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Abstract

The increasing adoption of artificial intelligence (AI)-based systems has led to
growing concerns about their deployment in safety-critical environments. Industry
standards, such as ISO 26262 for the automotive sector, mandate the detection of
hardware faults during the device’s canonical operations. Similarly, new standards
are emerging to address the functional safety of AI systems (e.g., ISO/IEC CD TR
5469). Hardware solutions have been proposed for in-field testing of the hardware
executing AI applications, nevertheless these approaches can increase hardware costs
and may potentially negatively impact the strive for performance maximization,
especially in applications involving Convolutional Neural Networks (CNNs) for
image processing tasks. This thesis inquire into a methodology for creating high-
quality test images that can be interleaved with the normal inference process of
a CNN executing in the realm of edge devices, specifically exploiting the blend
of the open-source configurable and extendable X-HEEP platform, designed to
support the exploration of ultra-low power edge accelerators, and the Xilinx PYNQ-
Z2 board. Image Test Library (ITL) has been developed in order to facilitate
the on-line testing of a 32-bit integer multiplier. The proposed methodology
does not necessitate modifications to the existing CNN, thereby avoiding costly
memory loading operations, as it effectively leverages the CNN’s existing structure.
Additionally, the proposed ITL requires minimal test application time and memory
space for storing the test images and corresponding golden test responses. The
ITL is specifically designed to leverage the convolution operation, which involves
multiply-and-add computations between an input image and a set of filters. Since
the primary goal is to maintain the original CNN structure, weights must remain
unchanged, while the input images are the only elements which can be altered.
Consequently, test patterns for the multiplier must be created using Automatic
Test Pattern Generation (ATPG) techniques, with the pre-trained network weights
serving as constraints. These generated test patterns are then strategically placed
in specific areas of the input image to ensure that the multiplier will process them
with the corresponding weights used as constraints. Finally, the image containing
the test patterns, called faulty image, is tested during the fault injection phase to
ensure that its content allows to successfully propagate the fault along the network,
resulting in a wrong class prediction. Experimental results demonstrate that the
proposed methodology achieves 86.16% test coverage on the hardware unit under
test managing to detect the 93.22% of faults, utilizing 21 test patterns generated
during the ATPG phase for the quantized (int8) LeNet-5 CNN.
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Chapter 1

Introduction

In recent years, we have witnessed a rapid proliferation of products leveraging
Artificial Intelligence (AI) to enhance performance and efficiency across various
sectors, from healthcare to industrial manufacturing, automotive to cybersecurity.
Among the most widely-used AI techniques, Artificial Neural Networks (ANNs)
and, in particular, Convolutional Neural Networks (CNNs), have revolutionized
the way machines process and interpret complex data obtaining remarkable results,
thereby opening up new horizons in the field of hardware accelerators.

Furthermore, due to the ever-increasing spread of AI products in safety-critical
environments as well, such as self-driving cars, facial recognition and medical image
analysis, both industrial and academic communities are intensifying their efforts in
ensuring the reliability and safety of these technologies. As the ISO 26262 standard
commonly followed in the automotive field, or the ISO/IEC CD TR 5469 standard
concerning the functional safety of AI systems testify, the extremely fast evolution
of safety-related systems is requiring new and evermore reliable solutions to be
found out.

Among the possible solutions, on-line testing strategies based on functional
methods have become a common solution in industry sectors such as the automotive
one [1]. This method executes the on-line test through the periodic execution
of Software Test Libraries (STLs) composed of a set of assembly instructions
able to excite the processor core and detect permanent faults; furthermore no
hardware overhead is requested but suitable memory space where to save the
test libraries and a large amount of manual and semi-automatic work, since no
Electronic Design Automation (EDA) tools are available for their generation. In
the literature, STLs have been proposed as an effective safety mechanism to test
hardware accelerators, such as Graphics Processing Units (GPUs), widely used to
accelerate AI Applications [2] [3]. However, the execution of STLs interleaving
CNN inferences may jeopardize the strive for performance maximization [4].

This thesis describes the Image Test Library (ITL) [5] technique which tries to
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overcome the aforementioned issues. This technique proves way more efficient than
STLs and consists in exploiting a set of carefully-crafted high-quality test patterns
in the form of test images fed to an already trained CNN, specifically targeting
convolutional layers which account for more than 90% of the total operations
[6]. ITL-based testing is periodically performed during the normal CNN inference
process thanks to the input test images which contain the test patterns and allow
to detect, with a high test coverage (TC), permanent faults affecting the target
hardware unit without affecting the neural network performance. Indeed, they
require minimal test application time and memory space for storing the input test
images.

Furthermore, the widespread adoption of CNNs has led to an increasing demand
for hardware solutions capable of efficiently and swiftly handling the computational
operations required by these increasingly complex neural networks. In response
to this need, the field of hardware accelerators, particularly in the realm of edge
computing, has seen the emergence of new technologies and design approaches
aimed at maximizing both the performance and the energy efficiency of such
devices. Edge devices offer advantages such as low computation latency and high
energy efficiency for executing convolutional neural networks (CNNs). However,
deploying CNNs on resource-constrained devices turns out to be a tricky task
due to the high computational intensity of CNNs and limited hardware on-chip
resources. One of the latest and most interesting solutions is represented by X-
HEEP (eXtendible Heterogeneous Energy-Efficient Platform). This architecture
aims to provide customization options to match specific application requirements
by exploring various core types, bus topologies, and memory addressing modes. It
also enables fine-grained configuration of memory banks to match the constraints
of the integrated accelerators [7]. This thesis inquires into the synergy of the ITL
technique and edge devices (i.e. X-HEEP running on the TUL PYNQ-Z2 physical
board) focusing on the in-field test of a 32-bit integer multiplier at the core of
convolutional operations. As a case study, a 1-image ITL has been developed for a
LeNet-5 CNN.

This thesis is structured as follows: Chapter 2 introduces the fundamental
concepts related to CNNs, the architecture of the X-HEEP SoC, the digital circuit
testing, the STL and the ITL methods. Chapter 3 outlines the proposed method
for generating ITLs for edge accelerators and the process used to validate them.
Chapter 4 presents the experimental results obtained exploiting X-HEEP, TUL
PYNQ-Z2 board and a LeNet-5 CNN. Chapter 5 suggests directions for future
research and draws conclusions.
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Chapter 2

Background

2.1 Introduction to CNNs
CNNs present many similarities to ordinary Multi-Layer Perceptrons (MLPs), which
are models inspired by the structure and function of biological neural networks in
animal brains. The first difference between the two resides in the input: CNNs
make the explicit assumption that inputs are images while MLPs expect numeric
vectors.

In MLPs the output is computed through a series of hidden layers containing each
a set of neurons, each fully connected to all neurons in the previous layer. A weight
is associated to each connection, representing the importance of the connection in
the neuron’s output computation. All neurons in a single layer function completely
independently and do not share any connections. These features don’t allow MLPs
to scale well to full images: for instance, a 200× 200× 3 image (so, a RGB image
of 200× 200 pixels) would lead to neurons in the first hidden layer having 120,000
weights each. The huge number of parameters would quickly lead to overfitting, as
well as causing high space occupation. [8]

CNNs, given the constraint of working with images, present a different ar-
chitecture. Indeed, hidden layers may include one or more convolutions: each
convolutional layer has a single set of filters, or kernels, each one containing a set
of weights.
As the convolution kernel slides along the input matrix for the layer, the convolution
operation generates a feature map, which in turn contributes to the input of the
next layer. This is followed by other layers such as pooling layers, fully connected
layers, and activation layers [9].

This architecture presents three important features: [9]

1. Sparse interactions – in traditional MLP hidden layers the output of each
neuron depends on the output of all the neurons of the previous layer, and
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so on; such a layer is called Fully Connected in the CNN context. However,
CNNs typically have sparse interactions. This is accomplished by making
a kernel, smaller than the input image, slide over the input. Thereby each
output element depends on a small number of inputs.
When processing an image with thousands or millions of pixels, small, mean-
ingful features such as edges can be detected with kernels that occupy only tens
or hundreds of pixels. This means that fewer parameters need to be stored,
which both reduces the memory requirements of the model and improves its
statistical efficiency.
Indeed, If the input has size m, the output has size n and the kernel has size k,
the computational complexity of calculating the output of a Fully connected
layer is O(mn), while for a convolutional layer exploiting the sparsely connected
approach it is O(kn).

2. Parameter sharing – in traditional neural networks each neuron of a Fully
connected layer has its own set of weights, resulting in each weight being used
at most once in the whole model.
The idea behind parameter sharing is using the same weight for more than just
one neuron; in a convolutional layer, in fact, each weight of the kernel matrix
gets multiplied by almost every input element, resulting in a smaller layer
memory occupancy: a Fully connected layer requires to store m · n parameters,
while a convolutional layer requires to store just k parameters

3. Equivariance to translation – a function f is equivariant to another function g
if they both produce the same result. More specifically, if the input changes,
the output changes in the same way.
For instance, shifting every pixel of an image one unit to the right and then
applying the convolution produces the same results as first applying the
convolution and then shifting every pixel one unit to the right.

Figure 2.1: Well known CNN: LeNet-5 [10][11]
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2.2 Convolutional Layer
At the heart of CNNs there is the convolution operation, a mathematical process
that enables the network to learn spatial hierarchies of features from input data,
typically images. Convolutional layers in CNNs account for more than 90% of the
total operations [6].

