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Introduction

The discretization of continuous features is a common preprocessing step in

many machine learning applications, and, among data mining algorithms, decision

tree learners (e.g., CART [1], C4.5 [2]) are closely related to discretization tech-

niques: their output consists of models that discretize the input space in order

to perform their task. Using discrete features rather than continuous ones can

be beneficial in several ways: the work of Liu et al. [3] highlights how these are

closer to a knowledge-level representation, making them more interpretable and

easier to explain. Moreover, their usage can sometimes speed up the execution of

data mining algorithms and significantly improve their performance [4]. In this

work, another advantage of discretization is exploited: it allows techniques that

normally cannot handle continuous attributes to be applied in a wider range of

scenarios. An example belonging to this category is DL8.5 [5], an optimal decision

tree learner (ODT) that only works on binary data. The trees produced by this

algorithm are “optimal” because they achieve the smallest possible training error.

The problem of finding an optimal decision tree is NP-hard, even when con-

straints are specified to reduce the amount of possible solutions (i.e., on the depth

of the tree). As a result, greedy algorithms have traditionally been favored over

optimal ones due to their efficiency. However, recent advancements in optimiza-

tion solvers and novel algorithmic concepts have led to the development of new

optimal methods for inferring decision trees under constraints [6, 7, 8, 9, 10, 11],

and empirical evidence demonstrates that these methods achieve improved classi-

fication performance on unseen data [12]. Since such approaches are often tailored

to binary features, it is necessary to first preprocess data by discretizing continu-
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ous features. Algorithms of this kind pose an additional challenge to discretization

techniques: the choice of how binary features are produced heavily affects the per-

formance of the models trained on them, and common heuristic-based discretizers

give no guarantees about the optimality of their solutions. Moreover, binarizing

a dataset can result in a considerable increase in its dimensionality, with conse-

quences for the runtime of the algorithms that use it. For instance, one strategy

that would allow an ODT algorithm to learn an optimal tree on a continuous

dataset is to create a binary feature for every possible value of every feature. Do-

ing so would be effective, but no optimal algorithm would complete its execution

in a reasonable amount of time, unless in the case of a trivial starting dataset.

The goal of this thesis is to develop a discretization technique specifically

designed for use with ODT algorithms, incorporating two key properties:

• It should generate a ranked list of binary features, allowing an ODT learner

to be run iteratively with data of increasing dimensionality.

• If the process is stopped early, using only a subset of the binary features,

the resulting models should still be of high quality.

A discretizer with these properties is desirable because it enables the learning of

an optimal decision tree from continuous data in an anytime fashion: running

this iterative process without a time limit leads to an optimal decision tree, but

it can also be stopped early when waiting for it to terminate is unfeasible. This

concept is implemented in MID (Minimum Impurity Discretizer), a new super-

vised, heuristic-based discretization technique that uses impurity measures such

as the Gini index or entropy to produce its output. Experiments on well-known

continuous datasets show that combining MID with optimal decision tree learn-

ing algorithms such as DL8.5 provides better results than classic discretization

approaches and greedy methods like CART, even when small numbers of binary

features are considered.
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This thesis is organized as follows: the next chapter provides a general overview

of decision trees and discretization techniques, with a detailed explanation of the

algorithms directly involved in this work. Chapter 2 describes the Minimum Impu-

rity Discretizer, and chapter 3 contains an analysis of the experiments performed

to validate its efficacy, together with the related results.

Even though this analysis focuses on ODT learners (specifically on DL8.5),

MID can be paired with any machine learning algorithm that works in a classifi-

cation setting: a dataset must include class labels in order to be discretized using

MID.



Chapter 1: Technical Backgroung

The subject of this work finds its roots into two widely studied topics of Machine

Learning: decision trees and discretization techniques. The goal of this first chap-

ter is to give to the reader a comprehensive description of the specific algorithms

that were involved in the execution of this master thesis work, together with an

overview of the basics of such subjects.

1.1 Decision Trees: an overview

Decision trees constitute a widely used category of machine learning models, which

became popular because they are easy to interpret and very versatile: they can

be used both in classification and regression domains, and they can also be part

of more complex techniques (i.e. Random Forests [13], AdaBoost [14]).

The process used to assign a label to an instance of a dataset consists in ap-

plying a sequence of simple if-then-else decision rules on its features. Such rules

are organized in a tree structure, where features are tested in the inner nodes and

leaves correspond to class labels. Therefore, classifying an observation consists in

following one of the paths of the tree connecting the root to a leaf. It is common

for nodes testing categorical features to have a branch for every value that the

feature can assume. Continuous attributes, on the other hand, are usually tested

using thresholds, but they can also be made categorical before building the tree.

In the simplest setting, binary trees are considered. Figure 1.1 shows the results

of learning a decision tree on a synthetic dataset characterized by two continuous
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Figure 1.1: Left: a linearly separable synthetic dataset. Right: the decision tree
trained on the synthetic dataset.

features. The model recursively partitions the training data into non-overlapping

rectangular regions, such that samples corresponding to a specific region belong to

the same class. It is possible to notice how the decision boundary of the classifier

does not suit the dataset perfectly: the two classes are clearly linearly separable,

and a single hyperplane would be enough to divide them. Yet, the decision tree

needs two conditions to perform classification. This behaviour is one of the limits

of univariate decision trees, namely trees that test a single feature for every node.

Decision trees that test more than one feature at a time, usually by considering

linear combinations of them, are referred to as multivariate.

Given a specific dataset, there exist a large number of different decision trees

capable of addressing the same task. Exploring all of them to find the one achiev-

ing the highest performance is unfeasible in most scenarios. For this reason, the

most popular decision tree learners are greedy. Such algorithms are highly scal-

able, easy to use, and can handle both categorical and continuous data without

the need for preprocessing. They build trees by locally selecting features at each

node using a heuristic, starting from the root and progressing down to the leaf
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nodes. Once this process is completed (e.g. when all the leaves are pure), the tree

might be too complex for the problem at hand, and it may not generalize well

to unseen data [15]. For this reason, the tree might undergo a pruning process

to reduce overfitting issues. Alternatively, a set of constraints can be defined as

stopping conditions. For instance, the tree could be grown until further splitting

a node would result in leaves with too few samples. In the case of univariate

decision trees, it is common to use an impurity-based criterion to decide which

attribute should be tested in each node. Some algorithms in this category include

CART [1], C4.5 [2], and ID3 [16].

Even though finding an Optimal Decision Tree (ODT) is NP-hard, it is still

interesting and worthwhile to attempt solving such a problem. Optimal algorithms

indeed present several advantages [7]:

• Consider the case where the learner must find a tree within certain con-

straints. This is a common scenario, as constraints reduce the dimensionality

of the search space and make the problem more manageable. If an optimal

algorithm completes the training process and does not return a solution, it

indicates that the problem cannot be solved within the given constraints.

Conversely, with a greedy learner, the chosen strategy might not be sufficient

to find a solution, even if one exists.

• Optimal algorithms can be used as a benchmark to evaluate the performance

and quality of greedy techniques.

In recent years, the development of optimization solvers and innovative al-

gorithmic concepts has led to new methods for inferring optimal decision trees.

These methods include mixed integer programming [6, 11, 12, 17], constraint pro-

gramming [10], SAT solvers [18], and dynamic programming [5, 7, 8]. Among

these, dynamic programming techniques are noted for their speed and accuracy,

especially under depth constraints. The focus of this work is one such technique:
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DL8.5 [5]. This algorithm is discussed in detail in Section 1.3, after a comprehen-

sive overview of CART (this serves as a comparison for evaluating the performance

of DL8.5 when paired with the Minimum Impurity Discretizer).

1.2 CART (Classification and Regression Trees)

Algorithm 1 presents the pseudocode of CART, a greedy algorithm that can han-

dle both continuous and discrete features. The implementation provided below is

designed to work only with numerical attributes, but it can be easily adapted to

process categorical data as well. CART recursively partitions the training data

into smaller subsets using binary splits, starting at the root node and continu-

ing until a stopping criterion is met. At each node, it selects the feature and

threshold that best separate the data, optimizing a metric which represents how

homogeneous the resulting subsets are. This version of the algorithm involves

three stopping criteria: a maximum tree depth, a minimum number of instances

per leaf node, and a purity check for the leaves.

