn, help us understand what features the model learns and prioritizes,
which could inform us about the strengths and weaknesses of the model when
applied to the geo-localization task.

6.1.2 Unconditional Generation Process
For both the San Francisco Extra Large and Pittsburgh 30k datasets, we conducted
unconditional generation by training the latent diffusion model on the entire
image corpus. The images were processed into latent space using a Variational
Autoencoder, and Gaussian noise was applied during the forward diffusion process.
The model was then tasked with denoising the noisy latent representation through
the reverse diffusion process to generate new images.

6.1.3 Observations from Unconditional Generation
• Model’s Ability to Capture Urban Features:

In both datasets, the latent diffusion model successfully captured and generated
large-scale urban features such as buildings, roads, and the overall structure of
city environments. This shows that the model is capable of learning complex
street and city layouts from the training data.

• Details such as Cars, Trees, and People:
A significant outcome was the model’s ability to generate finer details in some
cases, such as vehicles, trees, and occasionally pedestrians. However, the
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clarity and fidelity of these smaller elements varied depending on the amount
of noise removed during the diffusion process. In some cases, the generated
cars and trees lacked sharpness or appeared blended into the surroundings,
indicating room for improvement in capturing high-frequency details.

• Image Diversity: The generated images showed reasonable diversity in terms
of different types of buildings, street views, and urban layouts. This suggests
that the model does not merely memorize the training data but learns a
broader representation of urban scenes, allowing it to create varied outputs.

Potential for Conditional Generation

The success of the model in unconditional generation opens up promising avenues
for conditional generation in geo-localization tasks. By conditioning the generation
process on specific input features, such as image embeddings or location data, the
model could be guided to focus on relevant aspects of the scene for more precise
geo-localization. This could enhance the Cosplace model by helping it understand
which visual elements—such as specific building styles, road structures, or natural
features—are most important for accurately identifying locations.

Role in Explainability

Another potential application is using latent diffusion to improve model explain-
ability in the geo-localization task. By analyzing how the model generates images
and what features it emphasizes, we can gain insights into what visual cues are most
significant for the model when making predictions. Furthermore, understanding
why the model sometimes makes mistakes (e.g., confusing two similar-looking
locations) can also be informed by studying the generated images. This could
highlight which elements the model struggles with and help refine both the training
data and model architecture for better geo-localization performance.

6.2 Experimental setup: hyperparameters, train-
ing, and evaluation metrics

In this section, we outline the experimental setup for our unconditional generation
model, which closely follows the settings used in the LSUN Churches model
provided in the CompVis/latent-diffusion repository. The LSUN Churches
dataset was chosen as a baseline due to its similarity in terms of image complexity
and features (such as buildings and landscapes) to the city and street images in our
geo-localization task. The performances achieved with the LSUN Churches dataset
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were among the best reported in the repository, making it a solid foundation for
our experiments.

Image Sizes and Model Configuration

For this experiment, we conducted two sets of tests with different image resolutions:

• 128x128 and 256x256 pixels.
While the 256x256 setting is the default configuration in the original repository,
the 128x128 option was introduced to reduce computational demands. Lower-
ing the image resolution to 128x128 allows for faster training and lighter GPU
memory usage, albeit with some potential loss in image detail and quality.

Model Channels

We also experimented with two different configurations for the number of model
channels:

• 192 model channels: This is the default configuration in the original
repository, known for producing high-quality outputs.

• 160 model channels: This reduced channel setting was used to lighten the
overall model, making it more efficient in terms of GPU memory usage. This
reduction in channels allows for training on lower-end hardware without con-
suming all available GPU memory, at the potential cost of a slight performance
tradeoff.

Diffusion Timesteps

In all training runs, we used 1000 timesteps for the Denoising Diffusion Prob-
abilistic Model (DDPM). Previous experiments have shown that increasing the
number of timesteps beyond 500 does not significantly impact model performance.
Therefore, 1000 timesteps were chosen as a balanced approach to ensure model
stability without unnecessarily increasing training time.