In the context of CNNs, the convolution operation involves sliding a filter (or
kernel) over the input data to produce a feature map. The kernel is a small matrix
of learnable weights that is applied to a local region of the input data. This process
allows the network to detect various features like edges, textures, and shapes at
different spatial locations. Formally, given an input image I and a kernel K the
convolution operation produces an output feature map F. The convolution output
at a specific position (i,j) is defined as:

F (i, j) =
kØ

m=−k

kØ
n=−k

I(i + m, j + n) ·K(m, n) (2.1)

Consider an input image I of size H ×W × C, where H and W are the height
and width of the image, and C is the number of channels (e.g., 3 channels for RGB
images). A convolutional layer applies N different kernels K, each of size k×k×C,
to produce an output feature map F of size H ′ ×W ′ ×N .

The output feature map is computed as:

Fn(i, j) =
CØ

c=1

kØ
m=1

kØ
n=1

Ic(i + m, j + n) ·Kc
mn (2.2)

Here, Fn(i, j) is the output at location (i, j) for the n-th filter, and the sum is
performed over all input channels C and the kernel dimensions.

2.2.1 Convolution and Dimensions
• 1D Convolution – the convolution operation can be applied over 1 dimen-

sional input feature map and kernel.
Let I ∈ Rn be a 1D input feature map of length n and K ∈ Rk a 1D filter of
length k. The length o of the output feature map O ∈ Ro is defined as:

o = n− k + 1

Intuitively, the operation can be imagined as a sliding window (which represents
the kernel) moving over the input feature map; each element of the input
feature map is multiplied elementwise with the kernel and then summed up to
obtain the relative output feature map element. A 1D convolution can extract
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features from various kinds of sequential data, and is especially prevalent in
audio processing, NLP and financial applications.
Each i-th element of the output feature map is computed as follows:

O[i] = (I ∗K)[i] =
k−1Ø
j=0

I[i + j] ·K[j], i = 0, 1, . . . , n− 1 (2.3)

Figure 2.2: 1 Dimension Convolution example [12]

• 2D Convolutions – the convolution operation can be applied over 2 dimen-
sional input feature map and kernel, as well. Indeed, this is the prevalent case
in CNNs dealing with 2D images (the most common scenario). Extending the
convolution operation to 2D is pretty straightforward: let I ∈ RHI×WI be a
HI ×WI 2D input feature map and K ∈ RHK×WK a HK ×WK 2D filter. The
output feature map O ∈ RHO×WO has height and width defined as:

HO = HI − k + 1

WO = HO − k + 1

Each element at index (i, j) of the output feature map is computed as follows:

O[i, j] = (I ∗K)[i, j] =
WK−1Ø
w=0

HK−1Ø
h=0

I[i + w, j + h] ·K[w, h], (2.4)

i = 0, 1, . . . , WO − 1
j = 0, 1, . . . , HO − 1

• 3D Convolutions – the concept of 2D convolution can be extended by adding
another dimension. This becomes useful for analyzing volumetric data. The
most useful applications are medical imagining and scientific computing.
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Figure 2.3: 2 Dimension Convolution example [11]

2.2.2 Convolution Hyperparameters
Two important hyperparameters which influence the behavior of the convolution
operation are padding and stride. These parameters control how the convolutional
filters interact with the input data.

Padding

Padding refers to the practice of adding extra pixels around the border of the input
image. This hyperparameter allows to control the spatial dimensions of the output
feature map and allows the network to extract features from the edges of the input
image. Without padding, the output feature map would be smaller than the input,
and information near the image boundaries could be lost.

The two main padding choices are:

• Valid Padding – also known as "no padding," this approach does not add any
extra pixels around the input image. As a result, the output feature map
is smaller than the input. If the kernel size is k × k, the size of the output
feature map O will be reduced by k − 1 in both height and width.

• Same Padding – this approach involves padding the input image in such a way
that the output feature map has the same size as the input. For a kernel of
size k × k, the input is padded with

ê
k−1

2

ë
pixels on each side, ensuring that

the output feature map O maintains the same height and width as the input.

Mathematically, if the input image has dimensions H ×W and the kernel has
dimensions k × k, the stride is s, and the padding is p, the output feature map O
will have dimensions:
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H ′ =
E

H + 2p− k

s
+ 1

F
, W ′ =

E
W + 2p− k

s
+ 1

F

Figure 2.4: 2D Convolution: "Same Padding" = 1, "Stride" = 2 [11]

Stride

Stride refers to the number of pixels by which the filter moves or "strides" across
the input image during the convolution operation. The stride modifies the size of
the output feature map, reducing it.

A stride value of 1 means that the filter moves one pixel at a time across the
input image, while larger stride values (> 1) reduce the overlap between adjacent
applications of the filter, effectively downsampling the input image.

Multiple Channels

Most CNNs take RGB images as inputs, which consist of three color channels (red,
green and blue), and generate feature maps with many channels in the hidden layers.
The 2D convolution operation, indeed, must be extended to a third dimension:
given an input feature map I ∈ RC×HI×WI and a kernel K ∈ RC×HK×WK , the
resulting output feature map O will have a single channel and be represented as
O ∈ R1×HO×WO . For the purpose of this work, from now on, the kernels will only
be assumed as square (with same height and width).

The output feature map O is computed by performing a 2D convolution for each
channel c of the input I with the corresponding channel c of the filter F , and then
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Figure 2.5: 2D Convolution: "Stride" = 2, "Valid Padding" [11]

summing these results elementwise. The same concepts of padding and stride that
apply to 2D convolutions also apply in this case, for each 2D slice of the input.
Therefore, the element at position (i, j) of the output feature map is defined as:

O[i, j] =
C−1Ø
c=0

WK−1Ø
w=0

HK−1Ø
h=0

Ic,s·i+w,s·j+h · Fc,w,h (2.5)

i = 0, 1, . . . , WO − 1
j = 0, 1, . . . , HO − 1

where s represents the stride value.
If we consider a batch of N images being convolved with the same filter K,

an additional dimension is introduced to the input feature map tensors, making
I ∈ RN×C×HI×WI . In this case, the convolution operation as defined above is
applied independently to each image in the batch, resulting in an output feature
map O ∈ RN×1×HO×WO , meaning one feature map per image in the batch.

Multiple Filters

Convolutional layers are capable of using more than one filter/kernel. Since each
kernel detects a specific feature in the input, such as vertical edges, it can be useful
to apply multiple filters to capture a wide range of features from the input data.
To facilitate this, a fourth dimension is added to the filter tensor, which represents
the number of different features we want to learn from the input.

Consider a batch of input feature maps represented by I ∈ RN×C×HI×WI . If
we wish to extract M distinct features from each input feature map, the filter
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Figure 2.6: 2D Convolution with multiple channels [11]

tensor is defined as K ∈ RM×C×HK×WK , where M represents the number of filters.
Consequently, the batch of output feature maps is given by O ∈ RN×M×HO×WO .

The value at position (i, j) in the m-th feature map, derived from the n-th input
feature map, is computed as:

On,m,i,j =
C−1Ø
c=0

WK−1Ø
w=0

HK−1Ø
h=0

In,c,s·i+w,s·j+h ·Km,c,k,l (2.6)

i = 0, 1, . . . , WO − 1
j = 0, 1, . . . , HO − 1

2.3 CNN Layers
CNNs are a sequence of layers, each layer transforming one tensor of activations to
another through a differentiable function. Four main types of layers are used to
build a CNN architecture:

• Convolutional layers – the core building block of the CNNs, widely explained
in the previous section

• Pooling layers – used to reduce the spatial size of the model and control
overfitting

• Fully-connected layers – the same as hidden layers in MLPs

• Activation layers – used when facing non-linear problems

10
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Figure 2.7: 2D Convolution with multiple filters [11]

2.3.1 Pooling Layer

Pooling layers are commonly inserted after convolutional operations. Their function
is to progressively reduce the spatial size of the representation to reduce the amount
of parameters and computation in the network, hence also controlling overfitting
[8]. Different types of pooling exist:

• Max Pooling – this pooling operation works independently on each dimension
of the input and, usually, it applies a 2×2 filter with a stride of 2, downsampling
the input by 2 along both dimensions. This operation consists in selecting the
maximum among the values under the sliding filter [8]

• Average Pooling – this pooling operation is performed in a similar way to
max pooling, but consists in computing the average of all the numbers within
each region

2.3.2 Fully-connected Layer

Fully-connected layers, also known as dense layers, capture global patterns and
relationships in the input data by connecting every neuron from the previous layer
to every neuron in the fully connected layer. It is usually placed at the end of the
CNN, following the convolutional and pooling layers. The fully connected layer
acts as a feature extractor, transforming the learned features into a format that
can be used for classification or regression tasks.
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2.3.3 Activation Layer
Activation layers allow the model to deal with non-linear problems by applying
activation functions. An activation layer is typically placed after each convolution
and fully-connected layer to introduce non-linearity into the model. In essence,
activation functions serve as the “switch” in artificial neurons that decide whether
that neuron should be activated or not based on the weighted sum of the input.
The most used activation functions are:

• Sigmoid or Logistic

σ(x) = 1
1 + e−x

(2.7)

• Rectified Linear Unit (ReLU)

ReLU(x) = max(0, x) (2.8)

• Tanh
Tanh(x) = ex − e−x

ex + e−x
(2.9)

• Softmax – Differently from previous ones, the Softmax function is computed
over all neurons in the layer, returning a probability distribution of K possible
outcomes.

