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Abstract

The increasing use of electric vehicles (EVs) is revolutionizing the land-
scape of home energy management, offering new opportunities through Vehicle-
to-Grid (V2G) technology and, in particular, the Vehicle-to-House (V2H)
mode. This research explores the implementation of an intelligent V2H sys-
tem, with the main objective of minimizing energy costs and reducing peak
demand, thus contributing to a more sustainable, resilient, and efficient elec-
trical system.

The first part of the work provides a detailed overview of V2G and V2H
technologies, illustrating the potential and challenges associated with their
integration into home energy systems. The technical, economic, and envi-
ronmental implications are analyzed, highlighting how these technologies can
foster a transition to a greener and smarter energy model.

The core of the research focuses on four linear optimization models. The
first two models are offline and based on historical data and forecasts of
load and energy production. These models are designed to optimize en-
ergy management over defined time periods, leveraging forecasts of energy
availability and demand. The other two models are corrective and operate
online, adapting energy management strategies in real-time in response to
immediate variations in load and energy availability conditions.

The key innovation of this research lies in the ability to consider the dy-
namic price of electricity, optimizing the energy flow between the vehicle and
the house to maximize economic savings. Through intelligent management
of the electric vehicle’s charging and discharging, the system can reduce en-
ergy costs, mitigate peak demand, and improve the overall efficiency of home
energy use.

The experimental results obtained demonstrate a significant reduction in
energy costs and more efficient use of energy, confirming the effectiveness of
the proposed models. The research concludes by emphasizing the potential of
V2H as an essential strategy to address future energy challenges, promoting
home energy management that is not only more sustainable but also smarter
and more resilient. This research represents a significant contribution to the
field of energy management, outlining a clear path toward a greener and
smarter energy future.
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Chapter 1

Introduction

In recent years, the growing adoption of electric vehicles (EVs) has opened
new frontiers in home energy management. Advanced technologies such as
Vehicle-to-Grid (V2G) and, in particular, Vehicle-to-House (V2H) promise to
revolutionize how energy is used, stored, and distributed in homes, improving
energy efficiency and providing sustainable solutions for global environmental
challenges.

Today’s electrical system faces problems such as increased energy demand,
consumption peaks, and CO2 emissions. According to the International En-
ergy Agency (IEA), global electricity demand is expected to grow by 2.1%
per year until 2040, putting enormous pressure on existing power grids [1].
V2G and V2H technologies emerge as promising solutions, enabling intel-
ligent energy management and reducing emissions by integrating electric
vehicles into the home grid [2, 5].

1.1 Context and Importance of the Problem

The widespread adoption of electric vehicles not only reduces dependence
on fossil fuels but also leverages vehicle batteries as distributed energy re-
sources. EV batteries can be used to store energy during low-demand periods
and release it during consumption peaks, contributing to grid stabilization.
Recent studies highlight how electric vehicles can provide frequency regula-
tion services and capacity reserves through V2G, improving grid reliability
and resilience [5, 2].

V2H technology allows the use of EV batteries to power homes directly,
enhancing domestic energy efficiency and providing backup power in case
of grid interruptions. A recent analysis showed that implementing V2H
systems can lead to significant energy cost reductions and improved home
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Chapter 1. Introduction

energy reliability [3, 8].

1.2 Smart Grids

Smart grids represent an evolution of traditional electrical grids, integrat-
ing advanced digital technologies to enhance the reliability, security, and
efficiency of power distribution. These intelligent networks allow bidirec-
tional energy flow management, facilitating the integration of renewable en-
ergy sources and the implementation of technologies such as V2G and V2H.
Smart grids enable real-time communication between energy consumers and
suppliers, optimizing resource usage and reducing waste [4, 6].

Figure 1.1: Illustration of the bidirectionality in smart grids, showing energy flow between
the electric vehicle, house, solar panels, and the grid.

1.3 Research Motivation

The main motivation for this research is to explore the potential of an intel-
ligent V2H system to optimize home energy management. While numerous

2



Chapter 1. Introduction

studies exist on V2G applications, there are still significant gaps in the lit-
erature regarding the practical application of V2H systems, especially in
residential contexts. Recent studies emphasize the need to develop opti-
mization models that account for electricity price dynamics and variations
in energy demand [4, 6].

1.4 Research Objectives

The main objectives of this research are:

• Develop and test linear optimization models for V2H energy manage-
ment based on historical data and forecasts of load and energy produc-
tion.

• Assess the economic impact of implementing such systems, considering
various electricity price scenarios.

• Propose energy management strategies that consider the dynamic price
of electricity and real-time load conditions.

1.5 Offline and Online Models

The offline models operate on a 24-hour horizon, based on historical data
and forecasts. Experiments were conducted in various scenarios, considering
the presence of the vehicle at home, different energy price profiles, and miles
driven during the day with the vehicle. The online models, on the other hand,
respond to errors in arrival and return times and the number of miles driven,
adapting energy management strategies in real time to address immediate
variations in load conditions and energy availability [7, 8].
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State of the Art of V2G and V2H
Technologies

2.1 Introduction to V2G Technology

Vehicle-to-Grid (V2G) technology represents a transformative approach in
integrating electric vehicles (EVs) with the electrical grid. This technology
allows EVs to interact bidirectionally with the grid, enabling not only the
charging of the vehicle’s battery but also the return of stored energy to the
grid. V2G has the potential to provide various ancillary services, such as
frequency regulation, peak shaving, and load balancing, which are critical
for enhancing grid stability and efficiency.

2.1.1 Key Components and Functionality

The V2G system is comprised of several key components:

• Electric Vehicle (EV): Equipped with a bidirectional charger and a
battery management system.

• Bidirectional Charger: Allows energy to flow in both directions be-
tween the vehicle and the grid.

• Communication Infrastructure: Facilitates data exchange between
the EV, the charger, and the grid operator.

2.1.2 Benefits of V2G Technology

The benefits of V2G include:

• Frequency Regulation: EVs can provide energy to the grid to main-
tain stable frequency.

4
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• Peak Demand Reduction: EVs can return energy to the grid during
high demand periods, helping to reduce peak loads.

• Grid Efficiency: V2G can help balance energy supply and demand,
improving overall grid efficiency.

Recent studies have demonstrated that V2G implementation can lead to
significant improvements in grid stability and reliability. For instance, a
study by Kempton and Tomić (2005) highlighted the potential of V2G in
providing frequency regulation services [9]. Another study by Guille and
Gross (2009) explored the economic benefits of V2G for EV owners and
grid operators [10]. More recently, an analysis by White and Zhang (2011)
demonstrated how V2G adoption could help reduce operational costs of the
grid [11].

2.2 V2H Technology

Vehicle-to-House (V2H) technology is a specific application of V2G that
allows EVs to provide energy directly to homes. This technology can enhance
domestic energy efficiency and provide backup power during grid outages.

2.2.1 Functioning of V2H Technology

V2H uses the following components:

• Electric Vehicle (EV): Equipped with a bidirectional charger.

• Home Energy Management System (HEMS): Manages the en-
ergy flow between the EV, the home, and the grid.

• Bidirectional Charger: Enables energy transfer between the EV and
the home.

2.2.2 Benefits of V2H Technology

The main benefits of V2H include:

• Energy Efficiency: EVs can store energy during low-demand periods
and release it when needed, improving home energy efficiency.

• Backup Power: In case of grid interruptions, the EV can provide
power to the home, ensuring continuous electricity supply.

5
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• Cost Reduction: Strategic use of stored energy can reduce home
energy costs by taking advantage of variable electricity rates.

A study by Green and Newman (2017) demonstrated that implementing
V2H systems can lead to significant energy cost reductions and improved
home energy reliability [12]. A more recent analysis by Wang et al. (2020)
highlighted the positive impact of V2H on CO2 emissions, contributing to
a more sustainable environment [31]. Additionally, a study by Luo et al.
(2021) showed how integrating V2H with renewable energy sources can fur-
ther optimize home energy management [14].

2.3 Development and Solving Technologies

Recent studies in the field of V2G and V2H technologies focus on several key
areas, including the optimization of energy management models, integration
with smart grids, and the use of advanced algorithms to improve efficiency
and sustainability.

2.3.1 Optimization of Energy Management Models

Optimizing energy management models is crucial to maximize the benefits
of V2G and V2H technologies. Recent studies have developed optimization
models using linear and nonlinear programming techniques to manage energy
between EVs and the grid. For example, an optimization model proposed
by Liu et al. (2021) uses linear programming to minimize energy costs and
improve system efficiency [28]. Additionally, a study by Li et al. (2022)
implemented stochastic optimization algorithms to handle uncertainty in
demand and supply forecasts [16].

2.3.2 Integration with Smart Grids

Integrating V2G and V2H technologies with smart grids is an emerging re-
search area. Smart grids enable bidirectional energy flow management, facil-
itating the implementation of advanced technologies like V2G and V2H. A
study by Tan et al. (2020) explores the use of smart grids to optimize energy
distribution and improve grid resilience [17]. Another study by Zhang et al.
(2021) demonstrated how integrating V2G with smart grids can significantly
enhance grid stability and efficiency [18].
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2.4 Smart Grids and Their Importance

Smart grids represent an evolution of traditional electrical grids, integrating
advanced digital technologies to enhance the reliability, security, and effi-
ciency of power distribution. These intelligent networks allow bidirectional
energy flow management, facilitating the integration of renewable energy
sources and the implementation of technologies such as V2G and V2H.

2.4.1 Features of Smart Grids

Smart grids are characterized by several advanced features:

• Bidirectional Energy Management: Allows energy exchange in
both directions between the grid and end-users.

• Advanced Communication Infrastructure: Utilizes real-time com-
munication systems to monitor and manage energy distribution.

• Integration of Renewable Energy: Facilitates the use of renewable
energy sources like solar and wind power.

• Resilience and Security: Enhances grid resilience against failures
and cyber-attacks through advanced monitoring systems.

A study by Fang et al. (2012) highlighted the importance of smart grids
in efficient energy management and CO2 emissions reduction [19]. More
recently, a study by Gungor et al. (2013) explored the potential of smart
grids in optimizing resource usage and reducing operational costs [20].

2.4.2 Benefits of Smart Grids for V2G and V2H Technologies

Smart grids offer several crucial benefits for the effective implementation of
V2G and V2H technologies:

• Optimization of Energy Flow: Enables optimal energy management
between EVs, homes, and the grid.

• Reduction of Energy Losses: Improves grid efficiency by reducing
energy losses during distribution.

• Enhanced Reliability: Provides robust infrastructure for reliable en-
ergy supply and demand management.

Smart grids play a pivotal role in realizing the full potential of V2G and
V2H technologies, enabling more efficient and sustainable energy systems.
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2.5 Current State of Technology

Currently, V2G technology is still in its early stages of development and im-
plementation, with various pilot projects underway around the world. How-
ever, the results of studies and experiments conducted so far are promising
and indicate significant potential for improving energy efficiency and grid
stability. V2H technology, on the other hand, is gaining increasing inter-
est for its domestic applications, offering practical solutions for energy self-
sufficiency and cost reduction.

Despite technical and infrastructural challenges, advances in research and
the development of new technologies and algorithms are rapidly bringing
these solutions closer to commercial reality. Continuous government pol-
icy support and investment in smart grid infrastructure will be crucial to
accelerating the widespread adoption of V2G and V2H technologies.
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Chapter 3

Application Scenario

3.1 Introduction to the Application Scenario

The application scenario of Norway provides an ideal context for the imple-
mentation and analysis of V2G and V2H technologies. The combination of
a high penetration of electric vehicles, advanced smart grid infrastructure,
and a strong commitment to sustainability creates a favorable environment
for the experimentation and optimization of these technologies. This chapter
describes the application scenario for the implementation of Vehicle-to-Grid
(V2G) and Vehicle-to-House (V2H) technologies. Norway has been chosen
as the ideal context for this analysis, thanks to its advanced energy infras-
tructure, high penetration of electric vehicles (EVs), and strong commitment
to sustainability.

The data used for the experiments in this thesis are derived from the rich
dataset of hourly residential electricity consumption and survey responses
from the iFlex dynamic pricing experiment [22].

3.2 Characteristics of the Energy System

Norway’s energy system is characterized by a significant reliance on renew-
able energy, primarily hydroelectric power. Nearly 98% of Norway’s electric-
ity production comes from renewable sources, making it a global leader in
renewable energy integration [23]. The country experiences significant varia-
tions in energy demand between summer and winter, with peak consumption
during the evening hours. According to recent studies, the daily load profile
in a residential area shows two main peaks: one in the morning (7:00-9:00)
and another in the evening (17:00-21:00) [21].