Learning Rate and Loss Function

The base learning rate was set to 5.0e-5, consistent with the original settings in
the repository. This learning rate was empirically determined to provide a stable
convergence for models of this size.
For the loss function, we utilized L1 loss, which measures the mean absolute error
between the generated images and the original images. L1 loss was chosen for its
ability to produce sharper results in generative models compared to L2 loss.

62



Results and Analysis

U-Net Input Sizes

The input image sizes for the U-Net, or the output size from the VAE encoder,
were configured as follows:

• 16x16 pixels for input images of size 128x128.

• 32x32 pixels for input images of size 256x256.

These sizes are based on the configuration in the repository, ensuring that the U-Net
receives appropriately downscaled representations from the encoder for efficient
diffusion processing.

Autoencoder Configuration

For the autoencoder component in the first_stage_config, we used the following
setup:

1 t a r g e t : ldm . models . autoencoder . AutoencoderKL
2 params :
3 kl_f8

This configuration leverages KL divergence as part of the autoencoder architecture
to compress and reconstruct images, helping the model learn compact latent
representations efficiently.

Image Logging and Callbacks

Finally, during training, image logging was set up to monitor the generation process
and model progress. We used the Lightning module to configure the logging
parameters:

1 l i g h t n i n g :
2 c a l l b a c k s :
3 image_logger :
4 t a r g e t : main . ImageLogger
5 params :
6 batch_frequency : 5000
7 max_images : 8
8 i nc rease_log_steps : Fa l se

These settings ensure that the model generates sample images every 5000 batches,
logging up to 8 images at a time for evaluation purposes. This helps monitor the
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model’s progress and the quality of generated images throughout training without
overwhelming the logging system.

6.2.1 Details Lsun-Churches Experiment
Dataset details:
Number of images: 126227
Image size: 256×H (with H > 256)

Model Details:
base_learning_rate: 5.0e− 5
target: ldm.models.diffusion.ddpm.LatentDiffusion

Params:
linear_start: 0.0015
linear_end: 0.0155
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
loss_type: l1
first_stage_key: "image"
cond_stage_key: "image"
image_size: 32
channels: 4
cond_stage_trainable: False
concat_mode: False
scale_by_std: True
monitor: ’val/loss_simple_ema’

Scheduler:
scheduler_config: target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [10000]
cycle_lengths: [10000000000000]
f_start: [1.e-6]
f_max: [1.]
f_min: [ 1.]

Unet Model:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
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params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 192
attention_resolutions: [ 1, 2, 4, 8 ] num_res_blocks: 2
channel_mult: [ 1,2,2,4,4 ] num_heads: 8
use_scale_shift_norm: True
resblock_updown: True

First Stage Model:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: "val/rec_loss"
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
ddconfig:
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,2,4,4 ]
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: "__is_unconditional__"

Data:
target: main.DataModuleFromConfig
params:
batch_size: 96
num_workers: 5
wrap: False
train:
target: ldm.data.lsun.LSUNChurchesTrain
params:
size: 256
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validation:
target: ldm.data.lsun.LSUNChurchesValidation
params:
size: 256

Lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False

Trainer:
benchmark: True
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Samples

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.1: Samples lsun-churches original setup

6.2.2 San Francisco ExtraLarge
Dataset details
Number of Images: 41173104
Images size: 512× 512

6.2.3 Original Setup
Model Details:
Size: 256× 256
Batch Size: 48 Number of Images per Epoch: 41137
Trainer:
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accumulate_grad_batches: 2

In this section, the experiment conducted used the original model configuration for
the LSUN Churches dataset. The primary objective was to evaluate the impact of
varying the batch size on the performance and efficiency of the model.
Specifically, we maintained the identical model architecture and hyperparameters,
altering only the batch size from 96 to 48 to fit the memory of the GPU Titan
RTX 24GB, and setting the accumulate gradient batches equal to 2.
The rationale behind this adjustment lies in the exploration of batch size effects on
training stability, convergence speed, and overall model accuracy. Batch size is a
critical parameter in deep learning that influences the gradient estimates, memory
usage, and training dynamics.

