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1 Introduction

Evaluating properties of a probabilistic model, such as means, variances and correlations from prob-
ability distributions defined on factor graphs 1(FGs), is inherently challenging due to its complexity,
here defined as the number of operations and memory allocations required, which often scale expo-
nentially in the number of variables involved.
Tensor networks2 (TNs) offer a novel approach to handle probability distributions defined on FGs,
enabling the use of optimization techniques and heuristic strategies to significantly reduce the com-
plexity.

Here I present

1. A deep analysis in the TN frameworks, with different maps allowing to pass from
probabilistic models to specific TN’s peculiar structures. It is also presented a method to
transform a generic N -tensors TN in a square lattice TN which has at most N(N/2+1)
tensors.

2. Two TN-contraction algorithms I’ve written in Julia programming languagea from
scratch, namely MCE algorithm and RRC algorithm, respectively allowing the con-
traction of generic TNs and square-lattice TNs. In addition, simulations results are
provided in dedicated chapters. These two algorithms maps the calculation of a prop-
erty of interest of a probabilistic model defined on a FG into a TN contraction problem,
where the balance between the precision on the result and the complexity of the con-
traction is tunable through 3 input parameters chosen by the user.

3. Two examples of applications: the Ising model on different graphs with different model’s
parameters and a Boltzmann learning based biophysics problem, namely the inference
of native contacts in proteins families.

ahttps://julialang.org

1Factor graphs on Wikipedia
2https://tensornetwork.org
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2 Definition of a TN

A TN consists of an undirected graph G = (V,E), along with a positive integer-valued map

d(·) : η → N>0

assigning each edge η ∈ E to a vector space F of dimension dη, and a map

A(·) : v →
⊗

η=(i,v)∈E|i∈V

Fdη

assigning each node v ∈ V to a tensor A(v) whose shape is determined by the dimensions assigned
to edges in E connecting v.

2.a A simple family of tensors: Copy Tensors

Given an orthonormal basis B = {e1, . . . , ed} for a vector space Fd, for each n ≥ 1 we define the
n-th order copy tensor associated with B to be

∆n
.
=

d∑
x=1

(ex)
⊗n

The copy tensors ensures that all the variables (also called indices) connected to it take the same
value. In figure 1 it is depicted the graphical representation of the first 4 copy tensors (purple nodes)
with their indices (black links)

∆4∆3∆2∆1

Figure 1: The first 4 copy tensors ∆1,∆2,∆3,∆4.

Another interesting property concerning copy tensors is that connected networks of copy tensors can
be arbitrarily reorganised, as depicted in Figure 2.

=

Figure 2: Connected networks of copy tensors can be arbitrarily reorganised in a new connected
network, preserving the indices connecting the ∆’s with the rest of the network.

2.b Construction of a TN

Starting from a FG, the following steps allows to obtain its TN representation:

1. Substitute each node representing a variable with a copy tensor of order equal to the degree
of that node. The order of a tensor is the dimension of its domain.
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2. Substitute each factor with a tensor encoding all the possible values that factor can assume 3.

3. Connect copy tensors of point 1 and tensors of point 2 according to the connectivity of the
original FG. The edges, i.e. the indices, are the variables of the original network and the
dimension of an index is the number of values that variable can assume.

In figure 3 it is depicted an example of transformation of a FG, representing a probability distribution
P factorized as

P (X,Y,W, V ) =
1

Z
ϕX(X,W )ϕY (Y,W )ϕV (V,W )

into a TN, where Z is the normalization term.

X W

V

YϕX ϕY

ϕV

ΦYΦX

ΦV

X YW1 W2

W3

V

∆X

∆W

∆V

∆Y

Figure 3: Left: the FG of interest. Right: The ∆’s are copy tensors and purple squares are the
factor’s tensors. Note the role of copy tensors: ∆W ensures that the edge-variables W1,W2,W3 take
the same values, i.e. they represent the same variable in the original FG.

Contracting a TN means summing over all the values of the indices.
In the example in figure 3:

Z =
∑

X,W1,W2,W3,Y,V

∆X
XΦX

X,W1
∆W

W1,W2,W3
ΦV

W3,V Φ
Y
W2,Y ∆

Y
Y ∆

V
V

where e.g. ∆W
W1,W2,W3

means the tensor entry W1,W2,W3 of ∆W .

3E.g. if the factor connects two binary variables, then the associated tensor will be a 2 by 2 matrix, encoding the
4 values that factor can assume.
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2.c Matrix Product State (MPS)

Consider an N -order tensor ϕ with indices s1, . . . , sN . The MPS representation of ϕ is its exact
reformulation in terms of a product of new smaller tensors organized on a 1D chain [6].
Let’s start expressing ϕ as a product of a first tensor encoding information on the initial N−1 spins,
and a second one containing information on sN .

ϕs1,...,sN =
∑
aN−1

ϕ[N−1]
s1,...,sN−1;aN−1

A[N ]
sN ;aN−1

Note that as a convention, we always put the physical indices in front of virtual indices (a’s are called
so) and use a semicolon to separate them. For the tensor ϕ[N−1] one can do the same decomposition
by grouping the first N − 2 indices and decompose again as:

ϕ[N−1]
s1,...,sN−1;aN−1

=
∑
aN−2

ϕ[N−2]
s1,...,sN−2;aN−2

A[N−1]
sN−1;aN−2,aN−1

Repeat decomposing in the above mentioned way, until each tensor contains only one physical index.
Eventually, we obtain the MPS representation of the tensor ϕ:

ϕs1,...,sN =
∑

a1,...,aN−1

A[1]
s1;a1

A[2]
s2;a1,a2

· · ·A[N−1]
sN−1;aN−2,aN−1

A[N ]
sN ;aN−1

The above procedure shows that any tensor can be written exactly in its MPS form, as long as the
dimensions of the virtual indices are not limited.
In doing the MPS representation of a tensor using the function ITensors.MPS() in Julia programming
language, one input parameter is considered in the algorithms I’ve developed:

1. χ, controlling the maximum dimension for the indices a1, a2 . . . , aN−1. The greater χ the
greater the precision on the MPS representation of a tensor.

In figure 4 it is depicted the detailed graphical representation of the process of obtaining the MPS
representation of ϕ.
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S1
S2 SN−1 SN

A[1] A[2] A[N−1] A[N ]

a1 aN−1a2 aN−2
∑
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ϕ

S1
S2

SN−1

SN
. . .

∑
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SN

A[N ]

aN−1
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S1
S2

SN−1

. . .

∑
aN−1, aN−2

S1 S2

. . .

SN−1 SN

A[N−1] A[N ]

aN−1aN−2

ϕ[N−2]

. . .

. . .
ϕ

S1
S2

SN−1

SN
. . .

ϕ

S1
S2

SN−1

SN. . .

Figure 4: Graphical representation of the steps required to achieve the MPS representation of a
N -th order tensor ϕ.

In Figure 5 it is depicted an example to appreciate the influence of the parameter χ considering two
different TNs. Start from the two factor graphs associated to two different probabilistic models. On
the left we have a FG with 4 nodes and 5 factors 4. On the right we have a FG with 4 variables and
5 factors, but here one factor is connected with all the 4 variables 5

On the left the factor graph is converted into its TN representation, and then the MPS representation
is retrieved. Note that the MPS is already exploited because all the tensors (the green ones) have
two connections, so they have order at most equal to 3. Indeed recall that a tensor with less than 4
indices is already in its MPS form.
On the right the central factor is converted into the central green tensor in the TN representation.
It is a tensor of order 4, so the MPS representation will result in a train of 4 tensors.

4It can represent e.g. an Ising model with 4 spins and pairwise interactions.
5It can represent the same Ising model previously described, but with the addition of a 4 body-interaction.
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Figure 5: χ controls the precision on the MPS representation of a TN if the MPS representation is
not already achieved.
Left: an initial factor graph is considered, where the pink circles represents variables and red squares
represent factors. The TN representation is obtained, where the pink circles are now copy tensors
and green squares are tensors encoding all the possible values the factors can assume. In the end
the MPS representation of each tensor in the TN is obtained just by leaving the TN as it is, because
the tensors have order at most equal to 3.
Right: Now a factor have 4 connections. The resulting TN will be graphically equal to the FG, but
the MPS representation will be non trivial. Indeed the central green tensor with 4 indices will result
in a train of 4 tensors connected according to the original connectivity of the TN before exploiting
the MPS representation. The thick black indices have dimension ≤ χ. If the initial dimensions of
the indices are bounded by a maximum dimension d, than χ is in general considered greater than d
to avoid the occurrence of large errors. This is why these indices are drawn thicker.

In the case of a copy tensor with i indices of dimension k, due to its specific structure ∆i
.
=∑i

x=1(ex)
⊗i, its exact MPS representation can be obtained just by imposing that the first index is

equal to the second, the second equal to the third, and so on. This consideration allows us to obtain
the following rule for the MPS of a copy tensor:
The exact MPS of a copy tensor with i indices of dimension k require always χ = k. In
Figure 6 it is depicted the graphical representation of what we’ve just said.

7



≡

∆6

∆2
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∆3 ∆3

∆3 ∆3

k k k

k k

k
k

k

k
k
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Figure 6: To achieve the MPS representation of a copy tensor it is sufficient to consider χ = k. This
procedure do not introduce errors.

χ controls the precision on the MPS representation of a tensor which is non-trivial only when
the tensor considered has an order greater than 3. In statistical mechanics models, as we
will see in the chapters devoted to simulations, χ is useful when we are considering k-body
interactions between variables, with k > 3.
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3 SVD of a tensor

For a matrix B the SVD representation of B is a product of 3 matrices U, S, V such that S is a
diagonal matrix containing the singular values of B and B = USV † holds.
The same reasoning can be applied to a tensor A, e.g. with 4 indices, just by collecting two indices
in a single bigger one and then depackaging it after SVD [6].

A{i,l},{j,k} =
∑
a1

U{i,l},a1
Sa1,a1V

†
a1,{j,k}

In figure 7 there is the graphical representation of the SVD of a tensor A with 4 indices.

∑
a1,a2 a1 a2

U S

V †
A

Figure 7: SVD decomposition of a tensor. Indices a1 and a2 have the same dimension, because S is
a square matrix.

In doing the SVD using the function ITensors.svd() in Julia programming language, two input
parameters are considered in the algorithms I developed:

1. λ: the maximum common dimension allowed for the indices a1, a2. This dimension is
the number of greatest singular values retained in the representation of S. Controlling
λ means controlling the number of memory allocations used because the greater λ the
higher the number of entries of U, S, V .

2. ξ, the cutoff: it is defined as the desired truncation error of the eigenvalues, i.e. the sum
of the squares of the smallest eigenvalues that are not retained. Controlling the cutoff
ξ means imposing a specific threshold on the precision of the decomposition output.

9



4 Transformation of TNs

Considering a TN, our aim here is to find an efficient way to contract it. As we have seen in the
first chapter, the partition function Z of a statistical mechanics model can be obtained from the
total contraction of the TN obtained from the FG of the probabilist model of interest. In statistical
physics, ones we have the partition function Z, all the interesting properties of the model under
consideration can be obtained from Z.
This is why an efficient total contraction procedure of a TN is our goal.

