
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Enhancing Email Forensics: A DKIM
archiving and re-verification tool for

long-term Signature validation

Supervisor
prof. Andrea Atzeni
prof. Paolo Dal Checco

Candidate

Marco Vitale

Academic Year 2023-2024

To mum and dad

Summary

In the context of modern communications, emails play a fundamental role for a large variety of
purposes, communicating with friends and coworkers, exchanging sensitive information between
companies, or receiving important communications for users’ online accounts.

As with all the other areas in the IT field, emails are the subject of different kinds of attacks;
thanks to the possibility of transporting attachments, many attackers infect emails with malware
and viruses, masquerading them as harmless files. Other examples include source forgery, also
known as email spoofing, or the well-known phishing, aiming to obtain personal information of
the targets or possibly fraud them.

In order to limit these kinds of attacks, every email service provider has adopted its own rules
that associated with an anti-spam software aims at distinguishing between potentially dangerous
emails from healthy ones, leaving the user’s inbox as protected as possible. These rules are usually
based on authentication protocols, which were born to help the email infrastructure combat
cybercrimes and enhance the integrity and trustworthiness of email messages.

The Internet Engineering Task Force (IETF) has developed over the years, three different
protocols that nowadays are combined to protect emails under different aspects. Sender Policy
Framework, also known as SPF, allows a domain owner to publish into a DNS record in a specified
format, the IP addresses of the mail servers authorized to send email on behalf of that domain.
DomainKeys Identified Mail, also known as DKIM, aims at providing integrity of the email content
and authenticity of the sender’s domain, by computing a digital signature and attaching it to the
email headers. Finally, Domain-based Message Authentication, Reporting, and Conformance also
known as DMARC, allows domain owners to receive reports about their email activity, which is a
really helpful feature when contrasting email phishing campaigns and to inform recipients on how
their email must be treated when they do not pass DMARC alignment with DKIM and SPF.

When cybercrime occurs, forensic experts have the duty of investigating all the possible traces
left by the criminals, which can be found into the victim’s inbox, for this reason, it is fundamental
the ability of establishing the authenticity of an email message, which can be used as a proof
within a legal process. In order to achieve that, the email headers are analyzed and possibly re-
verified to ensure the email content has not been modified. Here is the problem discussed by this
thesis, as DKIM specifically was designed to be used as soon as the email arrives at the recipient
side, and not for verification after long time.

The primary objective of this thesis was initially to study the state of the art of the DKIM
protocol, looking for possible products or previous work on the long-term verification of DKIM
signatures. After discovering that no open-source solutions had been published about it, it was
crucial to look at how this problem was addressed in other contexts.

In the area of digital documents, this is a topic described by the concept of Long Term
Validation (LTV) or Long Term Signature (LTS). The primary goal of these standards is the
preservation of all the information required to verify the signature in the future, with the signature
itself, and to achieve this result, a specific process is followed. After signing the document, a Time
Stamp Authority (TSA) provides proof of the signing time by issuing a so-called timestamp token,
and to demonstrate the validity of the signer’s certificate at that time, a Validation Authority
utilizes either OCSP or CRL technologies. This new type of signature can be embedded in various
standards, depending on the nature of the file to be signed, such as PAdES, XAdES, and CAdES.

4

Once understood the technologies and methodologies used, it was time to transport it to the
DKIM field. Initially, various solutions came to the surface, specifically those aiming at changing
the protocol behavior. However, the adoption level of the DKIM protocol, which by some research
appears to be not so high, discouraged these kinds of solutions, given the burden of modifying
an already working infrastructure to implement some changes. For all the reasons described so
far, an external tool was the perfect choice to limit the interference with the protocol itself but
address the issue that has arisen.

The main problem that emerges when an expert wants to re-verify a DKIM signature, is in
the availability of the public key needed for the process. In this protocol, when the key couple
is created, the private part remains secret and must be installed in the sending SMTP server,
while the public part is published inside a DNS TXT record of the domain. This record can be
retrieved by the SMTP server of the recipient, by composing a DNS query using the domain and
the selector name found in the DKIM header. However, since the DKIM keys must be rotated to
avoid a possible compromise, and there is no standard way to complete this process, the domain
owner may choose to change the key and keep the same selector or remove the previous key and
publish a new one on a fresh new selector.

By creating an archive of DKIM records, it would have been possible to retrieve the requested
public key when needed. In order to do so, a Python project was created, with the duty of querying
daily a list of pairs domain selector, extracted from the email headers of a bunch of email accounts
and writing down the responses to these questions. Additionally, to certify the existence of these
records at the time of that request, a Timestamping Authority was introduced, following the
same process executed in the field of Long Time Verification which was previously described.
Since Timestamping Authorities that follow some specific regulations, provide timestamp tokens
with a legal validity upon payment of a fee, which typically depends on the quantity, the user can
choose whether to timestamp each domain file separately or timestamp a single zip folder with
all the files produced. This is done to reduce the number of timestamps requested. To add to
this project a further forensic approach, all the traffic exchanged with the DNS server and with
the TSA were captured, providing an additional way to verify the source of this data by simply
inspecting the packets.

Since emails are the principal source of DKIM information, noticing a change of selector
by a certain domain would have been possible only by inspecting and monitoring some email
headers. This is the reason why the ”email” module was introduced. By having access to an
email inbox via the IMAP protocol, this part of the project had the possibility of downloading
the received email and extracting valuable information about DKIM. This inbox was later filled
with emails by automating the sending process and creating accounts for the domains that wanted
to be monitored. Since not all the domains give the possibility of sending emails directly, different
solutions were thought in order to try to receive as many emails as possible. Among them, enabling
email notifications for social networks was working for Facebook, while automating the password
recovery process via the Playwright’s Python library was a more specific and domain-dependent
solution that worked for Asos.

Once having created the archive of DKIM records, by slightly modifying the DKIMPY library
it was relatively simple to complete the verification process. In particular, the changes made to
this library were focused on the possibility of accepting a fixed DKIM record and manipulating
the time of verification to simulate the process at the receipt time.

To further enhance the list of monitored domains, a new module was implemented, with the
duty of discovering the selector used by specific domains. This service is already offered by some
online websites, and after analyzing their functioning and results with a fixed number of domains,
it was clear that all of them were using a sort of brute-force approach. By querying the DNS server
of the selected domain with a fixed number of selectors, chosen according to their spread, any
reply would have been shown to the user. The module was then enriched with the possibility of
querying multiple domains at once and generating a list of selectors by providing a list of regexes.

Initially, the tool was developed with the intention of possibly working alone after being
installed onto a server. This behavior was achieved by simply scheduling a cronjob to run the
Python script at a specific time every day. After having added some active functionalities, like the
discovery and the verify, which request the user interaction, a more structured way to use the tool

5

was needed, besides the possibility of using the command line. For this reason, a web interface
was developed, always within the Python project thanks to the Flask framework. At this point,
by starting a web server, all the tool’s functionalities were available, with a more user-friendly
approach. A specific company can then choose to install the tool within its network and make it
available for its employees at a specific address.

Finally, at the end of the development process and thanks to temporary licenses, it was possible
to compare the solution with two tools developed by Metaspike (Forensic Email Collector and
Forensic Email Intelligence), an email forensic software company. Among the similarities, there is
the usage of a local archive integrated with live queries when records are missing, DKIM signature
verification capable of discriminating between body or header modifications, and the ability to
timestamp logs, even if with a different target.

6

Acknowledgements

This work would not have been possible without the help and guidance provided by my supervisors,
Prof. Andrea Atzeni and Prof. Paolo Dal Checco, to whom I am deeply grateful for their time
and their always precise and on time advices. Additionally, I would also like to thank Metaspike
for providing temporary licenses, which allowed me to enrich my thesis by comparing my work
with state-of-the-art software.

I would like to conclude the rest of the acknowledgements in Italian, so they can directly reach
the people concerned.

Non posso che iniziare col ringraziare i miei genitori, mamma e papà, per tutti i sacrifici che
hanno fatto per me in questi anni per potermi permettere di percorrere questa strada. Grazie
per questo e per il continuo supporto e affetto che mi dimostrate da sempre, che mi hanno reso
la persona che sono. Spero a mio modo di aver ricambiato almeno in parte a tutto quello che mi
avete dato, e spero di avervi reso orgogliosi, questo traguardo è dedicato a voi.

Un grazie va anche a tutta la mia famiglia, che negli anni mi ha sempre incoraggiato e ha
creduto in me. Grazie anche a te, Nonna Enza, so che da lassù sarai fiera di me.

Ringrazio la mia metà, Marta, che ormai da 5 anni mi è vicino e sopporta le mie ansie e
paranoie, sempre pronta a tirarmi su con una parola di conforto e ad aiutarmi a credere in
me stesso. Grazie perchè oltre ad essere sempre stata presente nei momenti più belli, mi hai
accompagnato anche nei momenti più bui, questo traguardo è anche merito tuo.

In ultimo, ma non per importanza, ringrazio tutti gli amici che mi sono stati vicini in questo
viaggio. A partire dagli amici di casa, sempre presenti al mio ritorno da Torino, per arrivare agli
amici conosciuti tra le mura del Politecnico, senza il quale il mio percorso non sarebbe stato lo
stesso.

7

Contents

List of Tables 11

List of Figures 12

1 Introduction 14

1.1 Objectives . 15

1.2 Outline . 15

2 Background 16

2.1 Email architecture . 16

2.2 DKIM . 18

2.2.1 Overview . 18

2.2.2 Workflow . 19

2.2.3 Signing . 19

2.2.4 Verification . 21

2.2.5 Offered functionalities . 23

2.2.6 Open problems . 23

2.2.7 Verification tools . 24

2.2.8 Testing environment . 24

2.2.9 Connection with SPF and DMARC . 26

2.3 Timestamping . 28

2.3.1 Timestamp request . 29

2.3.2 Timestamp response . 30

2.3.3 Verification of the timestamp . 32

3 State of the art 33

3.1 DKIM Deployment . 33

3.2 Long Term Verification . 35

3.2.1 PAdES for Long Term Validation . 37

3.2.2 CAdES for Long Term Validation . 39

8

4 Solution 41

4.1 DKIM & CAdES . 41

4.1.1 Advantages . 41

4.1.2 Potential problems . 42

4.2 DKIM & TSA . 42

4.2.1 Advantages . 43

4.2.2 Potential problems . 43

4.3 DKIM Logger . 44

4.3.1 Log generation and preservation . 44

4.3.2 Traffic capture . 46

4.3.3 Output files . 47

4.3.4 eIDAS and EU rules . 48

4.3.5 Architecture of the tool . 50

4.3.6 Mail module . 51

4.3.7 Playwright module . 54

4.3.8 Discovery module . 56

4.3.9 Verify module . 58

4.3.10 Web module . 59

4.3.11 Final usage . 59

4.3.12 Comparison with Metaspike tools . 60

5 Conclusion and future development 63

Bibliography 65

Appendices 67

A Testing Environment documentation 68

A.1 Network Configuration . 68

A.2 Key Pair and Record creation . 69

A.3 DNS Setup . 69

A.4 HMailServer Installation . 70

A.4.1 Domain and user creation . 70

A.4.2 Enabling DKIM . 71

A.5 Thunderbird Configuration . 71

B User Manual 73

B.1 Prerequisites . 73

B.2 Main module . 74

B.3 Discovery module . 75

B.4 Verify module . 77

9

C Programmer’s Manual 79

C.1 Main.py . 79

C.2 Mail.py . 80

C.3 Discover.py . 81

C.4 Verify.py and custom dkim.py . 81

C.5 Playw.py . 82

C.6 Web.py . 82

D Metaspike’s tools 83

10

List of Tables

4.1 Selector domain information. 51

11

List of Figures

2.1 Email Architecture scheme (Source: Understanding Email). 18

2.2 DKIM workflow (Source: DomainKeys Identified Mail (DKIM)). 19

2.3 DKIM signature (Source: RFC 6376). 20

2.4 DKIM query reply. 21

2.5 Authentication-Results header . 22

2.6 DKIM generator (Source: EasyDMARC). 24

2.7 VM setup . 25

2.8 Signed Email . 26

2.9 Timestamping workflow (Source: What is Timestamping?). 28

2.10 Timestamp request (Source: RFC 3161). 29

2.11 Timestamp response (Source: RFC 3161). 30

2.12 Timestamp Token (Sources: RFC 3161 and RFC 5652). 31

2.13 Timestamp Token Info (Source: RFC 3161). 31

3.1 Gmail Incoming Mail Authentication. (Source:[1]) 33

3.2 Adoption Rate among Alexa Top 1 Million Domains. (Source:[2]) 34

3.3 DKIM Adoption Rate among Multiple ccTLDs. (Source:[2]) 34

3.4 DKIM Adoption Rate among Multiple gTLDs. (Source:[2]) 34

3.5 LTS Process (Source: LTS). 36

3.6 DSS and VRI structures (Source:[3]). 37

3.7 Real structure of DSS and VRI (Source: StackOverflow). 38

3.8 Single LTV. (Source:[3]) . 38

3.9 Repeated LTV. (Source:[3]) . 38

3.10 CAdES-X Long (Source:[4]). 39

3.11 CAdES-X Long Type 1 or 2 (Source:[4]). 39

3.12 CAdES-LT (Source:[4]). 40

3.13 CAdES-A (Source:[4]). 40

4.1 Example of tool output. 45

4.2 Wireshark capture of an iteration of the tool . 47

4.3 Part of the Italy’s QTSPs list (Source: eIDAS Dashboard). 49

4.4 Software Architecture . 50

4.5 Example of config file. 52

12

https://kh4lnay4k.medium.com/understanding-e-mail-84621bb97949
https://emailauth.io/dkim
https://datatracker.ietf.org/doc/html/rfc6376
https://easydmarc.com/tools/dkim-record-generator?
https://www.globalsign.com/en/blog/what-is-timestamping-how-does-it-work
https://datatracker.ietf.org/doc/rfc3161/
https://datatracker.ietf.org/doc/rfc3161/
https://datatracker.ietf.org/doc/rfc3161/
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/rfc3161/
https://www.signinghub.com/long-term-validation/
https://stackoverflow.com/questions/17728728/dss-vri-what-is-so-mystructure
https://eidas.ec.europa.eu/efda/tl-browser/#/screen/tl/IT

4.6 Creation of the email. 53

4.7 Example of log.txt. 54

4.8 Playwright code. 55

4.9 Statistics output . 58

A.1 IP address . 68

A.2 Firewall Rule . 69

A.3 DNS Records . 70

A.4 Account and Domain creation . 71

A.5 Enabling DKIM . 71

B.1 Sending config . 74

B.2 Receiving config . 74

B.3 Run button on the Web Interface . 75

B.4 Discover a single domain. 76

B.5 Discover multiple domains. 76

B.6 Verify module standard. 77

B.7 Verify module with record insertion. 78

C.1 Software Architecture . 79

D.1 FEC: Homepage . 83

D.2 FEC: Timestamping authority settings . 83

D.3 FEC: Acquisition settings . 84

D.4 FEC: Output settings . 84

D.5 FEC: Email address labels . 84

D.6 FEC: Inline-search . 85

D.7 FEC: Acquisition completed . 85

D.8 FEC: Post-acquisition action . 85

D.9 FEC: Acquisition log (Part 1) . 86

D.10 FEC: Acquisition log (Part 2) . 87

D.11 FEC: Acquisition log (Part 3) . 88

D.12 FEI: Project creation . 88

D.13 FEI: Evidence insertion . 89

D.14 FEI: Evidence extraction . 89

D.15 FEI: Evidence inspection . 90

D.16 FEI: Project insights . 90

D.17 FEI: Project participants . 90

D.18 FEI: Email examination . 91

D.19 FEI: DKIM and ARC Verification . 91

D.20 FEI: Email entities . 91

D.21 FEI: Email insights . 92

D.22 FEI: Email timestamps . 92

D.23 FEI: DKIM keys saving . 92

13

Chapter 1

Introduction

In today’s digital landscape, emails have become an indispensable tool, used massively by a lot
of people for myriad purposes, from casual correspondence with friends and classmates to the
exchange of critical and sensitive information between companies and co-workers.

That being said, this particular way of communication that guarantees an ease of use, speed
and relative anonymity is also favoured by malicious actors to commit crimes, digital related and
non-digital related. Among these, email spoofing stands out, where the apparent source of the
email is forged, leading the recipient to trust false identities. Email fraud is another prevalent
form, in this case the attacker aims at tricking large accounting departments into paying fraudulent
invoices. Additionally, email phishing targets different types of victims, seeking to obtain personal
information or deploy malware onto their devices.

In response to the increase of threats, the cybersecurity community has developed different
protocols and measures to enhance integrity and trustworthiness of email messages. Despite these
efforts, the prevalence of email-based attacks remains relatively high, underlying the importance
of the topic and the need for innovative security practices. Additionally, relying solely on the
authentication result header is problematic, as these headers can be forged or altered by malicious
actors.

When such crimes occur, there is the need to investigate, extract, and analyze emails to
collect digital evidence usable in a court of justice. This discipline is known as email forensics.
The first step of the investigation process is the collection of emails and inboxes. This is a delicate
operation typically performed by some specialized tools, as the evidence must not be affected by
the acquisition process and must remain preserved.

At this point, various aspects of emails can produce valuable insights; email headers hold
details about sender and recipient addresses, the transmission path, which can be verified by
inspecting the mail servers involved, send and receive timestamps, and finally a unique email
identifier called message-ID. The content of the email is another important aspect, as malware
and viruses are always attached and masquerade as harmless files. Even metadata can help in
enriching the context by providing information about the sender’s IP address and the email client
version.

Lastly, email authentication protocols like DKIM, SPF, and DMARC are always checked as
additional sources of information. DKIM (DomainKeys Identified Mail) specifically, is a crucial
technology that provides authentication of the sender’s domain and integrity of the email content.
The result of its verification process is embedded into the email header by the receiving email
server, playing a significant role for email forensic experts in reconstructing events. However, a
major limitation of DKIM is the difficulty of verifying this type of header for email received in
the past. This difficulty arises because the protocol was built to be used as soon as the mail is
received by the mail server of the recipient. Furthermore, the choice of not using PKI (Public
Key Infrastructure) to certify the keys used in the protocol eliminates the possibility of relying on
public repositories for key management, such as OCSP (Online Certificate Status Protocol) and
CRL (Certificate Revocation List).

14

Introduction

1.1 Objectives

The primary objective of this thesis was to develop and test a tool that enables the verification
of DKIM for emails received in the past, creating an archive of the keys used by the different
domains over time. This solution would result particularly useful for email forensic expert dur-
ing investigations. In order to achieve that, various challenges were faced, and throughout the
development process, additional functionalities were added to address these problems arise.

1.2 Outline

The remaining sections of the document are structured as follows:

• Chapter 2 - Background: this section aims to provide a basic background knowledge of the
main topic of this thesis work. It begins with an overview of email architecture to contex-
tualize the problem, then explores the details of the DKIM protocol and finally examines
the Timestamping process, which proved to be crucial in our work.

• Chapter 3 - State of the art: in this section the current state-of-the art for DKIM imple-
mentation and long term validation is analyzed;

• Chapter 4 - Solution: this chapter describes the various solutions considered and why they
were discarded, leading to the design of the final chosen solution.

• Chapter 5 - Conclusion and future development: this final section summarises the result
obtained and provides some analysis for future development.

15

Chapter 2

Background

This section aims to provide comprehensive knowledge to better understand all the topics covered
in this thesis. It starts with an overview of email architecture, the foundation upon which all email
authentication protocols are built, and then explores DKIM, the protocol of interest in this work.
Finally, it discusses timestamping, a helpful technology for certifying the existence of documents
at a specific point in time.

2.1 Email architecture

Let’s start analysing the Email architecture highlighting first the main actors that interact with it:
users. Users are typically people, organization or processes that exchange messages. In Internet
Mail there are four types of Users:

• Authors

• Recipients

• Return Handlers

• Mediators

Authors are responsible for creating email messages, writing their contents and selecting one
or more Recipient addresses. The Message Handling Service (MHS), which often appears by
the user’s perspective as single, unified system, despite potentially being operated by different
organizations, is responsible for transporting the message from the Author to the Recipients.