6.2.4 Loss
Loss Calculation
In this latent diffusion model, the loss is calculated as the L1 loss between the
Gaussian noise used as the target and the noise predicted by the model. The
relevant function for this calculation is defined as follows:

1 de f ge t_los s ( s e l f , pred , target , mean=True ) :
2 i f s e l f . loss_type == ’ l 1 ’ :
3 l o s s = ( t a r g e t − pred ) . abs ( )
4 i f mean :
5 l o s s = l o s s . mean ( )
6 re turn l o s s

In this function:
- ’pred’ represents the noise predicted by the model.
- ’target’ represents the Gaussian noise used as the target.

The L1 loss is computed by taking the absolute difference between the target
noise and the predicted noise:

loss = |target− pred|

If the ’mean’ parameter is set to ’True’, the function calculates the mean of these
absolute differences, resulting in a single scalar value representing the average loss:

mean_loss = 1
N

NØ
i=1
|targeti − predi|

This mean loss provides a concise measure of how well the model’s predictions
match the target Gaussian noise, facilitating model optimization during training.
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Loss Adjustment with Variance

In this model, the loss is adjusted to account for varying levels of uncertainty by
scaling the loss based on the variance. This adjustment ensures that the model
remains adaptive to changes in the variance of the data. Here’s how this adjustment
works in detail:

1 l o s s_s imple = s e l f . g e t_los s ( model_output , target , mean=False ) . mean
( [ 1 , 2 , 3 ] )

2 logvar_t = s e l f . l ogvar [ t ] . to ( s e l f . dev i c e )
3 l o s s = los s_s imple / torch . exp ( logvar_t ) + logvar_t

Step-by-Step Explanation

1. Calculate the Simple Loss:

1 l o s s_s imple = s e l f . g e t_los s ( model_output , target , mean=False ) . mean
( [ 1 , 2 , 3 ] )

2

• self.get_loss(model_output, target, mean=False) computes the L1 loss
between the predicted noise (model_output) and the target noise (target).

• mean([1, 2, 3]) averages this loss over the dimensions [1, 2, 3], which
typically represent the height, width, and depth of the data tensor, resulting
in a loss value for each batch item.

2. Convert Log-Variance to Variance:

1 logvar_t = s e l f . l ogvar [ t ] . to ( s e l f . dev i c e )
2

• self.logvar[t] retrieves the log-variance for the current time step t.

• .to(self.device) ensures that the log-variance tensor is moved to the correct
device (CPU or GPU) for computation.
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In latent diffusion models, log-variance (log(σ2)) is used in the loss function to
improve numerical stability and optimization.

• Log-Variance Retrieval: At each time step t, the log-variance log(σ2
t ) is

retrieved using:
logvart = self.logvar[t].to(self.device)

where self.logvar[t] obtains the log-variance for the current time step t, and
.to(self.device) ensures that the log-variance tensor is moved to the appropriate
computation device (CPU or GPU).

• Conversion to Variance: To use log-variance in the loss calculation, it needs
to be converted back to the variance (σ2) using the exponential function:

σ2
t = exp(logvart)

This conversion is necessary because the variance is used for scaling and
computing the loss accurately.

3. Adjust the Loss Using Variance:

1 l o s s = los s_s imple / torch . exp ( logvar_t ) + logvar_t
2

• torch.exp(logvar_t) converts the log-variance to variance. Exponentiating
the log-variance yields the actual variance since exp(log(variance)) = variance.