4.a Exactly contractible TNs

Let’s start from two classes of TNs for which the contraction procedure minimizing the number
of operations and memory allocations is known and it is polynomial in the number of tensors. A
graphical representation of two classes of this particular TN’s is depicted in figure 8.

Figure 8: Two classes of TN’s for which the contraction ordering is trivial: on the left a tree graph
and on the right a fractal graph.

a) Tensor Networks on Tree Graphs, left panel in figure 8
We consider in the picture a tree TN with NL layers of third-order tensors. Vectors are put on the
outmost boundary. A tree TN’s partition function is written as:

Z =
∑
{a}

NL∏
n=1

Mn∏
m=1

T [n.m]
an,m,1,an,m,2,an,m,3

∏
k

v[k]ak

Where

1. T [n,m] is the m-th tensor on the n-th layer

2. Mn is the number of tensors of the n-th layer

3. v[k] is the k-th vectors on the boundary

Now we contract each of the tensor on the NL-th layer with the corresponding two vectors on the
boundary as:

v′a3
=
∑
a1,a2

T [NL,m]
a1,a2,a3

v[k1]
a1

v[k2]
a2

After the vectors are updated by the equation above, the number of layers of the tree TN becomes
NL−1. The whole tree TN can be exactly contracted by repeating this procedure. We can see from
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the above contraction that if the connected graph does not contain any loops, i.e. has a tree-like
structure, the dimensions of the obtained tensors during the contraction will not increase. Therefore,
the TN defined on it can be exactly contracted. In conclusion, if the graph is a tree, the contraction
procedure to make the TN exactly contractible is to start from the leaves and contract them recur-
sively.

b) Tensor Networks on Fractals, right panel in figure 8
Another graph that can be exactly contracted is the TN defined on a fractal, e.g. the Sierpinski
gasket. The TN can represent a statistical mechanics model defined on the Sierpinski gasket, such
as Ising and Potts model. The tensor is given by the probability distribution of the three spins in a
triangle.
After each round of contractions, the dimension of the tensors and the geometry of the network keep
unchanged, but the number of the tensors in the TN decreases from N to N/3. It means we can
exactly contract the whole TN by repeating the above process.

Now let’s see an example clarifying why a TN cannot be contracted without a specific procedure. In
figure 9 it is depicted a TN and the consequent contraction following a random contraction order.
As it is clear from the graphical representation, following a random contraction order generates,
step by step, bigger tensors, i.e. a random contraction procedure generates tensors with unbounded
number of entries.
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1 2 3

4 5 6

7 8

Figure 9: A random contraction procedure is inefficient for the total contraction of an arbitrary TN.
In this Figure orange nodes are tensors and black indices are variables shared. Cyan highlighted
elements help in understanding the contraction being performed at that moment. Consider the
initial TN at step 1: the number of memory allocations is equal to the sum of the entries of the
tensors, in this case, considering the variables to have the same domain’s cardinality d, then we are
storing d3 + d3 + d5 + d3 + d4 + d4 + d4 which goes like d5 for large d.
Following a random contraction ordering means that in general we are creating bigger tensors. Indeed
consider the TN in step 4: the number of memory allocations here is d7 + d3 + d7 + d2 + d3 which
goes like 2d7 for large d.
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5 Contraction orders for TNs

Given a generic TN, it is not easy to find the exact contraction order of the tensors, here defined as
the contraction procedure. Indeed this is a NP-complete problem.
Consider a TN as a graph G = (V,E) where V is the set of tensors and E is the set of indices
connecting them in the TN.
A contraction ordering π is an ordering of all the edges of G, π(1), π(2), . . . , π(|E(G)|). The complex-
ity of π is the maximum degree of a merged vertex during the contraction process. The contraction
complexity of G, denoted by cc(G), is the minimum complexity of a contraction ordering.
A useful concept: treewidth of a graph
The treewidth of a graph is a useful combinatorial measure of how close the graph is to a tree. Let
G be a graph. A tree decomposition of G is a tree T , together with a function that maps each vertex
w ∈ V (T ) to a subset Bw ⊆ V (G). These subsets Bw are called bags of vertices.
In addition, the following conditions must hold:

1. ∪v∈V (T )Bv = V (G), i.e. each vertex must appear in at least one bag.

2. ∀{u, v} ∈ E(G),∃w ∈ V (T ), {u, v} ⊆ Bw, i.e. for each edge, at least one bag must contain
both of its end vertices.

3. ∀u ∈ V (G), the set of vertices w ∈ V (T ) with u ∈ Bw form a connected subtree, i.e. all bags
containing a given vertex must be connected in T .

The width of a tree decomposition is defined by maxw∈V (T ) |Bw| − 1. The treewidth of G is the
minimum width over its tree decompositions. In figure 10 there is an example of a graph and its
decomposition of width 2 with 6 bags. Computing the treewidth of an arbitrary graph is NP-hard.

a b

c

d

e f

g

h

{a, b} {b, c, d} {c, d, e}

{d, h}

{d, e, g} {e, g, f}

Figure 10: Example of a graph and its decomposition of width 2 with 6 bags.

Theorem by Markov and Shi, [4]: The contraction complexity of a graph equals the treewidth
of its line graph: G = (V,E), cc(G) = tw(G). Furthermore, given a tree decomposition T of width
d, there is a deterministic algorithm that outputs a contraction ordering π with cc(π) ≤ d in poly-
nomial time.

Proof : There is a one-to-one correspondence of the contraction of an edge in G and the elimi-
nation of a vertex in T , and the degree of the merged vertex resulting from contracting an edge e
in G is the same as the degree of e being eliminated in T . Thus cc(G) = tw(G).
To prove the second part of the statement, denote the tree decomposition by T . Repeat the following
until the tree decomposition becomes an empty graph. Choose a leaf l in T . If l is the single vertex
of T , output vertices of T in Bl in any order. Otherwise , let l′ be its parent. If Bl ⊆ Bl′ , remove l
and repeat the process. Otherwise, let e ∈ Bl−Bl′ . Output e, remove it from the tree decomposition
and continue the process, until all vertices of the tree decomposition are removed. The number of
steps in this process is polynomial in the size of the tree decomposition. Note that each output
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e appears in only one bag in the tree decomposition. Therefore, all (current) neighbors of e must
appear in the same bag. Hence its induced width is at most d. By the one-to-one correspondence of
the vertex elimination in T and the contraction process in G, cc(G) ≤ d.

Theorem by Robertson and Seymour, [8],[7],[9] : There is a deterministic algorithm that given
a graph G outputs a tree decomposition of G of width O(tw(G)) in time |V (G)|O(1) exp[O(tw(G))].
We have proven that finding the contraction ordering minimizing the maximum degree of the inter-
mediate tensors is an ∈ NP-complete problem. But even if we had this ordering it is not guaranteed
that the optimal contraction ordering can be performed.
Indeed, it depends on the computer on which we are running the contraction algorithm, which has
limited memory allocations capabilities.
Here we want to build algorithms calculating approximations of TN contractions, whose complex-
ity6 can be tuned with input parameters, so that the user can select its personal balance between
precision achieved on the results and the complexity of the total contraction.
Let’s start from a general observation.
Given a generic TN T , it is possible to construct a different TN T̃ such that, defining C(·) as the con-
traction procedure whose output is the desired property, e.g. the partition function Z of a statistical
mechanics model of interest, the following inequality holds:

|C(T )− C(T̃ )| ≤ ϵ

where ϵ is the error committed on the total contraction of the original TN T .
The key idea for the first algorithm I will present in the next chapter, the MCE algorithm, is to
device a procedure such that starting from a generic TN T we can iteratively modify the network
constructing a TN which is step by step closer to a certain class of TNs, here defined as MC class.
An example of a TN ∈ MC is depicted in Figure 11.
Consider the following two definitions

1. Given a TN, two or more indices are called parallel indices if they connect the same two tensors.

2. By saying modulus parallel indices I mean ”considering one single index when two or more
parallel indices are present”.

Now we can define the MC class:
A TN T ∈ MC class if and only if the removal of all the chains of matrices modulus parallel indices
in the TN leave a chain of matrices modulus parallel indices.
Indeed, an ending structure like the one in figure 11 is exactly contractible in polynomial time by
contracting each semicircle of purple tensors accordingly to the efficient matrix chain contraction
algorithm 7.

6The complexity is defined here as the memory allocations required and operations being performed for the total
contraction evaluation.

7It is given explicitly in the final chapter.
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Figure 11: General structure we are interested in, where purple nodes indicate generic tensors and
black links indicate variables shared by tensors. This is an example of a TN ∈ MC class.

Problem faced

Find a flexiblea algorithm that, given a generic TN, allows to modify it such that at each
step the TN obtained is closer to the MC class. The final contraction result has an error
that does not exceed a user-tunable threshold ϵ.
For a generic TN, the MCE algorithm has this purpose. The strategy used in this algorithm
is the iterative dismantling of the lighter cycles in the graphs, where the weight of a cycle is
specifically designed for the TN of interest.

aMCE is flexible, the user can choose 3 input parameters controlling the balance between precision on the
results and complexity of the contraction depending on the specific TN considered.
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6 MCE algorithm

The steps of Minimum Cycle Elimination algorithm are the following, where green elements refer
to the green-numbered-steps depicted in the example in figure 12, while cyan highlighted elements
helps in understanding the operations being performed at that moment:

1. Start with the FG of interest (1).

2. After the TN is created (2), find all the connected components in the TN.
For each of them:

2.1. If vectors or matrices are present in the TN

i. Contract8 all the order 1 tensors (vectors) in the TN.

ii. Contract efficiently⊛ all the chains of matrices in the TN, (3).

iii. Go to point 2.1.

2.2. If all the TN is contracted, go to point 3.

2.3. Convert every remaining tensor of order greater than 3 in its MPS representation, using
the input parameter χ as the maximum virtual index dimension.

2.4. Contract efficiently all the chains of matrices in the TN.

2.5. If the TN is not totally contracted

i. Find the lighter⊚ cycle in the TN, (4,5).

ii. Do SVD to eliminate the lighter cycle, swapping iteratively the index closing the
cycle (i13) with the index not composing the cycle of the subsequent tensor in the
cycle (dashed index of n2 in (5)), (6,7,8).
In the SVD retain the greatest λ singular values and set the cutoff defined in the
previous section, where both λ and the cutoff are input parameters (i.e. indices i1,∗12

and i2,∗12 in (8) have a common dimension ≤ λ).

iii. Contract efficiently all the chains of matrices in the TN, (9).

iv. Parallel indices9 are seen by the algorithm as a single index, (10,11). This is not
a problem because the algorithm is written such that after the MPS representation
step the tensor’s number of indices do not grow and remain at most equal to 3.

v. Go to point 2.1 and then go to point 2.5, (13).

3. Return the connected components and the collection of all the contraction results on the
different connected components, (13).

⊛: a chain of matrices can be efficiently contracted using a recursive algorithm.
⊚: the lighter cycle definition depends on the type of FG we are starting from. Possible definition
I’ve tested for MCE algorithm that give very good results are the following:

1. The product of the dimensions of the indices of the tensors composing the cycle.

2. The sum of the degrees of the tensors composing the cycle. This is the heuristic used in the
simulations I will present in the final section.