Softmax(xi) = exiqK−1
j=0 exj

(2.10)

where i = 0..K − 1 [9].

2.4 CNN Quantization
The integration of AI solutions with edge computing is transforming real-time data
processing. However, executing vision tasks on resource-constrained edge devices
remains a challenge. To overcome this, model compression techniques, particularly
quantization, play a pivotal role in optimizing computational power and memory
usage.

Quantization aims to convert high-precision floating-point numbers into integer
representations. Traditional AI models that use 64-bit floating-point numbers face
significant computational burdens. By reducing precision, often down to 8-bit
integers, quantization significantly decreases the model’s size and processing time,
making it more suitable for resource-limited edge devices. Although accuracy may
be a concern, modern quantization techniques effectively mitigate this impact.
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2.4.1 Quantization Scheme

Let r be a real number to be quantized in its N-bit integer representation q, and
let S and Z be the scale and zero-point quantization parameters, respectively. The
equation 2.11 shows how to quantize a real number into an integer one, while
equation 2.12 shows how to do the reverse operation, indeed, dequantize.

q =
7

r

S + Z

8
(2.11)

r = S · (q − Z) (2.12)

The quantization parameters S and Z are influenced by the range of both
floating point values and integer ones and are computed as follows:

S = rmax − rmin

qmax − qmin

(2.13)

Z =
7

qmax − rmax

S

8
(2.14)

When data is quantized, some information is inevitably lost, creating differences
between the original data and its quantized version. These differences are referred
to as quantization noise, which can potentially affect the accuracy of the model’s
predictions. The number of bits (N) is crucial during the quantization process, in
fact, fewer bits reduce precision but increase quantization error, risking accuracy
loss. More bits enhance precision but require higher resources, crucial in edge
computing with limited resources. Figure 2.8 shows a float distribution and its
quantized results for different N-bit quantizations [13].

Figure 2.8: Quantization levels (N-bits) influencing quantization noise [13]
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2.5 X-HEEP
In recent years, the field of edge computing has witnessed remarkable growth and
adoption in commercial products. This process has been driven by the increas-
ing demand for real-time computing solutions, specifically Artificial Intelligence
(AI) and Machine Learning (ML) algorithms. As data processing at the edge
(for new edge AI computing) has become more prevalent, the performance and
power consumption limitations of edge-computing devices have become increasingly
apparent.

Heterogeneous architectures have emerged to overcome these challenges relying
on a combination of ultra-low-power host processors, and custom accelerators
tailored to specific application domains, such as artificial intelligence.

Each accelerator comes with unique requirements, such as memory size, area,
performance, and power, to meet the constraints of the target applications. For
this reason, proper customization of host platforms is imperative. This may include
exploring different CPUs to trade performance and power, bus topologies and
memory hierarchy, memory sizes to accommodate the required computational data,
peripherals to provide the necessary I/O connectivity, power domains and strategies,
etc.

Today, there are an increasing number of open-source projects related to het-
erogeneous systems, thanks to the open RISC-V instruction set architecture (ISA)
revolution. However, many of such platforms focus only on the CPU part, whereas
microcontroller-based state-of-the-art projects lack the flexibility and customization
options needed to fulfill accelerator requirements natively. These limitations include
restricted configurability for the internal platform’s components (core, memory,
bus, etc.), limited support for external accelerator connectivity, and inadequate
built-in power management strategies to optimize energy efficiency. Thus, hardware
developers need to extensively modify the platform to properly align with the target
applications on their own copy of the platform.

To address the limitations mentioned above X-HEEP [14] was introduced. X-
HEEP is an open-source configurable and extendable platform designed to support
the exploration of ultra-low power edge accelerators. X-HEEP is a streamlined
configurable host architecture based on RISC-V and built reusing existing IPs from
well-known open-source projects.

To allow users to explore their custom solutions, X-HEEP can be natively
extended via the proposed eXtendible Accelerator InterFace (XAIF), which allows
the integration of a wide range of accelerators with different area, power, and
performance constraints.

Additionally, to offer high degree of optimizations, X-HEEP offers internal
configurability options through the selection of different CPU core types [15],
bus topology and addressing mode, memory size and finally peripherals. This
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configurability enables designers to tailor the platform to specific application
requirements and meet area, power, and performance constraints [7].

2.5.1 X-HEEP Architecture

X-HEEP includes a configurable RISC-V CPU, a configurable bus, a configurable
memory, two configurable peripheral domains, and a debug unit.

X-HEEP leverages existing widely adopted open-source IPs to maintain com-
patibility with existing systems and reuse available software routines and hardware
extensions [7].

• CPU , the user can choose among the CV32E20, CV32E40X, and CV32E40P
as core options [15], to trade off power and performance. In particular, the
CV32E20 core is optimized for control-oriented tasks, while the CV32E40P
core is optimized for processing-oriented tasks. The CV32E40X core offers
power consumption and performance similar to the CV32E40P core, without
featuring the floating-point RVF and custom Xpulp ISA extensions. Moreover,
it provides an external interface, known as CORE-V-XIF [16], that allows for
the plug-in of custom co-processors to extend the RISC-V ISA without the
need to modify the RTL code of the core.

• Memory, the user can select the memory size and number of memory banks
to trade off area, power, and storage capacity.

• Bus, the user can choose either a one-at-a-time topology, where only one master
at a time can access the bus (one decoder), or a fully connected topology (same
number of decoders as simultaneous masters), where multiple masters can
access multiple slaves in parallel, to trade off area and bandwidth. In addition,
to connect additional components, the bus also exposes a configurable number
of slave and master ports to the external XAIF interface to accommodate one
or multiple accelerators with different bandwidth constraints.

• Peripheral domain, this domain includes peripherals that can be removed
from the design or powered off if not needed to trade off area or power and
functionality.

• Always-on peripheral domain, this domain includes IPs that are always powered
on. The power manager is responsible for implementing low-power strategies.
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1 package core_v_mini_mcu_pkg ;
2

3 // CPU core type s e l e c t i o n
4 typede f enum l o g i c [ 1 : 0 ] {
5 cv32e40p ,
6 cv32e20 ,
7 cv32e40x ,
8 cv32e40px
9 } cpu_type_e ;

10 localparam cpu_type_e CpuType = cv32e20 ;
11

12 // bus topology
13 typede f enum l o g i c {
14 NtoM,
15 onetoM
16 } bus_type_e ;
17 localparam bus_type_e BusType = onetoM ;
18

19 // memory c o n f i g u r a t i o n
20 localparam i n t unsigned MEM_SIZE = 32 ‘ h00080000 ;
21 localparam i n t unsigned NUM_BANKS = 16 ;
22 localparam l o g i c [ 3 1 : 0 ] RAM0_START_ADDRESS = 32 ‘ h00000000 ;
23 localparam l o g i c [ 3 1 : 0 ] RAM0_SIZE = 32 ‘ h8000 ;
24 localparam l o g i c [ 3 1 : 0 ] RAM0_END_ADDRESS = RAM0_START_ADDRESS +

RAM0_SIZE;
25 localparam l o g i c [ 3 1 : 0 ] RAM0_IDX = 32 ‘ d1 ;
26 [ . . . ]
27 endpackage

Listing 2.1: X-HEEP system definition
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Figure 2.9: X-HEEP architecture diagram [7]

2.6 Digital System Testing
All devices that pass production tests are not identical. When put to actual use,
some will fail very quickly while others will function for a long time. Digital system
testing consists of periodically applying a set of test patterns, or stimuli, to a
Circuit Under Test (CUT) observing the response. If the response does not match
the expected values, then the CUT is considered to be faulty. In general, each chip
could be subjected to different types of tests: [17]

• Parametric Tests – DC parametric tests include maximum current test, leakage
test, output drive current test, and threshold levels test. These tests are usually
technology-dependent.

• Functional Tests – these consist in applying stimuli and observing the cor-
responding responses. Functional testing checks for proper operation of a
verified design by testing the internal chip nodes. Functional tests cover a very
high percentage of modeled faults (e.g., stuck-at type) in logic circuits. Often,
functional vectors are understood as verification vectors, which are used to
verify whether the hardware actually matches its specification.
Functional testing is essential for verifying a design, but it is very challenging
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to conduct comprehensively. For a circuit with n input lines, a complete
functional test would involve checking all 2n possible input combinations,
which becomes impractical for circuits with a large number of inputs.

• Structural testing, on the other hand, is a more practical method because it
focuses on the circuit’s structure. This approach involves selecting specific
test patterns based on the circuit’s description and a fault model, which helps
in identifying faults caused by manufacturing defects.

In testing literature, it is important to differentiate a defect, an error, and a
fault: [17]

• Defect – unintended difference between hardware implementation and hardware
design

• Error – wrong output signal produced by a defective system, i.e. caused by a
defect

• Fault – representation of a defect at the abstracted function level. Faults,
furthermore, can be transient or persistent over time.