• loss_simple / torch.exp(logvar_t) scales the simple loss by the inverse
of the variance. This scaling normalizes the loss according to the level of uncer-
tainty represented by the variance. Higher variance (more uncertainty) results
in a smaller contribution to the loss, while lower variance (less uncertainty)
results in a larger contribution.

• + logvar_t adds the log-variance to the scaled loss. This term ensures that
the optimization process takes into account the uncertainty, encouraging the
model to reduce the uncertainty when possible.

Purpose and Benefits

• Adaptive Loss Scaling: By scaling the loss according to the variance, the
model becomes adaptive to changes in the variance of the data. This means
that the model can appropriately weigh the loss contributions from predictions
with different levels of certainty.
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• Handling Uncertainty: Adding the log-variance term helps the model
to handle varying levels of uncertainty in the data. When the uncertainty
(variance) is high, the corresponding loss is reduced, preventing the model from
being overly penalized for predictions in uncertain regions. Conversely, when
the uncertainty is low, the loss is increased, pushing the model to improve
accuracy in more certain regions.

• Encouraging Certainty Reduction: The term + logvar_t in the loss
function also encourages the model to minimize the uncertainty where possible.
This helps the model not only to improve accuracy but also to become more
confident in its predictions.

Overall, this adjustment makes the model more robust and effective in handling
data with varying levels of uncertainty, leading to more reliable and accurate
predictions.
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Samples

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 6.2: Samples San Francisco original setup
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6.2.5 Original Setup with –scale_lr False
Loss
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Samples

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 6.3: Samples San Francisco original setup with -scale_lr False
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6.3 San Francisco ExtraLarge 160 Channels
6.3.1 Original Setup with 160 channels 256× 256
Loss
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Samples

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 6.4: Samples San Francisco with 160 channels
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6.3.2 Original Setup with 160 channels 128× 128
Loss
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Samples

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 6.5: Samples San Francisco with 160 channels 128× 128
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6.3.3 Discussion on the effectiveness of unconditional gen-
eration

The experiments conducted across various datasets and configurations have yielded
promising results for the effectiveness of unconditional generation using diffusion
models. The findings indicate that the models consistently achieve high precision
and exhibit a strong resemblance to the distribution of city images. This perfor-
mance underscores the models’ ability to accurately capture and reproduce the
essential features of urban landscapes.
One of the significant implications of this success is the potential for transitioning
from Unconditional to Conditional generation. Since the diffusion models effec-
tively represent the underlying characteristics of the dataset, they can be adapted
for conditional generation tasks. This adaptability opens the door for employing
these models in applications such as the Cosplace model for geo-localization.
By utilizing the robust feature representation obtained through unconditional gener-
ation, we can enhance the interpretability and explainability of the Cosplace model.
The insights gleaned from the conditional generation processes will provide a deeper
understanding of which features are most influential in the geo-localization task. It
allows for identifying the attributes that contribute to successful localization as
well as recognizing the conditions under which the model may encounter difficulties
or make errors.
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6.4 Conditional Generation using Cosplace

