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Abstract

This master thesis focuses on developing an AI model designed to gener-
ate profitable investment strategies that outperform market benchmarks.
Specifically, the model constructs a portfolio of 500 US equities, determining
optimal positions and allocations for each stock. The goal is to maximize
returns while minimizing risk and transaction costs. The decision to focus on
portfolio optimization, rather than individual assets, stems from the ability
to reduce risk through diversification. This is further enhanced by introduc-
ing an additional input parameter, λ, which accounts for the investor’s risk
aversion.

Building on the work of Zhang, Zohren, and Roberts (2020) [1], the model
leverages multiple data sources to create meaningful features. A careful
process of feature selection and hyperparameter tuning was undertaken
to identify the most effective configuration. The model itself is a custom
neural network implemented in TensorFlow, with four input types: stock
returns time series, financials time series, risk aversion λ, and previous day
allocation. It minimizes a custom loss function inspired by Modern Portfolio
Theory (MPT) [2], balancing the trade-offs between maximizing returns,
minimizing risk based on λ, and keeping transaction costs low.

The strategies generated by the model were benchmarked against the
market and validated using statistical significance tests. Ultimately, the
model successfully reduces systemic market risk and tailors investment
strategies to suit the unique needs of individual investors.
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Chapter 1

Introduction

Before diving into the contents of this thesis, it may be useful to answer one
question: "Why should people invest their money?". We can identify two main
reasons for which investing money is a smart option:

Inflation: every year we are faced with an increase in the cost of life and,
consequently, a loss in our economic power [3]. Rather than devaluing
our money by keeping it in a bank account, investing allows to tackle
inflation by generating additional revenue.

Market growth: studies show that the economy tends to grow [4]. Under
this evidence, we can exploit this growth to further enhance our gains
by dedicating some of our money to financial investments.

Investing, however, comes with its own risks: it should thus be done con-
sciously and methodologically. We can identify two main risk components
of an investment: systematic risk and unsystematic (or idiosyncratic) risk.

Systematic risk is associated to macroeconomic events that affect the
whole market (e.g. Covid, the 2008 crisis, etc...). Unsystematic risk, on the
other hand, is the risk associated to the specific asset, thus being unique of
each company [5].

When it comes to the reduction of unsystematic risk, many roads can be
followed. In our work, we will be exploiting the mechanism of diversification.
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For what concerns the systematic market risk, instead, we will be tackling
its effect with long-short portfolios. We will indeed exploit a "betting against
the market" philosophy, capable of compensating the effect of macroeco-
nomic crashes and preserving our returns (section 1.2 for further details).

1.1 Portfolio Optimization

With the introduction of Modern Portfolio Theory (MPT) [2], portfolio op-
timization has gained a sturdier and more advanced mathematical basis to
arise from. The strength of reasoning in terms of portfolios rather than single
assets, stems from the ability of portfolios to reduce the investment’s risk
through diversification.

As a matter of fact, Markowitz’s pioneering intuition was able to formal-
ize the fact that, when managing a portfolio, one did not have to choose
whether to increase the returns or reduce the risk, but could rather do both.
Doing so, however, requires the portfolio to be diversified, i.e. it should be
composed of assets characterized by low covariance [2].

By definition, given N assets n1,n2, . . . ,nN, we define a portfolio as the
pair (n,w) with wi being the weight assigned to the i-th asset.

Starting from that, an optimal portfolio is one that maximizes the returns
for a given level of risk (or, conversely, that minimizes the risk for a given
level of returns). An equivalent way of saying it is that an optimal portfolio
maximizes risk-adjusted returns. Portfolios that satisfy these conditions are
also said to be efficient [2].

Achieving an efficient portfolio is not a trivial task. When it comes to
trading, in most cases the investor will have a limited amount of capital, thus
rendering the portfolio optimization a constrained problem.

Many classical theories have been developed but the rise of AI has opened
a new chapter in the world of finance, with new alternatives for algorithmic
trading. These new tools have been exploited in this work to develop a
custom neural network model inspired from Zhang, Zohren, and Roberts
(2020) [1]. The results have then been compared and validated with respect
to a market benchmark: the S&P 500 index (ˆGSPC).
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1.2 Basics on Finance

In order to fully grasp the work described in chapter 2, a brief introduction
to key financial concepts is necessary.

By definition, an equity is "one of the equal parts into which the value of a
company is divided" [6]. Owning some equity of a company thus means that
we possess a given amount of ownership in that specific company.

The trading of assets, in our case equities, is regulated by a specific
entity: the Stock-Exchange. For each financial market there is one (or more)
Stock-Exchange. During their opening hours, equities can be traded and
their prices vary depending on many factors (investors’ trust, new available
information, new rules and regulations, company’s financials release, etc...).