2.6.1 Fault Models
To simplify the generation of test patterns by abstracting from hardware defects,
fault models have been developed. Fault models allow to abstract, level by level,
from the physical implementation of the circuit.

The most employed fault models related to Deep Learning can be found at gate
level, where the circuit consists of a netlist of gates [17].

Fault models in digital circuits can fall under one of the following assumptions:

• Single fault assumption – only one fault can occur in a circuit at the same
time. Given k possible fault types in the circuit and n signal lines, by single
fault assumption, the total number of single faults is k × n

• Multiple fault assumption: multiple faults may occur in a circuit

Fault models include:

• Stuck-at faults – an input signal, or gate output, is stuck (fixed) at a 0 or
1 value, independently of the inputs to the circuit. Depending on the value,
these faults are classified as stuck-at-0 (SA0) or stuck-at-1 (SA1).
Ideally a gate-level circuit would be completely tested by applying all possible
inputs and checking that they compute the right outputs, but this is completely
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impractical: a 32-bit adder would require 264 = 1.8 × 1019 tests, taking 58
years at 0.1 ns/test. The stuck-at fault model assumes that only one input on
one gate will be faulty at a time, assuming that if more are faulty, a test that
can detect any single fault, should easily find multiple faults.
Nevertheless, not all faults can be analyzed using the stuck-at fault model,
e.g. redundant circuits cannot be tested, since by design there is no change in
any output as a result of a single fault.

Figure 2.10: Single Stuck-at fault example [17]

• Bridging faults – two signals are improperly connected when they should
remain separate. This can lead to a wired-OR or wired-AND logic function,
depending on the type of logic circuitry used.

• Transistor faults – these faults can be found in Complementary Metal Oxide
Semiconductor (CMOS) logic gates. At the transistor level, a fault can be
categorized as either stuck-short or stuck-open. In a stuck-short condition,
the transistor behaves as if it is always conducting (stuck-on), while in a
stuck-open condition, the transistor never conducts current (stuck-off).

For the purposes of this thesis, the focus will be placed on stuck-at faults only.
Indeed, a worth mentioning property regarding stuck-at faults is the possibility of
collapsing different faults. Two main ways of collapsing faults exist:

• Equivalence collapsing – all single faults of a digital circuit can be divided
into disjoint equivalence subsets, where all faults in a subset are mutually
equivalent. A collapsed fault set contains one fault from each equivalence
subset, allowing the circuit to reduce the number of single stuck-at faults. Two
faults F and F’ are equivalent if all tests that detect F also detect F’.
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• Dominance collapsing – a fault F is called dominant to F’ if all tests of F’
detects F. In this case, F can be removed from the fault list. Furthermore, if
F dominates F’ and F’ dominates F, then these two faults are equivalent.

2.6.2 Testing Phases
Digital system testing consists of multiple stages, each corresponding to a specific
phase in the circuit’s lifecycle.

Post-Production Testing

Post-production testing is performed on every manufactured chip to ensure that each
device meets its design specifications. This stage focuses on detecting manufacturing
defects that could cause the device to fail in the field. Since performing exhaustive
testing is both time-consuming and costly, post-production testing typically aims
to achieve high fault coverage while minimizing the number of test patterns used
[18].

Burn-In Testing

The purpose of burn-in is to accelerate the occurrence of latent defects, thereby
causing any potentially defective devices to fail early in their lifecycle. Research has
shown that burn-in testing effectively reduces early-life failures in digital circuits,
helping manufacturers to improve product reliability.

On-Line Testing

On-line testing is performed while the CUT is in use in its intended application to
detect faults that occur during normal operation. This stage often involves Built-In
Self-Test (BIST) techniques, where additional circuitry is integrated into the device
to enable self-testing without external equipment [19]. Alternatively, Software-
Based Self-Test(SBST) techniques can be used, which rely on executing specific test
programs capable of detecting faults without requiring extra hardware. On-line
testing is particularly important for safety-critical applications where continuous
operation must be assured.

2.6.3 Fault Injection
The effectiveness of the testing stages is often evaluated using Fault Injection (FI)
techniques. FI involves deliberately introducing faults into a circuit to study its
behavior under failure conditions. Specifically, the circuit is fed of input stimuli and
the response is compared with a golden reference to assess possible mismatches.
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FI Methodologies

The FI methodologies can be classified into simulation-based, platform-based, and
radiation-based approaches [20]:

Simulation-based – the injection process is conducted without relying on the
physical device executing the Deep Neural Network (DNN). Depending on the
level of abstraction, they can be further classified as:

• Software-level – Software-level injections are performed on a high-level
model of the DNN, without considering any details of the actual hardware
architecture.

• Hardware-level – Hardware-level injections are performed on a more
accurate model of the DNN that simulates the target hardware architecture.
For example, the target can be represented at the register transfer level
(RTL) or at the gate level

Platform-based – measurements and analyses are performed directly on a physical
device that emulates the final implementation of a design, e.g. using FPGAs
or on physical platforms that run DNNs, such as CPUs and GPUs.

Radiation-based – reliability assessment is carried out through accelerated radia-
tion test campaigns mimicking external electromagnetic interference, such as
the occurrence of ionizing particles, on the actual platform running the DNN.

2.6.4 Test Generation
As discussed earlier in this section, digital circuits are typically tested by applying
a set of test patterns. Performing an exhaustive functional test of a device with
n inputs would require testing all 2n possible input combinations, which quickly
becomes impractical as n increases. Therefore, structural testing is employed to
limit the test patterns to those required to detect specific types of faults, as defined
by a fault model.

To evaluate the effectiveness of a structural test, a commonly used metric is
Fault Coverage (FC), which is defined as:

FC = number of detected faults
total number of faults (2.15)

There are several test pattern generation techniques, each based on different
methodologies, including Automatic Test Pattern Generation (ATPG), random
test pattern generation, and evolutionary-based test pattern generation.

Automatic Test Pattern Generation (ATPG) is an Electronic Design
Automation (EDA) technique used to find input test vectors that, when applied

21



Background

to a digital circuit, allow automatic test equipment to differentiate between the
correct behavior of the circuit and the faulty behavior. The patterns generated by
ATPG are utilized to test semiconductor devices after manufacturing, particularly
exploiting the On-Line testing strategy.

A fault is considered detected by a test pattern if the output resulting from
that test pattern, when applied to a device with only that specific fault, differs
from the expected output. The ATPG process for a targeted fault involves two
main phases: fault activation and fault propagation. Fault activation sets a signal
value at the fault model site that is the opposite of the value produced by the
fault model. Fault propagation then advances the resulting signal value, or fault
effect, by sensitizing a path from the fault site to a primary output. Since ATPG
algorithms rely on a low level description of the circuit they are able to generate
very accurate test patterns but may require long time span to complete [17].

Random Test Pattern Generation is a EDA technique which aim to generate
pseudo random test patterns. This method is particularly useful for scenarios
where exhaustive testing is impractical due to the large number of possible input
combinations. Random patterns can be quickly generated using simple hardware
structures, such as Linear Feedback Shift Registers (LFSRs), which makes them
a popular choice in Built-In Self-Test (BIST) environments. The main drawback
which can be observed is the large number of patterns which this technique may
require to achieve high fault coverage, especially for circuits with random-pattern-
resistant faults. [17, 21].

Evolutionary-Based Test Pattern Generation leverages evolutionary algo-
rithms to create effective test patterns for digital circuits. These algorithms mimic
the process of natural evolution, utilizing operations such as selection, crossover,
and mutation to evolve a population of test patterns over several generations. The
primary goal is to maximize a fitness function that represents the fault coverage
capability of each test pattern. This approach is particularly useful for complex
circuits where traditional test pattern generation methods may fall short [17].

2.7 Software Test Library (STL)
On-line testing strategies based on functional methods have been incorporated as
a common solution by industry sectors such as the automotive one [1]. In these
cases, the on-line test of the processor core and the related peripherals, including
Graphics Processing Units (GPUs), is performed through the periodic execution
of Software Test Libraries (STLs) composed of a set of assembly programs,
i.e. Test Programs (TPs) able to thoroughly excite the processor core and detect
possible permanent faults, such as SA-1 and SA-0. Adopting STL solutions allows
the system to perform the test on-line, and does not require any hardware overhead
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since it only needs a suitable memory space for saving the test libraries. In the
literature, STLs have been proposed as an effective safety mechanism to test in the
field systems such as Graphics Processing Units (GPUs), widely used to accelerate
AI applications [2, 3]. However, devising an STL requires a large amount of manual
and semi-automatic work, since no EDA tools are available for their generation.
In particular, the execution of specific STLs interleaving CNN inferences may
jeopardize the strive for performance maximization [4] [5].

A high-level architecture of an STL is shown in the figure below. The architecture
is divided into four components [22]:

• Simple API

• Scheduler

• Blocks: logical group of parts representing the functional blocks of the proces-
sor, i.e. core, to ensure configurability of STLs in accordance with the CPU
configuration.

• Parts: generated either by constrained random test generator or directed tests
written to target a specific logic. These tests are written in assembly code to
enable efficient execution and to avoid compiler optimizations that may occur
for code written in C.

