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Abstract
Deep Neural Networks (DNNs) exhibit varying performance requirements and en-

ergy constraints depending on the applications in which they are employed. Neural
Processing Units (NPUs) are designed and optimized to execute network functions
and applications efficiently. Today, the same application might need to operate with
different data bit-widths to meet varying task requirements. A fixed bit-width acceler-
ator would have limited advantages in accommodating these diverse bit-width needs.
Therefore, it is beneficial to develop NPUs that, with the same internal structure,
can support different types of quantized data. Recently, various precision-scalable
MAC (Multiply-Accumulate) architectures optimized for neural networks have been
proposed.
This work presents a review of state-of-the-art precision-scalable MAC architectures
and proposes a new solution that can function both as a MAC and as a standard
parallel multiplier or adder. For each operation, it supports various precisions: 16x16,
8x8, and 4x4. The synthesis and implementation of the design indicate a maximum
operating frequency of 200 MHz. Tests for each precision are conducted, with detailed
analyses and reports on timing, power consumption, energy efficiency, and operations
per second.
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Chapter 1

Introduction

The term Artificial Intelligence (AI) is related to machines that simulate the be-
havior of the human mind. It is based on computational algorithms that allow to
perform human tasks such as learning, problem-solving also perceiving sensory infor-
mation from the surrounding environment. One of the sub-fields of AI is Machine
learning (ML), which aims to make predictions and decisions based on data, exploit-
ing algorithms and statistical models. ML has various application domains such as
computer vision (object recognition, object detection, object processing), prediction
(medical diagnosis, network intrusion detection, predicting denial of service attacks),
semantic analysis, natural language processing, and information retrieval [1]. Figure
1.1 summarizes all machine learning applications.

Figure 1.1: Machine Learning Applications [1]

The main model on which ML is based is the neural network. The latter is made of
different layers, each of which consists of a fixed number of input and output neurons.
When the analysis involves an extraction process for a large data collection, neural
networks with more than one hidden layer are required, and they are called deep
neural networks.[2]
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1.1. MOTIVATION AND OBJECTIVE

Figure 1.2: Deep Neural Network [3]

More and more devices today require real-time responses, always-on features, and
privacy preservation. This means that the demand for on-device machine learning
technology is increasing. However, many devices have limited hardware resources. At
the same time, deep neural networks require significant computation and communica-
tion capabilities.
Recently, a so-called Neural Processing Unit (NPU), which is a dedicated hardware ac-
celerator for neural networks, has been significantly studied for its efficient execution
of neural network operations. NPUs are used to efficiently perform the tasks re-
quired for deep learning model training and inference. These are Application-Specific
Integrated Circuits (ASICs) specialized and optimized to realize various network func-
tionalities. NPUs offer several advantages over other implementations, including high
performance, flexibility, fast time-to-market, and low power consumption. [2]
Typical NPUs are implemented with a fixed size and a specific bit-width processing
element array. Unfortunately, in the same device, two or more different types of ap-
plications might exist, requiring different data bit widths or levels of precision. Voice
recognition applications, such as Siri or Google Assistant, require high precision (e.g.,
16 or 32 bits) to ensure high accuracy in word recognition and context understanding.
However, real-time camera filters can tolerate lower precision (e.g., 8 bits) because
processing speed is more critical than absolute accuracy. A slight loss of image qual-
ity is acceptable in exchange for real-time performance. [4]
For this reason it is useful to have a flexible NPU that with the same internal structure
could support several different quantized data types: a versatile NPU facilitates the
integration and efficient communication between all the different applications.

1.1 Motivation and Objective
The objective of this work is to design a flexible Neural Processing Unit that has

to support different workloads reusing the same internal architecture. The accelerator
could support several quantized data types and various bit-width configurations. The
structure of the NPU is modular and can support various NN types, multi-precision
convolution operations at runtime, and configurable Processing Element (PE) array
size. The PE is configurable to support a multi-precision MAC unit, accommodating
INT4, INT8, and INT16 operations. The workflow of this design is as follows.
To comprehend the current architectures and determine a set of design decisions for
implementation, state-of-the-art domain research is carried out. The multiplier and

2



1.2. OVERVIEW OF THE REPORT

the adder are implemented and then joined together to build the MAC structure. It is
realized the re-configurable PE array 4*4 and then the control and operation scheduler
units. This system should manage and configure the precision of MAC units, as well
as handle task scheduling during matrix multiplication and convolution operations.
Finally the accelerator is evaluated in terms of resource utilization, power, and maxi-
mum operable frequency.

1.2 Overview of the report
The rest of this work is structured as follows: Chapter 2 provides a theoretical

background, reviews the relevant literature, and examines different architectures of
MAC structures. Chapter 3 discusses the implementation of the NPU architecture,
with in-depth descriptions of all the individual components. Chapter 4 evaluates the
performance of the NPU and compares it with the state of the art. Finally, Chapter
5 offers concluding remarks and discusses potential future work.

3



Chapter 2

Theoretical Background and
Related Work

Deep learning neural networks have been successful in solving a wide range of
machine learning problems. For this reason, hardware accelerators with specialized
functions have been proposed to speed up the execution of DNN algorithms to achieve
higher energy efficiency, particularly in their multiplication-accumulation (MAC) op-
erations. This chapter provides an introduction to the deep neural network and then
an analysis of the state-of-the-art related to configurable and multi-precision NPU is
conducted. At the end are presented the design decisions regarding this project.

