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Abstract

In a world flooded with electronic devices and sensors, the necessity of making
them cooperate increases on a daily basis. At the same time, it is crucial to
guarantee the safety and privacy of the exploited data. Furthermore, many of the
devices that help us in our daily activities are compact appliances with constrained
computational and storage capabilities. Therefore, it is essential to find new
solutions that enhance memory efficiency without compromising accuracy. Another
main aspect that characterizes the effectiveness of these devices is their speed in
performing inference: the vast amount of daily-generated data demands increasingly
faster inference times. Thus, looking for new solutions to merge all these necessities
is crucial.

One of the most exploited methodologies for enabling different devices to collabo-
ratively enhance the reliability of artificial intelligence models is Federated Learning
(FL). Thanks to this approach, it is possible to share only locally computed model
weights rather than transmitting personal data across the network, preserving
privacy.

A strong yet useful approach for decreasing a model’s size while maintaining its
accuracy is the implementation of Model Compression Techniques, such as Weight
Pruning: this technique enables the model to use only a selected subset of its
weights to perform inference. During the forward step, the model’s zero-masked
weights are not considered, resulting in a decreased inference time. In this work,
we have studied three different pruning strategies: Global Unstructured Pruning
(GUP), Local Unstructured Pruning (LUP), and Local Structured Pruning (LSP).
Each of the three pruning techniques has been evaluated with various pruning
percentages: 20%, 40%, 60%, and 80%.

We then analyzed how these approaches work in a FL environment with a
network of 4, 8, or 12 clients arranged in a Ring-All-Reduce topology (first set of
simulations) and in a Consensus-Based topology (second set). The experiments aim
to investigate the behavior of several neural networks, i.e., ResNet18, ResNet50,
VGG16, MobileNetV2, TinyYoloV2, and LeNet5.

The experiments were run in a customized environment developed using Docker
and physical GPUs accessible on Chameleon Cloud, a publicly available testbed. In
particular, Docker has been used to create a local network with a tailored number
of clients and to configure the network topology on a single device.

The findings of this study highlight considerable differences between the pruning
techniques and the possibility of indicating the best configuration settings, e.g.,
type of neural network, number of clients, and network topology. In the majority
of scenarios, both GUP and LUP can effectively reduce model size by up to



40% without significantly losing accuracy. Conversely, LSP consistently results in
minimal accuracy, even with a modest pruning percentage.

The findings presented in this study offer valuable insights into the potential
development and utilization of neural network models on resource-constrained
devices, as well as the potential for a federated environment to mitigate the impact
of model pruning. Additionally, there is interest in exploring how various pruning
techniques interact with different neural networks and their impact on reducing
the volume of data transmitted over the network during federated algorithms.
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Chapter 1

Introduction

Today, the world is characterized by the proliferation of thousands and thousands
of technological devices, each manifesting distinct features related to their specific
purpose. To be more precise, according to the latest available data, there are
approximately 17.08 billion connected devices around the world, and this number
is expected to almost double by 2030 [1].

Throughout the past century, there has been an essential evolution in technologi-
cal devices, resulting in their continuous enhancement in terms of intelligence, speed,
and multitasking capabilities. The increasing number of functions performed by
these devices has contributed to an exponential growth in their utilization. Smart
devices have assumed a fundamental role in various fields, such as commercial,
environmental, healthcare, industrial, and smart cities. Their applications range
from remote patient monitoring, glucose monitoring and heart rate monitoring
to air quality and temperature assessment and thousands of other purposes. A
common thread among these various applications is represented by the usage and
the generation of large amounts of data: the availability of more data leads to more
accurate estimations.

A critical aspect of these systems is their necessity to work with extreme trans-
parency for those exploiting them, ensuring their presence is nearly imperceptible.
It is imperative that their influence be reduced as much as possible, and this can
be achieved by creating small and lightweight devices.

The necessity to use large amounts of data to perform precise computations
and the small dimensions of devices are features that are challenging to merge.
The reduced size of these devices impacts various aspects, including computational
capabilities, storage capacity, and battery consumption. Furthermore, complexity
increases when real-time analysis is required, which means that the device must be
able to handle a continuous stream of data while performing its operations. The
main goal of this study is to find a solution able to handle all these aspects (i.e. power
consumption, storage usage, fast computing, and limited device resources) through
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Introduction

the strategic application of various Machine Learning methodologies without losing
quality in terms of model accuracy.

The first aspect to analyze is the presence of billions of heterogeneous devices.
The growing quantity of sensors and appliances allows their integration within a
large ecosystem where every client has the possibility to share their knowledge with
the final goal of enhancing the performance of a common model on a specific task.
This approach is possible thanks to the implementation of Federated Learning (2.1).
The most significant advantage of Federated Learning is the ability to preserve
privacy even if every client exploits its local dataset to train the neural network
model before sharing information with other clients.

Secondly, it is crucial to develop a solution that does not require substantial
memory due to the small size of the devices mentioned above. Concerning this
aspect, Model Compression Techniques are powerful instruments that reduce each
client’s local Machine Learning model size. Multiple Model Compression Techniques
exist, each characterized by its own set of advantages and disadvantages, described
in 2.2. Among the various Model Compression Techniques, this study focuses on
Weight Pruning (2.2.1). This strategy is implemented within the PyTorch prune
library and implements the pruning strategy by exploiting a bitmask that indicates
which weights must be considered during the forward step and which must not.
The Weight Pruning strategies exploited are Global Unstructured Pruning (GUP),
Local Unstructured Pruning (LUP), and Local Structured Pruning (LSP). Each
pruning strategy has been evaluated with four different pruning percentages: 20%,
40%, 60%, and 80%.