When trading, different positions can be taken by the investor. In the
definition of our portfolio strategy, we focus on two fundamental ones:

Long position: it is the most trivial way of investing in a financial market.
It means that we are actively buying the equity of a given company and
we aim at selling it, at a future time, for an higher price thus generating
a positive net return.

Short position: in this case we never actually own any equity. What we do
instead is borrow someone else’s equity and sell it for its current value.
We then hope that the company’s value decreases in such a way that,
when closing the short-position, we can buy back the same amount of
equity for a lower price and obtain a positive net return.

Not every market allows for short selling and each might introduce stricter
regulations (e.g. in 2020 the Consob banned short selling on the Borsa di
Milano for 3 months after the Covid market crash [7]). In our particular case,
we will be considering only equities from the US market, where short selling
is allowed without impactful limitations on our model [8].

Short positions are particularly useful as their "betting against the market"
nature allows to reduce the systemic market risk and helps in the portfolio
diversification [9, 10].
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When devising a good investment strategy, one should also take into ac-
count the presence of transaction costs. These can be composed of a multitude
of factors, from broker fees to the bid-ask spread (the loss one would have it
they were to sell the asset immediately after buying it) [11].

Another useful notion is the one of market capitalization (market cap for
short). It can be computed as the product between the number of available
shares and the current market value of each share [12]. Clearly, it represents
an indicator of the value and importance of a company.

In order to benchmark our results, we need some sort of metric that
measures the market’s behaviour. A financial index groups a specific number
of companies and tracks them in order to create a metric for the market’s
performance [13]. In this work we adopt the S&P 500 index, composed of the
500 top leading US companies. Each company is weighted proportionally to
its market cap [14] and the index has obtained an annualized return of 13.39
% in the last 5 years [15].



Chapter 2

Developing the AI Model

2.1 Introduction to the Model Architecture

Taking inspiration from [1], we created an AI model that could generate long-
short allocations for 500 US equities that maximized risk-adjusted returns
and reduced transaction costs. More specifically, our aim was to try and
improve the S&P 500 allocation strategy that suffered from some limitations.

As a matter of fact, being the S&P 500 a capitalization-weighted index
[14], it only allows for long positions and does not have much control over the
risk. By devising a model that balances the trade-offs between maximizing
returns, minimizing risk based on λ, and keeping transaction costs low, all
whilst keeping some similarity to the S&P 500 index, we are able to create
more efficient strategies.

For the underlying neural network we implemented an architecture based
on Long-Short Term Memory (LSTM) cells. LSTMs, an improved version of
Recurrent Neural Networks (RNN), are particularly good when handling
historic time series and are capable of solving the vanishing or exploding
gradient problem of classical RNNs [16].

In order to extract meaningful information from the data, the LSTM re-
quires its input to be a time series tensor of consistent shape. For instance,
given nsamples data points of LAG periods historic series with nfeatures fea-
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tures, the input tensor Tinput would be:

Tinput ∈ Rnsamples×LAG×nfeatures

The reason for immediately settling with an LSTM-architecture is due to the
evidence of better results obtained by LSTM, when compared to other neural
network architectures and classical methods [1, 17].

The model itself exploits 4 different data sources (the feature engineering
process will be detailed in subsection 2.5.1):

Equity returns time series: contains daily data on equities’ returns and mar-
ket cap. It is the fundamental input of our model and is characterized
by a LAG history of 30 days.

Financials time series: contains quarterly data regarding the financial situa-
tion of the considered companies. It is characterized by a LAG history
of 8 quarters (2 years).

Risk-aversion λλλ: it is an additional parameter that allows to tune the gener-
ated strategy with respect to the desired level of risk-aversion. Higher
λ values will correspond to strategies in which the minimization of risk
is more important than the maximization of returns and vice versa.

Previous day allocation: in order to mimize the transaction costs, each gen-
erated allocation will also depend on the one generated at the previous
time step. This allows to penalize excessive changes in the portfolio’s
composition and keep the transaction costs minimal.

In order to handle the 4 different inputs and have them correctly interact
with the custom loss function (described in section 2.3), standard pre-existing
models were not enough. A custom sub-classed model has thus been coded
and implemented in TensorFlow for achieving the following results. Further
informations about the model architecture will be disclosed in section 2.2.
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2.2 Model Architecture

As introduced in section 2.1, carrying out this work required the creation of
a complex neural network architecture based on LSTM (Figure 2.1). Starting
from 4 input layers, 2 different LSTM pipelines have been implemented.

