
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Deep Learning Techniques for Water
Level Forecasting in Satellite Images

Supervisors

Prof. Paolo GARZA

Dott. Daniele REGE CAMBRIN

Candidate

Alessandro CHIABODO

October 2024

Abstract

As the climate continues to change, the ability to automatically map bodies of
water and predict their future variations is certainly very important, both to ensure
that people are able to prevent and detect certain extreme weather events, such as
floods and droughts, and to aid urban, agricultural and industrial planning around
large lakes or waterways. Since the launch of the first satellites, images from orbit
have been used to detect and monitor our planet’s water masses, such as oceans
and lakes. Over the years, increasingly accurate methods have replaced human
work, and in recent years, deep learning algorithms such as Convolutional Neural
Networks (CNNs) and Visual Transformers (ViTs) have achieved near-perfect
performance in this task. However, although the detection of even the smallest lake
from Earth orbit is now near perfect, we are still unable to predict changes in the
size and shape of bodies of water with high accuracy. This thesis aims to address
this issue by comparing the performance of different state-of-the-art deep learning
models in both water detection and water level prediction using freely available
satellite data. We not only compared different models and architectures, such as
U-Nets and DeepLab for segmentation or ResNet and LeViT for forecasting, but
also how varying the properties of the input data, such as the number and type
of electromagnetic bands or the number of temporal observations, can change the
behaviour of the models and the results obtained. The experimental results show
that CNNs perform better in these tasks than previous state-of-the-art machine
learning approaches, such as SVM and Random Forest, and classical index-based
methods.

i

Acknowledgements

I would thank professor Paolo Garza and Daniele Rege Cambrin for all the feedbacks
and the technical help provided during the work that gave life to this thesis. I thank
my family and my friends for the help and the support they gave me during the
years of my studies. I have to thank HPC@POLITO for providing computational
resources to work on this project.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Water Mapping in Satellite Images 1
1.2 Water Level Forecasting . 2
1.3 Thesis Structure . 2

2 Related Works 4
2.1 Computer Vision . 4

2.1.1 Deep Learning . 5
2.1.2 Convolutional Neural Networks 7
2.1.3 Semantic Segmentation . 10
2.1.4 CNNs for Semantic Segmentation 11
2.1.5 Vision Transformers . 14

2.2 Remote Sensing . 16
2.2.1 Satellite Imagery and light spectrum 17
2.2.2 Water Indexes . 18
2.2.3 Copernicus Programme . 21
2.2.4 Deep Learning for Remote Sensing 22

3 Methodology 26
3.1 Problems Statement . 26

3.1.1 Water Segmentation . 26
3.1.2 Water Level Forecasting . 27

3.2 Dataset . 30
3.2.1 Global Surface Water . 31
3.2.2 Data Preprocessing and Tiling 31

iv

3.3 Losses and Metrics . 33
3.3.1 Loss Functions . 33
3.3.2 Metrics . 35

4 Experiments 36
4.1 Models . 36

4.1.1 Classification and Regression 36
4.1.2 Segmentation . 38

4.2 General Settings . 38
4.3 Water Segmentation . 39

4.3.1 Settings . 39
4.3.2 Results . 39

4.4 Water Level Forecasting . 42
4.4.1 Settings . 42
4.4.2 Threshold selection . 42
4.4.3 Classification . 43
4.4.4 Regression . 46
4.4.5 Semantic Segmentation . 50

4.5 Discussion . 56

5 Conclusion 58

Bibliography 59

v

List of Tables

3.1 Sentinel-2 [99] bands used in dataset 31

4.1 Overview of CNN and ViT models used for classification and regres-
sion tasks in water level forecasting 37

4.2 Overview of segmentation models used for water detection and water
level forecasting tasks . 38

4.3 Overview of CNN and ViT models used as encoders for classification
and regression tasks . 38

4.4 Water detection results for U-Net 40
4.5 Water detection results for PSPNet 40
4.6 Water detection results for DeepLabV3 41
4.7 Comparison of water detection methods 41
4.8 Results of the threshold selection 43
4.9 Results for bands comparison for Classification 44
4.10 Results for Time Series Analysis . 45
4.11 Comparison of models and methods for classification 46
4.12 Results for models comparison for Regression 47
4.13 Results for bands comparison for Water Level Regression 47
4.14 Comparison of different time series for regression 49
4.15 Results of the tile size comparison for semantic segmentation 51
4.16 Results of the bands comparison for semantic segmentation 51
4.17 Results of the time series analysis for semantic segmentation with

ResNet18 . 53
4.18 Results of the time series analysis for semantic segmentation with

ResNet50 . 53
4.19 Results of the encoders comparison for U-Net 54
4.20 Results of the encoders comparison for PSPNet 55
4.21 Results of the encoders comparison for DeepLabV3 55
4.22 Models comparison for Semantic Segmentation 56

vi

List of Figures

2.1 Tasks in Computer Vision . 6
2.2 Multilayer neural networks and backpropagation. From [37] 7
2.3 How a CNN works [41] . 8
2.4 A diagram of a convolutional layer. The filter (or kernel) slides over

the input image, generating a feature map. Image taken from [46] . 8
2.5 All the layers used in a CNN . 9
2.6 Convolutional Neural Networks . 11
2.7 Encoder-decoder architecture in semantic segmentation. From [61] . 12
2.8 Schematic diagram of the Unet architecture. From [17]. 13
2.9 DeepLab architecture. From [59] . 13
2.10 PSPNet architecture. From [60] . 14
2.11 Self-attention mechanism used in Transformers. From [64] 15
2.12 Vision Transformers architecture. From [67] 16
2.13 Construction of an RGB image of lake Winnipeg from the Red,

Green and Blue bands . 17
2.14 Sentinel-2 spectral bands images of lake Winnipeg. Note the differ-

ence in features and details between the two bands 18
2.15 Comparison between RGB image and water index map 20
2.16 All sentinel missions currently deployed or in development. Source:

[80] . 22
2.17 Sentinel-2 Mission. Images from [83] 23
2.18 Example of land cover classification using various deep learning

techniques[50]. (a) Original image, (b) expected labels, (c) stacked
auto-encoders (SAE), (d) Deep Belief Network (DBN), (e) (f) (g)
various CNNs architectures . 23

2.19 Feature mapping in CNNs for remote sensing[50] 24
2.20 Classification process in CNNs for remote sensing[50] 24
2.21 Pretraining on large datasets for remote sensing[94] 25

3.1 Examples of water detection task 27
3.2 Example of water level classification task. Lake Nasser(Egypt). . . . 28

vii

3.3 Example of water level regression task. Lake Nasser(Egypt). 28
3.4 Example of water level segmentation task. Lake Nasser(Egypt). The

mask highlighs the areas where the water level has changed, either
increasing (yellow , positive change) or decreasing (blue, negative
change). 29

3.5 First (2017) and last (2020) NDWI images of the time series. Lake
Nasser(Egypt). Slight differences in water levels can be seen, partic-
ularly along the more indented coastlines and islands 29

3.6 Example of water level forecasting task. Lake Nasser(Egypt). The
image is obtained by overlapping the change mask that the model is
tasked to predict over the NDWI image of the last year (2020). . . . 30

3.7 Examples of water mapping from the Global Surface Water dataset 32
3.8 Examples of tiling using different tile sizes. Lake Balkhash (Kaza-

khstan) . 33

4.1 IoU during training for different bands configurations 45
4.2 R2 and MAE during training for bands comparison for Water Level

Classification . 48
4.3 Mean Absolute Error (MAE) during training for Time Series Analysis

for Regression . 50
4.4 Training for the bands comparison for Semantic Segmentation . . . 52
4.5 Time Series Analysis for Semantic Segmentation 54

viii

Acronyms

CV
Computer Vision

CNN
Convolutional Neural Network

DL
Deep Learning

IoU
Intersection over Union

MAE
Mean Absolute Error

ML
Machine Learning

MLP
Multilayer Perceptron

MSI
Multispectral Imagery

NDWI
Normalized Difference Water Index

NIR
Near-Infrared

x

NN
Neural Network

R2
R-squared (Coefficient of Determination)

RGB
Red Green Blue

SAR
Synthetic Aperture Radar

SVM
Support Vector Machine

SWIR
Short-Wave Infrared

xi

Chapter 1

Introduction

In this chapter, we provide an overview of the research problem, the motivation
behind this research, and the structure of the thesis.

1.1 Water Mapping in Satellite Images

The detection of water bodies in satellite images is a fundamental task in remote
sensing [1] [2], with numerous applications in environmental monitoring [3], agri-
culture, and urban planning. Since the early days of remote sensing [4], researchers
have been searching for reliable methods to detect even the smallest water bodies
from satellite images.

The first methods for automatic water mapping were based on the calculation of
indices, such as the Normalized Difference Water Index (NDWI) [4], which is based
on the difference in reflectance between the near-infrared and green bands. Before
the explosion of machine learning-based techniques, much of the extraction of water
features from satellite imagery was done using indices calculated by mathematical
ratios based on the particular reflectivity of certain materials at certain wavelengths
of the electromagnetic spectrum, but in many cases important details were missing.

The first machine learning algorithms revolutionised the field of remote sensing
[5], enabling the development of more accurate and efficient methods for detecting
water in satellite imagery. Some of the most widely used ML models for surface
water mapping have been SVM, Decision Trees, Random Forests and K-Means
Clustering [5] with good results across the board.

Yet, with modern deep learning techniques [6, 7], the field could see a further
leap in performance, with the development of models capable of exploiting the full
potential of multispectral satellite imagery for water detection.

1

Introduction

1.2 Water Level Forecasting
While lake water levels are naturally subject to interannual variability, in the
last two decades climate change and human activities have played an increasingly
important role in water level fluctuations.[8] Monitoring these changes has become
an increasingly important aspect of urban planning [9], commercial shipping,
hydropower [10], and agricultural planning [11], as well as climate change monitoring
[9] in recent decades.

Real-time monitoring and forecasting of these environmental problems can
be used to take immediate action to reduce the damage caused by, for example,
droughts or floods. Since the launch of the first satellites equipped with optical
sensors, research has been conducted on how to use this vast source of data to
analyse the evolution of lakes and rivers over time. Some of the first machine
learning-based methods used to predict water levels were based on feed-forward
networks [12], MLP, autoregressive networks and SVMs[10].

Following the outstanding advances in deep learning in recent years, many
research initiatives have turned their attention to the study of multispectral satellite
imagery for the purpose of monitoring and assessing changes in water bodies. Deep
Learning can be employed to process data from satellites and sensors to monitor
some of the major environmental changes [9] of our time, such as deforestation,
melting of perennial ice, rising sea levels and water level fluctuations in lakes and
rivers. However, there is still considerable room for further research [13], especially
with regard to the interannual prediction of such changes.

Given the recent advancements in deep learning and the critical importance of
monitoring and predicting water levels for human life, this thesis will explore how
various deep learning models, particularly Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs), can predict annual changes in some of the world’s
major lakes.

Unlike similar studies, our focus will be on short-term forecasting of water level
fluctuations in inland water bodies.

1.3 Thesis Structure
The remainder of this thesis is structured into chapters, where each chapter is
dedicated to a certain topic:

• Chapter 2 provides an overview of related work in remote sensing, satellite
imagery, machine learning, and deep learning, with a particular focus on the
methods and techniques used for water detection and water level prediction.

• Chapter 3 delineates the methodologies employed in this research, including

2

Introduction

data collection, data preprocessing, and the models utilized for water detection
and water level prediction.

• Chapter 4 presents the findings of the experiments conducted in this research,
including an evaluation of the models and a comparison of the results.

• Chapter 5 is a summary of the principal findings and contributions of the
thesis, together with suggestions for future works.

3

Chapter 2

Related Works

Here we provide an overview of the research conducted in the field of remote sensing,
satellite imagery, machine learning, and deep learning, with a particular focus on
the methods and techniques used for water detection and water level prediction.

2.1 Computer Vision
Computer Vision (CV) is a rapidly developing area of Artificial Intelligence (AI)
that enables computers to process visual data from the real world[14]. With
applications in diverse fields such as agriculture[15, 16], healthcare [17, 18], climate
monitoring [9], transportation [19, 20], and manufacturing [21], CV is playing
an increasingly critical role in both scientific research and industry [14]. Modern
computer vision research have led to the development of novel algorithms and
architectures for complex tasks such as facial recognition [22, 23], autonomous
driving [20], medical image analysis [17], and even climate-related monitoring [24,
14]. The idea at the base of CV is to enable computers to "see" and understand the
visual world [14] around them by extracting meaningful information from images
captured by a variety of sensors, such as cameras, satellites, or medical imaging
devices. Some of the most common tasks in computer vision are:

• Image Classification: assigning a label to an image based on its content [25,
18]. This is one of the main tasks in computer vision and is widely used in
fields like medical diagnostics [18] and large-scale image retrieval [25].

• Image Regression: focuses on predicting continuous values from an image[26].
For example estimating the age of a person from a photo, or the price of a
house from a picture.

• Object Detection: based on the detection and localization of objects in an
image [27].

4

Related Works

• Semantic Segmentation: this task aims to classify each pixel in an image,
providing a dense prediction where every pixel is labeled with a class. Can be
seen as a pixel-wise classification task [19, 28, 17]. Semantic segmentation is
essential for tasks that require a detailed understanding of the scene, such as
autonomous driving and land use monitoring.

• Instance Segmentation: similar to semantic segmentation, instance segmen-
tation labels pixels but also distinguishes between different instances of the
same class. For example, in a picture with two cars, it will assign a different
label to each car [29].

• Panoptic Segmentation: combines the tasks of semantic and instance segmen-
tation, providing a comprehensive understanding of both the objects presents
and the whole scene [30].

Other important tasks in computer vision, but less relevant for the purpose of this
thesis, are image captioning [31],which generates descriptive text for an image,
pose estimation [32], image (and video) generation [33, 34],which involves creating
new visual data based on learned patterns, and De-Noising [35, 36], which removes
noise or distortions from images.

In this thesis, we will primarily focus on image classification, image regression
and semantic segmentation, as they are directly relevant to the goal of water
detection and water level forecasting. Image classification will help identify the
presence of water, while image regression will be used to estimate water levels based
on visual data. Finally, semantic segmentation will allow us to perform pixel-wise
classification of water bodies, providing detailed and accurate water delineation.

2.1.1 Deep Learning
Deep learning (DL) is a subset of machine learning (ML) that uses multi-layer
("deep") neural networks to model and extract patterns from data, in some ways
mimicking the decision-making of the human brain. [37]

A so-called deep neural network is nothing more than a stack of several simple
computational units [37, 24] capable of learning patterns from data, many of which
are also non-linear functions. With numerous non-linear layers, a network is then
able to learn extremely complex functions [38] while remaining sensitive to small
changes [17] in the data and immune to irrelevant variations. The resulting model
can then be trained on a large dataset using a process called backpropagation [39],
which applies simple Stochastic Gradient Descent (SGD) to the output [40]. The
weights of the network, which are the units responsible for calculating the output,
are updated at each step to minimise the error between the expected output and
the actual predictions.

5

Related Works

(a) Image classification [25]. (b) Image Generation [33].

(c) Instance Segmentation [14]. (d) Semantic Segmentation [19].

Figure 2.1: Tasks in Computer Vision

One of the key differences between traditional ML and DL is the ability to
extract important features directly from the data, often referred as representation
learning [37] without the need for manual feature extraction as in traditional ML
algorithms. This is particularly useful in computer vision, where the features to be
extracted are often complex and difficult to define manually[14].