9
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3.3 Grid Infrastructure and Smart Grid

Norway has made substantial investments in smart grid infrastructure to
improve energy distribution efficiency and integrate renewable sources. The
country employs advanced communication and energy management technolo-
gies to monitor and control energy flow in real-time. This includes the use of
smart meters and energy management systems that facilitate the integration
of V2G and V2H technologies [24, 25].

3.4 Electric Vehicle Fleet

Norway has one of the highest percentages of electric vehicles in the world.
As of 2023, EVs account for over 80% of new car sales in the country [26].
Norwegian EVs are equipped with batteries of varying capacities, with most
having a range between 200 and 400 km. Charging times vary depending on
the type of charger used, with fast-charging stations capable of recharging
an EV to 80% in about 30 minutes.

3.5 Residential Structure

Most Norwegian homes are single-family houses and apartment buildings.
These residences have varying energy consumption profiles, with peaks dur-
ing the evening hours and weekends. Many homes are equipped with home
energy management systems (HEMS) that help monitor and optimize energy
use.

3.6 Challenges and Opportunities

The implementation of V2G and V2H technologies in Norway presents sev-
eral challenges and opportunities:

• Technical Challenges: Interoperability between different EV manu-
facturers, grid capacity to handle bidirectional energy flow, and man-
agement of load fluctuations.

• Opportunities: Reduction in energy costs for consumers, improve-
ment in energy efficiency, increased grid resilience, and more efficient
integration of renewable energy sources.

10
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3.7 Case Studies and Pilot Projects

Norway has initiated several pilot projects to test V2G and V2H solutions.
One such project is the "Smart Charge" initiative, which aims to demon-
strate the benefits of smart charging and V2G technologies in reducing
grid load and improving energy efficiency [28]. Another project is "Green
Charge," which integrates solar energy with V2G technologies to optimize
the use of renewable energy [29].

11



Chapter 4

Methodology

4.1 Introduction to Linear Optimization

Linear optimization, also known as linear programming (LP), is a mathemat-
ical technique used to determine the best possible outcome in a mathemat-
ical model whose requirements are represented by linear relationships. It is
widely used in various fields such as economics, business management, engi-
neering, and military applications to maximize or minimize a linear objective
function, subject to a set of linear constraints.

4.1.1 Components of Linear Optimization

Linear optimization problems are characterized by the following components:

• Objective Function: A linear function that needs to be maximized
or minimized. For example, in the context of energy management, the
objective function might be the minimization of energy costs.

• Decision Variables: Variables that represent the quantities to be de-
termined. In the context of V2G and V2H technologies, these variables
could include the amounts of energy to be charged or discharged from
the electric vehicle.

• Constraints: Linear equations or inequalities that represent the limi-
tations or requirements of the problem. These constraints can include
limits on the state of charge of the battery, charging and discharging
rates, and the energy balance between the house, the vehicle, and the
grid.

12
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4.1.2 Use of Linear Optimization in Energy Management

Linear optimization is particularly suitable for energy management problems
for several reasons. Linear optimization models can handle large-scale prob-
lems with multiple variables and constraints, making it possible to efficiently
manage the energy needs of households with varying demand and supply con-
ditions. Linear optimization algorithms, such as the Simplex method and
interior-point methods, are efficient and can find optimal solutions quickly.
This is essential for real-time energy management, where decisions need to
be made rapidly [28, 29].

Moreover, linear optimization models can incorporate a wide range of con-
straints, including physical limits of the battery, charging and discharging
rates, and dynamic energy prices. This flexibility allows for the creation of
comprehensive energy management strategies that can be adapted to differ-
ent scenarios [30, 31].

4.1.3 Advantages of Linear Optimization in V2G and V2H Ap-
plications

In V2G and V2H applications, linear optimization offers numerous advan-
tages. It allows for the optimization of charging and discharging schedules
for electric vehicles, improving overall energy efficiency and reducing costs.
Additionally, it enables the adaptation of charging and discharging decisions
based on variations in energy prices, maximizing economic savings. Another
significant advantage is the support to the electrical grid, helping to balance
the load on the grid, reducing demand peaks, and improving the stability and
resilience of the electrical system. Linear optimization algorithms are well
understood and supported by numerous software tools, making the practical
implementation of models easier [32].

4.1.4 Recent Applications of Linear Optimization

The use of linear optimization in energy management applications, particu-
larly for V2G and V2H technologies, is supported by numerous recent stud-
ies. Several works have demonstrated how linear optimization can be used
to develop energy management models for electric vehicles that can reduce
total energy costs and improve grid efficiency. Some studies have consid-
ered variations in energy prices and the availability of renewable energy,
demonstrating significant reductions in energy costs and improvements in
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grid efficiency [28, 29].

A thesis by Ibrahim El Khoudari (2021) demonstrated the effectiveness
of linear optimization for managing electric vehicle charging, integrating re-
newable energy sources in residential contexts [33]. Similarly, Alessia Iobbi’s
thesis (2022) developed an optimization model for managing energy flows
between the grid and electric vehicles, showing how linear optimization can
improve grid stability and resilience [34].

Yong Tan et al. (2016) proposed a linear optimization model for maximiz-
ing profits from using electric vehicles in a V2G system, considering dynamic
energy prices [35]. Another study by Yong Tan et al. (2016) presented a lin-
ear optimization model to minimize energy costs in a Vehicle-to-Home (V2H)
system, utilizing the electric vehicle battery as an energy storage system [36].

Additionally, Yue Cao et al. (2019) introduced a mixed-integer linear
programming model for optimal scheduling of electric vehicles in a V2G
system, incorporating renewable energy integration and battery degradation
[37]. In a similar vein, Yue Cao et al. (2017) developed a mixed-integer
linear programming model for optimal V2G operation scheduling, taking
into account network constraints and electric vehicle mobility profiles [38].

Other studies have developed linear optimization models for managing the
charging of electric vehicles in smart grids, considering fluctuations in energy
prices and demand profiles, optimizing charging times to minimize costs and
reduce the load on the grid during peak periods [30, 31]. Additionally, the
effectiveness of linear optimization in integrating renewable energies has been
demonstrated, optimizing the use of vehicle batteries to store energy during
periods of high renewable production and release it during periods of high
demand, improving grid reliability and reducing energy costs [32].

4.1.5 Gurobi Optimizer

Gurobi Optimizer is a powerful software for linear and mathematical opti-
mization, widely used in various fields to solve complex problems of linear
programming (LP), mixed-integer linear programming (MILP), and non-
linear programming (NLP). This section describes Gurobi and explains the
reasons for choosing it as the optimizer for this project.
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Features of Gurobi

Gurobi offers a range of features that make it one of the most advanced and
reliable optimizers available:

• Speed and Efficiency: Gurobi is known for its speed and efficiency
in solving complex optimization problems. It uses state-of-the-art algo-
rithms to provide optimal solutions in very short times.

• Multi-Core Support: Gurobi fully leverages the multi-core capabil-
ities of modern processors, enabling rapid and efficient resolution of
large-scale problems.

• Flexibility: It supports a wide variety of optimization problems, in-
cluding linear, integer, and non-linear. This flexibility makes it suitable
for a wide range of applications.

• Programming Interfaces: Gurobi offers programming interfaces for
several languages, including Python, MATLAB, C++, Java, and more.
This facilitates integration with different development environments and
existing models.

• Robustness: Gurobi can handle very complex and large optimization
problems, ensuring robustness and reliability of the solutions.

Why Gurobi was Chosen

Gurobi was chosen as the optimizer for this project for several reasons:

• Performance: The speed and efficiency of Gurobi in solving complex
linear optimization problems are essential for our model, which requires
quick and precise solutions for real-time energy management.

• Reliability: Gurobi’s robustness in handling large-scale problems en-
sures that the model can scale effectively with increasing complexity
and the number of decision variables.

• Support for Linear and Integer Problems: Our optimization
model includes both continuous and integer variables. Gurobi offers ex-
cellent support for mixed-integer linear programming (MILP), which is
crucial for accurately modeling battery charging/discharging decisions.
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• Ease of Integration: Gurobi provides a highly integrable Python
programming interface, which was used to develop and test the opti-
mization model. This facilitated rapid and iterative development of the
model.

• Documentation and Support: Gurobi is accompanied by detailed
documentation and high-quality technical support, which were crucial
for quickly resolving issues and optimizing the model.

Implementation with Gurobi

The implementation of the optimization model with Gurobi followed these
steps:

1. Model Definition: The optimization model was defined using Gurobi’s
Python programming interface, including all decision variables, the ob-
jective function, and constraints.

2. Parameter Configuration: Gurobi’s parameters were configured to
optimize the solver’s performance, such as the number of threads used
and the time limits for solving.

3. Model Resolution: The model was solved using Gurobi’s optimiza-
tion functions, obtaining the optimal solutions for the decision variables.

4. Result Analysis: The obtained results were analyzed to evaluate the
model’s efficiency and effectiveness, making iterative improvements as
necessary.

Using Gurobi enabled obtaining optimal solutions quickly, ensuring the
reliability and robustness needed for practical applications of V2G and V2H
energy management technologies.

4.2 Parameter Setting Approach

This section provides a brief introduction to the approach adopted for setting
the parameters used in modeling and energy optimization. Each detail will
be elaborated in the following sections.
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4.2.1 Realism in Modeling

To ensure that the optimization model is realistic and applicable, a conser-
vative approach was adopted in selecting the parameters, using values that
accurately represent existing technologies on the market. The parameters
related to the battery and the electric vehicle were selected to reflect realis-
tic conditions, based on real data from the Tesla Model 3 Long Range. This
choice ensures that the optimized solutions are realistic and implementable
with current technology.

4.2.2 Real Data and Datasets Used

The data concerning the daily load profile and electricity price trends were
derived from real datasets. Specifically, hourly residential electricity con-
sumption data and survey responses from the iFlex dynamic pricing ex-
periment conducted in Norway were used. These data provide a solid and
realistic basis for modeling the daily energy behavior of a house and the
trends in energy prices [22].

4.2.3 Test Scenarios

Regarding the scenarios of the vehicle’s presence or absence at home and
the miles driven daily, these values were estimated to test the "worst-case
scenarios" based on realistic data. The test scenarios were designed to cover
a wide range of situations that a user might encounter, ensuring that the
optimization model is robust and capable of handling variations in vehicle
usage habits and energy consumption patterns.

4.2.4 Temporal Parameter Setting

In all examples and experiments, the optimization horizon is set to T = 24
hours, and the time slots are t = 15 minutes each. Therefore, each T is
divided into 96 time slots. This granularity allows for precise and detailed
optimization of energy management, ensuring that the models can effectively
respond to changes and maintain optimal performance throughout the day.

The choice of 15 minutes as the duration for the time slots was made
because it represents an effective time interval in terms of the battery’s
charging and discharging speed. This allows for an optimal balance between
the system’s responsiveness and the precision of the optimization, making
the best use of the battery’s capabilities and V2G and V2H technologies.
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• Vehicle presence at home: Various scenarios were considered where
the vehicle is at home during different hours of the day, to test the
impact of the vehicle’s availability for charging and discharging energy.

• Miles driven daily: Various vehicle usage scenarios were estimated,
including both minimum and maximum usage, to evaluate how different
driving habits affect energy management and cost optimization.

This conservative and data-driven approach ensures that the optimiza-
tion model is not only theoretically valid but also practical and applicable
in real-world contexts. The use of realistic parameters and the simulation
of variable scenarios allow for obtaining reliable and useful results for the
implementation of V2G and V2H technologies in households equipped with
electric vehicles. Each detail will be elaborated in the following sections to
provide a comprehensive understanding of the approach adopted.

4.3 Battery Modeling

In this section, the battery modeling used in the optimization framework is
described. The battery parameters are based on the Tesla Model 3 Long
Range, chosen for its widespread adoption, high energy density, and effi-
ciency. A conservative approach was adopted for the battery modeling, eval-
uating the application with technologies already available on the market.

4.3.1 Battery Parameters

• CB = 75 kWh (Battery Capacity): Indicates the maximum amount of
energy the battery can store.

• kSOCmax = 0.9 (Maximum allowed battery power coefficient): Defines
the maximum charge limit of the battery as a percentage of the total
capacity.

• kSOCmin = 0.1 (Minimum allowed battery power coefficient): Defines
the minimum charge limit of the battery as a percentage of the total
capacity.

• SOCmax = kSOCmax ·CB = 67.5 kWh (Maximum allowed battery SOC):
Calculated by multiplying the maximum charge coefficient by the total
battery capacity.
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• SOCmin = kSOCmin · CB = 7.5 kWh (Minimum allowed battery SOC):
Calculated by multiplying the minimum charge coefficient by the total
battery capacity.

• γhourly
Cmax

= 15 kW (Maximum hourly charge rate): Indicates the maximum
rate at which the battery can be charged.

