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Summary

Transformers have become essential in deep learning, excelling in tasks like natural
language processing and computer vision. However, they are computationally
expensive, especially in their so-called attention layers, which require large-scale
matrix multiplications with quadratic complexity. Therefore, coupling general
purpose processors with specialized hardware accelerators is critical to efficiently
deploy Transformers in embedded systems with limited resources. The Embedded
Scalable Platform (ESP) is a pioneering open-source research platform that enables
the design of such heterogeneous SoCs, by integrating multiple types of tiles in
a 2D mesh architecture. This modular design allows for an efficient integration
of third-party accelerators, enabling rapid prototyping and exploration of novel
architectures.

This thesis focuses on the integration of the state-of-the-art Integer Transformer
Accelerator (ITA) within ESP. ITA was developed to accelerate the execution
of Transformer models by employing 8-bit quantization and custom hardware
optimizations to improve the efficiency and reduce the memory footprint of attention,
including an efficient implementation of the softmax function, a key component
of this type of layer. Its integration in ESP required incorporating private local
memories (PLMs) within ITA to store data locally during computation, minimizing
external memory access. A controller was designed to manage DMA transactions,
ensuring efficient data movement between the system memory and the PLMs.
Additionally, a hardware socket was generated to interface ITA with the ESP
platform. The latter facilitates communication between the accelerator and system
components, allowing ITA to be integrated seamlessly into the SoC architecture.

The final SoC architecture then consists of a memory tile, an Ariane RISC-V
CPU tile, an ITA tile and an I/O tile.

On the software side, a bare-metal application was written to validate the
functionality of ITA within the ESP system. This application demonstrated the
capability of ITA to perform attention computations taken from a real-world
transformer model, working in coordination with the Ariane processor.

The results showed significant improvement when using ITA to accelerate atten-
tion layers, with respect to a purely software solution running entirely on Ariane.
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Lastly, the flexibility of ESP was leveraged to explore performance scalability, by
increasing the number of ITA accelerator tiles, which each processing a different
attention head in parallel.

In summary, this thesis demonstrates the successful design and integration of a
specialized hardware accelerator for transformer models, exploiting the flexibility
and modularity of ESP. The final SoC represents a promising solution for the
deployment of resource-intensive machine learning models in embedded-systems.
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Chapter 1

Introduction

In recent years, Transformers have emerged as an innovative architecture in Deep
Learning. Initially proposed by Vaswani et al. in the year 2017[1], Transformers
were intended to tackle the challenges that come with the sequential approach
of Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks
(LSTMs). Considered as an improvement over RNNs and LSTMs, Transformers
rely on an attention mechanism to assess the relevance of different parts of an
input sequence and perform Natural Language Processing (NLP) applications like
translation, text generation and language comprehension effectively. In addition,
the strength of Transformers has been seen in areas of computer vision, speech
recognition and biological sequence analysis among other applications other than
NLP.

BERT[2], GPT[3], and Vision Transformer (ViT)[4] are among the most pop-
ular Transformer model architectures. These specific models have pioneered the
advancement of machine learning, reaching record levels of precision in several
types of applications, beginning with NLP and ending with image recognition.
BERT (Bidirectional Encoder Representations from Transformers) introduced a
bidirectional training method to capture context from both directions of a sentence.
This resulted in cutting-edge performance in areas such as question-answering
and language inference. Conversational Artificial Intelligence (AI) has improved
dramatically through GPT’s autoregressive architecture (Generative Pre-trained
Transformer), demonstrating impressive skills in text generation and improving
natural language understanding. The advancement of GPT models represented
major achievements in increasing the size of Transformer models to billions of
parameters, resulting in their ability to produce coherent, human-like text.

Even models, like ViT[4], have demonstrated outstanding performance on large
datasets, compared to the achievement of image classification with Convolutional
Neural Networks (CNNs). However, this success entails considerable expenses,
as Transformers impose heavy demands on both memory size and computational
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power if attention mechanisms are to be implemented. Their real-time operation
in systems, especially with limited resources such as embedded systems, becomes
increasingly difficult, as there are billions of parameters to deal with. The extreme
computational requirements led to increased interest in devices that could serve as
efficient hardware accelerators for such models.

To address these challenges, the Integer Transformer Accelerator (ITA)[5] was
developed as a hardware accelerator designed to optimize the execution of the
Transformer attention layer in low-power environments. ITA leverages 8-bit quanti-
zation and an optimized approach to the softmax function. By using 8-bit integers
instead of 32-bit floating-point numbers, ITA reduces the amount of data processed,
saving both compute power and memory bandwidth.

One of the key innovations in ITA is the integer-based softmax implementation,
which eliminates the need for expensive floating-point units. Compared to its base
implementation, which computes the exponentials of the input values, sums these
factors, and then divides them by the sum. This involves multiple floating-point
multiplications and divisions which are computationally expensive. While the
integer-based softmax, not only reduces hardware complexity but also minimizes
data movement, as the non-linear function is computed in a streaming fashion.

As Transformers continue to dominate the Machine Learning field, the integration
of specialized hardware accelerators like ITA is crucial for efficiently deploying these
models in real-world applications, and, platforms such as the Embedded Scalable
Platform (ESP)[6][7] are essential to meet growing computing demands.

ESP is a pioneering open-source platform for heterogeneous System-on-Chip
(SoC) design. It supports rapid prototyping and deployment of hardware accelera-
tors like ITA, within a modular, tile-based architecture. This platform is suited for
applications spanning from embedded systems to high-performance computing and
supports accelerators designed in languages such as C/C++, SystemC, Verilog, or
High-Level Synthesis (HLS) tools.

ESP’s modular design integrates various tiles, including compute, memory, and
accelerator tiles, using a Network-on-Chip (NoC) for high-bandwidth communica-
tion. This flexibility allows ITA to be seamlessly integrated with other processing
elements, optimizing AI inference. The platform’s scalability and ability to han-
dle diverse workloads make it an ideal solution for exploring configurations in
resource-constrained systems.

The focus of this thesis relies in integrating the ITA Transformer accelerator
into ESP to enhance the performance of Transformer attention mechanisms. This
research was conducted in collaboration with Columbia University, particularly
with the SLD group, which developed the ESP platform. The project involved
adapting ITA’s interface for compatibility with ESP’s modular system, configuring
Private Local Memories (PLMs), designing a custom Direct Memory Access (DMA)
controller for efficient data transfers, and developing a bare-metal application to
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validate ITA’s performance.
The thesis is organized into five chapters. The first chapter provided an intro-

duction to Transformers, ITA, and ESP. The second chapter covers the background
necessary to understand the work done in this thesis, including an introduction
to Deep Neural Networks (DNNs), theoretical concepts of Transformers, their
architecture, key mathematical operations, and an overview of Deep Learning ac-
celerators, with a focus on Transformer accelerators. It also describes the hardware
platforms used. The third chapter details the work undertaken to integrate the
ITA accelerator into the ESP platform, outlining the important steps and actions
required to replicate the work. The fourth chapter presents the results obtained,
emphasizing the need for dedicated hardware to achieve faster execution speeds.
The final chapter summarizes the conclusions on the project and outlines potential
future work that could build upon this research.
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Chapter 2

Background

2.1 Deep Neural Networks
Machine Learning (ML) has significantly transformed various fields by enabling
systems to learn from data rather than just depending on explicit programming.
Traditional ML methods often require manual feature engineering, with experts
creating features considered to be most suitable for the specific task.

Deep Learning (DL) has further advanced ML by integrating feature extraction
and representation learning into a single, cohesive process. Deep Neural Networks
are the key models that distinguish DL. DNNs differ from traditional ML methods
by being able to extract meaningful features from raw data without the need for
human-created features during training. This ability comes from their structured
design, with each level extracting and improving characteristics from the previous
ones.

DNNs are structured as layered graphs, with each layer performing specific
operations to transform the input data. Through training, these networks adjust
their parameters to optimize performance on a given task.

2.2 Multi-Layer Perceptron
A Multi-Layer Perceptron (MLP) is a type of Artificial Neural Network (ANN)
consisting of multiple layers of neurons. The MLP architecture typically consists of
three types of layers, as you can see in Fig. 2.1: the input layer, one or more hidden
layers, and the output layer. The input layer receives the raw data and passes it to
the network. The hidden layers, which sit between the input and output layers, are
where the actual learning happens, as each hidden layer applies transformations to
the data. The output layer generates the final predictions or classifications based
on the processed data. The depth of the network (i.e. the number of hidden layers)
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and the number of neurons in each layer determine the MLP’s capacity to learn
complex functions.

Figure 2.1: A 2-layer Neural Network: one input layer with three inputs, one
hidden layer of 4 neurons and one output layer with 2 neurons [8]

Each neuron performs a mathematical operation inspired by the functioning
of biological neurons in the human brain. The artificial one, which is a linear
transformation, consists of n inputs xi and one output y. The output is calculated
as follows:

y = f

A
nØ

i=1
xi · wi + b

B

where f is the activation function, wi are the weights, and b is the bias term.
The activation function introduces non-linearity to the neuron’s output, which
is crucial for the network’s ability to learn complex patterns. One of the most
commonly used activation functions is ReLU, defined as:

ReLU(x) = max(0, x)

Rectified Linear Unit (ReLU) activates neurons only if the input is positive, setting
all negative values to zero while leaving positive values unchanged.

For more details on DNN structure, training, loss, and optimizers, refer to the
book of Ian Goodfellow and Yoshua Bengio[9].
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2.3 RNNs and LSTMs
While Multi-Layer Perceptrons have demonstrated remarkable capabilities in han-
dling various tasks, they are not well-suited for sequential data due to their fixed-size
input and inability to capture temporal dependencies. This limitation led to the
development of RNNs, which are specifically designed to process sequences by
maintaining hidden states that evolve over time as new inputs are received. RNNs
can be thought of as neural networks with loops, allowing information to be passed
from one step to the next, thus capturing dependencies across time. However,
standard RNNs often struggle with long-range dependencies, primarily due to the
vanishing gradient problem [10] [11], which makes it challenging for the network to
learn relationships between distant elements in a sequence.

To address these limitations, LSTMs were introduced, incorporating memory
cells and gating mechanisms. The architecture of LSTMs enables them to selectively
remember or forget information, thus mitigating the issues associated with standard
RNNs and making them more effective for tasks such as language modeling, speech
recognition, and time series forecasting. For more information, see [12], [13], and
[10].

Although there have been improvements, RNNs and LSTMs still operate se-
quentially, causing inefficiencies in both training and inference, particularly with
long sequences. As a result, the emergence of Transformers represented a major
advancement in the field of Deep Learning.

2.4 Transformers
The Transformer is a deep neural network model first introduced by Vaswani et al
in 2017 [1], and it is largely based on the attention mechanism of modeling.

This architecture was aimed to handle data that can be represented as sequences
(or collections of tokens where the order is important). Such approaches were
originally predicted to resolve certain types of tasks related to natural language
(translating and text generation). The transformer architecture has also proved
useful in other challenges such as computer vision and multi-modal learning. The
model’s effectiveness, especially in tasks involving recognition of patterns over long
sequences has made it an everyday model employed in many machine learning
problems.

As shown in Fig. 2.2, the Transformer model is composed of two main parts:
the encoder, located on the left side of the Figure, and the decoder, situated on the
right side. This structure reflects its original application in machine translation.
The encoder processes a source sentence and finds a latent representation, while
the decoder uses this representation to reconstruct an equivalent target sentence,
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thus enabling translation between languages.
More recent works leverage only the encoder element for vision tasks. The

encoder serves as a feature extractor, while an MLP head is added to perform tasks
like classification, and processing the features extracted from the input.

Figure 2.2: The Transformer model architecture [1]

Transformers have gained significant attention due to their benefits over previous
architectures, especially Recurrent Neural Networks:

• Parallelization: Unlike RNNs, which involve a sequential step of one-token
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processing at each step, in Transformer encoder structures, all parts of a
sequence can be simultaneously treated due to the use of the attention layer.
This can happen because the outcome of the attention is not influenced by
any state variable. RNNs suffer from a bottleneck as they require the output
from the previous step before proceeding to the next.

• Long-range dependencies: RNNs frequently have difficulty capturing long-
term dependencies, as data can deteriorate or disappear with time. Trans-
formers utilize self-attention mechanisms to capture information.

However, Transformers also come with some limitations:

• Data requirements: Transformers often require large datasets to train
effectively. This makes them less suitable for tasks with limited labeled data
than simpler models that perform well with smaller datasets.

• Positional encoding: Since Transformers process input sequences in parallel,
they lack the inherent ability to capture positional information that RNNs
have. To address this, they rely on additional positional encodings, which may
not always be as effective in capturing order information as RNNs.

2.4.1 Encoder
The Transformer encoder consists of N identical layers, each composed of two
main components: a Multi-Head Attention (MHA) mechanism and a feed-forward
network (FFN). The MHA allows the model to focus on different parts of the input
sequence simultaneously, capturing both local and global dependencies and the
MLP head embeds each encoding.

Each layer in the encoder uses residual connections and Layer Normalization
(LN) to stabilize the training process and maintain learning efficiency[14]. Each
layer can be described as:

X̃l+1 = LN(Xl + MHA(Xl))

Xl+1 = LN(X̃l+1 + MLP(X̃l+1))

2.4.2 Decoder
In addition to the two sub-layers in each encoder layer, the decoder inserts a third
sub-layer, which performs multi-head attention over the output of the encoder
stack. Just like the encoder, it uses residual connections around every sub-layer,
along with layer normalization. In the decoder stack, changes are made to the
self-attention sub-layer so that positions are restricted from attending to future
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positions. This masking, along with the condition that the output embeddings are
shifted by a single position, guarantees that the predictions for position i are only
influenced by the known results at positions preceding i [4].

The decoder is briefly described here for completeness, even if this thesis will
focus on encoder-only Transformers.

2.4.3 Positional Encoding

The Transformer architecture processes tokens simultaneously, lacking the inherent
sequential layout characteristic of RNNs. To compensate for this, the model
incorporates input embeddings that transform each token into a continuous vector
space, allowing it to effectively represent the semantic information of the tokens.
However, since the simultaneous processing of tokens can obscure their positional
relationships, the Transformer integrates positional encodings into these input
embeddings.

Positional encoding provides the model with information regarding the relative
and absolute positions of each token within the sequence. A common approach for
generating these encodings utilizes sinusoidal waveforms, which enable the model to
generalize to longer sequences that may not have been encountered during training.
This design not only allows the Transformer to recognize the significance of position
but also enhances its ability to adapt to varying sequence lengths while maintaining
contextual understanding.

2.4.4 Attention

The central operation in both the encoder and decoder layers of the Transformer
model is the scaled dot-product attention. This operation can be repeated in
parallel in several instances, called heads, resulting in what is known as multi-head
attention, as you can see in Fig. 2.3. The figure depicts, on the left, the scaled
dot-product attention, and on the right, the multi-head attention. They will be
explained in detail in the following sections.

The attention operation can be defined as a function that, when given a query
vector and a set of key-value pairs, produces a weighted sum of the values as output.
The weights are calculated by determining a compatibility score for each key with
the query.
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Figure 2.3: (Left) Scaled Dot-Product Attention (Right) Multi-Head Attention
[1]

Scaled Dot-Product Attention

In standard Transformer models, the attention function used is the Scaled Dot-
Product Attention, which operates on three inputs: the query (Q), key (K), and
value (V) matrices. The function is defined as:

Attention(Q, K, V ) = softmax
A

QKT

√
dk

B
V

where Q, K, and V are obtained by applying linear transformations to the original
inputs of size S ×E, resulting in matrices of size S ×P , with S being the sequence
length, E the embedding size, and P the projection space, as illustrated in Fig.
2.4.

The attention computation proceeds by performing the matrix multiplication
between Q and KT , followed by dividing the result by the square root of the
dimensionality of the keys, dk, to scale the similarity scores. The softmax function
is then applied to generate an S × S attention matrix A, which represents the
probabilities. This matrix is subsequently multiplied by V to produce the output
O of size S × P .
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Figure 2.4: Transformer encoder and multi-head attention [5]

Softmax Function

The Softmax function is a crucial component in the Scaled Dot-Product Attention
mechanism used in Transformers. The Softmax function converts a vector of values
into a probability distribution by exponentiating the values and then normalizing
them. The Softmax function is defined as:

softmax(xi) = exiq
j exj

where xi represents the i-th element of the input vector, and the denominator
is the sum of the exponentials of all elements in the vector. This normalization
ensures that the output values lie between 0 and 1 and sum up to 1, making them
interpretable as probabilities.

