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1.1 Thesis Outline and Contributions 

Datacenters play an increasingly crucial role in supporting a great variety of services, 

from cloud computing and data storage, to streaming services and artificial intelligence.  

Their growing high computing resources utilization, along with all the cooling system 

mechanisms to manage the generated heat, have led to significant environmental impacts 

and 𝐶𝑂2 emissions. 

Looking at the state of the art, many studies focused their attention on minimizing 

datacenters energy consumption by optimizing the frequency and voltage at which the 

processors run or designing predictive control mechanisms to optimally manage the 

cooling systems. However, few studies proposed solutions which leverage the possibility 

of shutting down the idle nodes and allocating jobs to the nodes with the lowest increment 

of predicted temperature. 

This thesis manages the jobs scheduling of the “Marconi 100” datacenter considering 

temperature forecasts and availability of all nodes. In other words, this optimizer is a 

thermal-aware job scheduler, with the addition of being able to turn off nodes that are not 

required for current workloads, thus reducing unnecessary energy waste, and then 

reactivate nodes when jobs demand increases. This approach led to 38% of energy 

consumption reduction through a one-day simulation. 

In Chapter 1 we give a general introduction to datacenters’ architectures and working 

principles followed by environmental impacts and some proposed solutions to mitigate 

power consumption. 

Then, in Chapter 2 we give an overview of the “Marconi 100” datacenter history, 

architecture, plugins and tools, followed by a deepen statistical analysis of available data. 

Chapter 3 introduces the mathematical formulations of the system identification models 

which will be used to make power and temperature predictions. 
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System identification training results are reported in Chapters 4, followed, in Chapter 5, 

by a rapid introduction in Genetic Algorithm working principles, and then a detailed 

analysis of the formulation and implementation of the optimization problem. 

In Chapter 6, several tests are performed to verify the correct functioning of the 

optimization algorithm and then conclusions and future work are reported in Chapter 7. 

The job scheduling functioning, which will be further deepened in Chapter 5, can be 

briefly summarized in the following way: 

• Job submission: Users can submit jobs specifying the maximum number of 

CPU/GPU cores requested and a time limit within which the job must be 

completed. 

• Job power consumption prediction: All job submission info is fed into a 

Random Forest Regressor which, as described in Chapter 4, is trained to estimate 

the mean power that a submitted job will require during its execution. 

• Temperature prediction of nodes: The aforementioned power consumption 

prediction, along with the measured/approximated nodes’ ambient temperature, 

are fed into a LSTM Neural Network (more info in Chapter 4). For each node, we 

estimate the temperature increment in case of job allocation and execution on that 

specific node. For our purposes, a 3-step ahead prediction is sufficient, in this way, 

knowing that each step corresponds to twenty seconds, we are predicting 

temperature behavior one minute in the future. 

• Optimization problem: At this point we have an array containing estimated 

temperature increments for each available node. This array, as it will be discussed 

in Chapter 5, is the key part of the Genetic Algorithm objective function. 

The minimization of the objective function returns an optimization matrix which states: 

• To which node the submitted job must be allocated to maintain the lowest 

temperature increment. 
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• Which nodes are 𝑂𝑁, and among them which are 𝐵𝑢𝑠𝑦 or 𝐼𝑑𝑙𝑒. 

• If it is necessary to turn on new nodes. 

• If it is possible to power off idle nodes. 

 

 

1.2 Understanding datacenters and their operations 

A datacenter is a physical room, building or facility that houses IT infrastructure for 

building, running and delivering applications and services.  

Datacenters started out as privately owned facilities, for the exclusive use of one 

company. Nowadays their usage is shared among multiple organizations and customers 

and supports a great variety of services, from cloud computing and data storage to video 

streaming and artificial intelligence. 

There exist different types of data center facilities depending on workload and business 

needs. 

• In Enterprise Datacenters all IT infrastructure and data are kept on premises. 

This means that the datacenter is dedicated exclusively to the need of one 

company, allowing the management of private information. 

• Public Cloud Datacenters share computational resources to multiple customers 

through an internet connection. They are larger than conventional datacenters, 

contain thousands of servers and miles of connection equipment. 

• In a Managed Datacenter, a client company leases dedicated servers and storage 

from the provider, and the provider handles the client company’s administration, 

monitoring and management of the servers. This option is ideal for companies 

who do not prefer to host their infrastructure by using the shared resources of a 

public cloud datacenter. 
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The core part of datacenters is represented by servers. They are high-performance 

computers that deliver applications, services and data to end-users’ devices. 

In rack-mount architecture, servers are stacked on top of each other in a rack. Each rack 

has its own power supply, switches, ports, cooling fans, processors, memory and storage. 

Most servers include some local storage capability to enable the most frequently used 

data to remain close to the CPU. Other data is transmitted over a standard Ethernet 

connection on dedicated servers with hard disk and/or solid-state drives. 

Processors, memories and networking equipment generate heat. For this reason, most 

datacenters are equipped with a combination of air and liquid cooling systems to keep 

servers within the proper temperature ranges. Air cooling is air conditioning, while liquid 

cooling consists in pumping liquid directly to hardware components. 

 

1.3 Energy consumption and environmental impact 

In the last years, datacenters growing computing resources utilization, along with all the 

cooling systems mechanisms to manage the generated heat, have led to significant 

environmental impacts and 𝐶𝑂2 emissions. 

According to the International Energy Agency (IEA), since 2010, the number of internet 

users worldwide has more than doubled, while global internet traffic has increased 25-

times. As a consequence, significant expansions in datacenters computing capability have 

been made to manage the growing demand for data processing, storage and cloud 

computing. 

The IEA estimates global datacenter electricity consumption in 2022 was 240-340 TWh, 

or around 1-1.3% of global final electricity demand. These data exclude energy used for 
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cryptocurrency mining, which was estimated to be around 110 TWh, accounting for 0.4% 

of annual global electricity demand. 

An astonishing result is that only 16 nations in the world consume more than the sum of 

all the existing datacenters. Looking at the graph below, we notice that datacenters, all 

together, absorb more energy than the majority of industrialized countries such as Italy. 

 

 
Figure 1.1: Data centers energy consumption 

 

From 2015 to 2022, datacenters workloads increased by 340%, and consequently energy 

usage by 20-70%, with a growing by 20-40% annually. Talking about cryptocurrency 
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mining energy consumption growth, the change between 2015 and 2022 is estimated to 

be about 2300-3500%. 

These numbers have a direct impact on greenhouse gas (GHG) emissions. In fact, 

datacenters accounted for around 330Mt 𝐶𝑂2 emissions in 2020, equivalent to 0.9% of 

energy-related GHG emissions. 

In addition to their operational energy usage, datacenters are also responsible for 

“embodied” life cycle emissions, including raw materials extraction, manufacturing, 

transport and end-of-life disposal or recycling. 

 

1.4 State of the art in Datacenter Energy Optimization 

Several papers have been published regarding datacenter energy optimization, and each 

of them proposes different approaches. In fact, the energy consumed depends on multiple 

sources (CPUs P-state, cooling systems, workload distribution etc.) and identifying them 

and their behavior can help developing optimization strategies. 

Daniele Cesarini and Andrea Bartolini, from the University of Bologna propose one of 

the most interesting approaches based on CPU frequency control. The paper is named: 

“COUNTDOWN Slack: A Run-time Library to Reduce Energy Footprint in Large-scale 

MPI Applications”. 

The targets of this paper are HPC scientific applications, composed of parallel processes 

running on a cluster of compute nodes interconnected with a high-bandwidth low-latency 

network. Processing can exchange data using a message-passing interface (MPI) library 

that can send explicit messages. 

There exist two main policies for managing power consumption of HPC facilities and 

both aim at scaling down the P-state of the computation units. 
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Proactive policies always execute a newly encountered code region at the highest 

available P-state to measure the performance of that region. Performance evaluation is 

based on the collection of data such as execution time, number of retired instructions etc. 

These parameters are used to compute a new P-state for the next time the code region is 

encountered. 

In Reactive policies, when specific events occur, the runtime triggers well-defined 

actions. In COUNTDOWN Slack, a timeout counter is implemented to ignore portions of 

code which are too short to cause a P-state transition. In this case, there is not a history 

table to predict the next P-state to be assigned, since the runtime only needs to intercept 

specific events. 