Algorithm 1 CART

Require: S = {(x1, y1), . . . , (xn, yn)} −→ labeled training dataset
Require: D −→ current tree depth
Require: n0 −→ min amount of instances per leaf node
Require: Dmax −→ maximum tree depth
1: Create a tree T with a single root node
2: if S is pure or |S| < n0 or D ≥ Dmax then
3: Assign majority class label to root of T and mark it as leaf node
4: else
5: min imp← +∞
6: for feature f do
7: t, imp← best split single feature(S, f)
8: if imp < min imp then
9: min imp← imp
10: fb ← f
11: tb ← t

12: Sleft ← {(x, y) ∈ S : x(fb) ≤ tb}
13: Sright ← {(x, y) ∈ S : x(fb) > tb}
14: Connect output of CART(Sleft, D + 1, n0, Dmax) to T as left child
15: Connect output of CART(Sright, D + 1, n0, Dmax) to T as right child

16: return T
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The quantity t provided by best split single feature(S, f) is the thresh-

old that should be used to test feature f at the node of the tree associated with the

set of observations S. When CART is used for classification tasks, t is typically

computed by finding the value that minimizes the Gini index (definition 1). [15]

In this context, the value imp returned along with t corresponds to Gini(t;S).

This represents the minimum impurity level achievable by testing feature f , and

it can be used to identify the best feature for separating the data.

Definition 1 (Gini index). Let S = {a1, . . . , aN} be a set of N observations

associated to a continuous feature f , each of which is characterized by a class ci

(k different classes are available). The Gini index associated to subset S is given

by the relation

Gini(S) =
kX

i=1

P (ci|S)(1− P (ci|S))

= 1−
kX

i=1

P (ci|S)2 ,

where P (ci|S) is the proportion of examples in S belonging to class ci. Let now

T be a candidate split, partitioning S into two subsets S1 = {a ∈ S : a ≤ T} and

S2 = {a ∈ S : a > T}; the Gini index associated to T is defined as

Gini(T ;S) =
|S1|
|S|

Gini(S1) +
|S2|
|S|

Gini(S2) .

The more homogeneous the classes within S1 and S2, the smaller the Gini(T ;S).

This procedure is analogous to the approach used in many greedy discretization

techniques. In fact, CART can be used on continuous datasets without the need

for preprocessing because it applies its own form of discretization on the data. It is

important to note that several versions of CART exist, differing in aspects such as

the stopping criteria and the metrics used to measure node homogeneity. However,
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the core structure of the algorithm remains consistent. This section describes the

characteristics of the specific version used in this work for comparison with MID

and DL8.5.

1.3 DL8.5

DL8.5 is an ODT learner that relies on itemset mining techniques, and it can only

work on binary data. These are first converted into a transactional database: the

observations composing the dataset are represented as sets of items, where each

item encodes the value of one original binary feature. The set of items representing

an observation is referred to as “transaction”. Formally, a transactional database

is a collection D := {(t, I, c) | t ∈ T , I ⊆ I, c ∈ C}, where T is a set of transaction

identifiers, I is the set of possible items, and C is the set of class labels. I

contains two items for each original binary feature, one encoding the value 1 and

one encoding the value 0. Each transaction can only contain one of these two

items for a single feature. Table 1.1 contains an example binary dataset, together

with the transactional database that corresponds to it. The observations are

characterized by three binary features (A, B and C). Thus, the set of possible

items is I = {a,¬a, b,¬b, c,¬c}.

A key result of using this representation is that any path of a decision tree

learned on the dataset can be described using an itemset I. The lattice reported

A B C class
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

(a) Binary dataset

t transaction class
1 a, b, c 1
2 a, b, ¬c 1
3 a, ¬b, c 0
4 a, ¬b, ¬c 1
5 ¬a, b, c 0
6 ¬a, b, ¬c 0
7 ¬a, ¬b, c 0
8 ¬a, ¬b, ¬c 0

(b) Transactional database

Table 1.1: Example conversion of a binary dataset into a transactional database.
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Figure 1.2: Complete search space of itemsets for the dataset of Table 1.1.

in Figure 1.2 illustrates all the possible itemsets for the toy dataset of table 1.1.

In this context, a decision tree can be represented as a subset of the itemsets

belonging to the lattice, and the branches of the decision tree correspond to subset

relations. Let us define:

• The cover of an itemset I as the set of transactions containing I: cover(I) =

{(t,X, c)|(t,X, c) ∈ D and I ⊆ X}.

• The class-based support of an itemset I as the number of examples in

cover(I) characterized by a given class c: Sup(I, c) = |{(t,X, ĉ) ∈ cover(I)

and ĉ = c}|.

• The error of an itemset I as the difference between the cardinality of cover(I)

and its maximum class-based support:

leaf error(I) = |cover(I)| −max
c∈C
{Sup(I, c)} .

DL8.5 leverages a recursive depth-first approach to explore the space of the solu-

tions (namely, the itemsets lattice). To be specific, it finds an optimal decision

tree by looking for a collection of itemsets DT that minimizes the quantity
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X
I ∈DT

leaf error(I).

Algorithm 2 presents the pseudocode of DL8.5, whose core is DL8.5-Recurse.

This recursive function returns an optimal decision tree for the transactions cov-

ered by an itemset I. The algorithm attempts to extend I using each binary

feature, and selects the one yielding the smallest error. This process continues

until the maximum depth constraint madepth is reached, the support of I falls

below a threshold minsup, or I represents a pure leaf (leaf error(I) = 0). Ad-

ditionally, the algorithm is anytime: it is possible to specify a time limit for the

training process, after which the best solution found so far is returned.

A key characteristic of DL8.5 is its use of a branch-and-bound approach to

prune parts of the solutions search space. The recursive function keeps track of

the error associated with the best running solution, and uses this value as an

upper bound to avoid unnecessary computations. Take line 18 as an example:

during the evaluation of a binary feature, if the first branch of the tree already

yields an error greater than the upper bound, the recursion on the second branch

is avoided. The upper bound is initialized at +∞, but it is updated as soon as

a solution is found. Eventually, DL8.5 avoids redundant computations by storing

the results of the calls to DL8.5-Recurse in a cache. This is effective because the

same itemset can be reached through multiple paths in the lattice. A complete

and more detailed analysis of the algorithm and its characteristics can be found

in the original paper [5].
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Algorithm 2 DL8.5

Require: maxdepth, minsup
1: struct BestTree{init ub : float; tree : Tree; error : float}
2: cache← HashSet < Itemset,BestTree >
3: bestSolution← DL8.5-Recurse(∅,+∞)
4: return bestSolution.tree
5:

6: Procedure DL8.5-Recurse(I, init ub)
7: if leaf error(I) = 0 or |I| = maxdepth or time-out is reached then
8: return BestTree(init ub, make leaf(I), leaf error(I))

9: sol← cache.get(I)
10: if sol was found and ((sol.tree ̸= NO TREE) or (init ub ≤ sol.init ub)) then
11: return sol
12: (τ, b, ub)← (NO TREE,+∞, init ub)
13: for all attributes i do
14: if |cover(I ∪ {i})| ≥ minsup and |cover(I ∪ {¬i})| ≥ minsup then
15: sol1 ← DL8.5-Recurse(I ∪ {¬i}, ub)
16: if sol1.tree = NO TREE then
17: continue
18: if sol1.error ≤ ub then
19: sol2 ← DL8.5-Recurse(I ∪ {i}, ub− sol1.error)
20: if sol2.tree = NO TREE then
21: continue
22: feature error ← sol1.error + sol2.error
23: if feature error ≤ ub then
24: τ ← make tree(i, sol1.tree, sol2.tree)
25: b← feature error
26: ub← b− 1

27: if feature error = 0 then
28: break
29: sol← BestTree(init ub, τ, b)
30: cache.store(I, sol)
31: return sol

1.4 Discretization Techniques: an overview

Datasets usually contain three types of attribute: categorical, discrete or continu-

ous. Both discrete and continuous attributes are numerical, but while the former

ones are countable, the latter ones are not. Finally, the values assumed by cate-

gorical variables are not characterized by an order. Discretization is the process

of turning a continuous attribute into a discrete one, and it is done by dividing

its full range of values into a set of intervals that is often finite and small. It is

characterized by two key steps:
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• choosing the appropriate number of intervals;

• finding the most suitable thresholds to separate the values.

It is common for discretization algorithms to need for the user to specify the

number of intervals in advance. For example, two of the earlier and best-know

strategies of this kind consist in dividing the range of an attribute into sub-ranges

either having an equal width or containing the same number of instances (these

approaches are referred to as “equal-width” and “equal-frequency”, respectively).

The need for accurate and efficient classification has been growing during the

past years, and many discretization algorithms (more complex and effective than

the two described above) have been proposed and tested to satisfy such demand.

