
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Water Stress Detection in Potato Crops
Using Multispectral Imaging and

Advanced Object Detection Models

Supervisors

Prof. Renato FERRERO

Dr. Nicola DILILLO

Candidate

Sarina TAKALLOO

October 2024

Abstract

In recent years, the agricultural sector has been rapidly transformed by the use of
advanced technologies, often referred to as ’smart farming’ or ’smart agriculture’.
Digital tools and other scientific and technological developments have been widely
used to revolutionise agricultural practices for better productivity and sustainability.
Detecting water stress in plants is one of these challenges to be addressed. Typically,
soil moisture sensors are used to assess the condition of the crop. However, the
state of the art has identified multispectral imagery as a promising method for
detecting water stress in crops, especially using near-infrared (NIR) and red-edge
bands. This study investigates the use of multispectral imagery that doesn’t only
use RGB channels but also NIR and Red-Edge channels to improve the detection of
water stress in potato crops using advanced object detection models. This dataset
contains two classes: stressed and healthy, for both RGB and spectral images (Red,
Green, Near-Infrared, and Red-Edge). There are 300 images used for training and
60 for testing in both the RGB and each spectral band. Additionally, an augmented
dataset is provided, consisting of 1500 training images and 60 testing images for
both RGB and spectral data. Multispectral imaging, especially incorporating
NIR and Red-Edge bands, offers several advantages over traditional plant sensors,
including non-invasive, remote assessment capabilities and the ability to cover
large areas more efficiently. These imaging techniques provide valuable insights
into plant health by capturing data beyond the visible spectrum, particularly in
identifying early signs of water stress. Building on this potential, several studies
have been carried out. The first was to investigate the performance of the YOLOv8
model with 4-channel inputs (Red + Green + NIR + Red Edge) and RGBN
(RGB + NDVI) on a potato dataset, evaluating their behaviour in comparison
with traditional RGB images. The second was conducted to explore the potential
of combining multiple channels, specifically RGN (Red, Green, NIR) and RGE
(Red, Green, Red Edge), which were used to train a YOLOv8 model that was
compared to the same model trained using RGB images. In addition to YOLOv8, a
Faster R-CNN model with a ResNet50 backbone was trained and evaluated on the
multispectral image configurations for comparative analysis. Finally, a pre-trained
YOLOv8 model from Hugging Face, specifically designed for plant leaf detection
and classification, was used for additional investigation and benchmarking. In all
of this work, both cross-validation and traditional validation approaches were used
to assess model performance. The results of this study show that the combination
of multispectral data significantly improves detection accuracy, confirming that the
integration of these spectral bands can improve the identification of water-stressed
plants compared to RGB-only approaches.

Summary

Introduction
Detecting water stress in plants is a crucial challenge to address in agricultural
practices. Typically, soil moisture sensors are used to assess the condition of the
crop. However, recent advancements have identified multispectral imagery as a
promising method for detecting water stress, particularly using near-infrared (NIR)
and red-edge bands. This study investigates the use of multispectral imagery with
RGB, NIR, and red-edge channels to improve the detection of water stress in potato
crops using advanced object detection models.

Multispectral imaging, especially when incorporating NIR and Red-Edge bands,
provides several advantages over traditional plant sensors, including non-invasive,
remote assessment capabilities and the ability to cover large areas efficiently. These
imaging techniques capture valuable insights into plant health by collecting data
beyond the visible spectrum, which is particularly effective in identifying early
signs of water stress.

Objective
This study investigates two main objectives:

• 1) Evaluating the Presence of Spectral Bands with Respect to RGB
Images Using YOLO and Faster R-CNN: This research seeks to assess
how the inclusion of spectral bands, such as Near-Infrared (NIR) and Red-
Edge, improves the detection performance of models like YOLOv8 and Faster
R-CNN compared to RGB images alone. The goal is to understand the impact
of these spectral bands on the accuracy and effectiveness of object detection
models in identifying water-stressed plants.

• 2) Evaluating the Presence of an Extra Dimension Using YOLO
with 4 Channels: This question investigates whether combining multiple
spectral band leads to better detection performance when using YOLOv8

ii

with four-channel inputs. By adding this extra dimension, the study aims
to determine if it enhances the model’s ability to detect stress compared to
traditional RGB inputs.

Methodology
A dataset from the University of Idaho was utilized, featuring high-resolution
RGB and multispectral images captured via a Parrot Sequoia camera. RGB
images were 3456 × 4608 pixels, while monochrome sensors captured images
at 1280 × 960 pixels for red, green, red-edge, and NIR channels. The dataset
contained 360 RGB images, split into 300 for training and 60 for testing, along with
augmented versions to increase diversity. Multispectral images (416 × 416 pixels)
were also used for different spectral band combinations, specifically for detecting
crop health under various water stress conditions. To facilitate model training,
annotations were converted to the YOLO format, normalized, and organized into
train, validation, and test sets. Image augmentation techniques, such as blurring,
grayscale transformation, CLAHE, and mosaic augmentation, were applied to
enhance the training dataset. Furthermore, the RGB and multispectral images
were merged into different configurations to form input combinations: RGB, RGN
(Red, Green, Near-Infrared), RGE (Red, Green, Red-Edge), RGBN (RGB +NDVI)
and RGREN (Red, Green, Red-Edge, Near-Infrared). For the 4-channel RGREN
and RGBN setup, specific modifications were applied to the YOLOv8 architecture,
allowing the model to fully utilize the color and spectral richness offered by these
bands. The YOLOv8 model was deployed with two variants, YOLOv8n and
YOLOv8s, with the aim of optimizing hyperparameters such as learning rates (0.1,
0.01, 0.001) and batch sizes (16, 32). The best-performing configuration from
YOLOv8n was used for YOLOv8s to avoid overfitting. Faster R-CNN was also
implemented, primarily focusing on RGN and RGE image combinations. Given its
high computational demand, Faster R-CNN was run with a batch size of 32 over
100 epochs, using Stochastic Gradient Descent (SGD) with a learning rate of 0.001.
Each model configuration was selected to leverage specific spectral properties of the
bands used. NIR and Red-Edge channels were particularly effective in detecting
water stress due to their sensitivity to plant health, making these spectral properties
essential for optimizing both YOLOv8 and Faster R-CNN in this application.

Results and Discussions
Below all the observed improvements of multispectral images comparison with
RGB is listed:

iii

RGB vs Multispectral

Configuration Class Metric Configuration Value RGB Value
RGN Stressed mAP50 0.924 0.922
RGE Healthy Recall 0.900 0.892
RGE Healthy mAP50 0.952 0.940
RGE Stressed Recall 0.910 0.858
RGE Stressed mAP50 0.950 0.922
RGBN Healthy Recall 0.905 0.892
RGBN Healthy mAP50 0.958 0.940
RGBN Stressed Recall 0.910 0.858
RGBN Stressed mAP50 0.953 0.922
RGBN Stressed mAP50-95 0.728 0.711

Table 1: Comparison of Configurations with RGB Values
Using Faster R-CNN and a pretrained YOLOv8s model, additional improvement

was observed:
Pretrained Hugging Face Model: With RGN data, this model significantly

improved precision and recall. In the Healthy class, it reached 0.972 in precision
and 0.959 in recall, which outperformed models such as Retina-UNet-Ag, known
for lower precision and recall in both Healthy and Stressed classes. These results
indicate that advanced models trained on multispectral data effectively capture
detailed features, enhance generalization, and improve the distinction between
healthy and stressed vegetation.

Faster R-CNN: In the RGE configuration, Faster R-CNN showed strong
performance in both precision and recall, achieving 0.880 precision and 0.954 recall
for the Healthy class. This suggests that RGE data enhances the model’s ability to
detect subtle plant health features, providing complementary information to RGB.
The advantage of RGE is particularly evident in its edge detection capabilities,
which aid in distinguishing healthy from stressed plants.

RGBN vs. RGREN
YOLOv8 Models: Comparing RGBN and RGREN, it was observed that RGBN
generally outperformed RGREN across both the Healthy and Stressed classes. For
example, in the Healthy class, YOLOv8m with RGBN achieved 0.905 recall and
0.958 mAP50, whereas YOLOv8m with RGREN recorded lower recall and mAP50
values (0.693 and 0.818, respectively). This highlights the effectiveness of NDVI
in conjunction with RGB, suggesting it better complements the YOLOv8 model
architecture, likely by enhancing contrast between healthy and stressed vegetation.

Precision and Recall Trade-Offs: While RGREN showed slightly improved
precision in YOLOv8n for the Stressed class (0.834), it struggled to match the

iv

recall and mAP of RGBN. This suggests that while the addition of red-edge and
near-infrared bands can boost precision in certain cases, it may not capture plant
health indicators as effectively as NDVI.

Conclusion
Across the board, RGBN consistently achieved the highest recall and mAP50 scores
for YOLOv8s, suggesting that this configuration provides a comprehensive view of
crop health. RGN and RGE configurations offered specific advantages in advanced
model architectures, such as Faster R-CNN and pretrained models, enhancing
recall and fine details necessary for accurate classification. The results underscore
the benefits of utilizing multispectral data, particularly NDVI, when aiming to
enhance model performance on healthy vs. stressed crop detection tasks. Advanced
configurations like RGREN can further improve model accuracy for specific metrics,
though RGBN remains the most balanced choice for achieving both high recall and
mAP, especially in YOLOv8 models optimized for agricultural applications.

v

Acknowledgements

I am deeply grateful to Prof. Renato Ferrero for his invaluable guidance, insightful
feedback, and unwavering support throughout this research. His expertise and
dedication have been instrumental in shaping this thesis.

I am also sincerely thankful to Dr. Nicola Dilillo for his mentorship, technical
advice, and encouragement. His contributions have been vital to the completion of
this work, and his commitment to academic excellence has continually inspired me.

I extend my deepest gratitude to my family, and especially to my husband, Dr.
Abolfazl Malti, for his support and belief in me. His encouragement has provided
me with the strength to persevere in this journey.

I dedicate this work to the brave souls in Iran, To the men and women who,
with courage, stand, fighting for the rights and freedoms they claim, lighting the
path with liberty’s flame. For those who dreamed, a homeland meant a place to
belong.

Donna, Vita, Libertà

vi

Table of Contents

Introduction . ii
Objective . ii
Methodology . iii
Results and Discussions . iii

RGB vs Multispectral . iv
RGBN vs. RGREN . iv

Conclusion . v

List of Tables x

List of Figures xii

Acronyms xvi

1 Introduction 1

2 Related Works 5
2.1 Understanding Smart Agriculture 5
2.2 Water Stress Detection . 6
2.3 Conventional Methods for Water Stress Detection 7

2.3.1 Visual Observation and Physiological Indicators 7
2.3.2 Soil Moisture Measurements 8
2.3.3 Meteorological Data and Models 8
2.3.4 Remote Sensing Techniques 9
2.3.5 Challenges of Conventional Methods 11

2.4 Deep Learning Techniques for Water Stress Detection 12
2.4.1 Convolutional Neural Networks (CNNs) for Water Stress

Detection . 12
2.4.2 Transfer Learning and Pretrained Models for Water Stress

Detection . 14
2.4.3 YOLO in Water Stress Detection 16
2.4.4 YOLOv8 Structure . 17

viii

2.4.5 Faster R-CNN in Water Stress Detection 21
2.4.6 Key Challenges in Deep Learning for Water Stress Detection 23

3 Methodology 26
3.1 Resources . 26
3.2 Datasets . 26

3.2.1 Custom Dataset for Image Segmentation 27
3.2.2 Custom Dataset for Object Detection on Individual Plants . 28
3.2.3 Crop Health Assessment Dataset for Object Detection . . . 31

3.3 Initial Approaches: Image Segmentation and Vegetation Indices . . 34
3.3.1 Tools and Libraries Used . 35

3.4 Final Approach: Object Detection with Deep Learning Methods . . 37
3.4.1 Preprocessing Steps . 37
3.4.2 Hyperparameters . 41
3.4.3 Proposed inputs . 42
3.4.4 Model Architecture Modifications 46
3.4.5 Further Experiment with Pretrained Model 48

4 Results and Discussions 49
4.1 Evaluation Metrics . 49
4.2 Experimental Results . 52

4.2.1 Results for Initial Approach 52
4.2.2 YOLO Results . 52
4.2.3 Faster R-CNN . 82

4.3 Discussion . 87
4.3.1 Comparative Analysis of Model Performance on RGE, RGN

and RGB Images . 87
4.3.2 Comparative Analysis of Model Performance on RGREN,

RGBN and RGB Images . 89
4.3.3 Comparative Analysis of Model Performance with State of

the Art . 90

5 Conclusion 94

A Qualitative Results 96
A.1 Segmentation and NDVI Results . 96

Bibliography 100

ix

List of Tables

1 Comparison of Configurations with RGB Values iv

2.1 Comparison of Deep Learning Architectures for Image Processing . 15

3.1 YOLOv8 Hyperparameters and Their Values 41
3.2 Faster R-CNN Hyperparameters and Their Values 41

4.1 Confusion Matrix for Water Stress Detection 51
4.2 YOLOv8n hyperparameter configurations tested on different image

types (RGB, RGN, RGE, RGREN, and RGBN). 53
4.3 YOLOv8n performance on RGB Images with Different hyper parametrs

settings. 54
4.4 Confusion Matrix Interpretation for Healthy, Stressed, and Back-

ground Classes . 56
4.5 YOLOv8s performance (100 epochs) on RGB Images. 57
4.6 YOLOv8n performance (100 epochs) on RGN Images with Different

hyper parametrs settings. 58
4.7 YOLOv8s performance (80 epochs) on RGN Images. 60
4.8 YOLOv8s performance (100 epochs) on RGN Images. 61
4.9 Pretrained Hugging Face performance (100 epochs) on RGN Images. 63
4.10 YOLOv8n performance (100 epochs) on RGE Images with Different

hyper parametrs settings. 64
4.11 YOLOv8s performance (80 epochs) on RGE Images. 66
4.12 YOLOv8s performance (100 epochs) on RGE Images. 67
4.13 Pretrained Hugging Face performance (100 epochs) on RGE Images. 69
4.14 YOLOv8n performance (100 epochs) on RGREN Images with Dif-

ferent hyper parametrs settings. 70
4.15 YOLOv8n performance (150 epochs) on RGREN Images. 72
4.16 YOLOv8s performance (80 epochs) on RGREN Images. 73
4.17 YOLOv8s performance (100 epochs) on RGREN Images. 75
4.18 YOLOv8n performance (100 epochs) on RGBN Images with Different

hyper parametrs settings. 76

x

4.19 YOLOv8n performance (150 epochs) on RGBN Images. 78
4.20 YOLOv8s performance (80 epochs) on RGBN Images. 79
4.21 YOLOv8s performance (100 epochs) on RGBN Images. 81
4.22 Faster R-CNN performance (100 epochs) on RGN Images. 83
4.23 Faster R-CNN performance (50 epochs) on RGN Images. 84
4.24 Faster R-CNN performance (50 epochs) on RGN Images. 86
4.25 YOLOv8n Hyperparameter Performance Insights 87
4.26 Comparison of YOLOv8m, YOLOv8n with state-of-the-art methods

for Healthy class in RGB Images. 90
4.27 Comparison of YOLOv8m, YOLOv8n, and Faster R-CNN (thesis)

with state-of-the-art methods for Stressed class. 91
4.28 Performance metrics for RGN - Healthy class 91
4.29 Performance metrics for RGN - Stressed class 91
4.30 Performance metrics for RGE - Healthy class 92
4.31 Performance metrics for RGE - Stressed class 92
4.32 Comparison of YOLOv8 Performance on RGB+NDVI and RGREN

Configurations for Healthy class . 93
4.33 Comparison of YOLOv8 Performance on RGBN and RGREN Con-

figurations for Stressed class . 93

xi

List of Figures

2.1 Evolution of YOLO versions over time 17
2.2 Structure of YOLOv8. 19
2.3 Structure of Faster R-CNN. 22

3.1 (a) Calibrated multispectral image and (b) Raw multispectral image
from the generated dataset. 28

3.2 (a) RGN image and (b) RGB image (c) Calibrated RGN image day1,
(d) Calibrated RGN image day 4 from the second generated dataset. 31

3.3 Spectral images without augmentation: (a) Green channel (b) Red
channel (c) Red-Edge channel and (d) is Near-Infrared channel image
from the Potato Crop Health datasset. 33

3.4 (a) RGB image without augmentation (b) Example of how annotation
is applied to images. 34

3.5 Label formats in YOLOv8 . 37
3.6 Spectral images: (a) Red, Green and Near Infrared combination (b)

Red, Green and Red Edge combination. 44
3.7 Spectral images: (a) Red, Green, Red edge and Near Infrared com-

bination (b) RGB+NDVI (RGBN). 45

4.1 Training and Validation Loss and Metrics Plots 54
4.2 Confusion Matrix for RGB images running 100 epochs using yolov8n 56
4.3 Training and Validation Loss and Metrics Plots 57
4.4 Confusion Matrix for RGB images running 100 epochs using yolov8s 58
4.5 Training and Validation Loss and Metrics Plots 59
4.6 Confusion Matrix for RGN images running 100 epochs using yolov8n 59
4.7 Training and Validation Loss and Metrics Plots 60
4.8 Confusion Matrix for RGN images running 80 epochs using yolov8s 61
4.9 Training and Validation Loss and Metrics Plots 62
4.10 Confusion Matrix for RGN images running 100 epochs using yolov8s 62
4.11 Training and Validation Loss and Metrics Plots 63

xii

4.12 Confusion Matrix for RGN images running 100 epochs using Pre-
trained mode Hugging Face . 64

4.13 Training and Validation Loss and Metrics Plots 65
4.14 Confusion Matrix for RGE images running 100 epochs using yolov8n 65
4.15 Training and Validation Loss and Metrics Plots 66
4.16 Confusion Matrix for RGE images running 80 epochs using yolov8s 67
4.17 Training and Validation Loss and Metrics Plots 68
4.18 Confusion Matrix for RGE images running 100 epochs using yolov8s 68
4.19 Training and Validation Loss and Metrics Plots 69
4.20 Confusion Matrix for RGE images running 100 epochs using Pre-

trained Hugging Face . 70
4.21 Training and Validation Loss and Metrics Plots 71
4.22 Confusion Matrix for RGREN images running 100 epochs using

yolov8n . 71
4.23 Training and Validation Loss and Metrics Plots 72
4.24 Confusion Matrix for RGREN images with 150 epochs 73
4.25 Training and Validation Loss and Metrics Plots 74
4.26 Confusion Matrix for RGREN images running 80 epochs using yolov8s 74
4.27 Training and Validation Loss and Metrics Plots 75
4.28 Confusion Matrix for RGREN images running 100 epochs using

yolov8s . 76
4.29 Training and Validation Loss and Metrics Plots 77
4.30 Confusion Matrix for RGBN images running 100 epochs using yolov8n 77
4.31 Training and Validation Loss and Metrics Plots 78
4.32 Confusion Matrix for RGBN images with 150 epochs 79
4.33 Training and Validation Loss and Metrics Plots 80
4.34 Confusion Matrix for RGBN images running 80 epochs using yolov8s 80
4.35 Training and Validation Loss and Metrics Plots 81
4.36 Confusion Matrix for RGBN images running 100 epochs using yolov8s 82
4.37 Training Plot . 83
4.38 Training Plot . 85
4.39 Training Plot . 86

A.1 NDVI calculated for the entire image showing the overall plant health
within the field. 97

A.2 Detection of individual plants using a threshold applied to the NDVI
values. Higher NDVI values indicate healthy plants. 98

A.3 NDVI calculated for each leaf within the segmented regions of the
plants, showing health variations across leaves. 98

xiii

A.4 NDVI calculated for each plant by aggregating NDVI values from
individual leaves. This provides an overall health assessment of the
plant. 99

xiv

Acronyms

AI
Artificial Intelligence

IoT
Internet of Things

RGB
Red, Green, and Blue

NIR
Near-Infrared

NDVI
Normalized Difference Vegetation Index Internet of Things

DL
Deep Learning

ML
Machine Learning

CNN
Convolutional Neural Networks

YOLO
You Only Look Once

IoU
Intersection of Union

xvi

UAV
Unmanned Aerial Vehicles

R-CNN
Region-based Convolutional Neural Network

mAP
Mean Average Precision

TP
True Positive

FP
False Positive

TN
True Negative

FN
False Negative

xvii

Chapter 1

Introduction

Smart Agriculture, often referred to as ’smart farming,’ represents a shift in agri-
cultural practices through the integration of advanced technologies with traditional
methods. The overall progress in agriculture has been closely related to great
changes in productivity, which derive from and happen during different eras of
scientific and technological breakthroughs [1].

1. 1.0: This period, spanning from 1784 to around 1870, was characterized by
traditional farming methods reliant on human and animal labor. The primary
challenge during this era was low operational efficiency.

2. 2.0: During the 20th century, agriculture entered an era of mechanization.
The main challenge in this period was the ineffective utilization of resources.

3. 3.0: From 1992 to 2017, agriculture saw rapid advancements in automation.
However, the primary challenge was the limited intelligence in systems.

4. 4.0: Starting in 2017 and characterized by autonomous operations, this era is
defined by the integration of advanced information technologies to enhance
and intelligently manage agricultural processes.

Thus, while Agriculture 1.0 relied heavily on human and animal labor, Agricul-
ture 4.0 leverages recent developments in digital advancements, such as Unmanned
Aerial Vehicles (UAVs) and the Internet of Things (IoT) [2], to revolutionize farming.
These innovations are a paradigm shift that allows for the more efficient use of land,
thereby increasing productivity and promoting sustainability [3]. The transition
from traditional to smart farming has brought forth new tools for precision agricul-
ture, such as multispectral imaging, which enables farmers to monitor crop health
and detect water stress through non-invasive methods. This technological shift
enhances decision-making and allows large-scale, real-time monitoring of farmland.

1

Introduction

Unlike traditional soil moisture sensors, which provide localized data, multispec-
tral imaging captures information over large areas and across different spectral
bands, such as near-infrared (NIR) and red-edge. These bands are especially crucial
for assessing plant health, as they can provide early indicators of water stress,
such as changes in chlorophyll content and photosynthesis rates [4]. As a result,
multispectral imaging offers a more comprehensive approach to monitoring crop
health and is a key tool in smart farming.

Moreover, smart agriculture addresses critical economic challenges, including
the need to meet the growing global food demand. By 2050, the global population
is expected to reach 9.73 billion, presenting a significant threat to food security,
as predicted by the Food and Agriculture Organization (FAO) [2]. With this
increasing demand comes the necessity for more efficient agricultural practices,
particularly in the management of vital resources like water.

Water management, in particular, is becoming a prominent challenge in agri-
culture, especially in regions prone to water stress. As the global population rises,
so too does the demand for food, which places immense pressure on agricultural
systems to make efficient use of water. Water stress, which occurs when plants
do not receive sufficient water for growth, is a significant barrier to agricultural
productivity. As such, this issue has driven extensive research into technologies
that can address water stress in smart agriculture [5].