8Contracting A on B means that B is replaced by B ×A.
9Parallel indices are defined as 2 or more indices that connectes the same two tensors.
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Figure 12: Steps of MCE algorithm starting from a factor graph with 4 nodes and 6 factors.
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6.a Contraction heuristics

As previously mentioned, the contraction heuristics I’ve simulated and whose results are good are
two:

1. The product of the dimensions of the indices of the tensors composing the cycle. This method
is useful when the distribution of index-dimensions is expected to be uniform and constant
in time 10. This is the case of probabilistic models in which variables have heterogeneous
domains’ cardinality.

2. The sum of the degrees of the tensors composing the cycle. This method is faster than the
previous one, because from a computationally point of view the degree is easier to extract at
each step of the algorithm. This method is useful when the distribution of index-dimensions
is expected to be picked around a certain dimension and to be constant in time 11. This is
the case of statistical mechanics models like the Ising model and the Potts model, in which
variables have the same domains’ cardinality 12. With these assumptions this heuristic is fast
and efficient.

Now let’s see an example, depicted in figure 13, which will better clarify the cycle dismantling step
in the MCE algorithm.

10I.e. all index-dimensions in a certain range are present and during the SVD steps of MCE algorithm this distri-
bution remains approximatively the same. Rigid translations can also occur without affecting this heuristic, the only
important thing is that the distribution is close to a step function 1[d ∈ (a, b)] which is equal to 1 if the dimension d
is in between a and b and 0 otherwise.

11I.e. it is closer to be proportional to a delta function δ(a) which is 1 if d = a and 0 otherwise and the distribution
remains the same during SVD steps in MCE algorithm, with at most a rigid shift.

12The indices change dimension during the MCE algorithm because the SVD create new indices with dimension
≤ λ, but as we will see with simulations the distribution of indices remains picked around a certain small range of
dimensions, although rigidly shifted

18
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U
S

V

Figure 13: Cycle dismantling procedure in the MCE algorithm. Orange highlighted elements helps
in understanding the procedure. Starting from a cycle of length 6 in the end the cycle is eliminated.
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7 Triangle-star transformations

There is an interesting polynomial algorithm by Loh et al. [3] called ”Bond propagation algorithm”,
which allows to calculate exactly the partition function Z of an Ising model on an square lattice if
there are no fields in the network [3].
The procedure involves the triangle-star transformation and its inverse, which can be done without
increasing the maximum index dimension in the network, which remains equal to 2. This is the
reason behind the polynomial time 13 needed for the algorithm to contract all the network, indeed
the indices’ dimensions do not grow during the contraction.
It is useful to revise this algorithm such that we can answer to two important questions which are
not proved in the paper by Loh et al. [3]:

1. Is the zero fields set condition a necessary condition, i.e. do exist classes of Ising model
parameters14 {J⃗ , h⃗ ̸= 0⃗} such that the algorithm can be safely used ?

2. In the work of Loh et al. it is said that the only requirement is that the graph is planar, then
it can be transformed in a square lattice by inserting virtual Ising spins.

2.1. Is the planarity a necessary condition ?

2.2. Starting from a planar graph, how can we obtain a square lattice ?

Let’s review in figure 14 how the key idea of the bond propagation algorithm is devised.
A complete example of the application of the algorithm is presented in figure 15.

1 2 3

6 5 4

=

Figure 14: Key element of the bond propagation algorithm [3].
1: Starting from a square lattice, we identify the upper left 3 by 3 cell.
2: The upper left spin is traced off (the one highlighted in cyan).
3: A triangle⇒star transformation is performed.
4: Shift a bit the triangle such that the central node of a triangle is now located on the grid.
5: Perform a star⇒triangle transformation.
6: The bond on the upper corner of the 3 by 3 grid is now located one position down on the diagonal.

13Polynomial in the number of Ising spins in the network.
14J⃗ is the set of couplings and h⃗ is the set of node dependent fields.
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Figure 15: Example of application of the bond propagation algorithm on a square lattice with grid
size = 7. The final step is a possible way of concluding the procedure. The numbers in the last row
identifies the order of the spins-tracing off. That order is repeated iteratively until the final result,
i.e. the partition function Z, is retrieved, here represented as a black dot.
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Let’s analyse in depth the triangle-star transformation so that we can answer to the questions
considered at the beginning of this chapter.
Consider an n-way tensor, call it A. A generic entry if A is labeled by its indices and indicated
as Ai1,i2,...,in . You can group m indices, with m < n, in a single index, call it i1→m and the
remaining n − m indices into a second index, call it im+1→n. Clearly the dimension of i1→m,
dim(i1→m) =

∏m
j=1 dim(ij) and dim(im+1→n) =

∏n
j=m+1 dim(ij). Then you can perform the SVD

of A viewed as a matrix with entries Ai1→m,im+1→n
:

Ai1,i2,...,in = Ai1→m,im+1→n
= Ui1→m;a1

Sa1,a2
Vm+1→n;a2

Using these procedure, it is possible to achieve a triangle-star transformation, as depicted in figure
16.

A1

A2A3

C1

B1

B2

C2B3

C3

C1

C2

C3

c b

a

Figure 16: Star transformation of a triangle.
Left: Start with a triangle of tensors T = A1, A2, A3, which is located inside a TN. Then apply the
decomposition to the three tensors composing the triangle applying the SVD.
Center: Ai = CiBi, ∀i ∈ {1, 2, 3}. Now a triangle composed by the B’s is obtained.
Right: Contract the triangle composed by the B’s obtaining a new central tensor. The triangle
star transformation is achieved.

The same procedure can be done to transform a square into a star as depicted in sigure 17.

. . .

Figure 17: Star transformation of a square of tensors.

It is possible to do this transformation for a general n-side polygon.
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Cost of a triangle star transformation
Now we focus on the important quantities characterizing the cost of a triangle star transforma-
tion. We can predict that the indices’ dimensions will play a key role in this cost. Let’s analyse
only the triangle→star step15. Consider a general triangle in the TN, composed by three tensors
A(1), A(2), A(3)

A(j) ∈
n(j)⊗
i=1

Cd
(j)
i ∀j ∈ {1, 2, 3}

where n(j) is the number of indices the j-th tensor has and d
(j)
i is the dimension of the i-th index of

the j-th tensor, with j ∈ {1, 2, 3}.
Each A(j) has to be written as the product of a n(j) − 2 way tensor and a 3-way tensor:

A
(1)
i1,...,in(1)−2

,i
n(1)−1

,i
n(1)

=
∑
x

C
(1)
i1,...,in(1)−2

,xB
(1)
x,i

n(1)−1
,i

n(1)
=
∑
x

C
(1)
i1,...,in(1)−2

,xB
(1)
x,b,c

A
(2)
j1,...,jn(2)−2

,j
n(2)−1

,j
n(2)

=
∑
y

C
(2)
j1,...,jn(2)−2

,yB
(2)
y,j

n(2)−1
,j

n(2)
=
∑
y

C
(2)
j1,...,jn(2)−2

,yB
(2)
y,a,b

A
(3)
l1,...ln(3)−2

,l
n(3)−1

,l
n(3)

=
∑
z

C
(3)
l1,...,ln(3)−2

,zB
(3)
z,l

n(3)−1
,l
n(3)

=
∑
z

C
(3)
l1,...,ln(3)−2

,zB
(3)
z,a,c

where in(1) = jn(2)−1
.
= b, jn(2) = ln(3)−1

.
= a, ln(3) = in(1)−1

.
= c as depicted in Figure 16.

The cost to obtain the exact representation is related to the cost of a single SVD, which for a matrix
with indices i1, i2 with dimensions respectively d1, d2, is known to be

O(min(d21d2, d1d
2
2))

.
= O(min(d21d2, rev.))

where O(. . . ) mean ”of the order of” and ”rev.” means the reverse powers16.
For a reduced SVD, i.e. a SVD truncated at the k-th singular value, the cost is known to be

O(kd1d2)

Consider a single entry of the tensor D, i.e. (D)i,j,k,resulting from the contraction of the three B’s,
which will be the central tensor of the final star configuration

(D)x,y,z = (B(1)B(2)B(3))x,y,z =
∑
a,b,c

B
(1)
x,b,cB

(2)
y,a,bB

(3)
z,a,c

The cost of contracting the three B tensors in the new star-central tensor D is equal to dxdydzdadbdc.
The total cost for a triangle star transformation C∆,Y will be the sum of the cost necessary to obtain
the three SVD of the three tensors A(1), A(2), A(3) and the cost of the contraction of the three tensors
B(1), B(2), B(3):

C∆→Y = O

{
min

( 3∑
j=1

n(j)−2∏
i=1

d
(j)
i d

(j)

n(j)−1
d
(j)

n(j) , rev.

)}
+

3∏
j=1

( n(j)∏
m=1

rk(A
(j)
[m])dadbdc

)

where
∏n(j)

m=1 rk(A
(j)
[m]) is the product of the elements of the multilinear rank of A(j), A

(j)
[m] is the m-th

matricisation of the tensor A(j) and rk(·) is the rank.
We have obtained that the cost of a triangle-star transformation is an increasing function of the
indices’ dimensions, i.e. it heavily depends on the dimensions of the tensors involved, which was
predictable. The cost also depends of the data. Indeed the term referring to the multilinear ranks

15The opposite star→triangle transformation will be a different function of the same variables. Now we are looking
for other important variables different from the indices’ dimensions, indeed the latters will certainly be present.

16It’s just useful to express it in this way, the reason will be clear in a moment.
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add a contribution due to the complexity of the tensors.
In the work of Loh et al.[3], the ∆ → Y transformation is applied to a square lattice TN considering
an Ising model without fields. The only requirement is that the underlying graph is planar; indeed
we can transform the network of interest in a square lattice. Such generic lattices can be reduced to
or embedded in a square lattice by propagating out “effectively diagonal bonds” by inserting zero
bonds or infinite bonds[3].
In the work of Loh et al. this procedure is not given, but I will provide a possible way
to do that after the chapter devoted to RRC algorithm.
Now let us focus on the first question we asked ourselves at the beginning of this chapter:
Is the zero fields set condition a necessary condition, i.e. do exist classes of Ising model
parameters {J⃗ , h⃗ ̸= 0⃗} such that the bond propagation algorithm can be safely used ?
Clearly we cannot apply the same idea on a general Ising model because this would imply that a
generic Ising model is solvable in polynomial time, but maybe there exist some classes of parameters
J⃗∗ = {Jij}i,j , h⃗∗ = {hi}i such that the same bond-propagation idea can be applied to an Ising model
on a generic planar graph with random couplings and random fields belonging to that specific class.
Call C the class of parameters {J∗, h∗} with h∗ ̸= 0⃗ of an Ising model on a random planar graph
such that the the problem of calculating the partition function Z is ∈ P.
Here we prove the following statement:

Start from the graph of interest on which the Ising model is considered and insert virtual
spins to transform it into a planar graph. Insert new virtual spins with J = +∞ or J = 0
couplings such that the resulting graph is a square lattice of size n. We will see in a moment
how to do that.
C contains

1. All the possible sets of couplings

2. The sets of fields such that the non-boundaries-fields are 0, as depicted in figure 18.

Figure 18: The purple nodes are the ones with field equal to 0. This condition is necessary and
sufficient to use the bond-propagation algorithm in [3].