Finally, the analysis of the network topology to which clients are connected is
another key topic. This study focuses on the implementation of Ring-All-Reduce
and Consensus-Based topologies, each with a variable number of clients. More
details about this aspect can be found in 2.1.2 and 2.1.3.

Docker has been utilized to enable the simulation of a large number of clients
on a single physical machine. This approach allows for creating a container for
each client, making it feasible to assign a distinct IP address to each node and
interconnect them based on the selected network topology. To better understand
how the simulated environment has been created, refer to 4.1.

The results obtained (4) highlight how these aspects affect the accuracy and
inference time when performing an image classification task using the CIFAR10
dataset. Different neural networks have been tested: LeNet5, TinyYoloV2, Mo-
bileNetV2, ResNet18, ResNet50, and VGG16. The evaluation metrics chosen
allowed us to understand if a particular configuration (topology, number of clients,
and pruning strategy) is able to preserve the model’s accuracy while decreasing
its complexity, memory footprint, and the time necessary to classify a new input
image. Dealing with a network of clients in a Federated Learning environment
requires tackling another aspect: bandwidth utilization. For this reason, the results
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section presents two different graphs (Figure 4.14) that show the amount of MB
sent by a single client according to the neural network used in a ring topology.

The results show different behaviours among the three different Weight Pruning
approaches. When comparing accuracy values, Global Unstructured Pruning is the
technique that performs best in every scenario; Local Unstructured Pruning, on
the other hand, performs worse than GUP, mainly when the pruning percentage
is higher than 40%. Local Structured Pruning, instead, is the approach with the
worst behaviour in every simulation set, regardless of the network topology or
the number of clients. Conversely, the inference time’s values are not particularly
affected by Weight Pruning: in most scenarios, the value decreases, as expected,
but not enough to justify a decrease in the model accuracy. An interesting aspect
that emerged from this study concerns the model’s memory usage: by exploiting
PyTorch’s sparse tensors, it is possible to decrease the file size where the model is
saved. In this way, the pruning approach reduces memory consumption, enabling
the development of classification tasks on memory-constrained devices.

In conclusion, this study demonstrates the feasibility of optimizing Federated
Learning for resource-constrained devices through Weight Pruning techniques with
different network topologies. The results show that Global Unstructured Pruning
consistently provides the best balance between model accuracy and complexity
reduction. However, inference time improvements remain marginal, suggesting that
further enhancements are needed to make this trade-off more favourable.
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Chapter 2

Background

2.1 Distributed Learning and Federated Learning

The number of smart devices that characterize our lives increases daily, leading to
the necessity of upgrading well-known Machine Learning strategies.

A traditional training model approach relies on a centralized server or a local
machine where it is possible to use local data and local resources to perform the
desired task. This strategy, called Centralized Learning, presents various drawbacks;
first, data are collected and stored in a single location, raising privacy issues and
increasing the data transfer costs to send large data volumes from different devices
to the central node. Secondly, the daily growing amount of data generated by
sensors and devices makes data storing and processing very challenging: large
datasets require more storage and computational resources, leading to higher
infrastructure costs and difficulty in scaling up the system.

In response to these challenges, a new approach has begun to be employed:
Distributed Learning [2]. In Distributed Learning, a large dataset is typically split
and shared between multiple machines or nodes that collaborate to train a single
model and achieve a common objective. This strategy addresses the scalability
issues of Centralized Learning since every client works with a subset of the original
dataset: increasing the number of clients within the distributed environment makes
it possible to split the original dataset into a larger number of chunks, each with
a reduced dimension. However, Distributed Learning is characterized by privacy
concerns. Indeed, the necessity of sharing the training set among clients using the
network could lead to privacy leaks. Furthermore, Distributed Learning requires
frequent and intensive communication between nodes to ensure consistency during
the training phase.

An initial solution to mitigate privacy concerns associated with Distributed
Learning is represented by Federated Split Learning [3]. This algorithm splits
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the deep learning model into two chunks: front-end and back-end. The front-end
segment is located on an edge device that trains it up to a specified point, after which
the output is transmitted to a central server that exploits the back-end segment
to complete the training phase and generate the output. This solution combines
the parallelism of Federated Learning with reduced local memory requirements
by splitting the model into segments. The benefits of Federated Split Learning
are various, such as lower computation and memory demand for clients, as well as
improved scalability since the edge server and the client can train independently.
However, a significant challenge of this approach is represented by the strategy
chosen to split the model and the selection of the cutting-point, as these factors
significantly influence model performance. Additionally, since clients share the
model’s hidden variables with the server over the Internet, Federated Split Learning
is prone to privacy concerns.

This research focuses on a methodology aimed at enhancing privacy: Federated
Learning [4]. With Federated Learning, each client trains the local model, exploiting
its own training set. Once the training phase is completed, every client sends only
its model weights to the server. The server has the primary purpose of indicating
the neural network model to use for every client, to average the received weights,
and to send back to the clients the resulting weights. In this way, the security is
strongly enhanced since the raw data never leaves the client’s devices. However,
every client must store all the layers of its model locally. The memory consumption
aspect of this approach is discussed in more detail in the subsequent section of this
work (2.2). Furthermore, communication between the server and clients occurs less
frequently with respect to Distributed Learning, reducing communication overhead
and making Federated Learning suitable for environments with limited bandwidth.

Federated Learning implements three distinct paradigms for training large-scale
Machine Learning models: Parameter Server (PS), Ring-All-Reduce (RAR) and
Consensus-Based (CB). These three strategies are distinguished by different network
topologies and the presence or absence of a central server for weight aggregation
[5].