In the context of Scaled Dot-Product Attention, the Softmax function is applied
to the scaled dot-product scores. By doing this, the Softmax function converts
these scores into a probability distribution over the keys, which determines the
weighting of the values. This ensures that the attention mechanism focuses on the
most relevant parts of the input sequence while providing a clear, probabilistic
interpretation of the attention weights.

Softmax in the attention mechanism is crucial for handling varying magnitudes
of the dot product scores and ensuring numerical stability, as it prevents the model
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from assigning excessively high weights to any single key or value.

Multi-Head Attention

Multi-Head Attention enables the model to simultaneously focus on data from
various subspaces of representation at varying positions. MHA is composed of
multiple attention layers, or heads, operating simultaneously. Every head applies a
distinct linear projection on the queries, keys, and values that have been learned
before using the attention function.

MultiHead(X) = Concat(head1, . . . , headh)W O

Each attention head is computed as:

headi = Attention(XW Q
i , XW K

i , XW V
i ) = Attention(Q, K, V )

In this case, X represents the input matrix, and W Q
i , W K

i , and W V
i represent

trained projection matrices for the i-th attention head. The final output is produced
by concatenating and projecting the outputs of the various attention heads with
the matrix W O. This enables the model to focus on multiple parts of the sequence
at the same time, improving its capability to understand intricate relationships
between tokens.

Once the attention outputs are calculated, they go through a residual connection
and layer normalization to ensure that the network can still learn well as more
layers are added.

2.4.5 Feed-Forward Networks
The Feed-Forward Network module in the Transformer consists of two linear
transformations separated by a non-linearity. Following the processing of the
input sequence by the multi-head attention mechanism, the output undergoes
transformation through it. Each of the layers in the encoder and decoder contains
a fully connected feed-forward network, which is applied to each position separately
and identically.

FFN(x) = ReLU(xW1 + b1)W2 + b2

While the original Transformer employed the ReLU activation function, more recent
models, particularly those in vision applications, frequently opt for the Gaussian
Error Linear Unit (GELU) activation function over ReLU. The GELU[15] function,
as introduced by Hendrycks and Gimpel, blends the advantages of a linear unit
and a non-linear activation to offer a more seamless activation.

GELU(x) = x · Φ(x) = x

2

A
1 + erf

A
x√
2

BB
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Φ(x) is the cumulative distribution function of the standard normal distribution.
The error function, erf(x), is a mathematical function defined as:

erf(x) = 2√
π

Ú x

0
e−t2

dt

It is used to provide a smooth approximation to the ReLU function and it introduces
a probabilistic smoothing effect, which can improve gradient flow. Unlike ReLU,
which simply thresholds negative values to zero, GELU allows a small number of
negative values to pass through, leading to improved model performance in various
tasks.

2.5 Deep Learning Accelerators
Convolutional Neural Networks and Transformers in deep learning require large
computational resources because they involve a high number of matrix computa-
tions, typically including Multiply-and-ACcumulate (MAC) [16] operations. The
fundamental computational task in convolutional and fully connected layers is the
MAC operation, which consist of calculating dot products between input features
and model parameters repeatedly. Modern deep learning models require millions,
if not billions, of these operations.

Specialized hardware accelerators have been proposed to handle the compu-
tational needs of deep learning by focusing on specific tasks in neural networks.
There are two primary architectural paradigms used for accelerating deep learning
computations: temporal architectures and spatial architectures[17]:

• Temporal architectures, used by Central Processing Units (CPUs) and
Graphic Processing Units (GPUs), rely on centralized control for multiple
Arithmetic-Logic Units (ALUs) that operate independently without exchanging
data between each other. They retrieve data from memory, execute required
operations, and subsequently store the outcomes back in memory. Although
temporal architectures are versatile and flexible, they may not be as efficient
when it comes to reusing data and facilitating communication between ALUs,
potentially causing congestion in memory access and data transfer.

• Spatial architectures, on the other hand, are frequently utilized in Application-
Specific Integrated Circuits (ASICs) and Field-Programmable Gate Arrays
(FPGAs). In this design, the ALUs are placed in an array and can com-
municate with each other, enabling improved data recycling and increased
throughput. This specific architectural design is highly appropriate for deep
learning accelerators as it reduces the need for memory access and allows for
detailed parallel processing at the hardware level.
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As you can see in Fig. 2.5, spatial and temporal architectures have a similar
computational structure, with a set of Processing Elements (PEs). However,
processing units can have internal control in spatial architecture, whereas control
in temporal architecture is centralized. Each PE can have a register file (RF) to
store data in spatial architecture, however, PEs do not have a dedicated memory
capacity in a temporal architecture.

Figure 2.5: Spatial and temporal architectures, taken by [17]

In the early stages of hardware acceleration, the development of hardware
accelerators focused on temporal architectures, primarily using CPUs and GPUs.
CPUs, with their general-purpose architecture, were first employed to execute
deep learning tasks. However, due to their limited parallelism and efficiency for
large-scale matrix operations, GPUs soon became the preferred choice.

Due to their high throughput and memory bandwidth, GPUs are frequently used
hardware accelerators to enhance inference and training processes in DNNs [18]. On
the other hand, GPU-based hardware accelerators consume a lot of power. ASIC
and FPGA-based hardware accelerators have limited computational and memory
resources in comparison to GPU accelerators. They can, nevertheless, achieve
a moderate level of performance while using less energy [19]. ASIC-based DNN
accelerators offer better performance than GPU and FPGA options. However,ASIC-
based accelerators have some limitations, including high cost of development, long
time to market, inflexibility, etc. FPGA-based accelerators can be used as an
alternative to ASIC-based accelerators, and they can provide superior performance
at an affordable cost with reconfigurability and low power dissipation [20].

Also the introduction of Tensor Processing Units (TPUs) represented a significant
advancement in hardware acceleration. TPUs are custom-designed hardware
accelerators specifically developed by Google to handle the high computational
demands of deep learning models. Introduced by Jouppi et al.[21], TPUs are
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optimized for matrix operations and tensor computations, offering substantial
performance improvements over traditional GPUs for both training and inference
tasks.

More detailed information on FPGA, ASIC, and GPU-based accelerators for
deep learning can be found in the works by Dhilleswararao et al. [17], Jouppi et al.
[21], Silvano et al. [22], and also in [23], [24], [25].

2.5.1 Transformer Accelerators

Accelerating inference of Transformer networks is an active area of research, with
most accelerators focusing on the attention layer. Since Transformers divide the
attention mechanism into multiple heads, hardware accelerators can exploit this
inherent parallelism by processing each head simultaneously. This requires careful
management of data dependencies and synchronization between the heads to ensure
efficient computation.

The design of these hardware accelerators shares many similarities with CNN
accelerators but requires additional optimizations to handle the unique demands of
the attention mechanism.

In recent years, several innovative hardware accelerators specifically designed
for Transformers have emerged. Some architectures exploit the sparsity of the
attention matrix, such as OPTIMUS, SpAtten, and ELSA.

OPTIMUS, as detailed in the paper by Park et al.[26], includes various performance-
boosting features like the redundant computation skipping technique to speed up
decoding and sparse matrix format for maintaining high efficiency with a large
number of MACs in hardware. It also has a flexible hardware architecture to
support diverse matrix multiplications and it ensures all intermediate computation
values remain local, thereby eliminating the need for DRAM access and achieving
rapid single-batch inference.

SpAtten[27], an efficient algorithm-architecture co-design, proposes token and
head pruning and progressive quantization to reduce memory accesses and compu-
tations using a special engine to rank token and head importance scores.

ELSA[28], a hardware-software co-designed solution, utilizes an approximate
self-attention algorithm to filter irrelevant query and key pairs and only performs
exact computation for relevant pairs.

These emerging accelerators highlight a shift from general-purpose GPUs to
specialized hardware, including TPUs. As Transformer models continue to evolve
and grow in complexity, the development of such accelerators will play a crucial
role in enabling real-time applications and managing the increasing computational
requirements of these powerful models.
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2.6 HW Platform
This thesis focuses on accelerating Transformer inference using the ITA accelera-
tor[5] and ESP[6] [7] as hardware platforms.

ESP provides a flexible, open-source system-level design flow that supports the
integration of accelerators like ITA into heterogeneous SoC architectures. It also
enables the rapid prototyping of custom accelerators on FPGAs, which is essential
for deploying machine learning models efficiently in embedded systems.

2.6.1 ITA: Integer Transformer Accelerator
The Integer Transformer Accelerator is a hardware accelerator designed to address
the computational challenges posed by Transformer models and it is specifically
optimized to accelerate the attention layer of the encoder portion. ITA adopts a
weight stationary dataflow, minimizing data movement throughout the execution of
the attention mechanism. Unlike traditional accelerators, it uses wide dot-product
units, which enable deeper adder trees, enhancing efficiency by reducing the number
of required operations.

Figure 2.6: Architecture of ITA with 8-bit inputs and weights [5]
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The key components are its handling of matrix multiplications involved in the
self-attention mechanism and the softmax operation. ITA is designed to handle 8-
bit integer quantized matrices. As you can see in Fig. 2.6, it includes N Processing
Engines (PEs), each responsible for computing the dot product between two vectors
of size M , and it works on tiles of size M ×M . Each PE uses 8-bit weights and
activations, producing product results with higher precision of D-bit. The adders
after PEs accumulate partial sums. Once outputs are fully accumulated, 8-bit
biases are added to outputs, which are then re-quantized to 8-bit.

The softmax module works in two passes. In the first pass, it takes the elements
of A, finds the maximum, and accumulates the denominator. In the second
pass, when the attention matrix is supplied as input for the A × V computation,
the softmax module normalizes them to probabilities before entering PEs. This
streaming softmax implementation allows ITA to compute this non-linearity in an
energy-efficient manner while minimizing data movement. The softmax values have
a maximum value of 127 or -128 as "sumdotp" modules of the hardware can only
do signed-signed operations.

Figure 2.7: Tiling and computation phases [5]
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The accelerator iterates over dimension L to achieve output stationarity in the
outer loop, as shown in Fig. 2.7. Within each tile, ITA employs a weight-stationary
regime and shares inputs among N PEs. Each PE operates on vectors of size M
in the innermost loop. ITA computes linear layers sequentially but fuses Q × KT

and A × V in iterations of i. In each final iteration of a Q × KT tile, the softmax
module accumulates denominators partially (DA).

Once a row of M × J section of the attention matrix is completed, the softmax
module inverts the denominator of the row (DI) and stores the inverted denominator.
Then, M rows of A × V are computed while normalizing elements of A in the
softmax module (EN). At the start of the next iteration of i, this unit is reset and
the same steps are repeated until all iterations are completed.

ITA has been evaluated against several other state-of-the-art transformer ac-
celerators, including OPTIMUS, SpAtten, and ELSA. In comparison, while other
accelerators focus on exploiting sparsity or using floating-point arithmetic for soft-
max, ITA’s integer-only approach leads to better performance in terms of energy
consumption and area utilization.

HWPE interface

Hardware Processing Engines (HWPEs) [29] are special-purpose, memory-coupled
accelerators that can be inserted in the SoC or cluster of a Parallel Ultra Low Power
(PULP)[30] system to amplify its performance and energy efficiency in particular
tasks. They interact directly with the shared memory architecture (like L1 Tightly
Coupled Data Memory (TCDM) in PULP clusters). The HWPE interface[31],
developed for the PULP platform facilitates the integration of accelerators. In this
case, it helps the integration of the accelerator ITA into ESP.

As shown in Fig. 2.8, it provides three modules: a controller, one or multiple
streamers, and the internal engine. The controller is the interface between the cores
and the accelerator. It has a Finite State Machine (FSM) specific to the engine
to govern the operation of the accelerator and a memory-mapped register file to
keep parameters for the accelerator. The streamers are used to load and store data
from the memories. Finally, the internal engine contains a hardware accelerator
that accepts the streamer’s data and the controller’s configuration.

HWPE provides two types of streamers: one for input, source streamers, and one
for output, sink streamers. The streamers utilize a simple valid-ready handshake
protocol on the accelerator side, ensuring compatibility with most accelerators.
Additionally, HWPE includes First-In-First-Out buffers (FIFOs), which can be
instantiated and sized according to the specific needs of the accelerator.
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Figure 2.8: HWPE interface [29]

For ITA, N=16 dot product units are employed, each with a D=26-bit accumu-
lator to support matrix dimensions up to 512 and a vector length of M=64. This
configuration is chosen to fully utilize the memory-side bandwidth offered by the
TCDM of the PULP system in which the accelerator had been originally integrated.
ITA is designed with three input ports (input, weight, bias) and one output port.
Since the four streamers are time-multiplexed, ITA requires 148B/cycle of maxi-
mum bandwidth to fetch the necessary data per cycle. As a result, 37 master ports
on the TCDM interconnect are used for the HWPE subsystem.

ITA fetches up to two 64×64 8-bit inputs/weights, 64 24-bit bias values, and
writes back 64×64 8-bit outputs to the memory.

Figure 2.9: Data requirement
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Every cycle, the necessary input data and weights are read to maintain full
utilization of the processing units. The system uses streamers capable of generating
up to three-dimensional loops, which ensure efficient access to memory locations
and handle data transfers seamlessly. Partial sums are stored across iterations, and
outputs are only written during the final cycle when the matrix multiplication is
fully complete. Additionally, ITA requires input data and weights in every cycle to
maintain 100% utilization.

In this version, the tiling feature of ITA is not available because the HWPE
interface does not support it. To enable tiling, the interface would need to be
modified accordingly.

2.6.2 ESP

Embedded Scalable Platforms is an open-source research platform designed for
heterogeneous System-on-Chip design and programming. It is the result of years
of research and teaching at Columbia University. The primary motivation behind
ESP’s development is the exponential growth of heterogeneous computing. These
architectures are termed heterogeneous because they integrate general-purpose pro-
cessors, such as CPUs, specialized processors with custom instruction sets, graphics
processing units, tensor manipulation units, and highly specialized accelerators.
This shift from homogeneous multi-core processors to heterogeneous SoCs is driven
by the need for extremely energy-efficient computation.

Figure 2.10: Design flows supported by ESP [7]
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ESP provides a range of design and integration flows for SoC development. It
simplifies the creation of complex and large SoCs, which can then be implemented
on FPGAs for testing and prototyping. It supports the design and implementation
of custom accelerators, as you can see in Fig. 2.10 through various supported
design flows:

• C/C++ with Xilinx Vivado HLS

• C/C++ with Mentor Catapult HLS

• SystemC with Cadence Stratus

• Keras, PyTorch, ONNX, and TensorFlow with hls4ml

• Chisel, SystemVerilog, and VHDL for RTL design

Tiles form the foundation of the ESP architecture, with their number being
selectable at design time based on application needs. Tiles may include:

• Processor Tile: Available cores include the 32-bit SPARC V8 Leon3, the
64-bit RISC-V CVA6-Ariane [32], and the 32-bit RISC-V IBEX. These cores
come with private L1 caches and can boot Linux. A configurable private L2
cache can also be added. ESP supports system-level coherency and dedicated
NoC planes for Input-Output (IO) and Interrupt Request (IRQ) channels.

• Memory Tile: Each memory tile connects the SoC to external memory. The
hardware logic for handling memory address space is automatically created,
with configurable memory sizes and coherent DMA units for data transfers.

• Accelerator Tile: Facilitates integration of accelerators for specific tasks.
Accelerators interact with the memory hierarchy and can operate independently
from processor cores. PLMs in accelerator tiles store local data and support
various cache coherency models.

• Auxiliary Tile: Optional tile containing shared peripherals such as digital
video interfaces, debug links, or monitor modules. This tile supports many
devices but it is quite complex due to its flexibility.

ESP offers services for accelerator tile design, including dynamic voltage and
frequency scaling, performance counters, and monitors. These services are set at
design time, with reconfigurability options available at runtime.

A key feature of ESP stands in its hardware sockets. The accelerator socket
allows for independent design of accelerators and their integration into the SoC [33].
Accelerators and third-party IP blocks, such as NVDLA, can be easily inserted
into an accelerator tile without detailed configuration for virtual memory, DMA,
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data transfers, and interrupt requests. The multi-plane NoC interacts solely with
the socket, and third-party accelerators can have simplified sockets if they support
only a subset of functionalities.

The ESP GUI facilitates SoC design by automatically discovering RTL codes
of developed accelerators and enabling their insertion into tiles. Bare-metal test
programs can be compiled, and the full RTL implementation of the SoC, including
processor, memory, and I/O tiles, can be generated for FPGA prototyping.