Financials input (InputLayer)

Financials LSTM 1st layer (LSTM) Equity input (InputLayer)

Equity LSTM (LSTM)Financials LSTM 2nd layer (LSTM)

Concatenate (Concatenate)

Risk-aversion λ (InputLayer) Previous time allocation (InputLayer)

ReLU Dense (Dense)

tanh Dense (Dense)

Fig. 2.1 Complete plot of the final model architecture

The reason behind this choice is due to the fact that equity time series
and financial time series were created on data with different temporal scales
(daily vs quarterly). This rendered impossible the use of a single LSTM
pipeline as there would be a clear mismatch in the LAG history of the two
inputs.

The output of the two LSTM pipelines is then concatenated with the
remaining two input: the risk-aversion λ and the previous day allocation.

The output of the concatenation layer is then passed through an 8-neurons
fully-connected (dense) layer with ReLU activation [18, 19]. The ReLU acti-
vation function is a piecewise linear activation function that is thus capable
of capturing complex relations in the data without suffering the problems of
saturation or low sensibility, common of other non-linear activation functions
[18]. It is a key component of our neural network as it is exactly here that the
model understands how the risk-aversion λ and the previous day allocation
affect the custom loss and thus the allocation strategy.

Finally, the output of the ReLU dense layer is passed through another
fully-connected layer with 500 neurons and tanh activation. This layer is used
to generate the final allocation vector (apart from the norm-1 normalization).
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The 500 neurons are needed for output reshaping, as we aim at optimizing
portfolios of 500 assets and thus require the output for each day to be a vector
of 500 weights, while the tanh activation function, unlike ReLU, allows to
generate positive and negative weights for long/short positions.

2.3 Custom Utility Function

The tanh output described in section 2.2 produces raw weights which are not
yet correctly normalized. Given that we want our long/short positions to
allocate the totality of our capital, we must impose a norm-1 normalization
condition on the weights vector. Moreover, in order for the model to generate
allocations that satisfy our requests, we must implement a suitable loss
function.

To obtain the required results, common regression loss functions (e.g.
mean squared error) were not enough. Our model needed to minimize a
custom loss function (or, conversely, maximize a custom utility function)
that contained each of the elements of our request. Inspired from Modern
Portfolio Theory’s Mean-Variance Utility (MVU) [2] and Zhang et al. (2021)
[17], the following utility function has been implemented:

Ut = wT
t rt+1 −

λ

2

√
wT

t Σt+1wt − p∗
[

1 − wt · wS&P 500
t

∥wt∥2∥wS&P 500
t ∥2

]
− c∥wt − wt−1∥1

with ∥wt∥1 =
500

∑
i=1

|wi,t| = 1

The subscript t has been added in order to better explain the structure
of the utility function. In reality, the utility U is evaluated on the returns of
10 future days, keeping the strategy allocation wt constant. This allowed
to obtain a more accurate metric by averaging over time and reducing the
chaos’s influence. Regardless of that, the utility function is composed of 4
main building blocks:

Portfolio returns wT
t rt+1: simply the product between the strategy weights

at time t, wt, and the equity future returns, rt+1. Positive portfolio
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returns are crucial for a successful strategy, thus the model tries to
maximize them.

Portfolio risk λ
2

√
wT

t Σt+1wt: with Σt+1 being the returns covariance matrix,
this term is the product between the input risk-aversion λ and the
portfolio’s standard deviation. The 1

2 is inherited by MPT [2]. The
higher the λ, the more important is the minimization of the portfolio
risk.

Distance from S&P 500 p∗
(

1 − wt·wS&P 500
t

∥wt∥2∥wS&P 500
t ∥2

)
: it is the cosine distance be-

tween the model’s allocation, wt, and an S&P 500-like allocation (i.e.
∝ market cap), wS&P 500

t . The norm-2 normalization ensures that the
distance lies in [0,2]. p∗ is the penalty coefficient, and has been chosen
in such a way that the model is capable of differentiating itself with
respect to the S&P 500 index without generating completely arbitrary
strategies.

Portfolio transaction costs c∥wt − wt−1∥1: with c being the single asset trans-
action cost. By computing the norm-1 difference between the allocation
of consecutive days, we are able to determine how much the allocation
has changed for each asset. By multiplying for the single asset trans-
action cost, we can subtract them to the portfolio returns and penalize
excessive changes across consecutive days. Lacking the bid-ask spread
for each single equity, a reasonable single value has been adopted: we
assume c = 10−4, which corresponds to a transaction cost of 0.01 $ for
an equity of value 100 $.

The maximization of the utility function has been carried out with the
Adam optimizer, a stochastic gradient descent algorithm [20, 21] that mini-
mizes the custom loss L = −U.