COUNTDOWN Slack approach is based on scaling down the P-state in slack times of 

the application reducing the frequency but leaving unaltered the performance for both 

computation and data copy regions. For this purpose, every time an application calls a 

collective primitive, so when an application must wait for the execution of parallel tasks, 

its relative P-state is reduced to the minimum available one. When all processes reach the 

collective primitive, the maximum frequency is restored. 
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Chapter II 

The “Marconi 100” Datacenter 
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2.1 History and applications 

The “Marconi 100” project owes its birth to European funding to Cineca in 2015, and it 

is part of a series of investments that Europe is making in the supercomputing area. This 

project was won by Lenovo, which acquired the x86 server business from IBM in 2014. 

The first step was the “Marconi” project, in which the computing power was mainly 

produced by x86 processors. But the high demand of computing resources in scientific 

research and deep learning models led to the necessity of equipping the servers with 

graphics accelerators. This allowed Cineca to significantly increase the performance of 

the single server. 

This gave birth to the “Marconi 100”, which name comes from the Nvidia Volta 100 

graphics accelerators mounted in the new servers. This means that the Marconi 100 is a 

continuation of the Marconi project. 

Much of the Marconi 100’s computing power comes from NVIDIA chipsets. They are 

designed exclusively for supercomputing, and in particular for artificial intelligence. They 

allow concurrent processing for the hundreds of cores that are part of the GPU with a 

clock typically from 1 to 1.3 GHz. This means that in the unit of time given by a clock 

cycle the machine is able to do a certain number of operations simultaneously. 

The Marconi 100 datacenter enables high performance computing to simulate complex 

scenarios in healthcare, space exploration and weather forecasting sectors. Additionally, 

it supports scientific research for university and industry, AI projects and big data 

analysis. 
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2.2 System architecture and racks spatial distribution 

The Marconi 100 datacenter consists of 980 compute nodes and 8 login nodes, connected 

with a network architecture called DragonFly. 

The login nodes and the computed nodes are the same. Each node consists of 2 Power9 

sockets, each of them with 16 cores and 2 Volta GPUs. In this sense each node owns 32 

cores and 4 GPUs. 

 

 
Figure 2.1: System Hardware Architecture 

 

Nodes are stacked on top of each other in a rack. Each rack consists of 20 nodes, for this 

reason the datacenter room hosts 49 computing racks and one rack for login nodes. Each 

rack has its own power supply, switches, ports, cooling fans, processors, memory and 

storage. 

 

 
Figure 2.2: Racks spatial distribution 
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The theoretical peak performance of the single node is about 32 TFlops. This value is due 

to 0.8 for the CPU part and 7.8x4 for the four GPUs. 

The theoretical peak performance for the entire datacenter is therefore 988*(0.8+4*7.8) 

= 31.6 PFlops. 

 

2.3 Plugins and data acquisition 

Marconi 100 offers different plugins for data extraction, providing the tools to monitor 

datacenter operations. They are designed to collect info related to hardware performance, 

environmental conditions and energy usage. 

The IPMI and Ganglia plugins collect all the sensor data provided by cluster nodes, and 

most of their features are represented in figure [2.1]. 

Each feature is sampled with a sampling time of 20 seconds, which is particularly precise 

in IPMI features, and less accurate in Ganglia ones. For this reason, to synchronize the 

timestamps it is necessary to perform some linear interpolation. 

Most of the data that these two plugins provide will be used during the training, validation 

and testing of the node’s temperature model in Chapter 4. 

Another fundamental plugin is the Job Table, which collects information regarding the 

jobs executed on the cluster. The information collected is provided by users at submission 

time. This tool is fundamental to train the Random Forest regressor for the prediction of 

the mean power consumption of the submitted jobs, as will be discussed in Chapter 4. 
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Table 2.1: Available features 

 

 
Table 2.2: Job Table 
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2.4 ExaMon and ExaMon-X tools 

The continuous growth of datacenters scale, along with the increment of the number of 

hardware components, brought to a bigger complexity in maintenance, requiring more 

sophisticated tools and strategies. Here comes to help the predictive maintenance 

approach, which consists in a set of practices to intervene on Industrial Internet of Things 

(IioT) systems before critical conditions might arise. 

In particular, ExaMon and ExaMon-X, developed by the University of Bologna, are two 

tools which are responsible for collecting and processing data from datacenters. Recently, 

they have been deployed on two supercomputers hosted at CINECA: D.A.V.I.D.E. and 

MARCONI. 

They are based on monitoring a set of HW and SW resources to characterize datacenters 

behavior and create digital twins for predictive maintenance tasks. 

ExaMon has been designed to handle big data from many heterogeneous sources. It is 

based on “collector” components which read data from several sensors scattered across 

the system and deliver them to the upper layers of the software stack. There are collectors 

with direct access to HW resources and collectors that sample data from SW applications. 

The implemented communication protocol is the MQTT, which is based on a publish-

subscribe pattern. It requires three different agents: the publisher, that sends data on a 

specific topic; the subscriber, that receives data from the appropriate topic; the broker, 

which handles the communication between publishers and subscribers. In ExaMon the 

collectors assume the role of publishers. 

ExaMon-X provides a set of functionalities for predictive maintenance, which can exploit 

both the data stored in the database, and the online data stream. Each of these 

functionalities could be used independently from the others or in combination to perform 

macro activities. 
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In the case of predictive maintenance models, ExaMon is responsible for collecting data, 

while ExaMon-X is used to process this data. In particular, machine learning models can 

be trained to predict hardware failures. 

To make an example, a single hard disk (HD) has a very low failure probability, but in 

datacenter context, with a high number of HDs, failure probability is not negligible. 

Current solutions to this problem are based on redundancy, but this approach is expensive 

and in case of fault, lead to a temporary shutdown of services. 

For this reason, the health status of HDs can be monitored through a machine learning 

algorithm, which is fed by disk temperature, failures in reading/writing and many others. 

 

 
Figure 2.3: Marconi 100 Datacenter 
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2.5 Features Data Analysis and Normalization 

As described in Section [2.3], the “Marconi 100” provides different tools to retrieve data. 

IPMI and Ganglia plugins are the ones used for our purposes. 

 

Table 2.3: Features of interest 

 

 

In table [3.1] we report a list of features that may have a physical connection with 

temperature. In fact, our objective can be resumed in this way: given the power 

consumption and ambient temperature of a node, we shall train a model capable of 

estimating the future node temperature behavior. 

For these reasons, we retrieved all those features which represent temperature and/or 

power consumption of different hardware components of the datacenter. Thinking about 

it, the most energy-intensive devices are the GPUs, followed by the CPU cores. For this 

reason, we concentrate our attention on them, highlighting in table [3.1] the 

corresponding features. 
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The data is sampled every 20 seconds, with high time precision, but this is not always the 

case. The exception is the “GpuX_power_usage” feature, which sampling frequency is 

sometimes imprecise. To address this problem, we opted for linearly interpolating the 

data, and to extract the timestamps of interest. In this way all features are synchronized. 

All these data will be used to train the models illustrated in Chapter 3. For this reason, it 

is crucial to normalize them in order to improve accuracy and efficiency of the system 

identification procedures. Z-score normalization is a technique used to rescale data so 

that it has zero mean and unitary variance. In formula: 

 𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
 (2.1) 

Where 𝑧𝑖 is the normalized data point, 𝜇 is the mean value of the entire dataset, 𝜎 is the 

standard deviation of the entire dataset, and 𝑥𝑖 is the real value of the data point. 

The advantage of normalization is to give the same scale to all input data of a system 

identification model, to center data around a null mean value and with unitary variance, 

and to help machine learning algorithms to perform better. 

 

2.6 Data aggregation 

Our thermal system identification of the nodes of the datacenter needs the aggregation of 

the 𝑝𝑋_𝑐𝑜𝑟𝑒𝑌_𝑡𝑒𝑚𝑝, 𝑔𝑝𝑢𝑋_𝑐𝑜𝑟𝑒_𝑡𝑒𝑚𝑝 and 𝑔𝑝𝑢𝑋_𝑝𝑜𝑤𝑒𝑟_𝑢𝑠𝑎𝑔𝑒 features. 

To make it clearer, let’s take the cores temperature data of a single CPU. For each node, 

we have 2 CPU sockets, composed of 16 cores each. What we have at our disposal is a 

time series CSV file for each of these cores, with data from January to September 2022. 

To train a model, we need to feed it with input and target features which are physically 

consistent with each other. Our objective is to predict the CPU socket temperature given 
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the ambient temperature and the CPU socket power consumption. But the available 

features are the temperature behaviors of the single cores, and the power usage of a group 

of cores (a socket). For this reason, it is necessary to aggregate in some way the 

temperatures to obtain something which represents the temperature behavior of each 

socket. 