Recipients are the actual receivers of email messages. They have the option to reply to the
Author, thereby closing the communication loop. Generally, there are three different types of
recipients:

1. Primary recipients: Usually listed in the ”To” field, these are the main intended recipients
of the message.

2. Secondary recipients: Included in the ”Cc” (carbon copy) field, who receive the message for
their information.

3. Blind Carbon Copy recipients: These recipients receive the message without other recipients
knowing, as their addresses are hidden from the other recipients.

The Return Handler, also called ”Bounce Handler”, is a special Recipient that has the duty of
handling the notifications related to the delivery process generated by the MHS, such as failures
or completions of delivery.

16

Background

The Mediator instead receives, aggregates, reformulates and redistributes messages among
Authors and Recipients. The common example of this role is a group Mailing List, in this
scenario, the Mediator takes the original message from the Author, creates a new message and
sends it to all members of the mailing list. Recipients see the message as if it originated from the
original Author.[5]

Let’s move on now and start discussing the infrastructural actors involved in email architecture:

• Message User Agent (MUA)

• Message Store (MS)

• Mail Submission Agent (MSA)

• Message Transfer Agent (MTA)

• Mail Delivery Agent (MDA)

A Message User Agent (MUA) is typically a computer program used to access and manage
a user’s email such as Outlook, Thunderbird or webmail services like Gmail. It works on behalf
of the users, and it is responsible, from the Author point of view, of the submission of the email
into the transfer infrastructure via an MSA. The Recipient MUA on the other hand, processes
the received mail.

The Message Store (MS) is a component where email messages are stored and managed. It can
be located on the same machine as the MUA or on a remote server. The MS acquires messages
from an MDA, and it is accessed by the MUA to retrieve emails using either POP (Post Office
Protocol) or IMAP (Internet Message Access Protocol).

The Mail Submission Agent (MSA) plays a critical role in email architecture, it is the first
entity to receive the email from the client and has the duty of validating and authenticating the
email, ensuring that it adheres to the relevant protocols and standards. Once the email is properly
formatted and authenticated, the MSA forwards it to the MTA which then handles the actual
delivery of the message to the recipient’s mail server.

A Message Transfer Agent (MTA) acts similarly to packet switch or an IP router. Its primary
role consists of routing emails between different MTAs, moving the message closer to the Recipients
until it reaches the destination MDA. Point-to-point communication between MTAs typically uses
SMTP (Simple Mail Transfer Protocol) which provides a basic level of reliability through failure
recovery and retransmission mechanisms. Internet Mail MTAs are expected to store messages
enabling recovery in case of shutdowns or service interruptions. The routing mechanism of this
element relies on DNS MX records, which specifies the MTA through which the queried domain
can be reached, allowing any MTA to connect to any other. Given the architectural importance
of the MTA, it is typically categorized into three different types:

• Border or boundary MTA: This MTA acts as a gateway between the Internet and the users
within an organization. There are two types of boundary MTAs, depending on the message
direction (outbound/inbound).

• Intermediate MTA: This MTA is just a pass-through terminal, routing messages from one
MTA to another.

• Delivery or Final MTA: This MTA is responsible for the actual delivery of the message to
the inbox or to the final MDA.

Finally, the MDA is the component responsible for receiving the email from the MTA and
delivering it to the recipient’s inbox. This step typically involves interaction between the MDA
and the Mail Store (MS) using protocols such as POP or IMAP.

In this architecture, it is generally assumed that authentication schemes are applied at the
border MTA level[6]. On the outbound side, the protocol is applied, and on the inbound side, the
authentication is verified. In the next section one of these protocols will be deeply analyzed.

17

Background

Figure 2.1. Email Architecture scheme (Source: Understanding Email).

2.2 DKIM

Since the Simple Mail Transfer Protocol (SMTP) lacks authentications mechanism, the Inter-
net Engineering Task Force (IETF) has developed three protocols to address this security issue:
Sender Policy Framework (SPF), DomainKeys Identified Mail (DKIM) and Domain-based Mes-
sage Authentication, Reporting, and Conformance (DMARC). These protocols are typically used
together to protect email in different ways and address various aspects of security.

After analyzing DKIM in detail, SPF and DMARC will be presented, underlying the link
between these three protocols.

2.2.1 Overview

DomainKeys Identified Mail (DKIM) is an email authentication method that relies on digital sig-
nature to prevent emails from being forged or tampered with, providing integrity and authenticity
protection. This protocol was created from the merger of two earlier protocols:

• Enhanced DomainKeys: Designed by Yahoo to verify the DNS domain of an email sender
and the message integrity.

• Identified Internet Mail: Designed by Cisco as a signature-based authentication standard.

The first DKIM draft was published in the 2006. It became a proposed standard in the May
2007 with RFC 4871[7] and was finally established as an Internet Standard in September 2011
with the RFC 6376[8]. Given the fundamental role of cryptographic algorithms in this protocol,
two major updates followed:

• RFC 8301[9], issued in January 2018, bans SHA-1 and updates key sizes from 512-2048 bits
to 1024-4096 bits.

• RFC 8463[10], issued in September 2018, adds an elliptic curve algorithm to the existing
RSA. The added key type, k=ed25519 is adequately strong and features short public keys,
more easily publishable in DNS.

18

https://kh4lnay4k.medium.com/understanding-e-mail-84621bb97949

Background

Today, major email service providers like Yahoo and Google have adopted DKIM. In February
2024, both companies began requiring bulk senders to authenticate their emails with DKIM
to ensure successful delivery to their hosted mailboxes. However, a recent study revealed that
only the 28.1% of Alexa Top 1 million domains have enabled DKIM, with 2.9% of those being
misconfigured [2]. These statistics highlight the need for a broader adoption of this protocol in
order to achieve better security outcomes.

2.2.2 Workflow

To use DKIM, the first step is to create a pair of keys - public and private - that will be used in
the authentication process. These keys do not need to be certified by a Certification Authority, as
DKIM does not involve x509 certificates. After creating the keys, the public key must be added to
a DNS TXT record so that the recipients can retrieve it to verify the signature. If DKIM is enable
by the sending email service, a digital signature is generated using the sender’s private key on the
hash of the email body and some selected headers before the email is sent. This signature is then
included in the DKIM Signature header of the email. Upon receiving the email, the recipient’s
server retrieves the public key and verifies the signature to ensure the email has not been altered
during transit.

Figure 2.2. DKIM workflow (Source: DomainKeys Identified Mail (DKIM)).

2.2.3 Signing

Typically, signing will be done by a service agent that is part of the message author’s organization
or delegated by them. Architecturally speaking, the job is done by an MTA. The signing operations
begins creating a hash of the message body, which may be truncated to a given length l as indicated
in the DKIM-Signature header. Next, the selected header fields are hashed in the order specified
by the h value in the DKIM-Signature header. Depending on the email sender’s server software,
the user may have the possibility to choose which headers to sign, except for the FROM field,
which must always be signed according to the RFC 6376[8]. At this point, the DKIM-Signature

19

https://emailauth.io/dkim

Background

field of the signature being created, with bh set to the just-computed body hash and b set to an
empty string, is implicitly included in the second hash. The existence of the DKIM-Signature
value in the h field only refers to a preexisting signature, as a single message can be signed multiple
times.

This is an example of a DKIM-Signature header:

Figure 2.3. DKIM signature (Source: RFC 6376).

Let’s analyze now the tags present:

• v: This tag represents the Version and must be the first tag in the signature. Its default
value is 1.

• a: This tag specifies the Algorithm used to generate the signature.

• d: This tag represents the Domain for which the signature is created, also known as Signing
Domain Identifier (SDID).

• s: This tag represents the Selector, which is used together with the domain value to identify
a specific public key.

• c: This tag contains two names separated by a ”/” and informs the verifier about the header
and body Canonicalization algorithms used by the signer, respectively.

• q: This tag represents the Query methods used to retrieve the public key. The only currently
available value is ”dns/txt”

• i: This tag represents the Agent or User Identifier (AUID) on behalf of which the SDID is
taking responsibility. The domain part of this address must be the same as or a subdomain
of the domain specified in the d tag.

• t: This tag contains a timestamp indicating when the signature was created. It is represented
by the number of seconds since 00:00:00 on January 1, 1970, UTC.

• x: This tag contains a timestamp in the same format as t, after which the signature is
considered invalid. It specifies the expiration date.

• l: This tag contains the number of octets of the body of the email that were included in the
cryptographic hash.

• h: This tag contains a list of the headers signed by the DKIM signature. It may include
multiple instances of a header field name, indicating that multiple occurrences of the corre-
sponding header field are included in the header hash.

• z: This tag contains a list of the header present when the email was signed, along with their
values.

• bh: This tag contains the base64 hash of the canonicalized body part of the email.

• b: This tag contains the base64 value of the signature.

20

https://datatracker.ietf.org/doc/html/rfc6376

Background

2.2.4 Verification

To verify the DKIM signature, the receiver’s SMTP server must perform a DNS lookup to find
the correct public key stored in a DNS TXT record. This query is created using the selector and
domain fields from the signature, represented by the s and d tags, respectively, in the following
format:

selector. domainkey.domain

The . domainkey part is always fixed. For example, given the previously described signature
(Figure 2.3), the query would be:

brisbane. domainkey.example.net

Below is an example of a query reply:

Figure 2.4. DKIM query reply.

Now, let’s analyze the tags present in the response:

• v: This tag represents the version of the DKIM key record and must be the first. Its default
value is DKIM1.

• k: This tag represents the key type chosen.

• h: This tag is optional and contains the acceptable hash algorithms chosen by the signer.

• p: This tag contains the public key data, base64 encoded. An empty value means that the
public key has been revoked.

Canonicalization

Some existing mail systems modify emails while in transit, potentially breaking the DKIM signa-
ture. To address this issue, canonicalization algorithms are used. These algorithms allow emails
that are represented slightly differently but have the same value to be recognized as equal, ensuring
they produce the same hash by applying a series of modifications to the text.

Some signers may accept minor modifications to the email, while others may not tolerate
any changes. Additionally, some signers may accept modifications to the email header but are
unwilling to accept any modifications to the body of the message.

DKIM accommodates these requirements by allowing users to choose between two canonical-
ization algorithms for both the header and body: a ”simple” algorithm, which permits almost no
modifications, and a ”relaxed” algorithm which is more tolerant of changes.

Typically, if no canonicalization is specified by the signer, the ”simple” one is chosen for both
the header and body.

Let’s analyze in deeper details these canonicalization algorithms:

• Simple: The more restrictive option, chosen by default, does not permit any modifications
and is therefore safest.

– Header: Header fields are not changed in any way. Specifically, header fields names
must not be case-folded, and whitespace must not be altered.

21

Background

– Body: Ignores all empty lines at the end of the message body, converting any repetition
of ”CRLF” to a single ”CRLF”. If there is no body or no trailing CRLF on the message
body, a CRLF is added.

• Relaxed: This option tolerates more modifications to the email and is therefore less secure.

– Header: Converts all header field names (but not the header field values) to lowercase,
unfolds all header field continuation lines (combining header value into a single line),
converts all sequences of one or more WSP (whitespace, including tabs) characters
to a single SP (the basic space), deletes all WSP characters at the end of each un-
folded header field value, and removes any WSP characters before and after the colon
separating the header field name from the header field value.

– Body: Ignores all whitespace at the end of lines, reduces all sequences of WSP within
a line to a single SP, and ignores all empty lines at the end of the message body.

Authentication-Results

The result of the whole verification process, including other protocols over DKIM such as DMARC
and SPF, is typically written in a specific header of the email called ”Authentication-Results”
and defined by the RFC 8601[11]. End users are not expected to read this header field directly;
instead, it is consumed by programs that use this data to render it in a human-readable form.
The host performing this verification may apply additional local policies, such as requiring the
signature on the message to be executed only by the domain present in the ”From” header, making
third party signatures invalid even if they verify.

Let’s take a look to an example of an Authentication Result header:

Figure 2.5. Authentication-Results header

As seen in the image above, the authentication result status is provided as the value of the
dkim tag. Additionally, some information from the signature is reported, such as the ”i” tag
representing the Agent or User Identifier, the ”s” tag representing the selector, and the ”b” tag
representing a truncated form of the base64-encoded signature.

The dkim result can be set as follows:

• none: The message was not signed.

• pass: The message was signed, and the signature passed the verification tests of the verifier.

• fail: The message was signed but failed the verification tests. This can be due to an alteration
of the email or a mismatch of the public key retrieved.

• policy: The message was signed but failed to meet the verifier’s requirements due to a
specific issue, such as weak algorithm used or too small key length.

• neutral: The message was signed but the signature contained syntax errors or were not able
to be processed. For example, some malformed tags could make the signature not fully
evaluable.

22

Background

• temperror: The message could not be verified due to a temporary error, such as the mo-
mentary unavailability of the DNS server used to retrieve the public key. A later attempt
may produce a final result.

• permerror: The message could not be verified due to some unresolvable error, such as absent
header fields.

2.2.5 Offered functionalities

DKIM establishes a basis for verifying the legitimacy of an email, enabling the association of a
verifiable identifier with a message. With this identifier in place, recipients can make informed
decisions about how to handle the message based on the credibility of the associated identity.

Use with Spam Filtering: DKIM functions as a method of labeling an email rather than
directly filtering or identifying spam. Nonetheless, widespread implementation of DKIM can
prevent spammers from forging email source addresses, a common tactic they use today.

Anti-Phishing: DKIM also serves as an effective anti-phishing tool. Organizations in frequently
phished domains can sign their emails to verify their authenticity. Recipients can interpret the
absence of a valid signature on emails from these domains as a likely sign of forgery. When
combined with DMARC, which allows domains to publish their authentication practices (including
SPF and DKIM), it simplifies the process for recipients to determine whether an email is spam
or not.

Improved Deliverability: Emails signed with DKIM are more likely to reach the recipient’s
inbox because they include cryptographic evidence of authenticity. The result of DKIM authen-
tication is used as a spam filtering criteria by most of email providers, thus enhancing the chance
of successful email delivery.

Reputation Management: DKIM signatures contribute to managing a sender’s reputation
with email providers and spam filters. Although a valid DKIM signature alone does not directly
increase or decrease the trust level of a message, it facilitates the use of other mechanisms to
evaluate and establish trust[12].

2.2.6 Open problems

This section analyzes the main issues affecting the DKIM protocol.

Visibility of the verification: As discussed in one of the last sections, the result of the verifica-
tion process is added to the email header, but it’s not intended to be read by end users. Some of
the major email services such as Gmail and Outlook, display this information only when viewing
the original message, not through the standard interface. On the other hand, Thunderbird does
not directly support displaying this information but relies on a public extension of the email client
that highlights these results. Typically, the user must take additional steps to verify the DKIM
signature’s validity.

DOS Attacks: The widespread adoption of DKIM will lead to a significant increase in DNS
queries to the claimed signing domain. In the event of large-scale forgeries, DNS servers could
experience a substantial increase in queries. If the DNS servers containing the TXT record used
by verifiers to check the DKIM signature are attacked, the entire verification process is at risk,
potentially causing legitimate emails to be marked as spam.

Key related problems: Creating a digital signature in DKIM requires a key pair, and over
the years, the usage and length of these keys have become crucial factors. In 2012, Zach Harris,
a US-based mathematician, accidentally discovered that Google was using a weak cryptographic
key for certifying the emails sent from their corporate domains. The issue was with the DKIM
key used for Gmail[13]. For security reasons, the DKIM standard, at that time required keys to
be at least 1,024 bits long, but Google was using a 512-bit key, which could be easily cracked with
some cloud computing and time. Today, after Since the issuance of RFC 8301 in January 2018,
the allowed key sizes range from a minimum of 1024 bits to a maximum of 4096 bits.

23

Background

Modification of email content: Mailing lists pose a challenge for DKIM because they often
modify email content before sending it to subscribers. Common modifications include adding a
footer with the name of the mailing list and a link for un-subscription. As previously remarked,
altering the email content will cause DKIM to fail. One of the main issues users cite for not using
DKIM is because is its sensitivity to ”benign” changes to email content, such as line rewrapping
and URL expansion. These common operations in email services, sometimes done for usability,
can easily result in invalid signatures[14].

2.2.7 Verification tools

Various online tools can help users who would like to enable DKIM for their domain. These tools
offer assistance at various stages of the enabling process:

Creation of the DNS TXT record: By providing a domain name, a selector name, and the key
size, these tools can generate the appropriate DNS TXT record to be inserted into the DNS server.
In addition, they also generate the private key, associated with the public key contained in the
record, to be saved locally on the SMTP server. Given the importance of DKIM in authenticating
your domain, it is highly discouraged to use third-party services to generate the private key, which
can easily be generated locally using various libraries.

Verification of the DNS TXT record: Other tools can verify that DKIM is set up correctly,
by querying the entered domain-selector pair, and analyzing the resulting DNS record, checking
that it is correctly formatted and compliant with standards.

Testing DKIM functionality: Some tools instead allow a real end-to-end verification of DKIM
functionality, providing an address to send an email to which will then be analyzed to understand
if the DKIM signature is executed correctly.

Figure 2.6. DKIM generator (Source: EasyDMARC).

In addition to these tools available online, there is a specific Python library, called ”dkimpy”[15],
which offers some interesting features to manage emails containing DKIM signatures. Further-
more, the library provides three default scripts, to generate the key pair and DNS record, to
create the DKIM signature and header given a message in RFC 5322[16] format, and finally to
verify the DKIM signature given an email in eml or txt format.

2.2.8 Testing environment

To better comprehend the scenario and the difficulty that comes with the adoption of the DKIM
protocol a testing environment has been set up.

24

https://easydmarc.com/tools/dkim-record-generator?

Background

The initial idea was to set up two local email domains on the same Virtual Machine, publishing
their DKIM record on the DNS server, which would have been the VM itself, and then exchange
the email signed. The problem that came up with this setup was that emails were not being
signed by the mail server and looking at the documentation of the mail server itself the reason
behind that behavior seemed to be that the email not leaving the server, mail from local to local,
are never signed.

The next step was trying to make the mail leave the server, evaluating the possibility of using
a public domain and no longer a local domain in a way that the emails could have been sent to
any existing mail server. The problem here arose with the registration of a public domain with a
free service, given that:

• There does not seem to be a service that actually gives a public domain for free, the main
ones found give a sub-domain and still at a cost, albeit a very low one.

• The secondary problem concerns the management of the DNS associated with the domain,
some of these services allow the creation of the domain without, however, having access to
the DNS records.

• A further problem is the fact that in order to be able to send emails from the VM server,
a public IP must be associated with the MX record so that emails can be received, which
would require a fixed public IP address and internal network rules to make the mail server
accessible from the public network.

The solution found instead was to set up another mail server, on a different machine on the
same private network. The following schema will resume the configuration:

Figure 2.7. VM setup

As can be seen, there are multiple programs and services that needs to run in order to have
a working environment. HMailServer is a free, open-source, e-mail server for Microsoft Windows.
This tool requires the installation of MySQL as its own database server. The email domains are
created directly inside the HMailServer user interface which allows even for the enable of DKIM.
Lastly, Thunderbird is used as an email user agent.

From a network perspective instead, the two VMs have a different IP address in the same
subnet, but the first VM (VM1), acts as the DNS server of the private network, so is configured
as the DNS server of VM2.

The full documentation on how to set up the environment is available in the appendix A.

The following image 2.8 is an example of an email received with a DKIM signature inside the
environment:

25

Background

Figure 2.8. Signed Email

2.2.9 Connection with SPF and DMARC

The Sender Policy Framework (SPF) is a proposed internet standard, lastly defined in the RFC
7208 [17], that allows a recipient’s mail server to verify that a message comes from a mail server
authorized to send emails on behalf of the sender’s domain. It is particularly useful in contrast
to spoofing attacks, moreover, emails with no SPF info are more likely to be marked as spam by
the main mail service providers.

To achieve this, the domain owner must first collect the IP addresses of all the email servers
used to send mail. It is important to notice that if third-party services are used for email marketing
or other purposes, even these domain names need to be registered.

At this point, the SPF DNS TXT record can be created, and there must be one record only
for each domain. It is composed of a line of plain text that includes a list of tags, also known as
mechanisms, and values which are typically IP addresses and domain names.

These are the tags:

• v: Mandatory tag, that must be written as first and identify the version of SPF. Its value
must be ”spf1”.

• ipv4 or ipv6: Identify the mail servers authorized to send on behalf of the domain by their
IP address or address range.