2.1.1 Parameter Server
The topology exploited by this strategy is represented in Figure 2.1. This is the
most straightforward architecture. In the beginning, each client trains its local
model with its local dataset: this fundamental step is present in all strategies and
ensures privacy and data accessibility. It is important to note that each client uses
the same model, which is communicated to it by the server before starting the
training phase. Subsequently, each client transmits the computed weights to the
Parameter Server, which then aggregates them to create a new set of weights. At
the end of the aggregation step, each client receives the new set of weights from
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the server and updates its local model. In this way, it is possible to enhance the
system’s security, as clients only transmit their model weights over the network
rather than raw data. On the other hand, the Parameter Server represents a single
point of failure for the architecture, and every client has to send the entire set of
model weights over the network, increasing the bandwidth utilization.

Figure 2.1: Federated Learning process with Parameter Server and n clients

2.1.2 Ring-All-Reduce
The Ring-All-Reduce algorithm consists of two different phases: the share-reduce
phase and the share phase. The algorithm is illustrated in Figure 2.2. The first
step is the training phase, during which each client trains its model and divides
the model weights into chunks equal to the number of clients in the federated
environment. Figure 2.2 shows the RAR algorithm with four clients, and, for this
reason, every client divides the weights into four segments and assigns a unique
ID to each segment. Then, the preliminary step of the share-reduce phase begins,
with each client sending the segment associated with the client ID to its successor
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within the ring topology. After this initial step, each client sends a chunk obtained
by reducing the chunk received in the previous step and its own chunk with the
same ID to its successor. For example, client 1 received the chunk with ID 4 in
step 2; in step 3, client 1 sends a reduced chunk obtained from the chunk with ID 4
received from client 4 (green) and its own chunk with ID 4 (red). In the following
step, client 1 sends to its successor a chunk obtained by reducing the chunks with
ID 3 (green and blue) received in step 4 and its own chunk with ID 3 (red). During
the last step of the share-reduce phase (step 5), every client sends a chunk obtained
by reducing all the chunks with the same ID. Now, the share phase starts: each
reduced segment (R1, R2, R3, and R4 in Figure 2.2) is shared across the network.
At the end of the algorithm (final step), each client is able to update its model
weights using four chunks created from the weights of all the clients in the network.

With the Ring-All-Reduce algorithm, bandwidth utilization can be decreased as
each client sends and receives the model one chunk at a time. With a larger number
of clients, the size of every chunk is smaller. Another fundamental improvement is
the absence of a central server during algorithm execution; in this way, a single point
of failure does not characterize the network. However, potential bottlenecks can
arise within the ring topology, as the algorithm progression is contingent upon the
speed of the slowest client in each step, necessitating all clients to wait accordingly.

2.1.3 Consensus-Based
As for the Ring-All-Reduce paradigm, the Consensus-Based paradigm relies on a
central server only during the initial steps to indicate the model to use to each
client. An example of a Consensus-Based topology with four clients is shown in
Figure 2.3. After training the local model, every client sends its model weights to
every successor and receives the weights from all the predecessors. The number of
predecessors and successors can vary according to the topology. Once a client has
received all the weights from the predecessors, it updates its model by averaging
the received weights and its own weights. This approach is more effortless to
implement compared to Ring-All-Reduce. However, every client requires sufficient
bandwidth to exchange its weights with the successors, making this approach a
trade-off between RAR and Parameter Server topologies.

This study’s Results section (4) demonstrates the effectiveness of a Federated
Learning environment with both the RAR paradigm and the Consensus-Based
paradigm with 4, 8, and 12 clients interconnected within the same network.

2.2 Model Compression Techniques
This section investigates the possible advantages and drawbacks related to Model
Compression Techniques. This set of techniques is fundamental when dealing with
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Figure 2.2: Federated Learning process with Ring-All-Reduce strategy and four clients

resource-constrained devices, as it can be exploited to optimize memory usage.
In most scenarios, regardless of the Model Compression Technique, optimizing
memory usage is linked to loss of accuracy due to model simplification.

Quantization is a powerful Model Compression Technique aimed at weight-
precision reduction: the original 32-bit float values are encoded in 8-bit values.
This approach decreases memory consumption but is computationally expensive
and strongly dependent on hardware.

Low-rank factorization is another Model Compression Technique that exploits a
mathematical approach for approximating a dense weight matrix with the product
of two lower-dimensional matrices with lower ranks.
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Figure 2.3: Consensus-Based topology with four clients

Knowledge distillation is a complex and effective Model Compression Technique
that takes advantage of two different models. A compact model (student) is trained
to mimic the outputs of a bigger and more accurate model (teacher); the goal of
the student model is to approximate the teacher’s model predictions as closely
as possible. The teacher model is trained on the original training set, while the
student model is trained with the teacher model’s predictions. The student model
includes the accuracy of its predictions and the similarity of its predictions to those
of the teacher model in its loss function.

As stated in [6], there are other Model Compression Techniques, each with
different features, pros, and cons. The Model Compression Techniques described in
[6] belong to three distinct classes: Convolution Decomposition, Layer Architecture
Modification, and Weight Compression.

The class of Convolution Decomposition indicates all techniques aimed at com-
pressing the model’s convolutional layers. For example, the Sparse Decomposition
of a Convolution Kernel consists of replacing a single computation-intensive convo-
lutional layer with a two-stage decomposition using PCA or multiplication with
identity matrices. Direct Sparse Convolution and Separable Depth-wise Convolution
are two Model Compression Techniques that also belong to this class.