The solution adopted was to compute, for each timestamp, the average temperature of all 

the cores belonging to the same CPU socket. In this way, giving to the model the socket 

power consumption data, along with the ambient temperature behavior, we are able to 

estimate the target. The target is the aggregated temperature computed before. 

Following the same reasoning, we aggregated the GPU core temperatures, to get the 

temperature behavior of the entire GPU chipset. At the same time, we aggregated the 

single GPU cores power consumptions to approximate the overall GPU mean power 

consumption over time. 
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2.7 Job table 

The “Job table” is a CSV file which stores information regarding the jobs executed by the 

datacenter. The information collected is provided by users at submission time. 

 

Table 2.4: Job features 

 

 

As we can observe in the above table, each user and each job are univocally identified by 

an ID. In this sense, it is possible to verify which jobs are in execution or have been 

requested by which users. 

Users can specify the maximum number of CPU and/or GPU cores necessary for the 

execution of their jobs. 

Each job is characterized by a start time, that in general does not correspond to the 

submission time. In fact, the job scheduler can delay the execution of a process 

considering the time limit constraint. This is because the user, when querying the 

datacenter, can specify the maximum runtime of the job. 

The job scheduler decides where to allocate running jobs, and this information is stored 

into a list of integers, where each number corresponds to a specific node of the datacenter. 

Notice that it is possible that more jobs are allocated simultaneously to the same node, 
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but to different partitions of it. At the same time, it is also possible that more nodes are 

executing different parts of the same job. 

 

2.8 Jobs statistics 

In this paragraph we are going to discuss statistics representing the behavior of jobs 

submitted to the Marconi 100. This is fundamental in understanding which type of jobs 

are executed and their intrinsic characteristics. 

The first aspect that we want to analyze is the average number of CPU and GPU cores 

required by the users for the execution of their jobs. From table [3.3] and table [3.4], we 

notice that a low number of resources are allocated to most of the jobs. Typically, the 

ranges of CPU cores vary from [1, 8] to ]32, 64]. From the GPU point of view the trend 

is similar, in fact most jobs require only one GPU. But it is evident that a non-negligible 

number of jobs need all the four GPUs of a single node. 

 

Table 2.5: Number of CPU cores requested 
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Table 2.6: Number of GPU cores requested 

 
 

Regarding the execution time, most of the jobs are executed in less than 30 minutes, with 

45% of them which are completed in less than 10 minutes. This means that jobs submitted 

to the datacenter require simple calculations or small datasets, which reduces the time 

needed for data input, processing and output. Another possible motivation could be that 

the system has a great number of available resources, so processes do not wait in queue 

for shared hardware. At the same time, a great role could have the parallelization, which 

means that multiple tasks can be run simultaneously, leading to faster overall execution. 

Table 2.7: Jobs execution time
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As we said in Section [3.3], users during submission shall specify the time limit within 

which jobs must be completed. To verify the reliability of the Marconi 100 datacenter, we 

compared the real execution times with the maximum required ones. The result is that 

more than 97% of jobs succeed in being executed before their deadline. 

 

Table 2.8: Deadline accomplishment 

 

Another interesting statistic is knowing how much in advance deadline are fulfilled. From 

table [3.7] we notice that nearly the 90% of jobs, considering the submission time and 

their execution, are terminated in half of their time limit. 

 

Table 2.9: Jobs execution time (deadline percentage) 
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One more interesting statistical information to consider is for how much time the 

datacenter nodes have been idle from January to September 2022. This detail is useful to 

understand for how much time those nodes could have been turned off to save energy. 

Looking at figure [2.4] we notice that the datacenter was idle for the 24% of the time (on 

average). In other terms, considering an observation window of 273 days (9 months), 

datacenter nodes have been powered on and idle for about 65 days. 

 
Figure 2.4: Nodes Busy/Idle time 
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Chapter III 

System Identification 
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3.1 Introduction 

System identification is the process of creating mathematical models that describe how a 

dynamic system behaves, based on observed data.  These data are typically collected by 

measuring, from the system, inputs and corresponding outputs over time. The goal is to 

capture the relationship between inputs and outputs, in order to predict future or actual 

behavior of the system’s dynamics. 

Choosing a model structure is a crucial step. There are three main types of models based 

on how much we know about the system: white-box, grey-box and black-box models. 

White-box models assume that all the physical phenomena involved in the system are 

exactly known, for this reason the structure of the model is obtained by applying the 

principles of physics. 

Grey-box models are obtained by applying the principles of physics, but the physical 

parameters are not exactly known and need to be estimated from experimental data. 

Black-box models are used when very little is known about the system. In this case the 

structure of the equations describing the model is selected based on “general” a-priori 

information. The parameters involved in the equations do not have, in general, any 

physical meaning. 
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3.2 Linear models 

When working with linear models the three most used approaches are ARX 

(AutoRegressive with eXogenous input), OE (Output Error), and ARMAX 

(AutoRegressive Moving Average with eXogenous input) models. Each method offers a 

different way to handle noise and capture the system’s dynamics. 

 

3.2.1 ARX (AutoRegressive with eXogenous inputs) 

The ARX model captures the relationship between the current output and past outputs and 

inputs in the following way: 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦(𝑡 − 𝑛𝑎) = 𝑏1𝑢(𝑡 − 1) + ⋯ + 𝑏𝑛𝑏

𝑢(𝑡 − 𝑛𝑏) + 𝑒(𝑡) 

𝑤𝑖𝑡ℎ 𝑛𝑎 ≥ 0, 𝑛𝑏 ≥ 1 

(3.1) 

The term 𝑎1𝑦(𝑡 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦(𝑡 − 𝑛𝑎), represents the autoregressive component, 

showing how past outputs influence the current one. 

The term 𝑏1𝑢(𝑡 − 1) + ⋯ + 𝑏𝑛𝑏
𝑢(𝑡 − 𝑛𝑏), represents the exogenous inputs, showing 

how past inputs influence current output. 

The error term 𝑒(𝑡), which enters in the equation as a white noise with zero mean and 

unitary variance, represents the unmodeled dynamics. 

Introducing the following polynomials in 𝑧−1 (unitary delay operator): 

𝐴(𝑧) = 1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎 (3.2) 

𝐵(𝑧) = 𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏 (3.3) 



27 
 

the ARX equation can be mathematically written as: 

 

𝐴(𝑧)𝑦(𝑡) = 𝐵(𝑧)𝑢(𝑡) + 𝑒(𝑡) 
 

(3.4) 

𝑦(𝑡) =
𝐵(𝑧)

𝐴(𝑧)
𝑢(𝑡) +

1

𝐴(𝑧)
𝑒(𝑡) 

 

(3.5) 

𝑦(𝑡) = 𝐺(𝑧)𝑢(𝑡) + 𝐻(𝑧)𝑒(𝑡) 

 

(3.6) 

Or can be represented with the following block diagram: 

 
Figure 3.1: ARX block diagram 

 

If 𝑛𝑎 = 0, then 𝐴(𝑧) = 1 and 𝑦(𝑡) is modeled as a FIR (Finite Impulse Response), in 

which the output signal is represented as a finite sum of past input values, without 

involving any feedback from past outputs. 
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3.2.2 OE (Output Error) 

The OE model separates the dynamics of the system from the noise affecting the output: 

 

𝑦(𝑡) + 𝑓1𝑦(𝑡 − 1) + ⋯ + 𝑓𝑛𝑓
𝑦(𝑡 − 𝑛𝑓) = 𝑏1𝑢(𝑡 − 1) + ⋯ + 𝑏𝑛𝑏

𝑢(𝑡 − 𝑛𝑏) 

𝑤𝑖𝑡ℎ 𝑛𝑓 ≥ 0, 𝑛𝑏 ≥ 1 

(3.7) 

where the real output 𝑦(𝑡) is corrupted by a white measurement noise: 

�̃�(𝑡) = 𝑦(𝑡) + 𝑒(𝑡) 

 

(3.8) 

Introducing the following polynomials in the 𝑧−1 variable: 

𝐹(𝑧) = 1 + 𝑓1𝑧−1 + ⋯ + 𝑓𝑛𝑓
𝑧−𝑛𝑓 (3.9) 

𝐵(𝑧) = 𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏 (3.10) 

the undisturbed OE equation can be written as: 

𝐹(𝑧)𝑦(𝑡) = 𝐵(𝑧)𝑢(𝑡) (3.11) 

�̃�(𝑡) = 𝑦(𝑡) + 𝑒(𝑡) =
𝐵(𝑧)

𝐹(𝑧)
𝑢(𝑡) + 𝑒(𝑡) 

(3.12) 

�̃�(𝑡) = 𝐺(𝑧)𝑢(𝑡) + 𝑒(𝑡) 

 

(3.13) 

Or can be represented with the following block diagram: 



29 
 

 
Figure 3.2: OE block diagram 

 

If 𝑛𝑓 = 0, then 𝐹(𝑧) = 1 and �̃�(𝑡) is modeled as a FIR (Finite Impulse Response). 