RTL Design Flow

The RTL design flow in the Embedded Scalable Platform [34] facilitates the
development of custom accelerators using Hardware Description Languages (HDLs)
such as Verilog, VHDL, Chisel, or SystemVerilog. For instance, in this thesis, the
ITA accelerator was developed using SystemVerilog, making it ideal to follow this
flow for its seamless integration into ESP.

The design process began with a careful specification and design phase. The first
step was to clearly define the functionality and performance requirements for the
RTL accelerator. Once the requirements were established, the SystemVerilog RTL
code was written to meet these specific needs, focusing on efficiency and scalability,
and then, the next critical phase was the verification. This involved extensive
testing using simulation tools to ensure that the RTL design met the functional and
performance specifications laid out during the initial phase. Custom test-benches
were created to simulate in various configurations, allowing for detailed observation
of the accelerator’s performance and correction of any identified issues early in the
design process.

Following successful verification, the accelerator is integrated into the ESP
system-on-chip (SoC) framework. Integration in ESP is particularly streamlined
through the use of a modular socket-based architecture. It is connected to the
platform via the ESP socket, which automatically handles communication with
other system components such as the processor, memory tiles, and I/O peripherals.
This step is crucial, as it ensured that the accelerator could interact efficiently with
the rest of the SoC, leveraging ESP’s scalable design to support different workloads
and configurations.

With the integration complete, the design moved on to the synthesis and
implementation phase. During synthesis, the RTL code was translated into a
gate-level netlist, which was then mapped to the resources available on the target
FPGA. This phase also involved ensuring that the design met the necessary timing
constraints and resource utilization goals.

Finally, the RTL accelerator is prototyped on an FPGA, allowing for real-
world testing within the context of the complete ESP system. This prototyping
phase enabled the team to validate its performance in a full system, measuring its
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execution speed, power consumption, and data throughput in relation to the rest of
the SoC components. The FPGA prototype also provided a valuable opportunity
to fine-tune the design based on real-world performance metrics.

ESP Socket Integration

The ESP socket is a crucial element in the integration of RTL-designed accelerators
into the SoC. It abstracts the complex interfacing details. The ESP socket abstracts
the interface between the accelerator and the rest of the SoC. It handles virtual
memory, DMA, data transfers, and interrupt requests. This abstraction simplifies
the design process by providing a standard interface for all accelerators.

The socket can be customized based on the specific needs of the accelerator. If
a third-party accelerator or a new design has different interface requirements, the
socket can be adjusted accordingly. For instance, the socket can be simplified if
only a subset of functionalities is needed.

The multi-plane Network-on-Chip interacts with the ESP socket to manage
communication between accelerators and other SoC components. This setup ensures
efficient data transfer and communication within the system.

To guarantee successful integration with the ESP socket, it is important to follow
specific guidelines when designing an accelerator for ESP using RTL [35]. Initially,
it is crucial to establish the interfaces for the accelerator, such as data ports, control
signals, and any unique requirements for DMA and interrupts, making sure that
these interfaces meet the ESP socket specifications. Then, the accelerator should be
connected to the NoC and other SoC components using the socket interface modules
provided by ESP, which may require linking to typical interfaces for memory, I/O,
and interrupt management.

Moreover, the socket settings need to be adjusted to align with the needs of
the accelerator. This involves establishing memory-mapped registers and setting
up DMA channels for optimized data transfer. At last, testing and validation are
crucial stages, during which test-benches are created and executed to confirm the
functionality of the accelerator inside the ESP socket. It is important to ensure
that all interfaces operate correctly and that the accelerator performs as expected
in the SoC context.

2.6.3 ESP accelerator specification
Fig. 2.11 illustrates the ESP accelerator socket and shows the three main sets of
signals at the interface of an ESP accelerator: read and write port for data transfers
through DMA requests, configuration port, and interrupt line.

The ESP accelerator follows a structured model for data processing and it
comprises three main control blocks, which are the configuration, the load, and the
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store, one or more computation blocks, and a customized PLM.
Once the accelerator’s configuration registers are populated, the configuration

block activates the rest of the components. The load block initiates a DMA read
transaction to fetch input data from the system memory into the PLM. The com-
putation blocks then process the available input data and generate corresponding
outputs. Finally, the store block issues a DMA write request to send the processed
data back to the system memory.

Figure 2.11: Block diagram of the ESP accelerator model [35]

The configuration block regulates the accelerator’s execution by sampling both
common and user-defined configuration registers, which are located in the ESP
socket and mapped to memory. The configuration port uses different signals driven
by the socket or the accelerator.

The clock signal (clk), provided by the ESP socket, synchronizes all operations
within the accelerator. The reset signal (rst) is also driven by the socket and is used
to initialize the accelerator, ensuring it is ready for a new task. This reset is active
low and is asserted when the software clears the interrupt request to prepare the
accelerator for the next invocation. If the accelerator needs to retain its state across
multiple invocations, a custom reset mechanism can be implemented using a user-
defined register. The configuration process is finished when the conf_done signal is
asserted by the socket. This signal is active high and signals that the configuration
registers are valid, triggering the start of the accelerator’s computation. There can
be up to 48 user-defined configuration registers, which provide custom parameters
such as data dimensions or algorithm-specific control signals. These parameters
are passed as inputs during the configuration phase and become valid when the
conf_done signal is asserted.

Once the accelerator has completed its task, it raises the acc_done signal. This
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active-high signal indicates that all data has been processed and the output has
been written back to memory. Upon assertion of the acc_done signal, an interrupt
request is generated and sent to the system’s interrupt controller. The software
then handles the interrupt, clearing the request and resetting the accelerator for
the next execution. Additionally, the accelerator can output a 32-bit debug signal,
which allows designers to monitor its internal state or report error codes. This
debug information is accessible through the memory-mapped registers in the ESP
socket.

Private Local Memory

Private local memories in ESP serve as the accelerator’s working buffer, they
operate as a temporary storage area for the accelerator’s computations and are
customized for its data path. PLMs store input data fetched from the system
memory during DMA read transactions and hold output data before it is written
back to memory via DMA write transactions.

They are generated using the ESP plmgen utility, which creates SRAM blocks
based on the target technology. However, they are not memory-mapped, not
exposed to software, and are not part of the SoC cache hierarchy. As a result,
they have no external interface exposed to the ESP accelerator socket, and RTL
designers are not required to comply with any hierarchy convention or signal-level
protocol to implement a PLM.

DMA Transactions

Direct Memory Access is a core component of the ESP platform that allows
accelerators to access system memory efficiently without CPU intervention. DMA
is essential for moving data between the memory hierarchy and the accelerator’s
Private Local MemorieS, enabling high-performance computing by reducing the
overhead on the CPU.

The master of the DMA, which is always an accelerator, initiates a DMA read
transfer to load input data from the memory hierarchy into a PLM, and a DMA
write transfer to store output data back to the memory. DMA transactions are
initiated via the dma_read_ctrl and dma_write_ctrl control channels. These
transactions are configured using three key parameters: the index, length, and size
of the data transfer.

DMA control channels follow a simple protocol [36]: when both valid and ready
control signals are set, the value of the data bus is sampled by the slave. From the
accelerator viewpoint valid and ready are independent. The control valid signal
is driven by the accelerator and it indicates a new DMA transaction request and
when it is set all the data fields must be correct. The control ready signal, driven
by the socket, indicates the ESP socket is ready to accept a new request.
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Each DMA transaction begins by specifying the index, which defines the offset
that is used to compute the starting address of the transaction. The length
parameter determines the number of data beats to be transferred, while the size
parameter indicates the width of the data token, which can vary between byte,
word, or double-word, depending on the system’s architecture. This signal is used
to correct the NoC flits when the processor architecture follows the big-endian
convention to store data in memory.

The DMA engine inside ESP translates virtual addresses into physical addresses
using a page table, ensuring that the correct memory regions are accessed. Once
the transfer is configured, data is transferred across the network-on-chip (NoC)
between the accelerator and the memory. The transaction is synchronized using
the ready and valid signals. The transfer completes when both signals are asserted
in the same cycle, indicating that the data has been successfully received.

As shown in Fig.2.12, a read transaction begins with a single beat transfer
through the DMA control channels. After the initial transfer is completed on the
read control channel, the accelerator signals the socket to fetch the requested data
by setting the ready signal high on the DMA read channel. Data is transferred
successfully when both the ready and valid signals are high in the same clock cycle.
The data transfer rate is flexible, allowing the accelerator to reduce the speed
by lowering the ready signal if needed. However, the accelerator must eventually
transfer the full number of beats specified in the request. Failing to complete the
transfer can result in a deadlock within the socket, and in some cases, this deadlock
can spread to the NoC and even to a memory tile.

Figure 2.12: Example of a DMA read transaction in ESP [35]

For a DMA write transaction, as you can see in Fig.2.13 the processed output
data is transferred back to the system memory through the dma_write_ctrl channel.
The accelerator sends the data in beats, with a valid signal indicating when the
data is ready for transfer. The transaction proceeds when both valid and ready
signals are asserted simultaneously. Like the read transaction, the accelerator must
transfer the exact number of beats specified by the length field. If the socket is
not ready to accept data, the accelerator holds the data until the ready signal is
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asserted.

Figure 2.13: Example of a DMA write transaction in ESP [35]
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Chapter 3

Accelerating Attention on
ESP

Before delving deep into the integration between ITA and ESP, an understanding
of the RTL accelerator code base, its pre-existing HWPE interface, and its test
vector generator is needed. The repository consists of:

• ModelSim folder: Contains the Makefiles and scripts needed to simulate with
ModelSim.

• pyITA folder: Includes the test generators for ITA. This folder contains all the
Python scripts needed to obtain the files with the input data, the weights the
biases, and the various intermediate and final outputs, which are located in
another folder called "simvectors". The initial script is testGenerator.py, which
is located outside the folder. This script is designed to generate test data for
Multi-Head Attention layers. It can also export data in ONNX format.

• sourcecode folder: This is where the accelerator code, the interface and the
various test-benches are kept.

After a thorough understanding of the accelerator’s code base, we can move on to
understand its interface and the various protocols that control it. As mentioned
before, ITA, which is contained inside the internal engine (see Fig. 2.8), leverages
a pre-existing interface. The accelerator interface reuses key components of the
HWPE interface, such as streamers and parts of the control block, to manage the
data flow.
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3.1 Integration of one ITA instance into ESP
The first steps needed to integrate ITA onto ESP reside in memory-related con-
nections, more precisely related to Private Local Memories and DMA transactions
handling.

Firstly, we managed PLMs by introducing four dedicated instances, instead of
relying on an L1 cache.

Figure 3.1: HWPE with ITA

Each streamer is paired with a separate PLM, which improves data management
by reducing the latency associated with memory accesses. In terms of control logic,
a portion of the pre-existing control unit is reused, while the register file that was
part of the HWPE has been removed. The new design leverages the register file of
the Ariane RISC-V processor to manage the configuration and control signals.

The next step regarded the DMA. A custom controller has been added to
manage the DMA transactions efficiently. This controller ensures that data is
transferred between the PLMs and the system memory without any unnecessary
delays, optimizing throughput and enabling the accelerator to handle large volumes
of data.

3.1.1 PLMs management
The generation of the four Private Local Memories for the accelerator was carried
out using the Python script plmgen.py, which is part of the ESP framework. This
script automates the creation of Verilog modules that define the memory blocks,
customized for the specific accelerator needs. Each PLM is tailored to the memory
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requirements of a different component in the accelerator, ensuring efficient data
handling and access during computation.

Memory Configuration File: memlist.txt

The memlist.txt file defines the specifications for each of the four PLMs (input,
weight, bias, and output memories). The configuration of each memory block is
specified in terms of size, word width, and read/write ports. Below is the content
of the memlist.txt file used for the PLM generation:

plm_INPUT 16384 32 16w:16r
plm_WEIGHT 16384 32 4w:4r
plm_BIAS 16384 32 16w:0r 0w:16r
plm_OUTPUT 16384 32 4w:4r

Each line in the file specifies:

• Memory Name: Identifies the PLM, such as plm_INPUT for input data memory.

• Words: The number of logic words in memory

• Word Width: The bit width of each memory word (32 bits).

• Ports Configuration: The number of write and read ports, specified as
<write ports> w : <read ports> r.

The plmgen.py script reads the memlist.txt configuration file to generate the
Verilog files for each PLM. The generated files include all the logic required to
implement the memories in hardware.

By using this automated tool, the integration process of PLMs into the accelerator
design is greatly simplified, avoiding the need to manually design memory modules
for each specific configuration.

Generated PLM Example: plm_INPUT.v

The plm_INPUT.v file represents the input data memory of the accelerator. This
PLM is responsible for storing input data fetched by the streamers, ensuring efficient
access during computation. The following are the key input and output signals
used in this PLM:

• CLK: The clock signal used to synchronize the read and write operations across
the PLM.
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• RST_N: An active-low reset signal that initializes the memory. When asserted
low, this signal resets the internal state of the memory. This ensures that all
previous data is cleared, and the memory is ready for new operations.

• WE[15:0]: A 16-bit signal used to selectively enable specific write operations
across multiple memory ports. Each bit corresponds to one port, meaning
that the signal can control up to 16 different ports individually. For instance,
if WE[0] is set to high, the data present on the D signal will be written to
the memory using port 0. If WE[1] is high, port 1 is enabled for writing, and
so on. This write enable allows the system to write data only to the specific
locations required.

• WEM[15:0][31:0]: The Write Enable Mask is a vector of 16 32-bit signals that
provides finer control over memory writes. Each WEM[i][j] bit corresponds
to the j-th bit of the i-th port being written to the memory. This allows the
system to selectively enable or disable writes at the bit-level, ensuring that
only specific bits are updated, while the rest remain unchanged. For example,
if WEM[0][7] is high, only the 8th bit of the data word associated with port
0 will be written, while the other bits remain unchanged. This mechanism
enhances flexibility.

• A[31:0][13:0]: A vector of 32 14-bit address signals that specify the memory
location for both read and write ports. This address points to the location in
memory where the data is either stored or retrieved. The address bus points to
the specific location in memory where the data will be written or from which
it will be read. The 14-bit width allows for addressing a total of 214 = 16,384
memory locations.

• D[15:0][31:0]: A vector of 16 32-bit input data signals carrying the data to
be written to the memory at the address specified by A, controlled by CE, WE
and WEM.

• CE[31:0]: A 32-bits signal that activates the PLM ports during the read
and write operations, where each bit manages one port. When one of this
bit is high, the corresponding PLM port is active and can perform read or
write tasks depending on the other control signals. If CE[0] is not asserted
for example, the memory port 0 will not respond to any operations, in this
case to a write operation.

• Q[15:0][31:0]: A vector of 16 32-bit output data signals that provide the
data read from the memory location specified by the A signal. This signal is
driven when the PLM is enabled for a read operation.
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The architecture of each PLM is designed to meet the needs of high-throughput
accelerators. In this case, the input data PLM is designed to handle 16 read and
write operations, since it has 32 ports, allowing the accelerator to fetch and store
data efficiently during each computation cycle. This architecture supports high
levels of parallelism when accessing memory, as it not only writes the intermediate
outputs back to memory after each computation phase but also simultaneously
reads the data required for the current phase. Some of the intermediate output are
stored also in the PLM dedicated to weights, as will be described in later sections.

This is particularly important for accelerators targeting data-intensive tasks
like Transformer models, where multiple inputs and outputs need to be handled
simultaneously.

The other PLMs (weight, bias, and output) follow a similar structure, with
slight variations in the number of read/write ports, as defined in the memlist.txt
file. These differences ensure that each PLM is optimized for the specific type of
data it handles.

For example, since in the PLM for the weights we have just 8 ports (4 for reading
and 4 for writing), the signal CE will be 8-bit to control each port with one bit
and signal A will be an array of 8 14-bit signals. Therefore, each signal dimension
will correspond with the number of ports on the PLM.

Integration of PLMs with ITA Streamer

The integration of the four PLMs into ITA is achieved through custom wrappers,
with each PLM having a dedicated wrapper to manage data flow between the
accelerator, its designated streamer, and its dedicated memory. These additional
wrappers interact directly with the ITA streamers, which handle the data movement
between the computation units and the PLMs. In previous hardware configurations,
such as those used in PULP systems, the streamers interfaced with L1 memory
through TCDM (Tightly-Coupled Data Memory) interfaces. In this design, the
TCDM interface is reused, but instead of an L1 cache, each PLM is directly mapped
to a specific streamer, ensuring faster access and efficient data handling.