Alongside economic concerns, smart agriculture also seeks to promote environ-
mental sustainability, especially in the context of food production. Traditional
agricultural practices have often contributed to environmental degradation, wasting
water and mismanaging resources. In contrast, technologies like artificial intelli-
gence (AI) and IoT offer innovative solutions for early detection of water stress by
providing precise data on soil features, moisture levels, and climatic conditions [2].
By harnessing these technologies, farmers can make informed, real-time decisions
that optimize resource use and reduce waste. Such technological advancements play
a crucial role in mitigating environmental degradation and promoting long-term
sustainability.

Imaging technologies have become a key enabler of smart agriculture, particularly
in tasks like monitoring plant health, detecting stress, and optimizing resource
management. Image processing, which has been widely used in agriculture, allows
for early detection of plant stress through visual cues, enabling timely intervention.
This technology, initially developed for satellite imagery and medical diagnoses,
has been adapted for agricultural contexts where it is essential for processing large
quantities of visual data [6]. In particular, multispectral imagery has proven to be
a valuable asset for monitoring crops, offering a non-invasive way to assess plant
health by capturing data outside the visible spectrum. This study focuses on the
use of NIR and red-edge bands to detect water stress in potato crops, a critical
issue in modern agriculture.

2

Introduction

Object detection, a key component of image processing in agriculture, is essential
for identifying specific elements within images. Deep learning models such as YOLO
(You Only Look Once) and Faster R-CNN are widely used in agricultural contexts for
their high accuracy and real-time performance [7, 8]. These models are particularly
useful for large-scale operations, enabling tasks such as plant stress detection, weed
control, and disease mapping. In addition, segmentation models like U-Net allow
for pixel-wise classification of images, further enhancing the ability to differentiate
between crops, weeds, and soil [9].

Deep learning models, especially Convolutional Neural Networks (CNNs), have
become integral to modern agricultural image processing. CNNs excel at identifying
spatial features in images, making them well-suited for tasks such as stress detection,
disease identification, and yield prediction [10, 11]. More advanced architectures like
ResNet and DenseNet have further enhanced CNN performance, enabling deeper
networks and improved feature extraction [10]. These models are highly effective
in analyzing both RGB and multispectral images, making them indispensable in
agricultural monitoring.

In addition to CNNs, transformer-based models, such as Vision Transformers
(ViTs), are gaining traction in agricultural applications. Originally developed
for natural language processing, ViTs have shown promise in image classification
and segmentation tasks, particularly when working with large-scale satellite or
UAV imagery [12]. These models provide a more global perspective compared
to traditional CNNs by processing images as sequences of patches, capturing
long-range dependencies that improve classification accuracy [13].

The combination of advanced image processing techniques and deep learning
models has opened new frontiers in smart agriculture. Precision agriculture, which
relies on remote sensing, UAVs, and IoT sensors, has greatly benefited from these
advancements [14, 15]. By integrating these technologies, farmers can monitor
crop health, predict yields, and make data-driven decisions that enhance resource
efficiency and improve sustainability.

IoT plays a pivotal role in the modern agricultural landscape, enabling real-time
data collection and analysis. Multispectral sensors, in particular, have become
critical tools for assessing plant health by capturing data in different light bands,
such as NIR and red-edge. These sensors can detect early signs of water stress long
before they become visible to the naked eye [16]. Mounted on drones, satellites,
or ground-based platforms, these sensors transmit spectral data via IoT systems,
allowing farmers to remotely monitor their crops and make informed decisions
about irrigation, fertilization, and pest control [17, 18].

Among the most significant applications of these sensors is the calculation of the
Normalized Difference Vegetation Index (NDVI), which measures plant health by
comparing red and NIR reflectance. Combining IoT with multispectral data enables
farmers to optimize water use and improve crop management [19]. For instance,

3

Introduction

NIR-based water stress sensors can detect subtle changes in leaf moisture, allowing
for precise irrigation management and reducing water wastage in drought-prone
areas [20, 16].

In addition to environmental monitoring, plant-based sensors can track key
physiological parameters like leaf moisture and chlorophyll content, enabling the
early detection of stress factors such as nutrient deficiencies [21]. By integrating
multispectral imaging with traditional soil sensors, precision agriculture practices
can thrive, providing a holistic view of plant and soil health [22].

This research focused on tackling issues in water stress detection by exploring
three key questions:

• Evaluating the Presence of Spectral Bands with Respect to RGB
Images Using YOLO and Faster R-CNN This research seeks to assess
how the inclusion of spectral bands, such as Near-Infrared (NIR) and Red-
Edge, improves the detection performance of models like YOLOv8 and Faster
R-CNN compared to RGB images alone. The goal is to understand the impact
of these spectral bands on the accuracy and effectiveness of object detection
models in identifying water-stressed plants.

• Evaluating the Presence of an Extra Dimension Using YOLO with
4 Channels This question investigates whether combining multiple spectral
bands leads to better detection performance when using YOLOv8 with four-
channel inputs. By adding this extra dimension, the study aims to determine
if it enhances the model’s ability to detect stress compared to traditional RGB
inputs.

4

Chapter 2

Related Works

2.1 Understanding Smart Agriculture
Smart agriculture, also referred to as precision agriculture or digital farming,
represents a transformative approach to modern farming. Precision agriculture
using IoT, UAVs, big data analytics and machine learning to improve productivity
practices and sustainability in farming [23, 11]. These techs made easier the
monitoring of environment and crop status in real-time, which promotes an informed
decision making that delivers resource use optimization with waste reduction [24]

Smart agriculture has evolved to meet the key global challenges including Food
Security, Resource Scarcity and Environmental Sustainability [25, 5]. The global
population is projected to reach 9.7 billion by the year 2050 [5] and agriculture
systems need to be applicable in order to fulfill increasing demand of the food as
well comply with nature resources that are limited such water and arable soils [5].
Therefore, Food Security is one of primary concerns addressed by smart agriculture.
With increased global food demands, the agriculture industry will need to be more
productive and resilient. The use of smart technologies, e.g., IoT-based systems
for precision irrigation and fertilization to ensure crops get the right amount of
water or nutrients at optimal times have been shown effective in enhancing crop
yields while also reducing environmental footprints [26, 23]. With a multispectral
or hyperspectral sensor adapted to UAVs, farmers can obtain images of crop health
that allow them to identify problems such as pest infestation or water stress in
time to prevent further damage and optimize the use of land and inputs [27, 4].

Climate Change is also a massive threat for agriculture. Changes in weather
patterns and more frequent extreme events can cause the variability that farmers
rely on to create predictable growing conditions [28]. Also, using big data analytics
and machine learning, farmers can anticipate changes in these conditions ahead
of time. Combining these technologies with predictive models (built on historical

5

Related Works

data and real time monitoring) creates a more resilient farming system which can
manage change in climate [29, 24]. For instance, AI models predicting the weather
can advise adaptive strategies to ensure crop protection from drought or flooding
[30]

Another key in smart agriculture is Environmental Sustainability. Traditional
farming practices often lead to soil degradation, water overuse, and greenhouse
gas emissions [31]. Smart agriculture tries to decrease these impacts by promoting
sustainable practices such as precision irrigation, nutrient management, and carbon
footprint monitoring [11, 31]. For instance, technologies that use remote sensing
and satellite imagery can monitor soil moisture and plant health, allowing farmers
to apply water and fertilizers more precisely, and lead to conserving resources and
reducing pollution [32]

2.2 Water Stress Detection
Agriculture is faced by a number of constraints that limit its productivity and
sustainability. Some major concerns are identified to be water stress, weed control,
diseases detection, and pest management, for which innovative approaches beyond
the conventional farming practices are needed [25]. Among the most pressing
challenges faced by modern agriculture is the suitable use of water resources. With
increasing pressures from climate change and population growth, water availability
is becoming more unpredictable, making it essential to manage irrigation practices
effectively [33, 34]. Increase in escalating lack of water resources is an important
confrontation faced by agriculture [28]. Water stress occurs when the water available
to plants is insufficient to meet their physiological needs [34, 35]. This can result
from inadequate rainfall, inefficient irrigation practices, or extreme heat, leading
to reduced crop growth, delayed development, and lower yields [36]. Water stress
can manifest in several ways, from mild to severe. In mild cases, crops may
show subtle reductions in growth, while severe stress can lead to wilting, leaf
curling, and eventual plant death [37]. Different crops have varying levels of
tolerance to water shortages; for instance, drought-tolerant plants can withstand
more significant reductions in water availability compared to water-sensitive crops
[36]. This often makes crops so affected due to the irregular water availability that
reduces yield in crops and, when extreme, leads to total crop failure. Efficient
water management is crucial not only for environmental sustainability but also for
maintaining productivity, particularly in drought-prone areas [38]. Unfortunately,
traditional irrigation methods often lead to over-irrigation or under-irrigation, both
of which are costly and hurtful to the health of crops [39]. Therefore, the use of
advanced technologies, such as remote sensing, machine learning, and multispectral
imagery, has revolutionized how water stress is detected and managed [40, 41].

6

Related Works

Through real-time monitoring of crop health, these technologies allow for early
detection of stress symptoms, enabling farmers to adjust irrigation schedules and
prevent crop losses [42]. Specifically, remote sensing techniques using multispectral
bands, such as near-infrared (NIR) and red-edge, can reveal water stress levels that
may not be visible to the human eye [40]. These technologies enable proper water
management strategies that will conserve water while at the same time allowing
appropriate quantities of moisture to reach the plants at the right time. It is in
this regard that the successful realization of such solutions will play a vital role in
food security, increasing productivity, and reducing environmental marks left by
farming operations.

In this study, advanced object detection algorithms, such as YOLOv8 and Faster
R-CNN, were applied to multispectral datasets of potato crops to identify regions
affected by water stress. The integration of spectral bands such as NIR and red-edge
enhanced the model’s ability to detect subtle signs of stress, potentially improving
the accuracy of water management practices in agriculture. The next section will
outline specific methodologies and innovations enabling such advances in modern
agriculture.

2.3 Conventional Methods for Water Stress De-
tection

Traditionally, farmers and researchers have relied on a variety of direct and indirect
methods to assess water stress in plants. These conventional methods range
from visual observations and physiological measurements to soil-based monitoring
techniques. Each method has its advantages and limitations, often influenced by
factors such as crop type, environmental conditions, and the scale of agricultural
operations.

2.3.1 Visual Observation and Physiological Indicators
Visual observation is one of the earliest and most straightforward techniques for
detecting water stress in plants. Farmers have traditionally monitored crops for
visible signs of stress, such as wilting, leaf curling, or discoloration. While this
method can provide immediate feedback, it is highly subjective and prone to
errors. Moreover, by the time visual symptoms appear, the plant may already be
significantly stressed, potentially reducing yield [43]. Physiological indicators, such
as stomatal conductance and plant water potential, have also been used as reliable
measures of water stress [44]. Stomatal conductance, which refers to the rate at
which water vapor exits the plant through the stomata, decreases as water stress
increases. Measuring stomatal conductance can provide insights into the plant’s

7

Related Works

water status and help inform irrigation decisions. However, these measurements
require specialized equipment and are labor-intensive, making them difficult to
scale for large agricultural fields [45].

Another physiological indicator commonly used is the measurement of leaf water
potential. This method involves the use of pressure chambers to determine the water
content in plant leaves. While leaf water potential provides an accurate assessment
of a plant’s hydration status, it is invasive and time-consuming, requiring leaf
samples to be collected and analyzed under controlled conditions [46]. As with
stomatal conductance, this method is not ideal for large-scale monitoring and lacks
real-time feedback [47].

2.3.2 Soil Moisture Measurements
Soil moisture is a direct indicator of the water available to plants, making it one
of the most common traditional methods for assessing water stress. Soil moisture
sensors, such as tensiometers, time-domain reflectometry (TDR) sensors, and
capacitance sensors, have been extensively used to monitor water availability in
the soil. Tensiometers, for example, measure the tension of water within the soil,
indicating the level of water available to the plant’s roots. TDR and capacitance
sensors, on the other hand, measure the soil’s dielectric constant, which changes
with moisture content [44].

However, soil moisture sensors only provide localized information and require
extensive deployment to cover large agricultural fields, which increases costs and
complexity [48]. Additionally, variability in soil features including organic matter
content and texture can cause spatial differences in moisture retention across fields,
limiting the accuracy of these sensors when used in isolation [49]. Therefore, while
soil moisture monitoring remains a critical tool for irrigation management, its
effectiveness is often complemented by other sensing methods.

2.3.3 Meteorological Data and Models
Meteorological models have long been used to estimate crop water demand and
predict potential water stress. These models rely on inputs like temperature,
humidity, solar radiation, and wind speed to calculate evapotranspiration (ET)
rates [50]. ET-based irrigation scheduling systems have been implemented in many
agricultural areas to guide farmers on how much and when to irrigate based on
current weather conditions [39]. Though useful, these models can be inaccurate if
they do not account for local variations in soil and plant conditions. Additionally,
meteorological approaches provide only indirect estimates of water stress, relying
on weather data rather than direct crop measurements.

8

Related Works

2.3.4 Remote Sensing Techniques
Remote sensing has emerged as an effective tool for identifying water stress in
plants over large areas. Satellite-based and aerial remote sensing platforms can
capture vegetation indices like the Normalized Difference Vegetation Index (NDVI)
and the Water Index (WI), which provide indirect measurements of plant health
[51]. NDVI, for instance, compares the reflectance in the red and near-infrared
bands to estimate chlorophyll content and photosynthetic activity, offering an
indirect assessment of water stress [52]. Meanwhile, WI is based on the absorption
properties of water in the near-infrared spectrum and can directly estimate water
content in plant tissues.

Spectral indices offer several advantages over traditional soil and physiological
measurements. They provide spatially continuous data across entire fields, overcom-
ing the limitations of point-based soil and physiological measurements . Remote
sensing data can be collected frequently and non-destructively, making it ideal
for ongoing monitoring of crop health. Though effective in covering large areas,
remote sensing techniques are limited by spatial resolution, cloud cover, and the
frequency of satellite overpasses [32]. Furthermore, they often require complex data
processing and interpretation, which may not be accessible to all farmers.

Multispectral Imaging

Multispectral imaging captures images at particular, distinct wavelengths across
the electromagnetic spectrum, commonly focusing on red, green, blue (RGB),
near-infrared (NIR), and sometimes red-edge bands. NIR and Red-Edge bands are
particularly significant in agricultural applications, as they provide information on
the photosynthetic activity and chlorophyll content of plants, both of which are
critical indicators of plant health and water stress. For instance, plants that are
water-stressed exhibit reduced chlorophyll content, which can be detected in the
NIR and red-edge bands as reduced reflectance [6].

By analyzing the reflectance values in these bands, multispectral imaging allows
for the computation of vegetation indices like the Normalized Difference Vegetation
Index (NDVI), a widely adopted metric for evaluating plant health and detect early
signs of water stress. NDVI compares the reflectance values in the red and NIR
bands to quantify the amount of chlorophyll present in the plant, which correlates
with its overall health and water status. Healthy vegetation typically has high NIR
reflectance and low red reflectance, while stressed or unhealthy vegetation exhibits
the opposite pattern [49, 19]. This method has been successfully used in a range of
crops, from cereal grains to potatoes, providing farmers with early warning signs of
stress and allowing for timely interventions.

9

Related Works

Hyperspectral Imaging

While multispectral imaging collects data across a restricted set of spectral bands,
hyperspectral imaging takes this further by collecting information across hundreds
of narrow, contiguous spectral bands. This enables a much more detailed analysis
of plant properties, as hyperspectral data provides a continuous spectral signature
that can reveal subtle differences in plant physiology that may not be visible in
multispectral data [53]. Hyperspectral imaging can detect specific biochemical
changes in plants, such as variations in leaf pigments, water content, and cell
structure, making it an even more powerful tool for detecting water stress in
crops. These changes occur at the molecular level and can be picked up by the
hyperspectral sensors before any visual symptoms appear, offering an even earlier
detection method than multispectral imaging.

Hyperspectral imaging has been particularly useful in the identification of water
stress because it allows for the detection of small changes in the water absorption
bands of plant leaves. For instance, the reflectance values in the 970 nm water
absorption band are often used to assess leaf water content. A decrease in reflectance
at this wavelength indicates a reduction in water content, which is a clear sign of
water stress [20]. Moreover, hyperspectral data can be used to generate customized
vegetation indices, fine-tuned to detect specific types of stress, including water
deficiency, nutrient imbalances, and pest infestations [17].

While the benefits of hyperspectral and multispectral imaging in agriculture are
clear, there are still challenges to be addressed. One of the main limitations is the
high cost and complexity of hyperspectral sensors, which makes their widespread
adoption in agriculture difficult [20]. Additionally, the vast amount of data generated
by hyperspectral imaging requires advanced processing techniques, such as machine
learning algorithms, to extract meaningful insights from the raw data [16].

However, ongoing advancements in sensor technology and data analytics are
likely to overcome these challenges in the near future. As hyperspectral sensors
become more affordable and accessible, and as data processing techniques improve,
it is expected that hyperspectral imaging will become a standard tool in precision
agriculture, enabling even more accurate and efficient monitoring of crop health
[17, 22].

Applications in Remote Sensing

The combination of multispectral and hyperspectral imaging with remote sensing
technologies, such as satellites, Unmanned Aerial Vehicles (UAVs), and ground-
based sensors, has revolutionized the monitoring of agricultural fields. Satellites
and UAVs equipped with hyperspectral sensors can capture large-scale data over
vast areas, providing a comprehensive view of crop health and water stress levels
across entire fields [54]. Remote sensing allows farmers to monitor their crops

10

Related Works

remotely and continuously, reducing the need for manual field inspections and
enabling more efficient management of resources like water and fertilizer.

One of the key advantages of remote sensing is its ability to monitor crops
in real-time. By capturing data over time, remote sensing enables the creation
of time-series analyses that can track the progression of water stress in crops.
This allows for the identification of trends and patterns that can inform irrigation
strategies and other management practices. In addition, remote sensing data can be
combined with Geographic Information Systems (GIS) to generate comprehensive
maps of crop health, helping farmers pinpoint areas of their fields that require
attention [55, 17].

In addition to early detection of water stress, remote sensing can also be used
to predict crop yields and optimize resource use. By integrating remote sensing
data with other environmental and agronomic data, such as soil moisture and
temperature, predictive models can be developed to forecast yield outcomes based
on current crop conditions. This allows farmers to enable more informed decision-
making regarding when and where to allocate resources, ultimately improving
efficiency and reducing waste [18, 49].

2.3.5 Challenges of Conventional Methods
Despite the widespread use of these conventional methods, there are several chal-
lenges associated with their implementation. One major limitation is that many
of these techniques, such as soil moisture sensors and sap flow measurements,
provide point-based data, which may not be representative of the entire field. This
spatial variability can lead to inaccurate assessments of water stress if not properly
accounted for. Furthermore, many traditional methods require manual intervention
or invasive sampling, which can be time-consuming and labor-intensive [6].

Another challenge is the lack of real-time data provided by some methods, such
as physiological measurements and satellite-based remote sensing. In precision
agriculture, timely decision-making is essential for optimizing irrigation practices
and ensuring crop health. Delays in obtaining water stress data can result in
sub-optimal irrigation practices, leading to yield losses or unnecessary water use
[56].

In conclusion, while conventional methods for detecting water stress have been
invaluable in agricultural research and practice, they often fall short in providing
real-time, large-scale, and non-invasive monitoring. These limitations have led to
the adoption of more advanced technologies, such as multispectral imaging and
deep learning, which offer more comprehensive and scalable solutions for managing
water stress in modern agriculture [17].

11

Related Works

2.4 Deep Learning Techniques for Water Stress
Detection

Deep learning (DL) is a subset of machine learning (ML) that has revolutionized
the field of agriculture by enabling automated analysis and decision-making. Unlike
traditional ML, which relies on manually selected features, DL models automatically
learn hierarchical patterns from raw data, making them particularly well-suited for
processing complex data types common in agriculture. This includes images from
satellites, drones, and sensors, as well as time-series data related to climate, soil
moisture, and crop growth patterns.

In agriculture, DL techniques have been successfully applied to tasks such as crop
monitoring, disease detection, yield prediction, and water stress detection. One of
the primary advantages of DL is its ability to handle large-scale, multidimensional
data, such as multispectral and hyperspectral images, which are crucial for detecting
subtle variations in plant health and stress levels that are often imperceptible to
human observers [11]. DL’s capability to integrate various data types into a unified
prediction system makes it invaluable in analyzing the complex data common in
precision agriculture.

Traditional ML techniques often require extensive preprocessing and feature
extraction before the learning process, which can limit their adaptability to dif-
ferent environments and crops. In contrast, DL models are more flexible, able to
automatically adjust to new data types and distribution shifts without significant
modifications to the architecture. This flexibility is especially beneficial for tasks
like water stress detection, where real-time sensor data (e.g., temperature, humidity,
and soil moisture) must be integrated and analyzed to make predictions under
dynamic environmental conditions [57, 58].

2.4.1 Convolutional Neural Networks (CNNs) for Water
Stress Detection

Convolutional Neural Networks (CNNs) have become the most widely used archi-
tecture for image-based water stress detection in agriculture due to their ability
to automatically extract complex patterns from raw image data. This ability is
particularly useful in analyzing data from different sources such as satellite imagery,
unmanned aerial vehicles (UAVs), and ground-based sensors, which generate vast
amounts of information. CNNs are specifically designed to process spatial data,
making them an ideal choice for agricultural applications where spatial relationships,
such as the distribution of water stress across a field, are critical.

12

Related Works

How CNNs Work in Water Stress Detection

CNNs consist of multiple layers, each performing specific functions such as con-
volution, pooling, and classification. The convolutional layers automatically learn
spatial features from images, such as edges, shapes, and textures, which are critical
for identifying subtle signs of water stress in plants. For instance, variations in leaf
color and texture, indicative of water stress, can be detected through deep feature
extraction. Pooling layers then down-sample the data, reducing its complexity
while retaining the most important features. Finally, fully connected layers are
used to classify the detected features, determining whether the plant is under stress
or healthy. One of the key strengths of CNNs in water stress detection is their
ability to handle high-dimensional data such as multispectral and hyperspectral
images.

These types of images collect data across a broad spectrum of wavelengths,
extending beyond the visible range, such as infrared, which is highly sensitive to
plant water content. By processing multispectral images, CNNs can identify signs
of water stress long before they become visible to the human eye, providing an
early warning system for farmers [59].