The most common types of deep neural networks used in computer vision are
convolutional neural networks (CNNs)[24, 37, 14]. These are a particular type of
feed-forward neural network that are much easier to train than traditional neural
networks, as they are able to learn the spatial hierarchies of features in the data[37].

6

Related Works

(a) Multilayer Neural Network (b) Backpropagation algorithm

Figure 2.2: Multilayer neural networks and backpropagation. From [37]

2.1.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of feed-forward neural network
[41], and the most widely used DL network [24], designed to process and analyse data,
such as images, that come in the form of multiple stacked arrays [37]. CNNs are best
known for their effectiveness in image-related tasks such as image classification[38],
object detection[27], and semantic segmentation [24]. This is why they are widely
used in fields such as facial recognition, anomaly detection [42], medical diagnostic
[18, 17] and autonomous vehicles [20]. They can also be applied to diverse tasks
such as time series forecasting[43] and natural language processing, although in
recent years Transformers models have surpassed [44] and replaced all alternatives
in this area. At last but not least, CNNs are also used in remote sensing for land
cover classification, object and change detection [9]. Although precursors of CNNs
date back to the 1980s, the modern CNN architecture was first introduced by
LeCun et al. in 1998 [45]. A further leap forward was made in 2012, when AlexNet
[38] won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)[25]
by a large margin, demonstrating the effectiveness of CNNs in image classification
tasks. From that moment on, also thanks to the increasing computational power
of modern computers, CNNs became the de-facto standard architecture for image
classification.

The architecture of a CNN consists of a series of stages as in Fig.2.3, each of
which is designed to perform different operations on the input data [41, 37]. The
first stages are mainly composed of two types of layes, convolutional and pooling
layers.

The convolutional layer applies a set of trainable filters (or kernels) to the input

7

Related Works

Figure 2.3: How a CNN works [41]

image[41]. Each filter is a matrix that ’slides’ over the entire image at a predefined
step (called a stride). At each position, a scalar product is calculated between the
filter and the corresponding portion of the input image. This process generates
a feature map for each filter, representing the filter’s response to different areas
of the image. The resulting feature maps can then be stacked and become the
input for the next layer of the network. In this way, the filters can ’learn’ different
patterns in the input image[37].

Figure 2.4: A diagram of a convolutional layer. The filter (or kernel) slides over
the input image, generating a feature map. Image taken from [46]

The activation function applies a non-linear transformation to the output of the
convolutional layer, allowing the network to learn complex patterns in the data.
Usually the ReLU function is used, but other functions such as Sigmoid or Tanh
can be used. We can see some of the most common activation functions in Fig.2.5a.

A pooling layer, as in Fig. 2.5b is often applied after a convolutional layer to

8

Related Works

reduce the spatial dimensions of the data by downsampling. This reduces the
number of parameters and computational load in the network while helping to
control overfitting.

Lastly a fully connected Layer forms the output layer,as shown in Fig. 2.5c,
connecting each neuron in the previous layer to every neuron in the output layer,
thus allowing, for example, to assign the correct class to the data based on the
output of the network. In the following, we will introduce some of the CNN

(a) Activation functions used in CNNs [24]

(b) Pooling functions in CNNs [47] (c) Fully connected layer [24]

Figure 2.5: All the layers used in a CNN

architectures used in remote sensing and image processing, in particular those that
we will use and compare in the course of our research.

ResNet Ultra-deep CNN architecture that introduced the concept of residual
connection [48]. ResNet works by adding the input of a layer to the output of
the layer itself, allowing the network to learn the residual function, which is the
difference between the input and the output of the layer. This architecture allows the
training of very deep networks, up to 152 layers, by solving the problem of vanishing
gradients. This issue occurs when the gradient of the loss function approaches
zero, making the network unable to learn. Residual connections mitigate this by
allowing the gradient to skip certain layers of the network [49], thus maintaining
the flow of gradients and facilitating the training of deeper networks. ResNet has
been widely adopted in many computer vision tasks, including image classification
[50], object detection [48] and semantic segmentation [24] and has been the basis
for many other architectures [51].

9

Related Works

MobileNet Designed to be extremely efficient models for mobile and embedded
vision use-cases, MobileNets are a series of lightweight CNNs [28] architectures
that are designed to be fast and efficient on devices with limited computational
resources. Each different MobileNet "generation" introduces new features and
improvements. There are currently four versions of MobileNets, each with different
architectures and performance characteristics. MobileNets V1 [52] are based on a
depth-wise separable convolution structure to ensure a good trade-off between speed
and performance. MobileNets V2 [53] introduced the inverted residual structure,
while MobileNets V3 [54] introduced the use of an attention mechanism to further
improve the performance of the network. Lastly, MobileNets V4 [55] introduces the
so-called Universal Inverted Bottleneck (UIB) search block, an advance structure
that allows to merge many of the modern CNNs improvements, like Inverted
Bottleneck, ConvNext and Extra DepthWise into a single block. This last network
is able to achieve near state-of-the-art performance, while being extremely efficient
and able to run on mobile platform. For the scope of this research, we will focus
on MobileNet V4 as a lightweight model for water level forecasting and MobileNet
V3 for segmentation.

VGG Based on a simple and efficient architecture, the VGG network [56] consists
of 16 convolutional layers and 3 fully connected layers, with a total of 138 million
parameters. The use of small convolutional filters (3x3), rather than larger (5x5)
and (7x7) kernels as in AlexNet, and the stacking of multiple layers [24] allows the
network to learn complex patterns in the data, making it particularly effective in
image classification tasks. Its main drawback is the high computational cost due
to the large number of parameters, almost 140 million, which makes it difficult to
train compared to smaller models.

ConvNext A modern Convolutional Neural Network (CNN) architecture de-
signed to compete with Vision Transformers (ViT) while maintaining the simplicity
of traditional CNNs [51]. Developed by gradually modernizing the classic ResNet
[48] architecture by incorporating some key design choices from ViT, such as
larger kernel sizes and inverted bottleneck layers, ConvNeXt outperforms many
ViT models in tasks such as image classification, object detection, and semantic
segmentation, while retaining the efficiency and scalability of standard ConvNets.
One of the key innovations in ConvNeXt is the use of large convolutional kernels
(up to 7x7), allowing for a larger receptive field[57].

2.1.3 Semantic Segmentation
Semantic segmentation is the task [28] of computer vision that consists of assigning
a class label to each pixel in an image, in other words, it is a pixel-wise classification

10

Related Works

(a) Comparison between a traditional CNN
and a ResNet architecture (b) Diagram of a residual block [48]

Figure 2.6: Convolutional Neural Networks

task. This means that each pixel in the input image is classified into a specific
category, which could be a person, a car, a tree, a lake, etc., based only on the
input data.

The main goal of semantic segmentation is to achieve a comprehensive and
accurate understanding of the entire content within an image. This task is crucial
for various applications, including autonomous driving [20], medical image analysis
[17], and scene understanding in remote sensing [58].

Deep learning models, in particular convolutional neural networks (CNNs), are
commonly used to perform semantic segmentation[28]. Advanced architectures
such as Fully Convolutional Networks (FCNs), U-Net and DeepLab have been
developed to improve the accuracy and efficiency of semantic segmentation. In the
following, we will introduce some of the most widely used fully CNN architectures
for semantic segmentation, focusing on those that we will use and compare in the
course of the thesis.

2.1.4 CNNs for Semantic Segmentation
Due to the specific nature of the semantic segmentation task, traditional CNN
architectures are not well suited for this task, as it’s essential to maintain detailed
spatial information throughout the network in order to accurately differentiate
between object boundaries. However, simply maintaining the same input dimen-
sional across the entire network would be computationally infeasible, especially
with high-resolution images. To address this challenge, an encoder-decoder ar-
chitecture is often used, as illustrated in Fig 2.7. In this particular architecture,
the encoder role is to extract important features from the input image through
a series of convolutional and pooling layers, reducing the spatial resolution but
increasing the granularity of informations. The decoder gradually reconstructs the
spatial resolution of the image by using upsampling techniques such as transposed
convolutions (also called deconvolutions).

11

Related Works

In this way, the encoder can extract meaningful feature representations from
the input image, while the decoder uses this information to reconstruct the spa-
tial details of the entire image. Several CNN architectures have been designed
specifically to address the unique requirements of semantic segmentation tasks,
with some of the most widely used being U-Net[17], DeepLab[59] and PSPNet[60].
These specialized architectures demonstrate the evolution of CNNs for semantic
segmentation, enabling more accurate and computationally efficient pixel-wise
classification by addressing the spatial preservation challenge inherent in traditional
CNNs.

Figure 2.7: Encoder-decoder architecture in semantic segmentation. From [61]

U-Net

Originally developed for biomedical image segmentation, U-Net[17] is a fully convo-
lutional network based on the idea of skip connections between the encoder and
decoder layers. The architecture of U-Net, like almost all fully CNNs, is divided
into two parts, the contraction path, which is responsible for extracting features
from the input image, and the expansion path, which is used to reconstruct the
spatial information of the image. The main feature introduced by U-Net are the
skip connections, which allow the network to use the features extracted by the
encoder to reconstruct the spatial information of the image directly in the decoder,
creating a bridge between each layer of the encoder and the decoder, as in 2.8.
This particular architecture allows the network to learn both the global and local
features of the image, making it particularly effective in semantic segmentation
tasks [28]. Even if developed for biomedical image segmentation, U-Net has been
widely adopted in almost all semantic segmentation tasks, including remote sensing,
where it has been used for land cover classification, interative image denoising [62],
and change detection [63].

DeepLab

Semantic segmentation architecture based on a special type of upsampling filter,
called atreous convolution[59], which allows control of the resolution at which

12

Related Works

Figure 2.8: Schematic diagram of the Unet architecture. From [17].

features are computed. As a result, more input context can be handled without
increasing the number of network parameters. In addition, DeepLab uses a feature
called Atreus Spatial Pyramid Pooling (ASPP), which applies multiple parallel
atreus convolutions at different rates. This technique captures multi-scale features
by applying filters with different receptive fields.

Figure 2.9: DeepLab architecture. From [59]

13

Related Works

PSPNet

Based on a piramide structure, as the name might imply, the Pyramid Scene
Parsing Network (PSPNet) [60] is a semantic segmentation architecture that uses a
pyramid pooling module to capture global context information from the input image.
The pyramid pooling module divides the input image into different regions and
applies average pooling to each region, capturing the global context information at
different scales. In addition to the pyramid pooling module, PSPNet also employs
a deep convolutional neural network (CNN) as its backbone, which is responsible
for extracting high-level features from the input image.

Figure 2.10: PSPNet architecture. From [60]

2.1.5 Vision Transformers
Transformers, an innovative attention-based architecture introduced by Vaswani et
al. in 2017[64], has become the de facto standard architecture in Natural Language
Processing (NLP) [44], training on large datasets and achieving state-of-the-art
results in many tasks. The efficiency and scalability of transformers has allowed
the training of models of unprecedented size, with a total of over 100B parameters,
such as the new llama 3 model developed and released as open source by Meta
AI, which has a total of 405B parameters [65, 66]. Some of the most widely used
transformer-based models are BERT, T5 and GPT-3, with the latter being known
for generating coherent and fluent text[44].

In recent years, the same architecture has been adopted in computer vision, giving
birth to the Vision Transformers (ViT) [67], a pure transformer-based architecture
that can be used for almost all computer vision tasks. Unlike Convolutional
Neural Networks (CNNs), which dominated the field of computer vision for years,
ViTs rely purely on attention mechanisms to process images[64]. Despite the fact
that training these transformer-based models requires more computational power
than traditional Convolutional Neural Networks (CNNs), they have shown that
convolutions are not the only effective way to process images. Visual transformers
have excelled in various computer vision tasks, achieving state-of-the-art results in
areas such as image classification, object detection, and semantic segmentation[68].

14

Related Works

Figure 2.11: Self-attention mechanism used in Transformers. From [64]

One of the main drawbacks of this architecture, as reported in [67], is the absence
of some inductive biases that CNNs have, such as translation invariance, which can
make the training process more difficult and the model less robust to small changes
in the input data. For this reason, the ViT architecture needs to be trained or
pre-trained on large datasets to learn the features of the input data, and is not
always the best choice for small datasets or when the data is not well balanced[67].

Following the first ViT model, many other architectures have been proposed,
such as LeViT[69], Swin Transformer[70] and MaxViT[71], each with its own
improvements. The Swin Transformer, for example, adopts a hierarchical input
structure, which allows it to process images at different scales with greater flexibility,
and its design ensures linear computational complexity, making it more efficient
for large-scale vision tasks. On the other hand, many variants propose a hybrid
structure [68] that aims to fuse convolutions and self-attention to achieve an optimal
cost/performance ratio. One example is LeViT.

15

Related Works

Figure 2.12: Vision Transformers architecture. From [67]

2.2 Remote Sensing
Remote sensing is the science of obtaining information [72] about the Earth’s surface
from images taken from a distance by optical or electromagnetic sensors mounted
on satellites, aircraft, or drones. Using satellite technologies to gather critical
information can help address a wide range of environmental[3], agricultural[73], and
geopolitical challenges [74], offering insights that would otherwise be impossible to
obtain at the same scale and frequency. In recent decades, the availability of global
remote sensing has led to major changes in the monitoring and understanding of the
Earth’s climate, environment, and the impact of human activities on the planet [3].
For example, remote sensing has provided climate scientists with continuous, long-
term datasets for the monitoring of deforestation, desertification, melting glaciers,
and rising sea levels, all of which are critical indicators of climate change[9]. Among
the most common applications of remote sensing are vegetation classification [75],
land use [76], and water body monitoring [13], such as lakes, rivers, and wetlands,
which are essential to sustaining human life and the environment. Remote sensing
provides an efficient way to map the extent of water bodies [72], track the area
occupied by water features, and monitor changes in water bodies over time. Even
more in recent years, where there is an increased reliance on satellite imagery
to assess the impact of humans and climate change [77] on the health of major
water bodies. Many studies [13, 6, 78, 7] have been focused on the development
of methods and algorithms to detect and monitor water bodies over time using
remote sensing data. These approaches often leverage machine learning and deep
learning techniques [78, 7], which have shown promise in improving the accuracy
and scalability of water body detection. However, the problem remains far from

16

Related Works

being fully solved, as challenges such as varying water reflectance, cloud cover, and
the dynamic nature of water bodies continue to complicate the detection process.

2.2.1 Satellite Imagery and light spectrum
Satellite imagery is a critical data source for remote sensing applications [5, 79],
providing a wealth of information about the Earth’s surface across a wide range
of spatial and spectral dimensions. The ability to capture vast and varied terrain
from space allows for in-depth environmental monitoring and analysis at regional
and global scales[3]. These images are taken by multiple sensors on different
satellites orbiting the Earth, each with different characteristics and capabilities[72,
80]. Different satellite sensors are tailored to collect data at varying resolutions,
spectral ranges, and temporal frequencies, providing flexibility in observing diverse
Earth phenomena. Each image consists of several spectral bands, with each
band representing the intensity of reflected light at a particular wavelength[81].
These spectral bands represent the intensity of reflected radiation at particular
wavelengths and provide crucial informations [4] about different surface features,
such as vegetation, water, soil and urban areas, allowing valuable information about
the environment to be extracted[72]. Some of the most common bands used in
remote sensing includes the Red, Green, Blue (RGB) band, which correspond to
the visible part of the spectrum and provide true-color images, as in Fig.(2.13).