Now we want to prove that the C class is the one defined before.
To retrieve the classes of parameters in C consider the triangle star transformation: we have to
prove the equivalence, i.e. both the implications, as shows in figure 19. Here we call the fields with
capital H.
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Figure 19: To prove the equivalence both the implications (⇒) and (⇐) are needed: first from a
generic triangle we have to obtain a unique star, and then from a general star we have to obtain a
unique triangle via an equivalence relation.

Proof
(⇒)
Given s1, s2, s3 ∈ {+1,−1}, Jkm, Hl ∈ R,∀k,m, l ∈ {1, 2, 3}, define the Boltzmann weight associated
with the configuration of the three spins as BW (s1, s2, s3). We impose that the BW associated with
the triangle configuration, namely BW∆ is equal to the BW of the star configuration, i.e. BWY

BW∆(s1, s2, s3) = exp{J12s1s2 +HT
1 s1 +HT

2 s2 +HT
3 s3 + J13s1s3 + J23s2s3}

BWY (s1, s2, s3) =
∑
s0

exp{J10s1s0 + J20s2s0 + J30s3s0 +HS
1 s1 +HS

2 s2 +HS
3 s3 +H0s0 + δF}

where δF is a constant energy shift.
We impose BW∆(s1, s2, s3) = BWY (s1, s2, s3), ∀(s1, s2, s3) ∈ {+1,−1}3.
Define

1. exp{Jkm} .
= jkm ∀k,m ∈ {1, 2, 3}

2. exp{Hk}
.
= hk ∀k ∈ {1, 2, 3}

3. exp{δF} .
= δf

We obtain

js1s212 hs1
T,1h

s2
2,Th

s3
3,T j

s1s3
13 js2s323 =

∑
s0

(
js1s010 js2s020 js3s030 hs1

1,Sh
s2
2,Sh

s3
3,Sh

s0
0

)
δf =

= hs1
1,Sh

s2
2,Sh

s3
3,Sδf

∑
s0

js1s010 js2s020 js3s030 hs0
0

The last equation must hold for each triple s1, s2, s3 so the fields terms h1, h2, h3 can be simplified,
indeed it is just necessary to keep one single parameter, for example δf .

js1s212 js1s313 js2s323 = δf
∑
s0

js1s010 js2s020 js3s030 hs0
0
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There are 23 = 8 equations:

(+ + +) : j12j13j23 =

(
j10j20j30h0 +

1
j10j20j30h0

)
δf

(+ +−) : j12
1
j13

1
j23

=

(
j10j20

1
j30

h0 +
j30

j10j20h0

)
δf

(+−+) : j13
1
j12

1
j23

=

(
j10j30

1
j20

h0 +
j20

j10j30h0

)
δf

(−++) : j23
1
j12

1
j13

=

(
j20j30

1
j10

h0 +
j10

j20j30h0

)
δf

(−−+) : j12
1
j13

1
j23

=

(
j30

j20j10
h0 +

j20j10
j30h0

)
δf

(+−−) : j23
1
j13

1
j12

=

(
j10

j20j30
h0 +

j20j30
j10h0

)
δf

(−+−) : j13
1
j23

1
j12

=

(
j20

j10j30
h0 +

j10j30
j20h0

)
δf

(−−−) : j13j23j12 =

(
j10j20j30

h0
+ h0

j10j20j30

)
δf

Considering (+ +−) and (−−+) the left hand side is the same, so we obtain

j10j20
1

j30
h0 +

j30
j10j20h0

=
j30

j20j10
h0 +

j20j10
j30h0

⇔ j10j20
1

j30
h2
0 +

j30
j10j20

=
j30

j20j10
h2
0 +

j20j10
j30

2h2
0sinh

(
J10J20
J30

)
= 2sinh

(
J10J20
J30

)
⇔ h0 = ±1 ⇒ H0 ∈ {0,±iπ}

Considering other couples of equations from the set of 8 equations written before, such that the
left-hand side is equal, produces the same result.
Eventually, the 8 equations can be rewritten as

js1s212 js1s313 js2s323 = δf
∑
s0

js1s010 js2s020 js3s030 hs0
0 = ±δf

(
js110j

s2
20j

s3
30 +

1

js110j
s2
20j

s3
30

)
The final equation is

eJ12s1s2+J13s1s3+J23s2s3 = ±2δfcosh(J20s1 + J20s1 + J30s3)

We have obtained that Triangle ⇒ Star if and only if H0 = 0 17, starting from a generic set of fields
hT
1 , h

T
2 , h

T
3 .

(⇐)
It is clear that we cannot start from a generic star configuration, indeed the central field H0 must
be 0, because the set of 8 equations to prove this implication is the same used in (⇒).

While doing the bond-propagation in the bond-propagation algorithm by Loh et al., the star-triangle
transformation will not be possible because the central field is non zero in general, i.e. we have started
our analysis with an Ising model with random fields. So it is not possible to apply the bond prop-
agation algorithm to an Ising model on a a planar graph with generic fields without increasing the
dimensions of the domains of the new spins s0. In the case the square lattice Ising model contains
fields equal to 0 on the non-boundary nodes, then the bond propagation algorithm can be used.

17The case of imaginary fields is not considered, indeed we are working with the Ising model, which has real fields.
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8 RRC algorithm

The Rotated Row Climbing algorithm is useful when we have to deal with probability distributions
factorized over the edges of a square lattice, were the nodes of the latter are variables.
The steps are described below where green elements refer to the steps depicted in the example in
figure 20, while yellow elements help in understanding the procedure:

1. Start with the FG associated with the square lattice, (1).

2. Create the TN with copy tensors (cyan nodes) and tensors encoding the probability distribu-
tion’s factors (purple squares), (2).

3. Contract the purple squares tensors on one of the neighbor copy tensors along the index whose
dimension is the large, (3).

4. If the size of the square lattice is 3 go to point 10.
Otherwise contract the matrix at the bottom-right corner on the tensor above, (4).

5. Contract the tensor on the left of the bottom-right corner of the lattice on the tensor above,
call it T , (5,6).

6. Perform SVD of T , (7), creating the tensors U , S, and V , using λ and cutoff as input param-
eters, (8).

7. Now contract S on V and then V on the purple tensor it is connected to, (9).

8. Repeat the same procedure (i.e. from point 4 to point 7) until the last row is totally contracted,
(10, 11).

9. Consider then a rotation of the remaining TN and perform the contraction of rows following
the same prescription (steps from 4 to 8), as depicted in figure 21, until a 3 by 3 grid is
obtained.

10. Contract the remaining TN as depicted in the last row of figure 21.
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Figure 20: Single step of RRC algorithm.
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RRC

RRC

RRC

RRC

Figure 21: ”Machine” representation of RRC algorithm. The thick indices have in general a higher
dimension which is still ≤ λ. In the last step contract all the matrices in the TN and then contract
the entire TN.

Now we see why and in what situations the rotation part is important in the RRC algorithm.
Consider the figure 22. A non-rotated version of RRC algorithm (called for this reason RC algorithm
in the machine representation in Figure 22) is considered for a square lattice with grid size equal to
5.
The first step is equal to RRC procedure initial step, the last row is contracted on the one above
it. In a general case the indices created via the SVD procedure are bigger then the ones with which
we started, so we draw them with thicker black lines. Then we proceed along the same direction,
without rotating the lattice. The SVD will work on bigger tensors, due to the thicker indices we
have just analysed, so the SVD will create in general bigger indices; so they grow a second time.
They are drawn in red meaning that we have reached the threshold λ. This moment can be present
in a sequent step, but without losing in generality we consider the saturation event of the indices
to be present at the second row-contraction step. Now we proceed: the SVD can not increase the
indices dimensions and errors are introduced; this event is represented by the violet indices, which
afre introducing errors. The final result will be a total contraction result which is affected by errors,
i.e. a purple dot. On the contrary, by looking at figure 21, we see that no red indices nor violet
indices are present.
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The rotation component of the RRC algorithm is very useful when we are dealing with small
square lattices, but also in the case of bigger ones. Indeed the rotation component is delaying
the moment when the problem of saturation of indices will arise.

RC

RC

RC

. . .

Figure 22: RC algorithm procedure, red indices indicate saturated indices, violet indices indicate
the introduction of errors. The contraction result is subjected to errors.
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9 Pipeline transformation: all the TNs can be mapped in
the class of square lattice TNs

We have seen that RRC algorithm have very good performances, indeed we can safely bound the λ
value to small sizes of the order of several tens, due to the geometric symmetries of square lattices.
In this chapter we answer the prove the following general statement:

Given an Ising model with N spins and generic sets of coupling and fields, the pipeline
transformation maps the calculation of Ising properties, e.g. Z, ⟨m⟩, . . . , in a contraction
problem of a connected subgraph of a square lattice TN, where the number of tensors is
bound by N(N2 + 1) a.

aThe equality is reached for example in the case of K-graphs, i.e. the complete graphs.

If we are able to transform a generic TN representing an Ising model into a square lattice TN then
the RRC algorithm could be safely applied.
Here I propose a possible way of doing this transformation.

Pipeline transformation
Let’s see the rules while looking an example. Green elements refers to green numbered steps in figure
23.

1. Start from the Ising model’s graph of interest, (1).

2. Trace off the spins with degree ∈ {1, 2}, (1,2).

3. Repeat point 1 until all spins have degree > 2.

4. Select a random spin and mark it as visited, (cyan highlighted tensor in (3)). Call it S.

5. Select a non-visited random spin connected to S and mark it as visited.

6. Repeat point 5 until all spins are visited. This is a random ordering to construct an hamiltonian
path. In general it is not possible to construct it, but it’s not a problem: if you’re stacked,
i.e. if you cannot proceed and there is at list one non-visited spin, just select one random
non-visited spin, mark it as visited and proceed as in point 4. You end with an ordered list of
visited spins, (cyan highlighted arrows in (3)).

7. Put the original ordered list as a train of spins (i.e. 1D chain) connected according to the
original connectivity, (Low row in (5)).

8. Select the last spin in the visited list, (Sea-green highlighted tensor in 4) and remove it from
the visited list.

9. Use tensor-gadget 1 and tensor-gadget 2, both in their Ising form, to correctly reproduce the
component of the Ising network associated to this selected spin, (Upper row in (5) + tensor-
gadget 1,2 in Figure 25,26).

10. Iterate points 8,9 until the list of visited spins is empty, (6,7,8,9,10,11,12,13).

11. Transform the network in its associated TN and express each tensor-gadget in its tensor form
(Tensor-gadget 1,2 in figures 25, 26). Contract in a single tensor the tensor-gadgets, (14): the
square lattice TN is obtained.

12. If you want to complete the square lattice add zero couplings and virtual dummy spins. From
the RRC algorithm point of view, this is totally useless.
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Figure 23: Pipeline transformation of a generic Ising TN in a (portion of a) square lattice TN. The
final not-finished square lattice can be concluded inserting zero couplings and new virtual spins.
From the RRC algorithm point of view it is clearly not necessary. In the last figure the cyan circles
represent copy tensors of order 2 (Ising-like copy tensors) and the red squares are order-2 interaction
tensors.