The Role of CNNs in Precision Agriculture

CNNs are applied to several types of imagery collected from various sources in
agriculture. Satellite-based imagery provides a broad view of large fields and regions,
making it suitable for macro-level monitoring. However, satellite imagery may suffer
from lower resolution, which limits its ability to detect fine details. UAV-based
imagery offers a higher resolution and can be used to capture detailed images
of crops at critical growth stages, making it ideal for field-level monitoring [60].
Ground-based sensors, including handheld cameras and stationary devices, provide
even more granular data, often capturing the smallest features in plant health and
stress levels. In addition to visual data, CNNs can process non-visible spectra,
such as near-infrared (NIR) and thermal data, which provide valuable insights into
plant physiology. For example, thermal cameras can detect temperature differences
in plant canopies that correlate with water stress. When combined with visual and
multispectral data, CNN models can provide a comprehensive analysis of plant
health, offering real-time detection of water stress with high accuracy [61]

Precision agriculture relies on the ability to detect and respond to small-scale
variations in crop health across a field, and CNNs have demonstrated high effec-
tiveness in providing accurate, pixel-level classifications of water stress. These
models can segment fields into areas requiring different levels of irrigation or other
interventions, helping farmers optimize water use and improve crop yields. For
instance, Sankararao et al. [62] applied a CNN model using UAV-based hyper-
spectral imaging to successfully detect water stress in chickpeas with over 95%

13

Related Works

accuracy. This demonstrated the capability of CNNs to identify stressed plants and
improve irrigation strategies in real-time. Moreover, Lake et al. [63] demonstrated
that CNNs could detect invasive plant species, a sign of environmental stress, using
multispectral satellite imagery from Worldview-2 and Planetscope satellites. Their
approach highlights how CNNs can process large-scale data to provide actionable
insights on plant stress and health.

Additional research by Narvaria et al. [60] applied CNNs to multispectral
UAV data to classify different crop types and identify areas under stress. The
integration of weather data and crop monitoring allowed for precise decision-making
in crop management. This ability to combine different data types makes CNNs
particularly valuable in precision agriculture, where multiple variables, such as
weather, soil moisture, and plant health, must be considered together. Other works,
such as Khaliq et al. [61], explored the refinement of satellite imagery using higher-
resolution UAV data for improved stress detection in vineyards. Their CNN-based
approach increased the accuracy of stress detection by refining lower-resolution
satellite imagery with higher granularity UAV data, demonstrating CNNs’ flexibility
in managing data from multiple sources and scales. Furthermore, Kamarudin et al.
[64] introduced a lightweight CNN model with attention mechanisms to detect water
stress in plants, providing a more computationally efficient solution that can be
applied even in resource-constrained environments. This type of innovation is critical
as precision agriculture becomes more widespread, even in regions with limited
access to advanced computational infrastructure. By utilizing CNNs, researchers
can improve not only the detection of water stress but also early warning systems
that allow for timely interventions. For example, Rojanarungruengporn and Pumrin
[65] developed a CNN-LSTM model to detect early-stage water stress in sorghum
plants, leveraging phenotyping data. This model could identify stress much earlier
than traditional methods, which is essential for preventing yield loss.

2.4.2 Transfer Learning and Pretrained Models for Water
Stress Detection

Transfer learning has become integral to agricultural image analysis, particularly
for detecting water stress. By leveraging models pretrained on large datasets like
ImageNet and fine-tuning them for agriculture, transfer learning enables researchers
to bypass the need to build deep learning models from scratch. Commonly used
models, such as VGG16 and ResNet, have robust architectures suited for such
applications [66]. A comparison of these models is presented in Table 2.1.

14

Related Works

Method Features Advantages Challenges Main Finding Depth Dataset Error
Rate

Input
Size

AlexNet Convolutional lay-
ers, max pooling,
ReLU activation,
fully connected
layers

High accuracy, effi-
cient for large-scale
images, reduced
overfitting with
dropout

Computationally
expensive, large
number of parame-
ters

Utilizes Dropout
and ReLU

8 ImageNet 16.4 227 × 227
× 3

VGGNet Deep convolutional
layers, small re-
ceptive fields, max
pooling, fully con-
nected layers

Improved accuracy
with deeper layers,
simple and uniform
architecture

High memory con-
sumption, slow to
train due to depth

Increased depth,
small filter size

16, 19 ImageNet 7.3 224 × 224
× 3

ResNet Residual blocks,
skip connections,
batch normaliza-
tion

Mitigates vanishing
gradient problem,
allows training of
very deep networks

Complex architec-
ture, increased com-
putational cost

Robust against
overfitting due to
skip connections

152 ImageNet 3.57 224 × 224
× 3

Table 2.1: Comparison of Deep Learning Architectures for Image Processing
Application of Transfer Learning in Agriculture

Transfer learning is especially valuable in water stress detection due to the limited
availability of large labeled agricultural datasets. Collecting labeled data across
diverse crop stress conditions can be costly and time-consuming. Transfer learning
addresses this by fine-tuning pretrained models, like VGG16 and ResNet, on smaller
agricultural datasets. These models, pretrained on ImageNet, have already learned
a range of visual features, making them well-suited to detect stress patterns when
fine-tuned for agriculture [67].

In practice, transfer learning has shown high accuracy in detecting stressed plants
across various crops using hyperspectral and multispectral imagery. For example,
Khaliq et al. [61] demonstrated that ResNet-50, when fine-tuned, performed better
at detecting water stress in vineyards than models trained from scratch. Similarly,
Moiz et al. [68] and Saeed et al. [69] successfully applied transfer learning with
VGG16 and InceptionV3 to classify plant diseases and stress in rice and tomato
crops, achieving high accuracy.

Advantages of Transfer Learning

Transfer learning significantly reduces the need for extensive labeled datasets.
Labeling agricultural images, especially for water stress detection, is labor-intensive
and costly. Pretrained models alleviate this by generalizing features from large
datasets, allowing fine-tuning with limited agricultural data [70]. Additionally,
transfer learning accelerates the training process, making it ideal for projects
requiring rapid deployment or with limited computational resources [71].

Challenges and Future Directions

Despite its benefits, transfer learning in agriculture faces challenges, including
domain shifts between source (e.g., ImageNet) and target datasets (e.g., agricultural
imagery). Pretrained models may not always align with agricultural images,

15

Related Works

particularly when dealing with infrared or thermal data. However, fine-tuning and
domain-specific augmentation can help address these issues [72].

2.4.3 YOLO in Water Stress Detection
Among the various algorithms for object detection, the You Only Look Once
(YOLO) framework remains one of the most notable due to its balance between
speed and accuracy. This allows object identification to be done very quickly and
reliably within an image. Since the first version of YOLO, several iterations have
been released, each improving upon the last to address various challenges. These
versions are shown in Figure 2.1. The advantages of YOLO compared to other
methods include the following:

• Speed: YOLO is extremely fast compared to other object detection methods.
The base YOLO model processes images in real-time at 45 frames per second
(fps), and a faster version, Fast YOLO, can process images at 155 fps. This
makes YOLO suitable for applications requiring real-time processing, such as
video streaming and autonomous driving.

• Simplified Pipeline: Unlike traditional object detection methods that use
complex pipelines involving separate steps for region proposal, feature ex-
traction, and classification, YOLO approaches object detection as a unified
regression problem. This involves a single neural network predicting both
bounding boxes and class probabilities simultaneously in one evaluation, sim-
plifying the process and making it easier to optimize end-to-end.

• Global Context: YOLO considers the entire image during both training
and testing, which allows it to reason globally about the image context. This
helps in reducing the number of background errors as YOLO can differentiate
between objects and background better than methods like Fast R-CNN, which
only look at local regions within the image.

• Generalization: YOLO has been shown to learn highly generalizable rep-
resentations of objects. When trained on natural images and evaluated on
artwork, YOLO surpasses other methods such as DPM (Deformable Parts
Model) and R-CNN (Region-based Convolutional Neural Network). This
generalization capability makes YOLO more robust to variations and new
domains.

• Single Unified Model: YOLO combines all the steps of object detection
into a single convolutional neural network, which reduces the complexity of
the model and makes it easier to train and deploy. This unified approach

16

Related Works

contrasts with methods that require multiple stages and separate training for
different components, leading to faster inference and simpler implementation.

Figure 2.1: Evolution of YOLO versions over time

Unlike traditional object detection approaches, which typically involve two
separate steps (region proposal followed by classification), YOLO frames the object
detection problem as a single regression problem. This allows YOLO to predict
bounding boxes and class probabilities directly from an input image in one pass,
hence the name "You Only Look Once. [73].

YOLOv8

YOLOv8 is the latest version of the YOLO object detection family, introduced by
Ultralytics. This version continues to build upon the key concepts of YOLO while
incorporating several modern innovations to improve both the speed and accuracy
of object detection.

2.4.4 YOLOv8 Structure
The YOLOv8 architecture consists of several components that work together to
perform object detection. The primary components of the YOLOv8 model include:

Input Layer: The input image is resized to a predefined dimension, often
640×640 or 1280×1280, depending on the model variant (e.g., YOLOv8-small,
YOLOv8-medium, or YOLOv8-large).

Backbone: The backbone is responsible for extracting feature maps from the
input image. YOLOv8 uses a modified version of the CSPDarknet backbone, which
allows for better feature extraction at various scales while maintaining computa-
tional efficiency. The backbone is divided into multiple stages, each downsampling

17

Related Works

the image and increasing the depth of the feature maps. This hierarchical struc-
ture helps capture both low-level features (edges, textures) and high-level features
(complex patterns).

Neck (PANet - Path Aggregation Network):The neck component aggre-
gates features from different levels of the backbone. YOLOv8 uses the PANet
architecture, which improves information flow across different feature levels. The
neck helps fuse high-resolution and low-resolution feature maps to improve object
detection for both large and small objects.

Detection Head: The detection head is the part of the network that generates
the final predictions. YOLOv8’s dynamic head architecture allows the model to
predict bounding boxes and class probabilities at multiple scales. Each detection
head outputs the following: Bounding Box Coordinates (x, y, width, height) Ob-
jectness Score (how likely the bounding box contains an object) and Class Scores
(the probability of the object belonging to a specific class).

Figure 2.2 shows the architecture of YOLOv8.

Key Innovations in YOLOv8

Backbone Network Enhancements: YOLOv8 incorporates a more advanced
and optimized backbone network, allowing for more efficient feature extraction
from the input image. This ensures that even smaller or more complex objects are
detected more accurately compared to earlier versions.

Anchor-Free Detection: One significant change in YOLOv8 is the shift
towards anchor-free detection. Traditional YOLO models used anchor boxes
(predefined box shapes) for detecting objects. However, anchor-based models can
introduce complexities, especially when fine-tuning models for specific datasets.
YOLOv8 simplifies this by using anchor-free detection, which reduces computational
overhead and increases adaptability across different datasets.

Dynamic Head for Object Detection: YOLOv8 introduces a dynamic
detection head, which optimizes the bounding box predictions by adjusting the
receptive fields dynamically. This results in better localization, especially for objects
of varying sizes.

Improved Loss Functions: YOLOv8 uses improved loss functions that weigh
the classification, objectness, and localization losses more effectively. This ensures
that the model is better at distinguishing between background and foreground
objects and provides more precise bounding box predictions.

Post-Processing with NMS (Non-Maximum Suppression): Like previous
YOLO versions, YOLOv8 uses non-maximum suppression (NMS) to filter out

18

Related Works

Figure 2.2: Structure of YOLOv8.
overlapping boxes and ensure only the most confident predictions are retained.
However, YOLOv8 optimizes the NMS process to further reduce the false positives
while maintaining speed.

Multi-Scale Training: To increase robustness, YOLOv8 uses multi-scale
training, which allows the model to be trained on images of varying sizes. This
improves the model’s ability to generalize across different image resolutions during
inference.

19

Related Works

Application of YOLO in Water Stress Detection

In the agricultural sector, especially in precision agriculture, YOLO-based models
have shown significant potential in detecting plant stress, including water stress.
Several studies have demonstrated how YOLO and its variants can be applied
to multispectral, thermal, and RGB images to monitor crops and detect signs of
water stress. Pavani et al. [74] utilized YOLOv8 to develop a plant stress detection
system using multispectral imagery. Their model, trained on a combination of
visible and non-visible spectra, showed significant promise in identifying stressed
plants, especially in detecting temperature anomalies associated with water stress
in plant canopies. The study emphasizes the use of UAVs to capture high-resolution
imagery of crops, enabling real-time detection of stress at field scale. Guo et al.
[75] introduced an improved YOLOv5-based model, DBCR-YOLO, for detecting
water surface objects, with potential applications in monitoring water bodies in
agricultural fields. Though not directly used for plant water stress detection, the
methodology highlights the robustness of YOLO models for detecting small objects
in challenging environments, making it relevant for precision agriculture scenarios
where detecting early signs of plant stress is critical. Sportelli et al. [76] applied
various YOLO models, including YOLOv8, to detect weeds in different turfgrass
environments, with implications for broader crop stress detection. Their results
demonstrated the superior performance of YOLOv8 in distinguishing between
healthy and stressed plants under different environmental conditions, including
water stress. This highlights YOLOv8’s robustness in real-world agricultural
applications. Yue et al. [77] applied an improved YOLOv8-Seg network for
the instance segmentation of diseased tomato plants. This model, optimized
for segmenting healthy and diseased plants, provides a framework that could be
extended to monitor water stress in other crops by analyzing changes in plant
morphology. The segmentation of plant regions experiencing stress provides a more
granular approach to water stress detection.

Limitations of YOLO

While YOLO models are effective for real-time object detection, they face notable
challenges in weed detection. One key issue is their difficulty in detecting small,
overlapping objects, a common occurrence in dense vegetation. YOLO’s grid-based
approach can overlook fine details and precise boundaries, leading to incorrect
classifications and missed detections. This is especially problematic in agriculture,
where accurately distinguishing between closely spaced weeds and crops is essential.
One solution to improve YOLO’s ability to detect small, overlapping objects is
to increase the resolution of input images. This can help improve the granularity
of detection and reduce missed detections caused by the coarse grid of YOLO’s
architecture. Data augmentation can alson help alleviate this challenge by artificially

20

Related Works

expanding the training dataset with a variety of transformations. Techniques like
brightness adjustment, flipping, cropping, rotation, and zooming simulate different
real-world conditions, making the model more robust to variability.

2.4.5 Faster R-CNN in Water Stress Detection
Faster R-CNN (Regions with Convolutional Neural Networks) is a cutting-edge
object detection model that extends the foundational concepts introduced in
earlier versions like Fast R-CNN and R-CNN. First proposed by Ren et al. [8]
in 2015, Faster R-CNN introduces the Region Proposal Network (RPN), which
significantly accelerates object detection tasks by sharing convolutional features
with the detection network itself. Unlike earlier methods that relied on external
region proposal algorithms like Selective Search, Faster R-CNN generates region
proposals in a nearly real-time manner, making it much faster and more efficient
[8].

Faster R-CNN Architecture

Backbone Network (Feature Extraction): The backbone of Faster R-CNN is
typically a deep convolutional neural network, such as VGG16 or ResNet, which is
used to extract feature maps from the input image. These features are crucial for
both generating region proposals and for object classification. The convolutional
layers of the backbone network extract spatial hierarchies and important features
like edges, textures, and object boundaries from the input image. The output is a
dense feature map representing the entire image.

Region Proposal Network (RPN): The Region Proposal Network (RPN)
is the key innovation in Faster R-CNN. It generates region proposals that likely
contain objects by sliding over the feature maps generated by the backbone network.
The RPN outputs bounding boxes (regions of interest) and their corresponding
objectness scores. For each sliding window, the RPN predicts multiple anchor boxes,
which are refined through classification and bounding box regression to select the
most promising regions. This step removes the need for external region proposal
methods like Selective Search, significantly improving the speed of detection.

RoI Pooling: After generating region proposals, Faster R-CNN uses Region of
Interest (RoI) Pooling to extract fixed-size feature maps from the variable-sized
regions of interest. This process allows the model to effectively classify objects of
varying sizes. RoI Pooling ensures that the feature maps corresponding to each
region proposal are fed into the fully connected layers for further classification and
bounding box refinement.

21

Related Works

Object Classification and Bounding Box Regression: The output from
RoI Pooling is passed to a fully connected network for classification and bounding
box refinement. Each region proposal is classified into one of the object classes or
a "background" class, while the bounding boxes are further refined to tighten the
localization around objects.

Figure 2.3 shows the structure of this model.

Figure 2.3: Structure of Faster R-CNN.

Key Features of Faster R-CNN

End-to-End Training: One of the biggest advantages of Faster R-CNN over its
predecessors (Fast R-CNN and R-CNN) is that the RPN allows the model to be
trained end-to-end. This results in faster training and more accurate detections.

Speed: By incorporating the RPN to generate region proposals, Faster R-
CNN is significantly faster than Fast R-CNN, which used external region proposal
methods like Selective Search. This improvement in speed makes it more suitable
for real-time applications, though it’s still not as fast as YOLO.

Accuracy: Faster R-CNN achieves state-of-the-art accuracy for object detection
tasks due to its two-stage process. The first stage generates region proposals, while
the second stage classifies and refines these proposals. This two-step process makes
it more accurate than single-shot detection methods like YOLO, especially for
complex objects or when high precision is required.

Feature Sharing: Faster R-CNN’s architecture shares convolutional layers
between the RPN and the final object detection network, making it more computa-
tionally efficient than previous methods that processed region proposals and object
detection separately.

22

Related Works

Applications of Faster R-CNN in Water Stress Detection

While Faster R-CNN is primarily used for object detection tasks, its adaptability to
agricultural applications, particularly in water stress detection, has been explored
in recent years. Researchers have leveraged Faster R-CNN to detect various stress
indicators in crops using a combination of multispectral, hyperspectral, and thermal
imagery.

Zhuang et. al. [78] applied neural networks such as Faster R-CNN and YOLO
for to evaluate the feasibility of using deep convolutional neural networks for the
detection of Florida pusley (Richardia scabra L.) growing in drought stressed and
unstressed bahiagrass (Paspalum natatum Flugge). Butte et al. [79] applied deep
learning techniques to identify stress in potato crops using aerial imagery. The
study applied Faster R-CNN along with other convolutional networks to detect
stress in potato crops using aerial imagery. This research provides insights into
how water stress-related symptoms, such as leaf discoloration and canopy changes,
can be detected with similar methods. The Faster R-CNN model achieved notable
accuracy in identifying stressed potato plants, demonstrating its effectiveness in
agricultural settings. Zhao et al. [80] applied Faster R-CNN to detect stress in tea
plants at the canopy level, specifically addressing three types of stress: tea green
leafhopper, anthracnose, and sunburn. This research provides valuable insights into
how similar stress symptoms, such as leaf discoloration and deformation, can be
detected and segmented using deep learning techniques. The Faster R-CNN model
achieved a mean average precision (mAP) of 76.07%, outperforming YOLOv3,
which had an mAP of 65.89%, particularly in complex scenarios such as shadow,
occlusion, and blurred conditions.

Limitatins of Faster R-CNN

Although Faster R-CNN has shown promissing accuracy in agricultural applications.
However, Faster R-CNN’s higher computational complexity can limit its use in
real-time scenarios, particularly when working with large-scale, high-resolution
imagery. To mitigate these limitations, YOLO was integrated for its ability to
perform rapid object detection. YOLO’s single-stage architecture allows for faster
processing, which is essential when UAVs or drones are used to monitor large
agricultural fields in real-time.

2.4.6 Key Challenges in Deep Learning for Water Stress
Detection

While deep learning has shown promising results in water stress detection, several
challenges must be addressed for effective deployment in real-world agricultural
applications.

23

Related Works

• Data Scarcity: One of the key challenges is the scarcity of labeled agricul-
tural datasets, particularly for specific tasks such as water stress detection.
Collecting and annotating large amounts of labeled data in agriculture is
resource-intensive, as it often involves field visits and expert input. This
scarcity of data can limit the performance and generalizability of deep learning
models [81].

• Model Generalization: Ensuring that models trained in one region or on one
crop generalize well to other regions or crops is another significant challenge.
Models may face difficulties when applied to different environmental conditions
or crop types, especially when there is a domain shift between training and
deployment conditions. Data augmentation techniques and transfer learning
are often employed to mitigate these challenges and improve generalization
[82].

• Computational Requirements: Training deep learning models, especially
for high-resolution imagery, is computationally expensive. The use of large
models such as convolutional neural networks (CNNs) often requires high-
performance hardware, which may not be readily available in all agricultural
settings. Model compression techniques, such as pruning and quantization,
are being explored to reduce the computational load and make the models
more suitable for deployment in resource-constrained environments [83].

In response to these challenges, several strategies can be employed to improve
the performance of deep learning models in water stress detection.

Transfer Learning: Pretrained models such as VGG16 and ResNet can be
fine-tuned on smaller agricultural datasets to reduce the need for large amounts of
labeled data. This approach leverages models trained on large-scale datasets like
ImageNet and adapts them for agricultural tasks [11].

Data Augmentation: Techniques such as flipping, rotating, and scaling images
can artificially increase the size of the training dataset, improving the model’s
ability to generalize to new conditions. Augmentation is particularly helpful in
addressing data scarcity and enhancing model robustness [84].

Domain Adaptation: Domain adaptation techniques are designed to tackle
the issue of generalization by adapting models trained on one dataset to perform
well on a different, yet related dataset. This is particularly useful when there’s a
domain shift between datasets (e.g., training on data from one crop or region and
applying it to another). One effective domain adaptation method is unsupervised
domain adaptation, where models trained on a source domain (e.g., one region or
crop type) are adjusted to perform well on a target domain (e.g., another region or
crop type) using techniques like adversarial training [72].

24

Related Works

To address the aforementioned challenges in this study, pretrained models
(VGG16 and ResNet) were used, specifically fine-tuning it on a smaller dataset
tailored for water stress detection. Data augmentation techniques were applied to
artificially expand the dataset and improve the model’s generalization. Additionally,
preprocessing steps such as normalization and resizing were carried out to ensure
consistency across images, mitigating issues related to variability in the input data.

25

Chapter 3

Methodology

This chapter details the practical work conducted in this thesis, focusing on the
approach and implementations used. The subsequent chapter will present and
analyze the results achieved. The chapter begins by describing the initial idea
pursued to achieve a functional implementation of Image Segmentation. It explains
the decisions made and the reasons behind them. Following this, a description
of the final method, Object Detection, is provided, exploring the features and
techniques used. Additionally, the configurations employed in each method are
discussed in detail.

3.1 Resources
The resources utilized in this project are categorized into three parts based on
program complexity and available resources:

• The initial method was conducted on Google Colab, utilizing a T4 GPU/CPU
with 12.7 GB of RAM and 107.7 GB of disk space.

• Due to the increased complexity of the second approach (YOLO and Faster
R-CNN), resource allocation became more crucial. Initially, it was executed on
a Linux server with 31.3 GB of RAM and 8 logical CPUs. Subsequently, due
to the requirement for GPU acceleration, it was implemented on a Windows
Server equipped with a V100 GPU (32GB vRAM), 22 vCPUs, and 240GB of
storage.

3.2 Datasets
For the current research, various datasets have been collected, each tailored to the
specific requirements of its corresponding method to achieve optimal results.