Figure 2.11: ARM STL example architecture [22]

2.8 Image Test Library (ITL)
This section aims to present a method to construct software-based test images that
can effectively detect in-field permanent faults occurring during the operational
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phase of a multiplier in GPUs, e.g., due to aging effects. The overall idea relies first
on an ATPG-based approach (highly effective for regular structures like accelerator
functional units) to find out a set of suitable input values at the functional unit level
and then transform them into a test image. By utilizing the CNN architecture and
its weights, particularly those of the convolutional layers, these test images can be
processed to achieve high fault coverage on the accelerator under test. As a result,
the generated test images can be executed in-field using the same CNN, alternating
between "normal" inferences and self-test images from the Image Test Library (ITL),
without needing to load new weights into memory. The concept is primarily based
on the following observation: once a CNN is deployed in the field, the trained
model is loaded, and its weights remain static. Unlike its software counterpart,
Software Test Libraries (STL), the proposed method enables a self-test routine on
an accelerator by directly utilizing the CNN without altering or interrupting its
execution. This approach avoids the costs linked to memory load operations and
context switching [5].

2.9 ITL Generation
The idea behind the generation of test images is based on three steps [5]:

1. Dataflow algorithm extraction – the objective of this phase is to determine
how various operations are scheduled on the GPU’s architecture and how
convolution processes are executed. It is essential to identify the correlation
between input pixels, CNN weights and the GPU’s multipliers which compute
convolutions. In accelerators, the dataflow algorithm is generally predefined
in the architectural specification.

2. ATPG-based pattern generation – once the dataflow algorithm is deter-
mined, an ATPG process is initiated to identify the set Pc of input-weight test
patterns ⟨i, w⟩ that maximize the test coverage of the GPU’s multipliers. The
parameter w corresponds to the actual trained weights W of the CNN, which
are imposed as constraints during the ATPG generation. As a result, the
generated test patterns depend on both the real CNN weights and the input
values produced by the ATPG. For online testing, these carefully-designed test
patterns ⟨i, w⟩ are applied to the multiplier unit through appropriate images
that make up the ITL.

3. Self-test images generation – given the list of suitable input positions
multiplied by each weight, it is possible to reconstruct the images placing each
pattern into a free input position.
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Figure 2.12: Graphic representation of the proposed method to generate ITLs [5]

2.9.1 Dataflow Algorithm Extraction
Let I ∈ RN×HI×WI×C represent the input feature map, W ∈ RM×f×f×C the
filter tensor, and O ∈ RN×HO×WO×M the output feature map resulting from the
convolution of I and W performed by the CNN.

The Dataflow Algorithm Extraction stage involves mapping both the elements
of O to the specific multipliers that compute their values, and the elements of O to
the elements of I to the elements of W . This mapping is referred to as the dataflow
algorithm.

Three main phases compose this process:

1. Thread-core mapping – the mapping between a software thread and a hardware
core. Its purpose is to uniquely associate a thread T to a GPU core C:

T0 ⇐⇒ C0 ← [⟨I0,0,0,0, w0,0,0,0⟩, . . .]
T1 ⇐⇒ C1 ← [⟨I1,0,0,1, w1,0,0,1⟩, . . .]

...

2. Workload-thread mapping – the mapping between an element of the OFMAP
and a software thread. Its purpose is to associate a thread T to a specific output
element On,h,w,m and, consequently, associating T to a list of multiplications
represented as ⟨i, w⟩ pairs:

T0 ⇐⇒ O0,0,0,0 ← {[⟨i0,0,0,0, w0,0,0,0⟩, . . .] , [⟨i0,0,1,0, w0,0,0,0⟩, . . .] , . . .}
T1 ⇐⇒ O1,0,0,1 ← {[⟨i1,0,0,1, w1,0,0,1⟩, . . .] , [⟨i1,0,1,1, w1,0,0,1⟩, . . .] , . . .}

...
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Understanding the convolution algorithm is crucial for linking each output
element to the specific multiplications that produced it. These multiplications
are represented as pairs ⟨i, w⟩, where w ∈ W represents a weight, and i ∈ I is an
element in the input feature map (IFMAP).

Given an input tensor (which may be padded) I ∈ RN×HI×WI×C , a filter tensor
W ∈ RM×f×f×C , and an output tensor O ∈ RN×HO×WO×M , each element On,h,w,m

in O corresponds to the set of multiplications that compute it, e.g.:

O0,0,0,0 → [⟨i0,0,0,0, w0,0,0,0⟩, ⟨i0,0,1,0, w0,0,1,0⟩, . . .]

O0,0,1,0 → [⟨i0,0,1,0, w0,0,0,0⟩, ⟨i0,0,2,0, w0,0,1,0⟩, . . .]

...

The pairs ⟨i, w⟩ will be instrumental during the self-test image generation process,
identifying the available positions within the input image where the input patterns
could be placed.

2.9.2 ATPG-based Pattern Generation
Once the dataflow algorithm is established, each multiplier is assigned to a specific
set of multiplications that compute an OFMAP location. An ATPG process is
then initiated to identify the set Pc of input-weight pairs ⟨i, w⟩ that maximize
test coverage for the multipliers in core c. To achieve this, the weights w ∈ W ∈
RM×f×f×C , representing the actual trained weights from a CNN layer, are applied
as constraints during ATPG generation. Additionally, an extra condition is imposed
to force the 30-th bit of i to be 0, preventing the generation of infinities and NaN
values. It is important to emphasize that the ATPG process is executed solely on
the targeted modules, and the resulting test patterns are specific to their inputs.

2.9.3 Self-test Image Generation
For the online testing phase, the crafted ⟨i, w⟩ pairs generated in the previous step
are provided to the multiplier units through appropriately constructed images from
the ITL. In the initial step, the Dataflow Algorithm Extraction identified the precise
location in,h,w,c of the input feature map (IFMAP) being multiplied by the filter
weight wm,f,f,c, these information ensure that the patterns are accurately positioned
within the input feature map, allowing the multiplier to correctly perform the
multiplication with the corresponding weight w.

Algorithm 1 summarizes the entire self-test image generation process. Given
a certain core and the weights of the considered convolutional layer, for each of
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Algorithm 1 Self-test Image Generation [5]
Inputs: ATPG-patterns - IFMAP inputs
Outputs: ITL - List of test images [Ifmap ∈ RHI×WI×C ]

1: ITL ← []
2: for core ← 0 to ncores do do
3: inputs ← MAP-CORE-TO-INPUTS(core)
4: Group-by-Weight(inputs)
5: patterns ← ATPG-patterns[core]
6: for (pattern, weight) in patterns do
7: widx ← Get-Weight-Index(weight)
8: positions ← inputs[widx]
9: Ifmap, ifree ← Find-Empty-Pos(ITL, positions)

10: if Ifmap = nil then
11: Ifmap ← Append-New-Image(ITL)
12: ifree ← positions[0]
13: end if
14: Ifmap[ifree]← pattern
15: end for
16: end for
17: return ITL

them, the list of Iidx indexes from the IFMAP involved in a multiplication with
the considered weight is built (line 4). Then, the ATPG process is executed (line
5) in order to gather the (pattern, weight) test pattern pairs; every pattern must
be placed in a different and suitable location of the IFMAP. To reach this goal, all
the patterns are considered one by one (line 6) looking for the IFMAP positions in
which the considered weight is involved in the multiplication with the pattern index
(line 8). If any free position is available (line 9) (i.e. it is not already occupied
by another pattern), then the pattern is placed in the chosen position (line 14),
otherwise a new ITL image is generated (line 11).

2.10 ITL Validation
To validate the use of ITLs for on-line testing, it is crucial to emphasize their
capability to trigger hardware faults in the targeted functional module and allow
those faults to propagate to the software level, where their presence is detected. In
order to analyze the cross-level propagation of hardware faults within a target unit,
architectural-level fault simulations must be conducted. For each injected fault, it
is necessary to verify whether the fault is propagated to the software layer.
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2.10.1 Fault Injection
The idea proposed in [5] stems from a mathematical observation. Let’s consider
the inputs (I and W ) and the output (O) of a multiplier. In the presence of a fault
affecting it, the product I ×W may yield a faulty output Ô, that is: I ×W = Ô
However, this fault can also be thought of as a faulty input (Î or Ŵ ) entering a
golden multiplier and producing the same faulty output Ô. Knowing the value
of Ô that derives from a fault affecting the multiplier, it is possible to obtain
the respective faulty input (Î or Ŵ ), that corresponds to the same fault without
injecting it. Assuming a golden multiplier, the same fault can be seen as:

Î = Ô

W
(2.16)

Ŵ = Ô

I
(2.17)

Furthermore, if a faulty multiplier performs J multiplications, there will be J
corrupted outputs Ôj for j ∈ [1, .., J ]. This is equivalent to having J multiplications
executed by a golden multiplier with a set of corrupted inputs Îj (or weights Ŵj),
for j ∈ [1, .., J ] [5].