2.1 Introduction to the Neural Network and Deep
Neural Network

Neural Network is an attempt to build a machine that plays brain activities and
can learn. A basic neural network is composed of three layers: input, hidden, and
output layers. Nodes from the input layer are connected to nodes in the hidden layer,
and each layer may have a certain number of nodes. The nodes in the hidden layer
are connected to nodes in the output layer. Weights between nodes are represented by
these connections. The raw data entered into the network is represented by the input
layer, and the values in this section of the network never change. All network inputs
are replicated and sent to the nodes in the hidden layer. The hidden layer receives
data from the input layer, applies weight values to modify them, and sends the new
values to the output layer. The output layer then adjusts these values using weight
values derived from the hidden-to-output layer links. After processing data from the
hidden layer, the output layer generates an output, which is then processed by the
activation function. [5]

4



2.1. INTRODUCTION TO THE NEURAL NETWORK AND DEEP NEURAL NETWORK

Figure 2.1: Simple and Deep Neural Network [6]

Initial weights are usually set at some random numbers and then they are adjusted
during NN training. Weights are adjusted during this process following iterations.
The iteration continues with the new weight values maintained if the outcomes of NN
after the weight updates exceed the old set of weights. [2]
The biggest difference between the NN and the DNN is the number of hidden layers
present between the input and the output. These additional layers allow the network
to learn more complex representations of data and this is especially useful for tasks
such as image recognition, voice recognition, machine translation, etc. They require
much more computing power and memory due to a large number of computational
parameters and operations, necessitating the use of hardware accelerators.

Figure 2.2: Simple and Deep Neural Network [7]

As is shown in Figure 2.2, the output of a node in an artificial neural network is
computed by the equation given below:

yi =
∞Ø

i=1
wijxi + θj

where yj is the value that will be passed to the next layer from node j, n is the
number of incoming edges to node j, xi’s are the inputs coming from previous layer
to node j and θj is the bias for node j [7].
From this equation it is possible to notice that for deep learning are needed billions
of MultiplyAccumulate (MAC) operations per inference. To significantly improve the

5



2.2. BOOTH’S ENCODING TECHNIQUE AND BOOTH’S MULTIPLICATION

energy efficiency and throughput of DNN accelerators, reduced precision of MAC
operations is necessary.

2.2 Booth’s encoding technique and Booth’s mul-
tiplication

Multiplier circuits are the basis of MAC operations and are essential elements
in digital signal processing, such as in convolutions. Therefore, the speed at which
these multiplications must be executed is of great importance. Fast circuits require
small dimensions to minimize wire delay effects. Small dimensions imply a single-
chip implementation to further reduce wire delays and make it possible to integrate
these fast circuits as part of a larger single-chip system, thus minimizing input/output
delays. Typically, multiplication is performed as shown in Figure 2.3, by realizing and
summing partial products:

Figure 2.3: Simple multiplication

Booth multiplication allows for smaller, quicker multiplication circuits via encoding
the signed numbers to 2‘s complement, which is likewise a preferred approach used in
chip design, and affords large upgrades by decreasing the quantity of partial product
to 1/2 of over “long multiplication” techniques [8].
Booth’s encoding involves representing values with an extended digit set consisting of
three values instead of just two: the number is not represented only by 0 and 1, but
also by -1.

Figure 2.4 shows two type of Booth’s encoding: Radix-2 and Radix-4.

Figure 2.4: Radix-2 and Radix-4 Booth Encoding Table [8]

6



2.3. STATE OF ART OF PRECISION-SCALABLE MAC ARCHITECTURE

The usage of this encoding technique with the Radix-2 doesn’t give a lot of advan-
tages, but with the Radix-4 it is possible to reduce the number of iterations. Normally
higher the radix, the lower the number of partial products to add.

Figure 2.5: Multiplication Radix-4

2.3 State of art of precision-scalable MAC archi-
tecture

Different architectures for a scalable MAC exist, each of which aims to try to im-
prove the energy efficiency and throughput of the DNN accelerators.

As [4] explains, the run-time precision scalability is tightly involved with neural-
network data flow considerations. It’s necessary to introduce two dataflow scalability
options: Sum Apart (SA) and Sum Together (ST). These two concepts were introduced
to qualify two opposite ways of accumulating subword-parallel computations: the
Sum Apart keeps the parallel-generated products separately while the Sum Together
sums the parallel-generated products together to form one single output result. It’s
possible to mix these two typologies and obtain a 2D PE array that can be categorized
into three types, SA-SA, SA-ST, or ST-ST. When talking about precision-scalable
MACs, when computational precision is scaled down to a fraction of the full-precision
operation, the MACs subdivide the processing element (PE) into several parallel lower-
resolution PEs. Thus, each nominal PE becomes an array of PEs in itself, offering
more spatial loop-unrolling opportunities along the SA or ST dimensions. In full-
precision mode, SA and ST MACs behave identically: only one result is generated
per clock cycle. In scaled-precision mode, several low-precision results are generated
in parallel.

Figure 2.6: SA and ST models [4]

7



2.3. STATE OF ART OF PRECISION-SCALABLE MAC ARCHITECTURE

Precision-configurable MAC units can also be divided into two categories: time-
based and space-based. Time-based structures use an iterative series of steps to in-
crease precision, adding greater resolution at each stage. Space-based approaches use
one of two methods to implement variable computing precision: either by rearrang-
ing and sub-mapping the architecture to change signal flow patterns and activating
specific circuit components when the bit width changes, or by aggregating simple mul-
tiplier units and connecting them through a network of adders and shifters. Examples
of temporal types are the Bit Serial or Multibit Serial and LOOM design.
The spacial categories are divided in Divide-and-Conquer (D&C) which is a bottom-up
design methodology where the multiplier logic is formed by combining several indi-
vidual and identical sub-blocks, which are always active. Their configurability is in
the interconnection and shift-add logic. Examples are BitFusion and BitBlade.
The other category is the subword-parallel (SWP) which is a top-down design phi-
losophy: single-block full-precision multiplier is selectively gated to reuse existing
arithmetic cells in reduced-precision modes. An example is the reconfigurable multi-
plier.

Figure 2.7: Bit Serial [4]

8



2.3. STATE OF ART OF PRECISION-SCALABLE MAC ARCHITECTURE

Figure 2.8: D&C [4]

Figure 2.9: SWP [4]

In the [9] is presented the structure of the Bit Fusion architecture. Here, the
bit-level flexibility in the architecture allows for minimizing computation and commu-
nication at the finest granularity possible without any loss of precision.