2.4 Training Process and Allocation Creation

The model uses data from different sources (see subsection 2.5.1 for further
details), in the period 01/01/2010 - 27/02/2024. The available data has then
been splitted in 2 sets:
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• Train + validation set from 01/01/2010 to 31/12/2021 (≈ 85%)

• Test set from 01/01/2022 to 27/02/2024 (≈ 15 %)

These sets have then been used to train the model (subsection 2.4.1),
determine the optimal feature and hyperparameter configuration (section 2.5)
and finally to evaluate the performance of the model and compare it to the
market benchmark (section 3.1).

2.4.1 Training of the Model

In this subsection, we will focus on the general training procedure without en-
tering into the specific features given to the model. A more in-depth analysis
of the feature engineering process will be carried out in subsection 2.5.1.

As already mentioned in section 2.1, the equity and financial data have
been used as time series with, respectively, LAG histories of 30 days and 8
quarters. The remaining 2 inputs are the λ risk-aversion parameter and the
previous day allocation.

The decision to use λ as an actual parameter is linked to the possibil-
ity of creating a single model, that would learn how to behave for many λ

values, and then use it to visualize the generated strategies for different
risk-aversions. An alternative way would have been to keep λ as an hyperpa-
rameter of the loss function but that would be highly impractical as it would
require the training of a different model for every value of λ.

In order to make the model learn how to behave for different values of λ

and, most importantly, to recognize the effect of many different previous day
allocations, we generated artificial data for the training phase of the model:

Risk-aversion λλλ: for each training day, a different value of λ has been given.
More specifically, the values have been sampled randomly from a
uniform distributions in order to cover most values.

Previous day allocation: similarly to what has been done for λ, we don’t
want the model to overfit on a specific allocation. We thus sampled (and
correctly normalized) random long-short allocations from a Gaussian
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distribution. This has been done since evidence from previous models
(that did not track previous day allocations) showed that the generated
long-short allocations were indeed normally distributed.

The training process has then been carried out with a learning rate of
2 × 10−5 and an early stopping regularization, in order to avoid overfitting.
The final model was obtained after ∼ 160 epochs. Below, a plot of the training
and validation losses can be found for reference.

0 20 40 60 80 100 120 140 160
Epochs

0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.005

Lo
ss

Training and Validation Loss
Training loss
Validation loss

Fig. 2.2 A plot of the training and validation loss against training epochs

2.4.2 Generating Test Allocations

Given the peculiar architecture that aims at minimizing transaction costs,
the generation of the weights allocation has to be carried out with a rolling-
forward loop (Figure 2.3).

To "jump-start" the strategy generation process, we must first train a sec-
ond model. This second model will be totally identical to the one described
above but will not minimize the transaction costs. It will only be employed
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Day 0 allocation Portfolio is initialized using a second model that does not
take into account the transaction costs’ contributions

LSTM
Model

Day t allocation Save for later use

Use as old
allocation in t+1  

Measure risk-
adjusted returns

Combine with returns

Fig. 2.3 A schematic representation of the rolling-forward loop

once, to generate the "day 0 allocation" corresponding to our first trading day
(for which we don’t have a previous allocation and thus whatever allocation
we start with will amount to ≈ the same transaction costs).

This "day 0 allocation" is then passed to the actual LSTM model to deter-
mine the day 1 allocation. From the day 1 allocation, the model becomes
self-sufficient: each day t allocation will be reused as previous day allocation
for the generation of the day t + 1 allocation until the test data ends.

By collecting all these allocations (including the day 0 allocation), we have
obtained the model strategy for the test period. By combining with equity
returns, we are then able to measure the risk-adjusted returns and benchmark
our model against the market (chapter 3).

Analysis of the Test Allocations

After generating the strategy, a thorough analysis of the obtained strategy
has been carried out.

By looking at Figure 2.4, it is apparent how the model is capable of
distancing itself from the benchmark S&P 500 allocation. Moreover, we can
definitely see that the model is capable of exploiting and suggesting short
positions on some assets.
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 marketcap

Fig. 2.4 A histogram with the strategy allocation and the benchmark ∝ market cap

Regardless of the apparent difference between the two strategies, a
Wilcoxon test [22] has been applied to ensure the statistical significance
of the results. The Wilcoxon test represents the non-parametric alternative to
the paired t-test [23] and is thus very handy when the normality condition of
the t-test is not satisfied (as in our case). As expected, the test confirmed the
significance of the result with a p-value = 0.0 < 0.05.

The cosine-distance between consecutive days allocations has been com-
puted and, on average, amounted to ≈ 0.043. This result was compared with
the distance between random Gaussian allocations (average distance ≈ 1.0)
with another Wilcoxon test. Once again, the statistical significance has been
proven with a p-value ≈ 0.0 < 0.05.