• a: Identify the mail servers authorized to send on behalf of the domain by their domain
name.

• mx: Identify the mail servers authorized to send on behalf of the domain by their MX
records.

• include: Mechanism used to recursively check the SPF record of the domain inserted as a
value. This is useful when allowing third-party services to send emails.

• all: Default mechanism that applies to anything that has not been caught by other SPF
tags. It must be written as the last mechanism and together with a qualifier.

These are qualifiers, used to define some sending limitations:

• +: Also known as pass, is traduced in authorized to send.

• -: Also known as fail, identify a domain not authorized to send and reject the message.

• ~: Also known as soft fail, accepts the message but tags it as SPF failed. This is particularly
useful when the domain owner is not sure to have written down in the record all the domains
and IP addresses and wants to avoid getting marked as spam legitimate emails.

26

Background

• ?: Also known as neutral, accept the message but the host authorization is not specified.

It is important to not use the ”+” qualifier in front of the ”all” tag as this would open the door
for all unauthorized senders, making SPF useless. This is an example of a correct SPF record
that authorizes two specific IP addresses, includes Google and Yahoo as mail services, and soft
fail any other mail server that is not listed:

v=spf1 ip4:192.168.0.1 ip4:203.0.113.5 include: spf.google.com include:spf.mail.yahoo.com ~all

Once the email is received, the recipient mail server must perform a DNS query to retrieve the
SPF record, and then use it to check against the ”HELO” and ”MAIL FROM” message identities.
Specifically, the HELO is the address used by the sending server to handshake with the receiving
server, while the MAIL FROM specifies the return path, which might not be the same as the
From.

The connection between SPF and DKIM is provided by DMARC, fully described by the latest
RFC 7489 [18], which is built on top of these two protocols, allowing a domain owner to specify
how the recipient’s mail server should handle messages that do not pass the so-called DMARC
alignment. Specifically, after the verification of SPF and DKIM, by evaluating the DMARC
policy these messages can be quarantined, rejected, or simply logged by the protocol. Another
key strength of DMARC is its ability to provide reports about email activity on the domain,
enabling domain owners to detect and mitigate phishing and spoofing activities. Since all of these
settings must be set inside a DNS TXT record, let’s analyze the different tags:

• v: Mandatory tag that describes the protocol’s version, by default set to DMARC1

• pct: Represent the percentage of messages that are subject to filtering, its value must be an
integer between 0 and 100. This is typically useful when first configuring DMARC so that
users can start with a low percentage and then ramp up when the receiving reports seem to
be okay.

• ruf: Must be followed by the URI, typically of the postmaster, that will receive forensic
reports which are copies of email messages that have failed authentication.

• rua: Must be followed by the URI, typically of the postmaster, that will receive aggregate
reports, which are XML docs that give statistical insights about emails that claim to have
originated from that domain.

• p: Which describes the requested mail receiver policy when DMARC alignment fails. ”None”
does not take any action, ”quarantine” flags the email as suspicious or places it into the
spam folder, and ”reject” rejects the message during the SMPT transaction.

• sp: Which describes the requested mail receiver policy for subdomains, again between none,
quarantine, or reject.

• adkim: Is used to specify the alignment mode for DKIM, between strict or relaxed. The
strict DMARC alignment requires an exact match between the domain taken from the
”d=” tag of the signature and the domain present in the From field. The relaxed alignment
instead, has a larger range of acceptance, as even subdomains are considered valid. For
example, if ”d=test.com” and the From address is ”xyz@commercial.test.com” the relaxed
test would pass while the strict test would fail.

• aspf: Is used to specify the alignment mode for SPF, between strict or relaxed. In this case,
the alignment requires not only the ”Mail From” header to be SPF verified but also the
”From”. Again, the difference between strict and relaxed resides in an exact match between
the fully qualified domain names in the case of strict.

This is an example of DMARC record:

v=DMARC1; p=none; rua=mailto:ar@test.it; ruf=mailto:af@test.it; pct=100; adkim=s; aspf=s

27

Background

2.3 Timestamping

One of the most important aspects related to the analysis of digital data during an investigation
is certainly the time reference, which can indicate a precise time of existence of this data. It is
obviously necessary that this reference be reliable and as precise as possible, in order to avoid
the case where external malicious actors can take advantage of this information or even falsify
it. Examples of the application of a time stamp concern the certification of the presence, or even
absence, of a certain content within a website during a forensic copy [19], or even the verification
that a digital signature has occurred on a document before the corresponding certificate has been
revoked. This allows a revoked public key certificate to be used for verifying signatures created
prior to the time of revocation ensuring the integrity and authenticity of the document at the
time it was signed.

Trusted timestamping is a mechanism used to certify the existence of electronic information
before a specific point in time. The key term here is ”before”, as it indicates that while we cannot
determine the exact creation time of the document, we can affirm its existence prior to a given
timestamp. This is typically inferred from the metadata associated with the document.

According to RFC 3161[20], which establishes a global standard for the timestamp protocol,
this certification is generally performed by a trusted third-party service known as a Time Stamp-
ing Authority (TSA), even if an organization might require a TSA for internal time-stamping
purposes. To maintain a trusted time reference, the TSA often uses a reliable source, such as a
Network Time Protocol (NTP) server, which it queries regularly to keep its time updated and
accurate.

Let’s examine the general workflow of the timestamping process:

As a first step, the user wishing to timestamp a digital data must create a hash of it, usually
algorithms such as SHA-256 OR SHA-512 are used for this operation. Then via an HTTP/HTTPS
request, the newly produced hash, the name of the algorithm used to produce it and optionally
other additional information is sent to the relevant Timestamping authority. The TSA will then
produce a timestamp response, including details of the request received and inserting the so-called
Timestamp Token (TST), created by digitally signing with its private key a combination of the
received hash and the current timestamp. This TST serves as proof of existence of a certain type
of data at a precise instant of time, conferring integrity and authenticity.

Figure 2.9. Timestamping workflow (Source: What is Timestamping?).

28

https://www.globalsign.com/en/blog/what-is-timestamping-how-does-it-work

Background

In the following paragraphs, the format of the timestamp request and response as defined in
RFC 3161 will be analyzed in detail.

2.3.1 Timestamp request

A timestamp request is composed of several critical fields:

Figure 2.10. Timestamp request (Source: RFC 3161).

• version: This field specifies the version of the timestamp request, which is currently v1.

• messageImprint: This field includes a sequence of two objects (Figure 2.10). The first
object represents the hash algorithm used, which should be a known, one way, collision-
resistant algorithm. If the TSA does not recognize such algorithm or classify it as weak or
compromised, it should refuse to reply with a valid timestamp token and should inform the
requester in the response. The second object is the hash of the data to be timestamped,
represented as an octet string. Its length must correspond to the hash value length of the
specified algorithm.

• reqPolicy: This optional field specifies the policy under which the timestamp is requested.
The timestamping authority might need to perform different validation, verification, or cryp-
tographic operations based on the specified policy to ensure compliance with its requirements
and objectives.

• nonce: This optional field contains a large random number, that if inserted is generated by
the client and must be returned by the TSA in the response, otherwise, the response should
be considered invalid. Typically, this is a 64-bit integer, which helps in preventing replay
attacks

• certReq: This field indicates whether the client requests the inclusion of the TSA’s public key
certificate in the response. Typically, this is referenced by the ESSCertID or ESSCertIDv2
identifier within a Certificate attribute in the certificates field from the SignedData structure
(Figure 2.12). This certificate is essential for the client because it is used in the process to
verify the authenticity and integrity of the timestamp response.

• extensions: This field allows for the inclusion of additional information in the request. It
provides a flexible mechanism for future enhancements and extensions.

A timestamp request can be easily created using the OpenSSL’s ”ts” command[21], which is
specifically designed for timestamping. The command is as follows:

openssl ts -query -data <input file path>-sha256 -cert -out ts request.tsq

In this command, ”-sha256” specifies the hash algorithm used to create the hash, while the
”-cert” flag requests the TSA’s certificate.

29

https://datatracker.ietf.org/doc/rfc3161/

Background

The generated timestamp request can be sent via HTTP or HTTPS to the timestamping
authority with ”curl”, and the response saved in a file named ”timestamp response.tsr”, thanks
to the following command:

curl -H ”Content-Type: application/timestamp-query” -data-binary ’@ts request.tsq’ <TSA
URL>>ts response.tsr

2.3.2 Timestamp response

A timestamp response is more complex compared to a request:

Figure 2.11. Timestamp response (Source: RFC 3161).

Let’s start with the status field of TimeStampResp, which is composed of three different pieces
of information, as shown in the above Figure 2.11.

The status of PKIStatusInfo must be one of the following:

• granted (0): This indicates that the TimeStampToken has been successfully released.

• grantedWithMods (1): This indicates that the TimeStampToken has been released but with
modifications.

• rejection (2): This indicates that the timestamp request has been rejected. Further in-
formation about the rejection will be provided by the failInfo field, such as unsupported
algorithm, policy, or extension, incorrect data format, or other reasons.

• waiting (3): This status indicates that the request is waiting for further processing. It is a
transitional status and does not conclude the request processing.

• revocationWarning (4): This is a warning indicating that the revocation of the TimeStamp-
Token is imminent.

• revocationNotification (5): This indicates that the TimeStampToken has been revoked. This
notification informs the requester that the previously issued token is no longer valid.

When the status is granted (0) or grantedWithMods (1), a TimeStampToken must be present
in the response. On the other hand, when the status is any value other than zero or one, a
TimeStampToken must not be present.

When the TimeStampToken is not present, the failInfo field indicates the reason why the
timestamp request was rejected. Possible reasons include:

• Unsupported algorithm, policy, or extension.

• Incorrect data format submitted.

• Additional information required but not understood.

• System failure.

30

https://datatracker.ietf.org/doc/rfc3161/

Background

The statusString field of PKIStatusInfo may be used to include additional reason text, such as
”messageImprint field is not correctly formatted.” This field provides human-readable information
to help diagnose the reason for the status provided.

The TimeStampToken (Figure 2.11) is defined in the SignedData format, encapsulated inside
a ContentInfo as specified in Cryptographic Message Syntax (CMS) defined in RFC 5652[22]. As
shown in the image below, there is a certificate field where the certificates of the TSA (Times-
tamping Authority) can be included if requested.

Figure 2.12. Timestamp Token (Sources: RFC 3161 and RFC 5652).

The eContent field of the EncapsulatedContentInfo within the SignedData structure contains
an octet string that reflects the DER-encoded value of the TSTInfo. This TSTInfo includes all
the information related to the provided timestamp. Below is a list of the detailed contents:

Figure 2.13. Timestamp Token Info (Source: RFC 3161).

• version: This field specifies the version of the timestamp request, which is currently v1.

• policy: This field indicates the TSA’s policy under which the response was produced. If
present in the Timestamp Request, it must have the same value, to ensure consistency
between response and request.

31

https://datatracker.ietf.org/doc/rfc3161/
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/rfc3161/

Background

• messageImprint: This field must have the same value as the corresponding field in the
Timestamp request. Since it represents the hash of the data to be timestamped, a different
value would result in a modification of the data between the request and the response.

• serialNumber: This field is a unique integer assigned by the TSA to each TimeStampToken.
This is done to permit the identification and the reference of each token uniquely.

• genTime: This field represents the time at which the TSA created the timestamp token
expressed in Coordinated Universal Time (UTC). As a direct consequence this corresponds
to the precise record of when the data was timestamped.

• accuracy: This value can be added or subtracted from the genTime, to obtain respectively
an upper and a lower limit of the time at which the timestamp token was created. This is
particularly useful to reduce the possible time range of creation.

• ordering: If the ordering field is present and set to true, it indicates that every timestamp
token from the same TSA can be sequentially ordered based on the genTime field, regardless
of the accuracy. This ensures a reliable chronological order of issued timestamps.

• nonce: The nonce field must be present if it was included in the Timestamp request. In
such cases, it must equal the value provided in the TimeStampReq structure.

• tsa: The purpose of the tsa field is to provide a hint for identifying the name of the TSA. If
present, it must correspond to one of the subject names included in the certificate used to
verify the token. However, the actual identification of the entity that signed the response
will always be through the certificate identifier (ESSCertID or ESSCertIDv2) within a Sign-
ingCertificate attribute, which is part of the signerInfo. This field helps in verifying the
authenticity and integrity of the timestamp token by linking it to the TSA’s certificate.

2.3.3 Verification of the timestamp

Validating a trusted timestamp involves several key steps:

1. First, the hash of the file being verified needs to be compared with the messageImprint field
of the timestamp token.This ensures that the timestamp response corresponds to the file for
which the timestamp is being checked.

2. If the hashes match, then the timestamp request and response must be cross validated.
For example, if the timestamp request included a nonce, the same nonce should appear in
the corresponding timestamp response. The cryptographic hash algorithm specified in the
timestamp request should also match the algorithm in the messageImprint of the timestamp
response, and so on.

3. At this point, the timestamp response must be validated itself. This involves verifying the
digital signature on the signed timestamp data and checking the certificate chain to ensure
it can be traced back to a trusted root or top-level certificate authority.

It is possible to verify the timestamp response using OpenSSL with the following command:

openssl ts -verify -in ts response.tsr -queryfile ts request.tsq -CAfile <certificate chain file>

The CAfile parameter is optional but useful for providing multiple certificates in PEM format
to facilitate certificate chain verification.With this parameter is often included the certificate of
the TSA’s certification authority (CA).

In addition to OpenSSL, there are various online tools available for verifying timestamp tokens.
For these tools to work the user needs to upload the timestamp response, the timestamp request,
and possibly the original file to ensure a complete verification process. These services provide a
convenient and reliable way to ensure the authenticity and integrity of the timestamped data.

32

Chapter 3

State of the art

In the early stages of this thesis, substantial research was conducted on the present implementation
of the DKIM protocol, as well as any known studies about the verification of past DKIM signatures.
Since no earlier open-source research on the last topic presented was discovered, the focus shifted
towards the broader theme of validating historical documents.

3.1 DKIM Deployment

DKIM, along with SPF and DMARC, is a protocol which provide a way for users to authenticate
the sender’s identity, designed to prevent email spoofing, a common technique used in phishing
attacks. Even though these protocols became internet standards, these attacks remain common
and relatively simple to carry out. This inconsistency may be due to the adoption rate of these
protocols which has been the subject of recent studies.

In 2015, research by the University of Michigan and the University of Illinois [1] found that just
47% of the Alexa Top Million mail servers used SPF policies and a very low 1% utilized DMARC
policies. Because of the nature of the DKIM protocol, direct measurement of its adoption was
not possible; however, it was reported that in April 2015, 83.0% of the emails received by Gmail
contained a DKIM signature as can be seen in the table below 3.1.

Figure 3.1. Gmail Incoming Mail Authentication. (Source:[1])

A comparable study conducted in 2022 by Tsinghua University students [2] focused more
specifically on DKIM deployment. Their investigation included data from two sources: DKIM
records parsed from Passive DNS datasets provided by important Chinese security organizations
(Qi-Anxin and 360), as well as DKIM signatures retrieved from email headers provided by Core-
mail, China’s largest email provider. When evaluating the adoption rate of the Alexa top 1
million domains with an MX record, they discovered that DKIM adoption (37%) was between
that of DMARC (15.1%) and SPF (69.8%). They also offered statistical data on adoption rates
across various top-level domains (TLDs), noting that .edu had the highest adoption rate, while at
country level .ru domains had the highest number of DKIM-supporting domains, while Australia
showed the highest percentage (58.6%). All this information can be found in the three figures
below 3.2 3.3 3.4.

33

State of the art

Figure 3.2. Adoption Rate among Alexa Top 1 Million Domains. (Source:[2])

Figure 3.3. DKIM Adoption Rate among Mul-
tiple ccTLDs. (Source:[2])

Figure 3.4. DKIM Adoption Rate among
Multiple gTLDs. (Source:[2])

Despite the fact that these email security protocols have become more widely adopted over
time, mismanagement of DKIM remains a major issue within the email industry. This mishandling
is caused by several problems, including:

• Invalid DKIM records: Some records have invalid tags, not defined by the standard, or no
p field which identify a missing public key. Moreover, some domains have multiple records
for the same selector.

• Long lifetime keys: Some DKIM keys are used for more than five years, although they should
be cycled on a regular basis to reduce the danger of compromise.

• Shared keys: Some email service providers give users DKIM keys and selectors that are
shared by several other users, increasing the risk of compromise due to the continuous
usage.

• Weak keys: Despite the recommendation for 2048-bit keys, some domains continue to utilize
DKIM keys with 1024 bits or less, which are considered weak.

Previous research [14] have investigated this absence of widespread adoption, interviewing
users that revealed numerous crucial insights:

• Sensitivity to Benign Changes: Users believe DKIM is extremely sensitive to tiny, non-
malicious changes in email content, such as line rewrapping, which might invalidate signa-
tures.

• Critical Mass and Incentives: Some believe that not enough entities have adopted DKIM
to make it desirable for others to implement. A critical mass is required to accelerate
adoption. The benefit of publishing these DNS records, such as improved reputation, is
seen as too vague, especially for domains that do not host email services. However, if more
domains publish SPF, DKIM, or DMARC records, the overall advantage grows, since a
greater number of incoming emails can be authenticated.

• DNS Record Management: Some users noted that certain services do not have direct con-
trol over their DNS records. Implementing SPF, DKIM, or DMARC requires additional
cooperation with their DNS providers, which can increase overhead and complexity.

34

State of the art

• Concerns About System Disruption: Because of the unfamiliarity with these protocols, there
is concern that the currently working email system may be disrupted. While this worry is
particularly relevant for DMARC, it also has an impact on DKIM adoption.

3.2 Long Term Verification

Since no previous work has been conducted explicitly on verifying old DKIM signatures, let’s look
at how documents can remain verifiable for many years after their initial signing.

Verifying the authenticity of a digital signature usually involves several steps that rely on
cryptographic techniques and standards. Here is an overview of the whole procedure:

• The process begins by obtaining the signed document and its associated digital signature.

• The signer’s digital certificate, which relies on Public Key Infrastructure (PKI), must be
obtained. PKI is a framework that manages digital certificates and public-private key pairs.
Certification Authorities (CAs), trusted entities that issue these certificates, play an impor-
tant part in this process.

• The certificate’s validity is verified by following the certificate chain up to a trusted root CA.
The root CA’s certificate must not be present in the chain because it is inherently trusted
by the verifier. This involves:

– Verifying Digital Signatures: The digital signature of each certificate in the chain is
validated.

– Checking for Revocation: Certificate Revocation Lists (CRLs) or the Online Certificate
Status Protocol (OCSP) are used to determine whether any certificate in the chain has
been revoked. CRLs are lists of revoked certificates, containing the reason and date
of revocation, signed by the issuing CA. The certificate usually includes information
on where to obtain the appropriate CRL. OCSP involves querying an OCSP server to
obtain the certificate’s current status.

• Once the certificate is validated, the digital signature on the document can be verified with
the signer’s public key retrieved from the digital certificate.

However, since many business applications require their signed documents to be verifiable
months or even years after signing, the question arises: Will this digital signature always be
verifiable in the future?

There are several factors that may prevent the completion of the verification process, and the
majority of them are related to the used certificates:

• Due to a loss or job change, the signer’s certificate may be revoked.

• Since certificates have limited lifetime, the signer’s certificate may be expired.

• The same expiration may concern the issuing CA’s certificate, even though they usually
have a longer lifetime.

• The used cryptographic algorithms may become weak, making the signature vulnerable to
compromission.

These challenges have been researched since the early 1990s, evolving from early cryptographic
studies that led to online methods incorporating time stamps and the basic notary protocol,
commonly known as digital notarization. This foundational work, initiated by Stuart Haber
and W. Scott Stornetta, established a method for linking digital signatures with time stamps to
provide proof of document integrity and chronology.

35

State of the art

While traditional time stamps offer a way to verify when a document was signed, notary
protocols provide a direct (one-way) link between the signature and the confirmation, thereby
ensuring proof that the signature was created before the notary issued the confirmation.

Building on this basic technique, Arne Ansper, Ahto Buldas, Meelis Roos, and Jan Willemson’s
paper ”Efficient Long-Term Validation of Digital Signatures” [23] proposed many improvements to
solve the issues associated with long-term verification. Their research optimized the computational
and storage needs for retaining signature validity over long periods of time, as well as proposed
methods for incremental validation.