 

3.2.3 ARMAX (AutoRegressive Moving Average) 

The ARMAX model is similar to ARX, but the error term 𝑒(𝑡) is substituted by a linear 

combination of past samples of the white noise. 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦(𝑡 − 𝑛𝑎) = 𝑏1𝑢(𝑡 − 1) + ⋯ + 𝑏𝑛𝑏

𝑢(𝑡 − 𝑛𝑏) + 

                                                                               + 𝑒(𝑡) + 𝑐1𝑒(𝑡 − 1) + ⋯ + 𝑐𝑛𝑐
𝑒(𝑡 − 𝑛𝑐) 

(3.14) 

By introducing the following polynomials in the 𝑧−1 variable: 

𝐴(𝑧) = 1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎 (3.15) 

𝐵(𝑧) = 𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏 (3.16) 

𝐶(𝑧) = 1 + 𝑐1𝑧−1 + ⋯ + 𝑐𝑛𝑐
𝑧−𝑛𝑐   (3.17) 

the ARMAX equation can be written as: 

𝐴(𝑧)𝑦(𝑡) = 𝐵(𝑧)𝑢(𝑡) + 𝐶(𝑧)𝑒(𝑡) (3.18) 
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𝑦(𝑡) =
𝐵(𝑧)

𝐴(𝑧)
𝑢(𝑡) +

𝐶(𝑧)

𝐴(𝑧)
𝑒(𝑡) 

(3.19) 

 

Or can be represented with the following block diagram: 

 
Figure 3.3: ARMAX block diagram 

 

3.3 Nonlinear Models 

Unlike linear models, which assume a proportional relationship between inputs and 

outputs, nonlinear models can describe more complex and intricate interactions. In this 

sense, the effect of a change in the input variables on the output is not constant. 

 

3.3.1 NLARX (Nonlinear ARX Model) 

A Nonlinear ARX (AutoRegressive with eXogenous inputs) model consists of two main 

components: model Regressors and an Output Function. 
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Figure 3.4: Nonlinear ARX block diagram 

The computation of Regressors involves using current and past inputs, as well as past 

outputs. Several types of regressors can be arbitrarily chosen, based on the specific data 

and application: 

• Linear Regressor: [𝑢(𝑡), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), 𝑦(𝑡 − 1), 𝑦(𝑡 − 2)] 

• Polynomial Regressor: [𝑢(𝑡 − 1)2, 𝑦(𝑡 − 1)4, 𝑦(𝑡 − 2)2] 

• Periodic Regressor: [cos(𝑢(𝑡 − 2)) , sin(𝑦(𝑡 − 1)) , cos(𝑦(𝑡 − 1))] 

• Nonlinear Regressor: [𝑢(𝑡 − 1) ∗ 𝑦(𝑡 − 2), 𝑦(𝑡 − 1) ∗ 𝑦(𝑡 − 3)] 

The output function is composed of one or more mapping objects, which can include 

linear, nonlinear, and offset components, all operating in parallel. These mapping objects, 

applied to the model regressors, produce the output. 

𝐹(𝑥) = 𝐿𝑇(𝑥 − 𝑟) + 𝑔(𝑄(𝑥 − 𝑟)) + 𝑑 (3.20) 

In this general equation, 𝑥 is the vector of the regressors, and 𝑟 is the mean of 𝑥. The 

structure of 𝐹(𝑥) and 𝑔 are chosen a-priori, while 𝐿, 𝑟, 𝑑, 𝑄 parameters are estimated 

during the optimization process. 

𝐿𝑇(𝑥 − 𝑟) is the output of the linear function block. 



32 
 

𝑔(𝑄(𝑥 − 𝑟)) represents the output of the nonlinear function block. In particular, 𝑄 is a 

projection matrix that makes the calculations well-conditioned, and 𝑔 is a chosen 

nonlinear function. 

𝑑 is a scalar offset added to the combined outputs of the linear and nonlinear blocks. 

In general, the form of 𝐹(𝑥) depends on the chosen output function, which could be a 

Wavelet Network, a Sigmoid Network, a Neural Network, or a customized one. 

 

3.3.2 LSTM (Long Short-Term Memory) 

Neural Networks are a key component of machine learning, inspired by the human brain’s 

structure and functioning. These networks consist of multiple layers of interconnected 

nodes, each of them performing simple computations. The structure typically includes an 

input layer, one or more hidden layers, and an output layer. Each connection between 

nodes has an associated weight, which adjusts as the network learns, to minimize errors 

in the output predictions. 

The working principle is conceptually easy. Initially, input data is fed into the network, 

and passes through each layer of neurons. As data moves through these layers, neurons 

activate based on the weighted sum of their inputs and apply an activation function 

(Sigmoid, Tanh, ReLU) to introduce non-linearity. The output from the last layer 

compared with the actual desired output, gives an output error. To reduce this error the 

network uses backpropagation, which means that the error propagates back through the 

layers, and the weights are adjusted using optimization techniques like gradient descent. 

This iterative process continues over time, until a stop criterion is met, or the entire dataset 

has been fed into the network a certain number of times (epochs). 

The training process relies on large datasets, for this reason instead of using the entire 

dataset at once, which is computationally expensive and inefficient, the data is split into 
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smaller subsets known as batches. Each batch is processed individually, and the network’s 

weights are updated after each batch. 

In this thesis we are managing time series data, which are characterized by the fact that 

the order of data points matters: future values are often dependent on past values. 

Traditional neural networks lack the capability to remember past inputs, which means 

they cannot capture temporal dependencies effectively. 

Recurrent Neural Networks (RNNs) address this issue. They are networks with internal 

loops, allowing information to persist. One main drawback is the so-called Gradient 

Vanishing/Exploding Problem, which occurs when the gradients become exceedingly 

small/big as they are propagated back through the layers of the network. 

Long Short-Term Memory neural networks are special types of RNNs designed to 

mitigate the vanishing/exploding gradient problem. 

Similar to RNNs, LSTMs are projected to find patterns and long-term dependencies in 

the data. They have the form of a chain of repeated modules, where the same weights’ 

values are used. 

 
Figure 3.5: LSTM NNs modules 

The core component of LSTMs is the cell state, the horizontal line running through the 

top of the diagram, which retains information over time. 
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Figure 3.6: The Cell State 

 

Three structures called “gates” control the cell state value along the LSTM unit chain. 

The forget gate determines which information from the previous cell state should be 

forgotten or kept. It consists of a sigmoid layer which gives a number between 0 and 1 

based on the values of the past hidden state ℎ𝑡−1 and the current input 𝑥𝑡. The result 𝑓𝑡 is 

a vector that determines which parts of the previous cell state 𝐶𝑡−1 are forgotten. 

 
Figure 3.7: The Forget Gate 

 

The input gate controls how much new information must be stored in the cell state. It is 

composed of two parts: a sigmoid layer which decides which values of the old cell state 

we will update, 𝑖𝑡, and a tanh layer which creates a vector of new candidate values �̃�𝑡.  
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Figure 3.8: The Input Gate 

 

In formula, we multiply the old state �̃�𝑡−1 by 𝑓𝑡, forgetting what we decided to forget 

earlier, and then we add 𝑖𝑡 ∗ �̃�𝑡, which represents the new information. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 

The output gate decides what part of the cell state will go to the output. This work is done 

by a Sigmoid layer, while a tanh layer is used to push the values of the cell state to be 

between -1 and 1. 

 
Figure 3.9: The Output Gate 

 

This process allows the LSTM to output information relevant to the task while keeping 

other information in memory for future time steps. 
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3.3.3 Random Forest Regressor 

Random Forest Regressor can be seen as a collection of decision trees, combined to improve 

overall accuracy of the model. A decision tree is a model used for both classification and 

regression tasks, which splits data into subsets based on feature values. Each node in a 

decision tree represents a feature in an instance to be classified, each branch represents a 

decision rule, and each leaf represents an output. 