Fault Equivalence

According to [23], this property describes how two faulty functions are identical
[17]. To better explain what fault equivalence is, the XOR function is exploited;
let V be a test array for a fault:

f0(V )⊕ f1(V ) = 1 (2.18)

, where f0 is a fault-free function and f1 is the faulty one. Consider a second fault
which produces a faulty function f2. According to the definition of fault equivalence,
two equivalence faults have the exactly the same tests. Therefore, two faults to be
equivalent, we have

[f0(V )⊕ f1(V )]⊕ [f0(V )⊕ f2(V )] = 0 (2.19)

Manipulation of the above equation leads to the following result:

f1(V )⊕ f2(V ) = 0 (2.20)

which means that the two faulty functions are identical.
Now, let’s apply the fault equivalence property to the ITL’s context: let f

represent a fault, (I, W ) be a test pattern for f , M(I, W ) be the multiplication

28



Background

between I (representing the input) and W (representing the weight) performed by
a fault-free multiplier, and M̂f (I, W ) be the multiplication of I and W performed
by the same multiplier in the presence of fault f . Thus, we have M(I, W ) = O

and M̂f (I, W ) = Ôf .
Now, as per the equation 2.20, let’s assume there is another fault g affecting the

input lines of the multiplier such that M̂g(I, W ) = M̂f (I, W ). Since faults f and g
yield the same output, they are identical.

For the purpose of fault injection, this fault equivalence implies that the output
produced by injecting g and testing it with (I, W ) is the same as the output
produced by injecting f . However, let’s consider the case in which injecting f might
be complex, while injecting g might be significantly simpler. It can be observed
that g causes the multiplier to receive a faulty input Îg, but it does not alter
the internal multiplier, i.e. the effective computation performed by the multiplier
remains correct.

This observation allows to assume that the multiplier is fault-free while shifting
the fault g to the input, effectively computing M(Îg, W ) = Ôf . Since the fault g is
considered controllable, instead of injecting f , its equivalent fault g is injected on
the input of a fault-free multiplier.

ITL Fault Injection

In the [5] paper, a methodology to perform very accurate software FIs by applying
faulty inputs Î to the CNN which exactly correspond to specific hardware faults
internal to the targeted functional unit, is proposed. This approach has two main
advantages: it combines the accuracy of the gate-level micro-architectural simulation
with the speed of software FIs, and it allows to experimentally demonstrate that
the proposed self-test images (ITLs) can excite permanent faults inside functional
units while propagating the effects up to the OFMAP. The impact of hardware
faults is not simulated by performing complex and costly multi-level simulation
environments, but only launching the inference of faulty images that exactly reflect
a precise hardware fault within the network. The generation of faulty images
that corresponds to injecting a specific fault within a multiplier is described in
Algorithm 2.

The Algorithm 2 allows to generate a list of faulty images which corresponds
to injecting a specific fault within a multiplier. Once the fault is injected at low
level (level 4), for each multiplication which is performed during the convolution,
its weight W [op] and faulty output Ô are collected in order to compute the relative
faulty input ˆI[op] (line 6,7,8). Eventually, the list of all the faulty inputs is pitched
into faulty images.

To inject faults at application-level using the images generated with Algorithm
2, it is necessary to combine the information of the list of images in a single faulty
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Algorithm 2 Faulty Images for a Fault in an HW Multiplier [5]
Inputs:

• MULx - Selected multiplier;

• fault - A stuck-at fault of MULx;

• ITL - Image test library for a specific CNN;

• Operations - Pairs of ⟨input, weight⟩ multiplications performed by MULx
during the convolution;

• n_op - Number of Operations.

Output: FImg - List of faulty images for a single HW fault.
1: FImg ← []
2: Î ← []
3: W ← []
4: MULX-INJECT(fault)
5: for op ← 0 to n_op do
6: Ô ← MULX-MULTIPLY(Operations[op])
7: W[op] ← GET-WEIGHT(Operations[op])
8: Î[op]← Ô

W

9: end for
10: FImg[fault] ← PATCH-ITL(Î, W, ITL)
11: MULX-CLEAN(fault)
12: return FImg

OFMAP.

Software-level Observability

With the developed ITL, during the on-line self test, we want to fix the observability
point at the software level. As a consequence, for each self-test image, the respective
golden output of the softmax layer is stored, and it is compared to the resulting
one on-line: if they differ, a warning is raised.
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Chapter 3

ITL for Edge Accelerators

This chapter aims to explain how the ITL generation process, outlined in Section 2.8,
has been adapted to function effectively on edge devices running CNNs. While the
core steps remain unchanged, certain modifications were necessary to accommodate
the specific architecture of the edge accelerator being used.

3.1 ITL Generation for Edge Accelerators

3.1.1 Dataflow Algorithm Extraction
In the context of this thesis, using the X-HEEP architecture to run CNNs means
working with a RISC-V microcontroller based on the RISC-V lowRISC Ibex [24], a
32-bit open-source low-power single-core single-thread system. As a result, two of
three main phases of which the dataflow algorithm is composed by, can be omitted,
specifically:

• Thread-core mapping – since the X-HEEP microcontroller is a single-thread
single-core architecture, this phase decades.

• Workload-thread mapping – since the X-HEEP microcontroller is a single-thread
single-core architecture, this phase decades as well. All the elements of the
OFMAP are computed by the same thread on the same core.

The last phase of the dataflow algorithm, the convolution algorithm, is crucial for
linking each output element to the specific multiplications that produced it. Indeed,
the pairs ⟨i, w⟩ will be instrumental during both the self-test image generation
process, and during the ITL validation process in which they will allow to build the
multiplications performed during the convolution bypass described in Section 3.2.
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3.1.2 ATPG-based Pattern Generation
During inference in quantized neural networks, the result of an operation may fall
outside the range of the chosen number representation. In particular, when using
8-bit signed integers it may happen to incur in an overflow during a multiplication
or addition. For this reason, the activations of a quantized layer are computed
using 32-bit signed integer arithmetic and the final results are then rescaled to 8
bits. The ATPG process should be designed keeping this in mind, by considering
weights and inputs as 8-bit signed integers on which sign extension to 32-bit is
performed. Practically, this translates to constraining the most significant 24 bits
of the operands to be equal to the sign bit of the operands.

It is important to note that the ATPG process is only executed on the targeted
module (i.e. in the context of this thesis, the integer multiplier parts of the X-HEEP
accelerator), and the resulting test patterns pertain solely to its inputs.

3.1.3 Self-test Image Generation
Given the context of this thesis, exploiting the single-core single-thread X-HEEP
architecture allows to overcome both the thread-core mapping and the workload-
thread mapping phases since the whole weights are computed by the same 32-bit
core and the same thread. The just mentioned configuration allows to exploit the
Algorithm 1 but with ncores = 1.

3.1.4 Inverted Image Class Visualization
After placing all the patterns in the IFMAP positions, the self-test image generation
process proceeds to the next phase: the Inverted Image Class Visualization. This
step only considers the IFMAP positions where no patterns are present, enabling
the generation of an image as balanced as possible, across all class predictions.
This balance increases the likelihood of leading to an incorrect class prediction in
the occurrence of a fault [25].

Image Class Visualization

The idea exploited in this thesis stems from the concept of Image Class Visualization.
According to [26], the Image Class Visualization (ICV) is a technique for visualising
a chosen class model. Given a trained classification network and a class of interest,
the visualisation method consists in numerically generating an image, which is
representative of the class in terms of the network class scoring model.

More formally, let Sc(I) be the score of the class c, computed by the classification
layer of the network for an image I. The objective is to find an L2-regularised
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image, such that the score Sc is high:

arg max
I

Sc(I)− λ∥I∥2
2,

where λ represents the regularization parameter. A locally-optimal I can be
obtained using the back-propagation method. This process is similar to the network
training procedure, where back-propagation is employed to optimize the layer
weights. The key difference, however, is that in the case of image class visualization,
the optimization is performed with respect to the input image, while the weights
remain fixed to those determined during the training phase.

It should be noted that the (unnormalised) class scores Sc are used, rather
than the output confidence scores returned by the Softmax layer: Pc = exp Scq

c
exp Sc

.
The reason is that the maximisation of a certain output score can be achieved by
minimising the scores of other classes. Therefore, Sc has been optimised to ensure
that the optimisation concentrates only on the class in question c [26].

Figure 3.1: ICV example: numerically computed input images [26]

Inverted Image Class Visualization

Built on the original concept of ICV, the opposite reasoning (i.e. Inverted Image
Class Visualization (IICV)) aims to maximize the class prediction balance by
generating an image that is equidistant from all class predictions (i.e. maximizing
the input image’s entropy), effectively maximizing the similarity between the
predicted probabilities and an array of equally distributed probabilities across the
available classes, starting from a completely random generated image.

Cosine similarity is used as a loss function, since it is particularly suited for tasks
that involve minimizing the distance between two vectors. The cosine similarity
is computed on the output of the Softmax activation function, i.e., on the output
confidence scores, differently from ICV, and is defined as:
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CosineSimilarity(Pc, P̂c) = − Pc · P̂c

∥Pc∥2∥P̂c∥2

where Pc is the vector containing the predicted confidence scores and P̂c is the
vector containing the target confidence scores.

3.2 ITL Validation for Edge Accelerators
The ITL Validation step is necessary to validate the use of ITLs for on-line testing
of edge accelerators.

In this thesis, using a 32-bit integer multiplier, and exploiting a quantized
network composed by 8-bit signed integer tensors, posed challenges for Algorithm 2,
which is responsible for generating faulty images for fault injection and validating
the ITL method for traditional GPUs.

Î = Ô

W
(3.1)

The equation 3.1, deriving from the equivalence M(Î , W ) = Ô ≡ M̂(I, W ) = Ô,
where M is the multiplication between I and W , cannot be exploited in order to
retrieve the faulty input Î (and, consequently, the faulty images which correspond
to inject a specific fault within the multiplier, according to line 10 of Algorithm 2),
since the multiplicative inverse of an integer in a finite field – required to compute
the division – is not always guaranteed to exist.