The concept of Long Term Validation (LTV) or Long Term Signature (LTS) expands the
original notary protocol’s objective by preserving all important information required to verify the
signature with the signature itself, ensuring that the verification procedure can be executed in the
future. However, simply retaining this information is not enough. It is necessary to demonstrate
that the signer’s certificate was valid at the time of signing, meaning it was neither revoked nor
expired. To achieve this, the process involves several key steps as illustrated in the image below:

Figure 3.5. LTS Process (Source: LTS).

• Initially, a document is signed using the signer’s private key through a hash and sign algo-
rithm, such as SHA256 & RSA, which produces a basic digital signature.

• A Time Stamp Authority (TSA) provides proof of the signing time by issuing a trusted
timestamp, which has higher validity than relying exclusively on the signer’s claimed time.

• To demonstrate that the signer’s certificate was not revoked at the time of signing, a Vali-
dation Authority utilize either OCSP or CRL technology.

This method converts the basic signature into a Long-Term Validation (LTV) signature format
that follows standards such as PAdES, XAdES, and CAdES.

Regarding the long-term preservation of digital signatures, standards provided by ETSI and
ISO play a crucial role. These standards cover the preservation of signed PDFs (ISO and ETSI)
and other document types (ETSI). ETSI’s Long-Term Preservation (LTP) framework consists of
a series of standards and technical specifications that guide developers on how to format digital
signatures and enhance them for successful long-term preservation. These standards ensure that
all necessary information is retained to maintain the validity of the signature over time. Some of
these standards will be discussed in the next subsection.

According to a study conducted in this paper [24] on existing EU suppliers of long-term preser-
vation services for digital signatures, PAdES is the most widely utilized format. This popularity
is primarily caused by the widespread use of PDF files in digital signatures. Additionally, the
CAdES and XAdES formats, which embed digital signatures within generic files or XML docu-
ments, respectively, are used in more than 75% of the examined solutions, demonstrating their
popularity and widespread use.

36

https://www.signinghub.com/long-term-validation/

State of the art

3.2.1 PAdES for Long Term Validation

The ETSI TS 102 778-4 V1.1.2 [3] is responsible for profiling the electronic signature formats
specified in ISO 32000-1, ensuring the Long Term Validation (LTV) of PDF signatures. This
involves detailing how to embed validation information in a PDF and securing it with timestamps,
enabling the verification of a PDF signature long after it was initially signed. While PAdES stands
for PDF Advanced Electronic Signature, PAdES-LTV is the enhanced standard for long-term
validation.

As outlined previously, verifying a digital signature requires data like CA certificates, Certifi-
cate Revocation Lists (CRLs), or Online Certificate Status Protocol (OCSP) responses, typically
provided by an online service. If a signature needs to be verifiable long after its creation, such as
after the signing certificate has expired, the original validation data might become inaccessible,
or there may be uncertainty regarding the validation data used during the initial verification.

The profile previously mentioned, uses a data structure known as the Document Security
Store (DSS) to store the necessary validation data for signature verification, optionally including
Validation Related Information (VRI) to link this data to a specific signature. The structures of
DSS and VRI are reported in the image below 3.6.

Figure 3.6. DSS and VRI structures (Source:[3]).

To mitigate issues like inability to connect to remote validation servers, especially when offline,
the validation-related information must be separate from the signature itself. This allows adding
validation information to an already signed PDF at any later time. A new ”security store” is
defined within the PDF to house these components. This separation also optimizes storage by
allowing common components (e.g., certificates, revocation lists) to be stored once and referenced
as needed across multiple signatures, thereby reducing the PDF’s size.

In the DSS dictionary, the Certs, OCSPs, and CRLs arrays refer to certificates, OCSP re-
sponses, and certificate revocation lists used for validating any document signatures. Meanwhile,
the VRI dictionary contains Signature VRI dictionaries for each specific signature’s validation in-
formation. If there is only one signature in the document, this might seem redundant. Each VRI
dictionary entry key is the base-16-encoded (uppercase) SHA1 digest of the relevant signature.
Below is an example of the actual DSS and VRI structure 3.7.

37

State of the art

Figure 3.7. Real structure of DSS and VRI (Source: StackOverflow).

To extend the document’s protection over time, a Document Timestamp is applied. This
timestamp also secures the DSS by linking it to the relevant document. The collection of the DSS
and the initial verification of the signature occur before the time indicated in the first Document
Timestamp, which can then serve as the assumed signing time during re-verification using the
protected validation data from the DSS. Timestamps are signed, so their own validation data can
expire. The DSS may also include signature validation data related to the signature timestamp.

To further extend the document’s protection beyond the last Document Timestamp, additional
DSS information can be added to validate the previous timestamp, along with a new Document
Timestamp. Below is a comparison between a document with a single LTV and one with repeated
LTV:

Figure 3.8. Single LTV. (Source:[3]) Figure 3.9. Repeated LTV. (Source:[3])

Validation of such documents should follow this process:

1. Validate the ”latest” Document Timestamp with current validation data.

38

https://stackoverflow.com/questions/17728728/dss-vri-what-is-so-mystructure

State of the art

2. Validate the ”inner” Document Timestamp at its time using the validation data present in
the previous DSS.

3. Validate the signature and its Timestamp at the latest innermost LTV Document Times-
tamp using the DSS-stored validation data.

3.2.2 CAdES for Long Term Validation

As described in the last paragraph, PAdES LTV is used for PDF documents but is sometimes
necessary to transition to CAdES due to the nature of the file to be signed, different regulatory
environments or specific organizational needs. CAdES is designed for CMS-based (Cryptographic
Message Syntax) signatures and to ensure long-term validation (LTV) it offers the CAdES-X Long
profile, a reliable framework for maintaining the signature validity over time.

CAdES-X Long improves the CAdES-C format by adding the certificate-values and revocation-
values attributes. The certificate-values attribute envelopes the complete certificate chain required
for verifying signatures, while the revocation-values attribute holds the CRLs and/or OCSP re-
sponses necessary for validating signatures. This guarantees a dependable archive of certificate
and revocation data essential for validating a CAdES-C signature, thereby preventing the loss
of this information. Using CAdES-X Type 1 or Type 2, one can attach a timestamp either to
the entire CAdES-C content or specifically to the certification path and revocation information
references.

Figure 3.10. CAdES-X Long (Source:[4]).

Figure 3.11. CAdES-X Long Type 1 or 2 (Source:[4]).

By using the components discussed so far, all the necessary data needed for the signature
validation is retained, even after long time after its creation. Certificates and revocation data
are essential for confirming the signer’s identity and its validity status at the moment of signing,
therefore they are embedded within the document. Furthermore, timestamps demonstrate that
the signature and the related validation data existed at a certain point in time, preventing back-
dating and other forms of tampering. All of these attributes are considered critical, particularly
for regulatory compliance.

In addition to CAdES-X Long, another key profile is CAdES LT, which is detailed in ETSI
TS 101 733 V2.2.1 (2013-04)[4]. CAdES LT is intended to ensure that all required validation data

39

State of the art

(certificates, CRLs, and OCSP answers) are incorporated in the signature at the time of signing.
It can be built on top of any format among CAdES-T, CAdES-C, CAdES-X Long, CAdES-X Long
Type 1 or 2 or a CAdES-A. This profile is essential for situations where long-term availability and
integrity of the validation data are required, ensuring that the signature can be verified even if the
original validation data sources are no longer accessible. CAdES LT provides a solid foundation
for long-term validation, similar to PAdES LTV, by maintaining all necessary data within the
signature itself.

Figure 3.12. CAdES-LT (Source:[4]).

As cryptographic standards evolve and previous algorithms become obsolete, the basic CAdES
LT and CAdES-X Long profiles may no longer be sufficient for indefinite long-term validation.
This is where CAdES-A (Archive) comes in, offering an improved solution for long-term validation.
CAdES-A expands on these profiles by periodically placing archival timestamps to the document.
These timestamps include all past validation data, including older timestamps, resulting in a
continuously updated chain of trust inside the validation framework. A new archival timestamp
is added only when the certificate of the previous archival timestamp is about to expire. This
additional timestamp from a trusted third party confirms the content’s authenticity at the moment
of updating. All validation components required to validate the new TSA answer (’archival
timestamp’) are also incorporated into the signature.

CAdES-A, introducing new archival timestamps, ensures that the document is verifiable even
when cryptographic technologies improves and previous algorithms become obsolete, despite the
fact that the archived signature grows in size over time. This proactive approach to preserving
the document’s integrity overcomes any vulnerabilities that could arise from relying solely on
outdated cryptographic methods. As a result, CAdES-A adds an extra layer of security and
assurance, making it an excellent solution for situations requiring extensive use of long-term
validation.

Figure 3.13. CAdES-A (Source:[4]).

To verify the archival signature, one must first validate the original signature. Then, the verifier
should check that each subsequent timestamp appropriately validates the prior one. Finally, the
last timestamp is validated ’at the current moment,’ which may imply contacting online revocation
sources.

40

Chapter 4

Solution

Given the state of the art of the long-term verification environment, and considering the final goal
of this thesis, which is to enable the verification of DKIM for emails received in the past, different
solutions were initially analyzed. In the following sections, each solution will be discussed along
with its pros and cons, even though the work proceeded with the full development of only one of
them. In the end, thanks to a temporary license, it was possible to test and compare the solution
developed with two Metaspike tools, both of which operate in the computer forensic field and
offer similar functionalities.

4.1 DKIM & CAdES

This initial solution aimed to incorporate the DKIM signature into a format like CAdES. This
format, in particular, permits encapsulating any kind of document as raw data inside it, and it
could fit the requirement of enveloping an .eml file, representing an email. Thanks to the various
formats described in the previous chapter, it could also be possible to extend this signature for a
long time, permitting validation at any moment after the reception of the email.

This was the possible scenario imagined for a mix of the two protocols:

1. The email is composed and sent to the sender’s SMTP server.

2. The sender’s SMTP server signs the email and puts the .eml file and the signature into the
CAdES format adding the DKIM record correlated to the private key used as ”validation
data”.

3. The resulting file is sent as an attachment to the email itself.

4. The receiver’s SMTP server can read the CAdES format and verify if the signature is valid.

5. Depending on the result of the verification, the email is junked or received in the inbox.

Since DKIM is not using PKI for its keys, there is no certificate nor revocation data that could
be extracted from this architecture, so the only ”verification data” that can permit the future
verification of the signature is the DKIM record itself.

4.1.1 Advantages

One of the main advantages of this solution is the increased security and integrity it offers to
email communications. Thanks to the fact that the CAdES format accommodates both the
DKIM signature and the email itself, these two objects become even more connected, making it
possible to detect if a malicious user has modified one of them. In this way, the user sending an

41

Solution

e-mail can achieve a higher level of security, as there is the certainty that the alteration of the
e-mail would be recognized.

Permitting emails to be validated long after they have been received is particularly valuable for
legal and compliance purposes, where it is essential to prove the authenticity of communications
over extended periods.

Finally, by using already existing standards and technologies, the transition to this standard
could be faster. The CAdES format is already a widely recognized and used standard for advanced
electronic signatures. For this reason, many companies and organizations may already have the
infrastructure and software to use it, and thus the effort required for the transition would be con-
siderably reduced. On the other hand, companies that were already using CAdES but not DKIM
could be enticed to adopt this protocol, further enhancing the security of their communications
with minimal effort.

4.1.2 Potential problems

The first major stumbling block in adopting this solution concerns the added complexity in the
management of e-mails. Whereas the standard DKIM signature was simply inserted within the
source code of the e-mail, the CAdES format produces an actual file that needs to be sent to the
recipient as an attachment. This would certainly affect the processing work of the sending and
receiving servers, which could lead to longer times required for the transmission of the e-mail and
a consequent higher load on the servers themselves, especially during periods of higher utilization.
In addition, this solution would require changes to the current email infrastructure, if servers do
not support the CAdES format natively and require further adaptations, which may be unfeasible
for companies due to compatibility issues or lack of sufficient resources.

As emerged from the interviews carried out in the previously mentioned paper on the use
of DKIM[14], one of the main reasons that hold back the possible adoption of the protocol is
precisely the need to modify one’s currently functioning infrastructure to adapt to the use of this
new technology. This could therefore represent an additional obstacle and could decrease the
already low use of the protocol.

Another potential problem concerns the increased weight of the e-mail due to the CAdES
attachment present. Given the large number of emails that a company sends and receives daily,
this could result in storage problems, running out of space sooner and thus leading to an economic
cost to increase it.

4.2 DKIM & TSA

The second solution came up thinking about a lighter environment, removing the usage of a fixed
format like CAdES but trying to keep the functional pieces needed for future verification. This
time the idea was to incorporate a Timestamp Authority inside the DKIM signature, permitting
in some way users to extend the validity of the signature as wanted. The scenario imagined was
something like this:

• The email is composed and sent to the sender’s SMTP server.

• The sender SMTP server computes the DKIM signature and sends the email.

• The receiver’s SMTP server queries the DNS server to obtain the public key needed to verify
the signature and then will Timestamp this query reply together with the email content.

• The signature is verified, and the timestamp response, together with the query reply is
conserved as attachments of the email.

• Depending on the result of the verification, the email is junked or received in the inbox.

42

Solution

The email content and the query reply may be combined together to send a single timestamp
request in this way:

• The email content, including headers and body, is hashed to create a digest. It’s important
to notice that this hash is not the same contained in the DKIM signature since it covers the
whole mail received at recipient side.

• The DNS query reply is also hashed to create another digest.

• These two digests are concatenated into a single hash.

Given this architecture, when a user wants to verify the signature in a future time, it has
all the information needed, the email signed, the public key contained in the DNS record, and
a timestamp response that certifies the public key at the time of usage correlated to the email
received.

4.2.1 Advantages

As mentioned in the introduction this solution weighs lighter than the previous one. Here the
only behavior changed is the one on the receiver side, which will always query the DNS server to
obtain the public key, but then the timestamp is introduced to permit a kind of crystallization of
the important data.

Additionally, given the process of timestamping described in the background chapter, the
email receives another digital signature which is placed by the Timestamp authority chosen. In
this case, an additional layer of security is inserted, protecting the integrity of the email message
itself, ensuring that both the content and signatures are immutable and verifiable over time.

Lastly, thanks to the timestamp, both senders and recipients have a verifiable proof of the
email’s origin and receipt. This makes much harder denying having sent or having received an
email, which is a feature particularly beneficial in legal and compliance contexts.

4.2.2 Potential problems

Even if less than before, another change in the email infrastructure is needed at this time. As
described for the previous solutions, these kinds of changes are not always well seen as they
introduce the uncertainty of disrupting working and functional services. The major problem here
comes from the choice of the timestamp server.

Nowadays given all the regulations in terms of digital or electronic signature, there is a big
difference between one timestamp server and the other. Depending by the chosen server the
timestamp released can have legal values or not and most of the time the service of timestamping
does not come for free. Typically, those kinds of services sell timestamps as tokens, having a certain
price for a fixed number of timestamps. Moreover, since this solution requires each received mail
with DKIM signature to be timestamped singularly, the number of timestamps requested daily
would be extremely high.

By a statistic conducted by the Radicati Group, a company that provides quantitative and
qualitative information on a worldwide basis, the average number of emails received by a single
user in a day is around 80[25]. On the other hand, confronting various timestamping services the
average price for a timestamp token is expected to be from 0,20e to 0,50e, depending primarily
on the amount of token bought. In the worst-case scenario of 100 mail received and 0,50e, for
each timestamp this would result in 50e, daily for each worker. Considering the number of
employees of each company this solution would practically not stand as too cost consuming.

The worst scenario described here is a free protocol like DKIM which in order to adopt this
new update and enhance its reliability for future verification, will now require a sort of fee to be
paid to a timestamp service. Obviously, this would decrease significantly the already low adoption
of the protocol, possibly creating more problems than the pros provided.

43

Solution

Ultimately, relying on a TSA introduces a dependency that can become a single point of
failure. If the TSA is unavailable or compromised, it could disrupt the email verification process.
This entity must also be highly secure and trustworthy given that any compromise in its security
could undermine the entire system’s trust.

4.3 DKIM Logger

The primary challenge with the two previously described solutions lies in the necessity to modify
existing, functional infrastructure to accommodate potential updates. In this way, changing the
protocol and integrating any other technologies could discourage the adoption of the protocol,
which is already not so high, given the burden and the effort required to implement those changes.

Moreover, DKIM was originally designed to achieve an immediate verification of the signature
for antispam purposes and was not intended to guarantee or ensure its long-term validity. This
limitation suggests that the real solution might need to come from something external. From here
started the idea of developing an external tool, that does not interfere with the protocol itself but
that could be complementary and built to solve the problem highlighted by this thesis.

As discussed earlier, verifying a DKIM signature requires only two elements:

• The email to be verified.

• The public key associated with the private key used to sign the email, which is published
as a TXT record in the DNS.

However, a significant problem arises when these public keys are sometimes rotated or removed,
so they may not be available anymore in the DNS server when needed. How can a user retrieve
this key if it’s no longer available?

4.3.1 Log generation and preservation

The initial solution tried to solve this problem in a simple and straightforward way: logging the
DKIM records of specific domains. During the normal verification of the DKIM signature, the
recipient’s SMTP server performs a DNS query to retrieve the public key. In a similar way,
the first operation done by the tool was logging the DKIM record of a list of couples (selector,
domains), provided by the user.

The command used to perform those queries is dig, which stands for Domain Information
Groper. Dig is a versatile tool used for verifying and troubleshooting DNS issues but also to
perform DNS lookups. This is an example of queries performed by the tool:

dig selector. domainkey.domain txt +noall +answer

In this command:

• selector and domains are placeholders that change with each iteration reading all the list of
couples provided by the user

• The txt flag specifies that the query is aiming at a TXT record type, as DKIM public keys
are stored in TXT records

• The +noall option tells dig not to display the default output, which includes lots of additional
and non-relevant information, but only shows the specific details.

• The +answer option specifies dig to display only the answer section of the DNS response,
containing the interesting information.

44

Solution

The output of the command was designed to be printed inside a txt file, with each entry
preceded by the timestamp of the execution date. By following this format, each (selector, domain)
pair has its own txt file that tracks the daily evolution of the corresponding DKIM record. This
approach allows for the creation of a big database of DKIM records, organized by domain and
selector, which can be referenced later to recover the public key used at a specific time.

However, as discussed in the context of long-term verification, it is also important that such
data is not only logged but also validated, ensuring its existence can be certified at a specific point
in time. To achieve this status a Timestamp authority was introduced into the process. While
there are various types of Timestamp Authority and many companies that offer timestamping
services, which will be better described in a later section, the initial TSA chosen for this tool was
a free service provided by freeTSA.org.

Thanks to this service a user is able to timestamps electronic document or websites content,
by providing a URL, via a TCP-based connection or, alternatively, by using an online form to
upload files and download both the timestamp request and the timestamp response.

For the purpose of our tool, a simple timestamp applied to the txt file containing the DKIM
records was sufficient. The commands used to generate the timestamp request and to send it
to the TSA (”openssl ts” and ”curl”) were previously described in the ”Timestamp Request”
paragraph of the Background chapter. The output files generated by this process are saved in
the same directory as the txt file, following a similar naming convention, to permit an easier
association between them. Moreover, the timestamp recorded in txt file before the DKIM record
allows for a double check against the timestamp token issued by the TSA, as the two actions are
executed sequentially.