Figure 2.13: Construction of an RGB image of lake Winnipeg from the Red,
Green and Blue bands

Bands in the Near Infrared (NIR) region are often used to assess vegetation
health and water content in plants[4], while the Short Wave Infrared (SWIR)
bands are particularly useful for identifying soil moisture and detecting wildfires[82].
This multi-spectral data allows detailed analysis and interpretation of various
surface features and conditions, improving our understanding of environmental
change, urban development and natural resource management[9]. In this thesis, we
will focus on the Sentinel-2 mission, an Earth observation program operated by
the European Space Agency (ESA). Sentinel-2 is equipped with a MultiSpectral

17

Related Works

Instrument (MSI) that captures images in 13 spectral bands[83, 84]. These bands
span from the visible to the shortwave infrared region, offering a wide spectral
range that enables the analysis of diverse land and water features. The resolution
of these bands ranges from 10 to 60 meters, providing a rich source of data for
studying land cover, water bodies, and environmental changes.

(a) NIR band (b) SWIR band

Figure 2.14: Sentinel-2 spectral bands images of lake Winnipeg. Note the
difference in features and details between the two bands

2.2.2 Water Indexes
Water indices obtained by combining different bands have been the most widely used
method [5] for the detection of water bodies for many years. Their main advantage
over single-band approaches is their ability to normalize data, reducing the influence
of unwanted factors such as clouds, shadows, or variations in surface reflectance.
This normalization makes the detection of water more robust, especially in complex
scenes where environmental noise could otherwise interfere with the classification.
Over the years, several indices have been introduced for water detection, but among
them the most commonly used are the Normalised Difference Vegetation Index
(NDVI), originally introduced for vegetation classification [85], and the Normalised
Difference Water Index (NDWI) [4].

These indices are based on the normalized difference between two spectral bands,
generally one in the visible spectrum and the other in the infrared region. For
example, NDVI is computed using the red and NIR bands, taking advantage of
the fact that vegetation strongly reflects NIR radiation while absorbing red light.

18

Related Works

Similarly, NDWI uses the green and NIR bands, using the fact that water bodies
reflect more green light and absorb NIR radiation, allowing for clear separation of
water and non-water pixels. However, although widely used, the main limitation of
these indices is that their performance can vary depending on the specific scene, the
type of sensor used, and environmental conditions such as atmospheric interference,
sun angle, or the presence of other reflective surfaces like snow, urban structures,
or barren land. Some of the most widely used indices[5], and their equations, are:

• Normalized Difference Vegetation Index (NDVI):

NDV I = NIR − RED

NIR + RED
(2.1)

NDVI is widely used to analyze vegetation health, as it highlights areas with
live green vegetation by measuring the difference in reflectance between near-
infrared (NIR) and red light. However, its use for water detection is limited,
as it can confuse open water with certain types of vegetation.

• Normalized Difference Water Index (NDWI):

NDWI = GREEN − NIR

GREEN + NIR
(2.2)

NDWI, introduced by McFeeters in 1996 [4], is designed specifically for water
detection. It is based on the contrast between the green and near-infrared
(NIR) bands, where water absorbs NIR light but reflects green light, making
it easier to distinguish water bodies from surrounding land.

• Modified Normalized Difference Water Index (MNDWI):

MNDWI = GREEN − SWIR

GREEN + SWIR
(2.3)

MNDWI is a variation of NDWI, which replaces the NIR band with the
Shortwave Infrared (SWIR) band. This adjustment helps improve water
detection in more challenging or noisy environments, particularly in areas with
high reflectance, such as urban regions [86].

• Enhanced water index (EWI):

EWI = GREEN − SWIR + m

(GREEN + SWIR)x(NDV I + n) (2.4)

The Enhanced Water Index (EWI) builds upon both NDWI and MNDWI by
introducing additional terms to improve the accuracy of water detection, espe-
cially in more complex landscapes. It further refines water body identification
by adjusting for vegetation presence using NDVI as part of the calculation.

19

Related Works

• Automated Water Extraction Index (AWEI):

AWEI = 4 × (GREEN − SWIR) − (2.5 × NIR + 2.75 × BLUE) (2.5)

AWEI is designed to automatically detect water bodies and reduce false
positives caused by non-water surfaces like shadows or urban areas. By
combining green, SWIR, NIR, and blue bands, it enhances the separation
between water and other surfaces, making it particularly effective in built-up
areas.

Each of these indices is designed to improve water detection under specific conditions
or to mitigate the effects of particular environmental variables, such as urban areas
or mixed land-cover types. For example, while NDWI is highly effective in clear,
open areas, MNDWI and AWEI are better suited for urban regions or landscapes
with mixed land cover [72]. These indices have become essential tools in remote
sensing, as they help to mitigate the effects of environmental factors like vegetation,
urban structures, or atmospheric noise, which can complicate water detection.
While they represent significant advancements in remote sensing methodologies,
their application is often context-dependent, and ongoing research continues to
refine their robustness and adaptability to different geographical and environmental
settings.

(a) Lake Balkhash RGB (b) Lake Balkhash NDWI

Figure 2.15: Comparison between RGB image and water index map

In Figure 2.15, we compare a standard RGB image of Lake Balkhash (Figure
2.15a) with its corresponding NDWI map (Figure 2.15b). The NDWI map highlights
water bodies more clearly by taking advantage of the reflectance properties of water
in the green and NIR bands, demonstrating how this index simplifies water detection
from satellite imagery.

20

Related Works

With the years many variations of the NDWI have been proposed to improve
accuracy, such as for example the Modified Normalized Difference Water Index
(MNDWI) [86], which use the Green and the Shortwave Infrared (SWIR) bands
respectively as in Eq 2.3, and gives slightly better results in particularly difficult
(and noisy) conditions. However, for the purposes of this thesis, we preferred
to limit ourselves to using the NDWI as an example of the water index in the
comparison experiments, as it remains the de facto standard for water extraction.

2.2.3 Copernicus Programme

The Copernicus programme is the remote sensing component of the European Union
Space Programme and aims to develop a European Earth observation capability
in partnership with the European Space Agency (ESA). There are currently six
Sentinel missions under development, of which three are fully operational (Sentinel
1, 2 and 3) [83], two are partially operational (Sentinel 5 Precursor and Sentinel 6A)
and one is in the final stages of development (Sentinel 4). Each Sentinel mission
is designed to monitor a specific aspect of the Earth’s environment, such as land,
ocean, atmosphere and climate, and is equipped with a variety of sensors to collect
data in different spectral bands. It is important to note that all data collected
by the Sentinel missions are freely available to the public through the Copernicus
Dataspace [80] and the openeo platform[87]. This makes the Sentinel missions an
ideal source of data for remote sensing research. In our particular case we will focus
on the Sentinel-2 mission for our research, which is designed to monitor land and
vegetation, and is equipped with a MultiSpectral Instrument (MSI) that captures
images in 13 spectral bands.

Sentinel-2

The Sentinel-2 mission [83] consists of two identical satellites, called Sentinel-
2A and Sentinel-2B (with a third Sentinel-2C satellite scheduled to be launched
in September 2024), which orbit the Earth in a sun-synchronous orbit. This
configuration allows for a high revisit [83] [84] frequency of 5 days at the Equator,
ensuring consistent and timely data collection. Each satellite is equipped with a
MultiSpectral Instrument (MSI) that captures images in 13 spectral bands, each
one with a resolution ranging from 10 to 60 meters per pixel. The wide range of
spectral bands allows for the monitoring of various environmental parameters [88],
such as vegetation, soil, and water quality, making it an ideal tool for environmental
monitoring.

21

Related Works

Figure 2.16: All sentinel missions currently deployed or in development.
Source: [80]

2.2.4 Deep Learning for Remote Sensing
Machine Learning (ML) and Deep Learning (DL) have revolutionized the field
of remote sensing by offering advanced tools for high-precision classification and
recognition of geological features[58, 89]. Over the past few decades, significant
milestones have been achieved in the development of both ML and DL techniques,
allowing them to match or even surpass human performance in tasks such as image
classification [25], object detection [24], and text processing [44]. As a result, these
methods have gradually become the mainstream techniques for interpreting remote
sensing data[90, 91].

The key advantage of ML and DL in remote sensing lies in their ability to
extract high-level, high-dimensional semantic information [37] from a wide range
of remote sensing images, including multispectral, hyperspectral, and radar im-
agery [92]. These methods can identify patterns and features that are difficult
or impossible to discern using traditional methods, making them indispensable
tools for monitoring and interpreting complex geological environments[90]. Their
capacity to automatically learn from vast datasets has significantly improved the
precision, efficiency, and scalability of remote sensing tasks, enabling large-scale,
fine-grained geological surveys to be conducted at lower costs and with reduced
human intervention[89].

In addition, the integration of ML and DL with multi-source remote-sensing
data, such as data from different satellite platforms or sensors [58], has resulted in
important advancements in the detection and analysis of geological features. These

22

Related Works

(a) Sentinel-2 Orbital Configuration (b) Schematic view of Sentinel-2 Spacecraft

(c) Sentinel-2 MultiSpectral Instrument

Figure 2.17: Sentinel-2 Mission. Images from [83]

Figure 2.18: Example of land cover classification using various deep learning
techniques[50]. (a) Original image, (b) expected labels, (c) stacked auto-encoders
(SAE), (d) Deep Belief Network (DBN), (e) (f) (g) various CNNs architectures

advances are particularly relevant for applications such as mineral exploration, land-
use monitoring [58], hazard detection, and climate change studies[9]. The ability

23

Related Works

to fuse data and extract meaningful informations has become crucial in addressing
problems related to sustainable development and environmental protection. For
example, ML and DL algorithms are now being used to monitor deforestation, map
water resources [78], track desertification, and assess natural disaster risks [82], all
of which contribute to land management and conservation planning.

Figure 2.19: Feature mapping in CNNs for remote sensing[50]

Figure 2.20: Classification process in CNNs for remote sensing[50]

Several freely available datasets[93, 94] are starting to be created, mainly based
on either the Copernicus Sentinel missions or the Nasa Landsat missions. These
datasets are designed to be real benchmarks for deep learning models[95, 93] for
multispectral image analysis, in the same way that Imagenet[25] and Cityscapes[19,
28] are the main benchmarks in their respective disciplines, but also as sources for
pretraining and fine-tuning models to be used later in various remote sensing tasks
[94], as shown in Fig.2.21.

Despite their transformative potential, ML and DL techniques in remote sensing
still face several challenges[58, 79]. One of the primary obstacles is the complexity
of geological elements, which can vary significantly in appearance, scale, and com-
position across different regions[72]. Vegetation cover, topographic variations, and
atmospheric conditions can interfere with accurate interpretation[88]. The quality
of remote-sensing images may also be unstable due to cloud cover, sensor noise
and varying spatial and temporal resolutions, further complicating the analysis[96].
In addition to that, the lack of comprehensive, high-quality ground truth data,
which is essential for training and validating ML and DL models[97, 98], remains a
significant limitation: field-validated data is often sparse, expensive to collect and

24

Related Works

Change

Semantic

fine-tuneself-supervise

Forest carbon
quantification

Cattle counting

Filling data
gaps

Cloud
segmentation

Land cover
classification

Methane plume
detection

Large
Pretrained
Model

Visual

SAR

Multispectral

Figure 2.21: Pretraining on large datasets for remote sensing[94]

limited to specific regions, which can interfere with the generalization capabilities
of the models.

25

Chapter 3

Methodology

In this chapter, we are going to present the dataset used for the experiments, how
it was obtained, processed and organized, and the details of the models used for
the experiments.

3.1 Problems Statement
In this thesis, we are going to address two main problems related to the detection
and forecasting of water levels in satellite images, which are water segmentation
and water level forecasting.

3.1.1 Water Segmentation
Water Segmentation is the task of mapping the presence of water in satellite images,
which is a fundamental task in remote sensing and environmental monitoring.
Accurate water detection aids in flood management, irrigation planning, hydrological
modeling, and ecosystem protection. The main goal of water segmentation is to
produce precise maps that differentiate water from non-water regions in images,
enabling further analysis of water distribution and dynamics over time. Starting
with a single satellite image of size WxH, we want to train a model capable of
detecting the presence of water in the image. In particular, the model should
produce a pixel-wise binary mask, in which each pixel is classified as either water
(with a label of 1) or non-water (with a label of 0). The binary nature of the task
simplifies the segmentation problem, making it easier to evaluate the performance
of the models. It is important to note that for the scope of this experiment, we
will ignore the seasonal changes in water levels and focus on the detection of
permanent water in the image. Thus, we expect a minimum of inaccuracy related
to small differences between the annual mask and the actual water level in the

26

Methodology

image, but no more than a few percentage points. Water segmentation has been
extensively studied in the past by various researchers using many different methods
and algorithms. The aim in this thesis is simply to compare the capabilities of
CNNs models with one of the most widely used methods, namely the NDWI-based
method.

(a) Lake Garda RGB Image (b) Expected water mask for Lake Garda

Figure 3.1: Examples of water detection task

3.1.2 Water Level Forecasting
Water level forecasting is the task of predicting changes in water levels over time
using satellite imagery, which is crucial for environmental monitoring and climate
change studies. The goal here is to train a model that can forecast future water
level changes based on a time series of labeled satellite images of size WxH. Each
input image has two corresponding labels: one from the first year and another from
one year after the last image in the time series. The model’s expected output is
the predicted change in water level, defined as the pixel-wise difference between
the first and last labels.

Classification In the classification sub-task, we simplify the pixel-wise water
level masks to a single value: the percentage of water pixels that have changed in
the image. Using a defined threshold, the model will classify each image as either
showing a "positive change," "no change," or "negative change" in water levels as
shown in Fig.3.2.

Regression For the regression task, we again reduce the pixel-wise water masks
to a single value, which is the percentage change in water pixels. Instead of

27

Methodology

Figure 3.2: Example of water level classification task. Lake Nasser(Egypt).

classifying the change, the model will try to predict the exact percentage change in
water pixels as shown in Fig.3.3. This task provides a more accurate numerical
estimate of how much the water level has changed between the two labels than
simply categorising the change.

Figure 3.3: Example of water level regression task. Lake Nasser(Egypt).

Segmentation In the segmentation task, the model will directly predict the
pixel-wise difference between the first and last water level labels. This involves
generating a detailed mask that shows where water levels have changed in the image,
offering a more granular view of water distribution over time. An example can be

28

Methodology

seen in Fig.3.4 where the (future) change mask of a particular tile is compared
with the first and the last images of the timeSeries.

Figure 3.4: Example of water level segmentation task. Lake Nasser(Egypt).
The mask highlighs the areas where the water level has changed, either increasing
(yellow , positive change) or decreasing (blue, negative change).

To generate water level predictions, the time series data consists of four satellite
images taken over consecutive years (2017 to 2020), while the labels represent two
water level masks: one from the first year (2017) and the other from one year after
the last image (2021). The model is tasked with predicting the change in water
level between the first image (2017) and the final label (2021) using the four images
in the time series.

Figure 3.5: First (2017) and last (2020) NDWI images of the time series. Lake
Nasser(Egypt).
Slight differences in water levels can be seen, particularly along the more indented
coastlines and islands

29

Methodology

Figure 3.6: Example of water level forecasting task. Lake Nasser(Egypt).
The image is obtained by overlapping the change mask that the model is tasked to
predict over the NDWI image of the last year (2020).