This is an ST architecture and it is based on a 2-bit multiplier, called BitBriks, that
logically builds Fused Processing Engines (Fused-PE) by dynamically composing, to
perform DNN operations with the necessary bit width. Fused-PEs, in particular, offer
bit-level flexibility for multiply-add operations which are the most common operations
across all DNN kinds. Each BitBrick in a Fusion Unit can perform individual binary
(0, +1) and ternary (-1, 0, +1) multiply-add operations. The product is produced
by the BitBricks in a Fusion Unit by multiplying an incoming variable-bitwidth input
(input forward) by a variable-bitwidth weight. Then, in order to create an outgoing
partial sum, the Fusion Unit adds the product to an incoming partial sum.

9



2.3. STATE OF ART OF PRECISION-SCALABLE MAC ARCHITECTURE

Figure 2.10: Dynamic composition of BBs in a Fusion Unit [9]

Figure 2.11: Bit Fusion MAC configured for 8b x 8b [4]

As shown in Figure 2.12, the microarchitecture of a single BitBrick is realized by
half adder and full adder, and it works with two-bit operands and their corresponding
sign-bits.

10



2.3. STATE OF ART OF PRECISION-SCALABLE MAC ARCHITECTURE

Figure 2.12: BitBrik’s microarchitecture [9]

To understand how a BitBrick works, Figure 2.13 can help. It takes a 4-bit multi-
plication as an example. This operation is decomposed into four 2-bit multiplications
that can be executed using BitBricks to generate the decomposed products, which
require shifting before being correctly combined.

Figure 2.13: 4 bits multiplications [9]

A structure that features a much smaller overhead for shift-add logic compared
to Bit Fusion is presented in [10]: this architecture is called BitBlade. The idea is
that in BitFusion, the BitBriks in the same position on different PEs have the same
parameter for the variable shift operations.
In the BitBlade the idea is to place BitBriks that have the same shift in the same PE.
In this way is possible to reduce the number of shifts needed and the complexity, and
is also possible to work with two different types of adders: intra-processing element,
which can perform the addition operation with low bit-width precision and small area,
and inter-processing element, that is the same used in the BitBrik’s architecture.

11



2.3. STATE OF ART OF PRECISION-SCALABLE MAC ARCHITECTURE

Figure 2.14: BitBricks in Bit Fusion architecture with different shift-left parameters
within each PE [10]

Figure 2.15: BitBricks in Bit Blalde architecture with the same shift-left parameters
within each PE [10]

In[11] is shown instead a scalable multiplier, called Reconfigurable Multiplier. This
architecture is realized by a modified Radix-4 Booth signed with an ST mode, and it
can perform both multiplications at full precision and a dot-product at lower precision.

12



2.3. STATE OF ART OF PRECISION-SCALABLE MAC ARCHITECTURE

Figure 2.16: Alignment of partial products for configuration 16x16 [11]

Figure 2.17: Alignment of partial products for configuration 8x8 [11]

As can be seen in Figures 2.16, 2.17, and 2.18, the idea behind this architecture is
that a dedicated external adder is not needed to sum up the low-precision products
during dot-product operations. Instead, it exploits the natural alignment of partial
products in a standard multiplier. When this structure operates with maximum par-
allelism, all aligned bits are summed together; in other configurations, only the fully
colored dots in the diagram are summed, as the partially colored ones are zero. When
the chosen configuration is eight bits, two numbers are packed into the same input,
or four if the configuration is four bits.

13



2.3. STATE OF ART OF PRECISION-SCALABLE MAC ARCHITECTURE

Figure 2.18: Alignment of partial products for configuration 4x4 [11]

Figure 2.19 shows the structure of this multiplier that consists of two blocks (green)
responsible for precision reconfiguration, a Booth encoder that performs the encoding
of one of the two inputs and then generates the partial products using the Booth
selector. To obtain the correct result, there is a compression tree and a final adder
that produces a single output to accommodate the summation configurations.

Figure 2.19: Reconfigurable Multiplier [11]

14



2.4. COMPARISON BETWEEN THE STATE OF THE ART

2.4 Comparison between the state of the art

Architecture SA/ST Precision
(bit)

Sub-blocks
always

active/Single-
block gated

Multiplier
with implicit

addition/
Multiplier

and separate
adder

2D D&C [4] SA/ST 2,4,8 Sub-blocks
always
active

Multiplier
and separate

adder
BitFusion [9] ST 2,4,8 Sub-blocks

always
active

Multiplier
and separate

adder
BitBlade

[10]
ST 2,4,8 Sub-blocks

always
active

Multiplier
and separate

adder
Reconfigurable

Multiplier
[11]

ST 4,8,16 Single-block
gated

Multiplier
with implicit

addition

Table 2.1: Comparison state of the art

2.5 Design Decision
This section explains the design choices made for this implementation, which were

influenced by the literature review.
At the base of this work there is the implementation of a MAC unit, that takes
inspiration from the literature survey for the design of the multiplier. It is realized
by combining the idea of the reconfigurable multiplier [11] and the 2D Divide-and-
Conquer Sum Apart approach [4]. The implemented MAC structure can be configured
to work with data of different bit widths: 16x16, 8x8, 4x4. From the [11] is taken the
structure until the production of the partial products, and then the approach of [4] is
used to sum together the different partial products (PPs) in the right way to obtain
the right parallelism.
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Chapter 3

Microarchitecture Design
and Implementation

This chapter presented a description of the design and implementation of the dat-
apath and the control unit (CU) for a flexible Neural Processing Unit.
At the base of the datapath there is the processing element unit, composed by a mul-
tiplier and an adder.
The CU can control three types of simple operations: only parallel multiplication
with different precision, only parallel sum with different precision, or parallel MAC
operations. It is able also to develop other two cases, parallel matrix multiplication
and convolution operations, that were used for the evaluation part.
The VHSIC Hardware Description Language (VHDL) is used for this design, targeting
Xilinx FPGAs.