The solution to this issue is to directly compute the faulty convolution starting
from the faulty outputs obtained by fault injection. Each element of the output
feature map is manually computed by summing the outputs of multiplications
involved in the computation of that element. The resulting feature map is then
passed to activation functions to obtain the final output.

As a result, the ITL validation process could carry out faulty multiplications
and bypass the traditional convolution operation in favor of a "custom" convolution
that utilizes a faulty multiplier. The general process is reported in algorithm 3.
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Algorithm 3 Faulty Convolution
Inputs:

• MUL - Multiplier;

• fault - A stuck-at fault of MUL;

• Ifmap - Input feature map of a specific convolutional layer;

• Operations - Pairs of ⟨input, weight⟩ multiplications performed by MUL during
the convolution;

• n_op - Number of Operations.

Output: FOfmap - Faulty output feature map for a single HW fault.
1: FOfmap ← []
2: Ô ← []
3: MULInject(fault)
4: for op ← 0 to n_op do
5: Ô[op] ← MULMultiply(Operations[op])
6: end for
7: for i← 0 to Size(FOfmap) do
8: FaultyMuls ← GetMultiplications(i)
9: FOfmap[i] ← Sum(FaultyMuls)

10: end for
11: return FOfmap
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Results

This chapter presents the experimental results that demonstrate the effectiveness
of the proposed approach, evaluated using the X-HEEP microcontroller platform
along with the TUL PYNQ-Z2 board. As a case study, ITL was generated for
one CNN architecture, namely LeNet-5 [10]. The ITL was specifically designed to
detect permanent faults affecting the accelerator’s 32-bit integer multiplier.

Section 4.1.1 provides an overview of the X-HEEP platform, CNN architecture,
and multiplier used in the experiments. Section 4.3 delves into the ITL generation
process, highlighting the steps outlined in Section 3.1, as well as detailing the
ATPG process and key ITL parameters such as test coverage and storage needs.
Additionally, a visual representation of the generated ITL is provided. Section
4.4 outlines the results obtained through the ITL validation method described in
Section 3.2.

4.1 Experimental Setup

4.1.1 X-HEEP
The chosen X-HEEP platform involves:

• a CPU subsystem based on the RISC-V lowRISC Ibex, a 32-bit open-source
low-power single-thread single-core written in SystemVerilog originally designed
by ETH Zurich. Ibex offers several configuration parameters to meet the needs
of various application scenarios. Specifically the CV32E20 core was chosen.

• a one-to-many bus topology.

• 16 banks of memory of 32 KB per each.
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Figure 4.1: lowRISC Ibex core architecture [24]

4.1.2 Multiplier

The multiplier used in the Ibex core and involved in the convolution operations is
denoted as RV32MFast. It is a 32-bit integer multi-cycle multiplier/divider which
computes integer multiplications in 3-4 clock cycles [27]. Each 32-bit output is
computed between operand_a and operand_b either in signed or unsigned mode.
The ATPG process was carried out using the Synopsys TetraMAX tool. The
synthetized gate-level unit features a total of 9928 stuck-at faults.

4.1.3 TUL PYNQ-Z2 Board

The TUL PYNQ-Z2 board, based on Xilinx Zynq XC7Z020-1CLG400C SoC,
has been designed for the Xilinx University Program to support PYNQ (Python
Productivity for Zynq) framework and embedded systems development [28].

The research done in this thesis relies on the X-HEEP architecture implemented
over the PYNQ-Z2 board running CNNs.

Indeed, the chosen configuration includes the CV32E20 CPU, 16 memory banks
of 32 KBytes each and the one-at-a-time bus topology. This configuration, indeed,
allows to achieve a edge computing system with a small memory and a 32-bit
RISC-V CPU core.
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Figure 4.2: PYNQ Z2 board

4.1.4 CNN

An ITL has been generated for the LeNet-5 CNN, which was trained and tested
on the CIFAR-10 dataset using Keras. In the first layer of LeNet-5, a convolution
with ’valid’ padding and a stride of 1 is applied to a 1 × 32 × 32 input image.
This operation uses a filter consisting of 6 filters, each with dimensions 1× 5× 5,
resulting in a total of 150 32-bit Floating Point (FP32) weights. It must be noticed
that the model has been quantized to 8-bit Integer (INT8) to be compatible and
optimized for the 32-bit integer RV32:MFast Multiplier.
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Level Feature Maps Dimensions Connections
Input Layer - 32 × 32 pixels -

C1 (Convolution + Tanh) 6 28 × 28 117,600
S2 (Subsampling + Sig) 6 14 × 14 5,880

C3 (Convolution + Tanh) 16 10 × 10 151,600
S4 (Subsampling + Sig) 16 5 × 5 2,000

C5 (Convolution + Tanh) 120 1 × 1 48,000
F6 (Fully Connected + Tanh) 84 - Fully Connected

F7 (Fully Connected) 10 - Fully Connected
Softmax RBF unit - -

Table 4.1: LeNet-5 Architecture Breakdown

LeNet-5 architecture

1. C1 (Convolutional layer + Tanh activation function)

• Feature Maps: 6 feature maps.
• Connections: each output feature map cell is connected to a 5×5

neighborhood in the input, producing 28×28 output feature maps to
prevent boundary effects.

• Operation: convolution operation followed by a Tanh activation function.

2. S2 (Subsampling layer + Sigmoid activation function)

• Feature Maps: 6 feature maps.
• Connections: each output feature map cell is connected to several 2×2

neighborhood in the input, producing 14×14 output feature maps.
• Operation: average pooling operation followed by a Sigmoid activation

function.

3. C3 (Convolutional layer + Tanh activation function)

• Feature Maps: 16 feature maps.
• Connections: each output feature map cell is connected to several 5×5

neighborhoods at identical locations in a subset of S2’s feature maps.
• Operation: convolution operation followed by a Tanh activation function.

4. S4 (Subsampling Layer + Sigmoid activation function)

• Feature Maps: 16 feature maps.
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• Connections: each output feature map cell is connected to several 2×2
neighborhood in the input, producing 5×5 output feature maps.

• Operation: average pooling operation followed by a Sigmoid activation
function.

5. C5 (Convolutional layer + Tanh activation function)

• Feature Maps: 120 feature maps.
• Connections: each output feature map cell is connected to a 5×5

neighborhood on all 16 of S4’s feature maps.
• Operation: convolution operation followed by a Tanh activation function.

6. F6 (Fully Connected Layer + Tanh activation function)

• Units: 84 units.
• Connections: Each output feature map cell is fully connected to C5
• Operation: fully connected operation followed by a Tanh activation

function.

7. F7 (Fully Connected Layer + Softmax activation function)

• Units: 10 units.
• Connections: Each output feature map cell is fully connected to F6
• Operation: fully connected operation followed by a Softmax activation

function which estimates the class predictions.

LeNet-5 training

The LeNet-5 convolutional neural network has been trained using Tensorflow.keras
in Python within the Google Colab environment. Specifically, Keras framework and
the Mnist dataset have both been involved in order to properly train the network
allowing it to achieve an accuracy value around the 96%.

Listing 4.1: LeNet Model Training
1 ( x_train , y_train ) = data s e t s . mnist . load_data ( )
2 x_train = t f . pad ( x_train , [ [ 0 , 0 ] , [ 2 , 2 ] , [ 2 , 2 ] ] ) / 255
3 model = Lenet ( )
4 model . bu i ld ( x_train . shape )
5 EPOCHS = 5
6 BATCH_SIZE = 128
7

8 model . compi le ( opt imize r=’adam ’ , l o s s=l o s s e s .
spar s e_categor i ca l_cros s ent ropy , met r i c s =[ ’ accuracy ’ ] )

9 h i s t o r y = model . f i t ( x_train , y_train , batch_size=BATCH_SIZE, epochs=
EPOCHS, va l idat ion_data=(x_val , y_val ) )
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4.2 TensorFlow Lite

TensorFlow Lite is a streamlined version of TensorFlow, an open-source machine learning
framework developed by Google, designed to build, train, and deploy machine learning
models across a variety of platforms.

TF Lite is tailored for mobile and embedded devices enabling machine learning
at the edge, allowing pre-trained models to run efficiently on devices with limited
computational resources. It employs optimization techniques such as quantization and
pruning, reducing memory usage and processing demands while maintaining a reasonable
level of accuracy. TensorFlow Lite supports hardware acceleration and is widely used
in real-time applications like object detection, speech recognition, and other AI-driven
tasks on low-power devices.

Figure 4.3: TensorFlow Lite toolkit [29]

As shown in Figure 4.3, after training the LeNet-5 model using the TensorFlow
API, Keras, TensorFlow Lite successfully converted the model into its 8-bit integer
representation using the TFLite Converter, which applied post-training quantization as
described in Section 2.4. The TFLite Interpreter, in turn, was used to carry out inference
on the quantized LeNet-5 model.