Generally speaking, previous works regarding these methods [3, 19, 20, 21, 22]

categorize them as:

• Supervised vs. Unsupervised . Discretizers are supervised if they use

class information, and unsupervised if they do not. Even though unsuper-

vised methods are the only choice when class labels are not available, they

present some limitations. As an example, equal-width and equal-frequency

may not give good results if the distribution of the attribute is not uniform,

and they are very sensitive to outliers [23]. Some comparative studies sug-

gest that supervised methods achieve better performance than unsupervised

ones [4, 22, 24], but this is actually very related to the nature and the size of

the dataset. Both strategies can be the best one depending on the specific

scenario [20, 25].

• Dynamic vs. Static. A discretizer is defined as dynamic if it is embedded

into a data mining algorithm (i.e. the decision tree learners C4.5 [2] and

CART [1]), while it is considered static if it is applied to the data as an

independent process. Most of the known discretization techniques fall into

the second category.
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• Global vs. Local . This distinction depends on the amount of information

exploited by the algorithm to operate on an attribute: a discretizer is global

if it requires all the available data to make a decision, while it is local if

only a subset of it is needed. The dynamic discretizers embedded inside the

decision tree learners are a perfect example of local algorithms, because they

split the range of an attribute by looking only at the observations related

to the node which is taken into consideration.

• Splitting vs. Merging . This is related to the approach used to obtain

new intervals as the discretization progresses. In splitting (or top-down)

methods, a single interval is divided into two (or more) smaller ones by

identifying at every iteration the best threshold among the available ones.

On the other hand, merging (or bottom-up) discretizers start from a pre-

defined set of intervals (i.e. one for every observation in the dataset) and

iteratively combine them to get to the final result. This is not a hard classi-

fication, as some algorithms can alternate the splitting and merging actions

during their execution [26, 27].

• Direct vs. Incremental . Direct methods divide the range of an attribute

into k intervals simultaneously, while incremental methods begin with a sim-

ple discretization and pass through an improvement process. When dealing

with the former ones, the number k of intervals to be found must be known a

priori; with incremental methods, instead, an additional criterion is needed

to decide when to stop the discretization (e.g. a minimum number of ob-

servations for each interval, or a threshold on the purity of the resulting

partition).

• Univariate vs. Multivariate . Eventually, discretizers are distinguished

depending on whether they operate on one feature at a time (univariate) or

on multiple features simultaneously (multivariate). Notice that the meth-
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ods falling in the latter category are inevitably characterized by a higher

time complexity, and that they can overall be considered a more difficult

challenge. In fact, in this case correlation and interaction effects among

attributes must be properly taken into account.

According to Liu et al. [3], the univariate discretization process for a single at-

tribute follows the steps illustrated in Figure 1.3. First, (1) the observations of

the attribute are sorted in either increasing or decreasing order. Next, (2) an

evaluation metric is applied to compare the available candidates and select the

best one for a discretization step. A candidate can be either a cut-point to split

an interval or a pair of intervals to be merged. After selecting the best candidate,

(3) the splitting (or merging) operation is performed. These steps are repeated

until a termination condition is met (4).

Figure 1.3: Univariate discretization process of a single continuous attribute.

The evaluation measure, the stopping criterion, and the splitting or merging

strategy are what distinguish one discretization technique from another. For ex-

ample, consider equal-width discretization: after the sorting phase, all cut-points

are directly computed from the minimum and maximum values of the feature.

The evaluation measure and stopping criterion are straightforward, as all com-

puted thresholds are applied to split the attribute’s range. Some commonly used

discretizers are the ChiMerge algorithm [28] (a bottom-up method using the χ2
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value to determine the merging point) and the MDLP algorithm [29] (which fol-

lows an entropy-based top-down strategy). The latter one is analyzed in detail in

the next section.

1.5 MDLP discretizer

The algorithm that we are about to investigate uses the Shannon entropy [23]

to evaluate how good a candidate cut-point is. Let us start by giving a formal

definition of this quantity.

Definition 2 (Shannon Entropy). Let X be a discrete random variable which

takes values in an alphabet X and is distributed according to p : X −→ [0, 1]. p

is such that p(x) := P[X = x], ∀x ∈ X . Then, the entropy of X is given by the

relation

H(X) =
X
x∈X

p(x) logb
1

p(x)
= −

X
x∈X

p(x) logb p(x) .

If the logarithm is in base 2 (b = 2), H(X) is said to be measured in bits.

It is common to interpret the Shannon entropy as a measure of how uncertain

the outcome of a random variable is: H(X) is minimal if one of the x’s always

occurs (meaning that ∃!x : p(x) = 1), while it is maximal when all the values in

X are equally likely. In the context of the discretization of a continuous attribute,

this metric is used to evaluate the pureness of the intervals that would be produced

from the application of a given cut-point.

Let us assume S = {a1, . . . , aN} to be a set of N observations associated to

a continuous feature A, each of which is characterized by a class ci (k different

classes are available). Assuming that the classes are observations of a random

variable C, an estimate of H(C) can be computed as

H(C|S) = −
kX

i=1

P (ci|S) log2 P (ci|S) ,
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where P (ci|S) is the proportion of examples in S belonging to class ci. H(C|S)

is the class entropy associated with subset S. Let T be a potential cut-point,

partitioning S into two subsets S1 = {a ∈ S : a ≤ T} and S2 = {a ∈ S : a > T}.

The class entropy associated to the partition induced by T is defined as

E(A, T ;S) =
|S1|
|S|

H(C|S1) +
|S2|
|S|

H(C|S2) . (1.1)

The more homogeneous the classes within S1 and S2, the smaller E(A, T ;S). The

trivial scenario takes place when the two subsets are perfectly pure: in this case

H(C|S1), H(C|S2) and E(A, T ;S) are all equal to 0. MDLP considers the cut-

point T corresponding to the smallest class entropy as the best candidate to split

the samples in S.

Intuitively, it is reasonable to use the entropy minimization heuristic in the

context of discretization: what matters the most in many applications is the rela-

tionship between the features in the dataset and the target variable, thus, if a set

of values are associated to a specific class, it makes sense to group them together.

Moreover, the usage of this technique is also justified formally by theorem 1. Let

us introduce the concept of boundary point.

Definition 3 (Boundary point). A value T in the range of A is a boundary point

iff in the sequence of examples sorted by the value of A there exist two examples

e1, e2 ∈ S, having different classes, such that A(e1) < T < A(e2). Moreover, there

exists no other example e′ ∈ S such that A(e1) < A(e′) < A(e2).

Theorem 1. If T minimizes the measure E(A, T ;S), then T is a boundary point.

Proof. Let S contain three subsets P , Q and R such that all the samples in Q

belong to class cq, and

p =
kX

j=1

pj , r =
kX

j=1

rj .

pj and rj are the numbers of instances of class j in P and R, respectively. Let us
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Figure 1.4: Scenario considered in the proof of theorem 1: Sh and Sh+1 constitute
a partition of the set P ∪Q ∪R.

consider the m-ary partition S1, . . . , Sm of S, where Sh and Sh+1 consist of the set

P ∪Q ∪ R (Figure 1.4). Finally, let us assume to evaluate a candidate cut-point

T such that l examples of Q belong to Sh and |Q| − l to Sh+1 (with 0 ≤ l ≤ |Q|).

Then, the class entropy associated with T can be written as

E(A, T ;S) =
L(l) +R(l)

|S|
,

with L(l) =
hX

i=1

|Si|H(C|Si) , R(l) =
mX

i=h+1

|Si|H(C|Si) .

Now,

L(l) =
h−1X
i=1

|Si|H(C|Si) + |Sh|H(C|Sh)

=
h−1X
i=1

|Si|H(C|Si) +
X

j∈{1,...,k}\{q}

pj log
p+ l

pj
− (pq + l) log

pq + l

p+ l

=
h−1X
i=1

|Si|H(C|Si) + log(p+ l) ·
X

j∈{1,...,k}\{q}

pj + log(p+ l) · (pq + l)

−
X

j∈{1,...,k}\{q}

pj log pj − (pq + l) log(pq + l)

=
h−1X
i=1

|Si|H(C|Si) + (p+ l) log(p+ l)− (pq + l) log(pq + l)

−
X

j∈{1,...,k}\{q}

pj log pj .
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The two summations do not depend on l, thus

L′′(l) =
d

dl
[log(p+ l)− log(pq + l)]

=
1

p+ l
− 1

pq + l

=
pq − p

(p+ l)(pq + l)
≤ 0 .