Furthermore, since the timestamp request includes the hash of the file at the time of request,
this hash is performed and added to the txt file, before writing the new record. This provides an
additional way to check the integrity of the whole system. Here is an example of what the TXT
file might look like on the second day of the tool’s execution:

1 New execution at: Jul 17 09:18:47 2024 GMT

2
3 ; <<>> DiG 9.10.6 <<>> google._domainkey.spotify.com txt +noall +answer

4 ;; global options: +cmd

5 google._domainkey.spotify.com. 300 IN TXT "v=DKIM1; k=rsa;

p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCSiZTnXPysNqgPjX0hSeHC8wVY62

6 ooFHCcC/Jo8TtWRNMoO75qdRUT2qnuF3+gc4/NI2qWMy0yMYqliLHviLMNeKzWjkOaR3VaVH

7 rSuDf+8WSgaWk0HJS5cDStqjknBpd8tmdQDXbSUE8WRUxTzQuWVUmMqU83kMrSygzqmunNiw

8 IDAQAB"

9
10 Previous file SHA512 Hash:

f4138d3eda05b3c361ac1d56ae4f1cf9470b4428a4f18b575c7a4efd3c92180ef7d4

11 323b75ddf29ccf2643964386b2b297952393f9d7adf89efef2ca78d9a80d

12
13 New execution at: Jul 18 08:20:50 2024 GMT

14
15 ; <<>> DiG 9.10.6 <<>> google._domainkey.spotify.com txt +noall +answer

16 ;; global options: +cmd

17 google._domainkey.spotify.com. 300 IN TXT "v=DKIM1; k=rsa;

p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCSiZTnXPysNqgPjX0hSeHC8wVY62

18 ooFHCcC/Jo8TtWRNMoO75qdRUT2qnuF3+gc4/NI2qWMy0yMYqliLHviLMNeKzWjkOaR3VaVH

19 rSuDf+8WSgaWk0HJS5cDStqjknBpd8tmdQDXbSUE8WRUxTzQuWVUmMqU83kMrSygzqmunNiw

20 IDAQAB"

Figure 4.1. Example of tool output.

45

Solution

Of course, during the first execution, since the file does not yet exist, there is no file hash
to include. The format of the timestamp, however, remains consistent with that used in the
timestamp request/response, to ensure better comparability.

4.3.2 Traffic capture

To add a forensic perspective to this tool, permitting to add an additional source of authenticity
to this log, the traffic of the DNS queries performed by the dig command and the traffic with the
timestamp server was captured separately thanks to another command, tcpdump.

Tcpdump in fact is a command line utility that allows to capture and analyze any kind of
network traffic allowing also to choose some filtering options, not having to capture undesired
traffic. Here is the command used for the capture:

sudo tcpdump -i en0 (port 53 or tcp port 443) -w pcap file

In this command:

• sudo runs the command with administrator privileges, which is necessary for capturing
network traffic on a network interface. Because of this command even the full script needs
to be called as a superuser otherwise, it won’t be executed.

• -i en0 specifies the network interface to listen on, in this case, en0 is the name of the interface

• (port 53 or tcp port 443) is the filter expression that tells tcpdump what kind of traffic
to capture. In this case, port 53 is used to capture DNS queries while tcp port 443 is
used to capture HTTPS traffic, which is the protocol used for the communication with the
Timestamp server.

• -w pcap file tells tcpdump to write the captured packets to a file, specified by the path of
the pcap file variable, rather than displaying them on screen. This file created has the pcap
extension, which can be analyzed using various network tools.

This capture process ensures that each (selector, domain) pair has its own proof that the
communication has been executed correctly. Additionally, the information exchanged can be
verified inside the packets captured. Since DNS traffic is not encrypted, by utilizing a tool such
as Wireshark, that helps users inspect packets contained inside a pcap file, it is possible to clearly
see the query sent to the DNS server and the corresponding reply, where the DKIM record is
contained.

However, the situation is different for communication with the timestamp server. Depending
on the TSA chosen, the server might be accessible via HTTP or HTTPS. The TSA provided by
freeTSA.org, which was initially selected, only accepts encrypted traffic. The challenge here was
that by normally inspecting the packets no information about the timestamps could be retrieved,
as all the contents was encrypted. In order to solve this problem, two solutions were considered:

1. The first solution required using a proxy. In this case, the proxy would have intercepted and
decrypted the HTTPS traffic before re-encrypting it to send it to the destination. There are
various tools that can help in achieving this scenario, tools like Burp Suite or mitmproxy
can generate their own SSL/TLS certificates and present them to the client, while they
will establish a separate connection with the real server. Once the proxy’s certificate is
installed on the client, all the HTTPS traffic passing through the proxy can be decrypted
and inspected. Even if theoretically this solution would have worked, its implementation
inside the scenario of the tool was perceived as a little bit too complex. Moreover, the proxy
methods involve a modification of the traffic which may not work in all scenarios, as some
clients might detect and block the proxy.

2. The second solution, definitely much lighter, involved the usage of the SSL/TLS session
keys. By simply setting an environment variable on the host system, a log file can record

46

Solution

all the session keys used during HTTPS communications. After having set the environment
variable and captured the traffic, by specifying the path to the ssl keys.log file inside the
preferences of Wireshark, the tool itself is able to decrypt the traffic and display it in
plaintext.

This is the command used inside the script to set the environment variable:

os.environ[”SSLKEYLOGFILE”] = ssl key log file

Where the ”ssl key log file” contains the path to a file created with the name ”ssl key.log”

Here instead is a screenshot of the traffic captured during an iteration of the tool. As shown,
both the DNS query request and response are visible, and the HTTPS traffic has been decrypted
to highlight the content of the timestamp response, which in this example contains a granted
token.

Figure 4.2. Wireshark capture of an iteration of the tool

4.3.3 Output files

To summarize the information covered so far, this section is utilized as a recap of all the files
generated by the tool. As already written, each (selector, domain) pair, has one txt file in which
the DKIM record is written and updated daily. This file is named:

selector domain output.txt

In addition, three new files are created daily for each pair, stored in the same output folder as
the txt file:

1. selector domain output date.pcap: This file contains the packets captured by tcpdump.

2. selector domain output date.tsq : This is the timestamp request generated by the tool.

3. selector domain output date.tsr : This is the timestamp response received from the TSA.

47

Solution

As shown, each file follows the same naming convention, which helps to clearly distinguish
between different (selector, domain) pairs. The date in the file name instead is used to differentiate
between the output files generated for the same pair on different days. Although these files may
seem numerous, they occupy very little disk space. The heaviest files here are the timestamp
response and the packet capture which are approximately 5KB each. In contrast, the txt file and
the timestamp request are typically only a few hundred bytes.

4.3.4 eIDAS and EU rules

At this point, given the usage of a Timestamping authority in the tool and the different possibilities
offered by such services, it is important to consider EU regulations regarding Electronic Signatures.
This is particularly relevant because most of the service providers offering a certified electronic
signature often provide a service of certified timestamps, additionally, those timestamps are even
signed by the respective TSA.

The eIDAS regulation, which stands for electronic identification and trust services for electronic
transactions in the internal market, became effective on 1 July 2016 and established a unified legal
framework across the EU for electronic signatures and other trust services. It applies uniformly
across all the EU member states, without the necessity for national implementation, as a member
state may choose to adopt a standard implemented by another member while still retaining legal
validity.

Regarding electronic signatures, eIDAS distinguishes between:

• Electronic Signature: This is the most basic type, broadly defined as electronic data that is
attached to other electronic data, used by the signatory-the individual creating the electronic
signature-to sign. This could include actions like typing the name into a document or an
email using an online platform. While this type of signature is relatively easy to create, it
offers minimal security and legal assurance.

• Advanced Electronic Signature (AdES): This electronic signature fulfills additional require-
ments in respect of the electronic signatures. It must have a unique link to the signatory, the
possibility of identifying the signatory, be created using a private key under the signatory’s
sole control, and finally ensures that any changes in the data must be detectable.

• Qualified Electronic Signature (QES): This is an extension of the AdES, and represents
the highest level of security and legal validity among electronic signatures. It requires the
signature to be generated by a qualified electronic signature creation device and based on
a qualified certificate for electronic signatures issued by a qualified trust service provider
(QTSP). This signature is particularly valuable for signing contracts, legal agreements or
others documents with a high level of trust needed.

The importance of these standards is highlighted by their legal impact, as outlined by the
Article 25 of eIDAS regulation, which states:

”An electronic signature shall not be denied legal effect and admissibility as evidence in legal
proceedings solely on the grounds that it is in an electronic form or that it does not meet the
requirements for QES.

A QES shall have the equivalent legal effect of a handwritten signature.”

The creation, validation and preservation of electronic signatures or electronic timestamps
are activities provided by a Trusted Service Provider (TSP). These entities can operate as either
qualified or non-qualified trust service providers, with the key difference being that the latter
cannot issue qualified certificates required to create QES. Qualified Trust Service Providers (QT-
SPs) must adhere to strict regulations and security standards governed by eIDAS and are subject
to ongoing oversight to ensure they maintain high levels of security and reliability. The eIDAS
certification process involves a comprehensive evaluation of the timestamping authority’s systems
and procedures to verify their compliance with the eIDAS Regulation. This evaluation examines
various aspects, such as security measures, data protection, and auditability, among others. If

48

Solution

the authority successfully meets these criteria, it is issued with a certificate that confirms the
conformity of its systems and procedures with the eIDAS Regulation.

To ensure transparency and trust, each EU member state is responsible for publishing and
maintaining a trusted list of QTSPs. This list, which includes details about the services offered,
is monitored by the respective country. The European Commission makes these lists accessible
through a Trusted List Browser, allowing businesses, governments and customers to verify the
authenticity and status of the TSPs they intend to use.

Figure 4.3. Part of the Italy’s QTSPs list (Source: eIDAS Dashboard).

In addition to highlighting the QTSPs available in Italy issued on 30 July 2024, the image
above is useful to introduce the difference between a simple timestamp and a Qualified timestamp,
as these are two different services offered that appear below the name of some providers.

The qualified electronic timestamp is a specialized type of timestamp that benefits from a
presumption of accuracy regarding date and time, ensuring that the data protected by the times-
tamp has remained unaltered since it was marked. Two key features of these timestamps are their
recognition across all EU member states and their admissibility as evidence in court. Typically,
they are secured with an electronic seal guaranteed by the qualified trust service provider and
are based on a precise time source associated with Coordinated Universal Time (UTC), a global
reference time expressed using a 24-hour format that specifies the relevant time zone.

These services and functionalities do not come for free, as the primary Qualified Trusted
Service Providers charge a fee for timestamping, typically based on the number of timestamps
requested. Given the forensic perspective associated with this tool, this aspect was crucial to
consider. As highlighted in the previous subsection, a timestamp is requested daily for each pair
(selector, domain). As the tool stores more pairs, the number of daily timestamps requested
increases, leading to a significant economic burden for the user.

To reduce the daily number of timestamps required, a new solution was implemented. Instead
of timestamping each individual txt file, a zip folder containing all the files produced and updated
each day is created and timestamped. This approach significantly reduces the number of files
that need to be timestamped daily, thereby lowering the tool’s cost and the traffic generated. As
a result, the tool’s output and behavior are now slightly modified:

1. For each pair (selector, domain) a DNS query is sent to the DNS server, with the response
saved in the respective txt file.

49

https://eidas.ec.europa.eu/efda/tl-browser/#/screen/tl/IT

Solution

2. The traffic generated with the DNS server is captured separately for each pair, restricting
the tcpdump command only to port 53.

3. After all the iterations, a zip file is created within a folder named ”zip”. This zip file contains
all the updated txt files, the list of pairs, the general log file, and is named with the current
date.

4. A timestamp request is created for this zip and then sent to the Timestamping Authority
(TSA).

5. The traffic generated with the TSA is captured and saved in the zip folder.

While this new solution addresses some of the previous issues, it introduces some disadvan-
tages with respect to the old one. For instance, if a single file within the zip folder has been
manipulated the entire timestamp would result invalid. Additionally, detecting such manipula-
tion would become a more time-consuming process, requiring manual inspection of all the files
within the zip.

Given these pros and cons, the user has the flexibility to choose between timestamping the zip
of all the files or timestamping each file singularly, by simply adding a flag when launching the
tool.

4.3.5 Architecture of the tool

All the work described so far is part of the main or core module of the solution, which users can
interact with through a command line or a web interface. In order to address some existing issues
and enrich the tool’s functionalities, additional modules were added throughout the development
process. Below is a schema that summarizes the architecture of the tool:

Figure 4.4. Software Architecture

While these modules will be discussed in detail in the following subsections, here is a brief
overview of their functionalities:

50

Solution

• Mail: This module interacts with mail servers to both receive and send emails.

• Playwright: This module interacts with web servers, to generate emails.

• Discovery: This module identifies (domain, selector) pairs for a given domain. It can be
directly accessed by the user via the command line or web interface.

• Verify: This module verifies DKIM signatures using the files generated by the main module.
It is also accessible through the command line or web interface.

• Web: This module creates the web interface that allows users to interact with all the tool’s
functionalities.

4.3.6 Mail module

With the information provided so far, the tool is ready to execute, allowing users to monitor the
pairs they manually insert.

Even if standardization constraint users to follow a specific methodology of work, sometimes
for the interoperability with other system, a protocol well standardized could lead to a better inte-
gration. However, DKIM does not standardize in any way the usage of the selector for publishing
the public key in the DNS txt record nor does it dictate the process for selector substitution.
This lack of standardization complicates the task of finding and monitoring domains, as each
domain is free to use its own naming conventions. In addition, the principal command line tool
used for querying DNS server does not come with built-in features for checking multiple records
simultaneously.

Through research involving the examination of various emails from different inboxes, some
observations were made regarding the selectors used by three different domains:

Domain Selector Start Time of Usage
google.com 20230601 September 2023

20221208 April 2023
20210112 January 2023

mp1.tripadvisor.com scph0523 September 2023
scph0417 March 2022

twitch.tv dh6r6vaod6penm5x6ufsnymrqcq2rt3a February 2023
ihcl5uso4lqpgom7nwqnxs2in6mo4xoc December 2023
wcdtjomfpuxxefyhk6a7dbwy5fy6ofyc April 2023
uder6jfl2ivm6ra4d56gtvzkfaq2gr2v August 2022

Table 4.1. Selector domain information.

It appears that there is no consistent logic behind the naming of selectors. For instance, while
Google uses selectors that resemble dates, their usage periods do not align with those dates. When
it comes to handling replaced selectors, three different approaches were observed:

• Google keeps the old record online but empties the ”p” field, leaving it as ”p=”

• TripAdvisor keeps the old record online even after switching to a new selector

• Twitch employs a hybrid solution; some old selectors are still online, while the older one are
emptied, like Google does.

This raises the following question:

1. How can the tool know if the selector for a specific domain has changed?

2. How can the tool reach new pairs?

51

Solution

Since the DKIM protocol is designed for email authentication, the initial solution proposed
was about the possibility of integrating a mailbox within the tool. Besides DNS, the principal
source of DKIM information, resides in the email headers. Accessing a mailbox and reading the
inbox could provide valuable insights for tracking domains and selectors, as well as discovering
new ones.

After setting up a fresh new Gmail mail account, the first task for this new module was to
configure access to the inbox, enabling the reading and downloading of received emails. Gmail,
along with other mail providers, allows inbox access via a third-party solution only using a so-called
”app password”. This password must be generated through the provider’s web interface only after
enabling the two-factor authentication. Once generated, this will replace the real password for
SMTP/IMAP authentication. The tool reads the email address and app password from a JSON
file, which contains the login credentials and the name of the IMAP server to connect to. Here is
an example of a configuration file:

1 {

2 "server_address": "imap.xxx.com",

3 "username": "xxxx@gmail.com",

4 "password": "xxxxxx"

5 }

Figure 4.5. Example of config file.

Since the tool performs daily checks, it requires a new email from each monitored domain
every day to verify whether the selector used for email authentication has changed. However, this
raises several challenges:

1. How can a mailbox be populated with new mails from scratch?

2. How can these emails be received on a daily basis?

Currently, there is no standard method to achieve this, and before proceeding with the pro-
posed solution, it’s important to distinguish between two types of domains that can be monitored:

• Mail provider domains: These are domains that allow users to send emails and access an
inbox.

• Non-mailing domains: These are domains that do not provide email-sending services but
allow users to sign up or create an account to receive newsletters or notification.

For mail provider domains, the research focused on finding a method to automatically send
emails to a specific email address. Typically, the automation capabilities provided by these email
services are limited to scheduling the invoice of a single email at a certain time, without allowing
any deeper configurations. One exception is Outlook, which, when combined with the Windows
Task Scheduler and VBA (Visual Basic for Applications), a programming language developed by
Microsoft, can be used to create scripts that send emails automatically at a specific time each
day. Although this solution is theoretically viable, one major drawback is its dependency on the
operating system, as it requires a specific version of Microsoft Outlook developed for Windows.

Fortunately, using Python’s ”smtplib” library, it is relatively simple and straightforward to
compose an email and connect to the SMTP server to send it. To leverage this, seven different
accounts of email providers were created:

1. Gmail

2. Outlook

52

Solution

3. Tim

4. Virgilio

5. Libero

6. GMX

7. iCloud

As with the Gmail account setup, most of these providers required an app password to be
configured. However, Tim does not offer this option and instead requires the usage of the standard
password for SMTP authentication. Additionally, the iCloud mail account could only be created
from an Apple device, as the creation via a web browser was not allowed.

Similar to the Json file described in figure 4.5, configuration files were created for these ac-
counts, replacing the IMAP server with the SMTP server and specifying the port used for sending
email. All this information was retrieved online directly from the service providers’ websites.

This is the piece of code responsible for the creation of the email:

1 msg = MIMEMultipart()

2 msg[’From’] = sender_email

3 msg[’To’] = "dkimmarco@gmail.com"

4 msg[’Subject’] = "DKIM Update mail"

5 msg[’Date’] = formatdate(localtime=True)

6
7 # Set Message-ID manually

8 msg[’Message-ID’] = make_msgid()

9
10 # To avoid sending the same email forever

11 number = random.randint(1, 1000)

12 body = "This is a test email to update DKIM selector. Random number: " +

str(number)

Figure 4.6. Creation of the email.

As the script iterates through all the configuration files, it selects a new sender for each
iteration, while the recipient, subject, and most of the email body will always remain the same.
To introduce a degree of randomness and avoid triggering anti-spam mechanisms, a random
number is added to the email body. Additionally, the Message-ID field is manually set, since one
of the servers in the list of domains was not generating it correctly.

This mail module was integrated early in the tool’s workflow, so before querying the DNS
servers the tool performs the following steps:

1. Sends an email from each domain in the list.

2. Downloads the received emails in the inbox into the ”email” folder, naming the file after the
”message-ID”.

3. Extracts DKIM-related information from the downloaded email.

4. Updates or inserts any new domain-selector pairs found.

Finding a fully functional solution for non-mailing domains presented several challenges. The
email address monitored by the tool, was used to subscribe to various social networks such as
Facebook, Instagram and TikTok with all notifications set to be received via email. Despite

53

Solution

enabling this setting, Instagram and TikTok did not generate any email to be received, at least
not with the daily cadence needed by the tool. Facebook, instead, managed to send multiple
emails per day by joining public groups and enabling notifications for new posts, almost to the
point of overwhelming the inbox with spam. After adjusting group subscription, the frequency
of emails started to slow down, stabilizing at a couple per day. From the tool’s perspective,
downloading multiple emails from the same sender could lead to storage issues. This was resolved
by downloading only the latest email when multiple emails from the same domain and selector
pair were detected.

The subscription to service providers like ASOS, easyJet and Ryanair instead, generated a
less consistent flow of emails in the inbox. The first two domains sent emails approximately every
three to four days, which, while not ideal for the tool’s daily needs, was still sufficient for periodic
review.

With the introduction of the mail module, it is also important to discuss a file which is
maintained and updated throughout the lifetime of the tool called ”log.txt”. As the name suggests,
this file logs, all the potential updates and modifications to the monitored pairs. For instance,
whenever a DNS query response is received, the tool checks if it differs from the previously logged
response, and if so, the modification is reported in the log file. Other possible usages comprehend
the detection of a selector change by a specific domain or a new pair discovery, both of which
are verified using emails as described in the previous paragraph. Each update in the log file
is preceded by a timestamp indicating the current time and a message ID that references the
email responsible for the update, which can be found in the email folder. If the update does
not originate from an email, a special placeholder, ”AUTO-UPDATE,” is inserted instead. This
typically occurs when the update is triggered by a DNS query for a domain that did not receive
an email that day.

This is an example of the log.txt file content:

1 Jun 03 08:05:22 2024 GMT - [Message-ID:

<6655a146.170a0220.4db6c.0c73@mx.google.com>] - Selector for domain

’gmail.com’ has changed from ’20230602’ to ’20230601’.

2 Jun 03 08:05:22 2024 GMT - [Message-ID:

<6657422b.170a0220.ac989.477bSMTPIN_ADDED_MISSING@mx.google.com>] - New

domain ’iniziative.intesasanpaolo.com’ found with selector ’clab1’,

adding it to the list.