One main drawback of decision trees is their high sensitivity to training data, which implies 

low accuracy in predicting output from unseen data. In this sense, Random Forest Regressor 

improves its prediction accuracy applying several techniques such as bootstrapping, feature 

selection, and aggregation. 

 
Figure 3.10: The Random Forest Regressor structure 

Bootstrapping involves creating multiple subsets of the original training dataset by sampling 

with replacement. Each of these subsets is then used to train an independent decision tree. 

Training on different datasets, the regressor can better generalize. 

Feature selection is used to take a random subset of features for each decision tree. This 

reduces correlation between trees and prevents overfitting by not relying too much on any 

particular feature. 

Aggregation consists in averaging the predictions of all the decision trees. In this sense, 

aggregation helps to filter out the errors that individual decision trees models may make. 
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Chapter IV 

Temperature and Job-Power Models 
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4.1 Linear models (ARX, OE) 

Linear models capture a linear relationship between inputs and outputs. This means that 

changes in input variables correspond to proportional changes in the output variable. 

Before training a linear model, we must specify the number of lags, which is the number 

of past data which affect the predicted output. 

A first approach was to train a ARX model fed by features which are most relevant for 

predicting CPU cores temperature: 

𝑇𝐶𝑃𝑈(𝑡) + 𝑎1𝑇𝐶𝑃𝑈(𝑡 − 1) + ⋯ + 𝑎𝑛𝑎
𝑇𝐶𝑃𝑈(𝑡 − 𝑛𝑎)

= 𝑏11𝑃𝑝0(𝑡 − 1) + ⋯ + 𝑏1𝑛1
𝑃𝑝0(𝑡 − 𝑛1) + 𝑏21𝑃𝑝1(𝑡 − 1) + ⋯

+ 𝑏2𝑛2
𝑃𝑝1

(𝑡 − 𝑛2) + 𝑏31𝑇𝑎𝑚𝑏(𝑡 − 1) 

(4.1) 

where 𝑇𝐶𝑃𝑈 is the mean CPU core temperature, 𝑃𝑝0 and 𝑃𝑝1 are the power consumption 

for the CPU sockets, 𝑇𝑎𝑚𝑏 is the inlet node temperature, 𝑛1 and 𝑛2 are the inputs lags, 𝑛𝑎 

is the output autoregression lag. The choice of 𝑛1, 𝑛2 and 𝑛𝑎 is arbitrary, starting from 

low values and, consequently, evaluating performance with higher values. 

Training is performed in simulation mode, which means that at each iteration we are 

feeding into the model the predicted lagged values of the output, not the measured ones. 

In this way, the model cannot rely on real measurements of the temperature. This is 

important because our objective is to make multi-step predictions, and obviously we 

cannot measure future temperatures values. Results are shown in figure [4.1]. 

A second approach was to train an OE model. The difference with the above method is 

that error is no longer considered as unmodeled dynamics, but it enters as an output error. 

Keeping the same features and the same lags we obtained the results shown in figure 

[4.2]. 
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Figure 4.1: CPU ARX temperature model 

 
Figure 4.2: CPU OE temperature model 
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Figure 4.3: CPU NLARX temperature model 

 

4.2 Nonlinear models (NLARX) 

Nonlinear models try to predict system dynamics which cannot be captured by linear 

functions. In particular, the objective is to find a nonlinear relationship between inputs 

and a target output. 

As mentioned in Chapter 3, in the training phase we need to select the type of regressors 

(linear, polynomial, periodic, or customized) and a nonlinear output function, which in 

general is a Sigmoid Network or a Wavelet Network, and the corresponding number of 

units. 

Initially, we created two 𝑖𝑑𝑑𝑎𝑡𝑎 structures, one for the training and one for the test data. 

In both cases we used normalized data, with null mean value and unitary variance. 
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Figure 4.4: MATLAB data structures 

Starting from the model orders chosen for the ARX, we trained a NLARX. 

 
Figure 4.5: MATLAB training and testing 

In particular, the 𝑛𝑒𝑡 structure is an 𝑖𝑑𝑆𝑖𝑔𝑚𝑜𝑖𝑑𝑁𝑒𝑡𝑤𝑜𝑟𝑘. The best number of units is 

automatically chosen by the NLARX optimizer. 

Running the 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 function, in simulation mode, and using the testing subset we 

obtain the results shown in figure [4.3]. 

 
 

4.3 Temperature LSTM Neural Network 

LSTM (Long Short-Term Memory) neural networks not only find nonlinear relationships 

between inputs and outputs, but also try to capture short and long-time data dependencies 

and patterns. With respect to classical neural networks, they are particularly efficient in 

handling time series sequences. 

For this reason, given an arbitrary sequence length, data was subdivided in this way: 
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Figure 4.6: NLARX temperature model 

 

We created two structures 𝑋𝑡𝑟𝑎𝑖𝑛 and 𝑌𝑡𝑟𝑎𝑖𝑛, containing inputs and target output 

sequences, respectively. Each cell has an overlap equal to one, meaning that adjacent 

sequences share sequence_length-1 time steps. 

The structure of the LSTM neural network implemented is the following: 

 
Figure 4.7: LSTM neural network structure 

We use an input layer with a number of nodes equal to the number of input features, two 

LSTM hidden layers and two Dense layers to produce the predicted output. 
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The Dropout layers are used to disable an arbitrary fraction (20%, in this case) of neurons 

during each training iteration. This is useful in preventing overfitting and improving 

model generalization. 

     
Figure 4.8: LSTM neural network training options 

We trained the neural network with a maximum number of epochs equal to 50, and a 

validation patience of 20. This means that when evaluating the loss in the validation data, 

if the estimate does not improve for 20 consecutive evaluations, the training stops. 

When training stops, the “best-validation-loss” model is saved. 

We chose to use the “Adam” optimizer, with a “piecewise” schedule, which means that 

the learning rate is not constant and changes over epochs. 

Moreover, the input sequences are given to the network in minibatches, and at each epoch 

they are shuffled, to prevent overfitting and improve model generalization. 

In figure [4.9] we display the training process for temperature prediction of the CPU 

cores, where in blue we highlight the training loss, while in red the validation one. In 

figure [4.10] we show the results relative to the testing set and it is possible to notice that 

the predicted temperature succeeds in following the real one behavior. 
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In figure [4.11] and [4.12] the same plots are shown for the temperature prediction of the 

GPU cores. 

 
Figure 4.9: CPU LSTM neural network training and validation loss

  
Figure 4.10: CPU LSTM neural network model 



45 
 

 
Figure 4.11: GPU LSTM neural network training and validation loss 

 
Figure 4.12: GPU LSTM neural network model 
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4.4 Random Forest Regressor 
The Random Forest Regressor is a fundamental part of the optimization algorithm, that 

will be described in Chapter 5. 

As illustrated in Chapter 3, it consists of a certain number of independent decision trees 

whose outputs are averaged to get a final estimation of the target. It uses bootstrapping, 

feature selection and aggregation techniques to not rely too much on training data and to 

better generalize on unseen data. 

For our purposes, we are interested in getting an estimate of the CPU and GPU mean 

power that a submitted job will consume, based on its submission resources request. 

The target power is obtained in the following way: 

• From the Job Table, where old jobs information is stored, we filter and select only 

the jobs which execution time was greater than a sampling time. In fact, for each 

node, power consumption is read every twenty seconds. 

• For each job we create a time window constrained by the start and end execution 

time. 

• For each node which was allocated to a job, we select the corresponding time 

window, read the CPU and GPU power consumptions and compute the mean 

value. 

Our target is the power mean value, and not its temporal behavior because we are using 

static features, which do not evolve over time. 

The input data can be directly obtained from the Job Table, in particular we will use 

𝑢𝑠𝑒𝑟_𝑖𝑑, 𝑡𝑖𝑚𝑒_𝑙𝑖𝑚𝑖𝑡 , 𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑠, 𝑛𝑢𝑚_𝑐𝑝𝑢𝑠 and 𝑛𝑢𝑚_𝑔𝑝𝑢𝑠 features. 
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Table 4.1: Random Forest Regressor input features 

 
 

In particular, 80% of the data was used for the training phase, and the remaining 20% for 

the testing. We trained both the CPU and GPU Random Forest Regressors on Python 

importing the 𝑠𝑘𝑙𝑒𝑎𝑟𝑛 library. 

Regarding the training dataset, as can be seen in figure [4.13] and [4.14] we obtained a 

mean relative error of −1.8% for the CPU mean power consumption and of −2.27% for 

the GPU one. 