3.2 Dataset
The data set used for the experiments consists of images taken by the Sentinel-2
satellite, which is part of the European Space Agency’s Copernicus programme.
The images are taken at a resolution of 10 metres per pixel and are composed
of 9 bands out of the original 12 included in Level-2A of the Sentinel-2 products.
The bands used have been selected for their importance in detecting water and
forecasting water levels, and are the most commonly used bands in remote sensing.
In particular, the bands used are the following:

Each image has a size of about 2000 x 2000 pixels and is obtained by merging
about 60 days of observations to exclude as many clouds as possible. The cloud
exclusion is done using the scene classification map [100] provided by the Copernicus
program, which contains for each pixel its possible classification as cloudy or not.
The dataset used consists of almost 50 of these patches, taken from 20 different
lakes around the world. Each patch consists of 4 images taken in the following
years (2017 to 2020), for a total of almost 200 images taken by Sentinel-2, and
2 masks, one taken in the first year (2017) and the other one year after the last
image (2021).

30

Methodology

Band Name Resolution Wavelength Description
B02 Blue 10 m 490 nm Visible blue
B03 Green 10 m 560 nm Visible green
B04 Red 10 m 665nm Visible red
B05 Red Edge 1 20 m 705nm Vegetation classification
B06 Red Edge 2 20 m 740nm Vegetation classification
B07 Red Edge 3 20 m 783nm Vegetation classification
B08 NIR 10 m 842nm Mapping shorelines
B11 SWIR 1 20 m 1610nm Measuring moisture content
B12 SWIR 2 20 m 2190nm Measuring moisture content

Table 3.1: Sentinel-2 [99] bands used in dataset

3.2.1 Global Surface Water
All the ground truth data used in this research is obtained from the Global Surface
Water dataset [2], which is a freely available collection of water masks obtained
from the Landsat 5, 7, and 8 satellites. Following similar works in the field of
remote sensing [101, 1], the Global Surface Water dataset was chosen for its global
coverage, high resolution, and long temporal range. Each pixel in the dataset was
labeled as open water, land or non-valid through an expert system (i.e. manual
work) that analyzed each Landsat images to produce a monthly observation mask
[2]. The dataset is available at a resolution of 30 meters per pixel and covers the
entire globe from 1984 to 2021 with various type of products. Hence, our research
will focus on the years were both the Sentinel-2 and the Global Surface Water
datasets overlap, from 2017 to 2021. It is important to note that the Global Surface
Water dataset is not perfect and may contain errors, estimated to be around 1%
for false water detections and 5% of missed water classification of the total area [2].
Another limitation of the dataset is the lack of available observations if the area is
covered by clouds, given the inability of Landsat’s sensors to pass through heavy
clouds, which can lead to missing data in the water mask.

3.2.2 Data Preprocessing and Tiling
The preprocessing of the data is an important step in order to prepare the input
raw multispectral images for the training of the models. In this case the main
preprocessing steps includes Data Cleaning, Geospatial Normalization, and Tiling.

Data Cleaning is the process of removing any corrupted or missing data from
the images, while Geospatial Normalization is the process of aligning the images
to a common coordinate system. Each image is checked for missing data, bands
or corrupted pixels, with any image with more than 5% of missing data along all

31

Methodology

(a) Lake Balkhash (2017) (b) Lake Garda (2017)

Figure 3.7: Examples of water mapping from the Global Surface Water dataset

dimensions being discarded.

The Geospatial Normalization is done by aligning the images to a common
coordinate system, in this case the WGS84[102, World Geodetic System 1984]
coordinate system, which is the most commonly used coordinate system for satellite
images. This step is important in order to ensure that each single pixel is perfectly
aligned across all the images and the labels, which is critical for the correct training
of the models.

Finally, the images are tiled into smaller squared patches, which are used as
input for the models. During the tiling process, only some parts of the images are
selected, as become clear in Fig 3.8 ,in order to exclude less informative areas such
as borders, land areas and open water areas. The latter is done in order to balance
the amount of water and non-water pixels in the dataset, mantaining only tiles with
at least 5% of either land or water. The size of the tiles must be consistent across
all the images and labels, and the correct size must be chosen in order to balance
the trade-off between the amount of data contained in each tile and the capacity
of each model to process those data. As shown in Fig. 3.8a, Fig. 3.8b and Fig.
3.8c the tiling process is done by dividing the image into smaller squared patches,
which are then used as input for the models. As a result, the final dataset used for
the training of the models will consist of roughly 1000 or more tiles, depending on
the chosen tile size, each containing 4 images and 2 masks, for a total of almost
6000 images and 2000 masks.

32

Methodology

(a) 512x512px tiling of lake Balkhash (b) 224x224px tiling of lake Balkhash

(c) 128x128px tiling of lake Balkhash (d) Full image of lake Balkhash

Figure 3.8: Examples of tiling using different tile sizes. Lake Balkhash (Kaza-
khstan)

3.3 Losses and Metrics
In this section, we are going to present the loss functions and metrics used for the
experiments, and the reasons behind the choice of each loss function.

3.3.1 Loss Functions
When training a neural network, loss functions help quantify the ’cost’ of the
model’s predictions. They essentially measure how far the predicted output is from
the true answer. The smaller the loss, the closer the model’s predictions are to
being correct, and the better it is performing. Loss functions also play a key role
in guiding the optimization process, as the model continuously adjusts its internal

33

Methodology

parameters to minimize the loss during training.
The loss function L can be generalised by the following formula

L = E(G, S) (3.1)

where G are the ground truth (the correct answers) and S are the model’s predic-
tions.

Choosing the right loss function can have a major impact on the training process
and the final performance of the model. Different tasks require different loss
functions to achieve the best results possible. For example, some loss functions
work well only on balanced datasets, while others are better suited for unbalanced
data, where one class might be more frequent than another. This is particularly
important in water segmentation and water level forecasting, where class imbalances
or outliers can affect performance. One of the most commonly used loss functions
is Cross Entropy Loss (3.2), which is used in both classification and segmentation
tasks. However, there are many other loss functions that can be used for different
tasks, such as Mean Squared Error (MSE) for regression tasks and Dice Loss for
semantic segmentation.

−
MØ

c=1
yo,c log(po,c) (3.2)

In this thesis, we have used Dice Loss for the water detection task and Focal
Loss, Huber Loss, and Generalized Dice Loss for the water level forecasting task.
The choice of these loss functions is based on the nature of the tasks where they
are used.

Focal Loss (3.3) in the water level forecasting task to handle the classification
instead of Cross Entropy Loss. Helps deal with class imbalance by down-weighting
the loss contribution of well-classified examples, focusing more on the harder,
misclassified examples. This is useful in cases where certain outcomes are more
frequent than others, as is the case with the water level forecasting dataset, where
most of the samples show no change in water level.

FL(pt) = −(1 − pt)γ log(pt) (3.3)

Huber Loss (3.4) was used in the water level forecasting task to handle regression.
It is particularly useful when dealing with outliers in the data, as it combines the
best of Mean Squared Error (MSE) and Mean Absolute Error (MAE). For smaller
errors, it behaves like MSE, while for larger errors (outliers), it behaves like MAE,
preventing large deviations from dominating the loss.

Lδ =
I 1

2(y − ŷ)2 if |y − ŷ| < δ

δ
1
|y − ŷ| − 1

2δ
2

otherwise (3.4)

34

Methodology

For water level forecasting segmentation was used Generalized Dice Loss (3.5).
This loss function extends Dice Loss to handle cases with class imbalances more
effectively by applying class-specific weights. It ensures that smaller classes, like
negative change in water levels, are given enough attention during training, helping
the model to perform better on imbalanced datasets.

GDL = 1 − 2
qL

l=1 wl
q

n rlnplnqL
l=1 wl

q
n(rln + pln)

(3.5)

3.3.2 Metrics
To evaluate the performance of the models, we used several metrics, mainly due
to the different tasks addressed. For the classification task, we used the accuracy
(3.6) and F1 score (3.7) metrics, which are commonly used in classification tasks.
Accuracy is a measure of the overall performance of the model, while F1 Score
is a measure of the precision and recall of the model. In this case, the F1 score
was the main metric used to evaluate the real performance of the models in the
classification tasks, given the high class imbalance in the dataset.

Accuracy = TP + TN

TP + TN + FP + FN
(3.6)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
= 2 ∗ TP

2 ∗ TP + FP + FN
(3.7)

For the regression task, we used the Mean Absolute Error (MAE) (3.8) and the
R2 Score (3.9) metrics, which are commonly used in regression tasks. MAE is
a measure of the average error of the model, while R2 Score is a measure of the
goodness of fit of the model. In this case, the R2 Score was the main metric used
to evaluate the real performance of the models in the regression tasks, given the
high variability of the data and the presence of outliers.

MAE = 1
n

nØ
i=1

|yi − ŷi| (3.8)

R2 = 1 −
qn

i=1(yi − ŷi)2qn
i=1(yi − ȳi)2 (3.9)

For the segmentation task, we used the Intersection over Union (IoU) (3.10) metric.
This is the most commonly used metric for segmentation tasks. IoU is a measure
of the overlap between the ground truth and the model prediction, and is used to
evaluate the performance of the model in the segmentation task.

IoU = TP

TP + FP + FN
(3.10)

35

Chapter 4

Experiments

Here we present the results of the experiments conducted in this research, including
an evaluation of the models and a comparison of the results.

4.1 Models
In this section we present and explain the models used for the experiments, which
are divided into three main categories based on the task at hand: Classification,
Regression, and Segmentation.

4.1.1 Classification and Regression
For the classification and regression tasks in water level forecasting, we experimented
with several state-of-the-art Convolutional Neural Network (CNN) architectures
alongside a Vision Transformer (ViT) model. This allowed us to compare traditional
CNN-based approaches with newer transformer-based techniques, providing a more
comprehensive understanding of how each method performs in water detection and
water level forecasting tasks

As shown in Table 4.1, the models used for the classification and regression
tasks are ResNet18, ResNet34, ResNet50, MobileNet, ViT, ConvNext, and VGG.
The choice of these models is based on their popularity and performance in similar
tasks, as well as their ability to handle the data at hand.

ResNet models We used three different ResNet models for the classification
and regression tasks: ResNet18, ResNet34, and ResNet50. The main differences
between the three models are the number of layers and the number of parameters,
with ResNet18 being the smallest and ResNet50 being the largest.

36

Experiments

Model Params Year Architecture Description
ResNet18 11.3M 2015 18-layer network with skip connections
ResNet34 21.8M 2015 34-layer deeper residual network
ResNet50 25.6M 2015 50-layer network with bottlenecks
MobileNet 2.97M 2017 Lightweight model using depthwise convolutions
LeViT 31M 2021 Hybrid model with convolution and self-attention
ConvNext 28.6M 2022 Combines ConvNet and Transformer features
VGG 14M 2014 Simple CNN with stacked convolution layers

Table 4.1: Overview of CNN and ViT models used for classification and regression
tasks in water level forecasting

MobileNet We used the MobileNetV4 small convolutional version of the Mo-
bileNet model for the classification and regression tasks. This model in particular,
among all the different instances of MNv4 models, is designed to be lightweight
and efficient, making it ideal for mobile and edge devices, the only downside is the
absence of flash attention, used in the hybrid version of the other models.

Vision Transformer The Vision Transformer (ViT) [67] is a transformer-based
architecture that has been shown to be highly effective in image classification
tasks. In our case, we used the LeViT-256[69] model for the classification and
regression tasks, which is a hybrid ViT model that combines the best of both CNNs
and transformers. The input images are preprocessed by 4 convolutional layers
with 3x3 kernels and a stride of 2, which are responsible for extracting high-level
features from the images, before being passed to the transformer stages for further
processing. In this way, the model can learn both the local and global features of
the images, making it highly effective in image classification tasks.

ConvNext As one of the most recent models, ConvNext [51] is a "pure" con-
volutional neural network that has been shown to be highly efficient in various
computer vision tasks. There are various versions of the ConvNext model, from the
convnext femto to the convnext large, with the main difference being the number
of layers and the complexity of the network. In our case, we used the ConvNext
tiny model for the classification and regression tasks, which is a medium version of
the model that is designed to be efficient and fast. An important note is that the
ConvNext model is highly sensitive to the learning rate, and it is important to find
the right learning rate for the model to perform well.

37

Experiments

4.1.2 Segmentation
For the segmentation task in both water detection and water level forecasting,
we employed several advanced models: U-Net, DeepLabV3, and PSPNet. These
architectures have been extensively used for pixel-level classification tasks, such
as semantic segmentation, making them highly suitable for extracting detailed
information from satellite images. All models are taken from Pytorch’s Segmenta-
tion Models library [103], which provides a wide range of pre-trained segmentation
architectures for various tasks. For each different architecture we employed various
encoders, which are the part of the network responsible for extracting features from
the input images. The encoders employed for the segmentation task are listed in
Table 4.3. They are all taken from either Segmentation Models Pytorch or Timm
libraries, and are pre-trained on the ImageNet dataset.

Model #Params Architecture Description
U-Net 31M U-shaped CNN with skip connections
PSPNet 46.5M Multi-scale context aggregation
DeepLabV3 59M Atrous convolutions for dense pixel prediction

Table 4.2: Overview of segmentation models used for water detection and water
level forecasting tasks

Model #Params Architecture Description
ResNet18 11.3M 18-layer residual network
ResNet34 21.8M 34-layer residual network
ResNet50 25.6M 50-layer network with bottlenecks
MobileNet 2.97M Lightweight model with depthwise convolutions
MaxViT 31M Hybrid model combining CNNs and Transformers
VGG 14M Simple deep CNN for image classification

Table 4.3: Overview of CNN and ViT models used as encoders for classification
and regression tasks

4.2 General Settings
All the experiments were runned on a single NVIDIA RTX 2080TI using the Pytorch
library [104] and the Pytorch Lightning framework [105]. Timm library[106] was
used for the implementation and the pretrained wweights of most of the models,
the convolutional Networks for semantic Segmentation were taken from Pytorch

38

Experiments

Segmentation Models [103]. For all the experiments we used the AdamW optimizer,
with a weight decaying factor of 0.01, and exponential learning rate scheduler with
a gamma of 0.9.

4.3 Water Segmentation
The first series of experiment was aimed at comparing the performance of different
models in the task of water detection in satellite images. In this first experiment,
we used the Sentinel-2 dataset, which consists of 9 bands, with each input image
having a size of 224x224 pixels.

4.3.1 Settings
U-Net We used the U-Net architecture for the water detection task, with various
encoders to evaluate how the choice of encoder affects the performance of the model.
The U-Net model was taken from the library Segmentation Models Pytorch [103]
and trained with a learning rate of 0.0001, a batch size of 12, and a total of 50
epochs. We set the encoder depth to 5 and used a decoder with 16, 32, 64, 128
and 256 filters, respectively. In other words, our Unet model has 5 layers in the
encoder and 5 layers in the decoder, with the number of filters doubling at each
layer, each one connected with a skip-connection.

PSPNet We used the PSPNet architecture for the water detection task, with
various encoders to evaluate how the choice of encoder affects the performance of
the model. The PSPNet model was taken from the library Segmentation Models
Pytorch [103] and trained with a learning rate of 0.0001, a batch size of 12, and a
total of 50 epochs. We set the encoder depth to 3 and used a decoder, in this case
called Spatial Pyramid, with 512 filters and a spatial dropout of 0.2.