6.4.1 Introduction to conditional generation and how the
Cosplace network is used

Conditional Generation refers to the process of generating new data (such
as images) based on certain input conditions, allowing for greater control and
specificity in the generative output. In the context of image generation, these
conditions can take various forms, such as text prompts, class labels, or other
features that influence the generated output. One powerful approach for achieving
conditional generation is through the use of cross-attention mechanisms within
models such as diffusion models. Cross-attention is a technique that allows the
model to focus on specific parts of the conditioning vector during the generation
process, effectively guiding the output based on the provided information.
The conditioning vector can be any meaningful set of data, and it is incorporated
into the model through a specific number of attention heads, the individual
mechanisms that process different parts of the input, enabling the model to attend
to multiple aspects of the conditioning simultaneously. Traditionally, text prompts
have been used as the conditioning input, often in natural language processing
tasks or image generation models like DALL·E, where a description influences
the generated image.
In our case, however, instead of using a text prompt, the conditioning input will be
derived from the Cosplace network. Cosplace is a neural network architecture
designed to generate high-quality embeddings of places or scenes, enabling place
recognition and comparison. To achieve conditional generation using Cosplace,
we first pass the original image through the Cosplace network, which produces a
unique embedding vector. This embedding represents the key features of the
input image and serves as our conditioning input for the generative process.
Simultaneously, the original image is passed to the diffusion model, which is
responsible for the actual generation of the new image. The diffusion model
works by progressively refining a noisy image, transforming it step by step into a
coherent and high-quality output. Throughout this process, the embedding from
Cosplace is used to condition the generation via cross-attention, ensuring that
the resulting image aligns with the features encoded in the original scene.
By using the Cosplace embedding as the conditioning vector, we are able to guide
the image generation process to produce outputs that are strongly correlated with
the original image’s features, but with the flexibility inherent in generative models.
This method combines the powerful scene-recognition capabilities of Cosplace
with the versatile generation capabilities of diffusion models, leading to controlled,
high-quality results that are informed by the visual characteristics of the input
image.
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6.5 Integration of Cosplace with Latent Diffusion
for Geolocalization

In this section, we describe how the Cosplace model is integrated into the pipeline
for latent diffusion-based image generation, specifically for the task of geolocal-
ization. To achieve this, we utilize the CosplaceImageEmbedder, a custom class
that leverages the Cosplace model to generate embeddings of input images. These
embeddings are then used as conditioning vectors in the latent diffusion process,
guiding the model to produce outputs that are contextually informed by the geo-
graphical features present in the input images.
The CosplaceImageEmbedder class, shown below, is built using PyTorch. It ini-
tializes with the Cosplace model (with ResNet50 as the backbone by default), and
applies a series of preprocessing steps to the input images before generating the
embeddings. The output embeddings are of dimension 512, which are used to
condition the diffusion model via cross-attention mechanisms.
Listing 6.1: CosplaceImageEmbedder class for generating embeddings from the
Cosplace model

1 import torch
2 import torch . nn as nn
3 from t o r c h v i s i o n import t rans forms
4

5 c l a s s CosplaceImageEmbedder (nn . Module ) :
6 " " "
7 Uses the Cosplace model f o r image embedding .
8 " " "
9 de f __init__( s e l f , backbone=" ResNet50 " , fc_output_dim=512) :

10 super ( ) . __init__ ( )
11 s e l f . model = torch . hub . load ( " gmberton/ co sp l a c e " , "

get_trained_model " ,
12 backbone=backbone , fc_output_dim=

fc_output_dim )
13

14 # Def ine the p r ep ro c e s s i ng t rans f o rmat i ons
15 s e l f . p r ep roce s s = trans forms . Compose ( [
16 t rans forms . Res i ze (512) ,
17 t rans forms . CenterCrop (512) ,
18 t rans forms . Normalize (mean=[0 .485 , 0 . 456 , 0 . 4 0 6 ] ,
19 std =[0 .229 , 0 . 224 , 0 . 2 2 5 ] ) ,
20 ] )
21

22 de f forward ( s e l f , x ) :
23 # I f input i s a Tensor , assume i t ’ s a l r eady been preproce s s ed
24 i f i s i n s t a n c e (x , torch . Tensor ) :
25 x = ( x + 1) / 2 # Resca le va lue s to [ 0 , 1 ] range
26 x = s e l f . p r ep roce s s ( x )
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27

28 " " "
29 # I f input i s a PIL Image or numpy array , p r ep roce s s i t
30 e l i f i s i n s t a n c e (x , ( Image . Image , np . ndarray ) ) :
31 x = s e l f . p r ep roce s s ( x )
32 e l s e :
33 r a i s e TypeError ( " Input should be a PIL Image , ndarray , or

Tensor " )
34

35 i f x . dim ( ) == 3 : # I f s i n g l e image , add batch dimension
36 x = x . unsqueeze (0 )
37 " " "
38