We were also interested in analyzing the distribution of the short-positions
with respect to the market cap rank of the assets.

Figure 2.5 shows the total strategy allocation (long + |short|) by market
cap rank group, compared to the S&P 500 allocation. We can see how about
50 % of out portfolio is composed of the top-50 companies and is more or less
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1-50 51-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450 451-500
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Fig. 2.5 A bar plot comparing the allocation of the strategies w.r.t. groups of 50 assets

in line with the S&P 500. Going down in market cap, instead, our strategy
allocates more than the S&P 500 on the low-cap companies.
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Marketcap Rank Group
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Net Position by Marketcap Rank Groups
Long + Short
S&P 500

Fig. 2.6 A bar plot comparing the net position of the strategies w.r.t. groups of 50
assets

In Figure 2.6, on the other hand, we plotted the bars corresponding to
the sum between (positive) long positions and (negative) short positions,
compared to the (long-only) allocation of the S&P 500.

By comparing the two figures, we can determine that, as expected, the
top equities by market cap are mostly characterized by long-only positions.
Going down in the market cap rank, instead, more and more short positions
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get introduced. This is in line with the expectation that high market cap com-
panies would have better performance and thus their value would increase
over time. It is also apparent how the greater allocation (compared to the
S&P 500) on low-cap companies is due to the presence of short position that, as
it will be shown in chapter 3, allow to better manage the systemic market risk.

2.5 Features and Hyperparameters

2.5.1 Feature Engineering

The raw data was obtained from 3 different data sources, acquired through
the Nasdaq Data Link service:

Equity prices: a dataset containing the daily stock prices. From this dataset,
the daily close price (i.e. the split adjusted value of the company’s equity)
and the daily closeadj price (i.e. the split & dividend adjusted value of the
company’s equity) have been obtained.

Financials: it contained data related to the balance sheet of the companies.
We referred to two different reporting methodologies:

Trailing Twelve Months (TTM): given the publication date, it con-
tained the company’s performance in the previous 12 months.
It was used to extract the market cap value as well as the price
(adjusted by splits) of the company at that time.

Quarterly Reports (ARQ): gives information on the performance of
the company in each quarter. From this, we obtained the cur-
rent assets owned by the company, the current liabilities, the net
income, the depreciation and amortization, the capital expendi-
tures, the current debt, the revenues and the net cash flow from
operations (NCFO).

Fund prices: contained daily values of financial indices. It was used to
extract the data of the S&P 500 index (^GSPC).

https://www.nasdaq.com/nasdaq-data-link
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Daily Equity Features

These daily features, with LAG history of 30 days, are made up of log returns
and marketcap ratio.

Log(arithmic) returns, are obtained starting from the closeadj price. Being
the closeadj price adjusted for splits and dividends, it gives a more accurate
indicator of the stock’s value for each company. Whilst we could just use
it as a raw feature inside the model, we preferred to exploit it in a different
way since the amount of training data is not large enough to ensure that the
model actually understands the effect of this feature.

We therefore computed, for each day t, the logarithmic return lt as:

lt := log
(

closeadjt
closeadjt−1

)

This allowed us to use dimensionless features with 2 main advantages:

• Log returns are normally distributed (unlike linear returns that are
log-normally distributed), thus making them more favourable for the
model’s training.

• They are summable and take into account the compounding effect (the
cumulative log return among more days is easily computed as the sum
of log returns).

A further improvement to log returns can be obtained by introducing the
fund prices dataset. A similar calculation can in fact be carried out on the
S&P 500 returns, thus obtaining the index log returns lS&P 500

t . We can then
define the β-adjusted log returns lβ

t as:

lβ
t := lt − lS&P 500

t

The reason for using β-adjusted log returns rather than plain and simple
log returns is linked to two main factors:
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• By removing the "market’s returns", we are removing a global (market)
drift component. This allows to better focus on the actual single asset
returns and be unaffected by the systemic market risk.