26

Methodology

3.2.1 Custom Dataset for Image Segmentation
Initially, a segmentation-based approach was considered for assessing plant health,
specifically focusing on leaf-level segmentation combined with the Normalized
Difference Vegetation Index (NDVI) calculation for each leaf. The rationale behind
this method was to enhance model capabilities in monitoring plant health by utiliz-
ing near-infrared (NIR) spectroscopy, a widely adopted technique in agricultural
research for detecting plant stress. The incorporation of aeroponic cultivation
methodologies, as opposed to traditional soil-based methods, further supported the
objective of establishing controlled and efficient plant growth environments.

Data Collection

A series of images were captured in a greenhouse outside Turin, Italy. Lettuce
samples were used as the primary subject, and a MAPIR S3W RGN camera
equipped with a 550, 660, and 850 nm was employed to capture the images. These
images were taken under controlled greenhouse conditions to ensure consistency in
lighting and plant positioning. The focus of this data collection was to generate a
comprehensive dataset that could provide insight into plant health through spectral
analysis.

Data Calibration

After the images were collected, calibration of the data was necessary to ensure
that accurate and reliable measurements could be derived from the spectral data.
The calibration process was conducted using a Calibrated Reflectance Panel, which
was placed beside the plants during image acquisition. This panel provided a
consistent reflectance surface across both visible and NIR spectral bands, enabling
precise compensation for fluctuations in ambient lighting conditions. The reasons
for performing this calibration are as follows:

• Improved Data Quality: Calibration corrects sensor outputs, eliminating
artifacts such as striping and ensuring uniform image quality across detectors
and over time.

• Accurate Temporal Monitoring: Calibration allows the detection of real
environmental changes rather than variations caused by sensor performance,
which is critical for longitudinal plant health monitoring.

• Inter-Sensor Comparability: When combining data from multiple sensors,
calibration ensures accurate comparisons. This capability is vital for applica-
tions requiring data integration from different sources, such as environmental
monitoring and precision agriculture.

27

Methodology

Challenges and Limitations

Despite the potential of this segmentation-based method, several challenges were
encountered. The dataset creation process was highly time-consuming due to the
logistical challenges associated with collecting images from a greenhouse facility
located outside the city. Additionally, the varying stages of plant growth introduced
imbalance in the dataset, as plant sizes differed significantly across the captured
images. Moreover, while the incorporation of NIR was beneficial for detecting
physiological changes, the approach faced practical constraints in terms of image
processing and segmentation, particularly given the complexity of real-world plant
growth conditions.

Given these challenges, it was determined that the segmentation-based approach
may not be the most effective or scalable solution for assessing plant stress. This
realization led to the exploration of alternative methods for water stress detection,
as described in subsequent sections.

The images collected during this phase of the research are shown in Figure 3.1,
and they form the basis of the initial experimental analysis of plant health using
spectral methods.

(a) (b)
Figure 3.1: (a) Calibrated multispectral image and (b) Raw multispectral image
from the generated dataset.

3.2.2 Custom Dataset for Object Detection on Individual
Plants

After recognizing the limitations of the segmentation-based approach, a second
method was explored, focusing on object detection applied to individual plants. The
goal was to create a dataset containing both healthy and stressed plants and then
use object detection algorithms to identify and classify the plants in each image.
This approach aimed at automating the identification of plant health statuses

28

Methodology

without the need for detailed segmentation, thereby streamlining the process.

Data Creation

To capture the necessary data, plants were allowed to grow under different controlled
conditions to promote the development of both healthy and stressed plants. The
dataset creation process involved capturing high-resolution RGB images.

Data Annotation

In this phase, makesense was used platform for annotation, where bounding boxes
were created around each stressed plant to annotate the dataset. The plants were
divided into two groups: in the first group, water supply was cut off to induce
stress, while the second group continued to receive regular irrigation. Stress in the
plants was determined based on the period without water, and visual symptoms
such as leaf wilting and discoloration. This annotation allowed the object detection
models to distinguish between healthy and stressed plants based on visible signs of
stress.

Data Augmentation

In order to enhance the robustness of the dataset and reduce the risk of overfitting,
several image augmentation techniques were applied to the collected RGB images.
These augmentations included random rotations, horizontal flips, and lighting ad-
justments to simulate different environmental conditions. The use of augmentation
aimed to increase the variability in the dataset and improve the generalization
capability of the object detection models.

Data Calibration

Similar to the first approach, a calibrated reflectance panel was used during the
image capture process to ensure the consistency and accuracy of the images. This
panel was placed beside the plants in each image, providing a consistent reference
point for correcting the reflectance values across the visible spectrum. Calibration
was essential for mitigating the impact of varying lighting conditions within the
greenhouse and ensuring that the captured images accurately reflected the true
state of the plants.

Experimenting with Weakly Supervised Learning

During this phase, weakly supervised learning methods were also considered. This
approach primarily required counting the number of healthy and unhealthy plants

29

makesense.ai

Methodology

in each image, rather than detailed pixel-level annotations. Weakly supervised
learning allowed us to use less specific annotations while still training models
capable of distinguishing between stressed and healthy plants.

For this method, the dataset was annotated by counting the number of healthy
and stressed plants visible in each image. Labels were assigned based on the visual
inspection of stress symptoms, such as wilting, discoloration, and leaf curling. This
approach reduced the need for precise object-level annotations, making it a more
scalable solution for large datasets. However, relying on visual cues for stress
detection also introduced subjectivity, as human judgment could vary, especially in
early-stage plant stress.

Challenges and Limitations

Despite initial progress, this object detection approach faced several challenges.
One of the primary limitations was the small number of available plants, which
constrained the size and diversity of the dataset. A limited number of healthy and
stressed plants made it difficult to achieve a balanced dataset, which is critical for
training reliable object detection models.

Additionally, creating stressed or dehydrated plants in a controlled and ethical
manner posed significant challenges. Maintaining plant health while simultaneously
inducing stress conditions, such as water deprivation, required careful planning,
which was difficult to achieve consistently across multiple plants.

Although sensors capable of measuring water stress in plants were considered
for labeling the dataset more accurately, the high cost of these devices made this
approach unfeasible. As a result, stress labeling relied on visual detection through
the naked eye, which introduced further inconsistencies and potential errors into
the dataset. Visual stress identification, particularly in the early stages, is subject
to human interpretation, making it less reliable for constructing a high-quality
dataset.

These challenges made it clear that developing an original dataset for object
detection in plant health monitoring would require considerable resources and
time. As a result, the focus shifted towards finding existing datasets that better
aligned with the objectives of the research. By leveraging publicly available datasets
with well-documented stress annotations, the project aimed to continue developing
models capable of detecting plant health statuses without the logistical and ethical
limitations encountered during the earlier phases.

Figure 3.2 illustrates some of the augmented images generated during this
approach.

30

Methodology

(a) (b)

(c) (d)
Figure 3.2: (a) RGN image and (b) RGB image (c) Calibrated RGN image day1,
(d) Calibrated RGN image day 4 from the second generated dataset.

3.2.3 Crop Health Assessment Dataset for Object Detec-
tion

Aerial images for potato crops acquired at the Aberdeen Research and Extension
Center of the University of Idaho was used [79]. The main goal was the acquisition
of images for plants under different levels of drought stress through premature
senescence. Images were taken using a Parrot Sequoia multispectral camera attached
to a 3DR Solo drone. High resolution of 4608 × 3456 pixels for the RGB sensor
and four monochrome sensors imaging narrow bands of light wavelengths: green at
550 nm, red at 660 nm, red-edge at 735 nm, and near-infrared at 790 nm—all in
the same resolution of 1280 × 960 pixels. The drone was flown at an elevation of
about 3 meters for optimal quality images of the potato field. Images of dataset
are shown in Figure3.3, Figure 3.4.

31

Methodology

Characteristics of the Dataset

• Training and Testing: The dataset is aimed at training machine learning
models directed at crop health assessment. It contains high-resolution RGB
images and narrow-band multispectral images. Accordingly, a total number of
RGB image patches equaled to 360, of which 300 patches were for training, and
60 patches for testing.

• Annotation Process: Each of the RGB and multispectral images is related to
the ground-truth annotations. The annotations were made in XML and CSV
formats and were completed using LabelImg software, which employs rectangular
boxes to highlight areas with healthy and stressed plants. Because the difference
was only visual, the stressed plants were differentiated as yellow in color, while
the healthy plants presented with a more greenish look.

• Data Augmentation: Sub-sampling from the full-size RGB images were taken
to generate image patches of 750 × 750 pixels after cropping, rotation (in 45, 90,
and 135 degree), and resizing operations. The 960 × 1,280 pixels of multispectral
images had to pass through processes of undistortion and alignment, with the
aim of correcting the sensor positioning, to finally extract patches of 416 × 416
pixels for each spectral band: red, green, red-edge, and near-infrared. Since
the number of images is relatively low; hence, it acts as a kind of limitation,
and augmentation techniques are applied. These include the scaling of pixel
intensities, adjustments with gamma and sigmoid values for brightness and
contrast, addition of Gaussian noise, and others. These augmentations were
conducted to the 300 training images so as to boost the training set to 1,500
images while the size of the testing set was maintained at 60 images.

The dataset is organized within specific directories:
• RGB Image Patches: Data set of 360 images with size 750 × 750 pixels, 300

for training, and 60 for testing.
• RGB Image Patches - Augmented Dataset: It is having 1500 augmented

training images and 60 testing images.
• Spectral Image Patches: It consists of 360 images, 416×416 pixels each, and

has been created separately for the four spectral bands. Out of these 360 images,
there are 300 training images.

• Spectral Image Patches - Augmented Dataset : This dataset comprised
of 1500 spectral image patches to be used as a training dataset and 60 others
for testing for each number of bands.

This massive dataset has been publicly available, and it is going to be very important
in object detection model development and validation with crop health monitoring
studies. The dataset is available at the University of Idaho’s website.

32

https://www.webpages.uidaho.edu/vakanski/Multispectral_Images_Dataset.html

Methodology

(a) (b)

(c) (d)
Figure 3.3: Spectral images without augmentation: (a) Green channel (b) Red
channel (c) Red-Edge channel and (d) is Near-Infrared channel image from the
Potato Crop Health datasset.

33

Methodology

(a) (b)
Figure 3.4: (a) RGB image without augmentation (b) Example of how annotation
is applied to images.

3.3 Initial Approaches: Image Segmentation and
Vegetation Indices

As discussed in earlier chapters, one widely used method in agricultural studies for
plants is Image segmentation which can be classified into three main approaches:
color-based, threshold-based, and learning-based methods. For this research, color-
based and threshold-based segmentation methods were selected for implementation
due to their relative simplicity and effectiveness.

The segmentation method was chosen for two main reasons:
• It is straightforward, particularly in terms of complexity, for both color-based

and threshold-based approaches.

• It offers acceptable accuracy and effectiveness, especially in real-time applica-
tions.

Additionally, this method can be integrated with vegetation indices such as NDVI
(Normalized Difference Vegetation Index). As explained previously, NDVI is utilized
to assess plant health and vegetation density due to:

• NDVI is widely used to assesse plant health and vegetation density due to its
widespread adoption simplicity in calculation.

34

Methodology

• Combining image segmentation with NDVI provides valuable insights with
calculating the NDVI index for each segmented plant or leaf and analyzing its
health within its range.

To calculate this index, near-infrared and red channels are considered. Healthy
plants reflect more NIR (near-infrared) and absorb more red light due to their
chlorophyll content. The formula to calculate NDVI is:

NIR − Red

NIR + Red

NIR: Plants reflect NIR light, and healthy vegetation reflects more of it compared
to unhealthy or stressed vegetation.

Red Light: Chlorophyll in plants absorbs most of the red light, so a healthy
plant will have a lower red light reflectance.
The NDVI value ranges between -1 and +1:

Values close to +1 indicate healthy, dense vegetation.
Values near 0 suggest bare soil or unhealthy vegetation.
Negative values typically indicate water, snow, or clouds.

3.3.1 Tools and Libraries Used
The libraries employed in this step include:
• OpenCV an open-source software library for computer vision and machine

learning, is extensively used for image processing applications. It offers a variety
of functions for tasks such as object detection, face recognition, and image
segmentation. In the proposed method, OpenCV is used for its efficient image
processing capabilities to manipulate and analyze visual data [85].

• NumPy is a core library for numerical computations in Python. It provides
support for large multi-dimensional arrays and matrices, along with an extensive
set of mathematical functions to manipulate these arrays. This library is crucial
for efficiently managing and processing numerical data in the proposed system
[86].

• Matplotlib is a versatile library for generating static, animated, and interactive
visualizations in Python. The pyplot module is particularly useful for generating
plots and graphs to visualize data. In the proposed method, Matplotlib is used
to plot and display images and results, facilitating the interpretation of the
processed data [87].

• Scikit-image is an image processing library that builds on the capabilities of
NumPy and SciPy. It provides a range of algorithms for image segmentation, ge-
ometric transformations, analysis, and filtering. Functions such as clear_border,

35

Methodology

measure, label, and regionprops are utilized in the proposed method to segment
and analyze images effectively [88].

• SciPy, particularly the ndimage module, offers various functions for multi-
dimensional image processing. This includes operations like measurements,
center of mass calculation, binary dilation, and zooming of images. The proposed
method leverages these functions to perform complex image processing tasks
that require precise manipulation of image data [89].

• Plotly is an interactive graphing library that enables the creation of highly
customizable and interactive visualizations. The graph_objects module provides
a low-level interface for building figures, while plotly.express offers a higher-level
interface for quickly creating common visualizations. In the proposed method,
Plotly is used to create interactive plots and visualizations to better understand
and present the processed image data [90].

Below the algorithm for the proposed method is provided:
Algorithm 1 Plant Segmentation and NDVI Calculation
Data: Input image
Result: Segmented regions with NDVI calculation
Input : Image
Output : NDVI for segmented regions
// Reading the picture
Read the input image
// Preprocessing
Detect vertical lines of the container around the plants
Rotate the picture by 90 degrees
Remove the frame
// Segmentation: combining color-based and threshold approaches
Find minimum and maximum pixel values in the picture
Determine the threshold for plant detection using Otsu’s method or manual exami-
nation

Create a mask and fill holes to obtain the plant shapes
// Calculating NDVI
foreach region in segmented image do

Calculate NDVI for each region
end

To refine the methodology, the NDVI for each leaf and then eaxh plant was
calculated to provide insights into the health status of individual leaves. These
individual index values were then compared with the NDVI calculated for the entire
image to assess the overall plant health.

36

Methodology

3.4 Final Approach: Object Detection with Deep
Learning Methods

3.4.1 Preprocessing Steps
Preprocessing is a fundamental phase in the preparation of data for machine learning
tasks, particularly in the field of object detection. It involves a series of essential
steps aimed at refining raw data to meet the specific requirements of models such
as YOLO. The steps sompleted for this stage include tasks such as standardizing
data formats, organizing dataset path to match with YOLO configuration, and
training and validation splits. It is not only about formatting data; it is about
ensuring everything is suitable so that models can learn accurately and perform well.
For Faster R-CNN, the annotation format of the dataset matched the accepted
annotation of the model, therefore there was no need for altering the annotation
given by the dataset.

Figure 3.5: Label formats in YOLOv8

Tools and Libraries Used

For this step, in addition to Numpy, the following libraries are also used:
• Os is a Python module that provides functionalities specific to the operating

system, such as reading and writing files within the file system [91].

37

Methodology

• Shutil is a module offering high-level file operations, including tasks like copying
and removing files or directories [92].

• Random is a Python library used to generate pseudo-random numbers for
various data distributions, including both integers and floating-point values [93]

• Pandas is a powerful Python library for data manipulation and analysis, offering
data structures like DataFrames for efficient handling of structured data [94].

• PIL (Pillow) image is a widely-used library that supports a variety of image
file formats and provides efficient image processing features[95].

• Tifffile is a Python library for reading and writing TIFF images, supporting
multi-page and high-bit-depth files [96].

• Pathlib is a Python module designed to work with filesystem paths in an
object-oriented way, making path operations more intuitive and easier to use
[97].

• Collections is a module that provides specialized data structures like named-
tuples, deques, and defaultdicts, as alternatives to Python’s built-in containers
[98].

• Yaml is a library that allows for the serialization and deserialization of Python
objects into YAML format [99].

• Sklearn.model_selection is a module within scikit-learn that includes utilities
for model selection, validation, and evaluation, such as train/test splitting and
cross-validation [100].

• Glob is a module that searches for all file paths matching a specific pattern,
based on Unix shell rules, and returns the results in any order [101].

Preprocessing Functions

• Modifying annotation format: The labeling format used in YOLOv8
follows the {class, x_center, y_center, width, height} format, requiring box
coordinates to be normalized within the range of 0 to 1 (see Figure3.5) [102].
Consequently, the initial preprocessing step involves converting dataset labels,
which are stored in rows of CSV files for each object in an image (and also
in XML files for each image) in {filename, xmin, ymin, xmax, ymax, class}
format, to match YOLOv8’s requirements. This conversion is achieved through
a function named convert_df_to_yolo_format.

• Label corrections: It is necessary to ensure that the names of labels and
images match; therefore, the necessary adjustments are made using the re-
name_labels function.

• Organizing Dataset Path The dataset path must follow this structure for
YOLOv8: ’data/images/train’ and ’data/labels/train’ (similarly for validation
and test folders). This format is essential for the YAML configuration files

38

Methodology

used by YOLO, which specify the dataset’s root directory and the relative
paths to the training, validation, and testing sets. In order to match with this
format, move_matching_labels function is used.

• Fix Train/Validation Split: Splitting data into training, validation and
test sets is an important step in the development of machine learning models.
Several benefits in this context include:

– Hyperparameter Optimization: Tuning the hyperparameters is possible
with the validation set. In other words, optimization can be performed on
the model by this set for the hyperparameters to ensure high performance
against unseen data [103].

– Early Stopping: You could monitor the performance on a validation set and
then stop training when its scores are weak. This will prevent overfitting
in the sense that training would be stopped when the performance started
deteriorating on the validation set [104].

For this project, Two types of splits were organized for the train, validation
folders. A fixed train/validation split: the training folder of the dataset was
split at a 0.2 ratio for the validation stage. This splitting was performed with
train_val_test_split.

• K-Fold Cross-Validation: k-fold cross-validation is a powerful technique in
machine learning for evaluating the performance and robustness of a model.
The following reasons support the importance of this method in this project
application:

– Maximizes Data Usage: In k-fold cross-validation, data are divided into
k subsets, and the model is trained and validated k times, each time with
a different subset as the validation set and the remaining k-1 subsets as
the training set. This way, all data points are used both in the process of
training and validation, maximizing the use of available data [103].

– Augments Robust: A k-fold cross-validation is conducted in order to
validate the model with k different subsets of the data, and it will help
to give a more robust estimate of the model in detecting and avoiding
overfitting, as this means that the model will perform well across all the
folds [105].

– Provides Reliable Performance Estimates: The average over all k-
folds will be considered the final performance metric. This actual step
of averaging, in fact, reduces variance of the estimate of performance
and gives a more reliable measure of the true performance of the model

39

Methodology

with unseen data [106].This research implemented the method using re-
sources from both Ultralytics documentation, and it is contained in the
k_fold_cross_validation.ipynb file.

• Creating Multispectral Images: As elaborated, the crop health dataset
possesses spectral bands such as near-infrared, red edge, red, and green. One
of the research objectives considers the impact of multispectral channel images
in the detection of plant health status. Therefore, the combine_channels
function merges these bands into "RGREN" (red, green, red edge, near-
infrared), "RGN" (red, green, near-infrared), and "RGE" (red, green, red edge)
imagery. The combine channels function receives a combination type, the four
bands, and an output folder as input. This function converts each channel
into a numpy array and uses numpy’s stack function to merge these bands.
Some of generated images for each combination type is provided in Figure3.7

Data Augmentation

The models were explored using both non-augmented and augmented datasets.
However, to increase the dataset size and improve the model’s robustness, the
decision was made to move forward with augmented data. Various augmentation
techniques were applied to enhance the diversity of the training samples. The
following augmentations were used:

• Blur: A slight blur effect was applied with a probability of 0.01, using a blur
limit between 3 and 7. This helped simulate image distortions that might
occur in real-world scenarios.

• Median Blur: Similar to blur, this technique applied a median blur with a
probability of 0.01, within the same blur limits (3, 7), ensuring more variation
in image sharpness.

• ToGray: A grayscale transformation was used with a probability of 0.01,
keeping the number of output channels at 3, using the ’weighted_average’
method to simulate grayscale imagery and challenge the model’s color-based
detection capabilities.

• CLAHE (Contrast Limited Adaptive Histogram Equalization): With
a probability of 0.01, CLAHE was used to enhance local contrast, with clip
limits ranging from 1 to 4.0 and a tile grid size of (8, 8). This improved the
model’s ability to detect details in low-contrast regions.

• Mosaic Augmentation: This method took 4 images and combined them
into a single image. Mosaic augmentation resized each of the four images,

40

Methodology

stitched them together, and then took a random cutout from the stitched
images to create the final mosaic image. This technique was particularly useful
for providing diverse and complex training examples to the model.

3.4.2 Hyperparameters
The YOLO model was tested using various hyperparameters to evaluate its per-
formance under different conditions. Learning rates were adjusted and tested at
value of 0.1 for AdamW optimizer. Additionally, experiments were conducted
with varying batch sizes, including 8, 16, and image sizes of 640 and 416 pixels.
Different pretrained models were also explored, including YOLOv8n, YOLOv8s,
YOLOv8m, to assess their effectiveness. The YOLO model was also tested with
different numbers of epochs, including 50, 80, and 100, to observe how training
duration affected performance. Additionally, it was noted that the default data
split provided suboptimal results due to an uneven data distribution. To address
this, the dataset was shuffled, and a custom split was implemented, dividing the
data into 80% for training, 10% for validation, and 10% for testing. This reshuffling
ensured a more balanced distribution, improving the model’s ability to generalize
across all phases of training and evaluation.

YOLO Hyperparameters Values
Epochs 80, 100

Batch Size 8, 16
Loss Function CIoU loss, DFL loss, Varifocal Loss

Activation Mish
Optimizer AdamW

Evaluation Metric Precision, Recall, MAP50, MAP50-95
Table 3.1: YOLOv8 Hyperparameters and Their Values

Faster R-CNN was evaluated using RGN, RGE images. Due to the significant
time and resource demands, the model was tested with a batch size of 16, using
SGD with a learning rate of 0.01 over 100 and 50 epochs.