39 # Get the output from the model
40 output = s e l f . model ( x )
41

42 # Add extra dimension to get shape [ 1 , 1 , 512 ]
43 output = output . unsqueeze (1 )
44

45 re turn output # Modify to re turn s e l f . model ( x ) i f f i n a l two
outputs are removed

The CosplaceImageEmbedder class is designed to integrate seamlessly into the
diffusion model pipeline. During the forward pass, it processes the input image
by applying resizing, cropping, and normalization, ensuring that the image is in
the proper format for the Cosplace model. The processed image is then passed
through the Cosplace model, which generates a 512-dimensional embedding that
captures the key features of the scene, specifically tailored for geolocalization tasks.
The embedding produced by the Cosplace model serves as a conditioning vector
in the latent diffusion process. Through the use of cross-attention mechanisms,
this embedding ensures that the diffusion model’s output remains consistent with
the geographical and contextual features of the input image. This integration
allows the model to generate highly relevant images for geolocalization, leveraging
both the generative power of latent diffusion and the specialized place-recognition
capabilities of Cosplace.

6.5.1 Results: Performance comparison with unconditional
generation

In this section, we will analyze the images generated during the training of the
conditional model, which was trained on the Pittsburgh Dataset. The analysis will
focus on the outputs produced at different stages of the training process, specifically
at epochs 7, 14, and 25. This will provide insight into how the model’s performance
evolves over time and how effectively it learns to generate images conditioned on
the input embeddings.
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(a)

(b)

(c)

(d)

(e)

Figure 6.6: Original and Generated images after 7 epochs
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(a)

(b)

Figure 6.7: Original and Generated images after 14 epochs
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(a)

(b)

Figure 6.8: Original and Generated images after 25 epochs

As can be observed from the images, the model’s performance is impressive
even in the early epochs. By epoch 7, the generated images already display fine
details and bear a striking resemblance to the original images, highlighting the
effectiveness of the conditional model at capturing key features early in the training
process.
However, as the model continues to train through epochs 14 and 25, certain
limitations become more apparent. Specifically, it is clear that the Cosplace model,
which generates the feature embeddings, has not effectively captured transient
visual elements such as moving vehicles or pedestrians. These mobile obstacles,
present in the original scenes, are either absent or inaccurately represented in
the generated outputs. Additionally, the model struggles with rendering fixed
structures like street sign poles, which often do not appear in the generated images.
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Moreover, the reconstruction of windows also presents challenges for the model.
While windows are generated, they often differ in both number and shape compared
to the original images, suggesting that the model has difficulty capturing precise
architectural details. These issues highlight specific areas where the model’s
embedding features fall short, particularly in handling dynamic or small-scale
elements within the scene.

6.5.2 Visual Results and Feature Analysis of Cosplace-
Conditioned Image Generation

Sky Feature Interpretation

In the following images, the leftmost image is the original input, from which the
conditioning embedding is extracted. The subsequent images are generated by the
model using the Cosplace-conditioned diffusion process.
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As can be observed from the generated images, the sky tends to differ significantly
from the original input. For instance, in cases where clouds are present in the
input, the generated images often show a clear sky, or vice versa. This suggests
that the sky is not considered a significant feature for Cosplace’s embedding in the
geolocation task, meaning that it is not crucial for the classification process.
Since the sky is not embedded as an important feature, it is sampled from the
distribution governed by the diffusion process, rather than being explicitly retained
from the conditioning embedding. This demonstrates that elements like the sky
are less relevant for Cosplace’s focus, which prioritizes other environmental or
structural features that are more critical for geolocation.