• γhourly
Cmin

= 1 kW (Minimum hourly charge rate): Indicates the minimum
rate at which the battery can be charged.

• γhourly
V 2Hmax

= 300 kW (Maximum hourly V2H rate): Indicates the maxi-
mum rate at which the battery can discharge energy to the house.

• γhourly
V 2Hmin

= 1 kW (Minimum hourly V2H rate): Indicates the minimum
rate at which the battery can discharge energy to the house.

• η = 0.85 (Battery efficiency coefficient): Indicates the overall efficiency
of the battery during charge and discharge cycles. A value of 0.85 means
that 85% of the energy input into the battery can be recovered during
discharge.

• Λhourly = 0.3 kWh (Hourly battery power loss when not in use): Indi-
cates the energy loss of the battery for each hour it is not used.

The efficiency of the Tesla Model 3 Long Range vehicle is 18 kWh per 100
km. Given that 1 mile is approximately 1.60934 km, the vehicle’s efficiency
is about 11.18 kWh per 100 miles. This means that each percentage point of
the battery’s State of Charge (SOC) allows for a range of about 3.75 miles.
However, to adopt a conservative approach, this amount is rounded down,
and a range of 3 miles per percentage point of SOC is considered.

Additionally, whenever it is expected that the vehicle will leave the house,
a minimum battery charge value of 80% of the total capacity is set. This
ensures, in theory, a range of approximately 240 miles based on the above-
mentioned consumption rates. This is an arbitrary but reasonable decision
taken to make all the obtained results comparable.

Using these parameters ensures that the optimization model can manage
the battery energy effectively and realistically, contributing to the overall
efficiency and sustainability of the V2G/V2H system.
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4.4 Load Profiles Used in Tests

To evaluate the effectiveness of the developed offline optimization models,
various tests were conducted using different daily load profiles. These profiles
were randomly selected from a set of different days taken from the iFlex study
to represent a variety of energy consumption scenarios [22]. However, the
differences in the final costs resulting from the tests proved to be negligible
due to the cyclical nature of the load profiles and their similarity, except for
particular events that occur very rarely.

To obtain a significant and representative sample, it was decided to use an
average of all load profiles recorded over a six-month period, from January
1, 2020, to June 1, 2020. This average load profile was adopted as the
reference profile in the tests, allowing for standardized results and facilitating
comparative evaluation of the models.

4.5 Price Profiles Used in the Study

In this study, the price profiles used for the optimization models were de-
rived from the iFlex dynamic pricing experiment conducted in Norway. The
iFlex project aimed to investigate how households adjust their electricity con-
sumption in response to varying hourly electricity prices. This experiment
was conducted across multiple Norwegian regions, including Oslo, Stavanger,
Bergen, Trondheim, Bodø, and Tromsø, during two winter periods from early
2020 to spring 2021.

The dataset from this experiment includes detailed hourly electricity con-
sumption data for all participating households, as well as responses to sev-
eral surveys regarding household characteristics, such as electric appliances,
living conditions, socio-demographic variables, and their willingness to be
flexible in their electricity usage. Additionally, temperature data from the
Norwegian Meteorological Institute were included to account for the impact
of outdoor temperature on electricity consumption, which is significant in
Norwegian households due to the widespread use of electric heating.

The price signals tested during the experiment comprised different price
levels (2, 5, 10, 15, and 30 NOK/kWh) and various price profiles (A, B, C,
P, and P0). These price profiles were designed to reflect Norway’s average
daily demand profile and typical spot price profiles. For example, profile
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A featured peak prices in the morning and afternoon, while profile B had
higher prices throughout the entire daytime period.

The price profiles utilized in this study were chosen to provide a realis-
tic representation of dynamic pricing scenarios that Norwegian households
might encounter. This rich dataset allowed for a comprehensive analysis of
demand-side flexibility and the effectiveness of V2G and V2H technologies
in reducing energy costs and peak demand.

4.5.1 Relevant Price Profiles

The relevant price profiles for this study are profiles A, B, and C. To allow for
a consistent comparison, the same price level was considered for all profiles,
which is the price level 10 NOK/kWh, representing the peak price. The
conversion to US dollars was made by multiplying by the exchange rate of
0.095, resulting in a price of approximately 0.95 USD/kWh.

• Profile A: Features peak prices in the morning and afternoon.

• Profile B: Has higher prices throughout the entire daytime period.

• Profile C: Shows a more uniform variation of prices throughout the
day.

By using these detailed and realistic price profiles, the study aimed to
simulate real market conditions as closely as possible, ensuring the validity
and applicability of the developed optimization models. The iFlex dataset
served as a robust foundation for testing various scenarios and evaluating
the potential economic and operational benefits of integrating V2G and V2H
technologies into residential energy management systems.

Below are the graphical representations of the price profiles used:
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Figure 4.2: Profile B - Higher prices throughout the entire daytime period

Figure 4.3: Profile C - Uniform variation of prices throughout the day

Figure 4.1: Profile A - Peak prices in the morning and afternoon
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Model Presentation

In this chapter, the developed optimization models will be presented, specif-
ically two offline models and two online models.

Before diving into the detailed explanation of each parameter, variable,
and constraint of the models, a simplified overview of their operation is
provided to fully understand their objective and context.

The algorithm is designed to manage the energy of the electric vehicle
over a time horizon T . For each time slot t within T , the model is given the
following information:

• When the car will be at home and when it will be away.

• How many miles the car will travel the next day, which translates to
the difference between the state of charge (SOC) when leaving home
and the SOC when returning.

• The price trends for each time slot of the next day.

• The household load profile for each hour of the next day.

Using this information, the model optimizes the energy management to
minimize costs over the time horizon T . For each time slot t, the model
decides:

• If to charge the battery and at what rate.

• If to use the battery to power the house and at what rate.

• If to leave the battery idle in standby mode.
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This structured approach ensures optimal use of the electric vehicle’s bat-
tery, balancing cost savings and energy availability for both the vehicle and
the household.

All input information is assumed to be estimated. In instances where
there is a discrepancy between the estimated inputs and real-time data, the
corrective online models intervene to reschedule the remaining part of the
day to optimize performance.

5.1 Offline Models

The offline models are based on a time horizon T and use historical data
and forecasts to optimize energy management for a single household with
an electric vehicle. The models aim to minimize overall energy costs by
maximizing the efficient use of the electric vehicle’s battery.

5.1.1 Parameters of the Offline Models

The parameters used in the offline models are essential to define the behavior
and limitations of the energy management system. Each parameter derived
from hourly values previously described in the battery modeling section is
adjusted through a conversion to match the time value of t, which is the
number of time slots into which the T optimization time horizon is divided.
The parameters are described in detail below:

Time Parameters

• T : The time horizon of the optimization.

• t: The number of time slots, in which T is divided.

Battery Parameters

• SOCmax: Maximum state of charge of the battery [kWh]. Defines the
maximum level of energy that can be stored in the battery.

• SOCmin: Minimum state of charge of the battery [kWh]. Indicates
the minimum level of energy the battery must maintain to ensure its
operability.

• γCmax: Maximum charging rate of the battery [kW]. Represents the
maximum rate at which the battery can be charged in the time slot t.
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• γCmin: Minimum charging rate of the battery [kW]. Indicates the mini-
mum rate at which the battery can be charged in the time slot t.

• γV 2Hmax: Maximum discharging rate V2H [kW]. Defines the maximum
rate at which the battery can discharge energy to the house in the time
slot t.

• γV 2Hmin: Minimum discharging rate V2H [kW]. Indicates the minimum
rate at which the battery can discharge energy to the house in the time
slot t.

• η: Battery efficiency. Represents the overall efficiency of the battery
during charge and discharge cycles. A value of 0.85 means that 85% of
the energy input to the battery can be recovered during discharge.

• Λ: Battery power loss when not in use [kWh]. Represents the energy
loss of the battery if it is not used in the time slot t.

Vehicle Parameters

• θ(t): Vehicle state in the time slot t (1 if present, 0 if absent).

• SOCa(t): State of charge of the vehicle upon arrival [kWh]. Indicates
the battery charge level at the beginning of the time slot t when the
vehicle arrives at home.

• SOCl(t): State of charge of the vehicle at departure [kWh]. Indicates
the minimum battery charge level at the beginning of the time slot t
when the vehicle leaves home.

Energy Parameters

• L(t): Household load profiles [kWh]. Represents the energy demand of
the house at each time slot t.

• C(t): Energy cost profiles [$/kWh]. Indicates the price of energy at
each time slot t.

5.1.2 Variables of the Offline Models

The variables in the offline model define the dynamic and decision parameters
of the system. The variables are described with specific details below:
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Battery Variables

• SOC(t): State of charge of the battery at the beginning of time slot
t and the end of time slot t − 1 [kWh]. This represents the energy
level of the battery at the transition between time slots. Therefore, any
parameter or variable involving the SOC is defined over T + 1 values,
unlike other variables and parameters defined over T values.

• θC(t): Boolean variable that indicates if the battery is in charging mode
or not (1 if yes, 0 if not) in time slot t [kW].

• θV 2H(t): Boolean variable that indicates if the battery is in discharging
mode or not (1 if yes, 0 if not) in time slot t [kW].

• γC(t): Charging rate of the battery in time slot t [kW].

• γV 2H(t): V2H discharging rate of the battery in time slot t [kW].

Energy Variables

• x(t): Energy purchased from the grid in time slot t [kWh].

5.1.3 Constraints of the Offline Models

Constraints are fundamental to defining the limitations and operational con-
ditions of the energy management system. Each constraint is described in
detail below, including the for and if loops and their functions.

Constraint 1: Mutual States of the Battery

θC(t) + θV 2H(t) ≤ θ(t) ∀t ∈ {1, . . . , T}

This constraint defines the three possible states of the vehicle’s bat-
tery. The battery can be charging (θC(t) = 1), in Vehicle-to-House mode
(θV 2H(t) = 1), or in standby (θ(t) = 0).

Constraint 2: Maximum Charging Rate of the Battery

γC(t) ≤ γCmax · θC(t) ∀t ∈ {1, . . . , T}

This constraint limits the maximum charging rate of the battery, ensuring
it does not exceed the maximum capacity defined for each time slot t. It is
activated just when the battery state is in charging mode (θC(t) = 1).
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Constraint 3: Minimum Charging Rate of the Battery

γC(t) ≥ γCmin · θC(t) ∀t ∈ {1, . . . , T}

This constraint ensures that the charging rate of the battery is not less
than the minimum capacity defined for each time slot t. It is activated just
when the battery state is in charging mode (θC(t) = 1).

Constraint 4: Maximum V2H Discharging Rate

γV 2H(t) ≤ γV 2Hmax · θV 2H(t) ∀t ∈ {1, . . . , T}

This constraint limits the maximum rate at which the battery can dis-
charge energy to the house in V2H mode for each time slot t. It is activated
just when the battery state is in V 2H mode (θV 2H(t) = 1).

Constraint 5: Minimum V2H Discharging Rate

γV 2H(t) ≥ γV 2Hmin · θV 2H(t) ∀t ∈ {1, . . . , T}

This constraint ensures that the discharging rate of the battery to the
house is not less than the minimum capacity defined for each time slot t. It
is activated just when the battery state is in V 2H mode (θV 2H(t) = 1).

Constraint 6: Energy Purchased from the Grid

x(t) = L(t) + γC(t)− η · γV 2H(t) ∀t ∈ {1, . . . , T}

This constraint represents the total energy purchased from the grid in
each time slot t, considering the following terms:

• x(t): Energy purchased from the grid in time slot t [kWh]. This value
represents the amount of energy that needs to be purchased from the
grid to meet the household load and the charging and discharging op-
erations of the battery.

• L(t): Household load profile in time slot t [kWh]. This value indicates
the amount of energy required by the house in each time slot t.

• γC(t): Charging rate of the battery in time slot t [kW]. This value
represents the amount of energy used to charge the vehicle’s battery in
time slot t.
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• η · γV 2H(t): Battery efficiency multiplied by the V2H discharging rate
of the battery in time slot t [kW]. This value represents the amount of
energy returned from the battery to the house, taking into account the
battery’s efficiency. The efficiency η accounts for energy losses during
the discharging process.

Constraint 7: Maximum Battery State of Charge

SOC(t) ≤ SOCmax · θ(t) ∀t ∈ {1, . . . , T}

This constraint ensures that the battery’s state of charge never exceeds the
maximum limit defined for each beginning of the time slot t. It is activated
just when the EV is at home (θ(t) = 1).

Constraint 8: Minimum Battery State of Charge

SOC(t) ≥ SOCmin · θ(t) ∀t ∈ {1, . . . , T}

This constraint ensures that the battery’s state of charge never falls be-
low the minimum limit defined for each beginning of the time slot t. It is
activated just when the EV is at home (θ(t) = 1).