• Ideally, we would like our datapoints to be independent. This is pretty
much always not the case, as financial assets tend to be correlated
with each other. By implementing β-adjusted returns, however, we can
significantly reduce the assets’ correlation (Figure 2.7) and thus create
better datapoints for the training of our model.
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Fig. 2.7 Comparison between the log return and β-adjusted log return correlations for
a random sample of 50 assets (autocorrelation at lag 0 has been manually removed)

Marketcap ratio is the second daily feature given to the model. It basically
represents the equity’s S&P 500 allocation and is computed by combining
data from the equity and financials (TTM) datasets. By extracting the TTM
market cap, as well as the related issued stock price (split-adjusted), we are
able to obtain its daily value using the daily, split-adjusted, close price from
the equity dataset:

marketcapt := marketcapissue ×
(

closet

priceissue

)

After obtaining the daily market cap values, we were able to rank each
equity and filter the top-500. From this, the marketcap ratio for the i-th stock
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at time t was simply obtained as:

marketcap_ratioi,t :=
marketcapi,t

∑500
n=1 marketcapn,t

Quarterly Financial Features

The feature engineering of quarterly financial features revolves around 3
main indicators of a company’s performance:

Free Cash Flow to Equity (FCFE): is one of the indicators used in company
valuation. It indicates the money available to shareholders after all
expenses, reinvestment, and debt have been paid [24].

Revenues: is related to the income generated by usual sale operations (so it
does not take into account extraordinary income sources such as the
selling of a facility) [25]. As such, it allows to gain an insight on how
well the sales of the given company are performing [26].

Net Cash Flow from Operations (NCFO): it is similar to the revenues but
rather than being a measure related to sales effectiveness, it represents
the amount of cash inflow/outflow related to usual sales operations
(thus being a liquidity indicator) [26, 27].

While the revenues and NCFO are directly available from the financial
statements of the companies, the FCFE must be computed separately. To do
so, we need data related to:

• Current assets (what’s owned by the company, e.g. what’s stocked in
the warehouse) and current liabilities (what the company owes to its
suppliers, does not include bank debts). By subtracting current assets
and current liabilities, we can compute the working capital (WC) [28].

• Net income (NI), the total revenue of the company after expenses [29].

• Depreciation and Amortization (DepAmor) are associated to the cost
of an intangible asset, spread over its lifespan (amortization) and to
the loss of value of tangible assets over time (depreciation) [30]. For
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instance, an example of amortization could be the spreading of the cost
for the renewal of a patent in the years prior to its renewal [30]. For the
depreciation, instead, we can think of how a working machine loses
value after each use.

• Capital expenditures (Capex) "are funds used by a company to ac-
quire, upgrade, and maintain physical assets such as property, plants,
buildings, technology, or equipment" [31].

• Net borrowing (NB) is obtained "by subtracting the amount of debt
repaid in the year from the total debt borrowed during the year" [32].

From these elements, the FCFE can be computed as [32]:

FCFE = NI + DepAmor − Capex − ∆WC + NB

Given these 3 indicators (FCFE, Revenues and NCFO), four different
features have been constructed. The first 3 are related to the relative change
of the indicators across quarters:

change_of_indicatort =
indicatort − indicatort−1

|indicatort|

Given that using the relative change of the FCFE we lose the information
on whether the FCFE is positive or negative (which we thought could be a
strong indicator when doing company valuation), a fourth categorical feature
has been added:

sign_of_FCFEt = sign(FCFEt)

As anticipated in section 2.1, these 4 features have been adopted to create
times series with LAG history of 8 quarters (2 years).

2.5.2 Feature Subset Selection

After creating these features, it was mandatory to check whether they were
actually improving the performance of the model. The daily equity features
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(log returns and marketcap ratio) are the foundation of the model, thus
checking whether they should be kept or not is pointless.

The process of feature subset selection is thus carried out only on the finan-
cial features (that indeed were added chronologically later in the process of
creating the final model) and on an iteration of the model that was not yet
taking into account the minimization of transaction costs.

The analysis made use of k-fold cross-validation [33, 34], an algorithm
that allows to split the train+validation set into k elements and then perform
the evaluation of the model k times by alternating which of the k elements is
used as validation set.

A first round of analysis was carried on all the possible 16 feature con-
figurations (including the one with no financial features) using a 3-fold
cross-validation. The three loss values per configuration have then been
averaged to identify the most promising models.

After this first evaluation process, the model with all 4 features appeared
to be the best performing one.

In order to ensure the significance of this result, a further test was carried
out. In particular, a 30-fold cross-validation has been performed on 2 models:
the one with all 4 financial features and the one with none.

The choice of a 30-fold cross-validation allowed us to obtain a more
accurate loss average and, most importantly, a distribution of losses over
which a statistical significance test could be carried out.

After averaging, the model with 4 features showed an ≈ 73% performance
improvement with respect to the one without any financial feature.

This improvement has been validated with a paired t-test. The result
of the test showed a p-value ≈ 0.0443 < 0.05 thus confirming the statistical
significance of the better result.

2.5.3 Hyperparameter Tuning

For the hyperparameter tuning, a similar process to the one described in
subsection 2.5.2 has been employed. This time, however, we are unable to
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carry out the cross-validation on every possible configuration, given that for
the hyperparameters these are infinite.