3.1 Data precision and data input format

The processing element can perform operations with three different precisions:
16x16, 8x8, and 4x4. Analyzing the data format for the multiplier, when the logic is
working with the highest precision, there is only one output, and the last bit of the
input is the sign bit. When the 8x8 configuration is chosen, each input contains two
8-bit values, where the 8th and 16th bits are the sign bits, resulting in two outputs.
In the 4x4 configuration, there are four 4-bit inputs per operand, each with its sign
bit, producing four outputs.
When the logic functions as an adder, the data format is different. For example, if
we want to sum two 32-bit numbers, the two input ranges are the first from bit 0 to
31, and the second input ranges from bit 32 to 63. As shown in Figure 3.1, the first
4 bits of the first input are summed with the first 4 bits of the second input, and the
same applies to the other bits. If we are working with a different parallelism, such as
with a 4-bit number, the concept remains the same: bits from 0 to 31 are inserted,
but they are always summed with the corresponding 4 bits from 32 to 63.
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3.2. MULTIPLIER’S DESIGN

Figure 3.1: Input format for external adder’s input

When the adder is working with :

• 4 bits : it gives 8 outputs of 5 bits

• 8 bits : it gives 4 outputs of 9 bits

• 16 bits : it gives 2 outputs of 17 bits

• 32 bits : it gives 1 output of 33 bits or 1 output of 32 bits if it is working like a
MAC unit

3.2 Multiplier’s design

The multiplier’s block is composed of two main blocks: booth multiplier and mul-
tiplier.

3.2.1 Booth multiplier

Figure 3.2 shows the structure of the booth multiplier. The booth multiplier im-
plemented in this thesis is based on the structure presented in [11] until the formation
of partial products. It exploits the concept of Booth’s encoding presented in section
2.2.
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3.2. MULTIPLIER’S DESIGN

Figure 3.2: Booth Multiplier [11]

The green blocks are controlled with three bits, the configuration bits, and are
responsible for the correct precision configuration of the input operands. Table 3.1
represents the three configurations that are implemented :

Bit CONFIG Precision
Configuration

Operand
Organization

000 16x16 A[15:0] x B [15:0]
010 8x8 A[15:8] x B [7:0] +

A[7:0] x B [15:8]
001 4x4 A[15:12] x B [3:0] +

A[11:8] x B [7:4] +
A[7:4] x B [11:8] +
A[3:0] x B [15:12]

Table 3.1: Precision configuration

The Radix-4 Booth Encoder is the logic responsible for the encoding part. The
data with the Radix-4 booth encoding technique are encoded according to Table 3.2.
According to the wanted precision configuration, the ’CONFIG’ bit needs to be set
correctly.
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3.2. MULTIPLIER’S DESIGN

Input bits Encoded output
000 000
001 1*multiplicand
010 1*multiplicand
011 2*multiplicand
100 -2*multiplicand
101 -1*multiplicand
110 -1*multiplicand
111 000

Table 3.2: Radix-4 Booth encoding

The Booth Selector block can combine the two operands to obtain the eight partial
products.
Figure 3.3 reports the Vivado implementation of the Booth multiplier.

To obtain the correct partial product, it is necessary to add some ’1s in the positions
shown in Figure 3.4. In the implementation, this block is called sign_correction, and
it is located between the two parts of the total multiplier.

Figure 3.4: Sign Correction [11]
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Figure 3.3: Booth multiplier design
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3.2.2 Multiplier

The second part of the final multiplier is the one that is responsible for summing
together the partial products. Its structure is inspired by the approach of [4]. The
idea is to start by summing all the pairs needed to obtain a 4x4 multiplication. To
sum them up correctly, a shift on one of the operands is necessary. If the chosen bit
width is 4, the output is given immediately in a register. If the chosen bit width is 8,
the previous results are combined in pairs, with a right shift, to produce two 16-bit
outputs. If the chosen bit width is 16, then all the partial results are added together
to obtain a single 32-bit result at the output. Figure 3.5 shows the implementation
of the multiplier. The blocks indicated as PP0, PP1, PP2, PP3, PP4, PP5, PP6 and
PP7 are the partial product that arrives from the sign_correction block.
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Figure 3.5: Multiplier’s design
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3.2.3 Final Multiplier

Here the implementation of the final multiplier is reported in Figure 3.6.

Figure 3.6: Final Multiplier

3.3 Adder

The total adder is realized by combining eight four-bit adders. In Figure 3.7, a
single four-bit adder is shown.
Inputs can come from:

• The different registers of the multiplier, according to the chosen bit-width. In
Figure 3.7, these are the three inputs in the first multiplexer.

• External inputs, if the structure is used only as an adder. In this case, a register
is placed before to correctly synchronize when the input data changes.

• The MAC register, if it is used like a MAC.

The idea is that each adder can work independently, or multiple adders can com-
municate and work together through carry propagation, controlled by a specific mul-
tiplexer. For instance, if the chosen precision is 8 bits, the adders will work together
in pairs, and if the precision is 16 bits, four adders will work together.
The multiplexer which the output is called ’validx’ in figure 3.7, ensures that when
the adders need to work together, each adder only starts working when the previous
one has finished; otherwise, the adder cannot work with the correct numbers in the
case of carry propagation.
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3.3. ADDER

Figure 3.7: Simple adder 4 bits with the multiplexer that select the carry in and the
valid signal

Outputs are saved in registers that are different according to the chosen bit width.
The parallelism of the register could be 5 bits, 9 bits, 17 bits, 33 bits or 32 for the
MAC one. Figure 3.8 shows the structure of the adder.
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3.4. PROCESSING ELEMENT: MAC UNIT

3.4 Processing Element: MAC UNIT
Figure 3.9 shows a simplified version of the complete design of the PE element, the

MAC unit.