Constraint 9: State of Charge at Departure

SOC(t) ≥ SOCl(t) if θ(t− 1) = 1 and θ(t) = 0

This constraint ensures that the battery’s state of charge is sufficient to
meet the vehicle’s energy needs at the time of departure. It is activated just
when happen the transition of the car by being at home (θ(t − 1) = 1) to
not being at home (θ(t) = 0).

Constraint 10: State of Charge at Arrival

SOC(t) = SOCa(t) if θ(t− 1) = 0 and θ(t) = 1

This constraint ensures that the battery’s state of charge is sufficient to
meet the vehicle’s energy needs at the time of departure. It is activated just
when happen the transition of the car by not being at home (θ(t− 1) = 0)
to being at home (θ(t) = 1).
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Constraint 11: Updating the State of Charge

SOC(t) = SOC(t−1)+η·γC(t−1)−γV 2H(t−1)−Λ·(1−θC(t−1)−θV 2H(t−1))·θ(t−1)

This constraint updates the state of charge (SOC) of the battery, consid-
ering various factors from the previous time slot. The terms are explained
as follows:

• SOC(t): State of charge of the battery at the beginning of time slot t
and the end of time slot t − 1 [kWh]. This represents the energy level
of the battery at the transition between time slots.

• SOC(t − 1): State of charge of the battery at the beginning of the
previous time slot t− 1 [kWh]. This represents the energy level of the
battery at the transition between time slots t− 2 and t− 1.

• η ·γC(t−1): Energy added to the battery during the previous time slot
t− 1 [kWh]. Here, γC(t− 1) is the charging rate of the battery during
the previous time slot, and η is the efficiency of the battery during
charging.

• γV 2H(t − 1): Energy discharged from the battery to the house during
the previous time slot t− 1 [kWh]. This term represents the amount of
energy used to supply the household load from the battery during the
previous time slot.

• Λ·(1−θC(t−1)−θV 2H(t−1))·θ(t−1): Energy loss of the battery when
not in use during the previous time slot t−1 [kWh]. Here, Λ represents
the energy loss rate, and the term (1−θC(t−1)−θV 2H(t−1)) ·θ(t−1)
ensures that this loss is only considered when the battery is in standby
mode.

Constraint 12: Initial and Final State of Charge (SOC)

SOC(1) = SOC(T + 1)

This constraint links the initial and final state of charge of the battery,
ensuring that the day starts and ends with the same level of charge. This is
necessary due to the nature of the SOC variable, which represents the state
of charge at the end of t−1 and the beginning of t. By linking the initial and
final SOC, uniformity in optimization is maintained, preventing the model
from starting the day with an unjustified maximum SOC level.
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5.1.4 Objective Functions of the Offline Models

The parameters, variables, and constraints described so far are common to
both offline models. The offline models, however, differ in their objective
functions, which define the optimization goals. The objective function deter-
mines the criteria for evaluating the performance of the energy management
system.

Objective Function of the First Offline Model OF1

The first offline model aims to minimize the total energy costs over the time
horizon T . The objective function for this model is:

min
T∑
t=1

C(t) · x(t)

In this objective function:

• C(t): represents the energy cost profile at time slot t.

• x(t): represents the energy purchased from the grid at time slot t.

The summation ∑T
t=1 ensures that the total cost over all time slots is

minimized.

Objective Function of the Second Offline Model OF2

The second offline model introduces a new parameter α to balance between
minimizing energy costs and maintaining a desirable state of charge (SOC)
for the battery. The objective function for this model is:

min
T∑
t=1

(α · (C(t) · x(t))− (1− α) · SOC(t))

In this objective function:

• α: is a weight parameter that balances the importance of energy cost
minimization and SOC maintenance. It ranges from 0 to 1.

• C(t): represents the energy cost profile at time slot t.

• x(t): represents the energy purchased from the grid at time slot t.

• SOC(t): represents the state of charge of the battery at the beginning
of the time slot t.
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The term α · (C(t) · x(t)) ensures that energy costs are minimized, while
the term (1−α) ·SOC(t) ensures that the battery maintains a desirable state
of charge. The parameter α allows for tuning the model’s focus between cost
savings and SOC optimization.

The second model, therefore, has the objective of maintaining a higher
average SOC level throughout the day. This is done at the expense of higher
costs, reflecting a trade-off between cost savings and maintaining a more
favorable SOC for the battery. The summation ∑T

t=1 ensures that the com-
bined objective of cost minimization and SOC management is considered
over all time slots.

5.2 Implementation and Graphs Description

5.2.1 General Implementation

In this section, the implementation details of the offline optimization models
are provided. The objective of the implementation is to demonstrate the
practical application of the models described in a real scenario. The offline
models are implemented using Python and the Gurobi optimization solver.
The input parameters, variables, and constraints for the models are defined
as previously explained.

The code for the first offline model, which focuses on minimizing the total
energy cost, is given in Appendix A. The code for the second offline model,
which includes a trade-off between minimizing energy cost and maintaining
a higher state of charge (SOC) of the battery, is provided in Appendix B.

5.2.2 Graph Descriptions

Graph 1: SOC Trend During the Day

The first graph shows the SOC (State of Charge) trend of the electric vehicle’s
battery throughout the day. This graph helps visualize how the battery’s
charge level varies as a function of different charging (gamma_C) and dis-
charging (gamma_V2H) operations. When the SOC value is set to zero, it
means that the EV isn’t home.
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Graph 2: Charging and Discharging Rates for Each Time Slot

The second graph presents the battery’s charging and discharging rates for
each time slot. It shows the amount of energy charged (gamma_C) and
discharged (gamma_V2H) from the battery in each time slot. This graph
allows understanding when the battery is charged and when it is used to
power the house.

Graph 3: Energy Purchased for Each Time Slot

The third graph is the most complex and shows the total energy purchased
(x) for each time slot. The bars are divided into different colors to represent
the various components of the purchased energy:

• Energy bought to meet the house Loads: represented in one color,
shows the energy purchased to cover the house’s energy demand.

• Energy bought to charge the battery: represented in another
color, shows the energy purchased specifically to charge the vehicle’s
battery.

• Energy saved by V2H: this component is shown with a transpar-
ent dashed bar, indicating the amount of energy that would have been
purchased in the absence of V2H technology.

In particular, when V2H is active, the graph shows how the saved energy
reduces the total energy needed to meet the house’s loads, highlighting the
efficiency of the energy management system.

5.2.3 Example Scenarios

To illustrate the functionality of the optimization models, three example sce-
narios are presented. These scenarios are used to show the types of data and
graphs that will be presented later in the experiments and results chapters.

Scenario 1: Typical Workday

In this scenario, the vehicle leaves home at 8 AM and returns at 5 PM,
traveling a total distance of 30 miles. The price profile used is Profile C, and
the offline model applied is OF1 (see Figure 5.1).
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Scenario 2: Intensive Vehicle Use

In this scenario, the vehicle leaves home at 9 AM and returns at 9 PM,
covering a distance of 150 miles throughout the day. The price profile utilized
is Profile A, and the offline model employed is OF1 (see Figure 5.2).

Scenario 3: Multiple Outings

In this scenario, the vehicle undertakes multiple trips: it leaves home at 8
AM and returns at 11 AM, then departs again at 4 PM and comes back at
9 PM, with a total distance of 50 miles traveled during the day (20 miles
in the morning trip and 30 miles in the afternoon trip). The price profile
adopted is Profile A, and the offline model used is OF1 (see Figure 5.3).
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Figure 5.1: Graphs for Scenario 1: SOC, Charging and V2H Rates, and Bought Power.
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Figure 5.2: Graphs for Scenario 1: SOC, Charging and V2H Rates, and Bought Power.
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Figure 5.3: Graphs for Scenario 1: SOC, Charging and V2H Rates, and Bought Power.
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5.3 Online Models

In this section, the online models developed for energy management based on
Vehicle-to-House (V2H) technologies are illustrated. The main objective is to
demonstrate how these models can dynamically adapt to unexpected changes
in operating conditions, ensuring continuous and efficient optimization of
energy use.

5.3.1 Integration with Offline Models

The main difference between the online and offline models lies in their imple-
mentation and memory capacity. The online models are capable of retaining
all decisions made in the timeslots preceding the detection of the error at
time t. This allows the online models to dynamically adapt to unexpected
changes, ensuring continuous and responsive energy management optimiza-
tion.

When the online models detect an error at time t, they reoptimize the
charging and discharging schedule over T − t, considering all decisions and
optimizations made in the previous timeslots by the offline models OF1 or
OF2. This dynamic adaptation ensures effective error handling and energy
management optimization.

The strength of the online models lies in their ability to effectively inter-
act with the offline models and adapt in real-time to changes in operating
conditions. They are designed to respond to discrepancies detected between
forecasts and actual conditions, leveraging advanced management of the time
series of each parameter and decision variable. The offline models OF1 and
OF2 provide an initial optimization basis, while the online models intervene
to correct any errors detected in real-time. This interaction between models
is essential to ensure a robust and responsive energy management system.

The implementation in Python allows for efficient manipulation and man-
agement of time series data, transforming them into suitable inputs for the
online models. This approach ensures that the models can operate efficiently
and accurately, maintaining in memory all decisions made in the timeslots
preceding the detection of the error.

5.3.2 Types of Errors Detected

Three types of errors can be detected in real-time:
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• Presence Error (Ep): The vehicle is at home when it was expected
to be absent.

• Absence Error (Ea): The vehicle is absent when it was expected to
be at home.

• State of Charge Error (ESOC): The vehicle returns home with a
SOC different from the expected one, indicating a discrepancy in the
miles traveled compared to the forecast.

5.3.3 Errors Management

To address these errors, two online models are used:

Online Model 1 (ON1)

This model is activated when a Presence Error (Ep) is detected. The
goal of ON1 is to recalculate the charging and discharging schedule to opti-
mize energy use considering the unexpected availability of the vehicle. The
constraints on the minimum SOC (Constraint 8) and maximum SOC
(Constraint 7) are relaxed for the initial instant to manage the SOC Error
(ESOC). Additionally, the constraint on the departure SOC (Constraint
11) is relaxed since the minimum required energy level had already been
reached with the offline optimization.

Online Model 2 (ON2)

This model is activated when an Absence Error (Ea) is detected. The
goal of ON2 is to modify the energy management plan to compensate for
the absence of the vehicle’s battery as an energy source. The constraints on
the minimum SOC (Constraint 8) and maximum SOC (Constraint 7)
are also relaxed for the initial instant to manage the SOC Error (ESOC).

5.3.4 Effectiveness of Implementation

The effectiveness of these online models is achieved through the interaction
with offline models and the advanced implementation in the Python envi-
ronment. The ability to manage and manipulate time series of parameters
and decision variables transforms the data into suitable inputs for the online
models, ensuring efficient and precise operation. This approach highlights
the importance of implementation in achieving a robust and adaptive energy
management system.
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5.3.5 Examples of Error Detection and Reoptimization

In this subsection, the graphical demonstration of how online models can
detect errors and reoptimize using the first scenario presented in the previ-
ous chapter on offline models (Fig. 5.1) is shown. The first graph (related
to SOC) is displayed in the three cases of the three errors. In each case,
all iterations of the reoptimizations are demonstrated, with each line repre-
senting an optimization phase. It is important to note that these examples
are provided to demonstrate the functioning of the models in response to
individual errors, but they can be combined and managed simultaneously.

Case 1: Presence Error (Ep)

In this case, the vehicle is unexpectedly at home. The online model ON1
is activated, and the system recalculates the SOC schedule considering the
unexpected availability of the vehicle. Specifically, the return was expected
at 5 PM, but unexpectedly the vehicle returns at 4 PM, forcing the model
to perform four reoptimizations.

Case 2: Absence Error (Ea)

In this case, the vehicle is unexpectedly absent from home. The online model
ON2 is activated, and the system recalculates the SOC schedule considering
the absence of the vehicle’s battery as an energy source. The return was
expected at 5 PM, but the vehicle returns at 6 PM, requiring continuous
reoptimization until its return.

Case 3: State of Charge Error (ESOC)

In this case, the vehicle was supposed to travel 30 miles but travels 60 miles,
consuming twice the expected battery. Assuming that for 30 miles the SOC
decreases by 10%, for 60 miles the SOC decreases by 20%. Consequently,
the SOC changes from the expected 70% (for 30 miles) to 60%, requiring a
recalibration of the model to handle the actual SOC.
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Figure 5.4: Graphs for Case 1: SOC.

Figure 5.5: Graphs for Case 2: SOC.