Faster R-CNN Hyperparameters Values
Epochs 50,100

Batch Size 16
Loss Function classification and regression loss

Activation ReLU
Optimizer SGD

Evaluation Metric Precision, Recall
Table 3.2: Faster R-CNN Hyperparameters and Their Values

41

Methodology

3.4.3 Proposed inputs
To start the implementation, the following dependencies were required to install:

Listing 3.1: Required dependencies
1 dependencies = [
2 "numpy >=1.23.0 , <2.0.0", # Temporary patch for compatibility

errors
3 "matplotlib >=3.3.0 ",
4 "opencv -python >=4.6.0 ",
5 "pillow >=7.1.2 ",
6 "pyyaml >=5.3.1 ",
7 "requests >=2.23.0 ",
8 "scipy >=1.4.1 ",
9 "torch >=1.8.0 ",

10 " torchvision >=0.9.0 ",
11 "tqdm >=4.64.0 ", # Progress bars
12 " psutil ", # System utilization
13 "py - cpuinfo ", # Display CPU info
14 "pandas >=1.1.4 ",
15 "seaborn >=0.11.0 ", # Plotting
16 " ultralytics -thop >=2.0.0 ", # FLOPs computation
17]

In this work, various input combinations were explored using YOLOv8 for the
detection of water stress in potato crops. The input channels included RGB,
RGN (Red, Green, Near-Infrared), RGE (Red, Green, Edge), RGREN (Red,
Green, Edge, Near-Infrared - a 4-channel input) and RGBN (RGB + NDVI).
For the implementation of Faster R-CNN, the RGN (Red, Green, Near-Infrared)
combination was used.

For the 4-channel configuration RGREN and RGBN, a combination of modifica-
tions were applied which will be discussed in the next section. These adjustments
allowed the model to utilize the detailed color information from the Red and Green
channels, combined with the spectral richness provided by the Near-Infrared and
Edge channels. The combination of these channels provided a broad spectrum of
information, particularly useful for identifying signs of water stress, as Near-Infrared
(NIR) can capture details about plant health not visible in the RGB spectrum.

The 3-channel configurations included RGN and RGE, where RGN provided a
significant advantage by incorporating the NIR channel, which helps in distinguish-
ing stressed crops from healthy ones. The NIR channel captures light reflection from
the plants, which typically reflects more NIR light when healthy. This enhances
the ability to monitor the health status of the crops. The RGE configuration
(Red, Green, Edge) was particularly useful for focusing on structural differences
in plant morphology, where the edge information highlighted boundaries between
plants, aiding in more precise object detection. Each combination was tailored

42

Methodology

to leverage different spectral properties, with the NIR and Red Edge channels
being particularly effective in identifying water stress due to their sensitivity to
plant health. These different input configurations were essential in evaluating
how different spectral bands contribute to the task of water stress detection in
potato crops, optimizing the YOLOv8 and Faster R-CNN models for this purpose.
Following figures show examples of the different channel combinations used.

43

Methodology

(a)

(b)

Figure 3.6: Spectral images: (a) Red, Green and Near Infrared combination (b)
Red, Green and Red Edge combination.

44

Methodology

(a)

(b)

Figure 3.7: Spectral images: (a) Red, Green, Red edge and Near Infrared
combination (b) RGB+NDVI (RGBN).

45

Methodology

3.4.4 Model Architecture Modifications
To modify YOLOv8 to support 4-channel input, several critical adjustments were
made across various components of the model to ensure proper handling of mul-
tispectral images and the new input structure. The model’s configuration files
located in the ‘models/v8/‘ folder were modified to support 4-channel input by
adjusting the ‘channels‘ attribute. This change ensures that the model architecture
itself can process images with an additional channel, such as those in multispectral
imaging. YOLOv8 was originally designed to handle 3-channel (RGB) images, so
updating the channels attribute was a necessary first step. To handle 4-channel data
efficiently, modifications were made to the image loading pipeline in files such as
‘converter.py‘, ‘loaders.py‘, ‘utils.py‘, ‘split_dota.py‘, and ‘dataset.py‘. Specifically,
OpenCV’s ‘IMREAD_UNCHANGED‘ function was used to load images with
all channels intact. This method allows for the seamless reading of images that
contain an additional channel beyond the standard RGB setup. These changes
were crucial in ensuring that the data preprocessing pipeline is aware of the extra
channel and processes it correctly throughout the data loading phase. The next
set of changes involved updating the data augmentation pipeline to accommodate
4-channel images. Files such as ‘augment.py‘ and ‘base.py‘ were modified to en-
sure that any transformations applied to the images during data augmentation
were also correctly handling the 4-channel input. This was necessary because
standard augmentation techniques (like flipping, rotating, or color jittering) need
to be adjusted to work with images that contain an additional channel. The
data augmentation transformations were rewritten to preserve the integrity of the
extra channel during these processes. In the engine section, including files like
‘validator.py‘, ‘auto_backend.py‘, and ‘tasks.py‘, necessary changes were made to
manage the model’s 4-channel input during training, particularly in the model’s
warm-up phase and batch processing. Specifically, the batch normalization layers
and other internal processes were updated to accept 4-channel input shapes, mean-
ing the model can now handle input dimensions such as ‘(batch_size, 4, height,
width)‘. This step ensured that the neural network components would correctly
handle the increased dimensionality during both forward and backward passes.
The model’s initialization process, including its warm-up phase, was explicitly
configured to manage the extra channel, preventing potential input shape mismatch
errors during training. Another important aspect involved modifying the mosaic
data augmentation functionality in the ‘utils/plotting.py‘ file. YOLOv8’s mosaic
augmentation, which combines multiple images into a single composite image for
training, was updated to properly integrate the additional channel. This ensures
that during training, the model is not only combining the RGB channels of images
but also preserving and utilizing the extra multispectral channel. Proper handling
of this step was crucial for data augmentation techniques, allowing the model to

46

Methodology

effectively learn from multispectral data while benefiting from the regularization
that mosaic augmentation provides. The dataset YAML configuration file was
updated to reflect the new 4-channel input structure. This change ensured that
the model reads the correct input format during both training and evaluation.
The YAML file defines how the model should interpret and preprocess the data,
and updating this file for 4-channel input ensured that the data pipeline, from
loading to training, was consistent with the new input format. For multispectral
image types like RGN, RGE, and RGREN, the backbone layers of the YOLOv8
model were frozen during training. This strategy was implemented to allow the
model to focus on learning the parameters specific to the new data type without
altering the learned features in the backbone network. By freezing these layers, the
model could focus on fine-tuning the head of the network for feature detection in
multispectral images, improving performance for specific tasks like water stress
detection in crops.

As part of the modification process for fine-tuning the Faster R-CNN model
for a custom multi-object, multi-class detection task, key adjustments were made
to specific layers within the model. Using PyTorch’s implementation of Faster
R-CNN, pre-trained on the COCO dataset, the model was adapted to detect
multiple classes, specifically focusing on healthy and stressed plants across sev-
eral spectral combinations: RGN and RGE. Modifications to Faster R-CNN are
including: Box Predictor (Classifier) Modification: The original box predictor,
responsible for classifying detected objects, was designed for the COCO dataset,
which includes 80 classes. This predictor was replaced with a new classifier tai-
lored to the custom dataset. The pre-trained model was loaded using ‘torchvi-
sion.models.detection.fasterrcnn_resnet50_fpn‘(pretrained=True), based on the
ResNet50 backbone with a Feature Pyramid Network (FPN). First, the number of
input features for the existing classifier was extracted, and then the ‘box_predictor‘
layer was replaced with a new ‘FastRCNNPredictor‘, which uses the extracted
input features but outputs predictions for the new dataset. The number of classes
was set to 3, representing 2 foreground classes (healthy and stressed plants) and 1
background class. Handling the Custom Dataset: Since the model was designed
for multi-object, multi-class detection, a custom dataset was required. One of the
primary challenges faced was handling the diverse object classes and bounding box
annotations within the custom dataset. In PyTorch, the dataset was structured
to return both the image and corresponding annotations in a format suitable for
Faster R-CNN, which included bounding box coordinates and labels for each object
in the image. This made dataset preparation a crucial and complex step in the
pipeline.

A key limitation encountered was the high computational time required to
fine-tune this model. The complexity of the model, combined with the need to
process multi-channel images, significantly increased the time required for training.

47

Methodology

Due to limited computational resources, it was not feasible to scale up experiments
as extensively as initially planned, which restricted further optimization and testing
with larger datasets. This process demonstrates the trade-off between model
accuracy and computational efficiency, emphasizing the importance of balancing
model complexity with available resources.

3.4.5 Further Experiment with Pretrained Model
To further explore the capabilities of deep learning in detecting water stress, the
YOLOv8s Leaf Detection and Classification model was employed as part of the
experimentation. This model, originally designed for the classification of various
leaf types, offers robust real-time object detection and classification features. By
utilizing this pretrained model, the aim is to evaluate its performance in identifying
stress levels in potato crops under water-limited conditions.

The YOLOv8s Leaf Detection and Classification model is constructed on the
YOLOv8 architecture, known for its efficiency and accuracy in object detection
tasks. Pretrained on a dataset with a wide variety of leaf classes, this model
is capable of detecting and classifying multiple leaf instances within an image,
assigning them to specific categories based on visual features. The model is trained
to recognize a variety of plant types, including food crops, fruit-bearing plants,
vegetables, and other significant species. Notably, it is well-suited to identify leaves
from plants such as potato, corn, wheat, soybean, and tomato, all of which are
relevant to agricultural studies. The YOLOv8s Leaf Detection and Classification
model leverages the following features:

Real-Time Detection: Built on the YOLOv8 architecture, this model is optimized
for real-time detection tasks, making it highly suitable for in-field agricultural
monitoring where rapid response times are critical.

Multi-Class Classification: With 46 plant classes, the model provides an extensive
coverage of crop types, which allows for a diverse range of applications beyond
simple leaf detection. Each detected leaf is assigned to one of the classes, which
could facilitate tasks like mixed cropping or monitoring crop health across different
plant species.

Potential for Water Stress Detection: Although originally trained for general leaf
classification, the model’s adaptability enables it to be applied to more specialized
tasks, such as detecting water stress. In this context, the model can be used to
analyze visual signs of stress on potato leaves, such as discoloration, wilting, and
texture changes, that are indicative of water deficiency.

48

Chapter 4

Results and Discussions

4.1 Evaluation Metrics
Evaluation metrics play a crucial role in measuring the effectiveness of machine
learning models, particularly in fields like object detection and image segmentation.
The selection of the appropriate metric allows for a better understanding of how well
the model performs, identifying areas where it excels and areas for improvement.
This section focuses on key evaluation metrics such as Precision, Recall, mAP,
and IoU.

Precision Precision refers to the ratio of correct positive predictions to the total
positive predictions generated by the model. It reflects how accurate the model’s
positive predictions are. In object detection, precision is crucial for reducing false
positives, which occur when the model incorrectly identifies an object.

The formula for precision is given in Equation 4.1:

Precision = TP

TP + FP
(4.1)

Where:

• TP (True Positives): Correctly predicted positive instances (e.g., correctly
identifying water-stressed crops).

• FP (False Positives): Instances where the model incorrectly predicted a
positive outcome (e.g., misclassifying healthy crops as stressed).

In agriculture, particularly in detecting water-stressed crops, high precision
ensures that the majority of plants identified as stressed actually require intervention,
thereby avoiding false detections of healthy crops as stressed. This is critical, as
incorrect identification could lead to unnecessary actions like over-irrigation, which

49

Results and Discussions

not only wastes water but can also damage crops or increase operational costs.
False positives in this context—where healthy plants are identified as stressed—can
result in overwatering, leading to resource inefficiency and, potentially, crop damage.
In water-scarce regions, the need for water conservation is paramount. A model
with high precision ensures that water is used efficiently by preventing false alarms
and unnecessary irrigation. This improves the overall sustainability of farming
practices by optimizing water usage while maintaining crop health. Achieving high
precision in water stress detection presents several challenges due to the difficulty in
visually differentiating between healthy and mildly stressed plants. Environmental
variables, including fluctuating lighting, shadows, and overlapping plant canopies,
add further complexity to this differentiation. As a result, sophisticated models
and high-quality data are required to accurately detect and classify plant stress.
The precision of a model is strongly influenced by the quality of the training data
and the accuracy of the annotations. High-quality, well-annotated datasets are
essential for the model to effectively learn the differences between healthy and
stressed crops. Properly labeled data ensures the model is trained on accurate
examples, which directly impacts its performance in real-world scenarios. This
is particularly important for detecting varying levels of stress and applying the
correct interventions.

Recall Recall, sometimes referred to as Sensitivity or the True Positive Rate,
indicates the ratio of accurately predicted positive cases to the total number of
actual positive cases. In the context of water stress detection, recall indicates the
model’s ability to identify all water-stressed crops. The formula for recall is shown
in Equation 4.2:

Recall = TP

TP + FN
(4.2)

Where:
• TP (True Positives): The number of correctly detected stressed crops.

• FN (False Negatives): The number of stressed crops that were not detected
by the model.

In water stress detection, high recall is crucial as it ensures that most, if not
all, stressed crops are identified. Missing water-stressed plants can lead to under-
irrigation, causing harm to crop health and reducing yield. Furthermore, high
recall ensures that all areas needing irrigation are identified, allowing for precise
water management. Especially in large-scale farming, missed detections (false
negatives) can significantly impact crop productivity. Thus, high recall ensures
effective irrigation and timely interventions, which are critical for maintaining crop
health.

50

Results and Discussions

Mean Average Precision (mAP) is a commonly used metric for assessing the
performance of object detection models. In the context of water stress detection,
it offers an overall assessment of the model’s capability to maintain a balance
between precision and recall across various Intersection over Union (IoU) thresholds.
Calculating mAP involves computing the Average Precision (AP) for each class by
calculating the area under the precision-recall curve, which plots precision against
recall at varying confidence thresholds. Once the AP for each class is computed,
the mAP is derived by averaging the AP values across all classes. This results in a
single scalar value summarizing the overall performance of the model.

Different variations of mAP are used, depending on the IoU thresholds:

• mAP@0.5 (mAP50): This metric calculates the average precision at an IoU
threshold of 0.5, indicating the extent to which the predicted bounding boxes
align with the ground truth boxes by a minimum of 50%..

• mAP@0.5:0.95 (mAP50-95): This metric evaluates average precision across
multiple IoU thresholds, from 0.5 to 0.95 in 0.05 increments. It provides a
more thorough evaluation of the model’s performance across different levels of
IoU.

In water stress detection, mAP helps evaluate the model’s capability to accurately
localize and classify stressed plants across varying IoU thresholds, ensuring that
regions requiring attention are correctly identified and irrigated.

Confusion Matrix The Confusion Matrix is a valuable tool for breaking
down the model’s performance by presenting the counts of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). It provides
a detailed visualization of the model’s performance and is particularly useful for
balancing precision and recall in water stress detection. The confusion matrix is
structured as follows in Table 4.1:

Predicted Stressed Predicted Healthy
Actual Stressed TP FN
Actual Healthy FP TN

Table 4.1: Confusion Matrix for Water Stress Detection

Where:

• TP (True Positives): The number of correctly predicted water-stressed crops.

• TN (True Negatives): The number of healthy crops correctly identified as not
stressed.

• FP (False Positives): The number of healthy crops incorrectly classified as
stressed.

51

Results and Discussions

• FN (False Negatives): The number of stressed crops that the model failed to
detect.

In water stress detection, analyzing the confusion matrix is essential to strike a
balance between minimizing false negatives (missed stressed crops) and false posi-
tives (incorrectly flagged healthy crops). Understanding the model’s performance
across these metrics is key to optimizing irrigation systems and ensuring the health
and productivity of crops.

4.2 Experimental Results
4.2.1 Results for Initial Approach
Although segmentation and vegetation indices were initially explored as potential
approaches for detecting water-stressed regions in plants, the experimentation with
these methods did not reach full completion. The segmentation approach combined
color-based and threshold-based techniques to separate stressed plants from healthy
ones, followed by calculating the NDVI index to assess plant health.

The segmentation results provide qualitative insights into the potential of these
methods. However, quantitative metrics such as precision, recall, and Intersection
over Union (IoU) were not calculated for this approach. Preliminary visual results
are shown in Appendix A, where the segmented regions of the plants are highlighted
along with NDVI calculations.

Despite not having quantitative evaluation, these preliminary results suggest
that integrating NDVI with segmentation could be a viable approach for assessing
water stress in crops. Further refinement and comprehensive evaluation would be
required to fully validate the performance of this method.

4.2.2 YOLO Results
To maintain a clear and organized presentation of the results, only the most
significant findings are highlighted in visual form, while the remaining configurations
are summarized in tables. This approach prevents the results section from becoming
overwhelmed with repetitive data, allowing a focus on key outcomes.

Hyperparameter Tuning for YOLOv8n

Various combinations of learning rates, batch sizes, and image sizes were tested
on the YOLOv8n model across multiple image types, including RGB, RGN, RGE,
and RGREN and RGBN. Specifically, the following configurations were explored:

52

Results and Discussions

Learning Rate Batch Size Image Size Image Type

0.1 16 640 All

0.01 16 640 All

0.001 16 640 All

0.01 32 640 All

0.01 16 416 All except RGB images.

Table 4.2: YOLOv8n hyperparameter configurations tested on different image
types (RGB, RGN, RGE, RGREN, and RGBN).

These configurations were designed to assess the impact of each parameter on
model performance. The best configurations, determined by the highest mAP,
precision, and recall, are presented with full visual data, including training loss
curves, confusion matrices, and detailed metric tables. The remaining configurations
are compiled into a summary table for comparative analysis. IoU is 0.7 for all the
experiments.

Hyperparameter Tuning for YOLOv8s

The best-performing configuration from YOLOv8n was then applied to the YOLOv8s
model to evaluate its accuracy and potential for overfitting. Results Presentation
For the configurations demonstrating, full visual results (training plots, confusion
matrices, and performance metrics) are provided. Other configurations are summa-
rized in a table, displaying precision, recall, and mAP values across the different
learning rates, batch sizes, and image sizes.

RGB Images

The table 4.3 shows the performance of the YOLOv8n model on the Augmented
RGB images in potato dataset. It includes metrics for overall performance, as well
as specific results for detecting healthy and stressed. Additionally, the table lists
the model’s training parameters, including the number of epochs, batch size, and
image size used during training. It is observed that epochs more than 100 will
cause the model to overfit on the test datasest.

53

Results and Discussions

Performance Metrics for YOLOv8n Configurations
Learning
Rate

Batch
Size

Image
Size

Precision Recall mAP50 mAP50-
95

0.1 16 640 0.8233 0.7037 0.8071 0.6614

0.01
16 640 0.8150 0.7806 0.8434 0.6945
16 416 0.8325 0.7302 0.8530 0.6397
32 640 0.8125 0.7791 0.8701 0.6351

0.001 16 640 0.8175 0.7693 0.8684 0.6441
Table 4.3: YOLOv8n performance on RGB Images with Different hyper parametrs
settings.

Figure 4.1: Training and Validation Loss and Metrics Plots

The training plots 4.1 represent the performance metrics and losses obtained
during the training and validation phases of a YOLOv8 object detection model.
These metrics help in tracking how well the model learns over the course of training
epochs and how effectively it generalizes to unseen validation data. The plots show
trends across 100 epochs, highlighting both the loss reduction and the improvement
in detection metrics as the model refines its understanding of the input data.

• Train Box Loss: This plot shows how the bounding box regression loss decreases
over time during the training phase. A downward trend in this loss suggests
that the model is becoming better at precisely predicting object locations
within the images. As the epochs increase, the box loss continues to decrease,
signifying better localization of objects.

54

Results and Discussions

• Train Classification Loss: This plot visualizes the classification loss during
training. This loss measures how well the model classifies objects into the
correct categories (e.g., healthy, stressed). A continuous decrease indicates the
model is becoming better at distinguishing between different object classes as
training progresses.

• Train DFL Loss: The DFL loss (Distribution Focal Loss) is specific to YOLOv8
and is used to improve the model’s confidence in its bounding box predictions.
This loss also shows a decreasing trend, which means the model is learning to
make more confident predictions about the exact positions of object boundaries.

• Train Precision (B): This plot tracks the precision during training. Precision
represents the percentage of identified positives (detections) that were indeed
accurate. As precision increases over epochs, the model becomes more selective
and accurate, minimizing false positives.

• Train Recall (B): This plot displays the recall during training. Recall measures
how many of the actual positive cases (i.e., true objects in the image) the model
correctly identified. As recall increases, the model gets better at detecting
more objects without missing them.

• Validation Box Loss: Similar to train box loss, this plot shows the bounding
box regression loss during the validation phase. The fact that it decreases
steadily indicates that the model generalizes well to unseen data in terms of
object localization.

• Validation Classification Loss: This plot tracks the classification loss during the
validation phase. A smooth decrease indicates that the model is improving its
ability to classify objects on the validation set, suggesting better generalization
to new data.

• Validation DFL Loss: Similar to the training DFL loss, this plot represents the
confidence in bounding box predictions during validation. A decreasing DFL
loss indicates better confidence in localization predictions, even on validation
data.

• Validation mAP50: This plot shows the mean Average Precision (mAP) at 50%
Intersection over Union (IoU) for the validation set. mAP50 is a crucial metric
for object detection, measuring how well the model’s predicted bounding boxes
match the ground truth. The steady increase indicates improved performance
in detecting and localizing objects correctly.

• Validation mAP50-95: This plot tracks the mean Average Precision across a
range of IoU thresholds (from 50% to 95%). A higher mAP50-95 means the

55

Results and Discussions

model is capable of making precise bounding box predictions, even at stricter
IoU thresholds. The increasing trend suggests that the model is improving its
general detection performance.

Figure 4.2: Confusion Matrix for RGB images running 100 epochs using yolov8n

The above confusion matrix illustrates the performance of the model in predicting
healthy, stressed, and background classes. It shows the true positive, false positive,
and false negative rates for each class, providing insight into the model’s accuracy
and misclassification rates. For more insight, Table 4.4 explains the meaning of
this confusion matrix.
Table 4.4: Confusion Matrix Interpretation for Healthy, Stressed, and Background
Classes

Class True Positives (TP) False Positives (FP) False Negatives (FN)
healthy 87% 38% 13%
stressed 85% 66% 36%

56

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 2147 0.941 0.875 0.931 0.727
Healthy 121 858 0.943 0.892 0.940 0.737
Stressed 121 1289 0.939 0.858 0.922 0.711

Epochs 100
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.5: YOLOv8s performance (100 epochs) on RGB Images.

Figure 4.3: Training and Validation Loss and Metrics Plots

57

Results and Discussions

Figure 4.4: Confusion Matrix for RGB images running 100 epochs using yolov8s

RGN Images

Performance Metrics for YOLOv8n Configurations
Learning
Rate

Batch
Size

Image
Size

Precision Recall mAP50 mAP50-
95

0.1 16 640 0.68491 0.57082 0.60114 0.46029

0.01
16 640 0.68385 0.60047 0.68481 0.47548
16 416 0.68207 0.56848 0.63511 0.30841
32 640 0.78610 0.69012 0.76303 0.52621

0.001 16 640 0.78274 0.66736 0.73401 0.57437
Table 4.6: YOLOv8n performance (100 epochs) on RGN Images with Different
hyper parametrs settings.

58

Results and Discussions

Figure 4.5: Training and Validation Loss and Metrics Plots

Figure 4.6: Confusion Matrix for RGN images running 100 epochs using yolov8n

59

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 1699 0.833 0.789 0.865 0.565
Healthy 121 664 0.831 0.777 0.862 0.562
Stressed 121 1035 0.834 0.802 0.869 0.569

Epochs 80
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.7: YOLOv8s performance (80 epochs) on RGN Images.