Structural Feature Analysis: Buildings and Roads

In the following images, the leftmost image is the original input, while the others
are generated by the model.
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When analyzing the features of roads and buildings, it is clear that the relative
positions between the buildings and the streets, as well as their orientation, are
well preserved in the generated images. However, it is important to note that the
lighting conditions often change. Some images originally in the shade are generated
with sunlight, and vice versa. This is a positive outcome, as it shows that the
Cosplace model is not sensitive to lighting conditions, making it robust to variations
in lighting (i.e., augmentation unaffected).
Additionally, the number and placement of windows are not consistently retained in
the generated images. This suggests that windows are rarely considered informative
features for geolocation. Moreover, given that the dataset spans a period of 12
years, architectural modifications, such as changes in window designs or building
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colors, are likely. For example, in the second-to-last image, the building’s color
shifts from orange in the original image to red in the generated one, reflecting
potential real-world changes over time.

Handling of Dynamic Elements: Vehicles and Pedestrians

In the following image, the original image is on the left, and the generated ones
are on the right.

In this set, the original images are shown at the top, with the generated images
below.
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As seen in these examples, mobile obstacles such as cars and pedestrians are
often not recognized by the Cosplace model. Since these dynamic objects are
not consistently present in the environment, they are not considered informative
features for geolocation tasks. As a result, during the generation process, such
obstacles are typically removed. This is a positive indication that Cosplace does
not focus on non-informative, transient elements, suggesting that it would perform
well even in scenarios with varying traffic conditions.
However, in rare cases where a mobile object becomes informative—such as when
there are very few images of a location, all taken within a short time frame, and the
same vehicle appears in each image—that object may become a significant feature.
In such cases, diffusion-based generation can be a valuable tool for identifying when
it might be necessary to enrich the dataset to prevent the model from over-relying
on such features.

Misrepresentations of Structural and Traffic Elements: Road Signs and
Bridges

In the following examples, we can observe how frequently changing road features,
such as road signs and lampposts, are not accurately reconstructed. This is because
the Cosplace model identifies these elements but struggles to attribute consistent
features to them. As a result, the diffusion model generates these objects in
completely different forms from the original images, while maintaining their relative
positions. This inconsistency highlights Cosplace’s difficulty in processing dynamic
or less stable features of the environment.
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For instance, road signs, which may change in size, shape, or even be absent in
certain frames, are not accurately retained during the image generation process.
The signs appear in the correct position but vary significantly in appearance
compared to the original input images.
This error in Cosplace is further evidenced when an incorrectly generated image is
reclassified by the model. Despite the erroneous generation, Cosplace still classifies
it correctly because it focuses on identical, stable features in both the original and
generated images. This behavior can be seen in the case below:
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This shows that while Cosplace may not consistently capture traffic-related or
structural elements like road signs and overpasses, it continues to recognize more
stable and permanent features for classification purposes, ignoring minor variations
in less significant elements.

6.5.3 Analysis of the strengths and limitations of the ap-
proach

The approach demonstrated here has proven to be both highly effective and innova-
tive in enhancing the explainability of the base model. By integrating a conditional
generation process, we gained deeper insights into how the Cosplace model operates
and how it captures scene-specific features through its embeddings. This allowed for
a more transparent understanding of the model’s decision-making process, offering
clarity into what the model perceives as important for geolocalization tasks.
Additionally, the use of a diffusion model as a tool for explainability is particularly
novel and scarcely explored in existing literature. The diffusion model enabled
us to visualize how the model responds to specific features during the generation
process, offering a new dimension of explainability beyond traditional methods.
This represents a significant advancement in the field, as generative models like
diffusion have not been widely utilized for such purposes.
However, while this approach excels in improving the model’s transparency and
providing a more interpretable framework, certain limitations were noted, such as
difficulties in reconstructing dynamic or small-scale visual elements, as discussed
earlier. Despite these limitations, the innovative combination of Cosplace and
diffusion models marks a valuable contribution to the explainability of complex
neural networks.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Findings

7.1.1 Recap of key insights from experiments and genera-
tive models

The experiments conducted in this research have highlighted several important
insights regarding the integration of the Cosplace model with latent diffusion
for geolocation tasks. The conditional generative approach proved effective at
generating images that closely resemble the original scenes, particularly in early
epochs, demonstrating that this method can capture a wide range of visual details.
The model also provided valuable insights into how Cosplace embeddings function,
specifically in geolocalization contexts. Moreover, the use of diffusion models for
explainability emerged as a novel and promising direction, offering visual outputs
that clarify the model’s internal decision-making process in a way that traditional
methods could not.