We notice a gaussian distribution centered on zero, which means that for most of the jobs 

the predicted power consumption relative error is almost null. 

To verify the generalization capabilities of the model, we fed it with unseen data from the 

testing set, and we obtained a mean relative error of −4.35% for the CPU mean power 

consumption and of −2.89% for the GPU one. 

As expected, the testing relative mean errors are a little higher with respect to the training 

ones, but its value guarantees accurate predictions. 
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Figure 4.13: CPU Random Forest Regressor training prediction relative error 

 
Figure 4.14: GPU Random Forest Regressor training prediction relative error 
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Figure 4.15: CPU Random Forest Regressor testing prediction relative error 

 
Figure 4.16: GPU Random Forest Regressor testing prediction relative error 
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4.5 Power LSTM Neural Network 

As will be mentioned in Chapter 5, we do not have the plant of the datacenter at our 

disposal. This aspect implies two important consequences: 

• We cannot measure the nodes’ ambient temperatures; we can only approximate 

their values considering them as constants. 

• We cannot measure the nodes’ power consumption; therefore, it is not possible to 

compare our job scheduling energy consumption with the existing one. 

To overcome this second issue, we propose a LSTM Neural Network that given the nodes’ 

temperatures coming from the temperature neural network models, outputs the total 

power consumption of each node. 

With the term total power consumption, we intend the power consumed by all the 

processes and hardware components internal to each node such as: power supply, 

switches, ports, cooling fans, processors, memory and storage. 

The implemented LSTM has the same structure of the LSTM described in Section 4.3, 

the only difference is that in this case the inputs are the CPUs and GPUs temperatures, 

while the target output is the total power consumption. 

In figure [4.17] we show the testing set results, with a FIT of about 42%. Even if this does 

not seem a good result, it is acceptable as we are interested in computing the total energy 

consumption, which is obtained by integrating the power over time. 

Moreover, we do not require highly accurate results. Our concern is to understand the 

energy trend, so whether the optimization algorithm described in Chapter 5 is able to 

reduce the energy consumption of the datacenter or not. 
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Figure 4.17: Total power consumption LSTM neural network 
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Chapter V 

Optimization Problem 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

5.1 Genetic Algorithm functioning 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms inspired by the 

process of natural selection and genetics. This analogy comes from the process of the 

“survival of the fittest”: only species that can adapt to changes in their environment can 

survive and reproduce and go to the next generation. 

The search for the optimal solution starts from an initial population of individuals, each 

of which represent a point in the search space and a possible solution. They are coded into 

finite length vectors (chromosomes), composed of several variable components (genes). 

 
Figure 5.1: Genetic Algorithm: population, chromosomes and genes 

 

The evolution of the population during the algorithm execution is based on three 

operators: 

• Selection Operator: Each individual of a population is evaluated with a fitness 

score, the ones with the better results (parents) will pass their genes to successive 

generations. 

• Crossover Operator: Iteratively, two individuals are chosen, and their genes are 

exchanged randomly creating completely new individuals (offspring). 
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Figure 5.2: Crossover Operator 

 

• Mutation Operator: Random genes are inserted in offsprings to maintain 

diversity and avoid premature convergence. 

 

 
Figure 5.3: Mutation Operator 

The algorithm process can be summarized as follows: 

1) Randomly initialize population 

2) Determine fitness score of the population 

3) Until convergence repeat: 

a. Select parents from population 

b. Crossover and generate new population 

c. Perform mutation on the new population 

d. Calculate fitness score for new population 

From what explained above, we notice that GAs, differently from traditional optimization 

techniques, do not rely on gradient information. They work with a population of possible 

solutions, allowing, at the same time, the exploration of multiple areas of the search space. 
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GAs are based on randomness, in fact mutation and crossover operators randomly select 

which of the “fittest” individuals shall mate and so exchange genes. This randomness 

brings to non-deterministic behaviors, meaning that different runs of the same 

optimization problem may yield different solutions. 

Moreover, these kinds of algorithms are highly sensitive on parameters choice. Among 

them, the most important are the following: 

• Population Size: dimension of the population, which is constant during all 

evolution. 

• Population Type: type of individuals which constitute the population (double 

vector, bit string). 

• Initial Population Matrix: initial population from which to start the algorithm 

evolution. 

• Initial Population Range: range of values that individuals can assume. 

• Max Generations: maximum number of iterations before algorithm stops. 

The tuning of the above parameters is not trivial and depends on the difficulty and specific 

optimization problem. In general, GAs are less likely to get stuck into local optima with 

respect to traditional gradient-based methods, but they require more computational effort 

and could risk to prematurely converge, especially if the population diversity is lost too 

early. For these reasons, several attempts shall be made to find the best parameters tuning. 

 

5.2 Why Genetic Algorithm? 

Genetic Algorithms are powerful search algorithms, in fact they are also appropriate to 

solve nonlinear and complex optimization problems. They use mechanisms like penalty 

functions to penalize the fitness score of the individuals during “parents” selection. For 

this reason, GAs direct individuals towards a feasible search space. 
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For our purposes, we need an optimization algorithm capable of finding optima results 

observing equality and inequality linear constraints and capable of handling binary 

optimization variables. 

Different approaches were taken into consideration, but the best results in terms of 

computational effort and solution optimality were given by the Genetic Algorithm 

optimizer. 

 

5.3 Optimization scheme 

As described in Chapter 2, users can submit jobs specifying the maximum number of 

CPU/GPU cores and the time limit constraint in which the job must be completed. 

Moreover, each user is associated with an ID, and this info is important for power 

consumption predictions, because typically the same users submit similar jobs. 

All these job submission info is fed into the "𝐽𝑜𝑏 − 𝑃𝑜𝑤𝑒𝑟 𝑀𝑜𝑑𝑒𝑙", trained as illustrated 

in Chapter 4. In a few words, it is a Random Forest Predictor, capable of estimating the 

CPU and GPU mean powers that a submitted job will require for its execution. 

The predicted mean power consumption, together with the measured node’s inlet 

temperature, are fed into the "𝑃𝑜𝑤𝑒𝑟 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑚𝑜𝑑𝑒𝑙". This model, as 

mentioned in Chapter 4, for each node outputs an estimate of the temperature increment 

that would occur in case of job allocation and execution on that specific node. 

For our purposes, a 3-step ahead prediction is sufficient. In this way, knowing that each 

step corresponds to twenty seconds, we are predicting temperatures one minute in the 

future. 

At this point, we have an array 𝑇, which entries are the estimated temperature increments 

for each available node. This array, as will be described in the next paragraph, is part of 

the objective function. 
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The minimization of the objective function returns an optimization variable which states: 

• where the submitted job must be allocated to maintain the lowest temperature 

increment. 

• Which nodes are ON, and among them which are 𝐵𝑢𝑠𝑦 or 𝐼𝑑𝑙𝑒. 

• If it is necessary to turn on new nodes. 

• If it is possible to power off idle nodes. 

 

 
Figure 5.4: Closed-loop optimization scheme 

 

5.4 Constraints and Objective function: first approach 

The optimization algorithm must keep track of which nodes are active, and among them 

which are busy or idle. Therefore, we need to use two data structures. 

Let’s define an array of length equal to the number of nodes 𝑁: 

𝑌 = [𝑦1, … , 𝑦𝑁] (5.1) 
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where each element can assume values: 

𝑦𝑖 = {
1 → 𝑖𝑓 𝑖𝑡ℎ 𝑛𝑜𝑑𝑒 𝑖𝑠 𝑂𝑁

0 → 𝑖𝑓 𝑖𝑡ℎ 𝑛𝑜𝑑𝑒 𝑖𝑠 𝑂𝐹𝐹
 (5.2) 

And let’s define a matrix with number of rows equal to the number of nodes 𝑁, and 

number of columns equal to the number of jobs 𝑛 submitted to the datacenter: 

𝑋 =  [

𝑥1,1 ⋯ 𝑥1,𝑛

⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝑛

] 
(5.3) 

where each element can assume values: 

𝑥𝑖,𝑗 = {
1 → 𝑖𝑓 𝑗𝑡ℎ 𝑗𝑜𝑏 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑖𝑡ℎ 𝑛𝑜𝑑𝑒 (𝐵𝑈𝑆𝑌)

0 → 𝑖𝑓 𝑗𝑡ℎ 𝑗𝑜𝑏 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑖𝑡ℎ 𝑛𝑜𝑑𝑒
 (5.4) 

If 𝑥𝑖,𝑗 = 0 ∀𝑗, the 𝑖𝑡ℎ node is considered 𝐼𝐷𝐿𝐸. 