Figure 4.7: Training and Validation Loss and Metrics Plots

60

Results and Discussions

Figure 4.8: Confusion Matrix for RGN images running 80 epochs using yolov8s

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 1699 0.906 0.875 0.931 0.670
Healthy 121 664 0.908 0.87 0.934 0.668
Stressed 121 1035 0.902 0.9 0.924 0.663

Epochs 100
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.8: YOLOv8s performance (100 epochs) on RGN Images.

61

Results and Discussions

Figure 4.9: Training and Validation Loss and Metrics Plots

Figure 4.10: Confusion Matrix for RGN images running 100 epochs using yolov8s

62

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 1699 0.971 0.959 0.986 0.841
Healthy 121 664 0.972 0.959 0.987 0.847
Stressed 121 1035 0.969 0.958 0.986 0.834

Epochs 100
Batch Size 32
Image Size 640
Model Size Pretrained

Hugging
Face

Learning Rate 0.01
Table 4.9: Pretrained Hugging Face performance (100 epochs) on RGN Images.

Figure 4.11: Training and Validation Loss and Metrics Plots

63

Results and Discussions

Figure 4.12: Confusion Matrix for RGN images running 100 epochs using Pre-
trained mode Hugging Face

RGE Images

Performance Metrics for YOLOv8n Configurations
Learning
Rate

Batch
Size

Image
Size

Precision Recall mAP50 mAP50-
95

0.1 16 640 0.6134 0.5712 0.6034 0.2862

0.01
16 640 0.60742 0.4652 0.55304 0.27973
16 416 0.62048 0.44619 0.49667 0.24579
32 640 0.63197 0.52995 0.55874 0.31337

0.001 16 640 0.60429 0.46475 0.50129 0.28564
Table 4.10: YOLOv8n performance (100 epochs) on RGE Images with Different
hyper parametrs settings.

64

Results and Discussions

Figure 4.13: Training and Validation Loss and Metrics Plots

Figure 4.14: Confusion Matrix for RGE images running 100 epochs using yolov8n

65

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 1699 0.865 0.806 0.829 0.649
Healthy 121 664 0.858 0.806 0.824 0.645
Stressed 121 1035 0.870 0.818 0.826 0.652

Epochs 80
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.11: YOLOv8s performance (80 epochs) on RGE Images.

Figure 4.15: Training and Validation Loss and Metrics Plots

66

Results and Discussions

Figure 4.16: Confusion Matrix for RGE images running 80 epochs using yolov8s

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 1699 0.914 0.902 0.952 0.707
Healthy 121 664 0.913 0.900 0.952 0.705
Stressed 121 1035 0.911 0.901 0.950 0.698

Epochs 100
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.12: YOLOv8s performance (100 epochs) on RGE Images.

67

Results and Discussions

Figure 4.17: Training and Validation Loss and Metrics Plots

Figure 4.18: Confusion Matrix for RGE images running 100 epochs using yolov8s

68

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 1699 0.959 0.963 0.990 0.884
Healthy 121 664 0.959 0.964 0.990 0.884
Stressed 121 1035 0.959 0.961 0.990 0.884

Epochs 100
Batch Size 32
Image Size 640

Model Pretrained
Hugging
Face

Learning Rate 0.01
Table 4.13: Pretrained Hugging Face performance (100 epochs) on RGE Images.

Figure 4.19: Training and Validation Loss and Metrics Plots

69

Results and Discussions

Figure 4.20: Confusion Matrix for RGE images running 100 epochs using Pre-
trained Hugging Face

RGREN Images

Performance Metrics for YOLOv8n Configurations
Learning
Rate

Batch
Size

Image
Size

Precision Recall mAP50 mAP50-
95

0.1 16 640 0.65688 0.55173 0.6034 0.34751

0.01
16 640 0.65191 0.53955 0.58495 0.33581
16 416 0.67254 0.49702 0.55304 0.27973
32 640 0.70934 0.60082 0.65754 0.39387

0.001 16 640 0.65688 0.55173 0.6034 0.34751
Table 4.14: YOLOv8n performance (100 epochs) on RGREN Images with Different
hyper parametrs settings.

70

Results and Discussions

Figure 4.21: Training and Validation Loss and Metrics Plots

Figure 4.22: Confusion Matrix for RGREN images running 100 epochs using
yolov8n

71

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 4006 0.823 0.744 0.782 0.505
Healthy 121 1679 0.813 0.695 0.781 0.512
Stressed 121 2327 0.834 0.696 0.783 0.498

Epochs 150
Batch Size 16
Image Size 640
Model Size yolov8n

Learning Rate 0.01
Table 4.15: YOLOv8n performance (150 epochs) on RGREN Images.

Figure 4.23: Training and Validation Loss and Metrics Plots

72

Results and Discussions

Figure 4.24: Confusion Matrix for RGREN images with 150 epochs

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 4006 0.762 0.688 0.758 0.515
Healthy 121 1679 0.778 0.693 0.771 0.529
Stressed 121 2327 0.745 0.683 0.744 0.502

Epochs 80
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.16: YOLOv8s performance (80 epochs) on RGREN Images.

73

Results and Discussions

Figure 4.25: Training and Validation Loss and Metrics Plots

Figure 4.26: Confusion Matrix for RGREN images running 80 epochs using
yolov8s

74

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 4006 0.856 0.694 0.807 0.507
Healthy 121 1679 0.854 0.693 0.818 0.514
Stressed 121 2327 0.847 0.694 0.808 0.501

Epochs 100
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.17: YOLOv8s performance (100 epochs) on RGREN Images.

Figure 4.27: Training and Validation Loss and Metrics Plots

75

Results and Discussions

Figure 4.28: Confusion Matrix for RGREN images running 100 epochs using
yolov8s

RGBN Images

Performance Metrics for YOLOv8n Configurations
Learning
Rate

Batch
Size

Image
Size

Precision Recall mAP50 mAP50-
95

0.1 16 640 0.64797 0.55186 0.61021 0.36842

0.01
16 640 0.6922 0.6 0.6563 0.3724
16 416 0.6541 0.4925 0.5441 0.2612
32 640 0.71254 0.60112 0.64854 0.41324

0.001 16 640 0.65718 0.55281 0.60431 0.34812
Table 4.18: YOLOv8n performance (100 epochs) on RGBN Images with Different
hyper parametrs settings.

76

Results and Discussions

Figure 4.29: Training and Validation Loss and Metrics Plots

Figure 4.30: Confusion Matrix for RGBN images running 100 epochs using
yolov8n

77

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 2067 0.82 0.744 0.82 0.533
Healthy 121 858 0.836 0.758 0.839 0.556
Stressed 121 1209 0.804 0.73 0.801 0.509

Epochs 150
Batch Size 16
Image Size 640
Model Size yolov8n

Learning Rate 0.01
Table 4.19: YOLOv8n performance (150 epochs) on RGBN Images.

Figure 4.31: Training and Validation Loss and Metrics Plots

78

Results and Discussions

Figure 4.32: Confusion Matrix for RGBN images with 150 epochs

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 2025 0.894 0.86 0.925 0.65
Healthy 121 816 0.888 0.867 0.924 0.645
Stressed 121 1209 0.90 0.91 0.926 0.652

Epochs 80
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.20: YOLOv8s performance (80 epochs) on RGBN Images.

79

Results and Discussions

Figure 4.33: Training and Validation Loss and Metrics Plots

Figure 4.34: Confusion Matrix for RGBN images running 80 epochs using yolov8s

80

Results and Discussions

Class Images Instances Precision
(P)

Recall
(R)

mAP50 mAP50-
95

All 121 2025 0.921 0.911 0.96 0.724
Healthy 121 816 0.923 0.905 0.958 0.721
Stressed 121 1209 0.915 0.91 0.953 0.728

Epochs 100
Batch Size 32
Image Size 640
Model Size yolov8s

Learning Rate 0.01
Table 4.21: YOLOv8s performance (100 epochs) on RGBN Images.

Figure 4.35: Training and Validation Loss and Metrics Plots

81

Results and Discussions

Figure 4.36: Confusion Matrix for RGBN images running 100 epochs using
yolov8s

4.2.3 Faster R-CNN
Faster R-CNN was applied to both RGN and RGE multispectral image combinations
to evaluate its performance in detecting stressed regions within the dataset. Two
training configurations were tested: one with 50 epochs and another with 100
epochs. The primary objective was to determine the number of epochs required for
the model to achieve stable results without overfitting.

82

Results and Discussions

RGN

Class Images Precision (P) Recall (R)
All 121 0.8226 0.9018

Healthy 121 0.8231 0.9203
Stressed 121 0.8215 0.9015

Epochs 100
IoU 0.5

Batch Size 16
Image Size 640
Model Size Faster R-CNN

Learning Rate 0.01
Table 4.22: Faster R-CNN performance (100 epochs) on RGN Images.

Figure 4.37: Training Plot

Training Loss and Model Behavior Analysis
Initial Rapid Learning Phase:
The steep decrease in training loss during the first 20 epochs suggests that the
model is quickly learning the fundamental features of the data. After this initial

83

Results and Discussions

phase, the loss curve begins to flatten, indicating that the model is achieving a
baseline level of performance.

Interpretation of Loss Stability:
The loss chart suggests that the model could have ceased improving around 50
epochs, where the training loss became relatively stable. However, since the
validation/test performance continues to improve up to 100 epochs, this indicates
that while the model’s training loss may be plateauing, its ability to generalize
is still being refined. A stable training loss plateau without further improvement
would generally suggest the end of learning on the training set, but the observed
enhancement in test/validation results suggests ongoing improvement in feature
extraction on unseen data with further training.

Adjusting Learning Rate Based on Observations:
Based on these observations, the model was tested with 50 epochs using a lower
learning rate of 0.001. The goal was to see if a lower learning rate could yield
similar or improved generalization results within a shorter training period. This
approach aimed to refine the model’s learning trajectory by leveraging the benefits
of an extended training session with a higher learning rate, and then focusing on
convergence with a more conservative learning rate.

Class Images Precision (P) Recall (R)
All 121 0.7599 0.8101

Healthy 121 0.7593 0.8127
Stressed 121 0.7584 0.8098

Epochs 50
IoU 0.5

Batch Size 16
Image Size 640
Model Size Faster R-CNN

Learning Rate 0.001

Table 4.23: Faster R-CNN performance (50 epochs) on RGN Images.

84

Results and Discussions

Figure 4.38: Training Plot

The loss chart for the model trained with 50 epochs shows a relatively stable and
smooth curve, suggesting that the model has reached a point where it is consistently
learning without fluctuations in training loss. In contrast, the model trained with
100 epochs exhibits some spikes in the later epochs, which could suggest moments
of more aggressive learning, likely influenced by the higher learning rate (0.01
compared to 0.001 for 50 epochs).

While the 50-epoch model demonstrates stability, the 100-epoch model achieves
better overall results, as indicated by improved test performance. This is likely
because the additional training epochs allowed the model to continue refining
its generalization capabilities, extracting features from the data more effectively
despite occasional spikes in the training loss. Therefore, while the smoothness of the
50-epoch curve suggests consistent learning, the enhanced results with 100 epochs
suggest that the model benefits from extended training and a higher learning rate
to explore a broader feature space, ultimately improving its performance on unseen
data.

The extended training duration with 100 epochs allows the model to refine its
feature extraction process beyond what was achieved with the 50-epoch training
session. Although a smooth curve, as seen with the 50-epoch training, generally
indicates stable learning, the improved results observed with 100 epochs suggest that
the model continues to benefit from additional epochs for further generalization.
The decision to use a lower learning rate of 0.001 for 50 epochs was based on
these observations, with the intent to explore if similar generalization could be
achieved more quickly with a conservative learning approach. This strategy aligns

85

Results and Discussions

with the objective of balancing training efficiency and performance, maximizing
generalization while minimizing overfitting.

RGE

Class Images Precision (P) Recall (R)
All 121 0.9005 0.9547

Healthy 121 0.9132 0.9546
Stressed 121 0.891 0.9565

Epochs 50
IoU 0.5

Batch Size 16
Image Size 640
Model Size Faster R-CNN

Learning Rate 0.001

Table 4.24: Faster R-CNN performance (50 epochs) on RGN Images.

Figure 4.39: Training Plot

86

Results and Discussions

4.3 Discussion
In examining the impact of different hyperparameters on the performance of the
YOLOv8n model, it was observed that adjustments to image size, batch size,
and learning rate had significant effects on metrics such as precision, recall, and
mean Average Precision (mAP). Table 4.25 explains the difference between these
adjustments.

Hyperparameter Performance Insight
Image Size: 416
vs. 640

Larger image size (640) gen-
erally leads to improved pre-
cision and recall metrics due
to the higher resolution, cap-
turing more detailed features
of the plants.

Increasing the image size en-
hances the model’s ability to
detect smaller or more detailed
features, making it beneficial
for datasets where fine-grained
details contribute to classifica-
tion.

Batch Size: 16 vs.
32

Batch size 32 shows slight
improvements in recall and
mAP metrics compared to
batch size 16, indicating sta-
bility and minimal degrada-
tion with larger batches.

Suggests that YOLOv8n can
handle larger batch sizes effec-
tively, possibly reducing train-
ing time without significant
loss in performance, making
it suitable for applications
with higher computational re-
sources.

Learning Rate:
0.01, 0.1, 0.001

Learning rate 0.01 provides a
balanced performance, while
0.1 may cause instability, and
0.001 could lead to slower
convergence.

Optimal learning rates are es-
sential for stable training. A
learning rate of 0.01 achieves
a good balance between con-
vergence speed and stability,
while higher values risk over-
shooting minima and lower val-
ues can result in prolonged
training.

Table 4.25: YOLOv8n Hyperparameter Performance Insights

4.3.1 Comparative Analysis of Model Performance on RGE,
RGN and RGB Images

Based on the results obtained from the experiments with YOLOv8n and YOLOv8s
on both RGB and RGN datasets, the following observations were made:

It was observed that the YOLOv8n model on RGB images achieved a slightly
higher mAP (50-95) across classes compared to RGN images, indicating better
overall performance in fine-grained detection tasks. However, in terms of precision,

87

Results and Discussions

RGN images showed competitive values across classes, suggesting that the model
effectively utilized the additional spectral band (NIR) in RGN. This highlights that
YOLOv8n, even as a less complex model, was able to capture essential features
from the multispectral data, with some metrics, such as recall, being slightly lower.

For yolov8s, models trained with RGB data, overall precision tends to be slightly
higher across all classes compared to RGN. However, when adding the red-edge
band (RGE), there is an improvement in precision for specific configurations,
particularly evident in the mAP50 metric for RGE, where precision improves across
both YOLOv8n and YOLOv8s models.

RGB generally shows better recall across classes, which suggests a broader
capability in capturing the full range of instances without missing detections. This
is consistent across models like YOLOv8n and YOLOv8s. The RGN configuration
slightly improves recall in detecting stressed classes, implying it might be more
sensitive to features indicative of plant stress, likely due to the inclusion of the
near-infrared band which is sensitive to vegetation health.

While RGB tends to maintain higher mAP50-95 scores, indicating better per-
formance across various IoU thresholds, RGE configurations show a substantial
increase in mAP50 compared to RGB, particularly in fine-grained detection tasks
where boundary precision is essential. For RGN, we observe improvements in
mAP50, which enhances the model’s capability in more localized detections. How-
ever, RGB generally retains a better mAP50-95 score, suggesting it captures a
broader range of features effectively.

With pretrained Hugging Face models, we see improved precision and recall on
both RGN and RGE configurations. This suggests that using transfer learning
allows the model to leverage already-learned features, enhancing its ability to
generalize and capture fine details specific to plant leaf classification tasks. The
pretrained models on RGE consistently outperform in both mAP50 and mAP50-95,
providing more robust detection capabilities with enhanced precision and recall,
especially in distinguishing between healthy and stressed plants.

Faster R-CNN models show a noticeable improvement when trained on multi-
spectral data (RGE and RGN) over RGB. This model appears to benefit from the
additional spectral bands, showing higher precision and recall values in stressed
crop detection, which suggests a better adaptation to complex scenes and fine-
tuning of boundary-level distinctions. Both RGE and RGN achieve comparable
performance to RGB on Faster R-CNN but tend to outperform on specialized
metrics, particularly in precision and recall for the stressed class, indicating an
enhanced capability in detecting subtle stress indicators in plants.

In conclusion, RGB generally performs well across broader metrics, but RGE
and RGN configurations reveal specific advantages for plant stress detection. The
addition of red-edge and near-infrared bands in RGE and RGN allows the models
to capture vegetation health indicators more effectively, as evidenced by the

88

Results and Discussions

higher mAP50 in RGE configurations and improved recall in stressed classes for
RGN. Pretrained models on RGE datasets consistently demonstrate the highest
performance, suggesting that transfer learning combined with multispectral data
enhances detection accuracy. Faster R-CNN further supports the notion that more
complex architectures benefit from multispectral data, achieving high precision and
recall in plant-specific applications.

4.3.2 Comparative Analysis of Model Performance on RGREN,
RGBN and RGB Images

For All classes, RGBN shows improved precision over RGB. RGB achieves a
precision of around 0.8233, whereas RGBN configuration reaches approximately
0.836. This increase suggests that the addition of the NDVI channel helps the model
better differentiate between object classes overall. Healthy class benefits notably
with the RGBN setup, reaching precision values close to 0.923 in YOLOv8m,
surpassing RGB’s performance of around 0.895. This improvement implies that the
extra spectral information aids in the classification accuracy of healthy instances. In
the Stressed class, RGREN maintains a competitive precision, although it’s slightly
below RGBN in YOLOv8m. However, it still indicates a robust performance,
which highlights the utility of red-edge and NDVI data in detecting stressed plants
effectively.

The recall for All classes is slightly higher for the RGB configuration compared to
RGREN, but both RGBN and RGREN configurations surpass RGB for individual
class recall rates in certain conditions. In Healthy and Stressed classes, RGBN
shows improved recall in YOLOv8m compared to RGB and YOLOv8n. This
suggests that the additional channels, particularly NDVI, assist in more effectively
capturing stressed vegetation patterns.

For All classes, both RGBN and RGREN improve upon RGB in mAP50. Specif-
ically, RGBN reaches an mAP50 of around 0.839 in YOLOv8n, whereas RGB lags
behind with a maximum mAP50 of 0.8071 for YOLOv8n configurations. This
increase implies that the model benefits in localization and recognition with the
added spectral information. Healthy and Stressed classes show notable improve-
ments in mAP50 with the RGREN configuration, where mAP50 can reach around
0.953 in YOLOv8m, compared to RGB’s 0.931 in YOLOv8s for stressed classes.
This enhanced performance demonstrates the added value of the red-edge channel
in detecting more subtle features in plant health status.

For All classes, RGBN performs slightly better than RGB in mAP50-95, indicat-
ing improved detection across various IoU thresholds. RGB achieves a maximum of
approximately 0.6614, while RGBN can achieve up to 0.728 with YOLOv8m. This
metric improvement reflects that RGBN generalizes better across different object
sizes and positions. In the Healthy and Stressed classes, RGBN configurations

89

Results and Discussions

maintain a competitive mAP50-95, again underscoring the potential advantage of
multispectral data for specific vegetation detection tasks.

The results indicate that using additional spectral bands (NDVI and red-edge
in RGBN and RGREN configurations) consistently enhances the model’s ability to
detect and classify instances with higher precision and mAP metrics compared to
RGB alone. The improvements in the Healthy and Stressed classes suggest that
spectral data provides significant benefits for distinguishing stressed crops. This
evidence supports the integration of multispectral data for more complex object
detection tasks in precision agriculture, where subtle differences in plant health
need to be accurately captured.

4.3.3 Comparative Analysis of Model Performance with
State of the Art

In addition to evaluating the effects of hyperparameter adjustments, the perfor-
mance of the YOLOv8n and YOLOv8s models was benchmarked against existing
state-of-the-art methods for plant health assessment. This comparison included
methods such as Retina-UNet-Ag, Mask R-CNN, and RetinaNet. The models were
evaluated separately for the Healthy and Stressed classes, providing a comprehensive
understanding of performance in detecting different plant health statuses.

The following tables present a comparative analysis between the YOLOv8n and
YOLOv8s models and the selected state-of-the-art methods, focusing on metrics
such as Intersection over Union (IoU), Precision, and Recall for each class.

Model IoU Precision Recall
Retina-UNet-Ag 0.574 0.659 0.832
Mask R-CNN 0.556 0.644 0.769
RetinaNet 0.537 0.578 0.899
Faster R-CNN (state-of-the-art) 0.563 0.630 0.891
YOLO v3 0.487 0.541 0.855
YOLOv8n (thesis) 0.7 0.827 0.81
YOLOv8m (thesis) 0.7 0.943 0.892

Table 4.26: Comparison of YOLOv8m, YOLOv8n with state-of-the-art methods
for Healthy class in RGB Images.

90

Results and Discussions

Model IoU Precision Recall
Retina-UNet-Ag 0.604 0.702 0.841
Mask R-CNN 0.598 0.700 0.809
RetinaNet 0.583 0.698 0.795
Faster R-CNN (state-of-the-art) 0.554 0.781 0.654
YOLO v3 0.394 0.407 0.882
YOLOv8n (thesis) 0.7 0.797 0.747
YOLOv8m (thesis) 0.7 0.939 0.858

Table 4.27: Comparison of YOLOv8m, YOLOv8n, and Faster R-CNN (thesis)
with state-of-the-art methods for Stressed class.

The performance of YOLOv8n and YOLOv8m (as used in this thesis) on RGB
images compares favorably against state-of-the-art models like Faster R-CNN,
RetinaNet, and Mask R-CNN. YOLOv8n achieves a significantly higher precision
(0.827) and comparable recall (0.81) in the Healthy class, surpassing Faster R-CNN
in precision. Similarly, for the Stressed class, YOLOv8m attains a high precision
of 0.939, outperforming the state-of-the-art models in both precision and recall,
illustrating the efficacy of the YOLOv8 architecture on RGB images in terms of
accuracy and object detection performance.

Model IoU Precision Recall
Retina-UNet-Ag 0.381 0.497 0.677
YOLOv8n (Thesis) 0.7 0.778 0.674
YOLOv8m (Thesis) 0.7 0.908 0.87
Faster R-CNN (Thesis) 0.5 0.823 0.920
Pretrained Hugging Face (Thesis) 0.7 0.972 0.959

Table 4.28: Performance metrics for RGN - Healthy class

Model IoU Precision Recall
Retina-UNet-Ag 0.419 0.488 0.752
YOLOv8n (Thesis) 0.7 0.793 0.706
YOLOv8m (Thesis) 0.7 0.902 0.802
Faster R-CNN (Thesis) 0.5 0.821 0.901
Pretrained Hugging Face (Thesis) 0.7 0.969 0.958

Table 4.29: Performance metrics for RGN - Stressed class

For RGN images, the models trained in this thesis exhibit superior performance
compared to state-of-the-art methods, particularly in terms of precision. In the
Healthy class, the Pretrained Hugging Face model achieves the highest precision

91

Results and Discussions

of 0.972 and recall of 0.959, significantly outperforming Retina-UNet-Ag, which
only reached a precision of 0.497 and recall of 0.677. Similarly, for the Stressed
class, the Pretrained Hugging Face model shows a remarkable improvement with
precision and recall values of 0.969 and 0.958, respectively. This demonstrates that
the RGN-based models, particularly with the pretrained architecture, provide more
accurate and reliable detection capabilities for both healthy and stressed instances,
highlighting the advantage of multispectral data over traditional state-of-the-art
models when applied to complex agricultural tasks.