Similarly,

R(l) =
mX

i=h+2

|Si|H(C|Si) + (r + |Q| − l) log(r + |Q| − l)

− (rq + |Q| − l) log(rq + |Q| − l)−
X

j∈{1,...,k}\{q}

rj log rj

=⇒ R′′(l) =
rq − r

(r + |Q| − l)(rq + |Q| − l)
≤ 0 .

This implies that E ′′(A, T ;S) is non-positive ∀l as well, and that the minima of

the class entropy associated to T can not belong to Q1.

Theorem 1 implies that the heuristic we are considering is “well-behaved”,

meaning that it will never select a cut-point that separates consecutive examples

belonging to the same class. Moreover, this theorem implies that only boundary

points should be considered as candidates to become cut-points, thus reducing

considerably the search space.

What characterizes the MDLP discretizer the most is the criterion used to de-

cide when to stop its execution. The main contribution of Fayyad and Irani [29]

was in fact the formulation of a Minimum Description Length Principle suitable

for this task, which can be used to decide whether the cut-point associated with

the minimum class entropy should actually be applied or not. This relies on the

idea that the best alternative between two options is the one allowing the shortest

1Even though the natural logarithm has been used to make computations easier, the same
result can be reached using the logarithm in base 2
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description of the result. Despite of the relevance of such principle, it will not be

further analyzed as it is not related to this master thesis work. A complete de-

scription can be found in the original paper. Algorithm 3 contains the pseudocode

of the MDLP discretizer, which operates on a single continuous feature at a time.

Algorithm 3 MDLP discretizer

Require: X = {x1, . . . , xn} −→ set of observations of a continuous feature A
Require: y −→ set of class labels
1: Compute boundary points from X and y
2: cut points← empty list [ ]
3: MDLP-Recurse(X, y, boundary points, cut points)
4: return cut points
5:

6: Procedure MDLP-Recurse(X, y, boundary points, cut points)
7: N unique← n. of unique elements in X
8: if N unique < 2 then
9: return
10: cut point← retrieve best cut point(X, y, boundary points)
11: if no cut-point has been selected then
12: return
13: decision← MDLP criterion(X, y, cut point)
14: if decision == False then
15: return
16: X left← {x ∈ X : x ≤ cut point}
17: X right← {x ∈ X : x > cut point}
18: y left← labels corresponding to the values in X left
19: y right← labels corresponding to the values in X right
20:

21: append cut point to cut points
22: MDLP-Recurse(x left, y left, boundary points, cut points)
23: MDLP-Recurse(x right, y right, boundary points, cut points)

MDLP-Recurse is a recursive procedure very similar to the depth-first visit

of a tree. Two auxiliary functions are used: MDLP criterion (which applies

the minimum description length principle to accept or reject a cut-point), and

retrieve best cut point (that returns the boundary point minimizing the class

entropy of X). The execution terminates when all the observations in X have the

same value, or when the MDLP criterion rejects the cut.
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1.6 Additional considerations about common discretizers

The final goal of this work, as outlined in the introduction, is to develop a dis-

cretizer compatible with an anytime approach for learning optimal decision trees

on continuous data. The idea is to run an ODT algorithm iteratively, increasing

the dimensionality of the binarized dataset with each iteration. But why is a new

discretization technique necessary? Could existing ones be used to achieve this?

The discretizers introduced in earlier sections share a common limitation: they

operate on each continuous feature individually and independently of the others.

This poses challenges for the proposed anytime strategy: how should the range of

each continuous feature be divided to generate exactly N binary features? What

strategy should be used to add new features?

Furthermore, a desirable property would be that, at each iteration, the new

set of binary features used for training is a superset of those used previously.

This ensures that the ODT algorithm only finds a new solution if the newly

added features provide additional value, resulting in a steadily increasing training

accuracy. As a result, when the anytime process is stopped, the final solution is

optimal with respect to all the solutions found up to that point.

Existing discretization techniques are not designed to meet these requirements,

making them unsuitable for supporting this type of anytime approach. For this

reason, the Minimum Impurity Discretizer was developed.



Chapter 2: Minimum Impurity Discretizer

This chapter introduces MID (Minimum Impurity Discretizer), a new supervised,

heuristic-based, multivariate discretization technique. Its goal is to produce an

ordered list of binary features from continuous input data. Binary datasets of

different dimensionalities can then be generated by selecting shorter or longer

prefixes of this list. This algorithm is related to the MDLP discretizer introduced

in section 1.5: it uses a top-down strategy, where an impurity metric is used

to evaluate the quality of a split. Moreover, it takes advantage of theorem 1

to reduce the search space of the candidate thresholds and speed up execution.

Unlike MDLP, however, MID discretizes continuous features jointly, comparing

the quality of thresholds across multiple features to find the best combination

according to the heuristic.

Figure 2.1: Sample discretization scenario: a threshold t divides the observations
of a continuous feature into two sets S1 and S2. Two additional candidate thresh-
olds t1 and t2 can be considered to further discretize the feature.

Assuming entropy is used as the impurity metric, MID applies the following

preliminary operations to each continuous feature A:

1. The observations of A are reordered along with their class labels.
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2. The boundary points are retrieved to be used as candidates. We use Tc to

refer to the set containing all of them.

3. The class entropy related to A is computed for every t in Tc.

4. The candidate t∗ with the smallest entropy value is stored separately, to-

gether with its entropy gain. This is the difference between the entropy of

A before and after applying t∗.

5. t∗ is removed from Tc.

6. Steps 3 to 5 are repeated until Tc is empty.

For example, consider the scenario in Figure 2.1, where Tc = {t1, t2} and t (which

was previously selected) divides the observations of A in two subsets S1 and S2.

If applied, t1 would split S1 in S1,1 and S1,2. In the same way, t2 would divide S2

in S2,1 and S2,2. Let S be the full set of samples. The entropy scores associated

to the candidates are

E(t1) =
|S1,1|
|S|

H(C|S1,1) +
|S1,2|
|S|

H(C|S1,2) +
|S2|
|S|

H(C|S2) ,

E(t2) =
|S1|
|S|

H(C|S1) +
|S2,1|
|S|

H(C|S2,1) +
|S2,2|
|S|

H(C|S2,2) .

Performing these operations for all the boundary points of a continuous feature

establishes a ranking among them. Each element of the ranking is considered

to be the best threshold to discretize the continuous feature, given that all the

elements occupying a higher position have already been applied.

MID avoids redundant computation of class entropies by using a cache to store

the terms H(C|Sk) for every subset Sk. Let Ei denote the total entropy of the

class labels at the end of the i-th iteration, after i thresholds have already been

removed from Tc. Let t be a candidate that would split a subset Sk into Sk,1 and
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Sk,2. Then, the entropy score associated with t at iteration i+ 1 is

E(t) = Ei −
|Sk|
|S|

H(C|Sk) +
|Sk,1|
|S|

H(C|Sk,1) +
|Sk,2|
|S|

H(C|Sk,2) .

By storing the terms H(C|Sk), H(C|Sk,1) and H(C|Sk,2) at each iteration, it

becomes easier to compute the class entropy for each candidate by leveraging

previous computations.

Algorithm 4 contains the pseudocode for training a minimum impurity dis-

cretizer when applied to a full dataset. Lines 1 to 6 implement the steps described

above: for each feature, boundary points are computed (line 4) and sorted using

an impurity metric (line 5). A list containing the ranked boundary points and

their associated gains is created and saved. It is then possible to produce a global

ranking of binary features by merging together these lists (line 7).