The primary role of these wrappers is to manage read and write operations,
synchronize data flow, and ensure that memory accesses are performed correctly
based on the input signals from the ITA streamer. Below is a description of each
wrapper and its functionality:

• PLM Weight Wrapper: The plm_weight_wrapper is responsible for man-
aging the weight data. It has four memory ports for reading and four for
writing (MP=4), corresponding to the TCDM ports from the ITA streamer.
The TCDM interface provides the req, gnt, add, wen, be, data, and r_data
signals. These signals manage the request, grant, address, write enable, byte
enable, and data transfer operations, respectively.
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This PLM handles also intermediate data storage during different computation
phases. Through the use of external enable signals controlled by the DMA
controller, which will be discussed later in the thesis, the intermediate output
data is written back into the PLM, ensuring that the new required data are
correctly synchronized with the ongoing computations.

• PLM Input Wrapper: The plm_input_wrapper manages the activations
for the accelerator. It is configured with 16 memory ports (MP=16) to handle
higher throughput. The TCDM interface signals are mapped similarly to the
weight wrapper. This wrapper ensures that data is available for computation
at every phase. As said before, this PLM handles intermediate output data
storage.

• PLM Bias Wrapper: The plm_bias_wrapper is responsible for storing bias
values. In this case, MP=13, corresponds to the number of TCDM channels
required for reading bias data. However, due to constraints in the number
of ports that could be generated, 16 ports for each operation (MP=16) were
used. The plmgen.py tool only supports power-of-two values for the number
of write ports, limiting flexibility in port configuration.

• PLM Output Wrapper: The plm_output_wrapper handles the output
data produced by the accelerator. It is configured with four ports for reading
and four for writing, (MP=4), which match the number of TCDM ports in
the ITA streamer for output data. This wrapper is responsible for writing
the processed output data back into memory and ensuring that the data is
available for subsequent processing or storage.

The TCDM interface used in each wrapper provides several key signals to manage
memory operations. These include:

• req: A request signal that initiates a memory operation.

• gnt: A grant signal that indicates when a memory operation can proceed.

• add: A memory address signal that specifies the location in memory for a read
or write operation.

• wen: A write enable signal that controls when data is written to memory.

• be: A byte enable signal that specifies which bytes within the memory word
are being written.

• data: The data being written to or read from memory.

• r_data: The data read from memory.
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• r_valid: A signal indicating that valid data is available after a read operation.

The number of ports in each wrapper is determined by the number of TCDM
channels required by the ITA streamer. By replacing the L1 cache memory with four
distinct PLMs, the design eliminates the need for complex cache management and
reduces latency, because every PLM is always ready for read and write operations.
This is the reason why tcdm_gnt is just set to ’1’.

3.1.2 DMA Controller Design and Implementation
The DMA (Direct Memory Access) controller plays a critical role in orchestrating
data movement between the main memory and the Private Local Memories of the
accelerator. This section describes the design and implementation of the DMA
controller, developed to meet the specific requirements of the ESP accelerator
specification. The DMA controller is responsible for handling read and write
transactions to the PLMs, managing intermediate results, and ensuring efficient
data transfer during the various computation phases.

The DMA controller operates through a sequence of well-defined phases, each
managing a specific aspect of the data flow within the accelerator. The primary
ones are the following:

• Data Loading Phase: Here, the required data (input, weights, and bias) is
fetched from the main memory and loaded into the corresponding PLM. This
phase uses the ESP DMA transaction protocols to handle memory reads from
the external memory and transfers data into the PLMs for use during the
computation.

• Data Write-back Phase: When the accelerator computation is completed,
the final output data is written back from the output PLM to the main memory.
The DMA controller performs this operation by transferring the results from
the output PLM to the main memory using DMA write transactions.

The DMA controller is structured around several distinct states that manage
the flow of operations from initialization to completion. These states are: Idle,
Input, Weight, Bias, Intermediate, Output, and Done.

Initially, it resides in the Idle state, where the accelerator awaits the configura-
tion registers to be set. Once the socket sends the conf_done signal, indicating that
all configurations have been correctly initialized, it transitions into the Loading
Phase. During this phase, the accelerator begins loading the necessary data for
computation. Upon completing the data loading, the controller moves into the
Intermediate state, where the main computational tasks are carried out. When
the accelerator finishes the computation, it raises the evt_o signal and the controller
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enters the Output state. In this phase, the accelerator writes the results back to the
main memory via the DMA. Once all expected data transfers are completed, the
controller transitions to the Done state. At this point, the acc_done signal is raised,
notifying the socket that the accelerator has finished its operations. Finally, the
controller returns to the Idle state, awaiting the next configuration or operation
to begin.

Now, let’s take a closer look at what occurs during each state.

Data Loading Phase

During the data loading phase, after the Idle state, the DMA controller is responsible
for reading the input data, weights, and bias values from the main memory and
transferring them into the respective PLMs (plm_input, plm_weight, plm_bias).
This phase involves several distinct states in the controller, each responsible for
handling specific types of data. The following steps occur:

• In the Input State, the DMA controller initiates three separate read trans-
actions, one for each input (q, k, and v). For each transaction, the base
address from which data needs to be read is updated using the configuration
registers. The signals dma_read_ctrl_valid, dma_read_ctrl_data_index,
dma_read_ctrl_data_length, and dma_read_ctrl_data_size are set ac-
cordingly to initiate the transaction. For example:

dma_read_ctrl_data_length = 32’h200;
dma_read_ctrl_data_size = 3’b011;
dma_read_ctrl_valid = 1’b1;
dma_read_ctrl_data_index = address;

The values for dma_read_ctrl_data_length and dma_read_ctrl_data_size
are chosen based on the data transfer requirements and the architecture of
the Ariane processor. Referring to Tab.3.1, we are working with double words
(DWORD), which correspond to 64 bits (8 bytes) per transfer. This is essential
because the Ariane processor handles data in 64-bit, which matches the size
of the DWORD. Each input has dimensions of S × E, so 64 × 64 bytes,
totaling 4096 bytes. Since we are transferring data in 8 bytes, the number of
transactions required is:

64× 64
8 = 512

In hexadecimal, 512 bytes is equivalent to 0x200, which explains why
dma_read_ctrl_data_length is set to 32’h200. Similarly, the value for
dma_read_ctrl_data_size is set to 3’b011.
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Encoding Name Bitwidth
000 BYTE 8
001 HWORD 16
010 WORD 32
011 DWORD 64

Table 3.1: Encoding of DMA size

Then, the address is updated after each DMA transaction to point to the next
portion of data to be read. The controller transitions out of this state once all
input data has been successfully transferred.

• In the Weight State, four separate read transactions are initiated, one for
each weight matrix tile. The base address for the weight data is similarly
updated after each transaction. This process ensures that all weights required
for computation are loaded into plm_weight. Once the four sets of weights
are fully transferred, the controller moves to the next state.

• The Bias State operates similarly to the previous states and it handles four
separate transactions for the bias values. The controller loads bias data into
plm_bias by setting the same control signals, with updated addresses for each
transaction. The controller transitions to the Intermediate state once all the
bias values are loaded.

The transitions between these states are controlled by internal counters, which track
how much data has been loaded. When the required data has been transferred,
the controller proceeds to the next state. The number of DMA protocol calls is
determined by the data size and memory bandwidth, with each call transferring a
fixed amount of data per cycle.

Intermediate Phase

The intermediate phase is where the computation of the ITA accelerator takes place.
To effectively manage the execution flow, an additional Intermediate State was
introduced, which monitors the overall execution of the accelerator and ensures
that computations are synchronized with the PLM read/write operations.

During this phase, the signal evt_o is used to determine when the accelerator
has finished processing a particular operation. This phase is critical for enabling or
disabling read and write accesses to the PLMs. For instance:

• The Q (Query) sub-phase begins with reading data from plm_input and
writing intermediate results back to the PLM. The signal write_en_input is
activated during this process.
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• In the K (Key) and V (Value) sub-phases, weights and biases are read
from plm_weight and plm_bias, respectively. Intermediate results are written
back to the weight PLM, and the enable signal write_en_weight controls
this operation.

• The QK (Query-Key Multiplication sub-phase) the intermediate re-
sults are written back to the PLM for inputs (plm_input), with the signal
write_en_input activated during this process. Following this, also during the
AV (Attention-Value sub-phase), the results written back into plm_input.

• The OW (Output Write sub-phase) retrieves the final intermediate results
and prepares them for the output PLM, with the signal write_en_output
managing the write process.

This phase ensures the proper sequencing of operations through the use of
control signals, which were kept within the controller to maintain synchronization
between the PLMs and the DMA. Without this intermediate phase, it would be
difficult to manage the complex dependencies between the local memories and the
the accelerator.

Data Write-back Phase

Once the intermediate computations are complete, the DMA controller initiates
the final phase, the Output State. Here, the output data stored in plm_output
is written back to the main memory through DMA write transactions. The
controller uses the signals dma_write_ctrl_valid, dma_write_ctrl_data_index,
and dma_write_chnl_valid to initiate the write-back process. Each DMA trans-
action transfers a portion of the output data, similar to the loading phase. The
controller transitions to the Done State once all the output data has been written
to memory.

In the Done State, the controller sets the signal acc_done to 1, indicating to
the socket that the accelerator has completed its execution. The system can now
transition back to the Idle State, ready for the next operation.

3.1.3 Accelerator Integration
Now the integration process of ITA into the ESP platform will be discussed. Initially,
all remaining unnecessary components, such as the register file that came with
the interface, must be removed. Then, the process proceeds with the creation
of the accelerator tile socket using ESP’s tools. This integration allows ITA to
communicate with the system’s memory using DMA transactions, with the Ariane
processor, and to interact with the ESP framework.
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As a first step, the register file, that was inside the ITA interface, was removed,
since ITA is supposed to utilize the register file of the ESP platform. This modifica-
tion simplifies the design of the accelerator by reducing hardware redundancy and
enables more efficient integration within the ESP infrastructure. Following this,
ITA control logic had to be adjusted to work seamlessly with the new register file.

After this removal, the accelerator skeleton must be generated. For this purpose,
ESP provides an interactive script that automatically does this, along with its
software test applications and device driver. This script, accgen.sh, generates an
empty Verilog/SystemVerilog top-level entities. These are the base structures for
the accelerator, with the correct interface to allow automated integration within
ESP. Even though the skeleton is empty initially, the registers and interfaces are
defined by the user, to meet the requirements for DMA transactions, configuration
settings, and connections to the ESP NoC. The generated folders include:

• hw/: Contains the accelerator hardware files and skeleton code for the RTL
implementation.

• sw/: Contains software test applications for both bare-metal and Linux envi-
ronments, used to test the functionality of the accelerator.

ESP platform automatically generates two interface files for the accelerator.
These include top-level entities for both 32-bit and 64-bit architectures, named in
this case ita_rtl_basic_dma32 and ita_rtl_basic_dma64, respectively. For this
integration, the 64-bit version was selected because the Ariane RISC-V processor
operates on 64-bit data.

The ita_rtl_basic_dma64.sv file represents the top entity of the accelerator,
which interfaces with the DMA control system, the ITA accelerator, and all the
plm wrappers, as depicted in Fig. 3.2

The top-level module has several configuration inputs for several memory point-
ers, such as input, weight, and bias pointers, as well as multiple configuration
parameters, used for the requantization, and tile information. These configuration
inputs allow for flexibility in the computation. The module also interfaces with
DMA channels, allowing for both read and write operations and uses DMA control
signals to coordinate data transactions, as described before.

The file also defines several parameters related to memory partitioning. To
manage these partitions, the design defines multiple signals to handle memory
grant, read valid, and data transfer across the memory system for each data type
(input, weight, bias, and output). These signals are then interfaced with the DMA
and other components such as hci_core_intf and hwpe_stream_intf_tcdm. A
set of configuration registers, defined as an array conf_info_regs, stores all the
configuration parameters.
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Figure 3.2: Block diagram of ITA accelerator tile in a 2×2 ESP SoC

Now everything is ready to set up the entire environment and to prepare the
bare-metal application.

Preparing for Bare-Metal Application Development

At this stage, after filling the hw/ folder with all the RTL files to simulate the
environment, the next step is to proceed with the development of the bare-metal
application. A bare-metal application is a software program that runs directly on
the hardware without the support of an operating system, providing full control over
the hardware resources. The bare-metal application is responsible for managing
the execution of the ITA accelerator.

The application starts with the initialization of various parameters, such as
sequence length, embedding size, projection space, and the number of heads, which
dictate the size of input matrices, weights, biases, and outputs. A unique accelerator
ID is passed as three hexadecimal digits, which in this case is 0x053 (selected when
running the accgen.sh script). Additionally, the accelerator name, "sld,ita_rtl",
and the size of contiguous chunks for scatter/gather are also defined.

1 #d e f i n e SLD_ITA 0x053
2 #d e f i n e DEV_NAME " s ld , i t a _ r t l "
3

4 #d e f i n e SEQUENCE_LEN 64
5 #d e f i n e PROJECTION_SPACE 64
6 #d e f i n e EMBEDDING_SIZE 64
7 #d e f i n e N_HEADS 1
8

9 /∗ S i z e o f the cont iguous chunks f o r s c a t t e r / gather ∗/
10 #d e f i n e CHUNK_SHIFT 20
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11 #d e f i n e CHUNK_SIZE BIT(CHUNK_SHIFT)
12 #d e f i n e NCHUNK( _sz ) ( ( _sz % CHUNK_SIZE == 0) ? \
13 ( _sz / CHUNK_SIZE) : \
14 ( _sz / CHUNK_SIZE) + 1)

Listing 3.1: Parameter Definitions for Accelerator

Then, user-defined registers are established through #define directives. These
registers correspond to specific memory-mapped locations that will be used to
control and pass data to the hardware accelerator. For instance,

#define ITA_BIAS_PTR1_REG 0xa8

is a directive that defines the symbolic name ITA_BIAS_PTR1_REG for the
hardware register located at memory address 0xa8. This address corresponds to a
specific function within the accelerator, such as handling bias data in this case.

Based on the memory map of the data, the pointers, or base offsets, have been
calculated incrementally to ensure correct alignment of the data blocks, as you can
see from the Tab. 3.2.

Table 3.2: Memory Map and base pointers

Memory Map Base Pointer Dimension Formula
q (S x E) base_ptr0 0
k (S x E) base_ptr1 base_ptr0 + SEQ_LEN * EMB_SIZE

Wq (E x P) base_ptr2 base_ptr1 + SEQ_LEN * EMB_SIZE
Wk (E x P) base_ptr3 base_ptr2 + PROJ_SPACE * EMB_SIZE
Wv (E x P) base_ptr4 base_ptr3 + PROJ_SPACE * EMB_SIZE
Wo (P x E) base_ptr5 base_ptr4 + PROJ_SPACE * EMB_SIZE
Bq (P x 3) base_ptr6 base_ptr5 + PROJ_SPACE * EMB_SIZE
Bk (P x 3) base_ptr7 base_ptr6 + PROJ_SPACE * 3
Bv (P x 3) base_ptr8 base_ptr7 + PROJ_SPACE * 3
Bo (E x 3) base_ptr9 base_ptr8 + PROJ_SPACE * 3
Q (S x P) base_ptr10 base_ptr9 + base_ptr1 + EMB_SIZE * 3
K (S x P) base_ptr11 base_ptr10 + SEQ_LEN * PROJ_SPACE
V (S x P) base_ptr12 base_ptr11 + SEQ_LEN * PROJ_SPACE

QK (S x S) base_ptr13 base_ptr12 + SEQ_LEN * PROJ_SPACE
AV (S x P) base_ptr14 base_ptr13 + SEQ_LEN * SEQ_LEN
OW (S x E) base_ptr15 base_ptr14 + SEQ_LEN * PROJ_SPACE

Each pointer is calculated by adding the required memory space for the preceding
data structure, ensuring that all data (inputs, weights, biases) is correctly positioned
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in memory. Using the accelerator identifiers, the probe function can be utilized to
verify if the device has been properly included in the SoC.

ndev = probe(&espdevs1, VENDOR_SLD, SLD_ITA, DEV_NAME)

The espdevs structure also stores valuable details about the location of the device
under test (most functions, structures, and constants used by the bare-metal
application are defined in the esp_accelerator.h and esp_probe.h headers files).

Then, the core allocates memory to hold the input and output, and reference
data (gold) and the corresponding page table is populated.