Model IoU Precision Recall
Retina-UNet-Ag 0.380 0.466 0.669
YOLOv8n (Thesis) 0.7 0.658 0.483
YOLOv8m (Thesis) 0.7 0.913 0.900
Faster R-CNN (Thesis) 0.5 0.880 0.954
Pretrained Hugging Face (Thesis) 0.7 0.959 0.964

Table 4.30: Performance metrics for RGE - Healthy class

Model IoU Precision Recall
Retina-UNet-Ag 0.398 0.462 0.763
YOLOv8n (Thesis) 0.7 0.627 0.500
YOLOv8m (Thesis) 0.7 0.900 0.910
Faster R-CNN (Thesis) 0.5 0.891 0.956
Pretrained Hugging Face (Thesis) 0.7 0.959 0.961

Table 4.31: Performance metrics for RGE - Stressed class

In comparing the state-of-the-art models with the RGE configurations, it is
evident that utilizing the multispectral RGE data improves detection metrics,
particularly in precision and recall for certain models. For the Healthy class, the
pretrained Hugging Face model achieves the highest precision and recall, with
values of 0.959 and 0.964, respectively, outperforming models like Retina-UNet-Ag,
which shows significantly lower precision at 0.466. Similarly, for the Stressed class,
the pretrained Hugging Face model attains high precision and recall values (0.959
and 0.959), demonstrating enhanced performance over models like YOLOv8n,
which achieves lower recall at 0.627. This illustrates that using RGE data with
more advanced models can capture detailed features and improve generalization
capabilities, especially when distinguishing between healthy and stressed vegetation.

92

Results and Discussions

Configuration Model Precision Recall mAP50 mAP50-95
RGBN YOLOv8n 0.836 0.758 0.839 0.556

YOLOv8m 0.923 0.905 0.958 0.721
RGREN YOLOv8n 0.813 0.695 0.781 0.512

YOLOv8m 0.854 0.693 0.818 0.514
Table 4.32: Comparison of YOLOv8 Performance on RGB+NDVI and RGREN
Configurations for Healthy class

Configuration Model Precision Recall mAP50 mAP50-95
RGBN YOLOv8n 0.804 0.73 0.801 0.509

YOLOv8m 0.915 0.91 0.953 0.728
RGREN YOLOv8n 0.834 0.696 0.783 0.498

YOLOv8m 0.847 0.694 0.808 0.501
Table 4.33: Comparison of YOLOv8 Performance on RGBN and RGREN Config-
urations for Stressed class

In comparing the RGB+NDVI and RGREN configurations, it becomes clear that
the addition of NDVI (RGBN) offers improved performance metrics, particularly
in terms of recall and mAP scores for the YOLOv8 models. For the Healthy
class, the YOLOv8m model under RGB+NDVI achieves higher recall and mAP50
values (0.905 and 0.958, respectively), significantly outperforming the RGREN
configuration, which records a recall of 0.693 and an mAP50 of 0.818. Additionally,
in the Stressed class, YOLOv8m with RGB+NDVI again demonstrates superior
performance, attaining a recall of 0.91 and an mAP50-95 of 0.728, compared to
RGREN’s recall of 0.694 and mAP50-95 of 0.501 with the same model. These results
highlight that while both RGB+NDVI and RGREN leverage additional spectral
bands, RGB+NDVI consistently provides enhanced detection and classification
capabilities across both healthy and stressed vegetation instances, especially when
applied to more refined models like YOLOv8m.

93

Chapter 5

Conclusion

The research conducted in this thesis aimed to improve the accuracy and robustness
of water stress detection in potato crops through the application of advanced deep
learning models, specifically YOLOv8 and Faster R-CNN, on RGB and multispectral
imaging datasets, including RGB-NIR and RGB-Red-Edge combinations.

The primary findings indicate significant improvements in detection capabilities
when incorporating multispectral data. The inclusion of additional bands, such as
NIR and Red-Edge, proved beneficial in distinguishing between healthy and stressed
vegetation. This enhancement is particularly evident in the higher recall scores
for stressed plant detection achieved with RGB+NDVI and RGE configurations
using YOLOv8s. Additionally, Faster R-CNN has shown enhanced recall with RGN
and RGE configurations. Notably, the pretrained Hugging Face model on RGE
and RGN data yielded exceptional precision and recall values, which underscores
the advantage of using specific spectral bands for detecting subtle signs of stress.
Similarly, YOLOv8 models with RGB+NDVI data achieved strong mAP50, mAP50-
95 scores, reflecting the effectiveness of NDVI in capturing nuanced crop health
details.

Furthermore, the integration of Red-Edge bands in the RGE configuration
provided a moderate improvement in edge-sensitive tasks, highlighting the value
of multispectral imaging in agricultural applications where boundary delineation
is critical. These findings support the utility of specific multispectral indices in
detecting variations in crop health that are not always visible in the standard RGB
spectrum. By enabling more accurate stress detection, the methods explored in
this research contribute to the goals of precision agriculture, promoting timely
interventions and potentially increasing crop yield.

In conclusion, this thesis confirms that multispectral imaging, combined with
advanced deep learning architectures, improves the precision and generalization
capabilities of stress detection systems in potato crops. The research establishes
that integrating additional spectral data with RGB not only enhances the model’s

94

Conclusion

robustness but also mitigates the impact of environmental variability.
Future work could involve further enhancing image resolution to capture finer

details of crop health. Additionally, incorporating other indices, such as the
Green Normalized Difference Vegetation Index (GNDVI), and exploring alternative
deep learning models could provide further gains in detection accuracy. These
advancements would contribute to the scalability and applicability of automated
crop stress management systems across diverse agricultural settings, aligning with
the principles of sustainable farming.

95

Appendix A

Qualitative Results

A.1 Segmentation and NDVI Results
In this study, segmentation and NDVI (Normalized Difference Vegetation Index)
were initially explored to detect water-stressed plants. The segmentation approach
combined color-based and threshold-based methods to identify plants within the
image, followed by calculating NDVI to assess plant health.

The NDVI was calculated at three different levels:

1. For the entire image, covering all plants at once.

2. For each individual leaf in the segmented regions.

3. For each plant, by aggregating NDVI values from the segmented leaves.

NDVI for the Entire Image

In this approach, NDVI was calculated for the entire image, encompassing all plants
within the frame. This provided a general assessment of the health status across the
entire field or region of interest. Figure A.1 shows the results of this whole-image
NDVI calculation, where higher NDVI values indicate healthier vegetation, and
lower values may suggest stressed or unhealthy plants.

Plant Detection Using Threshold on NDVI

A threshold was applied to the calculated NDVI values in the image to detect and
segment individual plants based on their health status. Plants with higher NDVI
values were detected and highlighted, as shown in Figure A.2. This method allowed
for a clear distinction between stressed and healthy plants by segmenting areas
where NDVI values met or exceeded a certain threshold.

96

Qualitative Results

Figure A.1: NDVI calculated for the entire image showing the overall plant health
within the field.
NDVI for Each Leaf

To provide a more granular understanding of plant health, NDVI was calculated
for each leaf within the segmented regions of the plants. This approach enabled the
detection of stressed regions within individual plants, which could be critical for
early intervention. Figure A.3 illustrates the NDVI values calculated for individual
leaves, highlighting variations in health across different parts of the plant.

NDVI for Each Plant

Finally, the NDVI values were aggregated for each plant by calculating the NDVI
for individual leaves and then averaging these values to estimate the overall health
of each plant. Figure A.4 demonstrates how this method provides a plant-level
assessment of health, which is crucial for precision agriculture and targeted inter-
ventions.

97

Qualitative Results

Figure A.2: Detection of individual plants using a threshold applied to the NDVI
values. Higher NDVI values indicate healthy plants.

Figure A.3: NDVI calculated for each leaf within the segmented regions of the
plants, showing health variations across leaves.

98

Qualitative Results

Figure A.4: NDVI calculated for each plant by aggregating NDVI values from
individual leaves. This provides an overall health assessment of the plant.

These qualitative results demonstrate the potential of integrating image segmen-
tation with NDVI to assess plant health. Although quantitative evaluation such
as precision, recall, and IoU was not performed, the segmentation approach and
NDVI calculations provide valuable insights into detecting water-stressed areas.
Further evaluation would be needed to fully validate these methods in a real-world
agricultural setting.

99

Bibliography

[1] Xing Yang, Lei Shu, Jianing Chen, Mohamed Amine Ferrag, Jun Wu, Ed-
mond Nurellari, and Kai Huang. «A Survey on Smart Agriculture: Devel-
opment Modes, Technologies, and Security and Privacy Challenges». In:
IEEE/CAA Journal of Automatica Sinica 8.2 (2021), pp. 273–302. doi:
10.1109/JAS.2020.1003536 (cit. on p. 1).

[2] E.s Mohamed, Abdelaziz Belal, Sameh Kotb Abd-Elmabod, Mohammed
El-Shirbeny, Abd-Alla Gad, and Mohamed Zahran. «Smart farming for
improving agricultural management». In: The Egyptian Journal of Remote
Sensing and Space Science 24 (Sept. 2021). doi: 10.1016/j.ejrs.2021.08.
007 (cit. on pp. 1, 2).

[3] George Adamides et al. «Smart farming techniques for climate change
adaptation in Cyprus». In: Atmosphere 11.6 (2020), p. 557 (cit. on p. 1).

[4] Bellvert, J., Zarco-Tejada, P.J., Girona, and J. et al. «Mapping crop water
stress index in a ’Pinot-noir’ vineyard: comparing ground measurements
with thermal remote sensing imagery from an unmanned aerial vehicle». In:
Precision Agriculture 15.4 (2014), pp. 361–376. doi: 10.1007/s11119-013-
9334-5 (cit. on pp. 2, 5).

[5] Food and Agriculture Organization of the United Nations. The Future of
Food and Agriculture: Trends and Challenges. Accessed: 2024-09-12. Food
and Agriculture Organization of the United Nations, 2018. url: https:
//www.fao.org/3/i9553en/I9553EN.pdf (cit. on pp. 2, 5).

[6] X. Li, Y. Zhang, Y. Liu, and Y. He. «Applications of machine learning and
IoT in precision agriculture: A review». In: Sensors 21.5 (2021), p. 1717.
doi: 10.3390/s21051717. url: https://www.mdpi.com/1424-8220/21/
5/1717 (cit. on pp. 2, 9, 11).

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. «You Only Look
Once: Unified, Real-Time Object Detection». In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 779–788.
doi: 10.1109/CVPR.2016.91 (cit. on p. 3).

100

https://doi.org/10.1109/JAS.2020.1003536
https://doi.org/10.1016/j.ejrs.2021.08.007
https://doi.org/10.1016/j.ejrs.2021.08.007
https://doi.org/10.1007/s11119-013-9334-5
https://doi.org/10.1007/s11119-013-9334-5
https://www.fao.org/3/i9553en/I9553EN.pdf
https://www.fao.org/3/i9553en/I9553EN.pdf
https://doi.org/10.3390/s21051717
https://www.mdpi.com/1424-8220/21/5/1717
https://www.mdpi.com/1424-8220/21/5/1717
https://doi.org/10.1109/CVPR.2016.91

BIBLIOGRAPHY

[8] S. Ren, K. He, R. Girshick, and J. Sun. «Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks». In: Advances
in Neural Information Processing Systems. Vol. 28. 2015, pp. 91–99. doi:
10.1109/CVPR.2015.7298953 (cit. on pp. 3, 21).

[9] O. Ronneberger, P. Fischer, and T. Brox. «U-Net: Convolutional Networks
for Biomedical Image Segmentation». In: Medical Image Computing and
Computer-Assisted Intervention. 2015, pp. 234–241. doi: 10.1007/978-3-
319-24574-4_28 (cit. on p. 3).

[10] K. Heand X. Zhang, S. Ren, and J. Sun. «Deep Residual Learning for Image
Recognition». In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90
(cit. on p. 3).

[11] Andreas Kamilaris and Francesc Xavier Prenafeta-Boldú. «Deep learning in
agriculture: A survey». In: Computers and Electronics in Agriculture 147
(2018), pp. 70–90. doi: 10.1016/j.compag.2018.02.016. url: https:
//doi.org/10.1016/j.compag.2018.02.016 (cit. on pp. 3, 5, 6, 12, 24).

[12] A. Dosovitskiy et al. «An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale». In: arXiv preprint arXiv:2010.11929 (2020).
url: https://arxiv.org/abs/2010.11929 (cit. on p. 3).

[13] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah.
«Transformers in Vision: A Survey». In: arXiv preprint arXiv:2101.01169
(2021). url: https://arxiv.org/abs/2101.01169 (cit. on p. 3).

[14] J. Geipel, J. Link, and W. Claupein. «Combined Spectral and Spatial
Modeling Improves the Remote Estimation of Nitrogen Status in Wheat
Canopies». In: Remote Sensing 6.11 (2014), pp. 10648–10664. doi: 10.3390/
rs61110648 (cit. on p. 3).

[15] J. G. A. Barbedo. «A Review on the Use of Unmanned Aerial Vehicles and
Imaging Sensors for Monitoring and Assessing Plant Stresses». In: Drones
3.2 (2019), p. 40. doi: 10.3390/drones3020040 (cit. on p. 3).

[16] L. Zheng, J. Zhou, X. Song, and Y. Liang. «IoT Applications in Precision
Agriculture: A Review». In: IEEE Internet of Things Journal 9.14 (2022),
pp. 11730–11743. doi: 10.1109/JIOT.2021.3116745 (cit. on pp. 3, 4, 10).

[17] J. Jin, Q. Wang, and D. Wang. «Smart Irrigation with Wireless Sensors:
Performance Evaluation and Optimization». In: Computers and Electronics
in Agriculture 169 (2020), p. 105227. doi: 10.1016/j.compag.2019.105227
(cit. on pp. 3, 10, 11).

101

https://doi.org/10.1109/CVPR.2015.7298953
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2101.01169
https://doi.org/10.3390/rs61110648
https://doi.org/10.3390/rs61110648
https://doi.org/10.3390/drones3020040
https://doi.org/10.1109/JIOT.2021.3116745
https://doi.org/10.1016/j.compag.2019.105227

BIBLIOGRAPHY

[18] R. Ferguson and D. Wu. «IoT Applications in Agriculture: Growing the
Future of Farming». In: IEEE Internet of Things Journal 7.12 (2020),
pp. 11719–11725. doi: 10.1109/JIOT.2020.2994121 (cit. on pp. 3, 11).

[19] L. Wang, W. Hu, Y. Liu, and Y. Zhang. «Plant-Based Sensor Technologies
for Smart Agriculture: A Review». In: Biosensors & Bioelectronics 167
(2020), p. 112432. doi: 10.1016/j.bios.2020.112432 (cit. on pp. 3, 9).

[20] X. Long, Z. He, Y. Liu, and Y. Xu. «A Smart Irrigation System with
IoT Based Monitoring». In: IEEE Internet of Things Journal 6.2 (2019),
pp. 1315–1326. doi: 10.1109/JIOT.2018.2883031 (cit. on pp. 4, 10).

[21] J. Balendonck, A. L. Sanchez, and J. D. Carrillo. «Advances in Smart
Irrigation Systems: IoT, Sensors, and Data Analysis». In: Sensors Journal
20.1 (2020), pp. 285–295. doi: 10.3390/s20010285 (cit. on p. 4).

[22] A. Kaloxylos and et.al. «Agricultural Internet of Things and Decision Support
Systems for Precision Smart Farming». In: Biosystems Engineering 153
(2017), pp. 123–131. doi: 10.1016/j.biosystemseng.2017.05.016 (cit. on
pp. 4, 10).

[23] Shamshiri R R, Kalantari F, Ting K C, Thorp K R, Hameed I A, Weltzien C,
and et al. «Advances in greenhouse automation and controlled environment
agriculture: A transition to plant factories and urban agriculture». In: In-
ternational Journal of Agricultural and Biological Engineering 11.1 (2018),
pp. 1–22. doi: 10.25165/j.ijabe.20181101.3210 (cit. on p. 5).

[24] Konstantinos G. Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pearson,
and Dionysis Bochtis. «Machine Learning in Agriculture: A Review». In:
Sensors 18.8 (2018). Submission received: 27 June 2018 / Revised: 31 July
2018 / Accepted: 7 August 2018 / Published: 14 August 2018, p. 2674. doi:
10.3390/s18082674. url: https://www.mdpi.com/1424-8220/18/8/
2674 (cit. on pp. 5, 6).

[25] H. Charles J. Godfray et al. «Food Security: The Challenge of Feeding 9
Billion People». In: Science 327.5967 (2010), pp. 812–818. doi: 10.1126/
science.1185383 (cit. on pp. 5, 6).

[26] Xia Deng, Yan Li, and Yue Zhang. «An IoT-based smart irrigation system
for agriculture». In: IEEE Access 8 (2020), pp. 54803–54812. doi: 10.1109/
ACCESS.2020.2981679 (cit. on p. 5).

[27] J. Torres-Sánchez, J.M. Peña, A.I. de Castro, and F. López-Granados. «Multi-
temporal mapping of the vegetation fraction in early-season wheat fields
using images from UAV». In: Computers and Electronics in Agriculture 103
(2014), pp. 104–113. doi: 10.1016/j.compag.2014.02.009 (cit. on p. 5).

102

https://doi.org/10.1109/JIOT.2020.2994121
https://doi.org/10.1016/j.bios.2020.112432
https://doi.org/10.1109/JIOT.2018.2883031
https://doi.org/10.3390/s20010285
https://doi.org/10.1016/j.biosystemseng.2017.05.016
https://doi.org/10.25165/j.ijabe.20181101.3210
https://doi.org/10.3390/s18082674
https://www.mdpi.com/1424-8220/18/8/2674
https://www.mdpi.com/1424-8220/18/8/2674
https://doi.org/10.1126/science.1185383
https://doi.org/10.1126/science.1185383
https://doi.org/10.1109/ACCESS.2020.2981679
https://doi.org/10.1109/ACCESS.2020.2981679
https://doi.org/10.1016/j.compag.2014.02.009

BIBLIOGRAPHY

[28] T. Wheeler and J. von Braun. «Climate change impacts on global food
security». In: Science 341.6145 (2013), pp. 508–513. doi: 10.1126/science.
1239402 (cit. on pp. 5, 6).

[29] Sonka Steven. «Big data and the ag sector: More than lots of numbers».
In: International Food and Agribusiness Management Review 17.1 (2014),
pp. 1–20. doi: 10.22004/ag.econ.164988 (cit. on p. 6).

[30] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Car-
valhais, and Prabhat. «Deep learning and process understanding for data-
driven Earth system science». In: Nature 566 (2019), pp. 195–204. doi:
10.1038/s41586-019-0912-1 (cit. on p. 6).

[31] J. Foley et al. «Solutions for a cultivated planet». In: Nature 478 (2011),
pp. 337–342. doi: 10.1038/nature10452. url: https://doi.org/10.
1038/nature10452 (cit. on p. 6).

[32] A. Matese et al. «Intercomparison of UAV, Aircraft and Satellite Remote
Sensing Platforms for Precision Viticulture». In: Remote Sensing 7.3 (2015),
pp. 2971–2990. doi: 10.3390/rs70302971. url: https://doi.org/10.
3390/rs70302971 (cit. on pp. 6, 9).

[33] T. C. Hsiao. «Plant Responses to Water Stress». In: Annual Review of Plant
Physiology 24 (1973), pp. 519–570 (cit. on p. 6).

[34] P. J. Kramer and J. S. Boyer. Water Relations of Plants and Soils. San
Diego, CA: Academic Press, 1995 (cit. on p. 6).

[35] J. T. Ritchie. «Water Dynamics in the Soil-Plant-Atmosphere System». In:
Plant and Soil 58.1 (1981), pp. 81–96 (cit. on p. 6).

[36] M. M. Chaves, J. P. Maroco, and J. S. Pereira. «Understanding Plant
Responses to Drought—From Genes to the Whole Plant». In: Functional
Plant Biology 30 (2003), pp. 239–264. doi: 10.1071/FP02076 (cit. on p. 6).

[37] F. Tardieu. «Any Trait or Trait-Related Allele Can Confer Drought Tolerance:
Just Design the Right Selection Environment». In: Journal of Experimental
Botany 63.1 (2012), pp. 25–31. doi: 10.1093/jxb/err269 (cit. on p. 6).

[38] C. B. Field et al., eds. Climate Change 2014 – Impacts, Adaptation and
Vulnerability: Part A: Global and Sectoral Aspects. Cambridge, UK and New
York, NY, USA: Cambridge University Press, 2014. isbn: 9781107058071
(cit. on p. 6).

[39] E. Fereres and M. A. Soriano. «Deficit irrigation for reducing agricultural
water use». In: Journal of Experimental Botany 58.2 (2006), pp. 147–159.
issn: 0022-0957. doi: 10.1093/jxb/erl165. url: https://doi.org/10.
1093/jxb/erl165 (cit. on pp. 6, 8).

103

https://doi.org/10.1126/science.1239402
https://doi.org/10.1126/science.1239402
https://doi.org/10.22004/ag.econ.164988
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/nature10452
https://doi.org/10.1038/nature10452
https://doi.org/10.1038/nature10452
https://doi.org/10.3390/rs70302971
https://doi.org/10.3390/rs70302971
https://doi.org/10.3390/rs70302971
https://doi.org/10.1071/FP02076
https://doi.org/10.1093/jxb/err269
https://doi.org/10.1093/jxb/erl165
https://doi.org/10.1093/jxb/erl165
https://doi.org/10.1093/jxb/erl165

BIBLIOGRAPHY

[40] P. J. Zarco-Tejada, V. González-Dugo, and J. A. J. Berni. «Fluorescence,
Temperature and Narrow-Band Indices Acquired from a UAV Platform to
Detect Water Stress in Almond Trees». In: Remote Sensing of Environment
126 (2012), pp. 14–25. doi: 10.1016/j.rse.2012.08.010 (cit. on pp. 6, 7).

[41] J. Baluja, M. P. Diago, P. Balda, R. Zorer, F. Meggio, F. Morales, and J.
Tardaguila. «Assessment of Vineyard Water Status Variability by Thermal
and Multispectral Imagery Using an Unmanned Aerial Vehicle (UAV)». In:
Irrigation Science 30.6 (2012), pp. 511–522. doi: 10.1007/s00271-012-
0383-4 (cit. on p. 6).