3 Jun 03 09:54:39 2024 GMT - [Message-ID:

<AS8PR02MB750576EDD4DAABDBE750F@AS8PR02MB7505.eurprd02.prod.outlook.com>]

- TXT record for domain ’OUTLOOK.IT’ has changed:

4 Previous:

v=DKIM1;k=rsa;p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvWyktrIL8DO/+

5 UGvMbv7cPdXogpbs7pgVw8y9ldO6AAMmg8+ijENlc7Fb1MfKM7uG3LMwAr0dVVKyM+mbkoX2k5L

6 7lsROQr0Z9gGSpu7xrnZOa58+pIhd2XkDFPpa5+TKbWodbsSZPRN8z0RY5x59jdzSclXlEyN9mE

7 ZdmOiKTsOP6A7vQxfSya9jg55RCQIDAQAB;n=2048,1452627113,1468351914"

8 New:

9 v=DKIM1;k=rsa;p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvWyktrIL8DO/+

10 UGvMbv7cPdXogpbs7pgVw8y9ldO6AAMmg8+ijENlc7Fb1MfKM7uG3LMwAr0dVVKyM+mbkoX2k5L

11 7lsROQr0Z9gGSpu7xrnZOa58+pIhd2XkDFPpa5+TKbWodbsSZPRN8z0RY5x59jdzSclXlEyN9mE

12 ZdmOiKTsOP6A7vKzT6sCCrg55RCQIDAQAB;n=2048,1452627113,1468351913"

Figure 4.7. Example of log.txt.

4.3.7 Playwright module

One of the possible solutions thought for non-mailing domains, in order to receive emails, was the
password recovery process. Typically, during a password reset, a user subscribed to a particular

54

Solution

service must enter his email address into a form to receive a special code or a link via email. The
user then will input the code back in the form or follow the link to proceed with resetting the
password.

The main challenge is that this kind of procedure is usually only available through a web
interface and cannot be easily executed with standard command line connections. However,
by controlling a web browser it becomes straightforward to achieve this behavior. Among the
various libraries available for Python, Playwright [26] was created ad hoc for end-to-end testing.
It supports all modern rendering engines, such as Chronium, WebKit, and Firefox, and can run
on different operative systems like Linux, Windows, and macOS, but also locally or on command
line. Creating a script that interacts with a web browser is relatively simple, as demonstrated in
the following example:

1 from playwright.sync_api import sync_playwright

2
3 def reset_password(email: str):

4
5 with sync_playwright() as p:

6
7 print("Initializing browser for password reset")

8
9 browser = p.chromium.launch(headless=False)

10 page = browser.new_page()

11 page.goto("https://www.asos.com/it/uomo/")

12
13 # Wait for the button to be visible and then click it

14 page.wait_for_selector(’button[data-testid="myAccountIcon"]’)

15 page.click(’button[data-testid="myAccountIcon"]’)

16
17 # Wait for the "Il mio account" link to be visible and click it

18 page.wait_for_selector(’a[data-testid="myaccount-link"]’)

19 page.click(’a[data-testid="myaccount-link"]’)

20
21 # Wait for the "Password dimenticata" button to be visible and click

it

22 page.wait_for_selector(’a[id="forgot-password-link"]’)

23 page.click(’a[id="forgot-password-link"]’)

24
25 # Wait for the email input field to be visible and fill it

26 page.wait_for_selector(’input[name="Email"]’)

27 page.fill(’input[name="Email"]’, email)

28
29 # Wait for the "Reimposta password" button to be visible and click it

30 page.wait_for_selector(’input#send’)

31 page.click(’input#send’)

32
33 browser.close()

34
35 print("Password reset done!")

Figure 4.8. Playwright code.

As shown in the code, a browser instance is first created, and by setting ”headless” to ”false”
the whole procedure can be observed on screen. After navigating to the desired page, the sub-
sequent commands perform always two paired operations. Since this library is based on the
interaction with HTML elements, the first instruction of the pair waits for the HTML element to

55

Solution

be rendered and displayed on the page. Once the element is present, an action can be performed,
such as clicking on it, or filling it with text.

In this particular case, the procedure involved clicking on different elements to reach the mail
form, filling in the email address, and clicking a button to receive the password reset link via
email.

It’s evident that this is an extremely vertical solution, designed to work for a single domain.
Since it relies on HTML elements rather than graphical elements, it is difficult to generalize
it to work with different websites, as naming conventions typically vary by the programmer.
Additionally, another potential issue could arise from captchas, which are often used to distinguish
between computers and humans.

By summarizing, this could be a valuable solution for monitoring specific domains, particularly
those for which receiving emails is infrequent, without requiring significant effort.

4.3.8 Discovery module

The discovery process of new pairs selector domains can be difficult, and until now all the couples
controlled by the tool were updated via the mail module or manually by the user. Online tools
exist that offer DKIM record discovery services, by simply inserting the domain name they would
display the DKIM record found However, testing these tools revealed that they could only resolve
specific domains. By aggregating the results and comparing the selector names of those domains
for which a record was found, it was clear that all of them were using ”standard” selector names
such as ”dkim” or ”selector1” Regardless of the domain’s popularity, the key factor here was the
selector name, as a widely used domain like Gmail, failed to be discovered by most of these tools
since the selector it uses is a sequence of numbers, which again is not ”standard”. These results
suggested that these tools were probably using a brute force approach, querying the DNS server
of the specified domain with a list of common selectors.

However, as previously highlighted in the introduction of the mail module, there is no default
way of using a DNS query command to execute multiple queries at once. On the other hand,
when the command is used within a script, multiple queries can be sent sequentially, speeding up
the discovery process. This was the starting point for the development of the discovery module,
which then needed to be integrated with all the tool’s functionalities.

The first challenge addressed was selecting the list to be used for the brute force requests,
where two solutions emerged:

1. The obvious solution was to start with the top ten popular selectors mentioned in the
previously cited paper on DKIM deployment. This list could then be expanded with the
selectors already discovered by the tool for the monitored domains as well as those identified
by the mail module. Naturally, the more selectors included in the list the higher the chances
of finding a used selector. On the other hand, an excessively long list would significantly
increase the discovery time.

2. Another approach to this challenge involved the usage of regular expressions (regex). These
are specific patterns of characters used to describe a group of words, without having to list
them all. This is particularly useful when dealing with fixed words that may be completed
by a number, such as ”selector1”, ”selector2” and so on. While checking if a word matches
a particular regex is straightforward, the process of generating all the possible words that
match a specific regex is not trivial, and in some cases, a regex can generate an infinite
number of solutions. Exrex is a Python library that permits the generation of these solutions,
with limitations to prevent infinite outputs.

When using the discovery module, the user is free to choose whether to use the standard list
of selectors described in the previous paragraph or provide a txt file containing multiple regexes,
one per line, to generate selectors.

56

Solution

Speaking of additional inputs that can be given to the module, users can decide whether to
perform the research for a single domain, which can be specified via the command line or directly
input in the web interface, or to query multiple domains. For this purpose, users can provide a
txt file containing a list of domains, each on a separate line.

With the introduction of this new module, it became crucial to think about how to organize
and possibly save the additional information generated. Until now, all the couples (selector,
domain) were saved and monitored thanks to a txt file named ”selectors domains.txt”. With this
new scenario, three potential solutions were analyzed:

• The first solution involved adding the newly discovered pairs to the existing list of monitored
domains. This would result in a significantly larger list of pairs coming from different
sources. However, the main issue with this approach was the loss of the list’s original
purpose. Previously all the pairs contained within this list were representing the ”active”
selectors currently used by these domains. The pairs discovered by this new module in fact,
are just found in the DNS server of the specific domain, and they may be no more in use or
just present as a test record. Moreover, including these new pairs in the existing list would
require monitoring all of them, as this text file is the source used by the tool to run its entire
process.

• The second solution aimed to address the issues of the first by slightly modifying the ap-
proach. The main list would remain unchanged, while the found couples would have been
saved in a different and collective list, where all the couples discovered and monitored are
mixed just to be saved as a sort of ”historical archive”. This new solution would have pre-
served the meaning of the main list while saving all the discovered couples. However, the
downside was that the discovered couples would have not been monitored, losing a possible
source of useful information.

• The third solution came as a mix of the previous two. In addition to the existing ”main list”,
a second list was created, called the ”discovered list” (named selectors domains discovered.txt).
By keeping them separated, each pair in its respective list would assume a different meaning,
allowing users to distinguish between selectors that are currently in use and those that are
not. Additionally, by having two lists it would have been possible to choose whether to
monitor or not the discovered list, or maybe just use a different timestamping server, by
simply modifying the source code.

The introduction of this module necessitated managing the pairs in both lists, including oper-
ations like removal updating, and exchange. These operations could be performed automatically
by the tool using its built-in functionalities.

To clarify, here is the sequence of operations performed to update the lists when using the
main module of the tool. After downloading all the emails via the mail module, the tool checks
if any monitored domain has changed its active selector. If so, the new (domain, selector) pair is
added to the main list, if it was already in the discovered list, it is removed from there. The old
pair, meanwhile, is instead moved to the discovered list, to maintain a log and keep a record of it.

When using the discovery tool instead, all the valuable outputs found (i.e., properly formatted
DKIM records) are evaluated for inclusion in the discovery list. Only the pairs which are not
already present in either list are added.

The tool’s default behavior is to monitor the discovered list and save the output files generated
by the process in the same output folder as the main list. This approach allows for a single file
to log all DNS records of a pair, even if the pair is repeatedly activated and deactivated.

To provide useful insights about the usage of DKIM, the research performed by this tool is
used to generate some statistics. A counter is added next to each selector in the brute-force
list, and these counters are updated at the end of each tool run, creating a ranking of the most
commonly used selectors. In order to avoid the increment of the same selector using the same
domain repeatedly, an additional check is performed. This check uses the ”history” file, where
each line records a domain and a list of selectors. Before updating the counters, the tool checks

57

Solution

whether the selector has already been discovered for that domain, and if so, the update is canceled.
Since these statistics are generated through the use of the tool, the more domains the tool checks,
the more reliable the statistics will be.

The combination of the history file and the selectors counters is used to generate the following:

• A Top 5 list of the most used selectors.

• The percentage of usage of each selector relative to the others.

• The number of domains using a specific number of selectors.

After running the discovery tool over more than sixty domains from the Ahrefs most visited
websites list [27], these were the results obtained:

1 Number of Selectors Used by Domains:

2
3 1 selector: 29 domains

4 2 selectors: 17 domains

5 3 selectors: 2 domains

6 5 selectors: 1 domain

7
8 Top 5 Selectors:

9
10 google: 23

11 k1: 13

12 selector1: 10

13 selector2: 7

14 20230601: 4

15
16 Percentage Usage:

17
18 google: 31.08%

19 k1: 17.57%

20 selector1: 13.51%

21 selector2: 9.46%

22 20230601: 5.41%

23 default: 4.05%

24 mail: 2.70%

25 dkim: 2.70%

26 GS2: 2.70%

27 scph0523: 1.35%

28 clab1: 1.35%

29 20211207: 1.35%

30 s2017: 1.35%

31 s2021: 1.35%

32 s31663417: 1.35%

33 1a1hai: 1.35%

34 s1024-2013-q3: 1.35%

Figure 4.9. Statistics output

4.3.9 Verify module

The principal purpose behind the development of this tool was to enable the verification of sig-
natures on older emails. After creating the structure and gathering the necessary data for such

58

Solution

verification, a dedicated module was created to handle the task of signature validation.

This module is built upon the Dkimpy library, which was introduced in the ”Verification tools”
section of the Background chapter. While the library served as a robust foundation, it has been
slightly modified in order to adapt to the tool’s needs. The general workflow is as follows:

• The user provides the email and optionally a record to the module for verification.

• The module extracts the selector, domain, and the signature timestamp. Since it is not a
mandatory field, if the signature timestamp is not present, the email’s date of receipt is
taken.

• If a record is not specifically provided, using the extracted selector and domain, the tool
reconstructs the filename to locate the corresponding public key within the output folder.
The date is then used to identify the appropriate key, specifically, the first available key
after the given timestamp.

• In case the public key is not available within the tool’s files, a DNS query is performed by
the module to retrieve it.

• The signature is then verified, and the result is displayed. The tool can discriminate between
a valid signature and an invalid one, particularly if the body or the header has been modified.

As underlined earlier in this section, the Dkimpy library needed to be modified. By default,
there was no function of the library that permitted to use a fixed public key to verify the signature,
so this was the first addition to perform. Secondly, the library’s default signature verification
function initially checks for expiration, which is useful when assessing the validity of an email
after its receipt date. However, the tool’s purpose is to verify the authenticity of the email as it
was at the time of receipt, so instead of comparing the expiry date with the actual date, the latter
has been substituted with the receipt date.

During testing, a notable issue was encountered when using this module with emails from Out-
look. The emails downloaded from both the web and desktop clients, in fact, failed the verification
due to a body mismatch, even when the mail content appeared unmodified. However, by reading
the headers of the email, the DKIM signature appeared to be verified, as the Authentication-
results was successful. By performing a further investigation, emerged that this is a known issue,
after Outlook verifies the DKIM signature, it appears to apply some modifications to the email
content in order to adjust its visual formatting. As a result, the final user has no longer access to
the original message sent as it was sent.

4.3.10 Web module

To provide end users with a different and more user-friendly way to access and use the tool’s
functionalities, a web interface has been developed. Since the entire tool was written in Python,
this part of the application also uses Python, thanks to the Flask framework. Flask in fact
is a lightweight web framework, written in Python and designed to build simple and smaller
projects or applications. Through this web page, users can upload emails to be DKIM verified,
discover DKIM records of domains, or initiate the log process with just the click of a button. A
comprehensive guide on how to use this interface is provided in the user manual included in the
appendix.

4.3.11 Final usage

Given all the functionalities provided by this tool, its usage can be categorized into two types:
active and passive. The active functionalities, such as those offered by the discovery and the verify
module, can be accessed via the command line or web interface and are classified active as they
require the human collaboration to be executed.

59

Solution

The passive functionality, on the other hand, is the tool’s core feature, which resides in the
monitoring phase. As for the active, even this functionality is available both via the command
line and web interface. However, additional work has been done to enhance this aspect. Due to
its passive nature, this operation does not require the intervention of the user making it suitable
for automated execution.

On an Ubuntu 24.04 virtual machine, after installing the necessary Python libraries, the tool
script was scheduled to run daily using crontab. Crontab is a command line utility in Linux
and macOS used to schedule automated tasks, called ”cron jobs” to run at specific time. By
configuring a logger associated to this cron job it is also possible to capture the tool’s output
and make it available for future monitoring and troubleshooting. This setup represents the ideal
scenario for the passive functionality, allowing the tool to be installed on a running server and
operate automatically.

Additionally, by starting the web interface on the same server and making it available at a
specific port, all users within the network can freely use the tool.

4.3.12 Comparison with Metaspike tools

As written in the introduction, temporarily at the end of the development process it was possible
to compare the solution with two tools developed by Metaspike, a software company that operates
in the digital forensic field with a focus on email forensics. These are the two programs analyzed:

The Forensic Email Collector (FEC)[28], has the main goal of preserving email evidence by
collecting the content of a mailbox without breaking the environment. This tool allows even for the
acquisition of Google calendars and appointments, contacts, or notes, retrieved from the Exchange
servers but also Google Drive files. The authentication to the mailbox can be performed in three
different ways; via OAuth 2.0, using a Remote authenticator, or using a single set of admin-level
credentials for enterprise auth. Depending then on the mailbox providers it has a specific way of
accessing the inbox.

These instead are some of the features offered by the tool:

• In-place and Inline search: Experts often require looking at specific emails, which contain
some possible keywords, with FEC It is possible to perform in-place searches on the mailbox
server before acquiring the evidence, reducing the number of emails to be downloaded but
still preserving the target mailbox. This is particularly useful for privacy concerns, as with
other tools the whole mailbox is required to be downloaded to be able to perform research.
The inline search instead is executed after the acquisition but before being written to the
disk. It is optimal when you can have email in memory to work on it, but you cannot save
it all on the disk. The query can be built by a query builder and can be tested in a sandbox.

• Google Drive Attachments: During email inspection is fundamental to have the possibility
of looking at the attachments contained in it but when those attachments are in the form
of hyperlinks to a cloud storage system, as for Google Drive attachments, it is not trivial
to get it after the initial acquisition, because of authentication issues. FEC automatically
acquires those during Gmail and Google Workspace acquisitions.

• Server Metadata: The server’s metadata as IMAP UIDs and internal dates are captured by
FEC during the acquisition, to be decoded and presented in a more user-friendly way to
facilitate the investigation process.

• MX Lookup: If the target email address is not one of the pre-configured profiles, FEC
performs a lookup for the MX record to determine the target server settings.

This is an example of the process required to collect a forensic copy of a Gmail mailbox:

Given the address inserted in the user interface, the tool will select a proper profile and give
the user the possibility to choose which kind of data needs to be collected. For a Gmail account
users can choose between emails, calendars, files in Google Drive, and other options. Then the
user can choose to assign labels to the capture, such as Case name, ID, Client Name, and other
info. At this point, it is possible to choose:

60

Solution

• The output path

• The output format (EML/MSG/PST)

• To containerize or not the MIME output into a VHDX container, a useful format that can
be injected into other forensics tools to perform analysis.

• To timestamp logs folder by creating a zip package.

• To decrypt S/MIME encrypted items.

• To perform differential acquisition, to complete an already started work.

After the authentication, the user can see the Gmail labels and the folder of the inbox and
choose which one to download, eventually performing in place or inline search. The credentials
are removed by default at the end of the process, but this behavior can be modified in the settings.
During the acquisition, it is possible to look at the items remaining, and the items excluded by
the search filter. Finally, some post-acquisition actions are displayed, such as opening the output
folder, containerize the MIME output, or creating an output PST.

Three log files are generated at the end of the process:

1. Acquisition log: Txt file in which is displayed a summary of the acquisition, reporting the
items analyzed, settings, and the time elapsed.

2. Exception log: Txt file in which are displayed info about possible errors encountered in the
process.

3. Downloaded Items: Tsv file with information about the downloaded items, such as Message
ID, Date, labels, etc.

One functionality that is in common with the developed solution, resides in the possibility
of timestamping the log folder. While the target files are different, the timestamping process
is similar, as even in this tool a zip package is created before sending the file to the TSA. If
enabled, the zip file, together with the timestamp request and timestamp response will appear in
the acquisition folder. FEC allows even for verification of these timestamps, thanks to a built-
in functionality. The URL and the credential related to the Timestamp server instead, can be
modified in the settings.

The Forensic Email Intelligence (FEI)[29], is used by experts to investigate all the mail-related
violations, providing various possibilities of integration with already existing services like Max-
Mind, SecurityTrails, and other specialists in forensic solutions. It is strictly related to FEC, as
the acquisition of the mailbox is always the starting point needed before investigating. Moreover,
the output produced by FEC can be used as an input for FEI.

These are some of the features offered by FEI:

• In-place Decoding: When looking at the email source code, FEI can automatically highlight
and identify MIME headers, providing additional descriptions about them.

• DKIM & ARC Verification: FEI is able to complete the verification process of DKIM and
ARC, automatically computing the hashes and retrieving the public keys needed.

• Automated Timelining: FEI is able to extract from the email content all the timestamps
encountered and then reconstruct a timeline.

• Insight and scoring: This tool can derive insights from the email content, such as incon-
sistencies among data or which service providers or software were involved in the email
invoice.

61

Solution

Upon creating a new project from a FEC file by the respective tool, a table containing in-
formation about the ingested email is presented. This interface is interactable, and the user can
choose to filter or order by the different attributes presented, from the Sent Date to the Email
ID or Gmail label. By navigating the lateral bar, it is possible to extract information about the
usage and the number of times that appeared certain email addresses, domains, and IPs.

Since the verification of DKIM signatures is the key feature of this thesis work, let’s concentrate
on how FEI handles this process. By looking at the previous release of this tool, two of them
marked significant improvements on this topic:

• July 2022 - FEI v 1.8: With this release, FEI had a new option to save into the file system
the public keys needed for DKIM and ARC verification. This is particularly useful since this
kind of data can only be retrieved by querying the DNS server and could become unavailable
at some time. Specifically, this is achieved when creating a new FEI project, the tool will
save the keys as files with no particular extension in a specific folder named Cache. The file
content is itself the public key value, while in the DKIM logger developed by this thesis, the
whole record is reported and additionally timestamped.