In figure 24 a different visited ordering list is considered, resulting in a different final square
lattice. Despite the different structure obtainable the bound on the number of nodes in the
grid is respected.
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6 7

Figure 24: A different choice of the visited list in the Pipeline transformation generates a new square
lattice, but the bound on the size N(N2 + 1) remains the same.
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Figure 25: Up: Tensor-gadget 1 in the Pipeline transformation. Together with tensor gadget 2,
it allows to perform the transformation starting from a generic Ising model and going to a square
lattice TN Ising model. Tensor-gadget 1 allows to propagate two spins along a square lattice making
them interact with a J coupling.
Down, left: Star from a coupling we want to propagate along a row in the pipeline transformation.
Down, center: Ising form of the tensor-gadget 1. Four new Ising spins are inserted and connected
as depicted in the second panel. The original two spins are the green one on the right and the red
one on the bottom.
Down, right: Tensor form of the tensor-gadget 1. It is obtained by generating the TN associated
with the Ising form.
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Tijkl = δijδkl
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j

k lT

+∞

+∞

Figure 26: Up: Tensor-gadget 2 is used to propagate two spins along the square lattice without
making them interact. . T is the gadget tensor, it is a tensor of order 4 expressed as a product of
deltas.
Down, Left: Ising form of the tensor-gadget 2. Start with the two original spins (one cyan and
one green) and connect each of them with a new spin (cyan with cyan, green with green) , through
an infinite coupling J = +∞.
Down, right: Tensor form of the tensor-gadget 2. It is obtained starting form the Ising form and
transforming the connected network of 4 spins in a TN.
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10 Statistical physics applications: Ising model

Consider an Ising model with N spins, set of couplings J = {Jij}i,j∈{1,...,N},i̸=j and set of node
dependent fields h = {hi}i∈{1,...,N} defined on a factor graph where the nodes are the spins and the
factors represents both the pair interaction between spins and the fields.
The goal considered here is to calculate efficiently the average magnetization of the Ising model on
arbitrary graphs, for different values of temperatures β, and varying the input parameters λ and ξ
18.
The total contraction of the TN associated with the factor graph of the Ising model gives us the
partition function Z whose value depends on the chosen sets of parameters {J, h}, so I will write
Z(J, h) to indicate this dependence even though we know that Z is a number

Z(J, h) =
∑

s1,...,sN

∏
t∈T

A
[t]
{s⃗t} =

∑
s1,...,sN

exp

{
β

( N∑
i=1

N∑
j=i+1

Jijsisj +

N∑
i=1

hisi

)}
where

1. T is the set of tensors in the TN.

2. s⃗t are the indices (spins) of the t-th tensor A[t].

3. A
[t]
s⃗t

is the entry of the t-th tensor A[t] labeled by the set of indices {s⃗t}

Once we have Z, the free energy F can be computed

F (J, h) = − logZ(J, h)

β

Consider the problem of determining the magnetization of a single spin of interest si.
In figure 27 a different visited ordering list is considered, resulting in a different final square lattice.
Despite the different structure obtainable the bound on the number of nodes in the grid is
respected. it is depicted this transformation in a TN from the graphical point of view, starting
from the factor graph of an Ising model defined with 4 spins all connected with the others, each
with its node-dependent field. The purple circles represents the copy tensors associated with the
spins and the red squares represents both pairwise interactions between each couple of spins for
which Jij ̸= 0 and fields terms. The fields hi can be included in the factors encoding the pairwise
interactions, once the fields are divided by the degree of the node i, call it ∂i.
Indeed, consider

1. t label the tensors in the TN, so t can be a single spin for the field-dependent terms or a couple
of spins for the interaction terms.

2. A
[t]
{s⃗t}(J)

.
= exp

{
β
∑N

i=1

∑N
j=i+1 Jijsisj

}
= the factors (matrices) encoding the interaction

terms in the Boltzmann weight.

3. A
[t]
{s⃗t}(h)

.
= exp

{
β
∑N

i=1 hisi

}
= the factors (vectors) encoding the field-dependent terms in

the Boltzmann weight.

4. ∂t is the degree of the tensor corresponding to node i, while ∂t =
∑

i∈t ∂i

18As we have said, for statistical physics systems in which there are pairwise or three-body interactions the χ input
parameter do not introduce errors if it is set equal to the maximum dimension over the variables of the model. In
this case χ = 2.
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Then

Z(J, h) =
∑

s1,...,sN

∏
t∈T

A
[t]
{s⃗t} =

∑
s1,...,sN

∏
t∈T

A
[t]
{s⃗t}(J, h) =

∑
s1,...,sN

∏
t∈T

A
[t]
{s⃗t}(J) ·A

[t]
{s⃗t}(h/∂t) =

=
∑

s1,...,sN

exp

{
β

N∑
i=1

N∑
j=i+1

Jijsisj

} N∏
j=1

∂j∏
k=1

exp

{
β

N∑
i=1

hi

∂k
si

}
=

=
∑

s1,...,sN

exp

{
β

( N∑
i=1

N∑
j=i+1

Jijsisj +

N∑
i=1

∂i
∂i
hisi

)}
=

=
∑

s1,...,sN

exp

{
β

( N∑
i=1

N∑
j=i+1

Jijsisj +

N∑
i=1

hisi

)}

s1 s2

s3
s4

h1 h2

h4 h3

∆1 ∆2

∆3∆4

h1 h2

h4 h3
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∆2
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Figure 27: Left: start from a factor graph representing an Ising model e.g. on the complete K4

graph, where node-dependent fields hi are present.
Center: Construct the associated TN. Purple circles are copy tensors and red circles are tensors.
Right: include the field tensors into the coupling tensor, obtaining tensors encoding the entire
couple-dependent Boltzmann weight terms. Recall that the field is rescaled by its degree.

The magnetization of the i-th spin can be computed as

mi =
mi × Z

Z
=

1

Z
⟨si⟩ × Z =

1

Z

∑
{si}i∈{1,...,N}

sie
−βH

Consider now the left panel of figure 28 a different visited ordering list is considered, resulting
in a different final square lattice. Despite the different structure obtainable the bound on the
number of nodes in the grid is respected.. This is the representation of a portion of a TN built
to represent an Ising model as described above. By looking at the expression we have just obtained
for the magnetization of a single spin, mi can be obtained by first contracting the entire network
obtaining Z, and then contracting again the original network adding a leaf (a vector) to the node i
with 2 entries, namely (+1,−1).
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Figure 28: Left: Calculation of ⟨si⟩ × Z. Right: Calculation of ⟨sisj⟩ × Z

Following the same reasoning we can evaluate the average magnetization:

m =
1

N

〈 N∑
i=1

si

〉
=

1

N

1

Z

∑
{si}i∈{1,...,N}

( N∑
i=1

si

)
e−βH =

1

Z

∑
{si}i∈{1,...,N}

Ts1,...,sN e−βH

where Ts1,...,sN = 1
N

∑N
i=1 si is the entry of a N -order tensor we have to add to the network with

the same prescription defined in the case of the single node magnetization.
Clearly this method is not efficient to compute the average magnetization because we have an extra
N factor due to the computation of the magnetization of each spin.

The average magnetization m can be computed via a direct derivative of F but computationally it’s
not the best way, because it involves differences between very close quantities.
m can be obtained by expanding logZ around a small imaginary field vector h̃1 = ix1, where x is
a small real number and 1 is a vector with N entries, all equal to 1.
Let’s call h⃗0 the vector of original fields {hi}i∈{1,...,N}.
If x is chosen sufficiently small, the expansion can be safely stopped to the first order:

logZ(J, h⃗′) = logZ(J, h⃗0 + h̃1) = logZ(J, h⃗0 + ix1) ≃ logZ(J, h⃗0) +

{
∇h⃗ logZ(J, h⃗)

}∣∣∣∣
h⃗=h⃗0

· 1ix =

= logZ(J, h⃗0) + ixβ
1

Z(J, h⃗0)

∑
{s1,...,sN}

exp

β

N∑
i=1

( N∑
j=i+1

Jijsisj + hisi

)
N∑
i=1

si =

= logZ(J, h⃗0) + ixβ

〈 N∑
i=1

si

〉

⇒ m ≃ 1

xβN
Im

{
logZ(J, h⃗0 + ix1)

}
where Im{·} is the imaginary part.

In this way a single contraction procedure produces a quantity logZ(J⃗ , h⃗′) that allows to obtain
both the average magnetization as the imaginary part of it and the partition function as
its real part. In a single run of the selected contraction algorithm both the average magnetization
and the free energy are obtained.
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11 MCE algorithm for the Ising model on random regular
graphs

Consider an Ising model on a random regular graph with N nodes, where N ∈ {20, 30 . . . , 100}. We
analyze here the worst case for the MCE algorithm, i.e., where there are no specific symmetries to
exploit, both in the structure of the TN and in the entries of the tensors: a random regular graph
with the Ising model sets of parameters {J, h} extracted from a uniform distribution.
Using the formulas of the previous section, an approximation of the average magnetization can be
computed and compared with Monte Carlo simulation’s estimates. For the present case, the Wolff
algorithm is very useful for this purpose.
The Wolff algorithm is run with 1.000.000 samples, so the absolute errors with respect to it have
a resolution of 1√

1.000.000
= 10−3, i.e. the absolute errors between MCE and Wolff results are

meaningful only if they are greater than 10−3. In the following figures, the cyan highlighted regions
identify the regions below this resolution, i.e. all absolute errors in the cyan regions are considered
as equal to 0 with respect to the Wolff algorithm estimates.
All simulations I will present are given with error bars associated with means and standard deviations
of the evaluated quantities, together with scatter plots for the two magnetization estimates and
computational times for the MCE algorithm.
Simulations outputs:

1. Random19 Ising model on a random regular graph with degree 3, 20 samples for statistics,
β,N varying where N is the number of Ising spins and β is the inverse temperature.

1.1. Figure 29 : ξ = 10−3, λ = +∞, χ = 2, β ∈ [0.1, 0.3, 0.5, 0.7, 0.9] and computational
times needed.

1.2. Figure 30: ξ = 10−4, λ + ∞, χ = 2, β ∈ [0.1, 0.3, 0.5, 0.7, 0.9] and computational times
needed.

1.3. Figure 34, 35, 36, 37, 38: ξ = 10−3, λ ∈ [10, 20, 30, 40, 50], χ = 2, β ∈ [0.1, 0.3, 0.5, 0.7, 0.9]
and computational times needed.

1.4. Figure 39: distribution of dimension of indices in performing simulations in figures 34,
35, 36, 37, 38.

2. Random Ising model on a random regular graph with degree 4, 20 samples for statistics, β,N
varying.

2.1. Figure 31: ξ = 10−3, λ = +∞, χ = 2, β ∈ [0.1, 0.5, 0.9] and computational times needed.

2.2. Figure 32: ξ = 10−4, λ = +∞, χ = 2, β ∈ [0.1, 0.5, 0.9] and computational times needed.

3. Ferromagnetic, J⃗ = 1⃗ with random fields, Ising model on a random regular graph with degree
4, 20 samples for statistics, β,N varying.

3.1. Figure 33: ξ = 10−3, λ = +∞, χ = 2, β ∈ [0.1 : 0.0.1 : 1.0] and computational times
needed.

3.2. Figure 40: the computational times are analysed for different inverse temperatures ∈
{0.1 : 0.01 : 1.0} in the particular case of zero fields.