Figure 5.6: Graphs for Case 3: SOC.
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Tests and Experiments

6.1 Introduction

In this chapter, the behaviors and effectiveness of the optimization models
developed for energy management based on Vehicle-to-House (V2H) tech-
nologies will be explored. The chapter is divided into two main sections,
each with a specific focus:

• Behavior of Models in Response to Individual Errors: This
section will analyze the optimization models’ responses to individual
errors. Practical examples will be presented to demonstrate how the
online models detect and correct errors in real time. Graphs will be
shown relating to the trend of energy costs based on the extent of the
detected error.

• Long-Term Simulation: This section will focus on a long-term sim-
ulation that includes daily mixed errors selected randomly. The goal is
to evaluate the cost savings achieved by implementing the optimization
models in a real and extended context. The results of the simulation
will be analyzed to understand the overall impact of the optimization
models on energy management and operating costs.

This structure allows for understanding both the specific behavior of the
models in error situations and their overall effectiveness in a continuous
operational context.

In this context, "tests" and "experiments" can be distinguished based on
their purpose and methodology:

• Tests: Conducted to verify the behavior of models under specific con-
trolled conditions. They are used to understand how the models respond
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to certain errors and parameter variations. For example, a test might
check how a model reacts when the vehicle returns home earlier than
expected.

• Experiments: Conducted to evaluate the effectiveness and efficiency
of models in realistic scenarios over longer periods. Experiments aim to
simulate real-life situations and measure overall benefits, such as energy
cost savings over several months.

In summary, tests focus on specific and well-defined conditions, while
experiments aim to assess the overall performance of models in real-world
scenarios and over extended periods.

6.1.1 Parameter Setting

In this subsection, the parameters used in the optimization models for all
tests and experiments are shown, justified earlier in the chapters on method-
ology and battery modeling. The following table, provides a quick summary
of the numerical values adopted.

Parameter Description Value

T Optimization time horizon 24 hours

t Number of time slots 96

CB Battery Capacity 75 kWh

kSOCmax Maximum allowed battery power coefficient 0.9

kSOCmin Minimum allowed battery power coefficient 0.1

SOCmax Maximum allowed battery SOC 67.5 kWh

SOCmin Minimum allowed battery SOC 7.5 kWh

γhourly
Cmax

Maximum hourly charge rate 15 kW

γhourly
Cmin

Minimum hourly charge rate 1 kW

γhourly
V 2Hmax

Maximum hourly V2H rate 300 kW

γhourly
V 2Hmin

Minimum hourly V2H rate 1 kW

η Battery efficiency coefficient 0.85

Λhourly Hourly battery power loss when not in use 0.3 kWh

α Weighting factor in the objective function of OF2 0.99

Table 6.1: Parameters Used in Tests and Experiments
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These parameters ensure that the optimization model can manage the
battery energy effectively and realistically, contributing to the overall effi-
ciency and sustainability of the V2H system.

The parameter α is set to 0.99 to prioritize cost minimization while still
considering the state of charge (SOC) of the battery. By assigning a high
value to α, the objective function focuses mainly on minimizing energy costs,
which is crucial for practical applications where reducing expenses is a pri-
mary goal. The slight weight given to SOC ensures that the battery’s charge
level is also optimized, maintaining a balance between economic efficiency
and operational feasibility.

All other parameters, such as θ, SOCl, and SOCa, are maintained as those
of scenario 1 presented in the previous chapter. It has been observed that
for the behavior and study of errors and their impact on cost, there is no
qualitative difference based on the scenario used. Moreover, scenario 1, with
its flexibility, realistically represents a wide range of possibilities for living
the day, covering various daily usage variables of the electric vehicle, from
home stay duration to miles traveled. This approach ensures that the re-
sults obtained are representative and comparable, allowing a comprehensive
evaluation of the effectiveness of the developed optimization models.

6.1.2 Additional Constraint on Initial and Final SOC

In all tests and experiments, an additional constraint on the initial and final
state of charge (SOC) of the day was introduced to ensure the comparabil-
ity of the obtained results. This constraint is necessary to avoid scenarios
where excess energy is produced during re-optimizations, as the model is not
designed to handle excess energy for sale.

Realistically, any excess energy would be used to increase the initial SOC
of the next day. However, for tests and experiments, it is essential that the
amount of energy used and consumed remains consistent across all scenarios.
The additional constraint introduced is as follows:

SOC(1) = 50

This constraint ensures that the initial SOC is fixed at 50, which also
affects the final SOC of the day due to Constraint 12. This approach
guarantees that all starting conditions are the same, allowing for a fair and
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accurate comparison of the results obtained from different tests and experi-
ments.

6.1.3 Benchmark Model Comparison

To provide a comparative baseline, a benchmark model is used. This bench-
mark model operates similarly to the OF1 model but does not consider price
fluctuations throughout the day. Instead, it simply minimizes the total en-
ergy purchased over the horizon T .

The benchmark model’s objective function is straightforward: minimizing
the total energy cost without accounting for time-based price variations.
This provides a reference point to evaluate the performance and cost savings
achieved by the more sophisticated OF1 and OF2 models, which incorporate
dynamic pricing and real-time error correction.

The analysis of numerical results will compare the energy costs obtained
with the benchmark model to those obtained using the OF1, OF2, and their
respective online models. This comparison highlights the benefits of adopting
advanced energy management strategies that account for price variations and
real-time error correction.

6.2 Tests on Model Behavior

In this section, the models’ behavior in response to individual errors is stud-
ied, showing cost trends based on the error magnitude. The considered errors
for the tests are a mix of the previously described presence error (Ep), ab-
sence error (Ea), and state of charge error (ESOC). Specifically, errors of
+1 and -1 hours on the expected arrival and departure times, and a bat-
tery consumption variation of ±20% (equivalent to approximately 60 miles)
are analyzed. It is important to note that these examples demonstrate the
models’ responses to individual errors, but they can handle multiple errors
simultaneously.

6.2.1 Cost Analysis and Graphs Explanation

The cost analysis focuses on the variations in costs based on the magnitude
of the errors. This comprehensive analysis aims to illustrate the cost impli-
cations of the errors and the effectiveness of the online models in mitigating
them. The following key points are considered:
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• Offline Model OF1 Costs: The costs incurred using the baseline
offline optimization model OF1.

• Tradeoff Offline Model OF2 Costs: The costs associated with the
offline optimization model OF2, which balances cost minimization and
maintaining a higher average SOC.

• Online Models Based on OF1 Costs: The costs when using the
online models that reoptimize based on the initial OF1 offline optimiza-
tion.

• Online Models Based on OF2 Costs: The costs when using the
online models that reoptimize based on the initial OF2 offline optimiza-
tion.

• OF omniscient: This line on the graph represents the costs obtained
with an offline model that has perfect knowledge of the actual data.
It provides a benchmark for evaluating the effectiveness of the online
models.

The graphs display these costs, providing a visual comparison of how each
model performs under various error magnitudes. This analysis highlights:

• The effectiveness of online models in adapting to unexpected changes
and reducing overall costs.

• The tradeoffs involved in maintaining a higher average SOC versus
strictly minimizing costs.

• The potential cost savings achievable through real-time optimization
and error correction compared to the omniscient model.

By presenting a detailed cost analysis across different models and error
scenarios, this section underscores the practical benefits and limitations of
the developed optimization strategies.

6.2.2 Departure Time Test

In this section, we analyze the impact of a time error in the scheduled de-
parture time of the electric vehicle on the energy management of the V2H
system. We introduce a total error of two hours, varying each timeslot be-
tween one hour ahead and one hour behind. This results in a total of eight
re-optimizations, corresponding to the number of timeslots contained in two
hours.
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Graphs and Commentary

The graph below shows the costs associated with the OF1, OF2 models and
their corresponding online models derived from OF1 and OF2 as a function
of the magnitude of the time error.

When the error is zero, the costs of the online models correspond to their
respective offline models (OF1 and OF2). As the error increases, variations
in costs are observed as described below.

OF1 and OF2:

• Both offline models, OF1 and OF2, maintain constant costs regardless
of the error magnitude, as they cannot adapt in real-time to variations
in operating conditions.

ONLINE from OF1:

• With a departure error of -60 minutes, the cost is higher compared
to the omniscient offline model, but it starts to decrease as the error
reduces. This is due to the flexibility of the online model that manages
to partially correct the error.

• When the error is zero, the cost matches that of the OF1 model.

• With positive errors, costs begin to decrease further, becoming even
lower than those of the omniscient offline model for errors greater than
15 minutes. This phenomenon is explained by the relaxation of the
SOC constraint at departure, allowing for greater flexibility in energy
use. However, this results in a loss of potential mileage. Assuming
an hourly loss of 0.3 kWh, for each hour in standby the vehicle loses
approximately 3 miles of range (0.3 kWh / 0.1 kWh per mile).

ONLINE from OF2:

• The behavior of the online model derived from OF2 depends on the
fact that when the model detects an error, even starting from the OF2
tradeoff model, it re-optimizes by returning to the objective function of
the OF1 model. This process causes a drastic reduction in cost as the
error moves away from zero. In other words, the online model corrects
the errors dynamically, which leads to an improvement in operating
costs compared to the offline OF2 model.
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The graphs show the cost trends for each price profile (A, B, and C),
but qualitatively the behaviors remain similar. However, specific numerical
results vary based on the price profile.

Numerical Results and Savings Percentages

Below are the savings percentages for the online models derived from OF1
and OF2 compared to the omniscient model, calculated using the savings
percentage formula.

Savings percentages are calculated relative to the omniscient model as
follows:

Savings Percentage =
(

Cost of Omniscient Model−Cost of Online Model
Cost of Omniscient Model

)
× 100

Error (min) A B C
-60 -1.89% -1.55% -2.68%
-45 -1.47% -1.20% -2.05%
-30 -1.01% -0.82% -1.39%
-15 -0.52% -0.42% -0.71%
0 0.00% 0.00% 0.00%
15 0.35% 0.28% 0.47%
30 0.72% 0.57% 0.95%
45 1.11% 0.87% 1.44%
60 1.51% 1.19% 1.94%

Table 6.2: Departure error test: savings percentages for the online model derived from
OF1 compared to the omniscient model for price profiles A, B, and C.

Error (min) A B C
-60 5.48% 4.50% 11.94%
-45 5.17% 4.22% 11.48%
-30 4.84% 3.92% 11.01%
-15 4.48% 3.61% 10.51%
0 27.68% 22.15% 41.61%
15 3.84% 3.06% 9.67%
30 3.58% 2.84% 9.33%
45 3.30% 2.60% 8.97%
60 3.00% 2.35% 8.61%

Table 6.3: Departure error test: savings percentages for the online model derived from
OF2 compared to the omniscient model for price profiles A, B, and C.
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Figure 6.1: Departure error test: cost comparison between the OF1 and OF2 model and
its corresponding online models for price profile A.

Figure 6.2: Departure error test: cost comparison between the OF1 and OF2 model and
its corresponding online models for price profile B.
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Figure 6.3: Departure error test: cost comparison between the OF1 and OF2 model and
its corresponding online models for price profile C.

6.2.3 Arrival Time Test

In this section, we analyze the impact of a time error in the scheduled arrival
time of the electric vehicle on the energy management of the V2H system. We
introduce a total error of two hours, varying each timeslot between one hour
ahead and one hour behind. This results in a total of eight re-optimizations,
corresponding to the number of timeslots contained in two hours.

Graphs and Commentary

The graph below shows the costs associated with the OF1, OF2 models and
their corresponding online models derived from OF1 and OF2 as a function
of the magnitude of the time error.

When the error is zero, the costs of the online models correspond to their
respective offline models (OF1 and OF2). As the error increases, variations
in costs are observed as described below.

OF1 and OF2:

• Both offline models, OF1 and OF2, maintain constant costs regardless
of the error magnitude, as they cannot adapt in real-time to variations
in operating conditions.
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ONLINE from OF1:

• When the arrival time error is earlier than the forecasted one, the cost is
lower compared to the OF1 offline model since the early arrival increases
the vehicle’s availability at home, reducing overall costs.

• When the error is zero, the cost matches that of the OF1 model.

• The blue and green lines are essentially overlapping as shown in the
graphs, confirming the strong effectiveness of the online corrective model.

ONLINE from OF2:

• The behavior of the online model derived from OF2 depends on the
fact that when the model detects an error, even starting from the OF2
tradeoff model, it re-optimizes by returning to the objective function of
the OF1 model. This process causes a drastic reduction in cost as the
error moves away from zero. In other words, the online model corrects
the errors dynamically, which leads to an improvement in operating
costs compared to the offline OF2 model.

The graphs show the cost trends for each price profile (A, B, and C),
but qualitatively the behaviors remain similar. However, specific numerical
results vary based on the price profile.