• February 2023 - FEI v 2.1.7: This release signs the creation of the so-called ”DKIM Super-
cache”, a feature that enables the verification of all Gmail and Google Workspace DKIM
signatures since back in 2004.

This is what Arman Gungor, the founder of Metaspike, said about the development process
of it:

”We mostly relied on our own archives (having been involved with DKIM for some time helped)
and supplemented that data set with online research.”

By inspecting the network traffic, the DKIM Supercache might be present in the files of the
application, as even with no network connection the verification process can be completed. In the
same way as the DKIM logger, when the record is not present in the cache the application opens
a connection to the DNS server to retrieve it, and in case of no response, the action is repeated
two times with a five-second delay.

Other similarities come from the ability to discriminate between a body hash mismatch and
a change in the headers of an email and the possibility of validating a DKIM signature even if
expired. Finally, the problem encountered with Outlook emails that was described in the ”Verify
module” section of this chapter is confirmed, as also using this tool the DKIM signatures could
not be verified.

Screenshots of the two applications can be found in Appendix D.

62

Chapter 5

Conclusion and future
development

The primary objective of this thesis was to create a tool that permitted DKIM signatures of old
emails to be re-verified. Since no previous work directly addressed this issue, it was initially crucial
to look at similar studies in related fields to understand which methodologies and technologies
were needed. For instance, the long-term verification standard highlighted the importance of
timestamps for establishing a precise point in time for data existence and for adding digital
signatures to such data. After thinking and reasoning about some of the proposed solutions,
only one of them emerged as complete enough to fulfill the initial problem with fewer overall
drawbacks, the DKIM logger solution.

Since DKIM does not require its users to adopt a standard naming convention for selectors,
the initial task was oriented to collect as many pairs (domain, selector) as possible, by analyzing
email headers. These pairs were inserted into a list and monitored daily thanks to a Python
script that executed DNS queries, logged the output, and timestamped the resulting file through
a Timestamping Authority. This whole process, if traffic recorded, could guarantee an additional
source of validity for the data archive. This is one of the strong points of this tool, as in the
forensic field, it is fundamental the ability of verifying the authenticity of data that can be used
in legal processes. By creating an archive of DKIM records, it would have been easy to recover
the public keys, contained in such records, needed to begin the verification process.

Once a base list of domains was established, it was necessary to keep it up to date, and the
best way of doing that was to get these updates from an email inbox, the primary source of
information. The challenge here lay in ensuring daily emails from the monitored domains, which
was straightforward to implement for mailing domains, that can be used to send emails, and less
intuitive for non-mailing domains. For the latter category, ad hoc solutions were implemented,
such as using the Playwright library to control a web browser and automate the password recovery
process (which generates an email) or enabling email notifications for social network domains. This
may be one of the limitations of this tool, as non-mailing domains are really difficult to keep track
of and needs a specific solution.

To facilitate the extension of the monitored domains, an additional module was developed,
capable of discovering the selector used by a specific domain through a brute force approach.
The data collected by this module were also recycled to generate some statistical insights about
selector usage, which is really helpful but at the same time requests an intensive usage over a
large number of domains in order to obtain reliable results.

Finally, a web interface was developed, to provide a more user-friendly interaction with all the
tool’s functionalities. Since the entire tool was developed in Python, the Flask framework was
chosen for the web interface due to its lightweight nature and ease of use.

It is important to notice that, given the ability of the tool to send multiple emails to an email
address, its adoption must be carried out with strict policies, leaving no gap that would permit
malicious use.

63

Conclusion and future development

Given the variety of modules implemented for this tool and the underlying mechanics, there
is still room for future enhancements within the existing architecture:

Since the tool can only start verifying emails from the first day of logging, transforming it into
an online service could be beneficial. This would allow to have a shared archive of records, without
the need of creating a private archive from scratch. By adopting this solution, also the discovery
module could take advantage, by enriching the pool of monitored domains and providing more
reliable statistics. To achieve this, the web interface would also need to be updated, with a focus
on enhancing its backend security to prevent the execution of malicious commands on the host
machine.

Another area of improvement concerns the automation of the verification process for the
archive, as it is currently a manual operation that requires two steps:

1. Comparing the hash value of the zip archive or the log file, with the hash contained in the
timestamp token and in the timestamp request. This hash can also be found in the packet
capture related to the exchange with the Timestamping Authority.

2. Comparing the DKIM record found in the log file with the one from the packet capture
related to the DNS query.

Data retention could be further improved by moving the logs, currently contained in txt files
into a more secure and structured format, such as a database. In order to do so a consistent
structure for the database must be established, along with a method for signing the database
files.

Lastly, the weakness in the daily reception of emails could be addressed by integrating an
external system. For instance, an initial idea that was not developed further due to material lim-
itations and privacy concerns was the idea of creating forwarding rules on existing email accounts
to increase the possibility of receiving mail from different domains throughout the day.

To conclude, here are two final considerations about the DKIM protocol itself, and how it
could be improved besides the adoption of additional tools.

Since DKIM relies heavily on the DNS architecture to retrieve public keys, it could benefit from
the adoption of DNSSEC (Domain Name System Security Extension). Improving the functionality
of the basic DNS system, this newer version permits the DNS response to be signed and verifiable,
mitigating the risk of DNS spoofing. However, the adoption of DNSSEC is slowed down due to
its technical complexity, cost, and necessity of backward compatibility.

Finally, being DKIM based on asymmetric cryptography for its signature, it is essential to
recall that these encryption schemes are under threat due to the advent of quantum computers.
The math behind these algorithms is based on the difficulty of factoring the product of two large
prime numbers. Turns out that quantum computers could theoretically break existing schemes
like RSA and Diffie-Hellman in hours, the same work that would require a modern computer
trillion of years. Even if this problem may be many years away, this is the reason why in 2016,
NIST, asked cryptography experts to start developing quantum-resistant algorithms in order to
define a new post-quantum cryptographic standard.

64

Bibliography

[1] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski, K. Thomas,
V. Eranti, M. Bailey, and J. A. Halderman, “Neither snow nor rain nor mitm...: An em-
pirical analysis of email delivery security”, Proceedings of the 2015 Internet Measurement
Conference, New York, NY, USA, 2015, p. 27â39, DOI 10.1145/2815675.2815695

[2] C. Wang, K. Shen, M. Guo, Y. Zhao, M. Zhang, J. Chen, B. Liu, X. Zheng, H. Duan, Y. Lin,
and Q. Pan, “A large-scale and longitudinal measurement study of DKIM deployment”, 31st
USENIX Security Symposium (USENIX Security 22), Boston, MA, August 2022, pp. 1185–
1201

[3] European Telecommunications Standards Institute, “Etsi ts 102 778-4 v1.1.2 (2009-12): Elec-
tronic signatures and infrastructures (esi); pdf advanced electronic signature profiles; part
4: Long term validation”, Tech. Rep. TS 102 778-4 V1.1.2, European Telecommunications
Standards Institute (ETSI), Sophia Antipolis, France, December 2009

[4] European Telecommunications Standards Institute, “ETSI TS 101 733 V2.2.1: Electronic Sig-
natures and Infrastructures (ESI); CMS Advanced Electronic Signatures (CAdES)”, Tech-
nical Specification V2.2.1, ETSI, April 2013. Available online: https://www.etsi.org/

deliver/etsi_ts/101700_101799/101733/02.02.01_60/ts_101733v020201p.pdf

[5] D. Crocker, “Internet Mail Architecture”, RFC 5598, July 2009, DOI 10.17487/RFC5598
[6] M. Kucherawy, “Message Header Field for Indicating Message Authentication Status”, RFC

7001, September 2013, DOI 10.17487/RFC7001
[7] E. P. Allman, J. Callas, J. Fenton, M. Libbey, M. Thomas, and M. Delany, “DomainKeys

Identified Mail (DKIM) Signatures”, RFC 4871, May 2007, DOI 10.17487/RFC4871
[8] M. Kucherawy, D. Crocker, and T. Hansen, “DomainKeys Identified Mail (DKIM) Signa-

tures”, RFC 6376, September 2011, DOI 10.17487/RFC6376
[9] S. Kitterman, “Cryptographic Algorithm and Key Usage Update to DomainKeys Identified

Mail (DKIM)”, RFC 8301, January 2018, DOI 10.17487/RFC8301
[10] J. R. Levine, “A New Cryptographic Signature Method for DomainKeys Identified Mail

(DKIM)”, RFC 8463, September 2018, DOI 10.17487/RFC8463
[11] M. Kucherawy, “Message Header Field for Indicating Message Authentication Status”, RFC

8601, May 2019, DOI 10.17487/RFC8601
[12] D. Crocker, P. Hallam-Baker, and T. Hansen, “DomainKeys Identified Mail (DKIM) Service

Overview”, RFC 5585, July 2009, DOI 10.17487/RFC5585
[13] D. Srivastava, “Understanding dkim and mandating 1024 bit key encryption”, NATIONAL

CONFERENCE ON RECENT TRENDS IN OPERATIONS RESEARCH (NCRTOR-2013),
2013, p. 189

[14] H. Hu, P. Peng, and G. Wang, “Towards understanding the adoption of anti-spoofing proto-
cols in email systems”, 2018 IEEE Cybersecurity Development (SecDev), 2018, pp. 94–101,
DOI 10.1109/SecDev.2018.00020

[15] S. Kitterman, “dkimpy - dkim (domainkeys identified mail)”, 2024, Accessed on June 4, 2024
[16] P. Resnick, “Internet Message Format”, RFC 5322, October 2008, DOI 10.17487/RFC5322
[17] S. Kitterman, “Sender Policy Framework (SPF) for Authorizing Use of Domains in Email,

Version 1”, RFC 7208, April 2014, DOI 10.17487/RFC7208
[18] M. Kucherawy and E. Zwicky, “Domain-based Message Authentication, Reporting, and Con-

formance (DMARC)”, RFC 7489, March 2015, DOI 10.17487/RFC7489
[19] A. Gungor, “metaspike - trusted timestamping (rfc 3161) in digital forensics”, 2021, Accessed

on June 4, 2024

65

https://doi.org/10.1145/2815675.2815695
https://www.etsi.org/deliver/etsi_ts/101700_101799/101733/02.02.01_60/ts_101733v020201p.pdf
https://www.etsi.org/deliver/etsi_ts/101700_101799/101733/02.02.01_60/ts_101733v020201p.pdf
https://doi.org/10.17487/RFC5598
https://doi.org/10.17487/RFC7001
https://doi.org/10.17487/RFC4871
https://doi.org/10.17487/RFC6376
https://doi.org/10.17487/RFC8301
https://doi.org/10.17487/RFC8463
https://doi.org/10.17487/RFC8601
https://doi.org/10.17487/RFC5585
https://doi.org/10.1109/SecDev.2018.00020
https://doi.org/10.17487/RFC5322
https://doi.org/10.17487/RFC7208
https://doi.org/10.17487/RFC7489

Bibliography

[20] R. Zuccherato, P. Cain, D. C. Adams, and D. Pinkas, “Internet X.509 Public Key Infrastruc-
ture Time-Stamp Protocol (TSP)”, RFC 3161, August 2001, DOI 10.17487/RFC3161

[21] “Openssl ts time stamping authority command”, Copyright 2006-2024 The OpenSSL Project
Authors. All Rights Reserved., Accessed on June 5, 2024

[22] R. Housley, “Cryptographic Message Syntax (CMS)”, RFC 5652, September 2009, DOI
10.17487/RFC5652

[23] A. Ansper, A. Buldas, M. Roos, and J. Willemson, “Efficient long-term validation of digital
signatures”, Proceedings of the 12th International Conference on Financial Cryptography
and Data Security, Tenerife, Spain, 2012, pp. 24–39, DOI 10.1007/978-3-642-33027-8 2

[24] S. Arseni, E. Bureaca, and M. Togan, “Long-term preservation of digital signatures: a need-
to-have or a nice-to-have?”, Journal of Military Technology, vol. 5, 06 2022, pp. 41–48, DOI
10.32754/JMT.2022.1.06

[25] Radicati Group, “Email statistics report 2021-2025 - executive summary”, 2020, Accessed:
2024-08-05

[26] Microsoft, “Playwright for python”, https://playwright.dev/python/, 2024, Accessed:
2024-08-16

[27] Ahrefs, “Top 100 most visited websites (2024)”, 2024, Accessed: 2024-08-26
[28] Metaspike, “Forensic email collector”, 2024, Version 4.0.167.1390, Utilized under a temporary

license
[29] Metaspike, “Forensic email intelligence”, 2024, Version 2.2.158.1118, Utilized under a tem-

porary license

66

https://doi.org/10.17487/RFC3161
https://doi.org/10.17487/RFC5652
https://doi.org/10.1007/978-3-642-33027-8_2
https://doi.org/10.32754/JMT.2022.1.06
https://playwright.dev/python/

Appendices

67

Appendix A

Testing Environment
documentation

This chapter will provide a full guide on the installation of the test environment. As the procedure
for the second VM is similar to the first, the difference will be directly highlighted. As underlined
in the second chapter, the two VMs are using Windows Server 2019 as the operating system.

A.1 Network Configuration

On the VM1 it has been set up a static IP address and configured a DNS server with its own
address. The VM2 instead has a different IP address but the same DNS server IP address.

Here is the path to change the address:

Control Panel - Network and Internet - Network and Sharing Center - Change adapter settings
- Right-click on the adapter - Properties - Internet Protocol Version 4 (TCP/IPv4) - Properties

Figure A.1. IP address

68

Testing Environment documentation

To enable sending and receiving emails, a rule in the Windows firewall needs to be set up:

Firewall - Advanced settings - Inbound Rules - New Rule - Port - TCP - Enter local ports 25,
110, 143, 587 - Allow the connection - Next - After entering the name, click Finish.

The rule should appear as follows:

Figure A.2. Firewall Rule

A.2 Key Pair and Record creation

For the creation of the key pair, the dknewkey script from the Python library DKIMPY was used.

After installing Python on the VM by downloading it from the official site, DKIMPY can be
installed using pip with the command:

pip install dkimpy

With the command dknewkey testdkim.com, it runs the script that creates the keys associated
with the domain provided in two separate files:

• testdkim.com.dns will contain the value of the TXT record that must be entered in the DNS
server.

• testdkim.com.key will contain the private key that must be installed in HMailServer.

If the DKIM signature is desired on both domains then this command must be run even for
the second domain, creating a new key pair and a new record.

A.3 DNS Setup

Let’s proceed now to the creation of the necessary DNS records:

For each domain that will be created a forward lookup zone and three records need to be
inserted. This is an example of the records created for the first domain:

• Host (A) Record with the name ”mail” and the value being the IP address of VM1.

69

Testing Environment documentation

• Mail Exchanger (MX) Record that will refer to the host record from the previous point

• Text (TXT) Record with the value being the content of the file ”testdkim.com.dns” gen-
erated in the previous step and with the name ”key1. domainkey”. In this notation, key1
corresponds to the DKIM public key selector, and . domainkey is a fixed string to be included
for this type of record.

This operation needs to be repeated for the second domain that will be created on VM2, this
time setting the IP address of the A record to the address of VM2 and coherently changing the
content of the txt record.

This is how the DNS manager should look like:

Figure A.3. DNS Records

A.4 HMailServer Installation

Let’s proceed with the complete installation of HMailServer. It’s important to have already
installed MySQL as a database. After having downloaded and executed the installation wizard,
MySQL must be selected as the ”external database”. During the setup of the HMailServer
database, enter ”localhost” as the Database server address, and use the credentials created during
the MySQL installation for user and password authentication.

If during step 6, an error regarding libmysql.dll is encountered, this DLL file must be inserted
inside the bin directory of the HMailServer installation folder, as specified in the error message.
This file must be the 32-bit version.

The same procedure must be performed on the second VM.

A.4.1 Domain and user creation

To create a domain within HMailServer is sufficient to click on ”Add domain...” from its user
interface. Once the domain name has been entered it can be saved by clicking ”Save”.

To create the accounts, click on the Accounts folder - Add.. - and then choose the address
and password for the user to be added.

Once the accounts are created, they will appear under the Accounts folder as follows:

70

Testing Environment documentation

Figure A.4. Account and Domain creation

A.4.2 Enabling DKIM

To enable signing on HMailServer, click on the domain name - DKIM Signing - Check ”Enabled”.

Then, enter the path to the file containing the private key in the ”Private key file” space, in
this case, testdkim.com.key which was generated in one of the previous steps. Fill in the selector
name for the public key generated in the previous step, and entered in the DNS record, and finally
choose the types of canonicalization and the hash algorithm.

Figure A.5. Enabling DKIM

A.5 Thunderbird Configuration

It is now possible to install Thunderbird as the email client and then set up the accounts created
in HMailServer with the following sequence of operations:

71

Testing Environment documentation

Settings - Account Settings - Account Actions - Add Mail Account - After filling in the
email name and password - Configure manually - Enter ”localhost” under both the Incoming and
Outgoing server fields and finally click ”Re-test” at the bottom of the page. If a confirmation
message is received, it is possible to conclude the procedure by clicking ”Done”.

The mailbox will then appear in Thunderbird.

72

Appendix B

User Manual

This chapter will provide a comprehensive guide on how to install and use the tool object of this
thesis. Given the presence of multiple modules, the guide will be divided for the use of each part.
The user is free to choose whether to use the command line or the web interface to interact with
the tool, as both the modalities will be explained.

B.1 Prerequisites

Since this tool is written in Python, the first prerequisite is to have it installed on the subject
machine. Specifically, all the project was developed using Python Version 3.12. Together with
Python, pip is required as the package installer.

Thanks to the requirements.txt file, all the various dependencies are listed together and can
be easily installed with the following command:

pip install -r requirements.txt

These are the additional libraries used in this project:

• requests: Used in the main module for the interaction with the Timestamp Server.

• exrex: Used in the discovery module for the creation of the list of selectors.

• dkimpy: With some modifications, is used in the verify module for the verification of DKIM
signatures.

• Flask: Used in the web module as the web framework for the creation of the interface.

• playwright: Used in the homonym module for the password reset process.

This last library is the one imposing some stricter requirements about the operating system
in use, that will be listed below:

• Python 3.8 or higher.

• Windows 10+, Windows Server 2016+ or Windows Subsystem for Linux (WSL).

• macOS 13 Ventura, or macOS 14 Sonoma.

• Debian 11, Debian 12, Ubuntu 20.04 or Ubuntu 22.04, Ubuntu 24.04, on x86-64 and arm64
architecture.

73

User Manual

Since the tool utilizes different email accounts, it is essential to have written down the creden-
tials of these accounts, making sure to use app password if possible. One account is designated as
the receiving mail account, while the others are used to send emails to this receiving account. The
credentials for the recipient account should be saved in a file named config.json, which must be
placed in the same directory as the other Python files. The credentials for the sending accounts
should be stored in individual files within a folder named configs, which should also be located
in the same directory as the Python files. Below are examples of the configuration files for both
sending and receiving accounts:

1 {

2 "server_address": "smtp.xxx.com",

3 "smtp_port": "xxx",

4 "username": "xxxx@gmail.com",

5 "password": "xxxxxx"

6 }

Figure B.1. Sending config

1 {

2 "server_address": "imap.xxx.com",

3 "username": "xxxx@gmail.com",

4 "password": "xxxxxx"

5 }

Figure B.2. Receiving config

There are also some modifications that need to be executed on the source code, in order to
have the tool fully functional:

• Changing the name of the interface used by tcpdump to capture the output (lines 138-140-
142 of main.py)

• Creating an ssl key.log file and changing the path at line 14 of main.py to make sure keys
are saved in it.

• Changing the email address with the recipient account created at line 405 of main.py and
144 of mail.py

Finally, to run the web interface just use the following command and visit the link created by
Flask:

sudo python3 web.py

B.2 Main module

This module, responsible for logging DKIM records, can be run in two different modes. The user
can choose to either timestamp only a zip folder containing all the produced files or timestamp
each individual log file associated with each domain. The choice depends on the availability of
timestamps for the user.

For help, run:

74

User Manual

python3 main.py -help

To execute this module in its basic mode, run the following command:

sudo python3 main.py

To switch modality and timestamp all the log files individually just append the ”-all” option:

sudo python3 main.py -all

It’s important to note that only this module requires root privileges to be executed because
of the network capture operated by tcpdump.