Regarding the Architecture Modification class, the model can be compressed by
replacing the convolutional layers with a fire layer or applying one or more global
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averaging pooling layers.
The Weight Compression class, instead, includes techniques that remove redun-

dant weights to reduce the size of neural networks. This class’s most widely used
techniques are Singular Value Decomposition, Sparse Coding, and Weight Pruning.
The Singular Value Decomposition (SVD) technique introduces an intermediate
layer between two adjacent layers to compress the trained weights and then applies
SVD to the weight matrix. The Sparse Coding technique, instead, decomposes the
original weight matrix into two matrices using a sparse dictionary learning learned
from the original weights.

This work focuses on another Model Compression Technique that belongs to
the weight compression class: Weight Pruning.

2.2.1 Weight Pruning
Identifying optimal techniques for compressing models by reducing their number of
parameters is essential. This reduces memory, battery, and hardware consumption
without sacrificing accuracy. In turn, it allows you to deploy lightweight models
on resource-constrained devices and guarantee privacy with private on-device
computation.

All the pruning techniques studied in this work are implemented within the
PyTorch prune library. It is important to choose the entity to be pruned to obtain
the desired effect; it can be a single layer, a set of layers, or the entire neural network.
Supposing to prune a convolutional layer with a pruning percentage equal to 20%,
a pruning mask is generated by the selected pruning technique and saved. Finally,
pruning is applied prior to each forward step using PyTorch’s forward_pre_hooks.
Specifically, the pruning techniques implemented in Torch.nn.utils.prune com-
pute the pruned version of the weight by combining the mask with the original
parameters.

The Weight Pruning techniques are classified according to several aspects:
random or not, structured or unstructured, local or global. As the name suggests,
random pruning selects the weights to be pruned according to the chosen percentage
without a specific strategy. This approach may lead to a significant accuracy loss
due to the random possibility of pruning relevant weights within the model. The
L1-norm and the Ln-norm are exploited to follow a more precise and controlled
approach. These two approaches prune the tensors by removing the specified
percentage of weights with the lowest L1-norm or Ln-norm.

Pruning techniques are also classified between structured and unstructured
and differ in how they remove parameters. In structured pruning, parameters are
removed in a structured manner, often in groups or patterns. This means the
network’s neurons, channels, or other structural components are pruned together.
Common examples include pruning entire channels in convolutional layers or
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removing entire neurons in fully connected layers. Structured pruning tends
to maintain the network’s original shape and connectivity, facilitating hardware
implementation and accelerating inference. Unstructured pruning involves removing
individual parameters from the neural network without any specific pattern or
structure. Each parameter (weight or bias) is independently evaluated, and the
least important ones are pruned based on specific criteria, such as magnitude or
sensitivity to the output of the model. Unstructured pruning can lead to irregularly
shaped networks with sparse connections, which may be less efficient for hardware
implementation but can achieve higher compression rates than structured pruning.
A comparison between unstructured and structured pruning is illustrated in Figure
2.4.

Figure 2.4: Comparison between unstructured pruning and structured pruning

Finally, a pruning technique can be local or global; these two methodologies
differ in how weight comparison is made. Local pruning consists of removing a
fixed percentage of units/connections from each layer by comparing them within
the layer. Global pruning pools all parameters across layers and selects a global
fraction to prune.

This study is focused on analyzing three particular Model Compression Tech-
niques that merge the previously described aspects: Global Unstructured Pruning
(GUP) with L1-norm, Local Unstructured Pruning (LUP) with L1-norm, and Local
Structured Pruning (LSP) with Ln-norm.
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Chapter 3

Related work

This chapter introduces several works on Distributed Learning systems and energy
consumption analysis.

As a first step, it is fundamental to understand the differences between Central-
ized Learning and Distributed Learning. An interesting comparison between the
two approaches is illustrated in [7]. The work is focused on performance evaluation
within the context of parallel Stochastic Gradient Descent (SGD). The results
show that decentralized algorithms can achieve comparable or superior results to
centralized methods under certain conditions, reduce communication, and increase
robustness against failures. These achievements make Decentralized Learning an
important alternative in distributed environments.

One of the most challenging aspects of Distributed Learning is represented
by handling large datasets. To fully explore this topic, the work [8] investigates
dual averaging methods for distributed optimization, focusing on their convergence
properties and scalability in network settings. The paper’s results indicate that dual
averaging can achieve optimal performance while efficiently handling large-scale
data.

Among the various approaches of Distributed Learning, Federated Learning is
the one that is able to enhance privacy during the model weights update. Federated
Learning is the core topic of [9]; this work addresses the challenge of traffic prediction
in cellular networks using FL, focusing on improving energy efficiency in 5G and
6G networks. The authors followed an energy-aware approach to predict network
traffic patterns while reducing overall energy consumption.

A very interesting framework for Federated Learning is described in [10]. It
is an open-source Python framework designed to simplify the development and
deployment of Decentralized Learning systems. The main advantage of this work is
the possibility for researchers and developers to quickly implement and experiment
with decentralized Machine Learning algorithms, such as Federated Learning,
without requiring in-depth knowledge of the underlying communication protocols
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and system architecture. Users can seamlessly manage client-server communication,
model aggregation, and network topology, making Decentralized Learning more
accessible and scalable. This framework inspired us in the implementation of the
simulation environment described in 4.1.

The simplest architecture for Distributed Learning is the one with Parameter
Server. The Parameter Server topology is described in [11]. The proposed Parameter
Server framework effectively minimizes communication and, at the same time,
ensures rapid convergence of distributed training algorithms. In addition, the
framework improves scalability and efficiency in handling large datasets.