1 mem_size = N_HEADS ∗ ( (SEQUENCE_LEN∗EMBEDDING_SIZE∗2 +
EMBEDDING_SIZE∗PROJECTION_SPACE∗4 + PROJECTION_SPACE∗3∗3 +
EMBEDDING_SIZE∗3) + (SEQUENCE_LEN∗EMBEDDING_SIZE) ) ;

2 go ld_s i ze = N_HEADS ∗ SEQUENCE_LEN ∗ EMBEDDING_SIZE;
3 // Al l o ca t e memory
4 gold = al igned_mal loc ( go ld_s i ze ) ;
5 mem = al igned_mal loc ( mem_size ) ;
6 // Al l o ca t e and populate page tab l e
7 ptab le = al igned_mal loc (NCHUNK( to t_s i z e ) ∗ s i z e o f ( unsigned ∗) ) ;
8 f o r ( i = 0 ; i < NCHUNK( to t_s i z e ) ; i++){
9 ptab le [ i ] = ( unsigned ∗) &mem[ i ∗ (CHUNK_SIZE / s i z e o f ( token_t ) )

] ;
10 }

Listing 3.2: Memory allocation and page table setup

Additionally, header files have been used to include test data. These files were
modified to fit the 64-bit structure of the implementation. Further details on these
modifications will be discussed in the following section.

1 #inc lude "mem. h "
2 #inc lude " go ld . h "
3 #inc lude " rqs_mul . h "
4 #inc lude " rqs_add . h "
5 #inc lude " r q s _ s h i f t . h "

Listing 3.3: Header file inclusions

At this point, the processor checks whether the DMA and the Translation Look-
aside Buffer (TLB) are enabled or not, and all the common and accelerator-specific
configuration parameters are written in the registers. The input and output offset
registers, in this application, are set to zero because the input and output data are
allocated at the default offsets with respect to a virtual memory region reserved
for the accelerator. Once the configuration is complete, the accelerator is started,
and the system waits for its completion by polling the status register.

1 // Use the f o l l o w i n g i f input and output data are not a l l o c a t e d
at the d e f a u l t o f f s e t s
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2 i owr i t e 32 (&dev , SRC_OFFSET_REG, 0) ;
3 i owr i t e 32 (&dev , DST_OFFSET_REG, 0) ;
4 // Star t a c c e l e r a t o r s
5 i owr i t e 32 (&dev , CMD_REG, CMD_MASK_START) ;
6

7 // Wait f o r complet ion
8 done = 0 ;
9 whi le ( ! done ) {

10 done = ioread32 (&dev , STATUS_REG) ;
11 done &= STATUS_MASK_DONE;
12 }
13 i owr i t e 32 (&dev , CMD_REG, 0x0 ) ;

Listing 3.4: Starting and monitoring accelerator

Once processing is finished, the output is validated through a comparison with a
pre-calculated gold standard.

Memory Layout and Data Preparation

To ensure that the input data is correctly aligned with the 64-bit architecture of
the Ariane processor, the data was processed through a Python script that merged
32-bit data lines of the mem.txt file and the Output.txt file, generated from the
ITA test generator, into a header files with 64-bit data lines. This process reduced
the total number of lines by half, ensuring compatibility with the system. Below is
the Python script used to generate the memory configuration files:

1 with open ( ’mem. txt ’ , ’ r ’ ) as f i l e A :
2 l i n e s = f i l e A . r e a d l i n e s ( )
3 f i l e A . c l o s e ( )
4 with open ( ’ Output . txt ’ , ’ r ’ ) as f i l e B :
5 l i ne s_out = f i l e B . r e a d l i n e s ( )
6 f i l e B . c l o s e ( )
7

8 i = −1
9 j = 0

10 with open ( ’mem. h ’ , ’w ’ ) as heade r_ f i l e :
11 f o r l in l i n e s :
12 i+=1
13 i f i %2==0:
14 heade r_ f i l e . wr i t e ( "mem[%d ] " % ( j ) )
15 heade r_ f i l e . wr i t e ( " = ( unsigned long long ) 0x%s " % ( l .

r s t r i p ( ’ \n ’ ) ) )
16 j+=1
17 e l s e :
18 heade r_ f i l e . wr i t e ( "%s " % ( l . r s t r i p ( ’ \n ’ ) ) )
19 heade r_ f i l e . wr i t e ( " ; \ n " )
20 heade r_ f i l e . c l o s e ( )
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21

22 i = −1
23 j = 0
24 with open ( ’ go ld . h ’ , ’w ’ ) as heade r_ f i l e :
25 f o r l in l ine s_out :
26 i+=1
27 i f i %2==0:
28 heade r_ f i l e . wr i t e ( " go ld [%d ] " % ( j ) )
29 heade r_ f i l e . wr i t e ( " = ( unsigned long long ) 0x%s " % ( l .

r s t r i p ( ’ \n ’ ) ) )
30 j+=1
31 e l s e :
32 heade r_ f i l e . wr i t e ( "%s " % ( l . r s t r i p ( ’ \n ’ ) ) )
33 heade r_ f i l e . wr i t e ( " ; \ n " )
34 heade r_ f i l e . c l o s e ( )

Listing 3.5: Data header creator file

This script reads the 32-bit data lines from the files, combines two consecutive
lines into a single 64-bit value, and writes the result to a header file. Similarly, the
output data is processed and stored in a separate header file for validation purposes.
Due to this configuration, two ports were utilized simultaneously when writing
input data received from the DMA into the PLM. This approach accelerated the
data transfer by allowing two pieces of data to be written concurrently. Similarly,
when writing the final outputs, two 32-bit data values are read and concatenated
to form a single 64-bit value, aligning with the DMA’s requirements.

In addition to this Python script to generate the header file for input and golden
output, three other Python files were written for the other required data.

3.1.4 SoC Generation and Simulation
After RTL code management and the bare-metal application development, the next
step stands in the SoC generation. Firstly, the used directory is the board one, in
this case the Virtex UltraScale+ FPGA VCU118 (xilinx-vcu118-xcvu9p) folder.
This is the FPGA board targeted for the SoC.

After the creation of the RTL accelerator folder (ita_rtl for this project), ESP
automatically discovers it in the library of components and generates a set of
make targets for it. Installing the accelerator in the FPGA tech folder can be
done by running the make ita_rtl-hls command. After the installation, the
accelerator can be instantiated in the SoC with the ESP configuration GUI, by
executing the make esp-xconfig command. Following the grid dimension must
be chosen, as in Fig.3.3, to accommodate ITA, the memory tile, and the 64-bit
Ariane processor. Initially, the integration is achieved with only an instance of the
accelerator, therefore a 2x2 matrix is enough.
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Figure 3.3: ESP GUI with one ITA accelerator

The host machine communicates with the ESP SoC through an Ethernet debug
interface. As shown below in Fig. 3.4, the static IP of the debug interface can be
configured by editing the IP and MAC addresses in the Debug Link section of the
ESP GUI. It’s possible to set them based on the FPGA board you want to use
later.

Figure 3.4: Debug Link of the ESP GUI

With the NoC Tile Configuration set, the overall configuration of the SoC can
be generated in a user-friendly way powered by ESP, to finally build the SoC.

Given the built SoC, software such as the previously discussed bare-metal
application can be compiled. For instance, for the bare-metal application the
command make ita_rtl-baremetal is run. With both the HW and SW ready
the simulation process can be started. With ModelSim, the simulation can be run
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by executing TEST_PROGRAM=./soft-build/ariane/baremetal/ita.exe make
sim[-gui].

For a more comprehensive view, the latter command can be enhanced with the
-gui parameter, which simplifies substantially the debugging process, otherwise it
has to be carried out through prints that signal whether the final result of the
simulation is correct or not. If at the end of the program, there have been found
zero errors and the message Failure: Program Completed!, the final outputs
calculated by the accelerator correspond to the golden outputs.

3.1.5 FPGA Deployment

Finally, the SoC design can be deployed on the FPGA board. This requires the
generation of the corresponding bitstream, which can be achieved using Xilinx
Vivado 2023.2. A makefile for this task is already available in the target’s FPGA
folder, it is then possible to run the make vivado-syn command. This process is
very heavy and long, and at the end of it in the board’s folder, the bitstream called
top.bit is generated.

Once the bitstream file is ready, the correct FPGA board must be selected for
usage in the website https://espdev.cs.columbia.edu/fpgaboards.htm .

During this thesis, the selected board is the Virtex UltraScale+ VCU118 (01).
Additionally, also the Vivado version, used to generate the bitstream, has to be
selected, and finally the application requires the IP address of the machine. After
this process, ESP connects to the board.

When connected to the board, the environment must be set up by sourcing a
specific setup script fpgas.sh. This script configures various environment variables
based on the targeted FPGA board.

Finally, the bitstream can be uploaded to the FPGA using the make fpga-program
command, which transfers the top.bit file to the FPGA board. After uploading,
deployment of the executable can be achieved with the make fpga-run command.
By default, this command will use systest.c bare-metal application, which prints
"Hello from ESP!" on the terminal.

For a specific application the test program must be specified before the command:
TEST_PROGRAM=./soft-build/ariane/baremetal/ita.exe make fpga-run.

To see the results coming from the FPGA, a tool to print on screen the data
coming from the UART serial interface is needed. For this purpose, after logging
in espdev@cs.columbia.edu, a serial connection can be opened to the FPGA
board using the command minicom -D /dev/vcu118-01 -b 38400. This allows
to observe the results of the test or program running on the FPGA.
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3.2 Integrating Multiple ITA Instances: Multi-
Head Attention Support

One of the core innovations of Transformer architectures is the ability to run
multiple attention heads in parallel, which allows the model to capture diverse
aspects of the input data. Since the ITA accelerator processes a single attention
head per inference, we explored two potential strategies to support multiple heads,
particularly in cases with two or four heads. For both purposes, the application
needs some changes.

The first strategy involves reusing a single accelerator instance to handle the
attention heads sequentially. This approach prioritizes area efficiency by fitting
the heads into the same accelerator but may lead to increased latency due to the
sequential processing of heads.

The second strategy involves instantiating separate accelerators, which requires
expanding the matrix configuration in the ESP GUI. This method optimizes for
reduced latency by allowing concurrent processing of multiple heads, at the cost of
increased area usage.

Additionally, in a typical execution of an attention layer, the outputs of multiple
heads are concatenated before applying the final linear transformation. However,
since the ITA accelerator can only process a single head at a time, this concatenation
must be handled in software by the CPU to complete the attention layer’s execution.
The CPU will sum the outputs of the different heads after they are processed
individually by the accelerator. This software-based management of concatenation
will introduce additional computational overhead, increasing the overall simulation
time due to the extra computational workload.

3.2.1 Multi-heads attention: sequential vs parallel
Now, the two configurations for handling multiple attention heads will be analyzed,
starting with the sequential approach, followed by the parallel execution method.

Sequential Execution of Attention Heads

The first solution explored for implementing multi-head attention was the sequential
execution of attention heads using a single accelerator instance. This approach
was the simplest to implement, as it did not require significant changes to either
the existing bare-metal application or the SoC configuration from the ESP GUI.
Since the same accelerator was reused for all the attention heads, it allowed us to
leverage the existing setup without the need of additional hardware resources or
modifications to the system architecture.
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In practice, this meant that the heads were processed one after the other,
sequentially, leading to a delay, which was alleviated by the better area efficiency.
However, the trade-off of this strategy was the increased total processing time
due to the sequential execution of the heads, which could impact performance,
especially as the number of heads or model complexity increases.

As a first step, using the ITA test generator script testGenerator.py, it is
necessary to generate the new files required for the computations of the two heads.
The input data layout does not change, meaning that the two heads are placed
one after the other in the text file mem.txt. Consequently, the number of lines
in this file simply doubles. The same applies to the golden output file and the
other three configuration files for the re-quantization (rqs_mul.txt, rqs_add.txt,
rqs_shift.txt).

Following, it’s necessary to decide how to handle the data in the bare-metal
application. Since the needed data is set in the same way, only varying in size,
what changes is the amount of memory needed during allocation. Therefore, it is
necessary to modify the constant for the number of heads N_HEADS and adjust the
memory sizes by multiplying it by the number of heads, as shown in the following
code (example for two heads):

1 #d e f i n e SEQUENCE_LEN 64
2 #d e f i n e PROJECTION_SPACE 64
3 #d e f i n e EMBEDDING_SIZE 64
4 #d e f i n e N_HEADS 2
5

6 mem_size = N_HEADS ∗ ( (SEQUENCE_LEN∗EMBEDDING_SIZE∗2 +
EMBEDDING_SIZE∗PROJECTION_SPACE∗4 +

7 PROJECTION_SPACE∗3∗3 + EMBEDDING_SIZE∗3) +
8 (SEQUENCE_LEN∗EMBEDDING_SIZE) ) ;
9 go ld_s i ze = N_HEADS ∗ SEQUENCE_LEN ∗ EMBEDDING_SIZE;

Listing 3.6: Memory allocation adjustment

By increasing the value of N_HEADS, memory is allocated for multiple attention
heads. This ensures that the system is prepared to handle the increased data
requirements of processing multiple heads in sequence.

It is important to ensure that the correct memory offsets are calculated for each
head to properly access inputs, weights, and biases. The 16 base pointers used
for accessing memory remain the same across the heads. Instead of modifying
these pointers, the registers SRC_OFFSET_REG and DST_OFFSET_REG are utilized
to dynamically adjust the input and output memory offsets, allowing the system
to read and write data at the correct locations. This approach is advantageous
because it avoids the complexity of directly modifying base addresses, allowing the
memory structure to remain intact across heads while adjusting the data for each
individual head.
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The key challenge, then, is to compute the correct memory offsets per head that
will be added to the virtual memory base offset. The input and output data for each
head must be processed in separate memory regions, which are determined by these
offsets. This is where the offset calculations become essential. The following code
snippet demonstrates how these offsets are calculated for the multi-head attention
mechanism:

1 f o r ( i n t i = 0 ; i < N_HEADS; i++) {
2 i npu t_o f f s e t [ i ] = i ∗ (SEQUENCE_LEN∗EMBEDDING_SIZE∗2 +

EMBEDDING_SIZE∗PROJECTION_SPACE∗4 + EMBEDDING_SIZE∗3∗4) ;
3 output_of f s e t [ i ] = (N_HEADS−1)∗(SEQUENCE_LEN∗EMBEDDING_SIZE∗2 +

EMBEDDING_SIZE∗PROJECTION_SPACE∗4 + EMBEDDING_SIZE∗3∗4) + i ∗ (
SEQUENCE_LEN∗EMBEDDING_SIZE ) ;

4 }

Listing 3.7: Memory offset calculation for multiple heads

In this code, input_offset[i] is calculated by multiplying the index of the
head, i, by the total memory size required for each head’s input data. Similarly,
output_offset[i] calculates the offset where the output data for each head will
be written. The term N_HEADS-1 is used to adjust the starting point of the output
memory region based on the total number of head input data, ensuring that each
head’s output data is placed in the correct location. Specifically, N_HEADS-1 handles
the fact that the memory layout changes when there are multiple heads, and we
need to account for this shift in output memory allocation.

As said previously, for this bare-metal application, the same accelerator is used
to process each head. However, the accelerator needs to be invoked separately for
each head. To do this, a loop is introduced that updates the necessary registers and
starts the accelerator for each head in sequence. The following code demonstrates
how the accelerator is invoked for each head:

1 f o r ( i n t heads =0; heads<N_HEADS; heads++) {
2 i owr i t e 32 (&dev , SRC_OFFSET_REG, input_o f f s e t [ heads ] ) ;
3 i owr i t e 32 (&dev , DST_OFFSET_REG, output_of f s e t [ heads ] ) ;
4

5 i owr i t e 32 (&dev , ITA_ESP_MULT0_REG, rqs_mul [ ( heads ∗2) ] ) ;
6 i owr i t e 32 (&dev , ITA_ESP_MULT1_REG, rqs_mul [ ( heads ∗2) +1]) ;
7 i owr i t e 32 (&dev , ITA_RIGHT_SHIFT0_REG, r q s _ s h i f t [ ( heads ∗2) ] ) ;
8 i owr i t e 32 (&dev , ITA_RIGHT_SHIFT1_REG, r q s _ s h i f t [ ( heads ∗2) +1]) ;
9 i owr i t e 32 (&dev , ITA_ADD0_REG, rqs_add [ ( heads ∗2) ] ) ;

10 i owr i t e 32 (&dev , ITA_ADD1_REG, rqs_add [ ( heads ∗2) +1]) ;
11

12 i owr i t e 32 (&dev , CMD_REG, CMD_MASK_START) ;
13 done = 0 ;
14 whi le ( ! done ) {
15 done = ioread32 (&dev , STATUS_REG) ;
16 done &= STATUS_MASK_DONE;
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17 }
18 i owr i t e 32 (&dev , CMD_REG, 0x0 ) ;
19 }

Listing 3.8: Accelerator invocation loop per head

As shown in this code, the for loop adjusts the input and output offsets, previously
calculated, for each invocation of the accelerator. Additionally, it updates the other
registers required for the accelerator, such as ITA_ESP_MULT_REGs, right shifts
ITA_RIGHT_SHIFT_REGs, and addition ITA_ADD_REGs. After completing
each invocation, the loop waits for the accelerator to signal completion done.