For ease of use, it is possible to merge these two data structures in a unique matrix: 

 
Figure 5.5: Matrix of optimization variables: First Approach 

In this example: 

• Nodes 1, 3 and 4 are 𝑂𝑁 because 𝑦𝑖 = 1, and are 𝐵𝑈𝑆𝑌 because ∑ 𝑥𝑖,𝑗 = 13
𝑗=1 , 

for 𝑖 = 1,3,4; 

• Node 2 is 𝑂𝐹𝐹 as 𝑦2 = 0; 

• Node 5 is ON, as 𝑦5 = 1, but it is 𝐼𝐷𝐿𝐸 because there are not jobs allocated. 
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To correctly control the datacenter jobs allocation, the optimization algorithm must 

respect some constraints: 

 
∑ 𝑥𝑖,𝑗 ≤ 1

𝑛

𝑗=1

, ∀𝑖 = 1, … , 𝑁 
(5.5) 

 
∑ 𝑥𝑖,𝑗 = 1

𝑁

𝑖=1

, ∀𝑗 = 1, … , 𝑛 
(5.6) 

 
yi ≥ ∑ 𝑥𝑖,𝑗

𝑛

𝑗=1

, ∀𝑖 = 1, … , 𝑁 
(5.7) 

 
∑ 𝑦𝑖 ≥ 𝑛𝑗𝑜𝑏𝑠 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑁

𝑖=1

 
(5.8) 

Constraint (8.5) imposes a simplification: each node can execute maximum one job at a 

time. 

Constraint (8.6) sets to one the maximum number of nodes to which a job can be 

allocated. This is a first assumption; we are considering only jobs which require only one 

node for their execution. 

Constraint (8.7) states that busy nodes cannot be turned off. In this sense, it is not possible 

to set 𝑦𝑖 = 0 until the job being executed on node 𝑖 is terminated. 

Constraint (8.8) specifies how many nodes must be 𝑂𝑁 beyond those that are executing 

jobs. This is because we want to guarantee a minimum number of available nodes for the 

execution of newly submitted jobs. 

To make an example, if one job arrives at a moment in which all active nodes are busy, 

before allocation and execution, the job must wait for the power on of a new node, which 

typically takes minutes. This amount of time is too much for jobs which execution is on 

the order of seconds. 
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For this reason, it is convenient to keep active and idle a certain number of nodes, 

specifying arbitrarily a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value. 

Finally, we need to specify an objective function which optimization gives the best job 

allocation based on temperature predictions. 

𝑓 = ∑ ∑ 𝑇𝑖 ∗ 𝑋𝑖,𝑗

𝑁

𝑖=1

𝑛

𝑗=1

+ ∑ 𝑦𝑖

𝑁

𝑖

+ ∑(𝑦𝑖 ≠ 𝑦𝑜𝑙𝑑,𝑖)

𝑁

𝑖

 
(5.9) 

The term ∑ ∑ 𝑇𝑖 ∗ 𝑋𝑖,𝑗
𝑁
𝑖=1

𝑛
𝑗=1  considers the total datacenter predicted temperature. 

The term ∑ 𝑦𝑖
𝑁
𝑖  tends to minimize the number of active nodes. 

The term ∑ (𝑦𝑖 ≠ 𝑦𝑜𝑙𝑑,𝑖)
𝑁
𝑖  avoids repeated turning node on and off. 

5.5 Constraints and Objective function: second approach 

In this second approach we will use an optimization matrix with a number of rows equal 

to the number of nodes 𝑁, and only two columns. 

While in the above paragraph matrix 𝑋 columns reflected the number of submitted jobs, 

with this alternative method the number of columns is kept fixed. In particular, the second 

column tells us if 𝑖𝑡ℎ node (given by 𝑖𝑡ℎ row) is ON or OFF, while the first one indicates 

if the same node is BUSY or IDLE. 

 
Figure 5.6: Matrix of optimization variables: Second Approach 
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To make an example: 

• Nodes 1, 3 and 4 are ON because their corresponding rows in the second column 

are set to 1 and are BUSY because also in the first column, they assume value 1. 

• Node 2 is OFF. 

• Node 5 is ON, but in this case it is IDLE. 

To correctly control the datacenter jobs allocation, the optimization algorithm must 

respect some constraints: 

 
∑ 𝑥𝑖,1 = 𝑛𝑗𝑜𝑏𝑠

𝑁

𝑖=1

 
(5.10) 

 𝑥𝑖,2 ≥ 𝑥𝑖,1   ∀𝑖 = 1, … , 𝑁 (5.11) 

 
∑ 𝑥𝑖,2 ≥ 𝑛𝑗𝑜𝑏𝑠 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑁

𝑖=1

 
(5.12) 

Constraint (8.10) imposes that the number of BUSY nodes shall be equal to the number 

of submitted jobs. This means that each job has been allocated and in execution on the 

available nodes. 

Constraint (8.11) specifies that the optimizer cannot turn off nodes which are executing a 

job. Trivially, it states that if in a certain row and in the first column we have a 1, in the 

second column of the same row we cannot have a 0. If this happens, it means that the 

optimizer has shut down a node which was Busy. 

Constraint (8.12) expresses how many nodes must be 𝑂𝑁 beyond those that are executing 

jobs. This is because we want to guarantee a minimum number of available nodes for the 

execution of newly submitted jobs, as mentioned in the previous paragraph. 

Regarding the objective function it remains the same of the first approach, the only thing 

that changes is the implementation to adapt it to a 2-columns matrix. 
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This second approach is much more efficient than the previous one in terms of optimal 

solution computation time. In fact, in the first method, for each submitted job, we add a 

column to the 𝑋 matrix and consequently we are adding an additional number of 

optimization variables equal to the number of nodes (rows). 

To make an example, at the submission of the first job, the 𝑋 matrix will have dimension 

𝑁𝑥2, and this means that we will have 2 ∗ 𝑁 optimization variables. After a while, if the 

number of jobs increases to 20, the matrix will be 𝑁𝑥21, with a number of optimization 

variables equal to 21 ∗ 𝑁. Considering that 𝑁 = 980, the Genetic Algorithm should be 

able to minimize the objective function in a problem with 980 ∗ 21 = 20580 

optimization variables! Obviously, the computation time will increase exponentially. 

With the second approach this problem is mitigated as the matrix has a constant size, so 

the number of the optimization variables will be the same for all the time. 

 

5.6 MATLAB implementation and Simplified Optimization 

The above optimization algorithm was implemented in MATLAB using the 𝑔𝑎 function. 

It refers to the Genetic Algorithm function, and its choice comes from the possibility to 

use binary optimization variables. 

The inequality constraint functions must be specified in the form: 

𝑐(𝑥) ≤ 0 (5.13) 

By default, the 𝑔𝑎 function does not allow the possibility to implement equality 

constraints when the decision variables are integers. To overcome this issue, they were 

expressed in this alternative way: 

𝑐(𝑥) = 𝑎 ↔ {
𝑐 ≤ 𝑎
𝑐 ≥ 𝑎

↔  {
𝑐 − 𝑎 ≤ 0

−𝑐 + 𝑎 ≤ 0
 (5.14) 

We created a MATLAB function named 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛() which output is: 
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Figure 5.7: MATLAB constraints implementation 

 

Regarding the objective function to minimize, it is given by 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(): 
 

 
Figure 5.8: MATLAB objective function implementation 

 

To set the decision variables as binary, first we set them as integers using the option 

𝐼𝑛𝑡𝐶𝑜𝑛 and then we assign lower and upper bounds to zero and one, respectively. 

Moreover, it is possible to set some options such as the 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 and 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒: 

 
Figure 5.9: MATLAB GA options 

Finally, the optimizer 𝑥 and the corresponding minimized objective function 𝑓𝑣𝑎𝑙 are 

given by: 

 
Figure 5.10: MATLAB GA function 

As in the second approach we are using a fix sized matrix, it cannot be used to keep track 

of where new submitted jobs are allocated. For this reason, we implemented the 𝑗𝑜𝑏_𝑖𝑛𝑓𝑜 



64 
 

matrix, which is a table used to store for each submitted job its ID, node allocated, and 

execution time. 

At this point we need to make an assumption: as we do not have at disposal the datacenter, 

we cannot simulate our optimization algorithm on the real plant, for this reason we cannot 

know the real execution time of the jobs on the assigned nodes. To handle this problem, 

we assume that the execution times will be the same specified in the Job Table. 