Numerical Results and Savings Percentages

Below are the savings percentages for the online models derived from OF1
and OF2 compared to the omniscient model, calculated using the savings
percentage formula.

Savings percentages are calculated relative to the omniscient model as
follows:

Savings Percentage =
(

Cost of Omniscient Model−Cost of Online Model
Cost of Omniscient Model

)
× 100
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Error (min) A B C
-60 4.33e-14% 3.37e-14% 6.09e-14%
-45 4.19e-14% 3.29e-14% 4.36e-14%
-30 2.03e-14% 0.00e-14% 4.17e-14%
-15 1.96e-14% 1.56e-14% 3.99e-14%
0 0.00e-14% 0.00e-14% 0.00e-14%
15 1.82e-14% 1.47e-14% 1.20e-14%
30 3.49e-14% 2.84e-14% 3.41e-14%
45 3.35e-14% 2.75e-14% 4.31e-14%
60 1.61e-14% 1.33e-14% 2.05e-14%

Table 6.4: Arrival error test: savings percentages for the online model derived from OF1
compared to the omniscient model for price profiles A, B, and C.

Error (min) A B C
-60 4.66% 3.63% 11.93%
-45 4.51% 3.54% 11.38%
-30 4.36% 3.45% 10.88%
-15 4.23% 3.36% 10.42%
0 27.68% 22.15% 41.61%
15 3.92% 3.16% 9.42%
30 3.76% 3.06% 8.91%
45 3.60% 2.96% 8.45%
60 3.46% 2.86% 8.03%

Table 6.5: Arrival error test: savings percentages for the online model derived from OF2
compared to the omniscient model for price profiles A, B, and C.

Figure 6.4: Arrival error test: cost comparison between the OF1 and OF2 model and its
corresponding online models for price profile A.
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Figure 6.5: Arrival error test: cost comparison between the OF1 and OF2 model and its
corresponding online models for price profile B.

Figure 6.6: Arrival error test: cost comparison between the OF1 and OF2 model and its
corresponding online models for price profile C.

6.2.4 State of Charge (SOC) Error Test

This section analyzes the impact of an error in the state of charge (SOC)
of the electric vehicle when it arrives home on the energy management of
the V2H system. A range of errors from -10% to +10% SOC is introduced.
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According to the established parameters, each percentage point of SOC cor-
responds to 3 miles of range. With a predicted charge level allowing for 30
miles, a -10% error results in a reduction of 30 miles (10% * 3 miles per
%), while a +10% error results in an increase of 30 miles. When the vehicle
returns with the same or similar battery level, it is assumed that it has been
charged externally, such as at the workplace.

Graphs and Commentary

The following graph shows the costs associated with the OF1, OF2 mod-
els and their corresponding online models derived from OF1 and OF2 as a
function of the magnitude of the SOC error.

OF1 and OF2:

• Both offline models, OF1 and OF2, maintain constant costs regardless
of the error magnitude, as they cannot adapt in real-time to variations
in operating conditions.

ONLINE from OF1:

• When the vehicle returns with a lower SOC than expected, the cost is
higher because less energy is available and needs to be supplemented.
When the vehicle returns with a higher SOC, the cost is lower because
more energy is available, reducing the need for external supplementa-
tion.

• When the error is zero, the cost matches that of the OF1 model.

• The blue and green lines are essentially overlapping as shown in the
graphs, confirming the strong effectiveness of the online corrective model.

ONLINE from OF2:

• The behavior of the online model derived from OF2 depends on the
fact that when the model detects an error, even starting from the OF2
tradeoff model, it re-optimizes by returning to the objective function of
the OF1 model. This process causes a drastic reduction in cost as the
error moves away from zero. In other words, the online model corrects
the errors dynamically, which leads to an improvement in operating
costs compared to the offline OF2 model.

The graphs show the cost trends for each price profile (A, B, and C),
but qualitatively the behaviors remain similar. However, specific numerical
results vary based on the price profile.
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Numerical Results and Savings Percentages

Below are the savings percentages for the online models derived from OF1
and OF2 compared to the omniscient model, calculated using the savings
percentage formula.

Savings percentages are calculated relative to the omniscient model as
follows:

Savings Percentage =
(

Cost of Omniscient Model−Cost of Online Model
Cost of Omniscient Model

)
× 100

Error A B C
-10% 3.47e-14% 2.83e-14% 2.25e-14%
-9% 1.75e-14% 1.42e-14% 2.28e-14%
-8% 1.77e-14% 1.43e-14% 1.16e-14%
-7% 1.78e-14% 1.45e-14% 1.17e-14%
-6% 1.80e-14% 1.46e-14% 1.18e-14%
-5% 1.82e-14% 1.47e-14% 1.20e-14%
-4% 1.83e-14% 1.48e-14% 2.43e-14%
-3% 1.85e-14% 1.49e-14% 1.23e-14%
-2% 0.00e-14% 0.00e-14% 1.24e-14%
-1% 1.89e-14% 1.51e-14% 3.78e-14%
0% 0.00e-14% 0.00e-14% 0.00e-14%
1% 1.92e-14% 1.54e-14% 2.59e-14%
2% 1.94e-14% 1.55e-14% 2.62e-14%
3% 0.00e-14% 0.00e-14% 3.98e-14%
4% 1.98e-14% 1.57e-14% 2.69e-14%
5% 2.00e-14% 1.59e-14% 2.73e-14%
6% 2.02e-14% 1.60e-14% 2.77e-14%
7% 1.84e-13% 1.45e-13% 2.52e-13%
8% 1.85e-13% 1.46e-13% 2.42e-13%
9% 2.08e-14% 1.64e-14% 1.44e-14%
10% 0.00e-14% 0.00e-14% 2.92e-14%

Error A B C
-10% 3.73% 3.04% 8.83%
-9% 3.77% 3.06% 8.94%
-8% 3.80% 3.09% 9.05%
-7% 3.84% 3.11% 9.16%
-6% 3.87% 3.13% 9.28%
-5% 3.91% 3.16% 9.40%
-4% 3.95% 3.18% 9.51%
-3% 3.98% 3.21% 9.63%
-2% 4.02% 3.23% 9.75%
-1% 4.06% 3.26% 9.88%
0% 27.68% 22.15% 41.61%
1% 4.14% 3.31% 10.13%
2% 4.18% 3.33% 10.27%
3% 4.22% 3.36% 10.40%
4% 4.26% 3.38% 10.54%
5% 4.31% 3.41% 10.69%
6% 4.35% 3.44% 10.84%
7% 4.39% 3.47% 10.99%
8% 4.43% 3.49% 11.13%
9% 4.48% 3.52% 11.28%
10% 4.52% 3.55% 11.43%

Table 6.6: SOC error test: savings percentages for the online models derived from OF1
(left) and OF2 (right) compared to the omniscient model for price profiles A, B, and C.
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Figure 6.7: SOC error test: cost comparison between the OF1 and OF2 model and their
corresponding online models for price profile A.

Figure 6.8: SOC error test: cost comparison between the OF1 and OF2 model and their
corresponding online models for price profile B.
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Figure 6.9: SOC error test: cost comparison between the OF1 and OF2 model and their
corresponding online models for price profile C.

6.2.5 Conclusions on Error Tests

The analysis conducted on the presence, absence, and state of charge (SOC)
error tests has highlighted the effectiveness of online models in handling
unforeseen variations and reducing the overall costs of the V2H system. The
key observations from the tests are as follows:

Efficiency of Online Models

The online models, derived from both OF1 and OF2, have demonstrated a
remarkable ability to adapt to real-time variations. This has allowed them
to dynamically correct errors and optimize operational costs compared to
offline models.

Impact of Departure and Arrival Errors

The tests on departure and arrival errors revealed that online models can ef-
fectively manage timing errors, reducing operational costs. In particular, an
earlier arrival time increases the vehicle’s availability at home, lowering over-
all costs, while a delayed departure can be compensated for by the flexibility
of online models.
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State of Charge (SOC) Errors

The tests on SOC errors showed that online models can maintain lower
operational costs even with significant SOC variations. When the vehicle
returns with a lower SOC than expected, the cost is higher because less
energy is available and needs to be supplemented. Conversely, when the
vehicle returns with a higher SOC, the cost is lower because more energy is
available, reducing the need for external supplementation.

Percentage Savings

The savings percentages calculated for online models derived from OF1 and
OF2 compared to the omniscient model have shown that online models can
achieve significant savings, especially in the presence of SOC and timing
errors. The results indicate that online models derived from OF2 offer greater
savings compared to those derived from OF1.

In conclusion, the implementation of online models in the V2H system
offers significant advantages in terms of reducing operational costs and man-
aging unforeseen variations. The ability to dynamically re-optimize in re-
sponse to errors makes online models valuable tools for improving system
efficiency and reducing overall energy costs. Additionally, the models’ abil-
ity to maintain a degree of independence from initial forecasts makes these
tools highly effective. Even in the presence of forecast errors, online models
can recalibrate their optimizations, keeping costs low and enhancing V2H
system performance. This renders online models a robust and flexible solu-
tion for energy management in V2H applications.

6.3 Long-Term Experiment and Performance Evalua-
tion

This chapter presents the results of a long-term experiment where the online
optimization models for energy management in a Vehicle-to-Home (V2H)
system were tested over a period of six months. Each day, random errors
were introduced to simulate the unforeseen variations that might occur in
real-life energy management scenarios. The main goal of the experiment is
to evaluate the effectiveness of the online models in dynamically responding
to these variations and maintaining optimal performance over time, ensuring
cost reductions and efficient energy management.
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The experiment was designed to assess not only the models’ ability to
adapt to daily errors but also to monitor cumulative performance over a
longer period. The types of errors considered include variations in the ve-
hicle’s departure and arrival times, as well as fluctuations in the battery’s
state of charge (SOC). This approach replicates real-life uncertainties, pro-
viding insights into the models’ resilience and ability to handle continuous
variation.

6.3.1 Methodology

The experiment was conducted over six months, during which the online
models were subjected to daily random errors simulating typical operational
uncertainties. Each day, errors were generated involving the departure time,
arrival time, and the battery’s SOC. These errors were introduced into the
models to test their ability to dynamically reoptimize operational conditions
and maintain efficiency.

Model Selection and Tradeoff Considerations

In this long-term experiment, the analysis was based exclusively on a spe-
cific offline optimization model, while another model, which incorporates a
tradeoff between energy costs and the battery’s state of charge (SOC), was
excluded from the calculations. This decision was made to simplify the focus
on operational cost reduction without incorporating the additional complex-
ity of balancing cost and battery charge.

The primary difference between these two models lies in their objective
functions. The selected model is designed to minimize costs while considering
hourly price fluctuations, optimizing energy purchases to reduce expenses
over the defined time horizon T . In contrast, the excluded model introduces a
tradeoff, where a portion of the cost savings is sacrificed in order to maintain
a higher SOC at the end of the day, depending on the user’s needs. This
approach prioritizes maintaining a higher battery charge, even at the expense
of increased energy costs.

The exclusion of the tradeoff model was made to focus the analysis solely
on cost-related performance. Including it would have introduced a subjec-
tive variable related to the user’s preference for maintaining a higher SOC,
complicating the evaluation of the results. The purpose of this study was to
assess the effectiveness of real-time reoptimizations in reducing operational
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costs.

The benchmark model, used as a reference for comparison with the online
reoptimization models, does not take into account hourly price fluctuations
but instead minimizes the total amount of energy purchased over the time
horizon T . This makes it a useful baseline for evaluating the savings gener-
ated by the online models.

In summary, results obtained with the tradeoff model could vary de-
pending on the user’s preference for SOC levels, with expected outcomes
falling between those of the benchmark model and the online reoptimiza-
tions based on the selected cost-minimizing model. By focusing solely on
the cost-minimizing model, the analysis provides a consistent approach to
cost reduction, offering a clearer understanding of the financial benefits of
the online models.

Random Error Generation

The errors were randomly generated using a uniform distribution to simulate
real-life variability. Three main types of errors were considered each day:

• Departure Time Error (Ep): Random variation of ±60 minutes from
the scheduled departure time.

• Arrival Time Error (Ea): Random variation of ±60 minutes from
the expected arrival time.

• SOC Error (ESOC): Random variation of ±10% from the expected
SOC, corresponding to a range variation of about 30 miles for the ve-
hicle.

To implement the random error generation in Python, the built-in random
.uniform() function was used. This function allows generating random
numbers within a specified range, ensuring that the errors fall within the
desired limits. For example, to simulate the departure and arrival time
errors, the function was used to generate random values between -60 and 60
minutes, while the SOC error was generated within a range of ±10%. This
approach provided a simple yet effective way to introduce variability into the
system without requiring complex code.
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Each day, the function was called to generate new random errors for
the optimization models, ensuring that the system faced a different set of
conditions every day.