19Random Ising model means that the coupling and field parameters are extracted from a uniform distribution for
each N, β, sample, ξ, λ, χ.
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Figure 29: Input parameters: ξ = 10−3, λ = +∞, χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 3, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 5 panels of MCE vs Wolff data, the entire dataset for all values of N and
for all the 20 samples are presented for each value of β, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 30: Input parameters: ξ = 10−4, λ = +∞, χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 3, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 5 panels of MCE vs Wolff data, the entire dataset for all values of N and
for all the 20 samples are presented for each value of β, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 31: Input parameters: ξ = 10−3, λ = +∞, χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 4, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 3 panels of MCE vs Wolff data, the entire dataset for all values of N and
for all the 20 samples are presented for each value of β, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.

42



20 30 40 50

10−4

10−3

10−2

10−1

N

A
M

C
E

AMCE in Log-Log scale

−5 0 5

·10−2

−5

0

5

·10−2

Wolff

M
C
E

−0.2 0 0.2

−0.2

0

0.2

Wolff

M
C
E

−0.5 0 0.5
−0.5

0

0.5

Wolff
M
C
E

20 25 30 35 40 45 50

10−1

100

101

N

T M
C
E

[s
ec
on

d
s]

TMCE in Log-Log scale

β = 0.1 Linear fit, Slope = 3.81, Intercept = 1.05 ∗ 10−6
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Figure 32: Input parameters: ξ = 10−4, λ = +∞, χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 4, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 3 panels of MCE vs Wolff data, the entire dataset for all values of N and
for all the 20 samples are presented for each value of β, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 33: Input parameters: ξ = 10−3, λ = +∞, χ = 2.
Top figure: absolute errorsAMCE on the calculation of the average magnetization of a ferromagnetic
Ising model with N spins and random fields {h} with set of couplings J⃗ = 1⃗ on a random regular
graph with degree 4, using 20 samples and comparing the results with Wolff algorithm’s average
magnetization, for various β values.
Central figures: in the 4 panels of MCE vs Wolff data, the entire dataset for all values of N and
for all the 20 samples are presented for each value of β, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 34: Input parameters: β = 0.1, ξ = 10−3, λ = [10, 20, 30, 40, 50], χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 3, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 4 panels of MCE vs Wolff data, the entire dataset for all the 20 samples
and N values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = 100Slope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 35: Input parameters: β = 0.3, ξ = 10−3, λ ∈ [10, 20, 30, 40, 50], χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 3, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 4 panels of MCE vs Wolff data, the entire dataset for all the 20 samples
and N values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = 100Slope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 36: Input parameters: β = 0.5, ξ = 10−3, λ ∈ [10, 20, 30, 40, 50], χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 3, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 4 panels of MCE vs Wolff data, the entire dataset for all the 20 samples
and N values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = 100Slope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 37: Input parameters: β = 0.7, ξ = 10−3, λ ∈ [10, 20, 30, 40, 50], χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 3, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 4 panels of MCE vs Wolff data, the entire dataset for all the 20 samples
and N values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = 100Slope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 38: Input parameters: β = 0.9, ξ = 10−3, λ ∈ [10, 20, 30, 40, 50], χ = 2.
Top figure: absolute errors AMCE on the calculation of the average magnetization of an Ising
model with N spins and random parameters {J, h} on a random regular graph with degree 3, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various β
values.
Central figures: in the 4 panels of MCE vs Wolff data, the entire dataset for all the 20 samples
and N values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TMCE = 100Slope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 39: Different new indices dimensions introduced in the TN during the SVD-of-the-lighter-
cycle’s step in the MCE algorithm for simulations in figures 34, 35, 36, 37, 38 , for various β, λ
and considering all the 20 samples collected together. As it can be clearly seen, despite the higher
precision achievable increasing λ, the number of indices with dimension greater than 20 is very small.
Indeed what it is observed from simulations is that the precision is strongly influenced
by few tensors for which a higher λ is necessary. For the most of the tensors a dimension
at most equal to 10 is sufficient.
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Figure 40: Temperature T = 1/β dependance of the computational times TMCE for a ferromagnetic
Ising model with zero fields, in the case of a number of spin N ∈ {20, 30, 40, 50} on a regular graoh
with degree 4. Errors bars are presented to depict the errors among 20 simulations. Except for
some specific simulations in the third panel, i.e. for N = 40, for inverse temperatures in the interval
{0.3, 0.6}, the computational times are slowly increasing with β after β = 0.3, and then slowly
decrease after β = 0.6.
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Performances and features of MCE algorithm from simulations results

We have analysed the Ising model, where χ is always equal to 2, because the couple-interaction
tensors are matrices, i.e. they are already in the MPS form, while the copy tensors can be
always written as product of smaller copy tensors with non-grown indices’ dimensions, as
we have seen in figure 6. The two parameters λ and ξ determine the properties of MCE
algorithm:

1. λ selects the maximum index dimension allowed in the SVD step.

2. ξ controls the error on the representation, its role is to select a number of singular
values ≤ λ such that the error remains below the given cutoff ξ: if the SVD proposes
e.g. λ singular values to be kept in the representation of the matrix S, see figure 7,
then the parameter ξ allows to control if λ singular values are necessary to obtain a
sum of the squares of the discarded eigenvalues ≤ ξ. If the precision is too high with
respect to ξ the lowest singular values are removed such that the remaining number
of singular values is the lowest possible to achieve the desired precision.

The temperature T = 1/β has a unique influence, independent on the choice of the paramters
λ, ξ, χ: for higher temperatures the contractions are easier and require computational times
as depicted in figure 40. This is due to the reduced complexity in the tensors’ form, indeed
higher temperatures generates tensors’s entries which are all small and similar between them.
Indeed, recall that the sets of couplings and fields are extracted from a uniform distribution.
Let’s analyse the various cases:

1. λ not given, ξ given: λ is not given so the tensors in the SVD step can be generated
with an arbitrary number of singular values, the only constraint is that the errors are
≤ ξ. As it can be seen from figures 29, 30, 31, 32 a higher complexity of the underlying
network, i.e. the degree of the regular graph, implies a higher ξ to achieve a better
precision. As a consequence the computational times needed grow accordingly because
bigger tensors are created in the SVD step and higher memory allocations are needed.
The computational times are always polynomial in the number of nodes N
and depends on the complexity of the underlying network and on the cutoff ξ chosen.
The complexity of the network is controlled also by the tensors’ entries, indeed in figure
33 the regular graph has degree 4, but the statistical model is a ferromagnetic Ising
model with couplings all equal to 1 and random fields; this easier structure of the
tensors in the network allows for better approximations with a cutoff ξ = 10−3. The
number of nodes N in figures 31, 32 is at most 50 because the number of memory
allocations needed without a fixed value for λ is too high, a common computer is not
able to perform the contraction for higher complexity of the underlying network. The
precision is high because we are able to pay whatever cost in terms of singular values
kept in the SVD step.

2. Both λ and ξ given: as it can be seen in figures 34, 35, 36, 37, 38 a choice λ = 50, ξ =
10−3 ensures mean errors at most on the first decimal unit and higher precision can be
reached with higher values of λ, still bounded. The errors are generated from at most 3
of the 180 simulations. Indeed errors are generated from a low number of tensors which
are not approximated well and propagate errors during the contraction, which seems to
to suggest that specific rare tensor structures are very difficult to approximate with the
SVD method. From figure 39 it can be seen that few tensors use the maximum index
dimension allowed due to the influence of ξ: some of these tensors need a high number
of singular values to be approximated with the same precision of the other tensors using
a number of singular values < λ. Indeed if the number of singular values kept in the
approximation is lower than the maximum allowed λ, we are sure that the precision ξ
is reached while we cannot make the same reasoning if the SVD-index dimension is the
higher allowed.
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Final analysis of MCE algorithm

The better choice of input parameters is a balance between a finite value of ξ and a finite
value of λ which has to be chosen according to the specific physical symmetries of the model
considered and to the graphical properties of the underlying network. In the simulations we
have seen, the worst case of random Ising parameters and random regular graphs is considered
to obtain the worst-case performances of MCE algorithm, at least for the Ising model.

In the next chapter we will se the performances of RRC algorithm, focusing on the scaling of the
computational times needed to know if the pipeline transformation can be safely applied and in
what cases it leads to better performances with respect to the MCE algorithm ones.
Independently of what we will see, the MCE algorithm gives its best if specific contraction heuris-
tic are designed exploiting the physical symmetries and graphical properties of the network. The
following analysis will give the differences in the performances of these two algorithms in the worst
case, but this do not give information on their performances for all possible probabilistic graphical
models. In the end we will see what is the better choice if we do not know anything about the
properties of symmetries of the model we are analysing.
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12 RRC algorithm absolute errors ARRC and execution times
TRRC

Let’s analyze the performances of RRC algorithm considering the absolute errors ARRC and the
execution times TRRC for a square lattice for varying grid size ∈ {10, 20, . . . , 100} and inverse tem-
perature β, comparing the average magnetizations with Wolff algorithm, the latter executed with
1.000.000 samples. The results are presented in Figures 30 and 31.
In figure:

1. Figure 41, 42: β = 0.1, ξ = +∞, λ ∈ [5, 10, 15, 20] with computational times needed.

2. Figure 44: β = 0.1, ξ = +∞, λ ∈ [5, 10, 15, 20, 25, 30, 35, 40] with computational times
needed.

3. Figure 45: distribution of dimension of indices in performing simulations in figures 41, 42, 44.

4. Figure 46: β = 0.1, ξ = 10−3, λ ∈ [5, 10, 15, 20] with computational times needed.

5. Figure 47: β = 0.5, ξ = 10−3, λ ∈ [5, 10, 15, 20] with computational times needed.

6. Figure 49: β = 0.9, ξ = 10−3, λ ∈ [5, 10, 15, 20] with computational times needed.

7. Figure 50: distribution of dimension of indices in performing simulations in figures 46, 47, 49.
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Figure 41: Input parameters: β = 0.1, ξ = +∞, λ ∈ [5, 10, 15, 20].
Top figure: absolute errors ARRC on the calculation of the average magnetization of an Ising
model with N = G2 spins and random parameters {J, h} on a square lattice with grid size G, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various G
values.
Central figures: in the 4 panels of RRC vs Wolff data, the entire dataset for all the 20 samples
and G values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TRRC = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 42: Input parameters: β = 0.5, ξ = +∞, λ ∈ [5, 10, 15, 20].
Top figure: absolute errors ARRC on the calculation of the average magnetization of an Ising
model with N = G2 spins and random parameters {J, h} on a square lattice with grid size G, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various G
values.
Central figures: in the 4 panels of RRC vs Wolff data, the entire dataset for all the 20 samples
and G values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TRRC = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 44: Input parameters: β = 0.9, ξ = +∞, λ ∈ [5, 10, 15, 20].
Top figure: absolute errors ARRC on the calculation of the average magnetization of an Ising
model with N = G2 spins and random parameters {J, h} on a square lattice with grid size G, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various G
values.
Central figures: in the 4 panels of RRC vs Wolff data, the entire dataset for all the 20 samples
and G values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TRRC = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 45: Different new indices dimensions introduced in the TN during the SVD-step in the RRC
algorithm, for various β, λ and considering all the 20 samples collected together. From simulations
for most of tensors, RRC algorithms choose the highest λ available. This behaviour is predictable,
because the λ values allowed are small, i.e. they do not exceed 20.
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Figure 46: Input parameters: β = 0.1, ξ = 10−3, λ ∈ [5, 10, 15, 20], χ = 2.
Top figure: absolute errors ARRC on the calculation of the average magnetization of an Ising
model with N = G2 spins and random parameters {J, h} on a square lattice with grid size G, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various G
values.
Central figures: in the 4 panels of RRC vs Wolff data, the entire dataset for all the 20 samples
and G values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TRRC = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 47: Input parameters: β = 0.5, ξ = 10−3, λ ∈ [5, 10, 15, 20], χ = 2.
Top figure: absolute errors ARRC on the calculation of the average magnetization of an Ising
model with N = G2 spins and random parameters {J, h} on a square lattice with grid size G, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various G
values.
Central figures: in the 4 panels of RRC vs Wolff data, the entire dataset for all the 20 samples
and G values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TRRC = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 49: Input parameters: β = 0.9, ξ = 10−3, λ ∈ [5, 10, 15, 20], χ = 2.
Top figure: absolute errors ARRC on the calculation of the average magnetization of an Ising
model with N = G2 spins and random parameters {J, h} on a square lattice with grid size G, using
20 samples and comparing the results with Wolff algorithm’s average magnetization, for various G
values.
Central figures: in the 4 panels of RRC vs Wolff data, the entire dataset for all the 20 samples
and G values are presented for each value of λ, following the same legend.
Bottom figure: the linear fitting (linear in Log-Log scale) of TRRC = NSlope + intercept is done
using the method of Ordinary Least Squares for the 20 samples of Ising model average magnetization
calculation.
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Figure 50: Different new indices dimensions introduced in the TN during the SVD-step in the RRC
algorithm, for various β, λ and considering all the 20 samples collected together. From simulations
for most of tensors, RRC algorithms choose the highest λ available. This behaviour is predictable,
because the λ values allowed are small, i.e. they do not exceed 20.
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Final considerations for RRC algorithm

Let’s analyse the simulations of RRC algorithm:

1. λ given, ξ not given: the value needed for λ to obtain errors on the second decimal
unit is 20, for λ > 20 the errors do not improve, in particular considering low temper-
atures. The computational times remain polynomial and bounded to N1.50 at most in
the simulations I’ve performed. As previously analysed, the absence of a finite value
for ξ generates tensors with indices’ dimensions which are most of the times equal to
λ, as depicted in figure 45.

2. Both λ and ξ given: the errors and computational times remain almost the same
as in the case of a non-finite ξ but the difference is presented in figure 50: the indices
dimension are lower than the non-finite ξ case, so RRC algorithm prefers to work with
crude approximations from the beginning and generates errors and computational times
similar to the case of non-finite ξ, using a lower number of memory allocations. Also
in this case, as it can be seen from simulations, when both ξ and λ are given, λ = 20
is sufficient and higher values of λ are not neededa. Indeed values greater than λ = 20
do not introduce improvements, as depicted in figures 46, 47, 49 .

aClearly with λ = +∞ the errors are equal to 0, but here we are looking for good balances between errors
and computational resources.

Now that we have seen both algorithms’ performances we can say

RRC algorithm is convenient to contract whatever TN through the pipeline transformation
IF the underlying network and tensors’ structures have no useful symmetries to exploit, so
in absence of useful information. In a general case, it is fundamental to know symmetries
of the probabilistic graphical model under examination, so that a specific heuristic can be
developed, making clear the choice between using MCE algorithm or RRC algorithm, or in
order to develop new contraction heuristics for both of them.
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13 Biophysics application: the case of Boltzmann learning
applied to the DCA method to infer native contacts in
proteins

The direct coupling analysis (DCA) method for determining the native contacts of proteins through
multiple sequence alignment (MSA) of homologous proteins relies on evolutionary conservation and
statistical correlations. Native contacts, the specific interactions between amino acid that stabilize
the three-dimensional structure of a protein, are fundamental for understanding protein function
and the impact of mutations.
In the oncological context, mutations in oncogenes and tumor suppressor genes disrupt native con-
tacts, altering protein function and contributing to carcinogenesis. Identifying native contacts allows
for the distinction between driver mutations, which promote tumor growth, and passenger muta-
tions, which are neutral. This distinction is used for the development of targeted therapies, e.g.
tyrosine kinase inhibitors like Imatinib are designed to specifically bind to the mutated forms of
kinase proteins, inhibiting their oncogenic activity [10].
Understanding native contacts also helps in predicting and overcoming drug resistance, providing
insights into the molecular mechanisms underlying tumor growth and metastasis.
Strategies to counteract drug resistance can be developed by identifying how mutations affect pro-
tein structure and functions.
Starting from an MSA of a class of homologous proteins of interest, a statistical model can be ob-
tained exploiting the maximum entropy principle, where the model’s constraints involve the matching
of frequency counts of single residues and pairs of residues across columns of the MSA. The model
assigns a probability to each possible sequence of amino acids to be described by the alignment, and
results in a Potts model. For the model parameters evaluation It can be used the MCE algorithm or
Pipeline transformation + RRC algorithm, which solves efficiently the tensor network contraction
problem associated with the steps of the Boltzmann learning method with gradient ascent. Once
these parameters are obtained, a quantity called ”direct information” between all couples of two sites
in the primary structure of a protein can be calculated, resulting in a measure of direct correlations.
The highest correlations will be associated to the native contacts: they can be used to identify how
mutations alter protein structure and functions by comparing with the structure of the mutated
proteins obtained with de novo protein sequencing using mass spectrometry, thereby allowing the
design of drugs that specifically target the mutated regions of the proteins of interest.

13.a Introduction

The possible plan could be the following:

1. Identification of Proteins of Interest:
Begin by identifying the protein of interest, often a key protein involved in cell growth regu-
lation, DNA repair, or apoptosis. Examples include proteins encoded by oncogenes like RAS
and EGFR or tumor suppressor genes like TP53 and RB1 [10].

2. Collection of Homologous Sequences:
Use protein databases such as UniProt, GenBank, or Pfam [1] to collect homologous sequences
retaining similar functions.

3. Construction of Multiple Sequence Alignment (MSA):
Use software like Clustal Omega, MAFFT, or MUSCLE [1] to align the sequences of homol-
ogous proteins. MSA allows you to identify conserved regions and evolutionary variations
indicative of native contacts and functional interactions.

4. Analysis of Conservations and Correlations:
Analyze the MSA to identify conserved residues and pairs of residues showing evolutionary
correlations. The strongest correlations indicate physical contacts between residues in the
protein’s three-dimensional structure [5].
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5. Prediction of Native Contacts:
Use the evolutionary correlation data to predict native contacts in the protein of interest. These
contacts represent the interactions between amino acid residues that stabilize the protein’s
tertiary structure.

6. Identification of Pathogenic Mutations:
Use native contacts to identify how mutations alter the protein’s structure and function. De
novo protein sequencing using mass spectrometry enables the determination of the amino acid
sequence of a mutated protein. This technique isolates the protein, digests it into peptides, and
uses tandem mass spectrometry to analyze the fragmentation patterns [10]. The resulting data
are then interpreted to reconstruct the sequence directly from the protein sample, identifying
any unknown mutation.

7. Design of Targeted Drugs:
Design drugs that specifically interact with the mutated regions of proteins.

8. Study of Drug Resistance:
Predict how secondary mutations might alter native contacts and contribute to drug resistance.
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13.b State of the art of DCA

Direct Coupling Analysis (DCA) is a statistical framework designed to capture the variability within
a group of phylogenetically related biological sequences.
E.g. the bacterial two-component signaling (TCS) proteins [2] have been used in the work of Morcos
et al. [5] because of the large number of TCS protein sequences, which were already numbered [11].
When applied to a multiple sequence alignment (MSA) [1] of sequences of length N , this model
assigns a probability to each possible sequence of the same length. This probability indicates the
likelihood that a given sequence belongs to the same category as those in the MSA, such as a specific
protein family.
In the first articles in this framework (e.g.: [12]), a message-passing algorithm was used to imple-
ment DCA. This method is a natural evolution of simple covariance analysis methods. Indeed, the
main issue with covariance analysis is that correlations between interacting residues induce indirect
correlations between non-interacting residues20.
DCA aims to disentangle direct from indirect correlations.
In the work of Weigt et al. [12] the approach used is known as mpDCA, while in the work of Morcos
et al. [5], mfDCA is used, which is an algorithm based on the mean-field approximation: this method
is faster, allowing for the rapid analysis of many long protein sequences.

My proposal to find the native contacts

1. Find the statistical mechanics model P describing the probability of a specific sequence
of residues referring to a MSA of proteins homologous to the one we are interested in.
This model will turn out to be the Potts model, described by interaction parameters
{Jij}i,j∈{1,...,N},i<j and field parameters {hi}i∈{1,...,N} whereN is the length of proteins
in the alignment.

2. Use the Boltzmann learning gradient ascent method to estimate the parameters of P
obtained in the previous point via marginals evaluation of P .

3. Update the parameters in the Boltzmann learning steps via the contraction of the tensor
network associated with the marginals evaluations using MCE algorithm or Pipeline
transformation + RRC algorithm.

Denote a protein sequence of amino acids in the MSA by A⃗ = (A1, A2, . . . , AN ) with Ai ∈ {gap} ∪
{20 amino acids}.
For each family, the protein sequences are collected in one MSA denoted by

{(Aa
1 , . . . , A

a
N )|a = 1, . . . ,M}

where N denotes the number of MSA columns, i.e. the length of the aligned protein domains, and
M is the number of sequences in the MSA.
Starting with an MSA of a large number of sequences of a given protein domain, extracted using
Pfam’s hidden Markov models (HMMs) [1], we have access to the basic quantities [5]:

1. The frequency count for a single MSA column i:

fi(A) =
1

Meff + λ

(
λ

q
+

M∑
a=1

1

ma
δA,Aa

i

)

This is the relative frequency of finding amino acid A in column i.

20The indirect correlations are caused by an indirect effect mediated by one or more intermediate residues, e.g. if
residue A interacts with residue B, and residue B interacts with residue C, there might be a correlation between A
and C even if they do not interact directly.
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2. The frequency count for pairs of MSA columns i, j:

fij(A,B) =
1

Meff + λ

(
λ

q2
+

M∑
a=1

1

ma
δA,Aa

i
δB,Aa

j

)

This is the frequency with which amino acids A,B co-appear in the same protein sequence in
MSA columns i, j.

where:

• δA,B is the Kronecker delta, which equals 1 if A = B and 0 otherwise.

• q is the number of different symbols: q = |{gap} ∪ {20 aminoacids}| = 21.

• λ is a pseudocount to avoid issues with small samples.

• ma is the number of sequences with more than 80% identity to sequence a and it aims at
correcting for the sampling bias i.e. sequences without similar sequences take weight one, and
sequences featuring similar sequences are down-weighted.

• Meff is the effective number of sequences, calculated as Meff =
∑M

a=1
1

ma
.