Algorithm 4 MID training process

Require: Dataset X, target variable y
Require: N −→ number of desired binary features
1: sorted b points all features← empty list [ ]
2: for x in columns of X do
3: x and y are sorted based on the values of x
4: b points← compute boundary points(x, y)
5: sorted b points← sort boundary points(x, y, b points)
6: sorted b points is appended to sorted b points all features

7: thresholds← get best thresholds(sorted b points per feature, N)

8:

9: Procedure compute boundary points(xsorted, ysorted)
10: b points← empty list [ ]
11: for x in xsorted (starting from 2nd element) do
12: xp ← element preceding x
13: if xp ̸= x then
14: b point← (xp + x)/2
15: y, yp ← class label of x, xp
16: if yp ̸= y then
17: append b point to b points
18: else
19: y prev ← set of labels of the samples equal to xp
20: y next← set of labels of the samples equal to x
21: y merged← y prev ∪ y next
22: if length(y merged) > 1 then append b point to b points

23: return b points
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24: Procedure sort boundary points(xsorted, ysorted, b points)
25: Initialize interval cache, parent cache
26: sorted b points← empty list [ ]
27: Ei−1 ← compute entropy(ysorted)
28: for x in b points do parent cache.store(x,Ei−1)
29: N ← length(b points)
30:

31: for i in 1, . . . , N do
32: Ebest ← +∞
33: for candidate in b points do
34: thresholds← insertion sort(sorted b points, candidate)
35: LI ← get left interval(xsorted, ysorted, thresholds, candidate)
36: RI ← get right interval(xsorted, ysorted, thresholds, candidate)
37: if LI not in interval cache then
38: interval cache.store(LI, compute entropy(ysorted[LI]))

39: if RI not in interval cache then
40: interval cache.store(RI, compute entropy(ysorted[RI]))

41: EL ← interval cache.get(LI)
42: ER ← interval cache.get(RI)
43: Ei ← Ei−1 − parent cache.get(candidate) + EL + ER

44: if Ei < Ebest then
45: Ebest, Tbest ← Ei, candidate
46: LIbest, RIbest ← LI,RI
47: EL,best, ER,best ← EL, ER

48:

49: append (Tbest, Ei−1 − Ebest) to sorted b points
50: b points.remove(Tbest)
51: Ei−1 ← Ebest

52: for x in b points[LIbest] do parent cache.store(x,EL,best)
53: for x in b points[RIbest] do parent cache.store(x,ER,best)

54: return sorted b points

55:

56: Procedure get best thresholds(b points per feature, N)

57: thresholds← empty list [ ]
58: while length(thresholds) < N do
59: idx, value← −1,−∞
60: empty ← 0
61: for (i, list) in enumerate(b points per feature) do
62: if length(list) > 0 then
63: if value < list[0][1] then
64: idx← i
65: value← list[0][1]

66: else
67: empty ← empty + 1

68: if empty = length(b points per feature) then
69: break
70: the tuple (idx, value) is appended to thresholds
71: the head of b points per feature[idx] is popped

72: return thresholds
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2.1 Considerations about the implementation

When two consecutive observations have different class labels, there are infinitely

many possible thresholds that can be chosen to separate them. The function that

computes the boundary points returns the average between the two values (line

14). Even if two consecutive observations share the same class label, they can still

produce a boundary point. This occurs when at least one other sample, identical

to one of the two observations, belongs to a different class (lines 19-22).

Regarding the procedure sort boundary points, it contains an abuse of no-

tation. Variables LI and RI (lines 35-36) are treated as arrays of indices, but

this is problematic as the lists ysorted and b points (lines 38, 40, 53, 53) are not

guaranteed to have the same number of elements. Consequently, using the same

indices for both lists is not meaningful. Let S represent the range of values that

is being split. LI and RI should be understood as sub-intervals of S, with LI

representing the interval preceding the candidate split point and RI representing

the interval following it. Therefore, the notation list[I] (where I refers to the

same type of interval as RI or LI) should be interpreted as “the subset of list

corresponding to the elements in I”. Furthermore, it can be shown that theorem

1 can be extended to impurity metrics other than entropy. In this work, the Gini

index is considered as an alternative. The function compute entropy (lines 27,

38, 40) can be easily modified accordingly.

Eventually, get best thresholds produces a global ranking of binary features

by merging together the lists returned by sort boundary points. It also retrieves

the top N thresholds in such a ranking. The procedure compares the head of

the threshold lists for each feature by entropy gain, and retrieves the best one

while removing it (lines 58-67). This can be executed until N binary features are

retrieved, or until no more thresholds are available (lines 68, 69). In the resulting

ranking, the relative orders of the original features are maintained (Figure 2.2).
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Figure 2.2: The thresholds of all the features are sorted together by entropy gain,
but maintaining the original relative orders.

Let N1, N2 be two positive integers, and let X1, X2 be the sets of thresholds

obtained by calling get best thresholds with parameters N1 and N2, respec-

tively. By construction, if N1 < N2, then X1 ⊆ X2 making the new set of binary

features a superset of the previous one. As explained in section 1.6, this implies

that an optimal decision tree trained on X2 performs as well as, or better than,

one trained on X1. This property could be particularly useful for branch-and-

bound algorithms like DL8.5: the error associated with X1 serves as an upper

bound for the error on X2, and it can be provided to the algorithm at the start of

execution to enhance its pruning capabilities. This possibility is further analyzed

in Chapter 3.

MID makes it straightforward to represent the observations in a dataset using a

small number of binary features. Moreover, additional features can easily be added

if the user has more availability in terms of time and resources. This constitutes

an advantage with respect to MDLP, whose output has fixed dimensionality. Once

the training process is carried out, the actual discretization can be performed by

grouping the elements of the thresholds array by feature through the idx value

of each record (line 70), and by applying them on the original attributes of the

dataset. Finally, it is important to notice that producing more than one set of

binary features starting from the same continuous dataset only requires to train

MID a single time.



Chapter 3: Experiments and Results

To evaluate the performance of MID, a series of experiments aimed at answering

the following questions have been conducted:

Q1. How does the DL8.5 algorithm perform on continuous data when it is paired

with the minimum impurity discretizer? How good is this approach com-

pared with other decision tree learners?

Q2. How does MID behave compared with other discretization techniques?

Q3. As stated at the end of Chapter 2, it is possible to use MID to instantiate

the upper bound parameter of DL8.5. Can this effectively speed up its

execution?

All experiments were conducted using 14 datasets from the UCI Machine Learning

Repository [30] on a cluster with 5120 AMD Epyc Genoa cores. Each node had

766GB of available RAM, running on Rocky Linux version 8.6.

3.1 Experiments about classification performance

The experiments addressing Q1 and Q2 compare five classification pipelines:

DL8.5 preceded by MID, DL8.5 preceded by the MDLP discretizer1, CART paired

with MID, CART without any discretization strategy, and a model that applies

an 8 bins equal-frequency discretization on the data before feeding it to DL8.5.

Equal-frequency discretization and MDLP were chosen for comparison with MID

1The implementation available at https://github.com/navicto/Discretization-MDLPC

has been used.

https://github.com/navicto/Discretization-MDLPC
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because the former one is commonly used to binarize datasets in the context of

itemset mining2, and because comparative studies [21, 22] have shown that the lat-

ter one performs as well as or better than other discretization techniques. CART

was chosen among other greedy DT learners because, like DL8.5, it only produces

binary decision trees. The classifiers paired with MID were tested multiple times

using different numbers of binary input features. All experiments were conducted

using 10-folds cross-validation with a maximum depth constraint between 3 and

6. To mitigate overfitting, each leaf of the tree was required to have at least five

examples. A time limit of 5 minutes was set for the training of DL8.5. Both

entropy and Gini index were used as impurity metrics for MID. In all the experi-

ments, the maximum number of binary features produced by MID was limited to

an arbitrary number of 45. This limitation arises from several factors:

• The maximum number of binary features in which a dataset can be dis-

cretized depends on the specific observations stored into it, and it can vary

considerably depending on the dataset under analysis. All 14 UCI datasets

can be discretized into a number of features within this range.

• The number of trees considered by an optimal decision tree algorithm in-

creases exponentially with the number of binary features fed to it. To get

a lower bound of such quantity, we can count the number of possible trees

having a given depth k and whose levels are completely filled. If N binary

features are considered, such number is equal to

Ntrees =
k−1Y
i=0

(N − i)2
i

,

because each level i contains 2i nodes, and all the N − i features that did

not appear in a higher level can be used in them. For k = 6 and N =

45, this value is greater than 3 · 10101. Despite the branch-and-bound and

2https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Figure 3.1: Train and test accuracies achieved by MID and DL8.5 on the banknote
dataset (maximum depth: 5; impurity metric: Gini index). A classifier was trained
for every number of features between 1 and 45, and an additional 32 classifiers
were trained using evenly spaced values between 45 and the maximum possible
number of features. The green dots correspond to the trees that finished the
training process, while the red dots indicate those that timed out. The accuracy
of DL8.5 increases only slightly when more than 45 features are provided to it,
and drops because of the time out when the input features are more than 100.

caching strategies implemented in DL8.5, if the search space is too large,

the algorithm is likely to reach the time limit before finding the optimal

solution. The range [1, 45] ensures that most experiments complete the

training process within 5 minutes.

• The trees found using this range of features already achieve high performance

both in terms of train and test accuracy, which are comparable with the ones

obtained using numbers of features greater than 45 (Figure 3.1).

For now, let us focus on the comparison between DL8.5, preceded by MID, and

CART. First, MID is used to extract binary features from a continuous dataset.