Once this loop is finished, the sum function must be invoked as described
earlier. To do this, new pointers need to be generated, which will be passed to the
appropriate function, as shown below:

1 u64 ∗ output = ( u64 ∗) a l igned_mal loc (SEQUENCE_LEN ∗ EMBEDDING_SIZE) ;
2 int8_t ∗mem8_ptr = ( int8_t ∗)mem;
3 int8_t ∗output8_ptr = ( int8_t ∗) output ;
4

5 sum_heads_input (mem8_ptr , output8_ptr ) ;

Listing 3.9: Invocation of the Sum Heads Function

In this section of the code, the pointer for output is allocated and then cast to
the appropriate types. Then, the function sum_heads_input takes the input data
(mem8_ptr) and accumulates the results into the output buffer (output8_ptr). It
calculates the sum of the outputs from multiple attention heads, as you can see
from the code here below:

1 void sum_heads_input ( int8_t ∗mem, int8_t ∗ output ) {
2 i n t o f f s e t_ input = N_HEADS∗(SEQUENCE_LEN∗EMBEDDING_SIZE∗2 +

EMBEDDING_SIZE∗PROJECTION_SPACE∗4 + EMBEDDING_SIZE∗3∗4) ;
3 int8_t sum ;
4 i n t output_dimension = SEQUENCE_LEN ∗ EMBEDDING_SIZE;
5 f o r ( i n t i = 0 ; i < output_dimension ; i++) {
6 sum = ∗(mem + of f s e t_ input + i ) + ∗(mem + of f s e t_ input +

output_dimension + i ) ;
7 ∗( output+i )= sum ;
8 }
9 }

Listing 3.10: Sum Heads Function

This function is designed to efficiently sum the outputs from multiple heads by
calculating the sum in a single pass through the data. It utilizes a straightforward
approach to access and accumulate values from different memory locations.
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Parallel Execution of Attention Heads

The second solution explored was the parallel execution of attention heads through
the use of multiple instances of the ITA accelerator, with each instance dedicated
to a specific head. This approach required modifications to both the ESP SoC
configuration and the bare-metal application to enable concurrent execution. With
this setup, each attention head could be processed simultaneously by its dedicated
accelerator instance, reducing latency.

The first modification involved adjusting the SoC matrix configuration from the
ESP GUI to allow several ITA accelerators. To exploit this solution, the number of
ITA instances is equivalent to the number of attention heads to be processed. By
assigning each head to a separate ITA instance, we ensured that all heads could
operate concurrently rather than sequentially. This configuration is illustrated in
Fig.3.5, which shows two accelerators, aligned with the number of heads.

Figure 3.5: ESP GUI with two ITA accelerators

Once the ESP configuration was updated to support this setup, the SoC could
effectively manage the concurrent execution of the heads. Now, we’ll dive deeper
into the modifications made to the bare-metal application.

As in the sequential case, it is essential to adjust the N_HEADS parameter

50



Accelerating Attention on ESP

according to the number of heads intended for execution. Furthermore, all pointers
to the configuration registers remain unchanged.

On the other hand, in contrast to the sequential processing case, where a sin-
gle set of input and output files were utilized for all the head data, the current
implementation assigns distinct input and output files for each accelerator. Specifi-
cally in this case with two accelerators, the files used are mem_1.txt, mem_2.txt,
gold_1.txt, and gold_2.txt. Each of these files contains the data corresponding
to a single head, ensuring that the input and output for each head are processed
independently.

In terms of memory allocation, the dimensions for the malloc calls are again
the same as in the initial case when a single accelerator for a single head was
instantiated. This is because, in this scenario, each accelerator will only be invoked
once. However, the difference lies in the fact that there are now two separate
malloc calls, one for each of the two instantiated accelerators. The relevant code
snippet for memory allocation is as follows:

1 mem_size = ( (SEQUENCE_LEN∗EMBEDDING_SIZE∗2 + EMBEDDING_SIZE∗
PROJECTION_SPACE∗4 + PROJECTION_SPACE∗3∗3 + EMBEDDING_SIZE∗3) +
(SEQUENCE_LEN∗EMBEDDING_SIZE) ) ;

2 go ld_s i ze = SEQUENCE_LEN ∗ EMBEDDING_SIZE ;
3

4 // Memory a l l o c a t i o n f o r input and output
5 gold_1 = al igned_mal loc ( go ld_s ize ) ;
6 gold_2 = al igned_mal loc ( go ld_s ize ) ;
7 mem_1 = al igned_mal loc ( mem_size ) ;
8 mem_2 = al igned_mal loc ( mem_size ) ;
9

10 // Al l o ca t e and populate page tab l e
11 ptable_1 = al igned_mal loc (NCHUNK( mem_size ) ∗ s i z e o f ( unsigned ∗) ) ;
12 ptable_2 = al igned_mal loc (NCHUNK( mem_size ) ∗ s i z e o f ( unsigned ∗) ) ;

Listing 3.11: Memory allocation adjustment

In this code, mem_size is calculated based on the required dimensions for input
and output data, ensuring that enough memory is allocated for each accelerators.
The memory allocation calls to aligned_malloc create separate memory blocks
for gold_1, gold_2, mem_1, and mem_2, ensuring that each accelerator operates
independently without interfering with the others.

Additionally, the page table allocations, one for each accelerator, ptable_1 and
ptable_2 are made using the NCHUNK macro to determine the appropriate size for
managing memory chunks. Furthermore, the page tables are allocated to facilitate
scatter/gather DMA operations, ensuring that data can be accessed efficiently.

The application then includes pre-defined memory data from the header files and
probes for available ESP devices. In this case, the probe function will identify two
accelerators, given that two instances have been instantiated in the SoC through
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the ESP GUI. To configure each detected device, the application employs a for loop
that iterates over the number of detected accelerators. Within this loop, several
configuration registers are set for each device identified in the espdevs array. This
process is defined more in detail in the following pseudo-code:

Algorithm 1 Configure Accelerators
1: for n = 0 to N_HEADS − 1 do
2: dev ← &espdevs[n] ▷ Get the device pointer for the current head
3: coherence← ACC_COH_NONE ▷ Set coherence based on cache status
4: iowrite32(dev, SELECT_REG, ioread32(dev, DEV ID_REG))
5: iowrite32(dev, COHERENCE_REG, coherence)
6: if n == 0 then
7: iowrite32(dev, PT_ADDRESS_REG, (unsigned long )ptable_1)
8: else
9: iowrite32(dev, PT_ADDRESS_REG, (unsigned long )ptable_2)

10: end if
11: iowrite32(dev, PT_NCHUNK_REG, NCHUNK(mem_size))
12: iowrite32(dev, PT_SHIFT_REG, CHUNK_SHIFT )
13: iowrite32(dev, SRC_OFFSET_REG, 0x0)
14: iowrite32(dev, DST_OFFSET_REG, 0x0)
15: iowrite32(dev, ITA_INPUT_PTR_REGS, base_ptr[0 to 5]) ▷ Input

pointers
16: iowrite32(dev, ITA_WEIGHT_PTR_REGS, base_ptr[2 to 7]) ▷

Weight pointers
17: iowrite32(dev, ITA_BIAS_PTR_REGS, base_ptr[6 to 9]) ▷ Bias

pointers
18: iowrite32(dev, ITA_OUTPUT_PTR_REGS, base_ptr[10 to 15]) ▷

Output pointers
19: iowrite32(dev, ITA_TILES_REG, tiles)
20: iowrite32(dev, ITA_ESP_MULT_REGS, rqs_mul[n ∗ 2 to n ∗ 2 + 1]) ▷

Multiplication requests
21: iowrite32(dev, ITA_RIGHT_SHIFT_REGS, rqs_shift[n ∗ 2 to n ∗ 2 +

1]) ▷ Right shift requests
22: iowrite32(dev, ITA_ADD_REGS, rqs_add[n ∗ 2 to n ∗ 2 + 1]) ▷ Addition

requests
23: end for

In contrast to the sequential processing approach, with multiple ITA accelerators
instantiated to handle different heads concurrently, the control flow of the bare-
metal application needs to initiate each accelerator individually. This is done by
starting each instance, waiting for all to finish, and then resetting their states. The
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following code snippet highlights the key modifications needed to manage multiple
accelerators in parallel:

1 f o r ( i n t heads =0; heads<N_HEADS; heads++){
2 // Star t a c c e l e r a t o r s
3 i owr i t e 32 (&espdevs [ heads ] , CMD_REG, CMD_MASK_START) ;
4 // I n i t i a l i z e complet ion f l a g
5 done [ heads ] = 0 ;
6 }
7 //Wait f o r complet ion o f a l l a c c e l e r a t o r s
8 whi le ( ! done_all ) {
9 f o r ( i n t i =0; i<N_HEADS; i++){

10 //Read s ta tu s and check i f done
11 done [ i ] = ioread32 (&espdevs [ i ] , STATUS_REG) ;
12 done [ i ] &= STATUS_MASK_DONE;
13 done_all = done_al l && done [ i ] ;
14 }
15 }
16 // Reset command r e g i s t e r s a f t e r complet ion
17 f o r ( i n t i =0; i<N_HEADS; i++){
18 i owr i t e 32 (&espdevs [ i ] , CMD_REG, 0x0 ) ;
19 }

Listing 3.12: Parallel accelerator start and wait loop

Through this code, the accelerators are initiated by looping through the N_HEADS
devices, issuing the start command (CMD_MASK_START) to each of the detected
devices. Once all accelerators have been started, the program enters a waiting
loop that continuously checks the status registers of each accelerator using the
ioread32 function. The status is masked with STATUS_MASK_DONE to determine
whether the processing for each head has been completed. The loop exits only
when all accelerators have finished their tasks (all heads are done). Then, each
command register is reset to 0x0, ensuring the accelerators are ready for further
tasks.

In the end, similarly to the sequential case, the function sum_heads_input
will be used to finalize the computation of the attention layer by concatenating
the outputs from all attention heads. However, in this parallel configuration, the
function will require multiple inputs, one for each instantiated accelerator, rather
than a single set of inputs as in the sequential case.

Hybrid Approach: Reusing Multiple Accelerators for Multi-Head Exe-
cution

In addition to purely sequential or fully parallel approaches, a hybrid method can
be employed for implementing multi-head attention. This approach combines the
advantages of both methods by reusing a smaller number of accelerators multiple
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times, instead of using a single accelerator for sequential processing or dedicating
an accelerator to each head for parallel processing.

This hybrid approach reduces the overall hardware resource usage compared to
the fully parallel method, while still improving latency over the purely sequential
approach. Instead of instantiating all the accelerators or reusing a single accelerator
several times, we can instantiate for example half of the accelerators and reuse
them to process different heads multiple times.

For instance, with four heads, two accelerators can process one head each in
parallel at first, and once this task is completed, the same accelerators are reused to
handle the remaining two heads. This allows for a reduction in hardware resources
while maintaining a degree of parallel processing that improves timing performance
compared to the sequential method.

To implement this hybrid approach in a bare-metal application, several mod-
ifications are required. The memory allocations will be the same as in the case
of processing two heads sequentially, but this will then be doubled for the second
accelerator, as described in the fully parallel strategy.

Additionally, the accelerators must be configured twice, once for each head.
After processing the first two heads, the input and output registers are updated
to manage the remaining two heads, ensuring that the correct data is loaded and
processed during each phase.

This hybrid approach offers several advantages. It reduces the hardware area
required by reusing accelerators instead of deploying a dedicated accelerator for
each head, which is beneficial in resource-constrained environments. At the same
time, it improves latency compared to sequential execution by allowing two heads
to be processed simultaneously. This approach also optimizes the use of resources,
striking a balance between area efficiency and performance.

3.2.2 Finalizing Layer Acceleration in Transformer Encoder
To effectively accelerate a layer of a Transformer encoder, particularly when exclud-
ing the feed-forward layer, two essential operations are required: residual addition
and layer normalization.

Residual addition is a crucial component of the Transformer architecture. It
allows the output of a sub-layer (self-attention or feed-forward layer) to be added
directly to the input of that same sub-layer. This operation helps mitigate the
vanishing gradient problem during back-propagation by providing alternative paths
for the gradient to flow through the network. As a result, residual connections
facilitate deeper network training and improve convergence by preserving the
identity function, which allows the model to learn effectively even with multiple
layers.

Layer normalization is equally important in this context. It serves to stabilize
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and accelerate the training process by normalizing the inputs across the features
for each training example. This technique helps maintain a consistent scale and
distribution of activations, effectively reducing internal covariate shifts. As a result,
layer normalization contributes to achieving faster convergence rates and improves
the model’s resilience to varying input distributions. Moreover, it facilitates the
training of deeper networks by mitigating the effects of non-linearities introduced
by activation functions, ensuring that the model learns effectively even as its depth
increases.

Since the ITA accelerator is unable to perform these operations directly, it is
necessary the development of a software solution that can execute these functions on
the processor. Implementing these functions in software can significantly increase
execution time compared to the accelerated portions of the model. To address the
need for efficient computation, we modified the existing sum_heads_input function
to incorporate the residual connections and explored libraries or functions that
provide optimized implementations for layer normalization.

Specialized libraries tailored for RISC-V architectures, compatible with the
Ariane processor, can further enhance the efficiency of mathematical operations.
One library is muRISCV-NN[37], which is designed to optimize neural network
computations on RISC-V processors developed for embedded platforms and mi-
crocontrollers. It is based on ARM’s CMSIS-NN library but targets the RISC-V
instruction set architecture (ISA) instead. This library provides a set of accelerated
kernels that leverage the unique features of the RISC-V architecture, including the
RISC-V "V" vector extension v1.0 and the RISC-V packed "P" extension v0.9.6.
These extensions enable high-performance vector and packed operations, which are
crucial for optimizing neural network computations.

The library offers efficient implementations for various neural network operations,
such as matrix multiplication, convolution, and activation functions. By utilizing
RISC-V’s vector and packed extensions, the library achieves substantial performance
improvements. For instance, the matrix multiplication functions are optimized to
make full use of RISC-V’s vector instructions, resulting in lower latency and higher
throughput compared to traditional scalar implementations.

The impact of muRISCV-NN on reducing simulation times is particularly signif-
icant in the context of additional computations required for operations like head
summation and layer normalization. By offloading these tasks to the optimized
library, the CPU’s workload is reduced, resulting in improved simulations and
quicker performance. For a comprehensive overview of the library and its contribu-
tions to optimizing neural network computations on RISC-V, please refer to the
paper related[37].

Since we are considering the Ariane RISC-V processor for this SoC, which does
not support the vector extension, we can utilize the library to enhance performance,
but we will not be able to leverage the full capabilities of vector operations.
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Another option is presented in the paper titled "Optimizing the Deployment
of Tiny Transformers on Low-Power MCUs"[38]. It presents a collection of ef-
ficient deep learning kernels specifically designed for resource-constrained envi-
ronments. This paper highlights strategies and techniques to effectively deploy
Transformer models on low-power MCUs.

The GitHub repository associated with this paper offers various pre-implemented
functions that have been optimized for performance and memory usage. These
implementations not only help in reducing the computational overhead but also
ensure that the models can run effectively within the limitations of low-power
hardware. By leveraging these resources, we can significantly enhance our imple-
mentation efforts, enabling the deployment of Transformer models that are both
efficient and scalable. Utilizing these optimized kernels will allow us to address
challenges ensuring that our models maintain a high level of performance.