25



3.4. PROCESSING ELEMENT: MAC UNIT

8
0

8
8

8
0

0

0
0

0

0

16
16

11
11

7
3

7
3

31
27

23
19

15
11

3
7

27
23

19
15

11
7

3
32

ou
t_
5_

1
ou

t_
5_

2
ou

t_
5_

3
ou

t_
5_

4
ou

t_
5_

5
ou

t_
5_

6
ou

t_
5_

7
ou

t_
5_

8

ou
t_
8_

1_
1

ou
t_
8_

1_
2

ou
t_
8_

2_
1

ou
t_
8_

2_
2

ou
t_
8_

3_
1

ou
t_
8_

3_
2

ou
t_
8_

4
_1

ou
t_
8_

4_
2

ou
t_
M
AC

_1
ou

t_
M
AC

_2
ou

t_
M
AC

_3
ou

t_
M
AC

_4
ou

t_
M
AC

_5
ou

t_
M
AC

_6
ou

t_
M
AC

_7
ou

t_
M
AC

_8

ou
t_
16

_1
_1

ou
t_
16

_2
_1

ou
t_
16

_1
_2

ou
t_
16

_2
_2

ou
t_
16

_1
_3

ou
t_
16

_2
_3

ou
t_
16

_2
_4

ou
t_
16

_1
_4

ou
t_
32

_1
ou

t_
32

_2
ou

t_
32

_3
ou

t_
32

_4
ou

t_
32

_5
ou

t_
32

_8
ou

t_
32

_6
ou

t_
32

_7

0
4

0

3

0

3
0

3

0

3

0

3

0

3

0

3
0

3

AD
DE

R1
AD

DE
R2

AD
DE

R3
AD

DE
R4

AD
DE

R5
AD

DE
R6

AD
DE

R7
AD

DE
R8

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
4

0
3

0
4

0
4

0
3

0
3

0
3

0
3

0
3

0
4

0
3

0
3

0
4

0
4

0

4
0

Va
lid

_e
xt
_8

-
-

-

-

-

-

--
-

↑ --

-

-

F
↑

-

-

I

Figure 3.8: Adder’s design
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3.5 Datapath
The total datapath is represented in Figure 3.10. It is composed of the 4x4 PE

array that receives inputs from two matrices: the input matrix and the weight matrix,
which is set by a 10-to-2 multiplexer. It can also receive inputs directly from the
user when the desired operation is a simple one: only addition, only multiplication,
or MAC.
The implemented design is also capable of performing matrix multiplication and con-
volution operations. To realize these types of operations, additional blocks are needed.
Below is an explanation of the logic behind how these operations are performed, which
will clarify the composition of the different blocks.

Figure 3.10: Datapath
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3.5.1 Matrix multiplication

When a matrix multiplication is performed, typically each row of one matrix is
multiplied by a column of the other matrix, and all these partial results are summed
together.
To achieve this in this implementation, each PE of the array manages the multipli-
cation of an entire row by an iterated column. For instance, to multiply two 4x4
matrices, the first row of the PE array provides the result of the first row multiplied
by all the columns, as shown in Figure 3.11. The idea is that in each clock cycle,
each PE receives a different pair of values to be multiplied and added to the previous
result: each PE performs a MAC operation each time.

Figure 3.11: Example of matrix multiplication

To achieve this behavior, three blocks were created in the datapath: the input
adjustment, the load input, and the counter. The idea is that the user can insert the
two matrices to be multiplied, and these will be processed by the input adjustment
block. This block outputs a matrix with four rows and two columns. Each row
contains the ’input’ and ’weight’ matrices needed by the array for each clock cycle.
Figure 3.12 shows an example of the matrix sent in the first two clock cycles of the
previous example.
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3.5. DATAPATH

Figure 3.12: Example of convolution array inputs

The load input block then takes the correct input to send to the array from the
matrix. To select the correct one, it uses a counter that determines which row will
be sent as output. In the example of Figure 3.12, the counter counts until 4. If the
size of the matrix that the user wants to multiply is smaller than the 4x4 case, the
remaining positions must be filled with zero values.

3.5.2 Convolution

The convolution operation can be of three different types: the input matrix is
always a 4x4 matrix, but the kernel can be 2x2, 3x3, or 4x4.
The idea and structure are similar to the matrix multiplication case. In this case,
there are different blocks called ’input generation 2x’, ’input generation 3x’, and ’input
generation 4x’, and the respective ’2x load input’, ’3x load input’, and ’4x load input’.
Take the 2x2 case as a case study. The idea is that each PE will handle one complete
multiplication between the kernel and 4 matrix values. To achieve this, a matrix is
constructed that will contain in each row all the values that each PE needs to take as
input in different clock cycles. In the case of a 2x2 kernel, 9 PEs work together. In
the case of a 3x3 kernel, just 4 PEs work together, and in the case of a 4x4 kernel,
only one PE is working.
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Figure 3.13: Example of array inputs

3.6 Control Unit
This section describes the structure of the Control Unit (CU) that manages and

sets all the commands required to perform the requested operations.
When the user wants to operate, this one has to set different commands:

• "START": is the signal that has to be set at ’1’ when the user wants to start an
operation

• "select_operation": This is a 3-bit signal that selects the operation the user wants
to perform: normal operation (only parallel multiplication, only parallel addition,
only parallel MAC), matrix multiplication, or different types of convolutions

• "config_MAC_mult_adder": This signal selects the bit width the user wants to
work with. It is a 7-bit signal. Let’s analyze it in detail:

– Bits 1 and 0 determine the MAC operation: they decide whether the input
of the adder comes from the multiplier or is external.

– Bits 4 to 2 specify the multiplication:
∗ "000" selects the 16x16 bit width operation.
∗ "010" selects the 8x8 bit width operation.
∗ "001" selects the 4x4 bit width operation.

– Bits 7 to 5 specify the adder:
∗ "000" selects the sum of two 4-bit numbers, with a 5-bit result. This

configuration will produce 8 outputs.
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∗ "001" selects the sum of two 8-bit numbers, with a 9-bit result. This
configuration will produce 4 outputs.

∗ "011" selects the sum of two 16-bit numbers, with a 17-bit result. This
configuration will produce 2 outputs.

∗ "010" selects the sum of two 32-bit numbers, with a 32-bit result. This
configuration will produce 1 output. This is the MAC case.

∗ "110" selects the sum of two 32-bit numbers, with a 33-bit result. This
configuration will produce 1 output.

Figure 3.14 and Figure 3.15 illustrate the sequence of states based on the selected
command.
First, here is a summary of all the different states present in the control unit:

• IDLE:
If the RESET signal is activated or some commands are given incorrectly, the
system enters the IDLE state, where everything is reset.