Then, both DL8.5 and CART are trained on the obtained binary features. CART

is also trained on the original continuous dataset. Eventually, the results of the

three classifiers are all compared together. Figure 3.2 presents the accuracies and

the runtimes achieved on the banknote dataset with a maximum depth of 3. The

x-axis represents the number of binary features provided to the classifiers. The
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accuracies achieved by CART on continuous data are added as dots using the

number of unique thresholds tested in the resulting trees as x-coordinates.

The results of the two DT learners trained on binary data show that DL8.5

achieves better accuracy scores than CART, both on the training set and on the

test set. For what concernes the runtimes, instead, even though the two algorithms

are comparable when the number of input features is limited, CART demonstrates

to be much faster when more features are provided to it. These considerations are

coherent with the nature of the two algorithms, as DL8.5 is optimal and CART

is greedy. Comparing the performance of DL8.5 with the one achieved by CART

on the original continuous data, instead, gives us more information about the

quality of the binary features produced by MID. In fact, DL8.5 is not guaranteed

to find an optimal tree when the data on top of which it is applied are the result

of a discretization process: if the thresholds used in the discretization are poorly

chosen, the resulting tree might underperform with respect to a classifier trained

on the original continuous dataset. If DL8.5, in conjunction with MID, would

achieve a better training accuracy than CART used by itself, it would give us

evidence about the efficacy of the features produced by MID. This is exactly what

the experiments show: when comparing the number of features actually used in

the final trees, as reported in Figure 3.3 for the banknote dataset, it appears that

MID and DL8.5 use less features (at most 6) than CART on the continuous data.

Thus, they manage to achieve higher accuracies while producing smaller trees.

An interesting trend can be observed in the test accuracy of the two algorithms

(Figure 3.2b): initially, the accuracies of both CART and DL8.5 increase sharply

as the number of binary features produced by MID grows. Both then reach a

plateau as the number of features continues to increase. Notably, unlike training

accuracy, test accuracy is not guaranteed to be monotonically increasing by design.

This suggests that the anytime approach introduced in this work is effective, as

providing more training time and features indeed results in better decision trees.
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(a) Train accuracies

(b) Test accuracies

(c) Runtimes

Figure 3.2: Results on banknote dataset. Maximum depth of 3.
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Figure 3.3: Number of unique binary features used in the decision trees found
by DL8.5 as a function of the number of features fed to it. Banknote dataset,
maximum depth of 3.

The results of the experiments performed on the remaining datasets are coher-

ent with those described above. In most cases, the pipeline composed of MID and

DL8.5 outperformed CART trained on continuous data in terms of training set

accuracy, using both entropy and Gini index to sort the features. This indicates

that the binary features produced by MID provide a good representation of the

original datasets. In addition, a similar trend for the test accuracies is observed

in most experiments. Notably, after reaching the plateau, the performance on the

test set can degrade as more features are provided to the learners. Since the train-

ing accuracy cannot decrease, in this case overfitting takes place. This happens

particularly in deeper trees (Figure 3.4). This behavior suggests that one could

determine how many binary features to use by iteratively adding them until there

is no significant change in the test accuracy (i.e., when it stops improving).

Table 3.2 contains the test set accuracies achieved by the five classification

pipelines introduced at the beginning of this section, for all the considered datasets

and values of maximum depth. For the classifiers paired with the minimum impu-

rity discretizer, the performance obtained after being trained on 45 binary features

has been considered. DL8.5 attained the highest accuracy in 20 of the 56 exper-
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iments when it was paired with MID, using either the entropy or the Gini index

to evaluate the goodness of the splits. This is the pipeline that, tied with CART

trained on continuous features, achieved the best result in the largest number of

experiments. In Table 3.3 the comparison is repeated considering the best possi-

ble accuracies obtained by DL8.5 and CART when preceded by MID, across all

the numbers of features between 1 and 45. This comparison shows a raise in the

number of instances where DL8.5 achieves the best test accuracy to 38 cases.

Dataset N. features
Accuracy

Eq. Freq. MID
Banknote 28.0 96.66 98.1

Breast cancer 210.0 97.46 98.05
Forest covtype 70.0 70.41 72.37
Ionosphere 205.8 93.45 94.37

Iris 27.7 96.67 97.78
Letter recognition 87.5 28.97 29.04

Pendigits 94.0 65.41 66.46
Penguins 28.0 89.52 91.59
Indians 49.9 79.25 79.44
Shuttle 51.0 99.67 99.84
Sonar 420.0 90.97 91.56

Spambase 73.9 88.83 90.47
Wine 91.0 98.69 99.38
Yeast 39.0 55.91 58.12

N. features
Accuracy
MDLP MID

12.5 95.66 95.64
58.3 97.95 97.95
307.1 72.16 72.18
99.9 94.24 94.24
6.78 96.38 96.38
135.9 29.04 29.04
146.6 66.47 66.48
10.6 90.46 90.39
8.8 78.63 78.62
183.0 99.9 99.9
20.2 87.13 87.07
97.0 90.47 90.47
21.8 98.94 98.88
11.3 57.55 57.59

Table 3.1: Train set accuracies achieved by DL8.5 when preceded by three dif-
ferent discretizers: equal-frequency with 8 bins, MDLP and MID. The number of
produced binary features is reported

For the sake of completeness, an analysis of the effects of different discretization

strategies on the training accuracy of DL8.5 was performed. Table 3.1 contains

the results. A maximum depth constraint of 3 was set to ensure that all runs finish

without timeout. For every dataset, four sets of binary features were produced:

one using 8-bin equal-frequency discretization (XEF ), one using the MDLP dis-

cretizer (XMDLP ), and two using MID to match the number of features in the

other sets (XMID−EF for the one matching XEF and XMID−MDLP for the one

matching XMDLP ). Since the MDLP discretizer is entropy-based, the same im-

purity metric was used for MID. The classifier trained on XMID−EF consistently
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outperforms the one trained on XEF . XMDLP and XMID−MDLP lead to very sim-

ilar performance, with accuracy scores being identical on 6 out of the 14 datasets

and differing by at most 0.07% in the other cases. Moreover, since it is possi-

ble to increase the number of features produced by MID, it is also possible that

MID could achieve higher scores. For example, Figure 3.2a shows that DL8.5 can

achieve a better training accuracy (98%) on the banknote dataset if more than 19

binary features are used.

(a) Runtimes

(b) Test accuracies

Figure 3.4: Test accuracies and runtimes on the yeast dataset for a maximum
depth of 6. The accuracies begin to decline after reaching their peak, particularly
for DL8.5. Notably, since this decline is not caused by a timeout during the
training process, the most likely explanation is overfitting.
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DATASET MAX DEPTH

MID
+

DL8.5

MID
+

CART
CART MDLP

+
DL8.5

EQ. FREQ.
(8 bins) +

DL8.5Gini Ent. Gini Ent. Gini Ent.

Banknote

3 97.01 97.38 94.39 92.93 93.37 94.39 94.46 95.34
4 98.32 98.32 95.34 95.48 95.34 95.99 94.75 98.18
5 98.62 98.83 98.47 97.74 97.01 97.96 94.75 98.98
6 98.69 98.69 98.47 98.18 97.96 97.81 94.75 99.13

Breast cancer

3 94.54 95.43 94.37 92.97 93.85 93.68 95.07 93.13
4 94.37 92.43 93.67 92.61 94.03 94.9 94.9 91.55
5 92.44 93.5 93.49 93.14 94.56 95.43 92.62 91.56
6 92.44 92.26 94.02 92.96 94.03 95.26 91.92 90.33

Forest covtype

3 68.65 68.53 67.47 67.06 67.73 67.06 68.62 66.88
4 70.32 70.05 69.19 68.25 70.07 67.92 68.66 67.99
5 71.37 71.07 70.0 70.33 70.23 69.91 68.68 68.47
6 72.27 71.8 71.31 71.27 71.54 71.28 68.64 52.39

Ionosphere

3 86.6 89.17 89.75 90.89 89.46 90.32 87.47 88.33
4 87.47 89.18 86.9 88.6 86.61 87.17 89.45 87.77
5 86.34 89.46 90.03 92.31 87.76 88.02 86.07 84.34
6 86.06 90.6 88.33 90.31 87.19 87.75 84.04 83.2

Iris

3 94.67 94.67 96.67 96.67 96.67 96.67 94.07 92.67
4 92.0 94.67 96.67 96.67 96.67 96.67 95.83 92.67
5 94.0 94.67 96.67 96.67 96.67 96.67 94.0 92.0
6 90.67 92.0 96.67 96.67 96.67 96.67 94.0 90.67