DeepLabV3 We used the DeepLabV3 architecture for the water detection task,
with various encoders to evaluate how the choice of encoder affects the performance
of the model. The DeepLabV3 model was taken from the library Segmentation
Models Pytorch [103] and trained with a learning rate of 0.0001, a batch size of
12, and a total of 50 epochs. We set the encoder depth to 5 and used a Atreus
Spatial Pyramid Pooling with 256 filters and a final upsampling of 8x to maintain
the input-output spatial consistency.

4.3.2 Results
The first experiment conducted involves the use of a U-Net architecture for water
segmentation, paired with various encoders to evaluate how the choice of encoder

39

Experiments

affects the performance of the model. From the results shown in Table 4.4, the
U-Net model achieves its best performance with a ResNet50 encoder, reaching an
Intersection over Union (IoU) of 92.7%. It is worth noting that the ResNet18 and

Model Encoder Tiles IoU T. Time

U-Net

ResNet18 224px 91.9 6.28 min
ResNet34 224px 91.6 7.37 min
ResNet50 224px 92.7 10.15 min
VGG-16 224px 92.4 11.33 min
ViT 224px 91.9 16.27 min
MobileNetV3 224px 91.4 6.46 min

Table 4.4: Water detection results for U-Net

MobileNetV3 encoders, despite having fewer parameters and requiring significantly
shorter training times, yield only slightly lower results, with IoUs of 91.9% and
91.4%, respectively. The faster training time, especially for MobileNetV3, which
completed the training in just 6.46 minutes, demonstrates the trade-off between
model complexity and computational efficiency. These results indicate that for
certain practical applications where computational resources are limited, using a
lighter encoder such as MobileNetV3 may be a reasonable compromise, offering
competitive performance with much faster training.

Following the results of the U-Net model, we compared the performance of
the PSPNet and DeepLabV3 models, using the same encoders and the same data
set. From the results in Table 4.5, we observe that the best IoU for the PSPNet
model is 92.1%, achieved using a Vision Transformer (ViT) encoder. Interestingly,
despite PSPNet’s slightly lower performance compared to U-Net, the training time
was faster, with ViT requiring only 8.33 minutes. This shows PSPNet’s ability
to achieve competitive performance while maintaining computational efficiency,
particularly with modern transformer-based encoders like ViT.

Model Encoder Tiles IoU Time

PSPNet

ResNet18 224px 90.0 5.70 min
ResNet34 224px 90.4 5.88 min
ResNet50 224px 90.0 5.92 min
VGG-16 224px 91.5 8.38 min
ViT 224px 92.1 8.33 min
MobileNetV3 224px 86.5 5.75 min

Table 4.5: Water detection results for PSPNet

Comparing the results of the DeepLabV3 model in Table 4.6, we can see that

40

Experiments

the best results are obtained with the ResNet50 encoder, with an IoU of 92.0%.
However, DeepLabV3’s training time with ResNet50 is significantly longer—over
30 minutes—indicating that its architecture, particularly the use of atrous convo-
lutions, may not be well-suited to the multispectral nature of the input images.
Additionally, DeepLabV3 was tested with fewer encoder options since VGG-16 and
ViT were incompatible with its structure. Despite these limitations, DeepLabV3
achieves comparable performance to U-Net and PSPNet but requires much more
computational resources, particularly when using a deep encoder like ResNet50.

Model Encoder Tiles IoU Time

DeepLab

ResNet18 224px 91.2 11.58 min
ResNet34 224px 91.8 17.88 min
ResNet50 224px 92.0 30.52 min
MobileNetV3 224px 88.5 11.55 min

Table 4.6: Water detection results for DeepLabV3

Lastly we compared the performance of the best deep learning models with a
classical water detection approach using the Normalized Difference Water Index
(NDWI). As shown in Table 4.7, the NDWI method performs significantly worse
than any of the deep learning approaches, achieving an IoU of only 83.4This
result underscores the effectiveness of deep learning techniques in handling the
complex task of water segmentation, where the combination of spectral, spatial,
and temporal information in satellite imagery allows for much higher accuracy.
The best model in this comparison is the U-Net architecture with a ResNet50
encoder, which outperforms all other models with an IoU of 92.7%. In conclusion,

Method Tiles IoU T. Time
UNet 224px 92.7 10.15 min

PSPNet 224px 92.1 8.33 min
DeepLab 224px 92.0 30.52 min
NDWI 224px 83.4

Table 4.7: Comparison of water detection methods

while classical methods like NDWI are still used due to their simplicity, modern
deep learning-based approaches, particularly U-Net with ResNet50, offer superior
performance in water body segmentation. The choice of encoder and architecture
also plays a crucial role in balancing the trade-off between computational efficiency
and accuracy, with deeper encoders like ResNet50 providing the best results at the
cost of longer training times.

41

Experiments

4.4 Water Level Forecasting
In the second series of experiments, we compared three main tasks in the prediction
of water levels in lakes and rivers: regression, classification, and semantic segmen-
tation. For this experiment, we always used the same Sentinel-2 based dataset, but
with a tile size of 128x128,224x224 and 512x512 pixels, and the NDWI index.

4.4.1 Settings
ResNet models All three models are taken from the Timm library and are
pre-trained on the ImageNet dataset. The learning rate used for the training of
these models is 0.0001, with a batch size of 12 and a total of 50 epochs.

MobileNet Like the previous,this model is taken from the Timm library and is
pre-trained on the ImageNet dataset. The learning rate used for the training of
this model is 0.0005, with a batch size of 12 and a total of 50 epochs.

Vision Transformer Like the previous models, this model is taken from the
Timm library and is pre-trained on the ImageNet dataset. The learning rate used
for the training of this model is 0.0005, with a batch size of 12 and a total of 50
epochs.

ConvNext Like the previous models, this model is taken from the Timm library
and is pre-trained on the ImageNet dataset. The learning rate used for the training
of this model is 1e-06, with a batch size of 12 and a total of 50 epochs.

4.4.2 Threshold selection
To find the right threshold for the water level forecasting classification task, we
compared the results of training a ResNet18 model with 5 different thresholds
(0.0001, 0.001, 0.01, 0.02, 0.04), measuring the accuracy, the F1 score, and the
balance between the three classes in the train set. The model is trained with
suboptimal hyperparameters for 25 epochs using all bands present in the data,
excluding the NDWI index, and the results are shown in Table 4.8. We found that
the best absolute F1 score was obtained with a threshold of 0.04, corresponding to
a change of 4.0% of the total water of the tile, while the best accuracy of 92.0% was
obtained with a threshold of 0.02, corresponding to a change of 2.0%. However, due
to the high imbalance generated between the different classes, we preferred to use
the second best threshold of 0.01, corresponding to a change of 1.0%, which gives
us a much more balanced and realistic distinction between "changed" and "constant"

42

Experiments

water levels. We will use this threshold in all of the experiments contained in this
thesis.

Threshold Accuracy (%) F1 Score Positive Negative Zero
0.0001 86.7 77.1 1200 576 28
0.001 86.9 74.5 1132 496 176
0.01 90.9 87.8 928 240 636
0.02 92.0 85.6 852 160 792
0.04 91.3 89.6 708 88 1008

Table 4.8: Results of the threshold selection

4.4.3 Classification
In this series of experiments, we compared the performance of different models
and approaches for the classification of future water level in our dataset. The
classification task was performed by assigning at each tile one of three classes:

• Positive change : the level of water is increased between the first sample (2017)
and the control label(2021)

• Negative change : the level of water is decreased between the first sample
(2021) and the control label(2021)

• No change: the level of water is almost unchanged between the firs sample
and the control label.

Note that a certain threshold is taken into account: any change, positive or negative,
below this threshold is ignored and the tile is classified as "no change". For all the
classification experiments, we used a Focal Loss as loss function, which is a modified
version of the Cross Entropy Loss that gives more importance to the misclassified
samples. We used F1 score as the main metric to evaluate the performance of the
model.

Bands Comparison

One of the main properties of satellite images is the high number of bands that can
be used to extract information, and the choice of how many bands and which bands
to be used is crucial for the performance of the model. On the other hand, the high
number of bands can lead to a high computational cost and a high risk of overfitting.
Another alternative is the presence of the NDWI index, which is a widely used index
for water features extraction and seems to contain a lot of informations compared to

43

Experiments

its size. Here we compare the results of training a ResNet18 and a ResNet50 models
with 4 different configurations of bands (NDWI,RGB,RGB+NIR+SWIR and all
bands), measuring the accuracy and the F1 score. As we can see in Table 4.9, the
best results are obtained by using all the bands, with a F1 score of 89.9% for the
ResNet18 model and 90.6% for the ResNet50 model. It is important to note that
the 6-band configuration, which includes only RGB, NIR and SWIR bands, gives a
slightly worse result than the 9-band configuration, even though it is significantly
smaller and easier to handle. So if our focus would be on performance we should
consider the correct selection of bands for our training data, given that the NIR and
SWIR bands, in literature, have been the most effective to delineate water features.
Another interesting result is the performance of the NDWI index, which gives a
F1 score of 84.8% for the ResNet18 model and 82.8% for the ResNet50 model.
Although not significantly worse than the other configurations, this configuration
was found to easily overfit the models during training, as we can see in Fig. 4.1.

Model Bands F1 Score Accuracy
ResNet18[48] NDWI 84.8 90.7

RGB 86.4 91.6
6B 87.8 91.3
MSI 89.9 92.0

ResNet50[48] NDWI 82.8 88.4
RGB 86.3 89.8
6B 89.8 92.2
MSI 90.6 93.1

Table 4.9: Results for bands comparison for Classification

Time Series Analysis

In this experiment, we compared the results of training a ResNet18 model with the
best configuration of bands and patch size, using various time series of images as
input. The ResNet18 model is trained with 1,2,3 and finally 4 images of the same
tile, taken at different times, and the results are shown in Table 4.10.

From the results in table 4.10 we can see that the best results are obtained using
4 images of the same tile taken at different times, with an F1 score of 89.9% and
an accuracy of 92.0%. This result is expected as the model can use the temporal
information to better understand the changes in the water level of the tile. However,
we can see that there is a fairly consistent increase in performance as the number
of time samples increases, reaching what appears to be a plateau between 3 and 4
time steps. This result is probably due to the fact that the model is able to use
the temporal information to better understand the changes in the water level of

44

Experiments

Figure 4.1: IoU during training for different bands configurations

Bands Tile Size Time Steps F1 Score Accuracy
MSI 224px 1 (only last) 85.8 91.5
MSI 224px 2 (first & last) 87.5 91.6
MSI 224px 3 89.1 91.5
MSI 224px 4 89.9 92.0

Table 4.10: Results for Time Series Analysis

the tile, but increasing the number of time samples also increases the complexity
of the model and the risk of overfitting.

Models Comparison

In this experiment we compare the results of training a ResNet18, a ResNet34, a
ResNet50, a MobileNetV4 and a ViT model with the best configuration of bands
and patch size, comparing the Accuracy and the F1 score on the test set. From
Table 4.11 we can see that the best results are obtained with the ResNet50 model,
with an F1 score of 90.6% and an accuracy of 93.1%. Is also whorty of note the
comparison with the classic machine learning models, which have a significantly
worse performance than the deep learning models, with the Random Forest model
being the best with an F1 score of 65.2% and an accuracy of 69.4%. That being said,
all the classic models have been trained and used only on the NDWI idex and not on
the whole multi spectral images due to the limitations in complexity and efficiency
of the algorithms used. Therefore, we can state that the deep learning models

45

Experiments

Model Bands Tile Size F1 Score Accuracy Time
ResNet18 [48] MSI 224px 89.8 92.0 12.69 min
ResNet34 [48] MSI 224px 88.5 91.1 23.76 min
ResNet50 [48] MSI 224px 90.6 93.1 28.21 min
ViT [69] MSI 224px 87.9 91.3 16.87 min
MobileNet [55] MSI 224px 81.6 87.3 13.20 min
ConvNext [51] MSI 224px 89.4 91.6 15.13 min
SVM-poly NDWI 224px 40.6 54.3 1.10 min
SVM-rbf NDWI 224px 60.8 65.6 1.01 min
Random Forest NDWI 224px 66.7 70.5 1.04 min

Table 4.11: Comparison of models and methods for classification

are more effective than the previous state-of-the-art machine learning methods
for this task. Among the deep learning models, we can see that the ViT model,
despite being one of the most modern and complex models, has a slightly worse
performance than the ResNet18 model, with an F1 score of 87.9% and an accuracy
of 91.3%. This result is probably due to the fact that the ViT model is not able to
exploit the full potential of the multispectral images, as it does not have the same
convolutional structure as the ResNet models and lacks some adaptability to the
task.

4.4.4 Regression

In this series of experiments, we compared the performance of different models and
approaches for regressing future water levels in our dataset. The regression task
was performed by predicting the percentage change in water level between the first
sample (2017) and the control label (2021). The output of the model is a single
value between -1 and 1, representing the percentage change in water level. To
evaluate the performance of the model, we used the Mean Absolute Error (MAE)
and the R2 value as metrics, with the latter being the main focus of the comparison.
As shown in table 4.12, the best results are obtained with the ConvNext model,
with an R2 score of 0.834 and an MAE of 0.032. It should also be noted that the
ResNet50 model performs slightly worse than the simpler ResNet18 model, with
an R2 of 0.789 and an MAE of 0.035. This can be explained by the low level of
complexity of the current task, with the larger and more complex model tending
to overfit and not being able to generalise to the data presented.

46

Experiments

Model Bands Tile Size R2 Score MAE
ResNet18[48] MSI 224px 0.834 0.036
ResNet34[48] MSI 224px 0.794 0.038
ResNet50[48] MSI 224px 0.789 0.035
ViT[69] MSI 224px 0.71 0.036
MobileNet [55] MSI 224px 0.412 0.062
VGG MSI 224px 0.385 0.065
ConvNext MSI 224px 0.839 0.032
SVM-rbf NDWI 224px 0.437 0.077
SVM-Poly NDWI 224px 0.055 0.108
Random Forest NDWI 224px 0.217 0.097

Table 4.12: Results for models comparison for Regression

Bands Comparison for Regression

In this experiment, we evaluated the performance of ResNet18 and ConvNext
models for water level regression using different combinations of spectral bands.
The primary goal was to determine how the choice of bands affects the model’s
accuracy in predicting water level changes over time. As shown in Table 4.13,
both ResNet18 and ConvNext achieved their best R2 scores when using the 6-band
configuration. Specifically, ResNet18 achieved an R2 score of 0.86 and ConvNext
obtained 0.84. In terms of MAE, ConvNext slightly outperformed ResNet18 with
the 6-band configuration, achieving an MAE of 0.030, while ResNet18 had 0.033.
This indicates that including more spectral information beyond RGB or NDWI
bands improves the models’ predictive accuracy.

Model Bands R2 Score MAE
ResNet18[48] NDWI 0.84 0.037

RGB 0.82 0.032
6B 0.86 0.033
MSI 0.84 0.035

ConvNext[57] NDWI 0.83 0.038
RGB 0.73 0.040
6B 0.82 0.030
MSI 0.84 0.032

Table 4.13: Results for bands comparison for Water Level Regression

The NDWI-based configuration showed more volatile results, especially visible
in the graph comparing Intersection over Union (IoU) across epochs (Figure 4.2b).

47

Experiments

The NDWI curve fluctuated significantly, indicating instability during training
compared to more stable performances observed for the RGB, 6 Bands, and MSI
configurations. This instability suggests that NDWI alone may not be as reliable
for regression tasks, likely due to the limited information it captures compared to
broader spectral bands.