We therefore had to settle with the introduction of a random search
algorithm that could explore the phase space of hyperparameters and try out
different models with 3-fold cross-validation.

Research shows that the random search algorithm is much more effi-
cient than manual searches or grid search algorithms. It is indeed capable
of finding models, with same or even better performances, with smaller
computation times [35].

Our random search cross-validation has thus analyzed 20 different con-
figurations, randomly selected from the following parameter grid:

param_grid = {
’num_layers_eq’: [1,2,3,4],
’num_layers_fin’: [1,2,3,4],
’units_vector_eq’: [1,2,4,8],
’units_vector_fin’: [1,2,4,8],
’dense_units’: [8,10,12],
’dropout_rate’: [0.0,0.2,0.4],
’batch_normalization’: [False, True]

}

For each LSTM pipeline (Figure 2.8), the model was able to use up to 4 LSTM
layers. Each layer could independently be characterized by 1/2/4/8 neurons.
If more than 1 layer were employed, a Dropout layer between the LSTM
layers was placed. The Dropout layer is used to avoid overfitting by turning
off a fraction of the neurons (determined by its rate) during training [36].
Moreover, the random search algorithm could also choose whether to add a
normalization layer. Lastly, the number of neurons (8/10/12) of the ReLU
dense layer was also tuned.

After analyzing 20 configuration with 3-fold cross-validation, the follow-
ing appeared to be the best performing one:

• Equity LSTM pipeline: 1 layer with 1 neuron.
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Input (InputLayer)

LSTM layer 0 (LSTM)

Dropout (Dropout)

Batch normalization (BatchNormalization)

LSTM layer 1 (LSTM)

Fig. 2.8 Example of a 2 layer LSTM pipeline with Dropout and BatchNormalization
layers

• Financial LSTM pipeline: 2 layers with 1 neuron (thus not followed by
Dropout) and 2 neurons each.

• ReLU dense layer: 8 neurons.

• No BatchNormalization layer has been employed.

As the random search seemed to be suggesting that simpler models
where better performing, the 30-fold cross-validation test has been carried
out between the random-search selected model and the simplest possible
model (1 layer with 1 neuron for each LSTM pipeline & 8 ReLU dense
neurons).

After averaging, the random-search model showed an average loss ≈
−1.106 × 10−3 while the simplest model achieved an average loss ≈ 5.925 ×
10−7. Moreover, a paired t-test has been performed on the distribution of
losses and it returned a p-value ≈ 0.008 < 0.05. This once again shows
the validity of the process and ensures that these results are not due to
randomness.



Chapter 3

Results and Future Developments

3.1 Profit & Loss and Efficient Frontier

As anticipated in chapter 1, in order to benchmark the strategy generated by
our model, we’ve run comparisons with respect to the S&P 500 index.

The first way to see how our strategy behaves is by plotting the so-called
profit & loss (P&L) curve. This basically consists of the plot of the portfolio
cumulative returns against time, and thus allows us to visualize how our
generated portfolio strategy behaves over the test period. For the sake of
this plot, we move from logarithmic to linear results as their interpretation is
much more straightforward (e.g. 0.2 means that we have a 20 % return).

To move from logarithmic returns lt to linear cumulative returns Rt, we
first exploit the fact that log returns are summable. For the day T, the cumula-
tive log return LT is thus just:

LT := ∑
t≤T

lt

We can then move to cumulative linear returns Rt:

Rt := exp(Lt)− 1
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Figure 3.1 shows the P&L curves of the final strategy at different levels of
risk-aversion λ. In the following, we will not consider λ < 1 as we expect
that the majority of investors will have λ ∈ [1,10] [37]. Moreover, it should be
noted that the strategies below already take into account the transaction costs,
which have been subtracted by using the estimated coefficient c = 10−4.
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Fig. 3.1 Profit & loss curves for the generated strategy (blue line) and the S&P 500
index (black line) at varying values of λ risk-aversion

The first notable result is that our model actually works. Indeed, by
changing the value of λ, we are capable of generating different strategies
with different risk profiles. This allows to tune the generated strategy based
on the investor’s own risk-aversion. Secondly, it is apparent how the S&P 500
is characterized by a riskier strategy than the one generated by our model.
Lastly, it should be noted that we are also capable of obtaining better returns
than the S&P 500 in the case λ = 1.0, and landing very close to it with λ = 1.5.

While it’s true that we can extract some useful information regarding the
model’s performance from these graphs, they are not very explicit. Given
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that our model can generate strategies with different λ-s, a better approach
would be to plot the ex-post efficient frontier (Figure 3.2). Doing so allows us
to compare the overall S&P 500 strategy with ours, determining which of the
two is optimal.