Letter recognition

3 24.58 24.42 17.72 23.36 17.67 23.12 25.34 25.31
4 37.89 37.95 25.56 35.51 25.06 35.28 30.62 30.8
5 49.3 48.26 36.66 50.48 37.24 50.39 30.47 35.21
6 51.71 51.47 47.29 58.43 48.11 59.48 29.57 16.44

Pendigits

3 65.67 65.98 56.29 60.2 56.56 60.3 65.89 65.31
4 82.43 82.3 69.99 77.58 72.4 77.48 83.91 83.53
5 88.71 89.29 80.23 83.13 81.9 85.26 74.15 87.21
6 91.19 91.73 85.5 87.66 86.44 90.03 68.39 33.28

Penguins

3 85.88 87.4 85.3 84.71 89.21 87.42 86.2 84.06
4 90.09 89.48 84.69 85.0 88.29 88.9 87.42 84.71
5 88.0 86.78 84.98 87.09 89.79 88.89 88.62 84.44
6 88.0 89.19 86.17 85.57 89.78 88.89 87.42 84.41

Indians

3 73.82 74.09 75.26 74.6 75.39 74.73 73.3 74.99
4 75.77 74.47 74.21 74.21 73.04 72.52 74.21 74.87
5 73.83 75.64 76.03 76.16 76.81 75.38 74.6 74.35
6 72.4 73.32 74.87 76.69 74.48 73.18 74.6 69.55

Shuttle

3 99.71 99.8 99.61 99.6 99.64 99.64 99.87 99.64
4 99.85 99.91 99.76 99.75 99.8 99.8 99.9 99.72
5 99.9 99.93 99.83 99.88 99.89 99.93 99.85 99.74
6 99.91 99.92 99.88 99.89 99.92 99.96 99.87 99.74

Sonar

3 69.26 69.86 67.86 69.29 68.9 70.21 67.29 74.52
4 73.57 74.05 72.67 66.86 69.81 77.98 76.05 74.12
5 75.62 71.21 76.48 70.21 71.26 74.55 76.02 71.71
6 71.64 69.74 76.48 71.21 69.81 76.5 66.86 72.1

Spambase

3 88.76 89.02 87.66 86.46 88.13 86.29 90.22 88.65
4 90.05 90.02 89.59 89.5 89.48 89.96 91.33 89.24
5 91.02 91.4 91.07 91.41 90.35 90.48 91.98 89.13
6 92.7 92.31 91.98 91.44 91.04 91.2 91.11 89.13

Wine

3 94.93 94.44 87.65 92.74 89.34 93.3 93.33 93.82
4 92.12 91.08 87.65 92.74 89.34 93.3 93.17 89.9
5 92.09 94.41 87.65 92.74 89.34 93.3 93.24 91.08
6 92.19 92.16 87.65 92.74 89.34 93.3 92.71 89.77

Yeast

3 55.32 57.08 54.92 50.74 55.12 50.74 56.27 54.04
4 56.88 56.4 55.93 56.41 55.53 56.0 57.62 58.15
5 54.85 56.67 56.81 56.68 57.21 56.0 56.74 54.72
6 55.53 55.93 57.01 56.07 56.81 56.2 56.4 55.19

Table 3.2: Test accuracies achieved by the 5 considered classification pipelines, on
all the datasets and for all the tested values of maximum depth. The four columns
associated to MID contain the results attained by the classifiers when trained on
45 binary features.
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DATASET MAX DEPTH

MID
+

DL8.5

MID
+

CART
CART MDLP

+
DL8.5

EQ. FREQ.
(8 bins) +

DL8.5Gini Ent. Gini Ent. Gini Ent.

Banknote

3 97.01 97.38 94.39 93.29 93.37 94.39 94.46 95.34
4 99.05 98.98 95.7 96.57 95.34 95.99 94.75 98.18
5 99.2 99.27 98.91 98.1 97.01 97.96 94.75 98.98
6 99.2 99.27 98.91 98.25 97.96 97.81 94.75 99.13

Breast cancer

3 95.08 95.43 94.55 94.38 93.85 93.68 95.07 93.13
4 94.91 94.2 94.38 93.67 94.03 94.9 94.9 91.55
5 94.9 95.08 94.38 94.2 94.56 95.43 92.62 91.56
6 95.43 95.08 94.9 94.2 94.03 95.26 91.92 90.33

Forest covtype

3 68.69 68.53 67.49 67.54 67.73 67.06 68.62 66.88
4 70.32 70.05 69.19 68.44 70.07 67.92 68.66 67.99
5 71.69 71.23 70.0 70.33 70.23 69.91 68.68 68.47
6 72.33 71.83 71.31 71.27 71.54 71.28 68.64 52.39

Ionosphere

3 90.03 91.75 90.32 90.89 89.46 90.32 87.47 88.33
4 90.03 91.75 90.32 90.89 86.61 87.17 89.45 87.77
5 90.31 91.75 90.89 92.31 87.76 88.02 86.07 84.34
6 90.32 92.02 90.32 92.31 87.19 87.75 84.04 83.2

Iris

3 96.0 96.0 96.67 96.67 96.67 96.67 94.07 92.67
4 94.67 95.33 96.67 96.67 96.67 96.67 95.83 92.67
5 94.67 94.67 96.67 96.67 96.67 96.67 94.0 92.0
6 94.67 94.67 96.67 96.67 96.67 96.67 94.0 90.67

Letter recognition

3 24.58 24.44 17.76 23.36 17.67 23.12 25.34 25.31
4 38.21 38.2 25.58 35.51 25.06 35.28 30.62 30.8
5 52.17 53.26 36.7 50.55 37.24 50.39 30.47 35.21
6 58.5 60.55 47.29 58.43 48.11 59.48 29.57 16.44

Pendigits

3 65.68 66.05 56.3 60.8 56.56 60.3 65.89 65.31
4 82.43 82.33 70.24 77.58 72.4 77.48 83.91 83.53
5 88.71 89.29 80.23 83.52 81.9 85.26 74.15 87.21
6 92.02 92.68 85.5 88.2 86.44 90.03 68.39 33.28

Penguins

3 88.31 89.5 87.99 86.51 89.21 87.42 86.2 84.06
4 90.4 90.4 88.31 89.21 88.29 88.9 87.42 84.71
5 90.7 91.59 88.31 88.61 89.79 88.89 88.62 84.44
6 90.7 91.01 88.31 88.61 89.78 88.89 87.42 84.41

Indians

3 75.26 75.52 75.26 74.6 75.39 74.73 73.3 74.99
4 76.17 75.65 75.51 75.65 73.04 72.52 74.21 74.87
5 76.68 75.91 76.69 76.42 76.81 75.38 74.6 74.35
6 75.52 75.91 75.91 76.82 74.48 73.18 74.6 69.55

Shuttle

3 99.71 99.8 99.61 99.6 99.64 99.64 99.87 99.64
4 99.85 99.91 99.77 99.78 99.8 99.8 99.9 99.72
5 99.9 99.93 99.84 99.88 99.89 99.93 99.85 99.74
6 99.91 99.92 99.89 99.89 99.92 99.96 99.87 99.74

Sonar

3 76.02 72.71 72.67 73.71 68.9 70.21 67.29 74.52
4 77.95 78.88 77.02 75.12 69.81 77.98 76.05 74.12
5 75.62 76.48 77.48 76.1 71.26 74.55 76.02 71.71
6 77.93 76.1 78.0 75.62 69.81 76.5 66.86 72.1

Spambase

3 88.83 89.02 87.89 86.83 88.13 86.29 90.22 88.65
4 90.65 90.28 89.72 89.76 89.48 89.96 91.33 89.24
5 91.37 91.57 91.33 91.57 90.35 90.48 91.98 89.13
6 92.7 92.35 92.13 91.55 91.04 91.2 91.11 89.13

Wine

3 95.52 96.11 89.31 93.3 89.34 93.3 93.33 93.82
4 95.55 95.56 89.38 92.74 89.34 93.3 93.17 89.9
5 94.96 96.08 89.38 92.74 89.34 93.3 93.24 91.08
6 95.55 96.08 89.38 92.74 89.34 93.3 92.71 89.77

Yeast

3 55.79 57.08 55.39 50.74 55.12 50.74 56.27 54.04
4 58.76 58.56 57.21 56.74 55.53 56.0 57.62 58.15
5 58.42 58.02 57.88 58.16 57.21 56.0 56.74 54.72
6 58.83 57.82 58.09 57.89 56.81 56.2 56.4 55.19

Table 3.3: Test accuracies achieved by the 5 considered classification pipelines, on
all the datasets and for all the tested values of maximum depth. The four columns
associated to MID contain the best results attained by the classifiers among all
the tested numbers of binary features.
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3.2 Experiments about runtime

Before describing how Q3 has been addressed, let us first have a better under-

standing of the problem at hand. As previously introduced in section 3.1, the

size of the dataset fed to DL8.5 has an impact on the time needed for its training

process, and consequently on its accuracy if a time limit is specified. As reported

in [31], since the algorithm uses a depth-first search to explore the search space

of decision trees, stopping the execution before its completion can lead to an

unbalanced classifier: not enough time may have been dedicated to refining the

right-hand branches, potentially resulting in a tree “leaning to the left” (Figure

3.5), characterized by a substantial classification error.