(a) Mean Absolute Error

(b) R2 Score

Figure 4.2: R2 and MAE during training for bands comparison for Water Level
Classification

Overall, the results show that models trained with more comprehensive spectral
data (such as 6 Bands and MSI) tend to deliver better and more consistent
performance in predicting water level changes, reinforcing the importance of using
diverse spectral information for accurate environmental forecasting.

48

Experiments

Time Series Analysis for Regression

In this experiment, we investigated how the number of time steps in time series of
satellite imagery impacts the performance of two models, ResNet18 and ConvNext,
for water level regression. The goal was to determine whether incorporating multiple
time steps would lead to improved predictive accuracy, as compared to using only
the most recent satellite image. We tested four different configurations for the time
series: using only the last image (1 step), using the first and the last images (2
steps), and adding intermediary images for 3 and 4 time steps. As summarized in
Table 4.14, the performance of both models improved significantly when more than
one image was used. For ResNet18, the best R2 score of 0.86 was achieved with 2
time steps (using the first and last images). However, using 3 and 4 time steps led
to slightly lower but still high R2 scores of 0.80 and 0.84, respectively. The lowest
MAE, indicating the most accurate predictions, was achieved with 3 time steps,
reaching an MAE of 0.031. ConvNext, on the other hand, showed a significant
improvement as more time steps were added. The worst performance came when
only the last image was used, resulting in an R2 score of 0.58 and an MAE of 0.057.
The performance peaked with 3 time steps, where the model achieved its best R2
score of 0.85 and its lowest MAE of 0.028.

Model Time Steps R2 Score MAE
ResNet18[48] 1 (only last) 0.72 0.044

2 (first & last) 0.86 0.031
3 0.80 0.031
4 0.84 0.032

ConvNext[57] 1 (only last) 0.58 0.057
2 (first & last) 0.84 0.028
3 0.85 0.028
4 0.84 0.031

Table 4.14: Comparison of different time series for regression

The graph(figure 4.3) illustrates how the Mean Absolute Error (MAE) behaves as
training progresses over 50 epochs. The 1-step configuration consistently performed
worse compared to configurations with 2, 3, and 4 steps. Notably, the 2-step model
consistently outperformed the others early on, but the difference narrowed after
around 30 epochs. By the end of training, all configurations with multiple time
steps (2, 3, and 4) performed similarly, with the 1-step configuration trailing behind.

The inclusion of multiple time steps, especially the first and last images, leads
to more accurate predictions of water level changes. Both models benefit from
temporal information, but ConvNext’s improvement was more pronounced with

49

Experiments

Figure 4.3: Mean Absolute Error (MAE) during training for Time Series Analysis
for Regression

more time steps, suggesting that it better leverages temporal dependencies in the
data.

4.4.5 Semantic Segmentation
In this last series of experiments, we compared the performance of different models
and approaches for the semantic segmentation of water changes in our dataset. This
particular task merges together the forecasting of water levels and the recognition
of where the change will occur within the image. The output of the model is a
mask, where each pixels can be set to

• 0: no change

• 1: positive change

• 2: negative change

To evaluate the performance of the model, we used the Intersection over Union
(IoU) as the main metric.

Tile Size Comparison for Semantic Segmentation

In this experiment, we compared the results of training a Unet model with ResNet18
encoder with the best configuration of bands, using different tile sizes, measuring

50

Experiments

the IoU. The results, as shown in Table 4.15, show that the best results are obtained
using a tile size of 128x128 pixels, with an IoU of 0.624. While the difference in

Model Bands Tile Size IoU
ResNet18 MSI 128px 0.624

MSI 224px 0.613
MSI 386px 0.592
MSI 512px 0.605

Table 4.15: Results of the tile size comparison for semantic segmentation

performance between the different tile sizes is not very large, it is worth noting
that the larger tile sizes tend to give worse results. This is probably due to the fact
that larger tiles contain more information, are more complex and do not allow the
model to focus on the important details contained in the image. With 128px and
224px tiles, the model can focus on a smaller area of interest, and the prediction is
more accurate also for smaller changes.

Bands Comparison for Semantic Segmentation

In this experiment, we compared the results of training a Unet model with a
ResNet18 encoder with different configurations of bands, measuring the IoU. The
results, as shown in Table 4.16, show that the best results are obtained using the
MSI configuration, with an IoU of 0.613. While this results are not unexpected,

Model Bands Tile Size IoU
ResNet18 NDWI 224px 0.531

RGB 224px 0.573
6B 224px 0.605
MSI 224px 0.613

Table 4.16: Results of the bands comparison for semantic segmentation

as more bands contain more information, it is interesting to note that using only
the NDWI index as input gives a significantly worse result, with an IoU of 0.531.
Another problem with the NDWI is the training instability, as we can see in Fig.4.4
the model tends to alternatively overfit and underfit the data. This is probably due
to the fact that the NDWI index, for its nature, captures only information about
the presence of water, and tends to hide other image features, such as physical
properties of soil, vegetation or atmospheric properties, which are instead well
present in the full bands used for the dataset.

51

Experiments

Figure 4.4: Training for the bands comparison for Semantic Segmentation

We can also notice how small the difference in performance is between the
6-band and the MSI configuration, with the latter giving a slightly better result
but being way more expensive computationally. This could be due to the fact
that some bands in the MSI configuration are not useful for the task and, while
introducing some more information and helping the model to generalize better by
introducing noise, they do not significantly improve the performance of the model.
For a future work, it could be interesting to investigate which bands are the most
effective for the task and analyse how the model uses them to make the prediction.

Time Series Analysis for Semantic Segmentation

In this experiment, we compared the performance of a U-Net model for semantic
segmentation using various time series of satellite images as input. The primary
goal was to assess how effectively the model could exploit temporal information
when trained with different encoders, specifically ResNet18 and ResNet50. Both
experiments were conducted using the best configuration of spectral bands and
patch sizes, and the results are summarized in Tables 4.17 and 4.18. The choice of
both ResNet18 and ResNet50 as encoders was made in order to compare the impact
of encoder complexity on the model’s ability to exploit the temporal information.
ResNet18 is a lightweight model with fewer layers, while ResNet50 is significantly
deeper, with more layers and parameters, allowing for a more complex feature
extraction process. By comparing these two architectures, we aim to understand
how increasing encoder complexity influences segmentation accuracy, especially
when multiple time steps are introduced.

52

Experiments

Model Encoder Bands Time Steps IoU
UNet ResNet18 MSI 1 (only last) 0.536

MSI 2 (first & last) 0.599
MSI 3 0.601
MSI 4 0.614

Table 4.17: Results of the time series analysis for semantic segmentation with
ResNet18

From the results obtained with ResNet18 (Table 4.17) we observe that, as
expected, the best performance is achieved when the model is provided with four
images of the same tile taken at different times, with an Intersection over Union
(IoU) score of 0.614. The results reveal a noticeable improvement in performance
when increasing from one to two time steps, with a more marginal improvement as
the number of time steps increases further. Specifically, the IoU score improves
from 0.536 with a single time step to 0.599 with two time steps, with smaller gains
observed when moving to three (0.601) and four (0.614) time steps.

Model Encoder Bands Time Steps IoU
UNet ResNet50 MSI 1 (only last) 0.538

MSI 2 (first & last) 0.627
MSI 3 0.638
MSI 4 0.651

Table 4.18: Results of the time series analysis for semantic segmentation with
ResNet50

Looking at the results obtained with ResNet50 (Table 4.18), a similar trend can
be observed, with the best results also obtained using four time steps, where the
IoU reaches 0.651. Interestingly, ResNet50 shows a more pronounced improvement
with each additional time step, especially between one and two time steps, where
the IoU increases from 0.538 to 0.627. The performance continues to improve with
three (0.638) and four (0.651) time steps, suggesting that ResNet50 can make more
effective use of the temporal information provided by the time series.

Comparing the results of the two encoders, it is clear that the deeper and
more complex ResNet50 consistently outperforms ResNet18 in exploiting temporal
information. Not only does ResNet50 achieve better overall performance, but it
also shows a more consistent increase in IoU as additional time steps are introduced.
The increased depth and capacity of ResNet50 allows it to capture more detailed
temporal dynamics and spatial features across the time series, resulting in improved
segmentation accuracy.

53

Experiments

Figure 4.5: Time Series Analysis for Semantic Segmentation

Encoders Comparison

In this experiment, we compared the performance of U-Net, PSPNet, and DeepLabV3
architectures using 6 different encoders: ResNet18, ResNet34, ResNet50, Mo-
bileNetV3, VGG and ViT.

The goal was to assess the effectiveness of each model in semantic segmentation
tasks, specifically for water detection. To ensure a fair comparison, we used the
same dataset, hyperparameters, and configuration across all experiments.

The models were evaluated based on their Intersection over Union (IoU) scores
and the total time required for training. For consistency, all models were trained
with a tile size of 224x224 pixels. This choice was influenced by the fact that ViT
(Vision Transformer) was pretrained on ImageNet using this image size and does
not support other input sizes without reconfiguration

Model Encoder Tiles IoU T. Time

U-Net

ResNet18 224px 61.0 16.91 min
ResNet34 224px 62.3 18.19 min
ResNet50 224px 64.8 34.32 min
VGG-16 224px 60.8 24.09 min
ViT 224px 62.9 22.66 min
MobileNetV3 224px 58.8 18.01 min

Table 4.19: Results of the encoders comparison for U-Net

54

Experiments

In Table 4.19, we present the results for the U-Net architecture with various
encoders. The best result was achieved with the ResNet50 encoder, yielding an
IoU of 64.8%. While ResNet50 provided the highest accuracy, it also required the
longest training time (34.32 minutes). On the other hand, MobileNetV3, while
being the fastest to train, had the lowest IoU at 58.8%, which is understandable
given that it has far fewer parameters (only 2.97M) compared to the other models.

Model Encoder Tiles IoU Time

PSPNet

ResNet18 224px 59.7 14.80 min
ResNet34 224px 59.3 15.00 min
ResNet50 224px 59.1 15.89 min
VGG-16 224px 62.5 22.24 min
ViT 224px 61.7 22.11 min
MobileNetV3 224px 55.6 14.90 min

Table 4.20: Results of the encoders comparison for PSPNet

Table 4.20 shows the results for the PSPNet architecture. Interestingly, the
best performing encoder here was VGG-16, which achieved an IoU of 62.5% with a
training time of 22.24 minutes. ViT also performed well, with an IoU of 61.7%,
though it required a similar training time. The ResNet50 encoder, which performed
best for U-Net, did not fare as well here, with an IoU of 59.1%. In general, all
three ResNet-based encoders delivered similar unremarlable performances, with IoU
scores ranging from 59.1% to 59.7%. MobileNetV3 again had the fastest training
time but delivered the lowest IoU of 55.6%, further emphasizing its trade-off
between speed and performance. Finally, the results for DeepLabV3 are shown in

Model Encoder Tiles IoU Time

DeepLab

ResNet18 224px 58.6 34.32 min
ResNet34 224px 62.1 42.48 min
ResNet50 224px 60.2 1.13 hr
MobileNetV3 224px 54.4 30.04 min

Table 4.21: Results of the encoders comparison for DeepLabV3

Table 4.21. The best performing encoder was ResNet34, with an IoU of 62.1% and
a training time of 42.48 minutes. Although DeepLabV3 generally performed well,
it was the slowest architecture to train, particularly with the ResNet50 encoder,
which took over an hour. MobileNetV3, while fast to train, again lagged behind in
performance, with an IoU of 54.4%.

To summarize, as shown in Table 4.22, the ResNet50 encoder produced the
highest IoU of 64.8% when used with U-Net, but this came at the cost of longer

55

Experiments

training times. The VGG-16 encoder also performed well with PSPNet, achieving
a comparable IoU of 62.5% in a shorter training time. While MobileNetV3 was the
fastest to train across all architectures, it consistently had the lowest IoU scores,
highlighting the trade-off between model complexity, performance, and training
speed.

Model Encoder Bands Tile Size IoU Time
UNet ResNet50 MSI 224px 64.8 32.6 min
DeepLabV3 ResNet34 MSI 224px 62.1 42.48 min
PSPNet VGG-16 MSI 224px 62.5 22.24 min

Table 4.22: Models comparison for Semantic Segmentation

In conclusion, while U-Net with a ResNet50 encoder achieved the best results in
terms of IoU, other architectures like PSPNet with VGG-16 offer a good balance
between performance and training time. The results indicate that the choice of
encoder can significantly influence the model’s accuracy and efficiency, making
it essential to consider both factors when selecting the best model for semantic
segmentation tasks.

4.5 Discussion
In summary, deep learning methods significantly outperform classical and shal-
low learning approaches for segmentation tasks. Increasing the amount of data,
especially temporal and multi-band data, generally improves model performance
but also raises complexity. Simpler tasks like regression see minimal benefits from
additional data. While complex models such as U-Net and ResNet50 excel in
accuracy, simpler models like PSP-Net and MobileNet can deliver comparable
results with far less computational effort, though they may underperform in more
demanding cases. Predicting changes in lake and river levels requires robust models
and large, diverse datasets.

Water Segmentation In the experiments comparing various models for wa-
ter segmentation, the U-Net with a ResNet50 encoder achieved the best perfor-
mance with an IoU of 92.7%, outperforming other architectures like PSPNet and
DeepLabV3. While ResNet50 provided the highest accuracy, lighter encoders such
as MobileNetV3 showed competitive performance with much faster training times.
Classical methods like NDWI stayed significantly behind, with an IoU of only
83.4%, emphasising even more the superior accuracy of deep learning approaches
for water detection.

56

Experiments

Water level forecasting classification In this experiment, in addition to
seeking the best performance for deep learning models, a comparison was also
made with classical machine learning algorithms such as SVM and Random Forest,
confirming their superiority. In fact, CNN’s best model for this task, ResNet50,
achieves an F1 score of 90.6%, while SVM and RF stand at 60.8% and 66.7%.
Additionally, using extensive temporal information and multiple bands improved
performance, reaching an F1 score of 89.9% instead of a 85.8% obtained with only
the last available data and 84.8% obtained with a single input channel. While ViT
showed slightly lower results than ResNet models, it still outperformed MobileNet
and traditional methods.

Water level forecasting regression In this experiment we focus on predicting
water level changes between 2017 and 2021 using satellite images. The ConvNext
model achieved the best results, with an R2 score of 0.839 and a Mean Absolute
Error (MAE) of 0.032, showing strong performance in water level prediction.
Classical methods like SVM and Random Forest performed much worse compared
to deep learning models, with R2 scores below 0.5 and high MAE values, showing
that deep learning is far more effective for this task. Also in this case more data and
more temporal information improved the performance of the model, but differently
from the classification and segmentation tasks, the best results were obtained with
6 bands instead of the full MSI configuration. This is probably due to the easier
nature of the task that risks overfitting with too much data.

Water level forecasting segmentation The experiments compared different
models and configurations for semantic segmentation of water changes, using the
IoU metric for evaluation. The U-Net model with a ResNet50 encoder achieved
the best performance with an IoU of 64.8%, though it required longer training
times. On the other hand, PSPNet with a VGG-16 encoder offered a strong balance
between accuracy (62.5% IoU) and speed. Smaller tile sizes (128x128 pixels) and
multiple temporal images improved performance, with four time steps yielding the
best results. Being a rather complex task, semantic segmentation of water changes
benefits from deep, complex models and temporal data, which provide valuable
insights into the dynamics of water bodies over time.