This study analyzes several aspects of Federated Learning, including energy
consumption. A significant analysis of this topic, particularly the carbon footprint of
Distributed and Federated Learning systems, is [12]. This work tackles the following
topics: different approaches for model updating to evaluate energy impact, energy
consumption for DL and FL scenarios, and the importance of node communication
in energy efficiency and carbon footprint. Moreover, it is focused on how network
latency and model update frequency affect total energy consumption. The energy
efficiency of network architectures and devices participating in Federated Learning
can be optimized, for example, by reducing unnecessary communication overhead or
compressing updates. Another aspect highlighted by this paper is the importance
of managing the carbon footprint in the design of Distributed Machine Learning
systems to adopt more sustainable computing practices. The energy cost for learning
and communication with Centralized and Federated Learning are illustrated in
Figure 3.1.

An interesting strategy to improve energy consumption in Distributed Learning
is based on Model Compression Techniques. This thesis focuses on Weight Pruning,
but several other works have studied this topic. To be more precise, the work [13]
develops a model to track the carbon footprint of Federated Learning systems,
focusing on the impact of quantization and sparsification techniques on energy
consumption. It is demonstrated that these techniques significantly reduce energy
consumption and carbon emissions, highlighting their importance for designing
sustainable Machine Learning systems, particularly in IoT applications.

An intriguing paper that explores more in detail Model Compression Techniques,
communication efficiency, and Federated Learning systems is [14]. It explores the
use of quantized neural networks and communication-efficient methods to reduce
energy consumption during model training over wireless networks. The usage of
quantized neural networks leads to a substantial reduction in energy consumption
without significantly impacting the model’s performance, which is fundamental for
designing sustainable systems.

Among the various Model Compression Techniques, quantization is found to be
one of the most effective. Model quantization is the main topic of [15]. Quantization
techniques based on model equivalence are exploited to reduce the computational
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Figure 3.1: Energy cost with different configurations. Image taken from [12]

and memory demands of neural networks. The quantization approach shows
that the models can be significantly compressed while maintaining equivalent
performance, enabling more efficient use of neural networks in resource-constrained
environments.

Similarly, by implementing quantized neural networks, [16] shows that a sig-
nificant reduction in both energy consumption and communication costs can be
achieved within Federated Learning frameworks over cloud-RAN systems.

Model Compression Techniques are particularly effective for developing Machine
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Learning strategies on IoT devices. In [17], a compressed Bayesian Federated
Learning framework has been created for passive radio sensing in industrial IoT
contexts. The study shows that communication overhead between devices and the
central server in the Federated Learning process can be minimized by compressing
updates. This enables reliable sensing in environments with limited bandwidth,
while the Bayesian approach improves the robustness of the learning process.

Lastly, improving storage optimization is necessary to develop a Federated
Learning environment on IoT devices. An interesting paper on this aspect is [18];
the paper introduces a lossless compression technique for neural network models
through exponent sharing. The project’s final goal is efficient storage and intelligent
computation for CNNs on FPGA systems without losing accuracy.

All these works have provided a solid foundation for the development of this thesis,
offering valuable insights, methodologies, and perspectives that have significantly
contributed to shaping the direction and approach of the work presented here.
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Chapter 4

Results

This chapter presents the results obtained from a federated environment deployed
using Docker and Chameleon.

4.1 Simulation environment
The hardware utilized for this study is an RTX 6000 GPU available on Chameleon
Cloud. Docker is used to simulate the presence of multiple clients within the same
physical device and network. Specifically, many Docker containers are generated as
the number of desired clients in the network, allowing each container to replicate
the behaviour of an individual client.

The simulations analyze several parameters, including the number of clients in the
network (4, 8, and 12), the pruning technique applied (Global Unstructured Pruning,
Local Unstructured Pruning, and Local Structured Pruning), the percentage of
weights to be pruned (20%, 40%, 60%, or 80%) and the neural network utilized by
each client (ResNet18, ResNet50, VGG16, MobileNetV2, TinyYoloV2, and LeNet5).
The task of these simulations is Image Classification with the CIFAR10 dataset.
The local datasets are derived from the complete CIFAR10 data; in particular,
every client applies a different image transformation to the entire dataset. In this
way, every client has enough input samples to achieve a good accuracy baseline
within an acceptable number of epochs, and, at the same time, every client trains
the local model on a unique dataset.

The neural networks employed have different dimensionalities. The LeNet5
is the smallest (548.190 non-zero parameters), while the VGG16 is the biggest
(33.630.016 non-zero parameters). The ResNet18 and the ResNet50 have 11.176.832
non-zero parameters and 23.501.951 non-zero parameters, respectively. TinyYoloV2
and MobileNetV2 have 6.303.568 and 2.279.368 non-zero parameters.

The metrics evaluated are accuracy and inference time. Since the network
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comprises various clients with unique data, the metrics computed for each client
vary accordingly. Another critical metric to consider is the bandwidth utilization
resulting from clients’ communications. The topologies employed are Ring-All-
Reduced (RAR) and Consensus-Based (CB).

4.2 Evaluation strategy
Every client initially trains its model for a certain number of epochs, and then
the clients perform the Ring-All-Reduce algorithm. In the following step, each
client retrains the local model obtained after the RAR or CB algorithm for an
additional number of epochs before conducting inference. The accuracy and the
inference time recorded after this step are used as baselines for further simulations,
and the model obtained is used as the starting model for the next steps. At this
point, every client applies the same pruning strategy at a designed percentage to
the starting model and then performs inference (Figure 4.1). These final steps are
repeated for each pruning strategy and percentage.

This approach allows for an analysis of the impact of a certain pruning technique
at a specified percentage on the baselines of both accuracy and inference time.