With a for loop, we simulate the flow of time, where each increment of the loop variable 

corresponds to a second. Following this reasoning, at each iteration we decrease of one 

second the remaining execution time of all running jobs. When a job terminates, its 

corresponding node state from BUSY becomes IDLE, and then the node is ready to be 

assigned to new jobs. 

The fundamental part of the optimizer and of the objective function is the temperature 

model: we need to forecast nodes temperature increments 3-steps in the future. To 

accomplish this task, we use the Temperature LSTM neural network described in Chapter 

4, which needs to be fed by the job mean power consumption estimates and the actual 

ambient temperature. 

The problem is that we do not have a real plant on which run our simulation, for this 

reason we do not have at disposal real time data regarding ambient temperature behavior. 

In this sense, we need to assume the ambient temperature to be constant. These 

assumptions simplify the optimization scheme of figure [5.4] as represented by figure 

[5.11]. We notice that our predictive control algorithm is now in open loop, because we 

do not have plant feedback. 
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Figure 5.11: Open-loop optimization scheme 

After considering this aspect, we need now to underline one last thing. The LSTM model 

was trained to accept in input a sequence of the last 50 values of the power and of the 

ambient temperature. For this reason, we need to keep track of these values. 

When a node is OFF, its power consumption is null, when it is IDLE the power is assumed 

to be constant, while in the BUSY state, the power is given by the job mean power 

estimate. Therefore, in this last case, we are assuming that the job, during its execution 

on the assigned node, is consuming a power equal to the one estimated by the Random 

Forest. 

Regarding the ambient temperature, as said before it will be considered constant for the 

entire simulation time, as we do not have datacenter feedback data. 
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Chapter VI 

Simulation Results 
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6.1 First Test: Allocation 

To understand the results, it is important to describe how they are represented. Looking 

at figure [6.1], we have on the 𝑋-axis the time flow in seconds, while on the 𝑌-axis the 

nodes ID. In our application, we have 980 nodes, and we decided to assign an ID which 

goes from 1 to 980. In this sense, the first 20 nodes of the first rack have IDs which simply 

go from 1 to 20. 

Each dot represents a node state: red for OFF, green for ON/IDLE and blue for ON/BUSY. 

Following this scheme, it is possible to graphically understand which nodes are executing 

jobs, which are powered on waiting for allocation, and which are turned off. 

In this first test the aim is to understand if the constraints and objective function described 

in Chapter 5 work. To verify this, we assume that: 

• One new job is submitted every 250 seconds. 

• Jobs in execution never terminate. We only want to test the allocation phase, not 

the deallocation which will be tested later. 

• We do not compute temperature predictions. We assume that the nodes with the 

lower ID number are the coldest ones. 

• Simulation starts with all nodes turned OFF, except for the first five. 

• We arbitrarily impose a simulation time of 2000 seconds. 

• To make the graphic representation clearer, we consider only the first 20 nodes. 
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Figure 6.1: Test #1 Results 

 

 

6.2   Second Test: Allocation & Deallocation 

At this moment we want to verify if allocation is performed correctly, but we shall also 

understand if after jobs are terminated, the corresponding nodes come available again 

(de-allocation phase). The test is based on the following assumptions: 
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• One new job is submitted every 300 seconds. 

• Each new job has an execution time equal to 1000 seconds. 

• We do not compute temperature predictions. We assume that the nodes with the 

lower ID number are the coldest ones. 

• Simulation starts with all nodes turned OFF, except for the first five. 

• We arbitrarily impose a simulation time of 2500 seconds. 

• To make the graphic representation clearer, we consider only the first 15 nodes. 

 
Figure 6.2: Test #2 Results 

6.3   Third Test: Allocation & Deallocation - Entire Datacenter 

With this third test we want to ensure that the population size of the Genetic Algorithm is 

appropriate for handling the number of optimization variables that we will have with the 

real datacenter. In fact, while in the previous two tests we limited the number of nodes to 
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20, we now consider all the 980 computation units. The assumptions will be the 

following: 

• One new job is submitted every 50 seconds. 

• Each new job has an execution time equal to 500 seconds. 

• We do not compute temperature predictions. We assume that the nodes with the 

lower ID number are the coldest ones. 

• Simulation starts with all nodes turned OFF, except for the first five. 

• We arbitrarily impose a simulation time of 1000 seconds. 

 
Figure 6.3: Test #3 Results (980 nodes) 
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Figure 6.4: Test #3 Results (200 nodes) 

 
Figure 6.5: Test #3 Results (100 nodes) 
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6.4 Final test: One day simulation 

In this section we are going to simulate the behavior of the optimizer in handling the 

entire datacenter and exploiting one day of job submissions retrieved from the Job Table. 

In this case we are going to use both the “Job-Power” and the “Power-Temperature” 

models as described in Section [8.3]. 

• Referring to the Job Table, we submit jobs following the same time scheduling of 

the 30th of January, exploiting the “start_time” feature. 

• As discussed in Section [8.3] we suppose that the execution time is equal to the 

one written in the Job Table. 

• 3-steps ahead temperature predictions are performed to estimate which nodes are 

most suitable for allocation. 

• Simulation starts with all nodes turned OFF, except for the first five. 

• We impose a simulation time of 24 hours (86400 seconds). 

In this way we are simulating how our job scheduler performs in allocating new jobs on 

a typical datacenter day. 

For each node we record CPU and GPU temperatures behavior and the total power 

consumption. To make an example, in figures [6.6] and [6.7] we represent the CPU and 

GPU temperatures behavior relative to the node number 128. We notice that at around 

3.99 ∗ 104 seconds a job is allocated, therefore the temperature increases and reaches a 

steady state value. At approximately 4.05 ∗ 104 seconds, when the job execution is 

terminated, the node starts cooling down. 

From the power point of view, in figure [6.8] we notice that the power consumption 

increases and decreases in line with the job’s allocation and deallocation. 
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Figure 6.6: Node #128 temperature behavior 

 

 
Figure 6.7: Node #128 temperature behavior (zoom) 
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Figure 6.8: Node #128 power behavior 

 

An interesting aspect could be to compare the total energy consumption due to the real 

job scheduler, and the one resulting from our thermal-aware optimizer. In this sense, we 

could approximately understand how good the logic behind our scheduler is. 

As a result, we were able to save around 311 KWh of energy. In fact, considering the 30th 

of June, while the real datacenter consumed about 808 KWh keeping all nodes turned on, 

our algorithm, handling nodes powering on and off, succeeded in consuming only 497 

KWh. This numbers can be translated into 38% of energy consumption savings. 
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Chapter VII 

Conclusions and Future Work 
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7.1 Conclusions 

In this thesis we aimed to achieve two primary objectives: to develop linear, nonlinear 

and neural network models for the prediction of the nodes’ temperatures and to formulate 

a predictive optimization problem capable of acting as a thermal-aware job scheduler. 

We successfully fulfilled both aims. Firstly, a Random Forest Regressor was developed 

to predict CPU and GPU mean power consumptions for the submitted jobs. Then, we 

developed several models capable of predicting nodes’ temperature behaviors and we 

progressively made comparisons. Among them, LSTM neural networks performed better. 

Two approaches for the optimization problem formulation were given. They are both 

based on a Genetic Algorithm, but with two different implementations for the 

optimization variables. The second one behaved better in terms of computational 

resources, for this reason it was selected for testing. 

After the fulfillment of the testing phase, we submitted to the control algorithm an entire 

day of real jobs following the same time scheduling of the 30th of January, exploiting the 

Job Table. 

As a result, we were able to save 311 KWh of energy. In fact, while the real datacenter 

consumed about 808 KWh keeping all nodes turned on, our thermal-aware algorithm, 

respecting jobs deadlines and avoiding the continuous turning on and off nodes, 

succeeded in consuming only 497 KWh with the great result of 38% of energy 

consumption savings. 
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7.2 Future work 

In this thesis we made several assumptions: 

• Each node is supposed to execute maximum one job at a time. 
• Each job can be allocated to maximum one node. 
• We cannot know the real execution time of the jobs on the assigned nodes. 
• We cannot measure the runtime ambient temperature. 
• We cannot measure the runtime total power consumption of each node. 

Therefore, improvements in the definition of the optimization problem can be performed. 

First of all, constraints can be reformulated to consider the possibility to allocate more 

nodes to one single job, or more jobs to a single node. 

Moreover, in this thesis, not having at disposal the real plant to simulate the thermal-

aware job scheduler, we projected an open loop predictive control. An interesting future 

improvement would be to develop a simulator able to reproduce datacenter outputs. 
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