To separate direct from indirect couplings, a statistical model P ({A1, . . . , AN}) depending on protein
sequences {A1, A2, . . . , AN} is defined, which satisfies the constraints:

1.
∑

Ak|k ̸=i P ({A1, . . . , AN}) = fi(Ai) ∀i, Ai

2.
∑

Ak|k ̸=i,j P ({A1, . . . , AN}) = fij(Ai, Aj) ∀i, j, Ai, Aj

Applying the maximum entropy principle imposing the constraints defined above we obtain a sta-
tistical model assigning a probability to a full sequence {A1, A2, . . . , AN}

P ({A1, . . . , AN}) = 1

Z
exp

{ N∑
i=1

( N∑
j=i+1

Jij(Ai, Aj) + hi(Ai)

)}
where Z is

Z =
∑

{A1,...,AN}

exp

{ N∑
i=1

( N∑
j=i+1

Jij(Ai, Aj) + hi(Ai)

)}
The latter is a Potts model21 with q = 21 on a fully connected graph, where all residues interact
with each other and

1. Jij represents an interaction term quantifying the compatibility between symbols at different
columns i, j of the MSA.

2. hi represents the propensity of a symbol to be found at a certain column i of the MSA.

3. Z is the partition function of the Potts model.

4. N is the length of protein sequences in the MSA.

Once the couplings Jij and fields hi are known, direct information (DI) is introduced: it measures
the mutual information (MI) due to the direct coupling.

DI can be calculated using an isolated two-site model described by P
(direct)
ij = P

(dir)
ij :

P
(dir)
ij (A,B) =

1

Zij
exp

(
Jij(A,B) + h̃i(A) + h̃j(B)

)
21Potts model on wikipedia
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where the auxiliary fields h̃i are determined to match the empirical single-residue counts:

fi(A) =
∑
B

P
(dir)
ij (A,B)

fj(B) =
∑
A

P
(dir)
ij (A,B)

Finally, direct information is defined as the Kullback-Leibler divergence between P dir
ij and fifj :

DIij =
∑
A,B

P
(dir)
ij (A,B) ln

(
P

(dir)
ij (A,B)

fi(A)fj(B)

)
To appreciate the difference between DI and MI, the latter based just on frequency counts fi, fij as

MIij =
∑
A,B

fij(A,B) ln

(
fij(A,B)

fi(A)fj(B)

)
consider the differences in the contacts predictions between MI and DI, given in figure 51, and made
by Morcos et al. [5] for a specific family of protein domains that are homologous to Region 2 of a
bacterial Sigma factor. These contact predictions were applied to the sequence of the SigmaE factor
of the bacterium Escherichia coli, which is encoded by the rpoE gene, and whose structure has been
resolved and deposited in the Protein Data Bank (PDB) with ID 1OR7.

Figure 51: Analysis of Morcos et al [5] for contact predictions for the family of domains homologous
to Region 2 of the bacterial Sigma factor (Pfam ID PF04542) mapped to the sequence of the SigmaE
factor of E. coli (encoded by rpoE) (PDB ID 1OR7). The A panel shows the top 20 DI predictions
while the B panel shows the top 20 MI predictions for residue–residue contacts. Each pair with
distance < 8 Å is connected by a red link, and the more distant pairs are connected by the green
links.

13.c Boltzmann Learning

The Boltzmann learning (BL) method with numerical gradient ascent can be applied to the Potts
model for estimating the set of couplings J = {Jij}i,j∈{1,...,N},i<j and the set of fields h = {hi}i∈{1,...,N}.
Each A ∈ {gap} ∪ {20 amino acids} is indicated by a number going from 1 to 21.
In the Potts model the probability of a configuration s⃗ where each si takes values in {1, . . . , q} given
the sets of parameters of the model J, h, is given by

P (s⃗ |J, h) = 1

Z
exp

{ N∑
i=1

( N∑
j=i+1

Jij(si, sj) + hi(si)

)}
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The objective of the BL is to estimate the sets of parameters J and h that maximize the likelihood of
the observed data, i.e. find J and h such that the probability of the observed data is maximized. The

observed data are configurations of N amino acids s⃗ (o) = {s(o)1 , s
(o)
2 , . . . , s

(o)
N } where the observation

o is in the set of total observations O, which is the MSA.
The log likelihood of the observed data s⃗ (o),∀o ∈ O, is given by

logL(J, h) = log
∏
o∈O

P (s⃗ (o)|J, h) =
∑
o∈O

logP (s⃗ (o)|J, h)

To maximize logL, the derivatives with respect to the parameters in the sets J and h are considered.
Indeed the partial derivative of logL with respect to Jij(si, sj) and hi(si) are given by

∂ logL(J, h)
∂Jij(si = A, sj = B)

= ⟨δsi,Aδsj ,B⟩data − ⟨δsi,Aδsj ,B⟩model

∂ logL(J, h)
∂hi(si = A)

= ⟨δsi,A⟩data − ⟨δsi,A⟩model

calculated ∀i, j ∈ {1, . . . , N}, i < j, ∀si, sj ∈ {1, . . . , 21}, where

1. ⟨·⟩data denotes the average over the observed data.

2. ⟨δsi,A⟩data = fi(A) where fi(A) is the frequency count for amino acid A in a single MSA
column i.

3. ⟨δsi,Aδsj ,B⟩data = fij(A,B) where fij(A,B) is the frequency count for pairs (A,B) of MSA
columns i, j.

4. ⟨·⟩model denotes the average with respect to the model’s probability distribution.

5. ⟨δsi,A⟩model = P (si = A|J, h) =
∑

sk,k ̸=i P (s1, . . . , si−1, A, . . . , sN |J, h)

6. ⟨δsi,Aδsj ,B⟩model = P (si = A, sj = B|J, h) =
∑

sk,k ̸=i,j P (s1, . . . , si−1, A, . . . , sj−1, B, . . . , sN |J, h)

13.d Numerical gradient ascent

The numerical gradient ascent method is used to iteratively update the sets of parameters J and h
using the calculated partial derivatives

J
(t+1)
ij (si, sj) = J

(t)
ij (si, sj) + η

∂ logL(J, h)
∂Jij(si, sj)

h
(t+1)
i (si) = h

(t)
i (si) + η

∂ logL(J, h)
∂hi(si)

calculated ∀i, j ∈ {1, . . . , N}, i < j, ∀si, sj ∈ {1, . . . , 21}, where η is the learning rate, a parameter
that controls the step size of the update.

13.e Proposed Methodologies

The averages ⟨·⟩data are easily computed from the observed MSA data.
However computing the averages ⟨·⟩model is in general computationally intensive because it requires
summing over all possible configurations of the system which are qN = 21N : for proteins of MSA-
length equal to e.g. 70, means 2170 operations for the evaluation of a single marginal for a single
step of the update procedure. Clearly facing this problem calculating exhaustively this sums is
unfeasible. We can use the MCE algorithm or Pipeline transformation + RRC algorithm, indeed
the sets of parameter of the Potts model can be evaluated in the following way:
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1. Initialization: the sets of parameters J and h are initialised with random or predefined
values.

2. Gradient calculation: compute the averages ⟨δsi,Aδsj ,B⟩model and ⟨δsi,A⟩model using
MCE algorithm or Pipeline transformation + RRC algorithm on the underlying net-
work, encoding all the possible useful biological information to make the contraction
procedure as efficient as possible. Indeed in the case of MCE algorithm the two possible
cycle weights definitions I’ve mentioned in the dedicated chapter are based on general
properties of regular graphs but they can be specifically designed for the specific prob-
lem of interest, focusing on the properties of the protein’s family we are analising with
the MSA.

3. Parameters update: update the sets of parameters J and h using the gradient ascent
procedure.

4. Iteration: repeat steps 2 and 3 until a chosen norm of the difference between the sets
of parameters at step t and t+ 1 is below a chosen threshold.

In our case, the contraction problem involves the calculation of averages over the model parameters
for the Boltzmann learning update procedure. In the language of tensor networks, this corresponds
to a total contraction of the network associated with the model considering the addition of

1. For the calculation of ⟨δsi,Aδsj ,B⟩model: two tensors encoding respectively δsi,A and δsj ,B
connected to copy tensors associated to si and sj .
In figure 52 it is depicted the graphical representation of the graph associated with the Potts
model in the case of N = 40, when i = 1 and j = 20.

2. For ⟨δsi,A⟩model: a tensor encoding δsi,A connected to the copy tensor associated to si.
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Figure 52: Marginal ⟨δsi,Aδsj ,B⟩model evaluation for the Boltzmann learning procedure in the case
of a MSA with proteins length N = 40, and considering i = 1 and j = 20. The 40 nodes represents
copy tensors associated with the spins present on nodes, while edges contain a tensor encoding the
pairwise interaction + fields of the two spins connected by that edge. The two green nodes added are
vectors with length equal to 21 and one single non-zero entry, the one corresponding to the amino
acid selected by the delta function. The amino acids are represented by numbers going from 1 to
21, so if the amino acid selected by the delta function is A and the number representing it is 5, then
the vector δsi,A will be full of zeros with a single 1 in position 5.

Consider now hi(A) as a matrix where the rows labeled by i indicate the position in the protein
sequence and the column label A indicate the specific symbol (taken from the list of 21 symbols)
that is present. The same idea can be applied to Jij(A,B), which will result in a 4-order tensor with
entries labeled by i, j, A,B.
Following the same reasoning we used for the Ising model, a small imaginary field h̃ = ix is added on
the component of the original real set of fields h0 corresponding to the entry (i, A) for the evaluation
of ⟨δsi,A⟩model. For the evaluation of ⟨δsi,Aδsj ,B⟩model a small imaginary coupling J̃ = ix is added
on the component of the set of original real couplings J0, corresponding to the entry (i, j, A,B).
Define 1A

i a matrix with entries all equal to 0 except the (i, A)-th entry which is set to 1.

Define 1A,B
i,j a 4-order tensor with entries all equal to 0 except the (i, j, A,B)-th entry, which is set

to 1.
If x is chosen sufficiently small, the following expansions can be safely stopped to the first order.
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Consider first the case of ⟨δsi,A⟩model:

logZ(J, h′) = logZ(J, h0 + h̃1A
i ) ≃ logZ(J, h0) + ix

{
∂ logZ(J, h)

∂hi(A)

}∣∣∣∣
h=h0

=

= logZ(J, h0) + ix
1

Z(J, h0)

∑
{s1,...,sN}

exp

{ N∑
i=1

( N∑
j=i+1

Jij(sisj) + hi(si)

)}
δsi,A =

= logZ(J, h0) + ix⟨δsi,A⟩model

⇒ ⟨δsi,A⟩model ≃
1

x
Im

{
logZ(J, h′)

}
where Im{·} is the imaginary part.
Now consider ⟨δsi,Aδsj ,B⟩model:

logZ(J ′, h) = logZ(J0 + J̃1A,B
i,j , h) ≃ logZ(J0, h) + ix

{
∂ logZ(J, h)

∂Jij(A,B)

} ∣∣∣∣
J=J0

= logZ(J0, h) + ix
1

Z(J0, h)

∑
{s1,...,sN}

exp


N∑
i=1

( N∑
j=i+1

Jij(sisj) + hi(si)

) δsi,Aδsj ,B

= logZ(J0, h) + ix⟨δsi,Aδsj ,B⟩model

⇒ ⟨δsi,Aδsj ,B⟩model ≃
1

x
Im

{
logZ(J ′, h)

}
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