Figure 4.1: The evaluation strategy is employed to assess the impact of various pruning
techniques on both accuracy and inference time
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4.3 Simulation results
This section shows the results obtained based on the neural network employed.

Each graph in this section contains histograms about accuracy and inference
time, and each of them shows a confidence interval of 95%, calculated using the
following formula:

CI = x̄ ± 1.96 · σ√
n

(4.1)

Where:

• x̄ is the mean value of accuracy or inference time collected from all clients in
the network,

• σ is the standard deviation of the accuracy or inference time across all clients,

• n is the number of clients used to collect data.

4.3.1 Ring-All-Reduce Topology
ResNet18

As shown in Figure 4.2, ResNet18 achieves a precision baseline close to 80%
regardless of the number of clients within the network. It is evident that the
Global Unstructured Pruning technique performs the best compared to the other
techniques. The other unstructured technique, LUP, performs similarly to GUP
when the pruning percentage is lower than 60%; with a pruning percentage equal
to 60% and 80%, LUP’s accuracy decreases while the variability increases. The
worst pruning technique is Local Structured Pruning. Indeed, the best accuracy
value achieved is close to 30%, with a pruning percentage of 20%.

The graphs in Figure 4.3 display the inference times obtained by ResNet18 with
4, 8, and 12 clients. Regardless of the number of clients and the pruning technique,
it has been found that the pruning percentage does not particularly influence the
inference time’s values. In all scenarios, the inference time is slightly lower with
respect to the baseline.

Considering accuracy and inference time trends, Global Unstructured Pruning
and Local Unstructured Pruning are the best configurations. In particular, LUP is
better than GUP with a percentage lower than 60% since it keeps the accuracy
close to the baseline while decreasing the inference time; with a pruning percentage
equal to 60% and 80%, GUP has an accuracy closer to the baseline and higher
than LUP.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.2: Accuracy’s behaviour using a ResNet18 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.3: Inference time’s behaviour using a ResNet18 with 4, 8, and 12 clients
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Results

ResNet50

The network exploited in these experiments is the ResNet50, which has twice the
number of parameters of ResNet18. This aspect is reflected in the baseline accuracy
value higher than in the previous set of experiments, as can be seen in Figure 4.4.
The baseline accuracy value is always higher than 80% and decreases when the
pruning percentage decreases. The Global Unstructured Pruning and the Local
Unstructured Pruning techniques are the closest to the baseline, while the LSP
technique is the worst.

The graphs of inference time (Figure 4.5) in this work show that the Global
Unstructured Pruning continuously decreases the inference time.

Global Unstructured Pruning is the best technique for this experiment setup
because it achieves accuracy close to the baseline while decreasing the inference
time. LUP is a good alternative only if the pruning percentage is lower than 60%.
LSP decreases inference time but decreases accuracy much more than the other
two techniques.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.4: Accuracy’s behaviour using a ResNet50 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.5: Inference time’s behaviour using a ResNet50 with 4, 8, and 12 clients
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VGG16

VGG16 is the biggest neural network studied in this work in terms of non-zero
parameters. Due to this aspect, the results obtained with the Global Unstrcutrued
Pruning technique and shown in Figure 4.6 are close to the baseline regardless
of the number of clients. Moreover, there is less variability in accuracy values,
meaning that once the model is trained, even an 80% GUP is not able to decrease
the model performance. These considerations are not valid for LUP and LSP; Local
Unstructured Pruning shows significant variability in accuracy values, particularly
with a pruning percentage equal to 80%. LSP, on the other hand, has less variability
in results, but the accuracy values are much lower than the baseline.

The inference time’s trend shown in Figure 4.7 demonstrates that the Local
Structured Pruing technique is the one that leads to the most significant decrease in
values. Meanwhile, the GUP strategy generates inference time values comparable
to the baseline.

Even if the LSP approach results in lower inference times, it is not the best
strategy for this configuration since the accuracy values are too far away from
the baseline. LUP is the best strategy to adopt with a pruning percentage lower
than 60%, leading to acceptable accuracy values and lower inference times. With
higher pruning percentages, Global Unstructured Pruning results in being the best
technique in terms of accuracy and inference time.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.6: Accuracy’s behaviour using a VGG16 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.7: Inference time’s behaviour using a VGG16 with 4, 8, and 12 clients
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Results

MobileNetV2

As can be seen in Figure 4.8, all the pruning techniques achieve accuracy values
lower than the baseline with a pruning percentage higher than 20%. GUP and
LUP perform the same with 20% of pruning percentage, and the accuracy values,
in this case, are almost equal to the baseline. Increasing the pruning percentage
leads to a very strong decrease in accuracy, which means that the architecture of
MobileNetV2 suffers from these kinds of Model Compression Techniques.

This aspect is also highlighted by the graphs in Figure 4.9: the inference time
values increase and are higher than the baseline, even if they are supposed to
decrease when the pruning percentage increases.

These experiments show that Weight Pruning is not effective with the Mo-
bileNetV2 neural network, particularly with high pruning percentages. The per-
formance is worse in terms of both accuracy and inference time compared to the
unpruned model.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.8: Accuracy’s behaviour using a MobileNetV2 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.9: Inference time’s behaviour using a MobileNetV2 with 4, 8, and 12 clients
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Results

TinyYoloV2

The graphs in Figure 4.10 have an entirely opposite trend with respect to the graphs
created with the previous experiment setup. The Global Unstructured Pruning
approach keeps the accuracy equal to the baseline regardless of the number of clients
or the pruning percentage. Moreover, the values have very low variability. The two
local pruning approaches (i.e. LUP and LSP) achieve lower accuracy values; only
the LUP approach with 20% of pruning percentage has results comparable with
GUP.