57

Chapter 5

Conclusion

In this thesis, we explored the potential of deep learning models for detecting
water bodies in satellite images and forecasting water levels in lakes. Our findings
confirm that deep learning models represent the current state of the art in remote
sensing image analysis, significantly outperforming machine learning algorithms
like Random Forest and SVM, as well as traditional methods such as water indices.

By comparing some of the most widely used deep learning models, we gained
insights into their performance across different tasks, as well as the impact of various
data types on their accuracy. While the use of deep learning for water segmentation
has been extensively studied, and our work primarily serves to confirm and compare
existing methods, the same cannot be said for the short-term prediction of water
level changes in inland water bodies. In this area, reliable predictive methods are
still in their early stages.

We hope that the results presented in this thesis contribute to the advancement
of this critical field, which has significant implications for human life, settlement
planning, and agricultural management. In future work, we aim to enhance model
accuracy by expanding the dataset and incorporating additional data sources, such
as meteorological data, which could provide deeper insights into the causes of water
level fluctuations.

58

Bibliography

[1] Charles Verpoorter, Tiit Kutser, David A. Seekell, and Lars J. Tranvik. «A
global inventory of lakes based on high-resolution satellite imagery». In:
Geophysical Research Letters 41.18 (2014), pp. 6396–6402. doi: https://doi.
org/10.1002/2014GL060641. eprint: https://agupubs.onlinelibrary.
wiley.com/doi/pdf/10.1002/2014GL060641. url: https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1002/2014GL060641 (cit. on
pp. 1, 31).

[2] Jean-François Pekel, Andrew Cottam, Noel Gorelick, and Alan S. Belward.
«High-resolution mapping of global surface water and its long-term changes».
In: Nature 540.7633 (Dec. 2016), pp. 418–422. issn: 1476-4687. doi: 10.
1038/nature20584. url: https://doi.org/10.1038/nature20584 (cit.
on pp. 1, 31).

[3] Jun Yang, Peng Gong, Rong Fu, Minghua Zhang, Jingming Chen, Shunlin
Liang, Bing Xu, Jiancheng Shi, and Robert Dickinson. «The role of satellite
remote sensing in climate change studies». In: Nature climate change 3.10
(2013), pp. 875–883 (cit. on pp. 1, 16, 17).

[4] S. K. McFEETERS. «The use of the Normalized Difference Water Index
(NDWI) in the delineation of open water features». In: International Journal
of Remote Sensing 17.7 (1996), pp. 1425–1432. doi: 10.1080/014311696
08948714. eprint: https://doi.org/10.1080/01431169608948714. url:
https://doi.org/10.1080/01431169608948714 (cit. on pp. 1, 17–19).

[5] TV Bijeesh and KN Narasimhamurthy. «Surface water detection and delin-
eation using remote sensing images: A review of methods and algorithms».
In: Sustainable Water Resources Management 6.4 (2020), p. 68 (cit. on pp. 1,
17–19).

[6] Furkan Isikdogan, Alan C Bovik, and Paola Passalacqua. «Surface water
mapping by deep learning». In: IEEE journal of selected topics in applied
earth observations and remote sensing 10.11 (2017), pp. 4909–4918 (cit. on
pp. 1, 16).

59

https://doi.org/https://doi.org/10.1002/2014GL060641
https://doi.org/https://doi.org/10.1002/2014GL060641
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014GL060641
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014GL060641
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014GL060641
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014GL060641
https://doi.org/10.1038/nature20584
https://doi.org/10.1038/nature20584
https://doi.org/10.1038/nature20584
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1080/01431169608948714

BIBLIOGRAPHY

[7] TS Akiyama, J Marcato Junior, WN Gonçalves, PO Bressan, A Eltner,
F Binder, and T Singer. «Deep learning applied to water segmentation».
In: The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 43 (2020), pp. 1189–1193 (cit. on pp. 1, 16).

[8] Bingxin Bai, Lixia Mu, Chunyong Ma, Ge Chen, and Yumin Tan. «Extreme
water level changes in global lakes revealed by altimetry satellites since
the 2000s». In: International Journal of Applied Earth Observation and
Geoinformation 127 (2024), p. 103694. issn: 1569-8432. doi: https://doi.
org/10.1016/j.jag.2024.103694. url: https://www.sciencedirect.
com/science/article/pii/S1569843224000487 (cit. on p. 2).

[9] David Rolnick et al. «Tackling climate change with machine learning». In:
ACM Computing Surveys (CSUR) 55.2 (2022), pp. 1–96 (cit. on pp. 2, 4, 7,
16, 17, 23).

[10] Mohammad Sajjad Khan and Paulin Coulibaly. «Application of support
vector machine in lake water level prediction». In: Journal of Hydrologic
Engineering 11.3 (2006), pp. 199–205 (cit. on p. 2).

[11] Tamar Zohary and Ilia Ostrovsky. «Ecological impacts of excessive water
level fluctuations in stratified freshwater lakes». In: Inland waters 1.1 (2011),
pp. 47–59 (cit. on p. 2).

[12] Holger R Maier and Graeme C Dandy. «Neural networks for the prediction
and forecasting of water resources variables: a review of modelling issues
and applications». In: Environmental modelling & software 15.1 (2000),
pp. 101–124 (cit. on p. 2).

[13] Kumar Puran Tripathy and Ashok Kumar Mishra. «Deep learning in hy-
drology and water resources disciplines: Concepts, methods, applications,
and research directions». In: Journal of Hydrology (2023), p. 130458 (cit. on
pp. 2, 16).

[14] Richard Szeliski. Computer vision: algorithms and applications. Springer
Nature, 2022 (cit. on pp. 4, 6).

[15] Lili Li, Shujuan Zhang, and Bin Wang. «Plant disease detection and classifi-
cation by deep learning—a review». In: IEEE Access 9 (2021), pp. 56683–
56698 (cit. on p. 4).

[16] Andreas Kamilaris and Francesc X Prenafeta-Boldú. «Deep learning in
agriculture: A survey». In: Computers and electronics in agriculture 147
(2018), pp. 70–90 (cit. on p. 4).

60

https://doi.org/https://doi.org/10.1016/j.jag.2024.103694
https://doi.org/https://doi.org/10.1016/j.jag.2024.103694
https://www.sciencedirect.com/science/article/pii/S1569843224000487
https://www.sciencedirect.com/science/article/pii/S1569843224000487

BIBLIOGRAPHY

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-net: Convolutional
networks for biomedical image segmentation». In: Medical image comput-
ing and computer-assisted intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.
Springer. 2015, pp. 234–241 (cit. on pp. 4, 5, 7, 11–13).

[18] Qing Li, Weidong Cai, Xiaogang Wang, Yun Zhou, David Dagan Feng, and
Mei Chen. «Medical image classification with convolutional neural network».
In: 2014 13th international conference on control automation robotics &
vision (ICARCV). IEEE. 2014, pp. 844–848 (cit. on pp. 4, 7).

[19] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
«The cityscapes dataset for semantic urban scene understanding». In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 3213–3223 (cit. on pp. 4–6, 24).

[20] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. «A
survey of autonomous driving: Common practices and emerging technologies».
In: IEEE access 8 (2020), pp. 58443–58469 (cit. on pp. 4, 7, 11).

[21] Zhonghe Ren, Fengzhou Fang, Ning Yan, and You Wu. «State of the art
in defect detection based on machine vision». In: International Journal
of Precision Engineering and Manufacturing-Green Technology 9.2 (2022),
pp. 661–691 (cit. on p. 4).

[22] Yuval Nirkin, Iacopo Masi, Anh Tran Tuan, Tal Hassner, and Gerard Medioni.
«On face segmentation, face swapping, and face perception». In: 2018 13th
IEEE International Conference on Automatic Face & Gesture Recognition
(FG 2018). IEEE. 2018, pp. 98–105 (cit. on p. 4).

[23] Edeh Michael Onyema, Piyush Kumar Shukla, Surjeet Dalal, Mayuri Neeraj
Mathur, Mohammed Zakariah, and Basant Tiwari. «Enhancement of patient
facial recognition through deep learning algorithm: ConvNet». In: Journal
of Healthcare Engineering 2021.1 (2021), p. 5196000 (cit. on p. 4).

[24] Laith Alzubaidi et al. «Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions». In: Journal of big Data 8 (2021),
pp. 1–74 (cit. on pp. 4–7, 9, 10, 22).

[25] Olga Russakovsky et al. «Imagenet large scale visual recognition challenge».
In: International journal of computer vision 115 (2015), pp. 211–252 (cit. on
pp. 4, 6, 7, 22, 24).

[26] Peter Meer, Doron Mintz, Azriel Rosenfeld, and Dong Yoon Kim. «Robust
regression methods for computer vision: A review». In: International journal
of computer vision 6 (1991), pp. 59–70 (cit. on p. 4).

61

BIBLIOGRAPHY

[27] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye.
«Object detection in 20 years: A survey». In: Proceedings of the IEEE 111.3
(2023), pp. 257–276 (cit. on pp. 4, 7).

[28] Shijie Hao, Yuan Zhou, and Yanrong Guo. «A brief survey on semantic
segmentation with deep learning». In: Neurocomputing 406 (2020), pp. 302–
321 (cit. on pp. 5, 10–12, 24).

[29] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. «Yolact: Real-time
instance segmentation». In: Proceedings of the IEEE/CVF international
conference on computer vision. 2019, pp. 9157–9166 (cit. on p. 5).

[30] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Pi-
otr Dollár. «Panoptic segmentation». In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019, pp. 9404–9413
(cit. on p. 5).

[31] Xiaoqiang Lu, Binqiang Wang, Xiangtao Zheng, and Xuelong Li. «Exploring
models and data for remote sensing image caption generation». In: IEEE
Transactions on Geoscience and Remote Sensing 56.4 (2017), pp. 2183–2195
(cit. on p. 5).

[32] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. «Head pose esti-
mation in computer vision: A survey». In: IEEE transactions on pattern
analysis and machine intelligence 31.4 (2008), pp. 607–626 (cit. on p. 5).

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. «High-resolution image synthesis with latent diffusion mod-
els». In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2022, pp. 10684–10695 (cit. on pp. 5, 6).

[34] Tim Brooks et al. «Video generation models as world simulators». In: (2024).
url: https://openai.com/research/video-generation-models-as-
world-simulators (cit. on p. 5).

[35] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. «A review of image
denoising algorithms, with a new one». In: Multiscale modeling & simulation
4.2 (2005), pp. 490–530 (cit. on p. 5).

[36] Chunwei Tian, Lunke Fei, Wenxian Zheng, Yong Xu, Wangmeng Zuo, and
Chia-Wen Lin. «Deep learning on image denoising: An overview». In: Neural
Networks 131 (2020), pp. 251–275 (cit. on p. 5).

[37] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. «Deep learning». In:
nature 521.7553 (2015), pp. 436–444 (cit. on pp. 5–8, 22).

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classi-
fication with deep convolutional neural networks». In: Advances in neural
information processing systems 25 (2012) (cit. on pp. 5, 7).

62

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

BIBLIOGRAPHY

[39] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. «Learning
representations by back-propagating errors». In: nature 323.6088 (1986),
pp. 533–536 (cit. on p. 5).

[40] Sebastian Ruder. «An overview of gradient descent optimization algorithms».
In: arXiv preprint arXiv:1609.04747 (2016) (cit. on p. 5).

[41] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural
Networks. 2015. arXiv: 1511.08458 [cs.NE]. url: https://arxiv.org/
abs/1511.08458 (cit. on pp. 7, 8).

[42] Hansheng Ren et al. «Time-series anomaly detection service at microsoft». In:
Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining. 2019, pp. 3009–3017 (cit. on p. 7).

[43] Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen,
Moncef Gabbouj, and Alexandros Iosifidis. «Forecasting stock prices from
the limit order book using convolutional neural networks». In: 2017 IEEE
19th conference on business informatics (CBI). Vol. 1. IEEE. 2017, pp. 7–12
(cit. on p. 7).

[44] Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. «Natural
language processing: state of the art, current trends and challenges». In:
Multimedia tools and applications 82.3 (2023), pp. 3713–3744 (cit. on pp. 7,
14, 22).

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. «Gradient-based learning
applied to document recognition». In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324. doi: 10.1109/5.726791 (cit. on p. 7).

[46] Varsha Kishore and Justin Lovelace. CS 4782: Machine Learning for Data
Science. https://www.cs.cornell.edu/courses/cs4782/2024sp/lectur
es/pdfs/week_2_0.pdf. 2024 (cit. on p. 8).

[47] Zhiwu Shang, Jie Zhang, Wanxiang Li, Shiqi Qian, and Maosheng Gao. «A
domain adversarial transfer model with inception and attention network
for rolling bearing fault diagnosis under variable operating conditions». In:
Journal of Vibration Engineering & Technologies 12.1 (2024), pp. 1–17 (cit.
on p. 9).

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV]. url:
https://arxiv.org/abs/1512.03385 (cit. on pp. 9–11, 44, 46, 47, 49).

[49] Fengxiang He, Tongliang Liu, and Dacheng Tao. «Why resnet works? resid-
uals generalize». In: IEEE transactions on neural networks and learning
systems 31.12 (2020), pp. 5349–5362 (cit. on p. 9).

63

https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://doi.org/10.1109/5.726791
https://www.cs.cornell.edu/courses/cs4782/2024sp/lectures/pdfs/week_2_0.pdf
https://www.cs.cornell.edu/courses/cs4782/2024sp/lectures/pdfs/week_2_0.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

BIBLIOGRAPHY

[50] Ying Li, Haokui Zhang, Xizhe Xue, Yenan Jiang, and Qiang Shen. «Deep
learning for remote sensing image classification: A survey». In: Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery 8.6 (2018),
e1264 (cit. on pp. 9, 23, 24).

[51] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor
Darrell, and Saining Xie. «A convnet for the 2020s». In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2022,
pp. 11976–11986 (cit. on pp. 9, 10, 37, 46).

[52] Andrew G Howard. «MobileNets: Efficient convolutional neural networks
for mobile vision applications». In: arXiv preprint arXiv:1704.04861 (2017)
(cit. on p. 10).

[53] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. «Mobilenetv2: Inverted residuals and linear bottlenecks».
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 4510–4520 (cit. on p. 10).

[54] Andrew Howard et al. «Searching for mobilenetv3». In: Proceedings of the
IEEE/CVF international conference on computer vision. 2019, pp. 1314–1324
(cit. on p. 10).

[55] Danfeng Qin et al. MobileNetV4 – Universal Models for the Mobile Ecosystem.
2024. arXiv: 2404.10518 [cs.CV]. url: https://arxiv.org/abs/2404.
10518 (cit. on pp. 10, 46, 47).

[56] Karen Simonyan and Andrew Zisserman. «Very deep convolutional networks
for large-scale image recognition». In: arXiv preprint arXiv:1409.1556 (2014)
(cit. on p. 10).

[57] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu,
In So Kweon, and Saining Xie. «Convnext v2: Co-designing and scaling
convnets with masked autoencoders». In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2023, pp. 16133–
16142 (cit. on pp. 10, 47, 49).

[58] Sidike Paheding, Ashraf Saleem, Mohammad Faridul Haque Siddiqui, Nathir
Rawashdeh, Almabrok Essa, and Abel A Reyes. «Advancing horizons in
remote sensing: a comprehensive survey of deep learning models and ap-
plications in image classification and beyond». In: Neural Computing and
Applications (2024), pp. 1–41 (cit. on pp. 11, 22–24).