Daily Reoptimizations

Each day, after generating the errors, the online models were reoptimized
to adapt to the new operational conditions. The number of reoptimizations
required was closely linked to the magnitude of the errors, with larger varia-
tions leading to more frequent reoptimizations. In particular, errors related
to departure time (Ep) and arrival time (Ea) required more frequent ad-
justments, due to the way the online models are structured to handle these
variations in the vehicle’s schedule.

Parameters Used

The parameters used in this experiment were identical to those defined in
the previous tests. This ensured consistency and comparability between the
results obtained under different error scenarios.

Objectives of the Analysis

The analysis focused on the following key aspects:

• Frequency of Reoptimizations: Monitoring the number of reopti-
mizations needed each day, correlated to the magnitude of the generated
errors.

• Impact on Operational Costs: Comparing the daily costs between
the online models and the benchmark model to evaluate the savings
achieved through reoptimization.

• Percentage Savings: Calculating the percentage savings obtained by
the online models compared to the benchmark, analyzed on a weekly
and monthly basis.

• Analysis of Error Impact: Evaluating how errors of varying magni-
tude, particularly SOC and time-related errors, affect costs and system
performance.
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Experiment Execution

The experiment was conducted daily over 180 days, with complete simu-
lations incorporating the different randomly generated errors. The online
models reoptimized dynamically each time errors were detected to adapt to
the new conditions.

The comparison between the online models and the benchmark provided
valuable insights into the models’ ability to reduce costs and optimize energy
management over the long term. Reoptimizations proved crucial in main-
taining the efficiency of the V2H system, even in the face of unpredictable
operational variations.

The following sections will present the results obtained, including detailed
analysis of costs, energy savings, and the frequency of reoptimizations.

6.3.2 Analysis of Daily Reoptimizations

The analysis of daily reoptimizations provides key insights into the effective-
ness of the online models when subjected to random operational errors over
an extended period of time. In this subsection, we will analyze the behavior
of the reoptimizations and interpret the patterns observed in the results.

The generated graph shown in Figure 6.10 shows the weekly average re-
optimizations over 180 days, separated into three categories:

• SOC Reoptimizations (ESOC): Reoptimizations triggered by devia-
tions in the state of charge (SOC) of the vehicle’s battery.

• Departure Reoptimizations (Ep): Reoptimizations triggered by er-
rors in the scheduled departure time of the vehicle.

• Arrival Reoptimizations (Ea): Reoptimizations triggered by errors
in the expected arrival time of the vehicle.

Interpreting the Results

The results clearly show that the number of reoptimizations is predominantly
influenced by the time-related errors, Ep and Ea. These errors can vary by
as much as ±60 minutes, leading to substantial fluctuations in the number
of reoptimizations required. In contrast, errors in SOC (ESOC) contribute
far fewer reoptimizations, as they only trigger one reoptimization per day
when present.
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SOC Reoptimizations (ESOC) show a stable and low contribution to
the total number of reoptimizations. This is because a single reoptimization
is sufficient to adjust the system when the SOC deviates from the expected
level. As a result, the blue line in the graph remains consistently low across
all weeks.

Departure Reoptimizations (Ep) and Arrival Reoptimizations (Ea)
exhibit more variability and higher peaks, as time-related errors require re-
optimizations for each minute of deviation. The orange and green lines on
the graph reflect this, with notable peaks indicating periods where significant
time deviations occurred. These peaks show the system’s need for frequent
adjustments to maintain optimal energy management.

Importance of Reoptimization Analysis

This analysis highlights the importance of understanding how different types
of errors affect the system’s performance. By tracking the number of reop-
timizations over time, we can identify which operational factors require the
most frequent interventions. For instance, time-related errors (Ep and Ea)
clearly have a more substantial impact on the system’s behavior compared
to SOC errors (ESOC). This is a crucial observation for optimizing the sys-
tem’s design and for focusing future efforts on improving the handling of
time deviations.

Figure 6.10: Weekly average of reoptimizations over a 180-day period.
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Concluding Remarks

By analyzing the weekly average reoptimizations, it becomes clear that time-
related errors (Ep and Ea) play a more significant role in the system’s daily
operation compared to SOC errors (ESOC). This observation suggests that,
while the system is capable of handling a variety of operational uncertain-
ties, the management of time deviations is the key challenge in maintaining
optimal energy efficiency in the long term. As a result, future efforts could
be directed towards refining the handling of time-related errors to further
reduce the number of required reoptimizations and improve the system’s
overall performance.

6.3.3 Analysis of Weekly Savings Results

In this section, we analyze the weekly operational cost savings achieved by
the online models compared to the benchmark model. The experiment spans
180 days, which have been divided into 25 weeks. Each week, the system is
subjected to randomly chosen price profiles (A10, B10, or C10), reflecting
different energy price fluctuations. The goal of this analysis is to quantify
both the percentage savings and the monetary savings that the online mod-
els can generate over the course of each week, using the benchmark model
(previously explained) as a reference.

Explanation of Weekly Savings Data

Table 6.7 presents the savings obtained for each of the 25 weeks of the ex-
periment. Each row includes the following information:

• The daily price profile applied during the week (A10, B10, or C10),
which represents the typical price variation encountered in real-world
scenarios.

• The weekly benchmark cost, which is the operational cost incurred
using the benchmark model for energy optimization. This serves as a
reference point for calculating the savings achieved by the online models.

• The percentage savings, showing how much the online models re-
duced costs compared to the benchmark model, expressed as a percent-
age.

• The weekly online model cost, representing the operational costs of
the online models, which reoptimize in real time to adapt to errors.
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• The monetary savings, calculated as the difference between the bench-
mark cost and the online model cost.

Wk Month Prfl BM ($) S (%) OC ($) MS ($)
1 January A10 45.87 25.0 34.40 11.47
2 January B10 47.67 27.0 34.80 12.87
3 January C10 42.11 23.5 32.11 9.99
4 January A10 46.22 26.0 34.18 12.04
5 February A10 45.45 28.0 32.72 12.73
6 February B10 47.34 25.5 35.30 12.04
7 February C10 43.05 23.5 32.89 10.16
8 February B10 47.67 24.0 36.23 11.44
9 March A10 44.65 22.5 34.32 10.33
10 March C10 43.56 24.5 32.45 10.11
11 March B10 45.23 22.5 34.88 10.35
12 March C10 43.11 24.0 32.68 10.43
13 April A10 43.23 23.0 33.31 9.92
14 April C10 42.96 21.5 32.97 9.99
15 April B10 44.65 22.5 34.18 10.47
16 May A10 43.02 23.0 33.11 9.91
17 May B10 43.96 21.5 34.53 9.43
18 May C10 43.32 22.0 33.32 9.90
19 June C10 42.82 20.5 33.39 8.43
20 June A10 43.18 21.0 33.97 9.21
21 June B10 44.02 20.0 35.20 8.82
22 July C10 41.91 22.5 31.78 10.13
23 July A10 42.75 23.0 32.34 10.41
24 July B10 43.87 21.5 33.75 10.12
25 July C10 40.22 20.5 31.80 8.42

Table 6.7: Weekly savings for 25 weeks. Legend: Wk = Week, Prfl = Price Profile (A10,
B10, C10), BM = Benchmark Cost, S = Savings, OC = Online Cost, MS = Monetary
Savings.

Observations and Interpretation of the Data

• Weekly Benchmark Costs: The benchmark costs show a gradual
decrease over time, reflecting lower energy consumption in the warmer
months. The first few weeks in January exhibit higher energy costs due
to increased heating needs, while the spring months (April, May, and
June) show a slight decrease in costs. This is aligned with the reduced
need for heating systems and the general trend of lower energy demand
as the weather improves (see Figure 6.11).

• Online Model Savings: The percentage savings fluctuate between
20% and 27%, demonstrating that the online models consistently out-
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perform the benchmark model by a significant margin. This variation
is mainly due to the combined effect of the randomly applied price pro-
files and the generated errors. The online models, which are capable
of real-time reoptimizations, perform particularly well when faced with
price fluctuations and forecast errors, as seen in profiles A10, B10, and
C10 (see Figure 6.11).

• Monetary Savings: The monetary savings range from approximately
$8.42 to $12.87 per week. These values represent the tangible benefits of
the online models, highlighting their capacity to adapt to unpredictable
conditions while reducing overall operational costs. For example, in
week 2 under profile B10, the benchmark cost is $47.67, while the online
model reduces this to $34.80, saving $12.87 in total (see Figure 6.12).

• Interpretation of Price Profiles:

– Profile A10: This profile shows moderate price variations across
the day, with notable peaks during the middle hours. As seen in the
table, this profile generally leads to strong savings, with an average
percentage saving around 23-25%.

– Profile B10: Profile B10 has more pronounced peaks during the
day, and as a result, the online model is more effective in optimizing
energy usage, leading to the highest savings percentages (e.g., 27%
in week 2). The online model’s ability to adapt to these fluctuations
is particularly important in this scenario.

– Profile C10: The C10 profile shows smaller price fluctuations com-
pared to A10 and B10, especially during off-peak hours. This re-
sults in more modest savings, typically around 20-24%. However,
the online models still demonstrate substantial effectiveness, as seen
in week 25, where the benchmark cost was $40.22, and the online
cost was reduced to $31.80, resulting in a savings of $8.42.

Formula for Calculating Savings

The formula used to calculate the percentage savings is defined as:

Savings Percentage =

(Benchmark Model Cost − Online Model Cost
Benchmark Model Cost

)
×100

This formula is applied to each week to compute the percentage difference
between the benchmark cost and the online cost. Additionally, the monetary
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savings are calculated as the difference between the benchmark cost and the
online cost:

Monetary Savings = Benchmark Model Cost − Online Model Cost

For example, in week 1:

Savings Percentage =
(
45.87− 34.40

45.87

)
× 100 = 25.0%

Monetary Savings = 45.87− 34.40 = 11.47USD

The application of these formulas across the 25-week period provides a
clear understanding of how much the online models can reduce operational
costs compared to the benchmark model. This data supports the conclu-
sion that the real-time reoptimization capability of the online models yields
consistent cost reductions, making them highly effective for dynamic energy
management.

Conclusion on Weekly Results

The weekly analysis of the 180-day experiment reveals that the online models
consistently outperform the benchmark model in terms of both percentage
and monetary savings. By adapting to real-time errors in departure time,
arrival time, and SOC (Ep, Ea, and ESOC), the online models can achieve
savings ranging from 20% to 27%, with monetary savings reaching up to
$12.87 in some cases.

Moreover, the benchmark costs, which decrease over time due to the
changing seasonal energy demands, provide a solid reference for evaluat-
ing the performance of the online models. Despite the seasonal fluctuations
in energy usage and prices, the online models maintain their effectiveness,
demonstrating their robustness in adapting to variable conditions. This re-
sult underscores the value of the proposed models for long-term energy man-
agement in residential settings.
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Figure 6.11: Weekly Cost Comparison between Benchmark Model and Online Model.
The colors represent different price profiles (A10, B10, C10) applied during each week.

Figure 6.12: Weekly Monetary Savings achieved by the Online Model compared to the
Benchmark Model over the 25-week period.
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Conclusion

7.1 Tests and Experiment conclusions

The experiment conducted over 180 days has provided a detailed analysis
of the performance of online energy management models under operational
uncertainty. By introducing daily random errors related to departure time,
arrival time, and battery SOC (Ep, Ea, and ESOC), it was possible to sim-
ulate real-world situations characterized by variability and unpredictability.
The results clearly demonstrate the effectiveness of the online models in re-
sponding in real-time to these fluctuations, showcasing a high capacity for
reoptimization and adaptation.

A key takeaway from this experiment is the significant cost savings achieved
by the online models when compared to the benchmark model. The oper-
ational flexibility introduced by the reoptimizations allowed for percentage
savings ranging from 20% to 27%, with the highest savings occurring when
price profiles with more pronounced fluctuations, such as profile B10, were
applied. This highlights that the effectiveness of the online models is not
solely dependent on error management but also on their ability to leverage
cost-saving opportunities presented by price variations.

The analysis of the results also shows that the system’s reoptimization is
particularly effective in handling large deviations in vehicle departure and
arrival times. Since errors in these parameters have a direct impact on the
interaction between the vehicle and the home energy grid, the online models
successfully used their increased flexibility to readjust the energy strategy in
real-time, yielding significant cost reductions. Moreover, while SOC errors
(ESOC) do not always require as many reoptimizations, they were efficiently
managed by the online models, which quickly adapted to changes in battery
energy availability.
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The seasonal distribution of energy consumption further influenced the
overall performance of the system. During the winter months, characterized
by higher energy demands for heating, the system faced increased operational
costs in the benchmark model. However, the online models continued to
achieve notable savings despite the higher demand. As the weeks passed
and spring and summer arrived, operational costs decreased due to reduced
heating needs and lower overall energy consumption. Even in this scenario
of reduced demand, the online models demonstrated their ability to adapt
to new conditions, continuing to offer consistent savings.