The various pruning methods do not particularly influence the inference time
values as seen in Figure 4.11.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.10: Accuracy’s behaviour using a TinyYoloV2 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.11: Inference time’s behaviour using a TinyYoloV2 with 4, 8, and 12 clients
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Results

LeNet5

The results obtained with this setup are the ones with the most linear accuracy
trend (Figure 4.12). Indeed, the accuracy decreases when the pruning percentage
increases, regardless of the number of clients. GUP and LUP are the best approaches
since they achieve values closer to the baseline. Local Structured Pruning, in this
scenario, too, is the worst approach, but its trend is linear.

Figure 4.13 shows that Weight Pruning does not affect inference time.
The technique that performs the best with LeNet5 is Local Unstructured Pruning:

the accuracy values are better than GUP and LSP, regardless of the pruning
percentage and the number of clients.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.12: Accuracy’s behaviour using a LeNet5 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.13: Inference time’s behaviour using a LeNet5 with 4, 8, and 12 clients
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Bandwidth utilization

The aspect related to bandwidth utilization is very important when dealing with
specific approaches such as Ring-All-Reduce. Graphs in Figure 4.14 suggest two
different approaches to exchange the non-zero parameters of each model across the
network.

The first strategy exploits the bitmask generated by PyTorch’s prune library.
After pruning the model, each client sends the non-zero parameters and the bitmask
to its successor. In this case, the extra cost due to the transmission of the bitmask
is equal to a single bit for each value, but it leads to a higher reconstruction cost.
Indeed, when a client receives both the non-zero parameters and the bitmask, it has
to iterate over the whole bitmask to understand the correct position of a certain
non-zero parameter.

On the other hand, the second approach associates a numerical index to each
non-zero parameter. The index indicates the parameter’s position inside the model
weight matrix, allowing the receiver to immediately understand the correct value’s
position. The main disadvantage of this approach is that the index needs more
than a single bit, particularly if the model is large and has a considerable number
of weights, leading to a larger bandwidth consumption.

In other words, the bitmask approach is useful when the main goal is to limit
bandwidth utilization, and there are no constraints on each client’s reconstruction
time. If the goal is to reconstruct the weight matrix received as fast as possible
and the communication bandwidth is unlimited, the index approach is preferable.
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(a) Bitmask

(b) Index for each model weight

Figure 4.14: Bandwidth utilization for non-zero parameters exchange with two different
approaches
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4.3.2 Consensus-Based Topology
The results shown in this section are characterized by a Consensus-Based topology.
For this reason, it is essential to know each client how many successors and
predecessors they have. A specific setup of clients was chosen to make the results
comparable with 4, 8, and 12 clients. Tables 4.1, 4.2, and 4.3 show the number of
successors and predecessors of each client for each experiment setup.

Client-id #Predecessors #Successors
Client-1 1 1
Client-2 2 1
Client-3 1 1
Client-4 1 2

Table 4.1: Number of predecessors and successors for each client in a Consensus-Based
network with four clients

Client-id #Predecessors #Successors
Client-1 0 4
Client-2 2 2
Client-3 1 2
Client-4 3 3
Client-5 1 2
Client-6 2 1
Client-7 1 1
Client-8 2 2

Table 4.2: Number of predecessors and successors for each client in a Consensus-Based
network with eight clients
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Client-id #Predecessors #Successors
Client-1 0 5
Client-2 1 6
Client-3 1 7
Client-4 1 5
Client-5 2 3
Client-6 3 2
Client-7 2 3
Client-8 3 2
Client-9 1 2
Client-10 4 1
Client-11 4 1
Client-12 6 0

Table 4.3: Number of predecessors and successors for each client in a Consensus-Based
network with twelve clients
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ResNet18

The results displayed in Figure 4.15 show that the Global Unstructured Pruning
technique achieves the best results compared to the other pruning techniques. The
values obtained with LUP and LSP are characterized by high variability and are
always lower than the baseline.

The pruning techniques do not appear to particularly affect the inference time
values, but LSP decreases them the most.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.15: Accuracy’s behaviour using a ResNet18 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.16: Inference time’s behaviour using a ResNet18 with 4, 8, and 12 clients
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Results

ResNet50

The results in Figure 4.17 confirm the trend highlighted with ResNet18, but the
values have less variability due to the larger model size. Global Unstructured
Pruning confirms itself as the best Weight Pruning technique, able to achieve values
similar to the baseline even when the pruning percentage is higher than 60%.

Inference time values (Figure 4.18) are lower than the baseline, in particular
with LSP, and their variability is very low.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.17: Accuracy’s behaviour using a ResNet50 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.18: Inference time’s behaviour using a ResNet50 with 4, 8, and 12 clients

45



Results

VGG16

Due to the large size of the model, the accuracy values in Figure 4.19 are very
unstable and have a large variability. It is hard to indicate which pruning technique
performs the best, while it is very easy to understand that LSP is the worst.

Inference time values have a variability that increases when the number of clients
increases, but the results obtained are similar to the baseline in all scenarios. The
inference values behaviour can be seen in Figure 4.20.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.19: Accuracy’s behaviour using a VGG16 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.20: Inference time’s behaviour using a VGG16 with 4, 8, and 12 clients
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MobileNetV2

The graphs in Figure 4.19 show that the accuracy values are affected by a significant
decrease when the pruning technique is equal to 60% or 80%. Global Unstructured
Pruning is the only technique that can maintain a performance similar to the
baseline, but only with 20% Weight Pruning.