To this end, we decided to take inspiration from the paper’s implementation of
layer normalization. The implementation of the layer normalization function in the
bare-metal application is as follows:

1 void layer_norm ( int8_t ∗ input , int8_t ∗ output ) {
2 f l o a t inv_dim = 1/SEQUENCE_LEN;
3 int64_t sum = 0 ;
4 int64_t mean = 0 ;
5 int64_t temp = 0 ;
6 int64_t std ;
7 f o r ( i n t i = 0 ; i < SEQUENCE_LEN; i++){
8 sum = 0 ;
9 mean = 0 ;

10 f o r ( i n t j = 0 ; j < EMBEDDING_SIZE; j++ ) {
11 mean += ∗( input + j + i ∗ SEQUENCE_LEN) ;
12 }
13 mean = mean / EMBEDDING_SIZE;
14 f o r ( i n t j = 0 ; j < EMBEDDING_SIZE; j++ ) {
15 temp = (∗( input + j + i ∗ SEQUENCE_LEN) ) − mean ;
16 sum += temp∗temp ;
17 }
18 sum = (sum / EMBEDDING_SIZE) + 1 ;
19 plp_sqrt_q64(&sum , 0 , &std ) ;
20 f o r ( i n t j = 0 ; j < EMBEDDING_SIZE; j++){
21 ∗( output + j + i ∗ SEQUENCE_LEN) = ( int8_t ) ( ( ∗( input +

j + i ∗ SEQUENCE_LEN) − mean) / std ) ;
22 }
23 }
24 }

The function takes two arguments: a pointer to the input tensor of type int8_t
and a pointer to the output tensor, also of type int8_t.
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Initially, the function calculates the reciprocal of SEQUENCE_LEN and stores it
in the variable inv_dim. This value will be utilized later for mean calculations.
Additionally, several variables are declared and initialized: sum and mean are both
set to zero to accumulate the sum of the elements and to calculate the mean,
respectively. The variable temp is used to hold intermediate values during the
calculations, while std will store the standard deviation.

The function proceeds with an outer loop that iterates over each sequence in
the input tensor, indexed by i. At the start of each iteration, the sum and mean
variables are reset to zero to ensure that calculations for the current sequence do
not interfere with previous iterations.

Within the outer loop, the first inner loop computes the mean of the current
sequence. It iterates through each embedding dimension, indexed by j, and sums
the input values corresponding to the current sequence. The mean is then calculated
by dividing this cumulative sum by EMBEDDING_SIZE.

Following the mean calculation, a second inner loop is employed to compute
the sum of the squared differences between each input element and the mean.
For each embedding dimension, the temporary variable temp holds the difference
between the current input element and the mean. This difference is squared and
accumulated into the sum variable.

After obtaining the sum of squared differences, the function calculates the
variance by dividing the accumulated sum by EMBEDDING_SIZE. Additionally, 1 is
added to the result to prevent potential issues with zero variance. The function
then calls plp_sqrt_q64, a helper function which will be described later. The
result is stored in the variable std.

Finally, a third inner loop is executed to normalize each input element. For each
embedding dimension, the normalized value is calculated by subtracting the mean
from the input element and dividing by the standard deviation. The resulting
normalized value is cast to int8_t and stored in the corresponding location in the
output tensor.

As said before, the plp_sqrt_q64 function is designed to compute the integer
square root of a 64-bit integer using binary search. The implementation is as
follows:

1 void plp_sqrt_q64 ( const int64_t ∗__restrict__ pSrc ,
2 const uint64_t f r a cB i t s ,
3 int64_t ∗__restrict__ pRes ) {
4 int64_t number = ∗ pSrc ;
5 int64_t root = 0 ;
6 int64_t s t a r t = 0 ;
7 int64_t end = 46342 ; // s m a l l e s t i n t e g e r that i s l a r g e r than sq r t

(0x7FFFFFFF)
8 int64_t mid ;
9 i f ( number > 0) {
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10 whi le ( s t a r t <= end ) {
11 mid = ( s t a r t + end ) >> 1 ;
12 i f ( ( ( mid ∗ mid ) >> f r a c B i t s ) == number ) {
13 root = mid ;
14 break ;
15 }
16 i f ( ( ( mid ∗ mid ) >> f r a c B i t s ) < number ) {
17 s t a r t = mid + 1 ;
18 root = mid ;
19 } e l s e {
20 end = mid − 1 ;
21 }
22 }
23 ∗pRes = root ;
24 } e l s e {
25 ∗pRes = 0 ;
26 }
27 }

This approach allows for improved precision and performance in scenarios where
floating-point operations may introduce overhead or inaccuracies.

The function accepts three parameters: a pointer to the input value pSrc, a value
fracBits that specifies the number of fractional bits for fixed-point representation,
and a pointer pRes where the resulting square root will be stored. It begins by
initializing the variable number to the value pointed to by pSrc, and sets up bounds
for a binary search algorithm with start initialized to zero and end set to 46342,
which is the smallest integer greater than the square root of 0x7FFFFFFF.

If the input number is positive, the function employs a binary search to find
its square root. The mid-point is calculated by averaging start and end, and the
algorithm checks if the square of this mid-point matches the input number when
adjusted by the specified fracBits. If a match is found, the square root is stored
in root. If the square of the mid-point is less than the input, the search continues
in the upper half; otherwise, it narrows down to the lower half.

This method of calculating the square root is superior to a simple floating-point
square root calculation because it avoids potential precision loss associated with
floating-point arithmetic. Additionally, the binary search approach is computation-
ally efficient, leading to faster execution times in applications that require repeated
square root calculations.
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3.3 Validation of Accelerator Performance
In order to validate the acceleration capabilities of the designed accelerator, the
complete attention layer was implemented using the Ariane processor exclusively.
This approach allows for a direct comparison between the performance of the accel-
erator and the baseline implementation in software, ensuring that any performance
improvements can be attributed to the accelerator design.

To obtain this baseline a new application has been developed. It leverages
several functions to perform linear transformations, matrix multiplications, and
softmax operations essential for implementing a multi-head attention (MHA) layer
in a Transformer encoder. The first function, linear_transform, is defined as:

1 void l inear_trans fo rm ( int8_t ∗ input , int8_t ∗output , int8_t ∗ weights ,
int32_t ∗ b ia s )

This function performs a linear transformation by multiplying the input ma-
trix with the weight matrix and adding a bias term. It processes the input
and generates an output, ensuring that the results are clamped between -128
and 127, which is suitable for signed 8-bit integer representations. Additionally,
linear_transform_transpose performs a similar operation but outputs the re-
sults in a transposed manner.

The matmul function executes matrix multiplication between two matrices,
producing the result in a specified output matrix. The function is defined as:

1 void matmul ( int8_t ∗A, int8_t ∗output , int8_t ∗C)

The final function implemented in the bare-metal application is iSoftmax. In
this stage, we decided to take inspiration from the paper’s implementation [38] of
the softmax function. Below is a code snippet that illustrates its implementation:

1 void iSoftmax (
2 int8_t ∗ pInBuffer ,
3 uint8_t ∗ pOutBuffer ,
4 const int32_t rowDimension ,
5 const int32_t coef fA ,
6 const int32_t coef fB ,
7 const int32_t coef fC ,
8 const int32_t log2 ,
9 const uint32_t n_leve ls , int8_t eps_mult_i , int8_t r i ght_sh i f t_ i ,

int8_t add_i )
10 {
11 int16_t xTi lde ;
12 int8_t z , p ;
13 int8_t x_max = −128;
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14 uint32_t y_sum = 0 ;
15 uint32_t y [ rowDimension ] ;
16 // Find the maximum value in the input b u f f e r
17 f o r ( i n t i =0; i<rowDimension ; i++){
18 i f ( p InBuf fe r [ i ] > x_max) {
19 x_max = pInBuf fe r [ i ] ;
20 }
21 }
22 // Ca lcu la te the exponen t i a l s and the sum
23 f o r ( i n t i =0; i<rowDimension ; i++){
24 xTi lde = pInBuf fe r [ i ] − x_max ;
25 z = −(xTi lde / log2 ) ;
26 p = xTi lde + z ∗ log2 ;
27 y [ i ] = ( ( coe f fA ∗(p+coe f fB ) ∗(p+coe f fB ) + coe f fC )>>z ) ∗(1−( z >

31 | | z < 0) ) ;
28 y_sum += y [ i ] ;
29 }
30 // Compute the f i n a l softmax output
31 f o r ( i n t i =0; i<rowDimension ; i++){
32 pOutBuffer [ i ] = ( uint8_t ) ( ( y [ i ] ∗ ( n_leve ls −1) ) /(y_sum) ) ;
33 }
34 }

It computes the softmax of an input array of integers (pInBuffer) and stores the
result in an output array (pOutBuffer). The function operates on a row of data
of size rowDimension, adjusting for precision using scaling coefficients (coeffA,
coeffB, coeffC) and a logarithmic factor (log2). It first calculates the maximum
value from the input, then computes the exponentials based on scaled differences.
Finally, the function normalizes the values to produce the softmax probabilities
across n_levels of output, ensuring that each output is appropriately scaled.

For testing this application on FPGA, a 2 × 2 matrix for the SoC is set from the
ESP configuration GUI, which includes a single memory tile, the Ariane processor,
an empty tile, and one I/O tile. This setup streamlined the validation process
and allowed for a focused assessment of the interactions between the accelerator
components effectively.
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Chapter 4

Experimental Results

4.1 Baseline Software Performance
The Transformer encoder, widely used in modern deep learning models, is com-
putationally demanding due to its reliance on numerous matrix operations. In
particular, the attention mechanism within the encoder performs intensive matrix
multiplications, making it a key area of interest when analyzing performance bot-
tlenecks in software implementations. Understanding where time is spent during
the execution of the Transformer layer helps guide optimization efforts, particularly
with respect to hardware acceleration.

For this reason, a software implementation was implemented. To evaluate its
performance, we measured the time spent in each phase of the Transformer encoder
running on the Ariane processor. This evaluation focused on the two primary
components of the full Transformer layer execution: the attention layer, the residual
addition and layer normalization. The results, presented in the following figures
and tables, refer to a layer with sizes S = 64, E = 64, P = 64 and one head H = 1,
and they reveal where computational bottlenecks occur.

Figure 4.1: Time breakdown for a complete Transformer layer in all its operations
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In Fig.4.1, it is evident that a significant portion of time is spent on matrix
multiplications within the attention mechanism. While the addition and the
normalization steps are together the 5% of the total execution time, the General
Matrix Multiplications (GEMMs) dominate the time distribution in this part of
the encoder.

Figure 4.2: Time breakdown for a complete Transformer layer in Attention layer
and addition and normalization

The analysis of the total time breakdown split between attention layer, addition
and layer normalization, shown in Fig.4.2, further reinforces the dominance of
GEMM operations. Following, Tab.4.1 presents the execution time breakdown,
detailing the number of clock cycles and corresponding time in milliseconds at a
frequency of 78.125 MHz.

Table 4.1: Execution Time Breakdown for a complete Transformer Layer

Operation Clock Cycles Time (ms)
Attention Layer 20421938 261.6
Addition & Normalization 968887 12.4
Complete Layer 21390825 274

Approximately 95% of the execution time is consumed by these matrix multipli-
cations. This observation highlights that matrix operations, and so the attention
layer, are the primary candidate for acceleration in order to enhance performance.

4.1.1 The Need for Hardware Acceleration
From the results obtained, it becomes clear that the performance of the Transformer
encoder in software is largely limited by the time-consuming GEMM operations.
Given that these matrix multiplications represent the majority of the computational
load, offloading them to specialized hardware is an effective way to improve overall
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performance. This leads to the introduction of the ITA accelerator, designed
specifically to handle the attention layer computation.

As such, a heterogeneous platform that integrates both the ITA accelerator and
the Ariane processor is necessary. In this setup, the accelerator can handle the
computationally intensive GEMM operations, while the processor manages auxiliary
tasks like addition and normalization. The Embedded Scalable Platform offers
the perfect environment for implementing the needed heterogeneity. By enabling
the integration of hardware accelerators, ESP provides a flexible and scalable
platform to address the specific needs of different stages of the Transformer encoder.
With ITA focusing on accelerating GEMM operations and the processor handling
the remaining components, the ESP platform ensures a balanced distribution of
computational tasks, leading to significant performance gains.

4.2 ITA Acceleration: Performance Evaluation
and Analysis

As said before, the integration of specialized accelerators designed to enhance
performance through efficient matrix operations is necessary. To address this chal-
lenge, we propose the implementation of the ITA accelerator within a 2 × 2 matrix
configuration of ESP system-on-chip. This setup includes the ITA accelerator,
the Ariane processor, a memory tile, and an I/O tile, providing a comprehensive
environment for optimizing the performance of the attention mechanism while
effectively managing data throughput and processing efficiency.

In this context, ITA has been designed to execute a single attention head at
a time, excluding the final concatenation of the heads. This design choice allows
ITA to focus on optimizing the computationally intensive General Matrix Multiply
operations, which are pivotal for Attention calculations. By leveraging ITA, we aim
to significantly reduce the execution time of these matrix multiplications, thereby
improving the overall efficiency of the Transformer encoder execution time.

The profiling results from the simulation of this setup reveal significant insights
into the execution characteristics of the Transformer encoder. Also in this case,
the dimensions of the executed layer are S = 64, E = 64, P = 64 and one head
H = 1. Notably, the majority of the simulation time, approximately 72%, is spent
on memory access. This can be attributed to the Direct Memory Access operations,
which involve loading and storing data from the main memory to the internal PLMs
of the ITA and vice-versa.
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Figure 4.3: ITA acceleration

The results depicted in Fig.4.3 emphasize the bottleneck caused by memory
access, indicating that strategies to enhance data transfer efficiency could lead to
further performance improvements.

Following the profiling analysis, we provide an overview of the execution of
the entire attention layer, where ITA handles the attention computations while
the Ariane processor manages the addition and layer normalization. In this
configuration, it is observed that approximately 99% of the total execution time is
dominated by the operations performed by the Ariane processor. This is primarily
due to the overhead associated with managing the normalization and addition,
which are executed sequentially after the attention calculations.

Figure 4.4: Execution breakdown for the total layer with ITA and Ariane processor

The breakdown shown in Fig.4.4 illustrates the execution dynamics, revealing
that the attention layer, although partially accelerated by ITA, still incurs significant
overhead from the additional operations handled by the main processor. The
following table, Tab.4.2, presents the execution time breakdown, detailing the
number of clock cycles and corresponding time in milliseconds at a frequency of
78.125 MHz.
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Table 4.2: Execution Time Breakdown for a complete Transformer Layer

Operation Clock Cycles Time (ms)
Attention Layer 6237 0.08
Addition & Normalization 968887 12.40
Complete Layer 975124 12.48

Comparing the performance of the baseline software implementation to the
configuration utilizing the hardware accelerator, we observe a remarkable speed-up
of approximately 20x for the execution of a complete Transformer encoder layer.
This substantial improvement derives from the highly efficient execution of the
attention layer facilitated by ITA, despite the addition and normalization operations
remaining in software.

To further illustrate this performance enhancement, we present a graph (Fig.
4.5) comparing the execution times of the software-only baseline with the hardware-
accelerated approach using ITA. This comparison visually demonstrates the effi-
ciency gains achieved through the integration of specialized accelerators within the
Transformer architecture, highlighting the potential of hardware acceleration to
alleviate computational burdens.

Figure 4.5: Layer acceleration: Ariane vs ITA + Ariane

While the integration of specialized accelerators provides significant speedup in
terms of execution time, it is important to note that this comes with an increase in
the required hardware resources. Replacing or augmenting a single general-purpose
processor with an accelerator inevitably increases the area footprint of the system,
as well as its power consumption. This trade-off between execution time and
area/power is crucial when considering hardware acceleration solutions in a limited
resources environment.
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In the case of the ESP system-on-chip deployed on an FPGA, the area overhead
introduced by the ITA, in comparison to a standard processor like Ariane, must be
carefully evaluated. The ITA accelerator is designed specifically to handle matrix
multiplications and attention layer operations with high parallelism, which means it
consumes significantly more resources than a general-purpose processor performing
these tasks.

Through synthesis and implementation using Vivado 2023.2, we can quantify the
area requirements before generating the final bitstream for the FPGA. This step
provides detailed information on the contributions of both the Ariane processor
and, more notably, the ITA accelerator in terms of logic cells, DSP blocks, and
other critical FPGA resources.

Figure 4.6: Area breakdown showing the contributions of Ariane processor and
ITA accelerator in FPGA deployment.

As illustrated in Fig.4.6, the accelerator, which is the component in orange,
consumes a significant portion of the available FPGA resources due to its specialized
architecture. This contrasts with the more modest area footprint of the Ariane
processor, which is the element in purple. The trade-off becomes evident: the
speed-up achieved by ITA in terms of timing performance is directly related to the
increase in area resources.