Feat. 0

Feat. 195

1

Class 0

0

Feat. 209

0

Class 1

1

Class 1

0

Class 1

1

Figure 3.5: Result of DL8.5 tree over the banknote dataset using a maximum
depth of 5 and 1300 binary input features, after the 5 minutes timeout.

The objective of this set of experiments was to investigate the potential use

of the Minimum Impurity Discretizer to accelerate the execution of DL8.5 and

mitigate the problem described above. In section 1.3 we have seen that DL8.5

uses a branch and bound approach to exclude some of the solutions at runtime,

and that it keeps track of an upper bound on the quality of the trees to do so.

If no reference of the performance that should be expected from the classifier is
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available before running DL8.5, the upper bound is initialized to +∞ and updated

during the execution. However, if such an estimate is available, more branches can

potentially be pruned. The idea is to use MID to generate two sets of data Xl and

Xh starting from the same continuous dataset, containing Nl and Nh attributes,

respectively. Assuming Nh > Nl, Xh is a superset of Xl, and we already saw in

Section 2.1 that the error associated to dataset Xl can be used as upper bound for

the execution of DL8.5 over Xh. Two types of experiment have been conducted

to test this strategy. These are described and analyzed below. Figures 3.6 and

3.7 show the results obtained on the banknote and iris datasets, respectively.

Type a. In Figures 3.6a and 3.7a, each column corresponds to a classifier trained

on a dataset comprising 45 binary features, using as upper bound the training er-

ror of another classifier previously trained on a smaller set of data. For instance,

to generate the column at index 10 on the x-axis, DL8.5 was initially run on a

discretized version of the banknote dataset containing 10 features. Subsequently,

the training error from this run served as an upper bound to train another clas-

sifier using 45 features. The green columns depict the runtimes of DL8.5 when

executed over the 45-features dataset using the upper bound, while the blue ones

show the runtimes required to train the classifiers on the smaller datasets. The

red line represents the baseline, namely the runtime needed to run DL8.5 over 45

features without providing any upper bound.

Type b. Regarding Figures 3.6b and 3.7b, instead, two columns are depicted

for each number of features Ni reported on the x-axis. The blue column indicates

the time required to train a classifier on a dataset containing Ni features, with no

upper bound on the training error. The orange column, instead, represents the

runtime of DL8.5 on the same dataset when an initial upper bound is set. Let

tu,i and tb,i denote the times needed to train the i−th unbounded and bounded
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classifiers, respectively, and let ei be the associated training error. The upper

bound used for the tree corresponding to the runtime tb,i is ei−1.

If an initial upper bound is provided to DL8.5, and no tree in the search space

achieves a training error strictly lower than it, then no classifier is returned as a

result. For both types of experiments, in this scenario the training process is re-

peated with an upper bound increased by 0.1%. The number of features tested in

these experiments remains limited between 1 and 45 for the same reasons outlined

in section 3.1. The duration of the training of each classifier is particularly crucial

in this scenario, as problems arise both if it is excessively long or excessively short:

• In the former case, the experiments become meaningless if DL8.5 reaches

the timeout, as no differences between runtimes in different configurations

can be observed.

• In the latter case, obtaining a reliable estimate of the runtime of DL8.5

becomes challenging, as measurements of shorter time intervals are more

susceptible to fluctuations. To mitigate the effect of such fluctuations, each

runtime has been computed as the average of 1000 measurements performed

under the same conditions.

The maximum depth parameter of DL8.5 has been individually set for every

dataset to achieve the best trade-off between the effects mentioned above. Since

classification performance is not of interest in this case, every classifier has been

trained on the entire dataset each time. The Minimum Impurity Discretizer has

been configured to use entropy as the impurity measure in all experiments.
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(a) (b)

Figure 3.6: Runtimes results for the banknote dataset. Maximum depth: 5.
Impurity metric: entropy.

(a) (b)

Figure 3.7: Runtimes results for the iris dataset. Maximum depth: 5. Impurity
metric: entropy.

Figures 3.6 and 3.7 show that while the methodologies described above can

indeed reduce the runtime of DL8.5, applying them is actually not helpful: in

most cases, the time saved by providing an upper bound is equal to or less than

the time required to compute it. There are some exceptions to this trend, but

they occur only in datasets that already have short training times, where further

reductions are not very beneficial.

Since the main issue with this strategy appears to be the time required to

estimate the upper bound, a potential alternative is to use a faster algorithm to

do so. This is the approach that was applied to obtain the results shown in Figure



47

3.8. For each Ni reported on the x-axis, an instance of CART was trained on a

binary dataset containing Ni features. Then, an instance of DL8.5 was trained

on the same dataset, using the error achieved by CART as the upper bound.

Since both algorithms use the same dataset and DL8.5 is optimal, its training

error is guaranteed to be equal to or lower than that of CART. The green bar

represents the runtime of CART when the upper bound is specified, while the

red one corresponds to the runtime of CART. The blue line serves as baseline,

indicating the runtime of DL8.5 when no upper bound is specified.

Unfortunately, this strategy also does not work as expected: although the

time required to estimate the upper bound is significantly shorter than before,

the training error of CART is too large to effectively prune the search space of

the solutions. As a result, the runtime of DL8.5 remains almost unchanged.

(a) Banknote dataset (b) Iris dataset

Figure 3.8: Runtimes results obtained using CART to compute the upper bound
for DL8.5. Maximum depth: 5. Impurity metric: entropy.

The results of the experiments on the remaining datasets are consistent with

those described above.



Chapter 4: Concluding Remarks

4.1 Summary

Since finding an optimal decision tree under constraints is NP-hard, greedy algo-

rithms like CART have long been the preferred methods to accomplish this task.

However, optimal algorithms do exist, and they often require continuous features

to be discretized before the learning process, as they are typically designed for

binary data. The choice of discretization strategy significantly affects the per-

formance of ODT algorithms: the binarized data can become excessively large,

leading to long search times, and the resulting trees are not guaranteed to be

optimal. In this work, MID is introduced. This is a new supervised, heuristic-

based discretization technique developed to improve the performance on contin-

uous datasets of ODT algorithms such as DL8.5. MID extracts a user-specified

number of binary features from a continuous dataset by iteratively splitting in two

the range of values of continuous features. It uses an impurity metric to select

at every iteration both which is the best feature to split and where to apply the

cut. If MID is used to produce two sets of binary features starting from the same

continuous dataset, the larger one is a superset of the smaller one. This allows an

ODT algorithm to be run repeatedly on input data with a growing dimensionality,

producing trees with a growing training accuracy. The advantage of this strategy

is that if we run it without time limit, an ODT can be found, but the search

process can also be interrupted at any time for a smaller number of features.

Experiments on 14 continuous datasets show how in most cases DL8.5 is able to
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achieve better performance when trained on a small number of features produced

by MID rather than on the output of other discretization techniques, and that

it is able to outperform the greedy algorithm CART when this is trained on the

original continuous datasets. Experiments have also been conducted to explore

the possibility of using MID properties to initialize the upper bound parameter of

DL8.5, and improve the efficacy of its branch and bound approach. These experi-

ments, however, gave negative results: in most cases, the time saved by specifying

the upper bound was smaller than the time needed to estimate it.

4.2 Future directions

As a future work, it could be valuable to develop an MDL criterion similar to

the one employed by MDLP. This enhancement would simplify the fine-tuning of

MID by providing users with an initial set of features to begin with. Additionally,

the effect of other impurity metrics on the performance of MID and DL8.5 can

also be explored. While the experiments aimed at improving the speed of DL8.5

by specifying an upper bound were not successful, there remain other promising

avenues to explore. For instance, alternative algorithms, both greedy and optimal,

beyond CART and DL8.5, could be investigated to estimate the upper bound.

Finally, it would be interesting to use the anytime approach that combines MID

and ODT algorithms to solve other tasks besides classification (e.g. regression).
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