7.1.2 Implications for AI-driven geolocation tasks

The findings from this work have direct implications for AI-driven geolocation tasks.
The integration of conditional generation allows for a better understanding of what
features are emphasized by neural networks like Cosplace, thus enhancing both the
accuracy and transparency of location-based models. This is especially valuable
in critical applications such as autonomous navigation, smart city management,
and urban planning, where explainability and precision are crucial. The use of
generative AI in this context opens new avenues for improving model robustness
and interpretability, paving the way for more reliable AI-driven geolocation systems.
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7.2 Limitations of the Current Work
7.2.1 Challenges faced during experiments (e.g., computa-

tional costs, model limitations)
Despite the promising results, several challenges were encountered throughout the
research process. One of the main issues was the need to reduce the number of
channels in the model architecture. The original repository of the Latent Diffusion
Model by CompVis was trained using an NVIDIA A100 GPU, a high-end device
with greater computational capabilities. However, due to hardware constraints,
this work was conducted on an NVIDIA RTX Titan with 24 GB of memory and
GTX 1070 cards with only 8 GB. This led to significant compromises in model
complexity and batch size, limiting the speed and scale of experimentation.
Additionally, the images processed in this work had a resolution of 256x256, which,
while suitable for initial experimentation, resulted in a lower level of detail in
the generated outputs. This may have constrained the precision of the model
when handling intricate structures like windows or small dynamic elements such as
pedestrians and moving vehicles.

7.3 Future Research Directions
7.3.1 Possible improvements to latent diffusion models
There are several potential avenues for improving latent diffusion models in future
work. One direction could involve optimizing model architectures to work more
efficiently on hardware with limited computational resources, such as by incorpo-
rating more efficient layers or compression techniques. Another possibility is to
explore alternative training strategies that allow for better scaling with smaller
batch sizes, which could help overcome the current hardware limitations.
Furthermore, increasing the resolution of the generated images and improving the
model’s ability to capture fine details will be critical. This could be achieved by
adopting multi-scale training approaches or by experimenting with higher-resolution
diffusion models. The development of more advanced conditioning mechanisms
might also help improve the model’s ability to generate more realistic reconstructions
of dynamic and small-scale elements in urban environments.

7.3.2 Further applications of generative AI in geospatial
tasks and in Explainability

The success of this diffusion-based explainability approach suggests that it could
be extended to a wide variety of research domains beyond outdoor geolocalization.
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For example, indoor visual geolocation systems could benefit greatly from this
method, helping AI models learn and explain how they recognize specific indoor
environments based on spatial cues.
In addition to geolocation, diffusion models for explainability could be applied in
several other fields:

• Genetic code analysis: Diffusion models could help visualize and explain
how AI systems interpret and generate synthetic genetic sequences, improving
our understanding of AI in genomics and bioinformatics.

• Weather prediction: The ability of diffusion models to generate high-
quality visualizations could aid in interpreting complex atmospheric models,
offering clearer explanations for weather forecasts and helping researchers
better understand AI-based climate models.

• Economic forecasting: In economic modeling, diffusion approaches could be
used to generate interpretable scenarios that clarify how AI predicts market
trends or economic outcomes, providing greater transparency for decision-
makers.

These examples demonstrate the broad applicability of diffusion models in enhancing
the explainability of AI systems across a range of disciplines. Future research could
explore these avenues, applying generative models to offer clearer, more interpretable
outputs in various scientific and practical fields.
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