• MULT_16 :
All commands to perform a simple 16x16 multiplication are set.

• MULT_8 :
All commands to perform a simple 8x8 multiplication are set.

• MULT_4 :
All commands to perform a simple 4x4 multiplication are set.

• RES_SUM_5:
All commands to perform a simple addition of 4+4 are set.

• RES_SUM_8:
All commands to perform a simple addition 8+8 are set.

• RES_SUM_16:
All commands to perform a simple addition 16+16 are set.

• RES_SUM_32:
All commands to perform a simple addition 32+32 are set.

• SINGLE_MAC16:
All commands to perform a simple MAC operation 16x16 are set.

• SINGLE_MAC8:
All commands to perform a simple MAC operation 8x8 are set.

• SINGLE_MAC4:
All commands to perform a simple MAC operation 4x4 are set.

• INPUT_GENERATION:
The block that creates the correct matrix to be sent to the PE array for matrix
multiplication is activated.

• LOAD_MM:
The counter is activated and the right input is sent to the array.
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• MAC_16:
Commands for a 16x16 MAC operation are set, running in a loop for matrix
multiplication or convolution.

• MAC_8:
Commands for an 8x8 MAC operation are set, running in a loop for matrix
multiplication or convolution.

• MAC_4:
Commands for a 4x4 MAC operation are set, running in a loop for matrix mul-
tiplication or convolution.

• WAIT & WAIT2 & WAIT_MULT1 & WAIT_ADDER:
These states are used to give the array time to complete the result.

• EN_REG:
The adder is enabled to sum the correct value.

• DIS_REG:
The adder is disabled.

• INC_CNT1 & INC_CNT2:
The counter is incremented.

• INPUT_GENERATION_2X:
The block that creates the correct matrix for the 2x2 convolution is activated.

• LOAD_C2:
The counter is activated, and the correct inputs are sent to the array.

• INPUT_GENERATION_3X:
The block that creates the correct matrix for the 3x3 convolution is activated.

• LOAD_C3:
The counter is activated, and the correct input is sent to the array.

• INPUT_GENERATION_4X:
The block that creates the correct matrix for the 4x4 convolution is activated.

• LOAD_C4:
The counter is activated, and the correct inputs are sent to the array.

• DONE:
If the START signal is not activated again, this state is activated, and the oper-
ation is finished.

Figures 3.14 and 3.15 illustrate the structure of the CU. The figures are divided into
two parts for better visibility: the first figure shows the cases of simple multiplication,
simple addition, MAC, and matrix multiplication, while the second figure shows the
convolutions.
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3.6. CONTROL UNIT
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Chapter 4

Results and Discussions

This chapter contains the evaluation of the NPU and a discussion of the results.
This includes the tests of all operation’s typologies and a comparison with the other
existent architectures.

4.1 Implementation results
This section focuses on the synthesis and implementation of the current design.

The following are the results of the synthesis and implementation of NPU design. The
target device for synthesis is a Xilinx FPGA on the Pynq-z2 Evaluation Board. Based
on the result, the maximum operable frequency of the design is 200 MHz.
The table 4.1 shows the utilization of FPGA resources in the design .

Implementation LUTs FFs
NPU 7487 9118
CU 1695 55
Datapath 5791 9063

Table 4.1: Resource utilization

Table 4.2 shows the total power consumption for each different precision. To obtain
the different consumption for each case generated from the simulator the different
SAIF files were used.
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4.1. IMPLEMENTATION RESULTS

OPERATION STATIC
POWER [W]

DYNAMIC
POWER [W]

TOTAL
POWER [W]

Multiplication
16*16

0.106 0.142 0.248

Multiplication
8*8

0.106 0.091 0.197

Multiplication
4*4

0.106 0.086 0.192

Sum 32+32 0.110 0.394 0.504
Sum 16+16 0.110 0.343 0.453
Sum 8+8 0.109 0.330 0.439
Sum 4+4 0.109 0.277 0.386
MAC 16*16 0.105 0.066 0.171
MAC 8*8 0.105 0.067 0.172
MAC 4*4 0.105 0.065 0.170
MM 16*16 0.107 0.153 0.258
MM 8*8 0.107 0.146 0.253
MM 4*4 0.106 0.129 0.235
Convolution
2X 16*16

0.107 0.196 0.303

Convolution
2X 8*8

0.107 0.187 0.294

Convolution
2X 4*4

0.107 0.154 0.261

Convolution
3X 16*16

0.107 0.195 0.302

Convolution
3X 8*8

0.107 0.186 0.293

Convolution
3X 4*4

0.107 0.153 0.260

Convolution
4X 16*16

0.107 0.198 0.305

Convolution
4X 8*8

0.107 0.192 0.299

Convolution
4X 4*4

0.107 0.162 0.269

Table 4.2: Power analysis for the different operations at different precisions

As can be seen from the table 4.2, the static power remains more or less constant,
while the dynamic power varies greatly among the different operations. This is mainly
because, depending on the selected operation, some components are activated or not.
For example, to perform a simple operation, the inputs are passed directly to the
array, while for matrix multiplication, the counter enable, input adjustment, and load
input are activated, and thus they work each time the counter is incremented. The
same applies to convolutions.
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4.2. SIMULATION RESULTS

The power consumption in various operations decreases as the precision decreases.
This is due to the reduced switching activity during the operations. For example, in
the multiplier, when the precision is 4 bits, only zeros will reach the two innermost
adders, resulting in lower switching activity and, consequently, lower power consump-
tion.
The results indicate that there is higher power consumption when using the adder-only
mode with external inputs. This could be due to the greater switching activity com-
pared to using internal inputs derived from the multiplier. External inputs may have
higher load capacitance than internal inputs, as the power consumption of the I/Os
can be higher than that of internally generated signals within the chip. Additionally,
the presence of registers to synchronize the arrival of the external inputs introduces
a greater capacitive load that needs to be charged and discharged during each clock
cycle.
It can be seen that the biggest consumption is due to the dynamic power.