Furthermore, GUP is the only technique able to decrease the inference time
regardless of the number of clients, as shown in Figure 4.22.

With this experiment setup, Global Unstructured Pruning is clearly the best
approach to keep an acceptable accuracy value while decreasing inference time and
model size.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.21: Accuracy’s behaviour using a MobileNetV2 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.22: Inference time’s behaviour using a MobileNetV2 with 4, 8, and 12 clients
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TinyYoloV2

With this neural network, Global Unstructured Pruning achieves the same accuracy
as the baseline even with 80% of pruning, while LUP and LSP perform worse
(Figure 4.23).

GUP keeps the inference time similar to or lower than the baseline, but LUP
and LSP are the techniques that reduce it the most.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.23: Accuracy’s behaviour using a TinyYoloV2 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.24: Inference time’s behaviour using a TinyYoloV2 with 4, 8, and 12 clients
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LeNet5

Figure 4.25 shows a linear trend with low variability, and this is due to the small
size of the model used. The baseline accuracy is not extremely high, but GUP is
the only technique to mimic its behaviour when the pruning percentage is 20%.

The inference time values obtained (shown in Figure 4.26) always behave the
same regardless of the number of clients, the percentage of pruning or the pruning
technique.
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.25: Accuracy’s behaviour using a LeNet5 with 4, 8, and 12 clients
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(a) 4 clients

(b) 8 clients

(c) 12 clients

Figure 4.26: Inference time’s behaviour using a LeNet5 with 4, 8, and 12 clients
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Memory footprint

Table 4.4 shows the size of the files where different models are saved. The PyTorch
format (i.e., .pt) has been analyzed, in particular, the models have been stored
by exploiting sparse tensors. The pruning approach leads to weight matrices with
several zero values, and for this reason, to highlight the memory impact of pruning,
it is fundamental to use sparse tensors. As seen in Table 4.4, pruning can reduce
the memory footprint, so it is possible to store pruned models using smaller size
files while performing as shown in 4.

Model name Unpruned 20% 40% 60% 80%
ResNet18 393.45 MB 313.60 MB 233.79 MB 157.48 MB 78.80 MB
ResNet50 845.73 MB 672.61 MB 499.80 MB 339.01 MB 170.03 MB
VGG16 866.22 MB 693.41 MB 531.78 MB 346.73 MB 173.55 MB
MobileNetV2 78.46 MB 62.88 MB 47.30 MB 31.10 MB 16.04 MB
TinyYoloV2 216.31 MB 173.07 MB 129.83 MB 86.60 MB 43.36 MB
LeNet5 10.82 MB 8.68 MB 6.50 MB 4.34 MB 2.27 MB

Table 4.4: Comparison of the file sizes of .pt model weight files across different neural
network architectures
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Chapter 5

Conclusion

This final section presents the main results achieved in this work and analyzes
future improvements.

This work aims to understand the effect of several Model Compression Techniques
in a Federated environment with different topologies and numbers of clients. More
in detail, Global Unstructured Pruning, Local Unstructured Pruning, and Local
Structured Pruning have been analyzed with Ring-All-Reduce and Consensus-Based
topologies with 4, 8, and 12 clients. The metrics evaluated are accuracy, inference
time, and bandwidth utilization.

This study’s final goal is to find the best resource-constrained device approach.
For this reason, it is fundamental to discover a solution that optimizes storage
consumption and bandwidth utilization without decreasing precision.

The Results section (4) highlights several interesting behaviours depending on
the pruning percentage and technique.

In most scenarios, Global Unstructured Pruning represents the best approach in
terms of accuracy, mainly when the pruning percentage is higher than 40%. On the
other hand, Local Unstructured Pruning achieves better performance than GUP
when the pruning percentage is equal to 20% or 40%. In this case, the pruned model
achieves higher accuracy values while decreasing the inference time. A common
aspect that characterizes all the experiments is the poor performance obtained by
Local Structured Pruning. This technique achieves shallow accuracy values and
never improves the inference time.

It is interesting to study the trend of MobileNetV2 accuracy: a pruning per-
centage equal to 20% is nearly imperceptible in terms of values, but with higher
percentages, precision drops with each pruning technique. TinyYoloV2, instead,
has the opposite behaviour: even with 80% of Global Unstructured Pruning, the
accuracy value does not change from the baseline.

Regarding the topology to exploit, the Ring-All-Reduce and the Consensus-
Based topology achieve the same accuracy results. The RAR topology enhances

59



Conclusion

privacy and improves the device’s local memory footprint, and for this reason, it is
preferable to the Consensus-Based topology.

The Ring-All-Reduce approach presents another essential metric to be evaluated:
bandwidth utilization. The experiments demonstrate the possibility of reducing
the amount of data shared across the network by sending only weights different
from zero.

Another fundamental aspect is related to the memory footprint. The experi-
mental results show that every pruning technique decreases the file size in which
the model is saved according to the exploited pruning percentage. By saving only
the weights that are not pruned, it is possible to decrease the .pt file size, which
describes the model and permits the finding of a tradeoff between the memory
consumption and the accuracy values: the strategy can be implemented on resource-
constrained devices by pruning the model, although, in most of the scenarios, the
accuracy decreases.

In conclusion, Global and Local Unstructured Pruning techniques perform
the best. Their behaviours differ depending on the pruning percentage and the
neural network exploited. Pruning is also particularly useful for decreasing the
model’s memory footprint, allowing the development of Image Classification tasks
on memory-constrained devices. The adopted topology does not have a particularly
influential effect on the accuracy or inference time values, but the RAR topology
can improve privacy and memory impact.
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