Thus, if the objective is to achieve substantial speed-up in executing attention
layers, one must account for the additional area required to accommodate a
specialized accelerator. In practical terms, this means balancing the desired
performance improvements with the resource constraints imposed by the FPGA
platform.

Moreover, as this analysis shows, the area trade-offs for deploying an SoC
on FPGA are highly dependent on the complexity of the tasks being offloaded
to accelerators. In this specific deployment scenario, Vivado’s synthesis and
implementation reports provide a comprehensive overview of how much additional
area ITA requires relative to the Ariane processor.

In an FPGA-based SoC implementation, it is crucial to quantify the hardware
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resources required by each component, especially when integrating specialized
accelerators like ITA. The area of an FPGA is typically expressed in terms of
several key metrics: lookup tables (LUTs), flip-flops (often referred to as registers
or REGs), block RAM (BRAM), and digital signal processing units (DSPs). Each
of these elements plays a crucial role in determining the overall hardware footprint
of the deployed system. LUTs are used for implementing logic functions, REGs
serve as storage elements, BRAM provides on-chip memory for storing intermediate
data, and DSPs are specialized units optimized for arithmetic operations like
multiplications and additions.

When comparing the ITA accelerator with the Ariane processor on FPGA, the
data extracted from the Fig. 4.7) shows a significant difference in the resource
footprint between the two components.

Figure 4.7: FPGA resource allocation

The Fig.4.7 presents a comprehensive overview of all four distinct tiles present
in our SoC: the Ariane processor, the ITA accelerator, the memory tile, and the
I/O tile. In detail, it highlights that the ITA accelerator consumes substantially
more resources than the Ariane processor, particularly in terms of LUTs. This is
expected given the ITA’s primary role in accelerating General Matrix Multiply
operations, which are computationally intensive and require significant hardware
support for efficient execution.

In contrast, the Ariane processor, which is a general-purpose RISC-V core,
consumes fewer resources since its tasks in the SoC are primarily control-oriented
rather than computationally heavy. This difference becomes even more pronounced
when considering the CLB (Configurable Logic Block) usage, which was the primary
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metric analyzed due to the stark contrasts observed between the two components.
The CLBs represent the FPGA’s basic building blocks, and the ITA accelerator
requires far more of these to perform its specialized operations.

Furthermore, the analysis reveals that the Ariane processor uses 27 DSPs, while
the ITA accelerator uses only 22. This outcome is unexpected, as ITA, being
specifically designed for matrix multiplication tasks, would be expected to utilize
more DSP resources to better support the intensive computation required.

In addition to the overall resource comparison, we delve deeper into the ITA
accelerator to analyze the resource consumption of its internal components, as
shown in Fig.4.8.

Figure 4.8: Resource breakdown of the ITA accelerator on FPGA

The Fig. 4.8 shows that the ITA’s internal components consume. It reveals
significant insights into the resource utilization of its various components. Among
these, the accumulator stands out as the most resource-intensive element, consuming
a considerable portion of the register resources.

In contrast, the sumdotp component is notable for its high utilization of Look-
Up Tables (LUTs). This component is essential for performing the dot product
calculations required during the execution of matrix multiplications.

When considering the remaining components of the accelerator, collectively
labeled as "others," it becomes clear that the accumulator, the weight buffer, and
the sumdotp are the most complex parts of the ITA architecture, demanding the
highest resources. This concentration of resource utilization in these key components
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is indicative of their fundamental roles in ensuring the efficient operation of the
ITA accelerator within the FPGA environment, reinforcing the necessity for careful
resource management when deploying specialized accelerators in system-on-chip
designs.

4.3 Optimizing the Attention Mechanism with
Multiple Accelerators

The attention mechanism in Transformers, as said before, is computationally
intensive, particularly in large models with multiple attention heads. One potential
optimization is to parallelize the computation of these attention heads using multiple
accelerators. This is made feasible by leveraging the ESP platform, which allows
for easy instantiation of additional accelerators.

In ESP, adding more accelerators involves simply increasing the size of the matrix
configuration of the SoC from the ESP GUI. The platform’s flexible architecture
enables the seamless integration of multiple ITA accelerators, which can process
different heads in parallel.

4.3.1 Parallelization Strategies: Sequential vs. Parallel
Execution

In a sequential configuration, a single ITA accelerator handles all attention heads
one after another. In contrast, using the power of the ESP platform, parallel
execution involves assigning multiple heads to different ITA accelerators, which
compute them simultaneously. Although parallelization intuitively suggests that
the total execution time should decrease significantly, this is not always the case
in practice. One of the primary bottlenecks is memory access latency, especially
when multiple accelerators compete for access to shared resources, like memory,
via DMA.

We present the performance data for both strategies using simulations for two
heads and four heads at a frequency of 78.125 MHz.

4.3.2 Two Heads: Sequential vs. Parallel Execution

In the case of two heads, we simulated both sequential and parallel execution.
Tab.4.3 shows the profiling data for sequential execution with a single ITA ac-
celerator, while Tab.4.4 presents the results for parallel execution using two ITA
accelerators.
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Table 4.3: Two Heads - Sequential Execution (1 ITA accelerator)

Section Execution Time (ns) Clock Cycles
Memory Access (Head 1) 57420.8 4486

Computation (Head 1) 22617.6 1767
Memory Access (Head 2) 57382.4 4483

Computation (Head 2) 22617.6 1767
Total 171481.6 13397

Table 4.4: Two Heads - Parallel Execution (2 ITA accelerators)

Section Execution Time (ns) Clock Cycles
Memory Access (Head 1) 100492.8 7851

Computation (Head 1) 22617.6 1767
Memory Access (Head 2) 93004.8 7266

Computation (Head 2) 22617.6 1767
Total 129369.6 9618

As seen in Tab.4.3, the total execution time for sequential execution is 171481.6
ns. In contrast, the parallel execution time is reduced to 129369.6 ns (Tab.4.4),
corresponding to a speedup of 1.32×. It is important to note that the parallel
execution time is not halved as expected. This is due to increased memory
contention as both accelerators request data from memory simultaneously, causing
few delays.

4.3.3 Four Heads: Sequential vs. Parallel Execution

The performance difference becomes even more pronounced when scaling to four
heads. In the sequential case, a single ITA accelerator processes each head one by
one, as shown in Tab.4.5. Each head exhibits consistent execution times, taking the
same amount of time to process. Therefore, the total execution time for four heads
will be four times the execution time of a single head. However, this total time is
increased slightly due to the overhead incurred when re-configuring the accelerator
via the bare-metal application and adjusting the configuration registers, which vary
from one head to another. The overall execution time when processing all four
heads sequentially amounts to 346393.6 ns with a total of 27500 clock cycles.
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Table 4.5: Four Heads - Sequential Execution (1 ITA accelerator)

Section Execution Time (ns) Clock Cycles
Memory Access 57382.4 4483

Computation 22617.6 1767
Total (1 Head) 80000.0 6250
Total (4 Heads) 346393.6 27500

To improve performance, two ITA accelerators can be utilized to handle the
processing of the heads in parallel. When parallelizing with two ITA accelerators,
the execution time is reduced to 280832 ns (Tab.4.6), corresponding to a speedup
of 1.23×. Similar to the two-head case, the reduction is less than expected due to
memory access contention.

Table 4.6: Four Heads - Parallel Execution (2 ITA accelerators)

Section Exec. Time (ns) Clock Cyc.
Head 1 - Memory Access (1st Acc.) 100364.8 7841

Head 1 - Computation (1st Acc.) 22617.6 1767
Head 2 - Memory Access (1st Acc.) 100364.8 7841

Head 2 - Computation (1st Acc.) 22617.6 1767
Total (1st Acc.) 122982.4 9608

Head 1 - Memory Access (2nd Acc.) 99750.4 7793
Head 1 - Computation (2nd Acc.) 22617.6 1767

Head 2 - Memory Access (2nd Acc.) 99622.4 7783
Head 2 - Computation (2nd Acc.) 22617.6 1767

Total (2nd Acc.) 122368 9560
Total (Both Acc.) 280832 21403

Lastly, when employing a fully parallel configuration with four instances of the
ITA accelerator, each head is processed simultaneously. This results in a total
execution time of 219865.6 ns for all four heads combined, significantly enhancing
performance compared to both sequential and dual-accelerator configurations. In
this case it corresponds to a speedup of 1.58×.
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Table 4.7: Four Heads - Fully Parallel Execution (4 ITA accelerators)

Section Execution Time (ns) Clock Cycles
Head 1 - Memory Access 182732.8 14276

Head 1 - Computation 22617.6 1767
Total for Head 1 205350.4 16043

Head 2 - Memory Access 177241.6 13847
Head 2 - Computation 22617.6 1767

Total for Head 2 199859.2 15614
Head 3 - Memory Access 176665.6 13803

Head 3 - Computation 22617.6 1767
Total for Head 3 199283.2 15569

Head 4 - Memory Access 163635.2 12784
Head 4 - Computation 22617.6 1767

Total for Head 4 186252.8 14551
Overall Total 219865.6 17502

So, parallelizing the execution of attention heads using multiple accelerators on
ESP offers clear performance benefits, but the improvement is limited by memory
access bottlenecks. The results highlight that while parallel execution can reduce
computation time, the contention for shared memory resources introduces delays,
particularly as the number of accelerators increases.

4.3.4 Reduced Benefits as Parallelization Increases
As more ITA accelerators are added, a significant reduction in computation time is
observed initially. However, as demonstrated in the previous sections, this reduction
does not scale linearly with the number of accelerators. This is because parallelizing
beyond a certain point leads to saturation, where the performance gains become
marginal due to increasing memory access contention.

For example, in the case of two heads, the parallel execution time was reduced
by approximately 24.5%. However, when scaling to four heads, the improvement
dropped to around 19% with two accelerators and 36.5% with four accelerators.
The diminishing returns occur because each additional accelerator introduces more
competition for shared memory, which becomes the dominant bottleneck rather
than computation.

Moreover, these speed-ups only refer to the accelerated portion of the layer.
Since, as shown in Fig. 4.5, once the attention computation is accelerated, the
total time is dominated by addition and normalization (still executed in software).
Consequently, the speedup obtained by introducing more instances of ITA, being
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very little, will not affect the final speed-up of the entire layer, which will remain
almost the same as before.

Nonetheless, these analyses still offer interesting insights, because nothing
prevents, in principle, from also accelerating addition and normalization (e.g. using
a separate accelerator tile). In that scenario, evaluating the maximum speedup
achievable by parallelizing multiple attention heads on ITA, and the saturation
effect due to memory conflicts, becomes relevant.

4.3.5 Pareto Optimal Trade-offs Between Latency and Area
In hardware design, achieving Pareto optimality involves balancing trade-offs
between multiple factors, such as execution time (latency) and the resources (area)
consumed by the system. Adding more accelerators certainly improves execution
time, but it also increases the area footprint and power consumption of the system.
At some point, further increases in the number of accelerators will not provide a
proportional decrease in latency, and the design will no longer be Pareto efficient.

In our case, as more accelerators are added to handle the attention heads,
the latency initially decreases, but the area and resource usage increase. The
relationship between these two factors can be illustrated using a Pareto curve. For
the 4-head simulation, the data suggests that beyond two accelerators, the system
approaches a point of diminishing returns. This is evident when considering that
the execution time reduction from two to four heads was much smaller than from
one to two heads, while resource consumption continued to grow linearly.

Figure 4.9: Pareto Curve: Latency vs. Area for Multi-Head Attention with 4
Heads
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The Pareto curve in Fig.4.9 illustrates the trade-off between latency and area
for different numbers of attention heads and ITA accelerators.

From the data, it is clear that increasing the number of ITA accelerators provides
diminishing performance gains beyond a certain point due to memory contention.
While parallelization can yield significant improvements in execution time, this
approach reaches a saturation point where adding more accelerators no longer
justifies the additional area overhead.

The Pareto curve demonstrates that an optimal balance between latency and
area must be considered when designing systems with multiple accelerators. In
our simulations, the sweet spot appears to be around two to four accelerators,
where the trade-off between performance improvement and area consumption is
most favorable. Further scaling of the system would require architectural changes,
such as improved memory hierarchies or more efficient resource management, to
overcome the bottlenecks imposed by memory contention.
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Conclusions and future
works

This thesis presented the integration and evaluation of the ITA accelerator within the
ESP system, targeting the acceleration of the Encoder part in Transformer models.
Through simulation, ITA demonstrated a significant 20x speed-up compared to
the software-only baseline running on the Ariane processor. This performance
boost was achieved by offloading the General Matrix Multiplication (GEMM)
operations in the attention layer to the accelerator while leaving the addition and
layer normalization operations to the processor.

The deployment of ITA within ESP shows the clear advantage of leveraging
hardware accelerators for computationally demanding operations like the atten-
tion mechanism. Additionally, the flexibility of ESP allows for easy scalability,
potentially enabling more advanced optimizations such as parallelizing multiple
attention heads using additional accelerator instances. Despite this success, the
evaluation was limited to simulations due to challenges encountered during FPGA
deployment, which highlights areas for future work.

In fact, one of the key challenges faced during this project was the inability to
fully deploy the accelerator on the FPGA. The bitstream generation encountered
timing issues, requiring the processor frequency had to be reduced from 78.125
MHz to 25 MHz to meet timing constraints. Although the bitstream was eventually
generated, the accelerator failed to complete its execution when tested on the
FPGA. This issue is likely due to the design being optimized for ASIC rather than
FPGA, leading to a mismatch in resource requirements. Future work should focus
on resolving these issues, ensuring that the accelerator is properly synthesized for
FPGA deployment, and achieving successful execution on hardware.

Another area of exploration involves the parallelization of the attention heads
using multiple instances of ITA within ESP. While the attention layer achieved
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significant speedup, the overall execution time is still dominated by the addition
and normalization operations handled by the Ariane processor. Theoretical scaling
could be achieved by instantiating additional accelerators specialized to offload these
bottleneck functions. This approach could leverage ESP’s scalable architecture,
which supports the instantiation of additional processing, memory, or accelerator
tiles as needed.

A possible scaling model could focus on distributing the computation of these
functions across multiple cores. The function responsible for summing attention
heads could be parallelized by splitting the input across multiple processors, allowing
each core to compute part of the summation. Similarly, the layer_norm function
could be distributed by assigning different sequence lengths to each core, thus
speeding up the mean and variance calculations.

For example, if the number of heads or the sequence length grows, additional
processors could handle these portions of the workload. Ideally, one processor
per head or chunk of sequences would ensure linear scaling of the operations,
theoretically reducing the execution time by a factor proportional to the number
of processors instantiated.

However, adding more processors introduces challenges, such as increased mem-
ory traffic and congestion, especially as multiple cores compete for shared memory
access. This could be mitigated by introducing additional memory tiles within
ESP, providing more bandwidth to handle the concurrent memory accesses without
significant degradation in performance.

In addition to this theoretical scaling with processors, another promising avenue
for future optimization is maximizing ITA’s workload capacity through the use
of tiling techniques. It would be possible to better exploit its processing power,
thereby improving throughput. This strategy would involve adjusting the size
of the tiles to fit within the internal PLM (Private Local Memory) of ITA while
ensuring that larger data sets can be processed efficiently.

However, the first challenge in this approach is to modify the HWPE interface
used to integrate the ITA. To fully leverage tiling, the HWPE interface would need
to support a different data streaming, allowing the accelerator to process data
continuously as it is fed in chunks. Such a modification would reduce idle time and
maximize the use of the accelerator’s computational resources.

Another consideration in this approach is the internal PLM of ITA, which
would need to be carefully managed to hold a larger quantity of data. As the tile
size increases, the PLM must accommodate more data while still ensuring that it
does not become a bottleneck. The size of the PLM would directly influence the
performance gains achievable through tiling. Thus future work should explore how
best to balance tile size and memory capacity to maximize efficiency.

Future work could formalize a theoretical model to better understand the scaling
impact of these additions. The model would need to account for the performance
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trade-offs between increased parallelization and potential resource contention,
particularly with respect to memory access. Simulating the effect of different
numbers of processing cores and memory tiles could provide valuable insights
into achieving an optimal balance between resource allocation and performance
enhancement.

In conclusion, while this work demonstrated the potential of ITA for accelerating
Transformer layers, significant opportunities remain for optimization and deploy-
ment, particularly on FPGA hardware. Resolving the FPGA issues and exploring
parallelization strategies could lead to even greater performance improvements,
further enhancing the capabilities of hardware-accelerated deep learning models.
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