4.2 Simulation results

In this section are shown all the simulation results for each case treated by the
implemented design.
The simulations are realized working with the maximum operable frequency of 200
MHz, with a 5 ns clock cycle period. The data radix in the figures for the input and
the output matrices is hexadecimal. The reported time to execute each operation
doesn’t take into account the time of the IDLE state. In the figures is possible to
notice also the present state (PS) of the CU for each operation.

• For the parallel multiplication operations the result is available after 10 ns from
the beginning of the operation, after two clock cycles.

– Case 16x16:

Figure 4.1: Simulation of parallel multiplications 16x16

– Case 8x8 :
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4.2. SIMULATION RESULTS

Figure 4.2: Simulation of parallel multiplications 8x8

– Case 4x4:

Figure 4.3: Simulation of parallel multiplications 4x4

• For the parallel addition operations the result is available after 10 ns from the
beginning of the operation, after two clock cycles.

– Case 32+32:

Figure 4.4: Simulation of parallel additions 32+32

– Case 16+16:
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4.2. SIMULATION RESULTS

Figure 4.5: Simulation of parallel additions 16+16

– Case : 8+8 :

Figure 4.6: Simulation of parallel additions 8+8

– Case 4+4:
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4.2. SIMULATION RESULTS

Figure 4.7: Simulation of parallel additions 4+4

• Case MAC operation: to show the implementation of this operation, two con-
secutive inputs are given to the PE array. For one single operation, the needed
time from the start of the operation is 20 ns (four clock cycle, without the idle
time), and for two consecutive operations, to test the idea of MAC, are needed
40 ns.

– Case 16x16:

Figure 4.8: Simulation of MAC operation 16x16

– Case 8x8:

Figure 4.9: Simulation of MAC operation 8x8
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4.2. SIMULATION RESULTS

– Case 4x4:

Figure 4.10: Simulation of MAC operation 4x4

• For the Matrix Multiplication (MM) operations, the output is available (without
taking into account the idle time) after 135 ns, in the ’disable reg’ state. However,
this state is necessary for a hypothetical consecutive execution of the operation,
so with the done state all the operation counts 140 ns.

– Case 16x16:

Figure 4.11: Simulation of MM operation 16x16

– Case 8x8:

Figure 4.12: Simulation of MM operation 8x8
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4.2. SIMULATION RESULTS

– Case 4x4:

Figure 4.13: Simulation of MM operation 4x4

• For the 2X convolution operation the output is available (without taking into
account the idle time) after 140 ns, in the ’disable reg’ state. However, this state
is necessary for a hypothetical consecutive execution of the operation, so with
the done state all the operation counts 145 ns.

– Case 16x16:

Figure 4.14: Simulation of 2X convolution operation 16x16

– Case 8x8:

Figure 4.15: Simulation of 2X convolution operation 8x8
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4.2. SIMULATION RESULTS

– Case 4x4:

Figure 4.16: Simulation of 2X convolution operation 4x4

• For the 3X convolution operation the output is available (without taking into
account the idle time) after 310 ns, in the ’disable reg’ state. However, this state
is necessary for a hypothetical consecutive execution of the operation, so with
the done state all the operation counts 315 ns.

– Case 16x16:

Figure 4.17: Simulation of 3X convolution operation 16x16

– Case 8x8:

Figure 4.18: Simulation of 3X convolution operation 8x8

– Case 4x4:
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4.2. SIMULATION RESULTS

Figure 4.19: Simulation of 3X convolution operation 4x4

• For the 4X convolution operation the output is available (without taking into
account the idle time) after 555 ns, in the ’disable reg’ state. However, this state
is necessary for a hypothetical consecutive execution of the operation, so with
the done state all the operation counts 560 ns.

– Case 16x16:

Figure 4.20: Simulation of 4X convolution operation 16x16

– Case 8x8:

Figure 4.21: Simulation of 4X convolution operation 8x8

– Case 4x4:
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4.2. SIMULATION RESULTS

Figure 4.22: Simulation of 4X convolution operation 4x4

It is now evaluated the op/s for each type of operation.
To evaluate this one are taking into account:

• The total operation realized from each processing element in the array.

• The total operation for all the arrays.

• The total number of clock cycles to complete the operation, considering also the
state (clock cycle) in which the result is given. For instance, for multiplication,
the total clock cycle considered is three because the result is available after the
third one.

• The frequency at which the operation is executed.

In general:

op

s
= OperationforPE · NumberofPE

Executiontime

Operation Op/s [MOp/s]
Multiplication 1066

Sum 1066
MAC 640

Matrix Multiplication 457
Convolution 2X 514
Convolution 3X 228
Convolution 4X 57

Table 4.3: Op/s for the different operations

As expected this number is larger as the operation is simple.
Known the op/s and the power consumed in each operation, it is possible also to
evaluate the energy needed from each operation.

E = Op/s

Power
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4.2. SIMULATION RESULTS

Operation Power [W] Op/s [MOp/s] E [Gops/s/W]
Multiplication
16*16

0.248 1066 4.298

Multiplication
8*8

0.197 1066 5.411

Multiplication
4*4

0.192 1066 5.552

Sum 32+32 0.504 1066 2.115
Sum 16+16 0.453 1066 2.353
Sum 8+8 0.439 1066 2.428
Sum 4+4 0.386 1066 2.761
MAC 16*16 0.171 640 3.743
MAC 8*8 0.172 640 3.721
MAC 4*4 0.170 640 3.764
MM 16*16 0.258 457 1.771
MM 8*8 0.253 457 1.806
MM 4*4 0.235 457 1.944
Convolution
2X 16*16

0.303 514 1.696

Convolution
2X 8*8

0.294 514 1.748

Convolution
2X 4*4

0.261 514 1.969

Convolution
3X 16*16

0.302 228 0.7549

Convolution
3X 8*8

0.293 228 0.7781

Convolution
3X 4*4

0.260 228 0.8769

Convolution
4X 16*16

0.305 57 0.1868

Convolution
4X 8*8

0.299 57 0.1906

Convolution
4X 4*4

0.269 57 0.2118

Table 4.4: Power, Op/s and Energy for the different operations

As can be observed in Table 4.4, the value of

Op/s

Power

is lower for more complex operations due to increased latency, and it is also lower as
the precision increases. This is due to the higher switching activity.
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Chapter 5

Conclusion and Future Scope

This chapter presents the conclusion of this thesis, summarizing the main design
aspects and results. In the second section then are presented some possible future
works to get through some limitations of this implemented design.