[59] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. «Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs». In: IEEE trans-
actions on pattern analysis and machine intelligence 40.4 (2017), pp. 834–848
(cit. on pp. 12, 13).

64

https://arxiv.org/abs/2404.10518
https://arxiv.org/abs/2404.10518
https://arxiv.org/abs/2404.10518

BIBLIOGRAPHY

[60] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
«Pyramid scene parsing network». In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017, pp. 2881–2890 (cit. on
pp. 12, 14).

[61] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. «Segnet: A deep
convolutional encoder-decoder architecture for image segmentation». In:
IEEE transactions on pattern analysis and machine intelligence 39.12 (2017),
pp. 2481–2495 (cit. on p. 12).

[62] Jonathan Ho, Ajay Jain, and Pieter Abbeel. «Denoising diffusion probabilistic
models». In: Advances in neural information processing systems 33 (2020),
pp. 6840–6851 (cit. on p. 12).

[63] Isaac Corley, Caleb Robinson, and Anthony Ortiz. «A Change Detection
Reality Check». In: arXiv preprint arXiv:2402.06994 (2024) (cit. on p. 12).

[64] A Vaswani. «Attention is all you need». In: Advances in Neural Information
Processing Systems (2017) (cit. on pp. 14, 15).

[65] Hugo Touvron et al. «Llama: Open and efficient foundation language models».
In: arXiv preprint arXiv:2302.13971 (2023) (cit. on p. 14).

[66] Abhimanyu Dubey et al. «The llama 3 herd of models». In: arXiv preprint
arXiv:2407.21783 (2024) (cit. on p. 14).

[67] Alexey Dosovitskiy. «An image is worth 16x16 words: Transformers for
image recognition at scale». In: arXiv preprint arXiv:2010.11929 (2020)
(cit. on pp. 14–16, 37).

[68] Asifullah Khan, Zunaira Rauf, Anabia Sohail, Abdul Rehman Khan, Hifsa
Asif, Aqsa Asif, and Umair Farooq. «A survey of the vision transformers and
their CNN-transformer based variants». In: Artificial Intelligence Review
56.Suppl 3 (2023), pp. 2917–2970 (cit. on pp. 14, 15).

[69] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Ar-
mand Joulin, Hervé Jégou, and Matthijs Douze. «Levit: a vision transformer
in convnet’s clothing for faster inference». In: Proceedings of the IEEE/CVF
international conference on computer vision. 2021, pp. 12259–12269 (cit. on
pp. 15, 37, 46, 47).

[70] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen
Lin, and Baining Guo. «Swin transformer: Hierarchical vision transformer
using shifted windows». In: Proceedings of the IEEE/CVF international
conference on computer vision. 2021, pp. 10012–10022 (cit. on p. 15).

65

BIBLIOGRAPHY

[71] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar,
Alan Bovik, and Yinxiao Li. «Maxvit: Multi-axis vision transformer». In:
European conference on computer vision. Springer. 2022, pp. 459–479 (cit. on
p. 15).

[72] James B Campbell and Randolph H Wynne. Introduction to remote sensing.
Guilford press, 2011 (cit. on pp. 16, 17, 20, 24).

[73] Wenli Huang et al. Xiao-Peng Song. «An evaluation of Landsat, Sentinel-2,
Sentinel-1 and MODIS data for crop type mapping». In: Science of Remote
Sensing 3 (2021), p. 100018. issn: 2666-0172. doi: https://doi.org/
10.1016/j.srs.2021.100018. url: https://www.sciencedirect.com/
science/article/pii/S2666017221000055 (cit. on p. 16).

[74] Quy-Toan Do, Jacob N Shapiro, Christopher D Elvidge, Mohamed Abdel-
Jelil, Daniel P Ahn, Kimberly Baugh, Jamie Hansen-Lewis, Mikhail Zhizhin,
and Morgan D Bazilian. «Terrorism, geopolitics, and oil security: Using
remote sensing to estimate oil production of the Islamic State». In: Energy
research & social science 44 (2018), pp. 411–418 (cit. on p. 16).

[75] Yichun Xie, Zongyao Sha, and Mei Yu. «Remote sensing imagery in vegeta-
tion mapping: a review». In: Journal of plant ecology 1.1 (2008), pp. 9–23
(cit. on p. 16).

[76] John Rogan and DongMei Chen. «Remote sensing technology for mapping
and monitoring land-cover and land-use change». In: Progress in planning
61.4 (2004), pp. 301–325 (cit. on p. 16).

[77] Xuehui Pi et al. «Mapping global lake dynamics reveals the emerging roles
of small lakes». In: Nature Communications 13.1 (Oct. 2022), p. 5777. issn:
2041-1723. doi: 10.1038/s41467-022-33239-3. url: https://doi.org/
10.1038/s41467-022-33239-3 (cit. on p. 16).

[78] Junjie Li, Yizhuo Meng, Yuanxi Li, Qian Cui, Xining Yang, Chongxin Tao,
Zhe Wang, Linyi Li, and Wen Zhang. «Accurate water extraction using
remote sensing imagery based on normalized difference water index and
unsupervised deep learning». In: Journal of Hydrology 612 (2022), p. 128202
(cit. on pp. 16, 24).

[79] John E Ball, Derek T Anderson, and Chee Seng Chan. «Comprehensive
survey of deep learning in remote sensing: theories, tools, and challenges
for the community». In: Journal of applied remote sensing 11.4 (2017),
pp. 042609–042609 (cit. on pp. 17, 24).

[80] Wikipedia contributors. Copernicus Programme — Wikipedia, The Free
Encyclopedia. [Online; accessed 28-September-2024]. 2024. url: https://
en.wikipedia.org/w/index.php?title=Copernicus_Programme&oldid=
1244787427 (cit. on pp. 17, 21, 22).

66

https://doi.org/https://doi.org/10.1016/j.srs.2021.100018
https://doi.org/https://doi.org/10.1016/j.srs.2021.100018
https://www.sciencedirect.com/science/article/pii/S2666017221000055
https://www.sciencedirect.com/science/article/pii/S2666017221000055
https://doi.org/10.1038/s41467-022-33239-3
https://doi.org/10.1038/s41467-022-33239-3
https://doi.org/10.1038/s41467-022-33239-3
https://en.wikipedia.org/w/index.php?title=Copernicus_Programme&oldid=1244787427
https://en.wikipedia.org/w/index.php?title=Copernicus_Programme&oldid=1244787427
https://en.wikipedia.org/w/index.php?title=Copernicus_Programme&oldid=1244787427

BIBLIOGRAPHY

[81] Helder I Chaminé, Alcides JSC Pereira, Ana C Teodoro, and José Teixeira.
Remote sensing and GIS applications in earth and environmental systems
sciences. 2021 (cit. on p. 17).

[82] Daniele Rege Cambrin, Luca Colomba, and Paolo Garza. «CaBuAr: Califor-
nia Burned Areas dataset for delineation». In: arXiv preprint arXiv:2401.11519
(2024) (cit. on pp. 17, 24).

[83] European Space Agency. Overview of Sentinel-2 Mission. https://sentiwi
ki.copernicus.eu/web/s2-mission. Accessed: (26-08-2024). 2024 (cit. on
pp. 18, 21, 23).

[84] European Space Agency. Sentinel-2 Data Sheet. https://esamultimedia.
esa.int/docs/S2-Data_Sheet.pdf. Accessed: (26-08-2024). 2024 (cit. on
pp. 18, 21).

[85] Frank J KRIEGLER. «Preprocessing transformations and their effects on
multspectral recognition». In: Proceedings of the Sixth International Sympo-
sium on Remote Sesning of Environment. 1969, pp. 97–131 (cit. on p. 18).

[86] Hanqiu Xu. «Modification of normalised difference water index (NDWI) to
enhance open water features in remotely sensed imagery». In: International
Journal of Remote Sensing 27.14 (2006), pp. 3025–3033. doi: 10.1080/014
31160600589179. eprint: https://doi.org/10.1080/01431160600589179.
url: https://doi.org/10.1080/01431160600589179 (cit. on pp. 19, 21).

[87] OpenEO. OpenEO. https://openeo.cloud/. 2024 (cit. on p. 21).
[88] Volker C. Radeloff et al. «Need and vision for global medium-resolution

Landsat and Sentinel-2 data products». In: Remote Sensing of Environment
300 (2024), p. 113918. issn: 0034-4257. doi: https://doi.org/10.1016/
j.rse.2023.113918. url: https://www.sciencedirect.com/science/
article/pii/S0034425723004704 (cit. on pp. 21, 24).

[89] Xiao Xiang Zhu, Devis Tuia, Lichao Mou, Gui-Song Xia, Liangpei Zhang,
Feng Xu, and Friedrich Fraundorfer. «Deep learning in remote sensing: A
comprehensive review and list of resources». In: IEEE geoscience and remote
sensing magazine 5.4 (2017), pp. 8–36 (cit. on p. 22).

[90] Jia Song, Shaohua Gao, Yunqiang Zhu, and Chenyan Ma. «A survey of
remote sensing image classification based on CNNs». In: Big earth data 3.3
(2019), pp. 232–254 (cit. on p. 22).

[91] Lei Ma, Yu Liu, Xueliang Zhang, Yuanxin Ye, Gaofei Yin, and Brian Alan
Johnson. «Deep learning in remote sensing applications: A meta-analysis
and review». In: ISPRS journal of photogrammetry and remote sensing 152
(2019), pp. 166–177 (cit. on p. 22).

67

https://sentiwiki.copernicus.eu/web/s2-mission
https://sentiwiki.copernicus.eu/web/s2-mission
https://esamultimedia.esa.int/docs/S2-Data_Sheet.pdf
https://esamultimedia.esa.int/docs/S2-Data_Sheet.pdf
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/01431160600589179
https://openeo.cloud/
https://doi.org/https://doi.org/10.1016/j.rse.2023.113918
https://doi.org/https://doi.org/10.1016/j.rse.2023.113918
https://www.sciencedirect.com/science/article/pii/S0034425723004704
https://www.sciencedirect.com/science/article/pii/S0034425723004704

BIBLIOGRAPHY

[92] Shutao Li, Weiwei Song, Leyuan Fang, Yushi Chen, Pedram Ghamisi, and
Jon Atli Benediktsson. «Deep learning for hyperspectral image classification:
An overview». In: IEEE Transactions on Geoscience and Remote Sensing
57.9 (2019), pp. 6690–6709 (cit. on p. 22).

[93] Alexandre Lacoste et al. «Toward foundation models for earth monitoring:
Proposal for a climate change benchmark». In: arXiv preprint arXiv:2112.00570
(2021) (cit. on p. 24).

[94] Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, Conrad M
Albrecht, and Xiao Xiang Zhu. «SSL4EO-S12: A large-scale multimodal,
multitemporal dataset for self-supervised learning in Earth observation [Soft-
ware and Data Sets]». In: IEEE Geoscience and Remote Sensing Magazine
11.3 (2023), pp. 98–106 (cit. on pp. 24, 25).

[95] Nikolaos Dionelis, Casper Fibaek, Luke Camilleri, Andreas Luyts, Jente
Bosmans, and Bertrand Le Saux. «Evaluating and Benchmarking Founda-
tion Models for Earth Observation and Geospatial AI». In: arXiv preprint
arXiv:2406.18295 (2024) (cit. on p. 24).

[96] Aozhe Dou, Yang Hao, Weifeng Liu, Liangliang Li, Zhenzhong Wang, and
Baodi Liu. «Remote sensing image cloud removal based on multi-scale spatial
information perception». In: Multimedia Systems 30.5 (2024), p. 249 (cit. on
p. 24).

[97] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. «Data col-
lection and quality challenges in deep learning: A data-centric ai perspective».
In: The VLDB Journal 32.4 (2023), pp. 791–813 (cit. on p. 24).

[98] Yuji Roh, Geon Heo, and Steven Euijong Whang. «A survey on data collec-
tion for machine learning: a big data-ai integration perspective». In: IEEE
Transactions on Knowledge and Data Engineering 33.4 (2019), pp. 1328–1347
(cit. on p. 24).

[99] Copernicus Open Access Hub. Sentinel-2 Bands. https://custom-scripts.
sentinel-hub.com/custom-scripts/sentinel-2/bands/. 2021 (cit. on
p. 31).

[100] European Space Agency. Sentinel-2 Clouds Classification. = https://custom-
scripts.sentinel-hub.com/custom-scripts/sentinel-2/scene-classification/, Ac-
cessed: (26-08-2024). 2024 (cit. on p. 30).

[101] Saurabh Channan Min Feng Joseph O. Sexton and John R. Townshend. «A
global, high-resolution (30-m) inland water body dataset for 2000: first results
of a topographic-spectral classification algorithm». In: International Journal
of Digital Earth 9.2 (2016), pp. 113–133. doi: 10.1080/17538947.2015.
1026420. eprint: https://doi.org/10.1080/17538947.2015.1026420.
url: https://doi.org/10.1080/17538947.2015.1026420 (cit. on p. 31).

68

https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/bands/
https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/bands/
=
https://doi.org/10.1080/17538947.2015.1026420
https://doi.org/10.1080/17538947.2015.1026420
https://doi.org/10.1080/17538947.2015.1026420
https://doi.org/10.1080/17538947.2015.1026420

BIBLIOGRAPHY

[102] Defense Mapping Agency. Department of Defense World Geodetic System
1984. https://apps.dtic.mil/sti/pdfs/ADA280358.pdf. 1991 (cit. on
p. 32).

[103] Pavel Iakubovskii. Segmentation Models Pytorch. https://github.com/
qubvel/segmentation_models.pytorch. 2019 (cit. on pp. 38, 39).

[104] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, and Animesh
et al. Jain. «PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation». In: 29th ACM Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’24). ACM, Apr. 2024. doi: 10.
1145/3620665.3640366. url: https://pytorch.org/assets/pytorch2-
2.pdf (cit. on p. 38).

[105] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Ver-
sion 1.4. Mar. 2019. doi: 10.5281/zenodo.3828935. url: https://github.
com/Lightning-AI/lightning (cit. on p. 38).

[106] Ross Wightman. PyTorch Image Models. https://github.com/huggingfa
ce/pytorch-image-models. 2019. doi: 10.5281/zenodo.4414861 (cit. on
p. 38).

69

https://apps.dtic.mil/sti/pdfs/ADA280358.pdf
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://doi.org/10.5281/zenodo.3828935
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Water Mapping in Satellite Images
	Water Level Forecasting
	Thesis Structure

	Related Works
	Computer Vision
	Deep Learning
	Convolutional Neural Networks
	Semantic Segmentation
	CNNs for Semantic Segmentation
	Vision Transformers

	Remote Sensing
	Satellite Imagery and light spectrum
	Water Indexes
	Copernicus Programme
	Deep Learning for Remote Sensing

	Methodology
	Problems Statement
	Water Segmentation
	Water Level Forecasting

	Dataset
	Global Surface Water
	Data Preprocessing and Tiling

	Losses and Metrics
	Loss Functions
	Metrics

	Experiments
	Models
	Classification and Regression
	Segmentation

	General Settings
	Water Segmentation
	Settings
	Results

	Water Level Forecasting
	Settings
	Threshold selection
	Classification
	Regression
	Semantic Segmentation

	Discussion

	Conclusion
	Bibliography