4.3 ITL Generation

As highlighted in Section 3.1, the ITL generation involves three main steps:
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1 [
2 { "<batch_size>_<out_h_idx>_<out_w_idx>_<n_ch_out>" : [
3 {
4 "<batch_size >,<Input_h_idx>,<Input_w_idx>,<in_ch_in>"
5 :
6 "<n_ch_out>,<Kernel_h_idx>,<Kernel_h_idx>,<f i l t e r _ n >"
7 } ,
8 . . .
9 ]

10 }
11 ]

Listing 4.2: Convolutional Algorithm ⟨i, w⟩ pairs

4.3.1 Dataflow Algorithm Extraction
The extraction of the dataflow algorithm focuses on mapping the elements of the output
feature map to the corresponding elements of the input feature map and to the specific
multipliers responsible for performing the convolutional operations. The process, as
explained in Section 2.9.1, consists of three main stages: thread-core mapping, workload-
thread mapping and the convolutional algorithm. The first two stages are automatically
handled due to the characteristics of the single-core, single-thread X-HEEP architecture.
Indeed, the architecture involved in this thesis’ case study employs a single 32-bit integer
multiplier as the sole computational unit involved in the convolutional operations.

The remaining stage is the one referring to the convolutional algorithm. The objective
of this stage is, exploiting the Python language, to gather the link between each element
of the output feature map and, both, the input feature map element and weight element
involved in the multiplication computing the output element. Note that changing this
mapping could change the fault propagation and affect the TC of the targeted unit. The
result is saved on a .json file and then used during the Self-test Images Generation step.
The Listing 4.2 shows an example of the .json file content organization [30].

4.3.2 ATPG-based Pattern Generation
Details of the ATPG process of the multiplier under test are provided in table 4.2. The
second column lists the total number of weights used for the convolution in the first
convolutional layer, the third column lists the total number of gathered ATPG patterns,
while the last one shows the test coverage reached by the ATPG. The ATPG process was
configured by imposing constraints on all the weights (for all the 32 bits of the weight),
and for all the 24 most significant bits (MSBs) of all the inputs (since the quantized model
expects 8-bit signed integer inputs) meaning that only the 8 least significant bits (LSBs)
involved in each multiplication are suitable to generate a test pattern. The ultimate aim
was to gather a single ATPG pattern for each weight but some weights failed to produce
patterns capable of increasing the TC. Indeed, the TetraMAX process achieved a final
TC of 86.16% for LeNet-5. Due to the weight and input constraints, 13.82% of the faults
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was categorized as ATPG untestable, while 0.001% was categorized as undetectable.

CNN Number of Weights Number of ATPG Patterns Test Coverage (%)
LeNet-5 150 21 86.16

Table 4.2: Summary of ATPG results for LeNet-5

At the end of this procedure, we obtained a test vector of 21 patterns to be placed in
an input image [5]. The ATPG patterns are then used to reconstruct the self-test images,
as described in Section 3.1.3.

4.3.3 Self-test Images Generation

The ATPG patterns were then used to generate the self-test images, leveraging the
information obtained during the dataflow algorithm extraction, as outlined in Section
3.1.3. The LeNet-5 CNN requires a 32 × 32 input image for the first convolutional
layer, which provides 1024 potential positions where each pattern could be placed. Since
the suitable positions for placing each pattern are related to the weights multiplying
the pattern under exam, and consequently the input position the pattern is going to
occupy, the Dataflow Algorithm Extraction results were used for determining the suitable
locations for each pattern placement.

For the LeNet-5 CNN, the highlighted region in Figure 4.4 indicates the input image
locations where all 21 patterns retrieved are multiplied by their corresponding weight.
This means that within that area, the patterns could be placed randomly, as they will
inevitably be multiplied by their weight (and all the other 20 weights, as well) during the
convolutional operation. The 21 patterns have been positioned in the highlighted cells to
create the shape of the digit "1", allowing to ensure that the LeNet-5 network, executed
on the faulty-free TUL PYNQ-Z2 board, correctly predicts the class "1", as shown by the
results in Table 4.3, "Pattern Placement" column.

After placing all the patterns in the IFMAP positions the self-test image generation
process proceeds exploiting the inverted image class visualization as described in section
3.1.4. This step considers the IFMAP positions where no patterns are present, enabling
the generation of an image balanced across all class predictions. This balance increases
the likelihood of triggering a potential fault, leading to an incorrect class prediction. The
resulting input image and its class prediction, generated exploiting the IICV method
and containing the patterns, is shown in figure 4.5, while the results of the inference are
presented in Table 4.3. The image occupancy on disk is 1024 Bytes.

Table 4.3 presents the class prediction percentages for each class when the input image
is submitted to the trained LeNet-5 network. The first column from the left displays the
predictions for an input image consisting solely of "1"-shaped patterns. The following
columns show the results for the non-quantized network performing inference on an IICV
input image, and for the quantized network performing inference on an IICV input image.
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Figure 4.4: LeNet-5 input image patterns positions

4.4 ITL Validation
Capitalizing what discussed in Section 3.2, in order to compute Ô of the first convolutional
layer, a simulation needed to be performed by injecting all the stuck-at faults and
computing each faulty output Ô. The simulation required approximately 11 hours.

Then, to ensure cross-level propagation of hardware faults affecting the RV32MFast
multiplier in the LeNet-5 CNN, all the faulty images (computed exploiting the M̂(I, W ) =
Ô equation) resulting from the 1608 stuck-at-0/1 faults, obtained from gate-level simu-
lations on the multiplier under test, were used as inputs to the CNN model since the
M(Î , W ) = Ô equation cannot be used to retrieve the faulty input Î, as outlined in
Section 3.2.

Specifically, for the first convolutional layer (conv1 ), faults were injected one by
one into the RV32MFast multiplier along with the list of multiplications related to the
inference of the ITL image to obtain the resulting faulty outputs. For the first layer, as
shown in Figure 4.6, a total of (5× 5× 6× 28× 28) = 117600 faulty multiplications were
performed for each fault.
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Figure 4.5: LeNet-5 ITL

All the faulty multiplications were then used to compute the faulty output tensor by
manually computing the quantized convolution. The output tensor was then fed to the
tanh and the avg layers. The process of extracting multiplications, injecting faults and
computing the related output tensor was repeated for each convolutional layer in order
to propagate the fault up to the output layer. In total, the process took around 37 hours.

4.5 Results
To validate the ITL generated for the LeNet-5, showed in Figure 4.5, the 3216 faulty
predictions, derived from the inference conducted over the fault list of the RV32MFast
Multiplier, were compared to the golden output to gather results and metrics.

The metrics chosen to summarize the results of the experiment are:
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Class Patterns Placement Not-Quant. IICV Quant. IICV
0 0.00% 10.00 10.16%
1 56.64% 10.00 10.16%
2 14.45% 10.00 10.16%
3 1.17% 10.00 10.16%
4 0.39% 10.00 10.16%
5 7.81% 10.00 9.385%
6 0.00% 10.00 10.16%
7 27.73% 10.00 10.16%
8 0.00% 10.00 9.385%
9 5.07% 10.00 10.16%

Table 4.3: Comparison between plain patterns placement and inverted class
visualization inference results for LeNet-5 (both not quantized and quantized)

1. SDC-1, it represents the percentage of faults which cause a top class prediction
change with respect to the fault-free inference (also known as, golden output).

2. SDC-3, it represents the percentage of faults which cause a top 3 classes prediction
change with respect to the fault-free inference (also known as, golden output).

3. SDC-10%, it represents the percentage of faults which cause the confidence score
to vary of ± 10% with respect to the fault-free inference (also known as, golden
output).
The confidence score is a number between 0 and 1 which represents the likelihood
that the output of a CNN is correct. It is represented by the highest class prediction
score.

SDC-1 SDC-3 SDC-10%
LeNet-5 93.22% 96.83% 95.55%

Table 4.4: LeNet-5 coverage metrics

As reported in the Table 4.4, the generated ITL allows to successfully identify the
93.22% of the faults detected for the architecture under test without altering the existing
CNN or performing expensive memory operations.
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Results

Figure 4.6: LeNet-5 ITL Validation process
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Chapter 5

Conclusions

This thesis introduces a novel method for generating test images that can effectively
detect stuck-at faults in the multipliers of edge devices in real-time and in-field scenarios.
We have demonstrated that a very limited set of images, specifically one image for
the LeNet-5 CNN, is capable of covering approximately 93.22% of permanent stuck-at
faults. This approach not only minimizes self-test time but also requires low memory
resources for storing the Input Test Lists (ITLs), making it particularly advantageous for
resource-constrained environments.

Looking ahead, future research will focus on extending this method to more complex
convolutional neural networks (CNNs), such as ResNet and AlexNet. These advanced
networks present unique challenges and opportunities that could further enhance fault
detection capabilities. Additionally, this work could be improved by exploring different
types of faults beyond stuck-at faults, including timing faults, which can have significant
implications for the performance and reliability of edge devices.

A key observation in this research is that edge devices, due to their limited memory
and CPU capacities, could benefit from the implementation of quantized neural networks
even if it results in a slight reduction in precision. This strategy would enable the
hardware to operate more efficiently while still leveraging the power of neural networks.
Moreover, the ITLs developed in this study are tailored specifically for integer multiplier
units. We plan to adapt and refine this technique for application in other computational
and logic units, thereby broadening the scope and impact of our findings. This ongoing
research will contribute to the advancement of fault detection methods in edge devices,
enhancing their reliability and performance in real-world applications.
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