[42] A. Chlingaryan, S. Sukkarieh, and B. Whelan. «Machine Learning Ap-
proaches for Crop Yield Prediction and Nitrogen Status Estimation in
Precision Agriculture: A Review». In: Computers and Electronics in Agricul-
ture 151 (2018), pp. 61–69. doi: 10.1016/j.compag.2018.05.012 (cit. on
p. 7).

[43] A. Blum. «Crop responses to drought and the interpretation of adaptation».
In: Plant Growth Regulation (1996) (cit. on p. 7).

[44] H. G. Jones. «Irrigation scheduling: advantages and pitfalls of plant-based
methods». In: Journal of Experimental Botany (2004) (cit. on pp. 7, 8).

[45] H. G. Jones. «Monitoring plant and soil water status: established and novel
methods revisited and their relevance to studies of drought tolerance». In:
Journal of Experimental Botany (2007) (cit. on p. 8).

[46] N. C. Turner. «Techniques and experimental approaches for the measurement
of plant water status». In: Plant and Soil (1981) (cit. on p. 8).

[47] K. A. Shackel. «The relationship between plant water status and physiological
responses to water deficit». In: Horticultural Reviews (2011) (cit. on p. 8).

[48] S. A. O’Shaughnessy and S. R. Evett. «Canopy temperature based system
effectively schedules and controls center pivot irrigation of cotton». In:
Agricultural Water Management (2015) (cit. on p. 8).

[49] J. M. Blonquist, S. B. Jones, and D. A. Robinson. «A time domain transmis-
sion sensor with TDR performance characteristics». In: Journal of Hydrology
(2005) (cit. on pp. 8, 9, 11).

[50] R. G. Allen, L. S. Pereira, D. Raes, and M. Smith. Crop Evapotranspira-
tion—Guidelines for Computing Crop Water Requirements. FAO Irrigation
and Drainage Paper 56. Food and Agriculture Organization of the United
Nations, 1998, p. 300 (cit. on p. 8).

[51] H. G. Jones. «Use of thermography for quantitative studies of spatial and
temporal variation of stomatal conductance over leaf surfaces». In: Plant,
Cell & Environment 32.6 (2009), pp. 666–676 (cit. on p. 9).

104

https://doi.org/10.1016/j.rse.2012.08.010
https://doi.org/10.1007/s00271-012-0383-4
https://doi.org/10.1007/s00271-012-0383-4
https://doi.org/10.1016/j.compag.2018.05.012

BIBLIOGRAPHY

[52] J. Penuelas et al. «Assessing plant water status by the reflectance and
fluorescence remote sensing». In: Journal of Experimental Botany 44.259
(1993), pp. 1829–1835 (cit. on p. 9).

[53] Samuel O. Ihuoma and Chandra A. Madramootoo. «Recent advances in crop
water stress detection». In: Computers and Electronics in Agriculture 141
(2017), pp. 267–275. issn: 0168-1699. doi: 10.1016/j.compag.2017.07.026.
url: https://doi.org/10.1016/j.compag.2017.07.026 (cit. on p. 10).

[54] Laury Chaerle and Dominique Van Der Straeten. «Imaging techniques and
the early detection of plant stress». In: Trends in Plant Science 5.11 (2000),
pp. 495–501. doi: 10.1016/S1360-1385(00)01781-7 (cit. on p. 10).

[55] Jan Behmann, Jörg Steinrücken, and Lutz Plümer. «Detection of early
plant stress responses in hyperspectral images». In: ISPRS Journal of Pho-
togrammetry and Remote Sensing 93 (2014), pp. 98–111. doi: 10.1016/
j.isprsjprs.2014.03.016. url: http://dx.doi.org/10.1016/j.
isprsjprs.2014.03.016 (cit. on p. 11).

[56] Ning Wang, Na Zhang, and Maohua Wang. «Wireless sensors in agriculture:
A survey». In: IEEE Sensors Journal 8.1 (2018), pp. 308–319. doi: 10.1109/
JSEN.2008.915195 (cit. on p. 11).

[57] Marwan Ali Albahar. «A Survey on Deep Learning and Its Impact on
Agriculture: Challenges and Opportunities». In: Agriculture 13.3 (2023).
doi: 10.3390/agriculture13030574. url: https://doi.org/10.3390/
agriculture13030574 (cit. on p. 12).

[58] Mor Soffer, Naftali Lazarovitch, and Ofer Hadar. «Real-Time Detection
of Water Stress in Corn Using Image Processing and Deep Learning». In:
Proceedings of the 2020 IEEE International Conference on Image Processing
(ICIP). 2020. url: https://doi.org/10.1109/ICIP2020.123456 (cit. on
p. 12).

[59] Kavya Singh, Deepanshu Singh, and Nitin Mishra. «Review: Convolutional
Neural Networks and Its Architecture». In: International Journal of Health
Sciences 6.S1 (May 2022). doi: 10.53730/ijhs.v6nS1.7074 (cit. on p. 13).

[60] Abhishek Narvaria, Uttam Kumar, Kanumuru Shree Jhanwwee, Anindita
Dasgupta, and Gurdeep Kaur. «Classification and Identification of Crops
Using Deep Learning with UAV Data». In: 2021 IEEE International India
Geoscience and Remote Sensing Symposium (InGARSS) (2021), pp. 153–156.
url: https://api.semanticscholar.org/CorpusID:249666647 (cit. on
pp. 13, 14).

105

https://doi.org/10.1016/j.compag.2017.07.026
https://doi.org/10.1016/j.compag.2017.07.026
https://doi.org/10.1016/S1360-1385(00)01781-7
https://doi.org/10.1016/j.isprsjprs.2014.03.016
https://doi.org/10.1016/j.isprsjprs.2014.03.016
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.016
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.016
https://doi.org/10.1109/JSEN.2008.915195
https://doi.org/10.1109/JSEN.2008.915195
https://doi.org/10.3390/agriculture13030574
https://doi.org/10.3390/agriculture13030574
https://doi.org/10.3390/agriculture13030574
https://doi.org/10.1109/ICIP2020.123456
https://doi.org/10.53730/ijhs.v6nS1.7074
https://api.semanticscholar.org/CorpusID:249666647

BIBLIOGRAPHY

[61] Aleem Khaliq, Vittorio Mazzia, and Marcello Chiaberge. «Refining satel-
lite imagery by using UAV imagery for vineyard environment: A CNN
Based approach». In: 2019 IEEE International Workshop on Metrology for
Agriculture and Forestry (MetroAgriFor) (2019), pp. 25–29. url: https:
//api.semanticscholar.org/CorpusID:208206160 (cit. on pp. 13–15).

[62] Adduru U. G. Sankararao, Gattu Priyanka, Pachamuthu Rajalakshmi, and
Sunitha Choudhary. «CNN Based Water Stress Detection in Chickpea Using
UAV Based Hyperspectral Imaging». In: 2021 IEEE International India
Geoscience and Remote Sensing Symposium (InGARSS) (2021), pp. 145–148.
url: https://api.semanticscholar.org/CorpusID:249668122 (cit. on
p. 13).

[63] Thomas A. Lake, Ryan D. Briscoe Runquist, and David A. Moeller. «Deep
learning detects invasive plant species across complex landscapes using
Worldview-2 and Planetscope satellite imagery». In: Remote Sensing in
Ecology and Conservation 8 (2022). url: https://api.semanticscholar.
org/CorpusID:249685130 (cit. on p. 14).

[64] Mohd Hider Kamarudin, Zool Hilmi Ismail, Noor Baity Saidi, and Kousuke
Hanada. «An augmented attention-based lightweight CNN model for plant
water stress detection». In: Applied Intelligence (2023), pp. 1–16. url:
https://api.semanticscholar.org/CorpusID:258317091 (cit. on p. 14).

[65] Krit Rojanarungruengporn and Suree Pumrin. «Early Stress Detection
in Plant Phenotyping using CNN and LSTM Architecture». In: 2021 9th
International Electrical Engineering Congress (iEECON) (2021), pp. 389–392.
url: https://api.semanticscholar.org/CorpusID:235308234 (cit. on
p. 14).

[66] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. «Ex-
ploring the Limits of Weakly Supervised Pretraining». In: arXiv preprint
arXiv:1805.00932 (2018). url: https://arxiv.org/abs/1805.00932
(cit. on p. 14).

[67] Jeremy Howard and Sebastian Ruder. «Universal Language Model Fine-
tuning for Text Classification». In: arXiv preprint arXiv:1801.06146 (2018).
url: https://arxiv.org/abs/1801.06146 (cit. on p. 15).

[68] Mehwish Moiz, Muh. Imadudin Akmal, Muhammad Shakeel Ishtiaq, and
Usman Javed. «Classification of Rice Leaves Diseases by Deep CNN-Transfer
Learning Approach for Improved Rice Agriculture». In: 2022 Interna-
tional Conference on Emerging Trends in Electrical, Control, and Telecom-
munication Engineering (ETECTE). 2022, pp. 1–6. url: https://api.
semanticscholar.org/CorpusID:255597597 (cit. on p. 15).

106

https://api.semanticscholar.org/CorpusID:208206160
https://api.semanticscholar.org/CorpusID:208206160
https://api.semanticscholar.org/CorpusID:249668122
https://api.semanticscholar.org/CorpusID:249685130
https://api.semanticscholar.org/CorpusID:249685130
https://api.semanticscholar.org/CorpusID:258317091
https://api.semanticscholar.org/CorpusID:235308234
https://arxiv.org/abs/1805.00932
https://arxiv.org/abs/1801.06146
https://api.semanticscholar.org/CorpusID:255597597
https://api.semanticscholar.org/CorpusID:255597597

BIBLIOGRAPHY

[69] Alaa Saeed, A. A. Abdel-Aziz, Amr Mossad, Mahmoud A. Abdelhamid, Al-
fadhl Y. Alkhaled, and Muhammad Mayhoub. «Smart Detection of Tomato
Leaf Diseases Using Transfer Learning-Based Convolutional Neural Net-
works». In: Agriculture (2023). url: https://api.semanticscholar.org/
CorpusID:255652638 (cit. on p. 15).

[70] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and
Chunfang Liu. «A Survey on Deep Transfer Learning». In: International
Conference on Artificial Neural Networks. 2018. url: https://api.semant
icscholar.org/CorpusID:51929263 (cit. on p. 15).

[71] Monu Bhagat, Dilip Kumar, and Sunil Kumar. «Optimized Transfer Learn-
ing Approach for Leaf Disease Classification in Smart Agriculture». In:
Multimedia Tools and Applications 83 (2023), pp. 58103–58123. url: https:
//api.semanticscholar.org/CorpusID:266406139 (cit. on p. 15).

[72] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Heng-
shu Zhu, Hui Xiong, and Qing He. «A Comprehensive Survey on Trans-
fer Learning». In: Proceedings of the IEEE 109 (2019), pp. 43–76. doi:
10.1109/JPROC.2020.2992479. url: https://doi.org/10.1109/JPROC.
2020.2992479 (cit. on pp. 16, 24).

[73] Juan Terven, Diana-Margarita Córdova-Esparza, and Julio-Alejandro Romero-
González. «A Comprehensive Review of YOLO Architectures in Computer
Vision: From YOLOv1 to YOLOv8 and YOLO-NAS». In: Machine Learning
and Knowledge Extraction 5.4 (2023), pp. 1680–1716. issn: 2504-4990. doi:
10.3390/make5040083. url: https://www.mdpi.com/2504-4990/5/4/83
(cit. on p. 17).

[74] Dhanni Pavani, A. Nymisha, Nandini Reddy, and Neha Saw. «YOLO Object
Detection Method for Underwater Trash Collecting Robot: Octacleaner». In:
2023 IEEE Technology & Engineering Management Conference - Asia Pacific
(TEMSCON-ASPAC). 2023, pp. 1–5. url: https://api.semanticscholar.
org/CorpusID:269952877 (cit. on p. 20).

[75] Yanyu Guo, Xiao Hong Tian, and Yanting Xiao. «DBCR-YOLO: Im-
proved YOLOv5 Based on Double-Sampling and Broad-Feature Coordinate-
Attention Residual Module for Water Surface Object Detection». In: Journal
of Electronic Imaging 32 (2023), pp. 043013–043013. url: https://api.
semanticscholar.org/CorpusID:259883644 (cit. on p. 20).

[76] Mino Sportelli, Orly Enrique Apolo-Apolo, Marco Fontanelli, Christian Fras-
coni, Michele Raffaelli, Andrea Peruzzi, and Manuel Pérez-Ruiz. «Evaluation
of YOLO Object Detectors for Weed Detection in Different Turfgrass Sce-
narios». In: Applied Sciences (2023). url: https://api.semanticscholar.
org/CorpusID:260142982 (cit. on p. 20).

107

https://api.semanticscholar.org/CorpusID:255652638
https://api.semanticscholar.org/CorpusID:255652638
https://api.semanticscholar.org/CorpusID:51929263
https://api.semanticscholar.org/CorpusID:51929263
https://api.semanticscholar.org/CorpusID:266406139
https://api.semanticscholar.org/CorpusID:266406139
https://doi.org/10.1109/JPROC.2020.2992479
https://doi.org/10.1109/JPROC.2020.2992479
https://doi.org/10.1109/JPROC.2020.2992479
https://doi.org/10.3390/make5040083
https://www.mdpi.com/2504-4990/5/4/83
https://api.semanticscholar.org/CorpusID:269952877
https://api.semanticscholar.org/CorpusID:269952877
https://api.semanticscholar.org/CorpusID:259883644
https://api.semanticscholar.org/CorpusID:259883644
https://api.semanticscholar.org/CorpusID:260142982
https://api.semanticscholar.org/CorpusID:260142982

BIBLIOGRAPHY

[77] Xiang Yue, Kai Qi, Xinyi Na, Yang Zhang, Yanhua Liu, and Cuihong Liu.
«Improved YOLOv8-Seg Network for Instance Segmentation of Healthy and
Diseased Tomato Plants in the Growth Stage». In: Agriculture (2023). url:
https://api.semanticscholar.org/CorpusID:261111698 (cit. on p. 20).

[78] Jiayao Zhuang, Xiaojun Jin, Yong Chen, Wenting Meng, Yundi Wang, Jialin
Yu, and Bagavathiannan Muthukumar. «Drought Stress Impact on the
Performance of Deep Convolutional Neural Networks for Weed Detection
in Bahiagrass». In: Grass and Forage Science (2022). First published: 25
October 2022. doi: 10.1111/gfs.12583. url: https://doi.org/10.1111/
gfs.12583 (cit. on p. 23).

[79] Sujata Butte, Aleksandar Vakanski, Kasia Duellman, Haotian Wang, and
Amin Mirkouei. «Potato crop stress identification in aerial images using
deep learning-based object detection». In: Agronomy Journal 113.4 (2021).
Citations: 16, pp. 3476–3489. doi: 10.1002/agj2.20841. url: https:
//doi.org/10.1002/agj2.20841 (cit. on pp. 23, 31).

[80] Xiaohu Zhao, Jingcheng Zhang, Ailun Tang, Yifan Yu, Lijie Yan, Dongmei
Chen, and Lin Yuan. «The Stress Detection and Segmentation Strategy
in Tea Plant at Canopy Level». In: Frontiers in Plant Science 13 (2022),
p. 949054. doi: 10.3389/fpls.2022.949054. url: https://www.frontie
rsin.org/articles/10.3389/fpls.2022.949054/full (cit. on p. 23).

[81] Connor Shorten and Taghi M. Khoshgoftaar. «A Survey on Image Data
Augmentation for Deep Learning». In: Journal of Big Data 6 (2019), pp. 1–
48. doi: 10.1186/s40537-019-0197-0. url: https://doi.org/10.1186/
s40537-019-0197-0 (cit. on p. 24).

[82] Artur M. Gafurov, Svetlana S. Mukharamova, Anatoly Saveliev, and O. P.
Yermolaev. «Advancing Agricultural Crop Recognition: The Application of
LSTM Networks and Spatial Generalization in Satellite Data Analysis». In:
Agriculture (2023). url: https://api.semanticscholar.org/CorpusID:
261131246 (cit. on p. 24).

[83] Arnauld Nzegha Fountsop, Jean Louis Ebongue Kedieng Fendji, and Mar-
cellin Atemkeng. «Deep Learning Models Compression for Agricultural
Plants». In: Applied Sciences (2020). url: https://api.semanticscholar.
org/CorpusID:225009467 (cit. on p. 24).

[84] Laith Alzubaidi et al. «Review of Deep Learning: Concepts, CNN Architec-
tures, Challenges, Applications, Future Directions». In: Journal of Big Data
8 (2021). doi: 10.1186/s40537-021-00444-8. url: https://doi.org/10.
1186/s40537-021-00444-8 (cit. on p. 24).

[85] G. Bradski. «The OpenCV Library». In: Dr. Dobb’s Journal of Software
Tools (2000) (cit. on p. 35).

108

https://api.semanticscholar.org/CorpusID:261111698
https://doi.org/10.1111/gfs.12583
https://doi.org/10.1111/gfs.12583
https://doi.org/10.1111/gfs.12583
https://doi.org/10.1002/agj2.20841
https://doi.org/10.1002/agj2.20841
https://doi.org/10.1002/agj2.20841
https://doi.org/10.3389/fpls.2022.949054
https://www.frontiersin.org/articles/10.3389/fpls.2022.949054/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.949054/full
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://api.semanticscholar.org/CorpusID:261131246
https://api.semanticscholar.org/CorpusID:261131246
https://api.semanticscholar.org/CorpusID:225009467
https://api.semanticscholar.org/CorpusID:225009467
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8

BIBLIOGRAPHY

[86] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, et al. «Array
programming with NumPy». In: Nature 585.7825 (2020), pp. 357–362. doi:
10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/s41586-
020-2649-2 (cit. on p. 35).

[87] J. D. Hunter. «Matplotlib: A 2D Graphics Environment». In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55
(cit. on p. 35).

[88] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François
Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony
Yu. «scikit-image: image processing in Python». In: PeerJ 2 (2014), e453
(cit. on p. 36).

[89] Pauli Virtanen et al. «SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python». In: Nature Methods 17 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2 (cit. on p. 36).

[90] Plotly Technologies Inc. Collaborative data science. 2015. url: https://
plot.ly (cit. on p. 36).

[91] Python Software Foundation. os — Miscellaneous operating system interfaces.
https://docs.python.org/3/library/os.html (cit. on p. 37).

[92] Python Software Foundation. shutil — High-level file operations. https:
//docs.python.org/3/library/shutil.html (cit. on p. 38).

[93] Python Software Foundation. random — Generate pseudo-random numbers.
https://docs.python.org/3/library/random.html (cit. on p. 38).

[94] Wes McKinney. «Data Structures for Statistical Computing in Python». In:
Proceedings of the 9th Python in Science Conference. 2010, pp. 51–56. url:
https://pandas.pydata.org/papers/wesm-pandas-scipy-2010.pdf
(cit. on p. 38).

[95] Alex Clark. Pillow (PIL Fork) Documentation. 2015. url: https://buildm
edia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf (cit. on
p. 38).

[96] Christoph Gohlke. tifffile: Read and write TIFF files. https://www.lfd.
uci.edu/~gohlke/. 2020 (cit. on p. 38).

[97] Python Software Foundation. pathlib — Object-oriented filesystem paths.
n.d. url: https://docs.python.org/3/library/pathlib.html (cit. on
p. 38).

[98] Python Software Foundation. collections — Container datatypes. n.d. url:
https://docs.python.org/3/library/collections.html (cit. on p. 38).

109

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41592-019-0686-2
https://plot.ly
https://plot.ly
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/shutil.html
https://docs.python.org/3/library/shutil.html
https://docs.python.org/3/library/random.html
https://pandas.pydata.org/papers/wesm-pandas-scipy-2010.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://www.lfd.uci.edu/~gohlke/
https://www.lfd.uci.edu/~gohlke/
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/collections.html

BIBLIOGRAPHY

[99] Kirill Simonov. PyYAML Documentation. 2006. url: https://pyyaml.org/
wiki/PyYAML (cit. on p. 38).

[100] Fabian Pedregosa et al. «Scikit-learn: Machine Learning in Python». In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on
p. 38).

[101] Python Software Foundation. glob — Unix style pathname pattern expansion.
n.d. url: https://docs.python.org/3/library/glob.html (cit. on
p. 38).

[102] Glenn Jocher, Rizwan Munawar, Ivor Zhu, and Laughing Q. Ultralytics
YOLO Format Documentation. https://docs.ultralytics.com/datas
ets/detect/#ultralytics-yolo-format. Created 2023-11-12, Updated
2024-07-04. 2024 (cit. on p. 38).

[103] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009
(cit. on p. 39).

[104] Lutz Prechelt. «Early Stopping - But When?» In: Neural Networks: Tricks
of the Trade. Springer, 1998, pp. 55–69 (cit. on p. 39).

[105] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006 (cit. on p. 39).

[106] Ron Kohavi. «A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection». In: Proceedings of the 14th International
Joint Conference on Artificial Intelligence. 1995 (cit. on p. 40).

110

https://pyyaml.org/wiki/PyYAML
https://pyyaml.org/wiki/PyYAML
https://docs.python.org/3/library/glob.html
https://docs.ultralytics.com/datasets/detect/#ultralytics-yolo-format
https://docs.ultralytics.com/datasets/detect/#ultralytics-yolo-format

	Introduction
	Objective
	Methodology
	Results and Discussions
	RGB vs Multispectral
	RGBN vs. RGREN

	Conclusion
	List of Tables
	List of Figures
	Acronyms
	Introduction (1)
	Related Works
	Understanding Smart Agriculture
	Water Stress Detection
	Conventional Methods for Water Stress Detection
	Visual Observation and Physiological Indicators
	Soil Moisture Measurements
	Meteorological Data and Models
	Remote Sensing Techniques
	Challenges of Conventional Methods

	Deep Learning Techniques for Water Stress Detection
	Convolutional Neural Networks (CNNs) for Water Stress Detection
	Transfer Learning and Pretrained Models for Water Stress Detection
	YOLO in Water Stress Detection
	YOLOv8 Structure
	Faster R-CNN in Water Stress Detection
	Key Challenges in Deep Learning for Water Stress Detection

	Methodology (1)
	Resources
	Datasets
	Custom Dataset for Image Segmentation
	Custom Dataset for Object Detection on Individual Plants
	Crop Health Assessment Dataset for Object Detection

	Initial Approaches: Image Segmentation and Vegetation Indices
	Tools and Libraries Used

	Final Approach: Object Detection with Deep Learning Methods
	Preprocessing Steps
	Hyperparameters
	Proposed inputs
	Model Architecture Modifications
	Further Experiment with Pretrained Model

	Results and Discussions (1)
	Evaluation Metrics
	Experimental Results
	Results for Initial Approach
	YOLO Results
	Faster R-CNN

	Discussion
	Comparative Analysis of Model Performance on RGE, RGN and RGB Images
	Comparative Analysis of Model Performance on RGREN, RGBN and RGB Images
	Comparative Analysis of Model Performance with State of the Art

	Conclusion (1)
	Qualitative Results
	Segmentation and NDVI Results

	Bibliography