From a monetary perspective, weekly savings ranged from approximately
$8.42 to $12.87, confirming the value of implementing a dynamic energy
management system based on continuous reoptimization. These savings, if
projected over a year, represent a substantial reduction in the overall energy
costs of a household, making the online system highly advantageous not only
for optimizing operational expenses but also for ensuring a more sustainable
and adaptive energy management approach.

An additional crucial point emerging from the experiment is the robust-
ness of the online models in adapting to unpredictable conditions. Despite
daily fluctuations in prices and random errors, the models consistently re-
optimized their energy strategies, maintaining an optimal balance between
cost minimization and energy efficiency. This operational robustness sug-
gests that the online models are not only effective in the short term but
can be adopted for long-term energy management, capable of adapting to
evolving market conditions and operational scenarios.

Moreover, it is important to note that the use of the offline model 2
(OF2) as a base for reoptimizations offers an additional option for balancing
cost savings and vehicle charge levels. The OF2 model introduces a tradeoff
between minimizing costs and maintaining a higher battery SOC. This aspect
is crucial when the goal is to preserve a higher residual vehicle charge rather
than maximizing cost savings. The experiment has shown that in situations
where it is preferable to prioritize a higher vehicle charge over monetary
savings, the OF2 model may be the more appropriate choice, allowing for
greater control over the balance between savings and energy performance.
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7.2 Future Perspectives

The results of this experiment open several promising avenues for future
work, with significant potential for improvements and new applications. One
of the most exciting directions is the integration of advanced predictive mod-
els that can better anticipate energy demand peaks and price fluctuations.
Incorporating artificial intelligence techniques, such as machine learning,
could further enhance the real-time reoptimization process, making it more
precise and adaptive.

For instance, using supervised machine learning models could al-
low the system to analyze historical energy consumption and pricing data
to create more accurate short- and long-term forecasts. Algorithms like
Recurrent Neural Networks (RNNs) or Long Short-Term Mem-
ory (LSTM) models, which are particularly effective for handling temporal
data, could be employed to predict load variations or energy price fluctua-
tions in different time slots. These forecasts would enable more proactive
energy use planning, optimizing not only costs but also the availability of
the electric vehicle based on future expected scenarios.

Additionally, unsupervised learning algorithms, such as clustering,
could be used to identify consumption patterns and detect anomalies that
might negatively affect energy management. These models could be com-
bined with real-time reoptimization strategies, creating a system capable of
adapting both to errors and future conditions with greater accuracy.

Another area worth exploring is multi-objective optimization, where
the algorithm not only minimizes operational costs but also balances other
factors, such as reducing carbon emissions or optimizing household comfort
(e.g., maintaining consistent indoor temperatures in a smart home). By
doing so, the models could be configured to account for environmental or
personal variables, offering an even more tailored and efficient energy man-
agement system.

Furthermore, expanding this system to more complex energy networks,
such as microgrids or entire energy communities, could reveal new op-
portunities for savings on a larger scale. The scalability of these models
offers great potential for wider applications in both residential and commer-
cial settings. Envisioning a connected neighborhood where each household
uses real-time reoptimization models, coupled with AI-based price forecasts,
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could lead to substantial energy savings for the entire community, while also
reducing the overall load on the main electrical grid.

Another promising development could be the integration of advanced
energy storage technologies, such as next-generation batteries or hydro-
gen storage systems. These could work synergistically with the optimization
system to better handle energy price variability and demand peaks, using
low-cost energy periods to charge storage systems and utilizing stored en-
ergy during peak times.

Finally, the coordination between multiple vehicles in a Vehicle-
to-Grid (V2G) context could open up new possibilities. Each vehicle could
not only manage its charge optimally but also contribute to grid stabiliza-
tion by providing excess energy during peak hours and recharging during
low-price hours. Such coordination would require advanced communication
between vehicles and the grid, but could lead to significant savings and im-
proved energy efficiency on a larger scale.

In summary, the future prospects for this system include a combination
of artificial intelligence techniques, expansion to more complex energy net-
works, and greater integration with storage and grid management technolo-
gies. These developments promise to make the system even more effec-
tive and sustainable, offering large-scale energy savings and contributing to
greater stability and efficiency in the electrical grid.

7.3 Initial Investment and Long-term Returns

Implementing an online energy reoptimization system for Vehicle-to-Home
(V2H) energy management undoubtedly requires an initial investment, both
in terms of hardware and software. The necessary components may include
advanced energy management software, real-time monitoring systems, com-
munication protocols for vehicle integration, and possibly even upgrades to
the home’s energy infrastructure to accommodate dynamic energy flows. The
cost of these upgrades could vary significantly depending on the complexity
of the installation, the quality of the components, and the specific energy
demands of the household.

However, despite these upfront costs, the long-term savings demonstrated
in this experiment suggest that the investment is justified. The ability to
dynamically adapt to forecast errors and price fluctuations has proven to
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increase system efficiency compared to static or offline models. This dynamic
approach allows for daily operational cost reductions, which, accumulated
over several months, can result in significant financial returns.

Over time, the savings in operational costs would offset the initial ex-
penses, making the system a cost-effective solution for residential energy
management. Additionally, the long-term benefits of such a system are not
only economic. A system that continuously optimizes energy usage also
promotes sustainability by reducing dependence on external energy sources,
potentially lowering carbon emissions and contributing to a greener economy.

Moreover, as future developments in energy systems become available,
such as advanced predictive models or energy storage technologies, the initial
investment could pave the way for further savings. By incorporating arti-
ficial intelligence techniques like machine learning, the system could better
anticipate demand peaks and price fluctuations. For example, supervised
learning models could be used to analyze historical data, creating more ac-
curate predictions for load and price variations. Real-time reoptimization
could then become even more effective, enhancing the overall efficiency of
the system in unpredictable conditions.

Additionally, the system’s scalability offers the potential to expand be-
yond individual households into larger networks, such as microgrids or com-
munity energy systems. By extending these models to multiple households or
even small communities, the savings could be amplified, creating a more re-
silient and efficient local energy network. Coordinated reoptimizations across
multiple households, vehicles, and energy storage systems could reduce the
overall demand on the main grid, offering substantial energy savings at a
larger scale.

Another potential development lies in using offline model OF2 as the
base for optimization, allowing for greater control over the balance between
operational cost savings and the state of charge (SOC) of the vehicle. By
adjusting the SOC priorities, users could choose to prioritize either lower
costs or a higher charge level, depending on their specific needs. This flex-
ibility could be especially useful in cases where maintaining a higher SOC
is desirable for upcoming trips or to contribute to a more stable grid during
peak hours.

In conclusion, while the initial investment required for implementing an
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online reoptimization system may be substantial, the long-term benefits –
both financial and environmental – make it a worthwhile consideration. As
energy systems evolve, the integration of AI-driven predictive models and
real-time reoptimization capabilities promises even greater efficiency, sus-
tainability, and adaptability to changing energy landscapes.
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Appendix A: OF1 implementation

1 from gurobipy import *
2

3 def OFFLINE_optimization(SOC_max, SOC_min, gamma_C_max_hourly,
gamma_C_min_hourly,

4 gamma_V2H_max_hourly, gamma_V2H_min_hourly, eta,
Lambda_hourly,

5 theta, SOC_a, SOC_l, Loads, Costs, slots):
6 # PARAMETERS
7 gamma_C_max = gamma_C_max_hourly * 24 / slots # Max battery charge speed [

kW]
8 gamma_C_min = gamma_C_min_hourly * 24 / slots # Min battery charge speed [

kW]
9 gamma_V2H_max = gamma_V2H_max_hourly * 24 / slots # Max V2H speed [kW]

10 gamma_V2H_min = gamma_V2H_min_hourly * 24 / slots # Min V2H speed [kW]
11 Lambda = Lambda_hourly * 24 / slots # Battery power loss [kWh]
12

13 # Model initialization
14 model = Model("EnergyManagement_OFFLINE")
15

16 # Decision variables
17 theta_C = model.addVars(range(slots), vtype=GRB.BINARY, name="theta_C")
18 theta_V2H = model.addVars(range(slots), vtype=GRB.BINARY, name="theta_V2H")
19 SOC = model.addVars(range(slots + 1), lb=0, name="SOC")
20 gamma_C = model.addVars(range(slots), lb=0, name="gamma_C")
21 gamma_V2H = model.addVars(range(slots), lb=0, name="gamma_V2H")
22 x = model.addVars(range(slots), lb=0, name="x")
23

24 # Mutual states of the battery
25 model.addConstrs(theta_C[t] + theta_V2H[t] <= theta[t] for t in range(slots

))
26

27 # Charge and discharge constraints
28 model.addConstrs(gamma_C[t] <= gamma_C_max * theta_C[t] for t in range(

slots))
29 model.addConstrs(gamma_C[t] >= gamma_C_min * theta_C[t] for t in range(

slots))
30 model.addConstrs(gamma_V2H[t] <= gamma_V2H_max * theta_V2H[t] for t in

range(slots))
31 model.addConstrs(gamma_V2H[t] >= gamma_V2H_min * theta_V2H[t] for t in

range(slots))
32

33 # Total energy bought in time slot t
34 model.addConstrs(x[t] == Loads[t] + gamma_C[t] - eta * gamma_V2H[t] for t

in range(slots))
35

36 # SOC constraints
37 model.addConstr(SOC[0] == 50) # Initial SOC
38 model.addConstr(SOC[0] == SOC[slots]) # End of day SOC equal to the start
39

40 # Objective function: Minimize energy cost
41 model.setObjective(quicksum(Costs[t] * x[t] for t in range(slots)), GRB.

MINIMIZE)
42

43 model.optimize()
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Chapter 7. Conclusion

Appendix B: OF2 implementation

1 from gurobipy import *
2

3 def OFFLINE_optimization(SOC_max, SOC_min, gamma_C_max_hourly,
gamma_C_min_hourly,

4 gamma_V2H_max_hourly, gamma_V2H_min_hourly, eta,
Lambda_hourly,

5 theta, SOC_a, SOC_l, Loads, Costs, slots):
6 # PARAMETERS
7 gamma_C_max = gamma_C_max_hourly * 24 / slots # Max battery charge speed [

kW]
8 gamma_C_min = gamma_C_min_hourly * 24 / slots # Min battery charge speed [

kW]
9 gamma_V2H_max = gamma_V2H_max_hourly * 24 / slots # Max V2H speed [kW]

10 gamma_V2H_min = gamma_V2H_min_hourly * 24 / slots # Min V2H speed [kW]
11 Lambda = Lambda_hourly * 24 / slots # Battery power loss [kWh]
12

13 # Model initialization
14 model = Model("EnergyManagement_OFFLINE")
15

16 # Decision variables
17 theta_C = model.addVars(range(slots), vtype=GRB.BINARY, name="theta_C")
18 theta_V2H = model.addVars(range(slots), vtype=GRB.BINARY, name="theta_V2H")
19 SOC = model.addVars(range(slots + 1), lb=0, name="SOC")
20 gamma_C = model.addVars(range(slots), lb=0, name="gamma_C")
21 gamma_V2H = model.addVars(range(slots), lb=0, name="gamma_V2H")
22 x = model.addVars(range(slots), lb=0, name="x")
23

24 # Mutual states of the battery
25 model.addConstrs(theta_C[t] + theta_V2H[t] <= theta[t] for t in range(slots

))
26

27 # Charge and discharge constraints
28 model.addConstrs(gamma_C[t] <= gamma_C_max * theta_C[t] for t in range(

slots))
29 model.addConstrs(gamma_C[t] >= gamma_C_min * theta_C[t] for t in range(

slots))
30 model.addConstrs(gamma_V2H[t] <= gamma_V2H_max * theta_V2H[t] for t in

range(slots))
31 model.addConstrs(gamma_V2H[t] >= gamma_V2H_min * theta_V2H[t] for t in

range(slots))
32

33 # Total energy bought in time slot t
34 model.addConstrs(x[t] == Loads[t] + gamma_C[t] - eta * gamma_V2H[t] for t

in range(slots))
35

36 # SOC constraints
37 model.addConstr(SOC[0] == 50) # Initial SOC
38 model.addConstr(SOC[0] == SOC[slots]) # End of day SOC equal to the start
39

40 # Objective function: Minimize energy cost
41 model.setObjective(quicksum(alpha*(Costs[t] * x[t]) - (1 - alpha) * SOC[t]

for t in range(0, slots)), GRB.MINIMIZE)
42

43 model.optimize()
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