In this plot, the annualized (linear) returns Rann of the strategies are
plotted against the annualized risk (standard deviation) σann and, by varying
λ, a curve can be obtained. The annualization is pretty straight-forward.
Given that in a year there are ≈ 252 trading days, and given that our test
data is composed of 540 trading days:

Rann := R540 ×
252
540

σann := σ540 ×
√

252

As we can see from Figure 3.2, the point related to the S&P 500 can be
projected on the curve generated by our model. This implies that our model
is capable of generating a strategy that achieves the same returns of the
S&P 500 with, however, a much lower risk. This means that, for any rational
investor [2], the strategy generated by our model will be optimal with respect
to the S&P 500.
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Fig. 3.2 Ex-post efficient frontier of the strategy compared to the S&P 500
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To recap, our model is therefore capable of generating different strategies
with varying risk profiles. With respect to the original work by Zhang,
Zohren and Roberts [1], we are also capable of landing in a specific point of
the efficient frontier by varying λ. Lastly, we are also taking into account the
transaction costs, by minimizing them in the process of strategy generation,
and by subtracting them to our returns when comparing our strategy to the
market benchmark.

One should however beware of the fact that, even though this model
considers transaction costs, it is not taking into account the short position
borrowing costs [38]. Moreover, shorting an equity will give us an immediate
positive cash inflow that could possibly benefit our returns thanks to leverage
or the interest accrued on it.

3.1.1 Max Drawdown

To further analyze how our strategy has a better risk profile when compared
to the S&P 500, we have computed another useful indicator:

Max Drawdown (MDD): "the maximum observed loss from a peak to a trough
of a portfolio, before a new peak is attained" [39]. It is thus a measure of the
risk of our portfolio. By defining the wealth at time t as Wt := Rt + 1
(i.e. the percentage of the initial capital that we own at time t), we can
compute the MDD (which is a negative quantity being a loss measure)
in the following way:

MDD :=
Through Value − Peak Value

Peak Value

:= min
t

(
Wt − maxt′≤t(Wt′)

maxt′≤t(Wt′)

)

In Figure 3.3 we can compare our strategy to the S&P 500, at varying
values of λ risk-aversion. It is once again apparent how the strategy gener-
ated by our model has a much lower "risk" than the S&P 500 index. Starting
from neutral risk-aversion (λ = 1.0) we gain ≈ 10 % points in the max draw-
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down when compared to the S&P 500. Moreover, we are capable of further
improving it by increasing the λ risk-aversion.
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Fig. 3.3 Max drawdown of the strategy compared to the S&P 500

3.2 Future Developments

The work presented in this thesis was able to take the theoretical background
from [1], and create a practical, more advanced implementation that is better
qualified to be put in the production phase.

Regardless, there are still many additions that can be included into this
model, in order for it to be better descriptive of reality and, possibly, improve
its performance.

Firstly, we should mention that there are many more possibilities for
feature engineering than the ones described in this thesis. Due to hardware
limitations (RAM in particular) we were unable to further expand the used
features (e.g. by adding the sign of NCFO) and introduce other data sources.
For instance, data regarding institutional investors’ portfolio imbalance,
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sentiment analysis, macroeconomic data or historical short level, could be
employed in future iterations of this work. It is thus likely that, with a
stronger machine, better and more features could be engineered, further
improving the performance of the model.

Moreover, as already mentioned in chapter 2, the proposed model uses a
simplistic representation of trading costs:

• We are assuming a constant transaction cost among stocks and trading
days. We know that in reality this is not the case as, by depending on
the bid-ask spread, each asset will have a specific transaction cost that
can fluctuate daily (or even intra-daily) [11].

• We are neglecting the short position borrowing costs. As of now, the
cost of acquiring a short position corresponds to the one of a long
position. Similarly, short position borrowing costs will depend on the
asset and on the day; moreover, there will be interests depending on
how long we keep that short position open [38].

• The positive cash inflow obtained from the short position could accrue
interests or, more interestingly, be used as leverage to boost our capital
and carry out more investments.

Addressing these idealities will definitely create a more accurate model,
that takes into account the much more complex dynamics of financial mar-
kets.

Lastly, we should mention that the strongest limitation of this model,
perhaps, is the limited amount of available data. In order to fix this problem,
a possible solution could be to increase the data frequency and move towards
intra-daily training. Given that the NYSE and Nasdaq trading hours go from
9:30 to 16:00 [40, 41], just by moving from daily to hourly we would get ≈ 6
times the number of datapoints. Of course, implementing intra-daily trading
would require much more computational power than the one available from
the consumer hardware employed in this work, thus making it unachievable
for the sake of this thesis.
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