5.1 Conclusion

This work presents the design of an NPU. This proposed design focuses on the
realization of a processing element that has to work like a multiplier, like an adder,
and like a MAC structure with different data bit-width. In particular, it can receive
input data in 4,8 or 16-bit format.
According to the selected bit-width, the number of generated outputs changes: if the
data input format is 4-bit, it is possible to work with four inputs simultaneously, and
consequently obtain four outputs. If the input format is 8-bit, there are two inputs and
two outputs. If the bit-width is 16-bit, it is possible to work with only one input and
one output. To realize the PE, a re-configurable multiplier and an adder composed of
eight adders at four bits, that can also take external inputs. A 4x4 matrix of this PE
was created, which is capable of carrying out parallel operations. In particular, it can
perform 16 multiplications, additions, or MAC operations simultaneously. To allow
this structure to perform operations like matrix multiplication and convolution, this
matrix is inserted in a datapath that sends different inputs to the matrix according to
the wanted operation. All this selection is managed by a CU that needs only four com-
mands to execute the chosen operation. The control unit can handle 22 different cases
involving various operations and precisions. The operations that require a minimal
number of clock cycles are parallel multiplication and parallel addition, each taking
3 clock cycles, whereas the most demanding operation is the 4X convolution, which
requires 112 clock cycles. Consequently, the required energy is lower for operations
with shorter latencies.
The implementation of the results demonstrates that the maximum operable frequency
is 200 MHz. The results show also that the power and the energy required are smaller
when the precision is lower, due to the lower switching activity of the component
during the evaluation of the result of the operation.
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5.2. FUTURE SCOPE

5.2 Future Scope
Although this architecture can realize different types of operations with different

bit-widths, it is possible to think about some future works that can improve this
architecture.
First of all this architecture can perform operations 4x4, 8x8, and 16x16, which are
all symmetric cases. It would be interesting to try to optimize this structure so that
it can also deal with non-symmetrical cases such as 16x8, and 8x4.
Another interesting improvement regarding matrix multiplication is that it is always
treated as a 4x4 matrix structure. When the requested matrix multiplication has
lower parallelism, the 4x4 matrix is filled with zeros. An idea could be to make this
structure more efficient for this type of operation without using the zero-filling.
This architecture could also be interesting for developing power-saving techniques to
reduce the structure’s power consumption. An interesting idea is to implement the
power gating technique. With this technique, it will be possible to reduce consumption
because the unused logic will not receive the clock signal, thereby reducing switching
activity.

49



Bibliography

[1] Pramila P. Shinde and Seema Shah. “A Review of Machine Learning and Deep
Learning Applications”. In: 2018 Fourth International Conference on Computing
Communication Control and Automation (ICCUBEA) (Aug. 2018).

[2] Esam Khan et al. “Network Processors for Communication Security: A Review”.
In: 2003 IEEE Pacific Rim Conference on Communications Computers and Sig-
nal Processing (PACRIM 2003) (Cat. No.03CH37490) (Aug. 2003), pp. 173–
176.

[3] Will Koehrsen. “Deep Neural Network Classifier”. In: Medium (July 2017).
[4] Vincent Camus et al. “Review and Benchmarking of Precision-Scalable Multiply-

Accumulate Unit Architectures for Embedded Neural-Network Processing”. In:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9.4
(Oct. 2019), pp. 697–711. issn: 2156-3365.

[5] Mirza Cilimkovic. “Neural Networks and Back Propagation Algorithm”. In: In-
stitute of Technology Blanchardstown, Blanchardstown Road North Dublin 15.1
(2015).

[6] Ray Bernard. “Deep Learning to the Rescue”. In: securityinfowatch (Mar. 2019).
[7] Md Islam and Md Rafiqul Islam. “Modeling Spammer Behavior: Artificial Neural

Network vs. Naive Bayesian Classifier”. In: Artificial Neural Networks - Appli-
cation (Apr. 2011).

[8] K. Babulu and H. Parasuram. “FPGA Realization of Radix-4 Booth Multipli-
cation Algorithm for High Speed Arithmetic Logics”. In: International Journal
of Computer Science and Information Technologies 2.5 (2011), pp. 2–3. issn:
0975-9646.

[9] Hardik Sharma et al. “Bit Fusion: Bit-Level Dynamically Composable Architec-
ture for Accelerating Deep Neural Networks”. In: 2018 ACM/IEEE 45th An-
nual International Symposium on Computer Architecture (ISCA) (June 2018),
pp. 764–775.

[10] Sungju Ryu et al. “BitBlade: Area and Energy-Efficient Precision-Scalable Neu-
ral Network Accelerator with Bitwise Summation”. In: Proceedings of the 56th
Annual Design Automation Conference 2019 (June 2019), pp. 697–711.

[11] Luca Urbinati and Mario R. Casu. “A Reconfigurable Multiplier/Dot-Product
Unit for Precision-Scalable Deep Learning Applications”. In: Proceedings of SIE
2022 (2023), pp. 9–14.

50


	Contents
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation and Objective
	Overview of the report

	Theoretical Background and Related Work
	Introduction to the Neural Network and Deep Neural Network
	Booth's encoding technique and Booth's multiplication
	State of art of precision-scalable MAC architecture
	Comparison between the state of the art
	Design Decision

	Microarchitecture Design and Implementation
	Data precision and data input format
	Multiplier's design
	Booth multiplier
	Multiplier
	Final Multiplier

	Adder
	Processing Element: MAC UNIT
	Datapath
	Matrix multiplication
	Convolution

	Control Unit

	Results and Discussions
	Implementation results
	Simulation results

	Conclusion and Future Scope 
	Conclusion
	Future Scope

	Bibliography