The same actions can be performed through the web interface by simply pressing the ”Run”
button at the top of the page. Make sure to tick the checkbox in case the timestamping of each
log file is required. The output produced by the command will be visible at the bottom of the
page under the ”Output” section.

Figure B.3. Run button on the Web Interface

If the autonomous run is preferred, these are the steps to follow on an Ubuntu machine:

First, open the crontab file by using the command sudo crontab -l

Then, write into it the following entry:

mm hh * * * cd <path project folder>&& /usr/bin/python3 main.py 2>&1 — logger -t cronjob

Here, ”mm hh * * *” represents the minute, hour, day of the month, month, and day of the
week respectively. By using an asterisk (”*”), any time is valid. For instance, ”30 14 * * *”
schedules the command to execute daily at 14:30. Then, we have a command to move to the
project folder and execute the main.py script, redirecting the standard error (2) to the standard
output (1), so that regular output and error messages are treated the same. By piping (|) the
output to the logger command, it will be recorded in the system log and will be available by using
different commands such as journalctl.

This module will generate and update various files and folders:

• log.txt: In which all the information about changes and updates will appear.

• selector domains.txt: In which are present the pairs monitored.

• Output folder: In which all the files related to the logging process will be saved, log files,
timestamp requests and responses, and eventually packet captures.

• Zip folder: In which will be created the zip folder to be timestamped together with the
timestamping files and packet capture.

• Emails folder: Where all the emails downloaded will be saved.

B.3 Discovery module

This is the module used to discover new DKIM records and offers various execution options. As
for the previous module, it is possible to get general help on the modes available for running
thanks to the command:

75

User Manual

python3 discover.py --help

By default, when the script is executed, the program will prompt the user to enter a do-
main name. After that, the results will be displayed on the same command prompt, along with
additional statistics about the selector usage. This can be done using the following command:

python3 discover.py

Additionally, the user can choose to query multiple domains at once, by providing a text file,
where each domain name is listed on a separate line. The file must be passed to the script during
the run phase, by postponing the ”–domain-file” flag followed by the file path.

python3 discover.py --domain-file <filepath>

Furthermore, users have the option to specify which selectors to query for the given domains
by providing a text file with one regex per line. The tool will generate all the possible names that
match the provided regex patterns and then use this list to query the selected domains. This is
achieved by postponing the ”–regex-file” flag followed by the file path, during the script execution.
This mode can be used independently or in combination with the domain-file mode.

python3 discover.py --regex-file <filepath>

These actions can also be performed through the web interface. First, the user selects whether
to input a single domain through a text box or upload a file containing multiple domains. Then it
can optionally upload a second file with one regex per line for the selector generation. By pressing
the ”Discover records” button, the discovery process will begin, and the results will be displayed
at the bottom of the page under the ”Output” section.

Figure B.4. Discover a single domain.

Figure B.5. Discover multiple domains.

76

User Manual

This module will generate and update various files:

• history.txt: In which will be written all the domains and selectors discovered through the
tool. This is useful to obtain reliable statistics.

• selectors domains discovered.txt: In which are present the pairs discovered that will be
monitored.

• selectors list counters.txt: In which each selector has assigned a counter incremented after
each utilization. This is useful for generating statistics.

B.4 Verify module

This module has the duty of verifying the DKIM signatures of a given email. Similar to the other
two modules, additional help on its usage settings can be obtained by running:

python3 verify.py --help

The command line execution requires the user to append the file path to the eml file, repre-
senting the email, to the basic Python command. The results, performed by considering the time
of receipt as the time of verification, will be displayed in the same command line.

python3 verify.py <filepath>

The user can optionally provide the tool with a specific record for the verification process by
adding the ”--record” flag and pasting the record as a string:

python3 verify.py <filepath>--record ”<record>”

The web interface instead requires the user to upload the eml file through the dedicated form,
optionally choose to insert inside a textbox the record to use, and then click the ”Upload and
verify” button to begin the verification process. Since the uploaded file may contain personal
information, the tool will delete it by default at the end of the verification process. However, the
user can choose to keep the file saved in the system by selecting the appropriate checkbox. As for
the other modules, the results will be displayed at the bottom of the page under the ”Output”
section.

Figure B.6. Verify module standard.

77

User Manual

Figure B.7. Verify module with record insertion.

78

Appendix C

Programmer’s Manual

This appendix will explain the main functions of the tool’s modules in order to help programmers
to further extended and maintain the source code. To recap and have a better view of the general
architecture of the tool, this is the whole schema, already cited in the ”Architecture of the tool”
subsection of the Solution chapter.

Figure C.1. Software Architecture

Each module will be separately described in order to achieve a clearer understanding of the
data workflow and the tool’s general usage.

C.1 Main.py

To fully comprehend this module’s behavior, it’s necessary to have a look at its main function.
Each call will be generally analyzed, in the same order as they appear in the main.

79

Programmer’s Manual

• read selectors domains: This is the function used to retrieve from the txt file the lists of
pairs (selector, domain), for both the main and the discovered file.

• reset password: This is a function imported from the Playwright module to start the pass-
word recovery process needed to receive the email. Further description about this function
will be provided in the dedicated section.

• get domain selector pairs: This is a function imported from the Mail module, used to re-
trieve the updated pairs (selector, domain) from the mail inbox. Further description about
this function will be provided in the dedicated section.

• update selectors list with counts: This function is utilized to update the list of the selectors
in case of new selector name are found.

• update selector domains: This is one of the most important functions of this module. By
taking as input the list of pairs previously retrieved, it has the duty of updating the main
list of the domains monitored, eventually replacing some pairs with the updated one and
moving some pairs from the main list to the discovered list. All these movements are logged
into the ”log.txt” file, with a timestamp of the time and optionally the email ID of the
message that helped identifying the update.

• process selectors domains: This is another important function, which is called twice over the
two different lists. Its role is to perform the DNS queries for each pair contained in the list
and capture the traffic related to this operation. When receiving the reply of the DNS query,
it also performs an additional check looking for possible record changes. If those changes
are present, a message will be written in the ”log.txt” file. The received record is written
in the correspondent output file thanks to another function, named ”execute command”
which will prepend to the record a timestamp and the previous SHA512 file hash, useful
for verification. Finally, if the module is called with the ”-all” flag, this function will have
the duty of capturing and executing the exchange with the Timestamp server to get the
Timestamp token. All the files produced by this function will appear in the ”output”
folder.

• zip and timestamp: The default execution of this module will involve the call of this func-
tion, which has the duty of creating the zip archive that will be timestamped. The whole
process’s traffic is captured, and together with the zip archive and the timestamp files will
appear in the ”zip” folder. At the top of the function, two lists represent the files and folders
to be zipped.

• capture traffic: As the name says this function has the duty of generating a pcap files with
the recorder traffic. By passing as a parameter the traffic type, a different filter will be
inserted in the tcpdump command. This function is called by ”zip and timestamp”, and
”process selectors domains”.

C.2 Mail.py

This is a support module for main.py which has the duty of interacting with mail servers and
handling email content. It includes five functions:

• read config: This function is used to load the configuration details, such as server addresses
and credentials, written in a json file.

• extract dkim info: Given an eml file, this function leverages the email Python library to
extract the domain and the selector from a DKIM signature.

• send email: Given a config file read by the ”read config” function, this function will create
and send an email to a fixed email address. The email is created as a Mime object with the
necessary options. Once connected to the server specified in the config file, the email is sent,
and the connection is closed. This function is repeatedly called by the ”send multiple mails”
functions, once for each configuration file in the ”config” folder.

80

Programmer’s Manual

• get domain selector pairs: This is the function invoked by the main module described in
the previous section. To extract the updated pairs, it first needs to send new mails to the
inbox. This is achieved by calling the ”send multiple mails” function. Once the sending
process is finished, this function will connect to the IMAP server to download the received
emails saving one email per domain-selector pair in the ”email” folder.

C.3 Discover.py

To fully understand this module’s behavior, it’s necessary to have a look at its main function.
Before entering the discovery phase, the main function uses different functions to read and prepare
the required information:

By default, the domain name is asked from the user via command line. If a txt file containing
multiple domain names is provided using the ”--domain-file” flag, the ”read domains from file”
function returns a list of these domains.

By default, a fixed list of selectors will be used for the discovery, which is read from a file
using the ”read selectors with counters” function. If a txt file with regex is provided using the
”--regex-file” flag, the list of domains will be generated by the ”generate selector regex” function,
which leverages the exrex Python library.

To complete the information needed by the script, the ”read existing couples” function reads
the existing domain-selector pairs from both the main and the discovered list, while the ”read history”
function reads the history file, which is needed to obtain reliable statistics.

At this point, for each provided domain, the list of default selectors or the regex generated
list, is used to check for existing records. This is performed thanks to the ”execute dig” function,
which will execute the command and return the reply. This response will be analyzed by the
”record exist” function that will check if it contains a DKIM record. If the check is affirmative,
the selector name is saved in a list, and the selector list counters are updated. Before updating,
the tool verifies that the selector has not already been discovered for that domain by referencing
the history file. This operation is also handled by the ”update selectors” function, called when
using the regex generated selector list.

Finally, the discovered domain-selector pairs are printed on the command line and added to
the discovered list if they are not already present in either list. The history and selector list
files are then updated using the ”write history” and ”write selectors with counters” functions,
respectively.

There are three statistics generated by three different functions:

• stats count selectors: This function reads the history file and prints the number of domains
that have a certain number of available selectors.

• stats top n selectors: This function sorts the selector list with counters and displays the top
n selectors.

• stats percentage usage: This function calculates the percentage of usage for each selector in
the list with counters, displaying the utilization of each selector relative to the others.

C.4 Verify.py and custom dkim.py

The verify.py module is essentially an extension of the ”dkimverify.py” script provided inside
the dkimpy library. This section in fact, comprehend the custom dkim.py module, which has
been used to extend the previously cited library to meet the tool’s specific need. These are the
operations performed by the main function:

First, the eml file that needs to be verified is used to create a DKIM object and three key
information are extracted using the ”extract dkim fields” function: the timestamp of the signa-
ture, the selector and the domain. Since the timestamp is not mandatory the receipt time is used

81

Programmer’s Manual

if it is missing. If no record is provided by the user, the extracted selector and domain are then
used to reconstruct the filename where the record is stored, and the ”find correct dkim record”
function retrieves the appropriate record using the provided timestamp. At this point, there are
two possible execution flows:

1. If the record is successfully retrieved, the verification process can begin through the ”ver-
ify fixed” function. This is where the standard library was modified, as it previously did
not accept a static record passed as a parameter.

2. If no record is found for the extracted domain selector, the tool proceeds by querying the
DNS server for the appropriate record. This is the standard behavior of the library, executed
by the ”verify” function, which was modified for the previous scenario.

In both cases, the ”verify headerprep” function called by both ”verify” and ”verify fixed”
has been modified. Instead of calling the standard ”validate signature fields” function, it calls
the ”custom validate signature fields” function, altered to use the receipt time as the time of
verification, rather than the current time.

C.5 Playw.py

This is a support module for main.py which has the duty of generating a password reset mail. Since
this is a specific solution, it can be changed to work with other specific websites. In its current
form, the code will navigate to the ASOS website and follow the necessary steps to generate a
password reset link. It is important to note that an account must exist for the provided email
address.

The script begins by creating a browser object and a page within it, then uses the ”goto”
function to navigate to the target website.

From this point on, the script primarily repeats two key instructions:

• wait for selector: Which waits for the HTML element to be rendered and displayed on the
page.

• click/fill: Which performs the actions on the HTML element.

The whole procedure is made accessible to the main.py module through the ”reset password”
function, which exports these instructions.

C.6 Web.py

This module is responsible for the web interface of the tool. Specifically, the ”web.py” file handles
the backend, while the frontend is managed by the ”index.html” and ”style.css” files, located in
the ”templates” and ”static” folders respectively.

The application is built thanks to the Flask framework, with the backend designed to manage
the various functionalities offered by the tool. Different requests are handled based on the tags
in the HTML form or the files uploaded by the user. All uploaded files are temporarily stored in
a directory within the project, called ”uploads” and deleted at the end of each execution. Each
functionality then executes a corresponding Python script, captures the output, and passes it to
the HTML page, where it is displayed under the output section. Additionally, the web interface
can be made accessible on a specific port by modifying the ”app.run” function parameters.

82

Appendix D

Metaspike’s tools

These screenshots are related to the Forensic Email Collector v4.0.167.1390 and Forensic Email
Intelligence v2.2.158.1118, both utilized under a temporary license. The email content shown in
the screenshots is the property of the thesis author.

Figure D.1. FEC: Homepage

Figure D.2. FEC: Timestamping authority settings

83

Metaspike’s tools

Figure D.3. FEC: Acquisition settings

Figure D.4. FEC: Output settings

Figure D.5. FEC: Email address labels

84

Metaspike’s tools

Figure D.6. FEC: Inline-search

Figure D.7. FEC: Acquisition completed

Figure D.8. FEC: Post-acquisition action

85

Metaspike’s tools

This instead is an example of the content of the Acquisition Log generated by the Forensic
Email Collector:

Log file initialized at 03/10/2024 10:38:55 +02:00

Software version: Forensic Email Collector v4.0.167.1390

2024/10/03 10:38:55.553 - Getting total message count for Gmail account.

2024/10/03 10:39:06.335 - The Gmail mailbox dkimmarco@gmail.com contains

1.794 messages and 1.257 threads.

2024/10/03 10:39:06.707 - Collecting detailed information for the 14 labels.

2024/10/03 10:39:06.826 - Gmail label information has been acquired.

2024/10/03 10:43:04.116 - Starting acquisition.

Current Output Path: D:\FORENSIC\prova

------ Settings Used ------

Target Email Address: dkimmarco@gmail.com

Examiner Name: Marco Vitale

Agency: PoliTO

MIME Output: True

MSG Output: False

PST Output: False

Deferred PST Output: False

Decrypt S/MIME: False

Timestamp Logs: True

Differential Acquisition: False

Hash Algorithm: Sha256

Split Output: False

Output Pst Base Name: {TargetEmail}

Server Settings

Server Address: https://www.googleapis.com/gmail/v1/

Protocol: GoogleApi

Authentication Mode: Oauth2

Include Gmail: True

Include Google Calendar: False

Populate Output Paths from Gmail Labels: True

Duplicate Items for Each Gmail Label: False

Use Domain-wide Delegation: False

Include Google Drive Directly: False

Fetch Drive Attachments: False

Inline Search Query: subject:"DKIM Update mail"

Treat Inline Search Exceptions as Responsive: False

Include Attachments during Inline Search: True

Limit Inline Search to Metadata Only: False

Normalize Accented Characters: False

2024/10/03 10:43:04.137 - Acquiring mailbox rules.

2024/10/03 10:43:04.446 - Acquired 0 mailbox rules.

Figure D.9. FEC: Acquisition log (Part 1)

86

Metaspike’s tools

------ Selected Folder Structure ------

All Mail - 1.794

------ Gmail Labels ------

CHAT (0) [ID: CHAT]

SENT (4) [ID: SENT]

INBOX (1.793) [ID: INBOX]

IMPORTANT (357) [ID: IMPORTANT]

TRASH (0) [ID: TRASH]

DRAFT (0) [ID: DRAFT]

SPAM (0) [ID: SPAM]

CATEGORY_FORUMS (0) [ID: CATEGORY_FORUMS]

CATEGORY_UPDATES (74) [ID: CATEGORY_UPDATES]

CATEGORY_PERSONAL (260) [ID: CATEGORY_PERSONAL]

CATEGORY_PROMOTIONS (48) [ID: CATEGORY_PROMOTIONS]

CATEGORY_SOCIAL (1.408) [ID: CATEGORY_SOCIAL]

STARRED (0) [ID: STARRED]

UNREAD (126) [ID: UNREAD]

2024/10/03 10:43:04.653 - Starting to capture snapshots from folders.

2024/10/03 10:43:04.659 - Capturing snapshot for folder All Mail.

2024/10/03 10:43:06.354 - Finished capturing snapshot for folder All Mail.

2024/10/03 10:43:06.356 - Finished capturing snapshots from folders.

2024/10/03 10:43:06.360 - Starting to download items from selected folders.

2024/10/03 10:43:06.370 - Downloading items from folder All Mail.

2024/10/03 10:43:06.637 - Collecting detailed information for the 14 labels.

2024/10/03 10:43:06.736 - Gmail label information has been acquired.

2024/10/03 10:43:07.427 - Item with ID:’2’ Service ID:’1924f2bc8530ebe1’ not

responsive to Inline Search. Excluding item.

2024/10/03 10:43:07.437 - Item with ID:’3’ Service ID:’1924ebf16ac6210c’ not

responsive to Inline Search. Excluding item.

...

2024/10/03 10:45:07.827 - Item with ID:’1698’ Service ID:’18fee2975a7bb595’

not responsive to Inline Search. Excluding item.

2024/10/03 10:45:08.277 - Finished downloading items from folder All Mail.

2024/10/03 10:45:08.279 - Finished downloading items from selected folders.

2024/10/03 10:46:14.933 - Starting retry cycle 2 of 10.

2024/10/03 10:46:14.933 - Starting to download items from selected folders.

2024/10/03 10:46:14.933 - Downloading items from folder All Mail.

2024/10/03 10:46:15.247 - Item with ID:’239’ Service ID:’19169ac8a68a5f67’

not responsive to Inline Search. Excluding item.

2024/10/03 10:46:16.540 - Finished downloading items from folder All Mail.

2024/10/03 10:46:16.541 - Finished downloading items from selected folders.

2024/10/03 10:46:16.542 - Acquisition complete. All items were downloaded.

Figure D.10. FEC: Acquisition log (Part 2)

87

Metaspike’s tools

------ Acquisition Summary ------

Selected Folders: 1

Total Folders: 1

Selected Folders without Snapshots: 0

Total Items in Selected Folders Reported by Provider: 1.794 (Estimated)*

Total Items in FEC’s Snapshot: 1.795

Items Excluded via Inline Search: 1.560

Downloaded Items: 235

Remaining Items: 0

* Count does not include calendar events, spam, and trash.

2024/10/03 10:46:16.755 - All items were downloaded. Clearing credentials.

Time elapsed during this acquisition session: 0:03:13,540694

Figure D.11. FEC: Acquisition log (Part 3)

Figure D.12. FEI: Project creation

88

Metaspike’s tools

Figure D.13. FEI: Evidence insertion

Figure D.14. FEI: Evidence extraction

89

Metaspike’s tools

Figure D.15. FEI: Evidence inspection

Figure D.16. FEI: Project insights Figure D.17. FEI: Project participants

90

Metaspike’s tools

Figure D.18. FEI: Email examination

Figure D.19. FEI: DKIM and ARC Ver-
ification

Figure D.20. FEI: Email entities

91

Metaspike’s tools

Figure D.21. FEI: Email insights

Figure D.22. FEI: Email timestamps

Figure D.23. FEI: DKIM keys saving

92

	List of Tables
	List of Figures
	Introduction
	Objectives
	Outline

	Background
	Email architecture
	DKIM
	Overview
	Workflow
	Signing
	Verification
	Offered functionalities
	Open problems
	Verification tools
	Testing environment
	Connection with SPF and DMARC

	Timestamping
	Timestamp request
	Timestamp response
	Verification of the timestamp

	State of the art
	DKIM Deployment
	Long Term Verification
	PAdES for Long Term Validation
	CAdES for Long Term Validation

	Solution
	DKIM & CAdES
	Advantages
	Potential problems

	DKIM & TSA
	Advantages
	Potential problems

	DKIM Logger
	Log generation and preservation
	Traffic capture
	Output files
	eIDAS and EU rules
	Architecture of the tool
	Mail module
	Playwright module
	Discovery module
	Verify module
	Web module
	Final usage
	Comparison with Metaspike tools

	Conclusion and future development
	Bibliography
	Appendices
	Testing Environment documentation
	Network Configuration
	Key Pair and Record creation
	DNS Setup
	HMailServer Installation
	Domain and user creation
	Enabling DKIM

	Thunderbird Configuration

	User Manual
	Prerequisites
	Main module
	Discovery module
	Verify module

	Programmer's Manual
	Main.py
	Mail.py
	Discover.py
	Verify.py and custom_dkim.py
	Playw.py
	Web.py

	Metaspike's tools

