
POLITECNICO DI TORINO
Master’s Degree in Electronics Engineering

Master’s Degree Thesis

Design and implementation of a RISC-V
processor including security features

Supervisors

Prof. Edgar Ernesto SANCHEZ

Prof. Stefano DI CARLO

Candidate

Behnam FARNAGHINEJAD

October 2024



Abstract

In an age where digital security is paramount, the development of secure and
efficient processors is crucial for safeguarding sensitive information and ensuring
the integrity of computing systems. As cyber threats evolve in sophistication, there
is an increasing demand for hardware-level security features that can provide robust
defenses against various attacks.

One effective way to make processors more secure is to include special instructions
directly in the hardware. This thesis focuses on designing and making a RISC-V
processor that has these security features. The goal is to significantly improve
the processor’s capability to execute cryptography tasks efficiently and securely,
leveraging the newly ratified RISC-V Cryptography Extensions. This research holds
substantial significance as it advances secure processor design, which is critical for
applications ranging from personal computing to large-scale data centers and vital
infrastructure protection.

The research begins by selecting SystemVerilog as the preferred hardware de-
scription language and evaluating various 64-bit cores for compatibility with Linux.
Ultimately, the CVA6 is chosen as the optimal platform. This CPU adheres to the
64-bit RISC-V instruction set and supports multiple extensions and three levels of
user access similar to Unix systems. The study also thoroughly investigates the
RISC-V Cryptography Extensions Volume I to establish the project’s foundation.
It involves meticulously designing a cryptography accelerator within the processor,
followed by rigorous testing phases that include functional testing, spike simulation
validation, and comprehensive regression testing to ensure reliability. Extensive
code coverage analysis validates the effectiveness of the test suite.

The culmination of these efforts results in the successful integration of the
cryptography accelerator as a co-processor within the CVA6 core, significantly
enhancing its security capabilities and extending its functionality. For instance, the
AES encryption algorithm demonstrates performance improvements with speed
gains of approximately 94% and reduced code size. In decryption, a 98% reduction in
execution time is observed, along with a decrease in code size, significantly enhancing
the implementation security of cryptography algorithms through hardware-based
computation.

The thesis concludes with a thorough analysis of the results, underscoring the
contributions’ significance and suggesting avenues for future research and develop-
ment. Hardware implementations inherently enhance security by isolating critical
functions from the main processor, thereby reducing vulnerability to malicious



software and mitigating certain types of attacks like side-channel threats. More-
over, hardware implementations offer constant-time execution for cryptography
algorithms, further bolstering security measures.
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Chapter 1

Introduction

1.1 Background

Processor design is fundamental to the advancement of computing technology. At
its core, a processor executes instructions provided by software, translating them
into actions that drive hardware operations. Instruction Set Architectures (ISAs)
define the set of instructions that a processor can execute, playing a crucial role in
determining a processor’s functionality and performance. Among the various ISAs,
the Reduced Instruction Set Computer (RISC) architecture has been influential,
emphasizing simplicity and efficiency.

The evolution of processor architectures has seen significant milestones, from
early complex instruction set computers (CISC) to the development of RISC. RISC-
V, an open-source ISA, has emerged as a transformative force in this landscape.
Unlike proprietary ISAs, RISC-V is designed to be extensible and customizable,
allowing for innovation and adaptation to diverse applications.

The importance of processor security has never been more pronounced, as
evidenced by vulnerabilities such as side-channel attacks, which have exposed
significant flaws in widely used architectures. As the computing landscape continues
to evolve, the need for robust, secure processors becomes paramount. These
incidents highlight the necessity of integrating security features at the hardware
level to protect against various attack vectors.

This thesis explores the design and implementation of a 64-bit RISC-V processor,
integrating advanced security features to address contemporary cybersecurity
threats.
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1.2 Motivation
Proprietary ISAs often limit innovation and customization due to restricted access
and licensing constraints. In contrast, open-source ISAs like RISC-V provide
a flexible foundation for developing tailored solutions. The ability to modify
and extend the ISA facilitates advancements in processor design and encourages
community-driven improvements.

Recent cybersecurity incidents have revealed significant vulnerabilities in existing
processor designs, demonstrating the urgent need for secure processors. Current
designs often lack comprehensive security features, leaving systems susceptible to
attacks. By incorporating advanced security mechanisms, processors can be made
more resilient against emerging threats.

The motivation for this research stems from the growing need for secure and
efficient processing systems. Traditional software-based security measures, while
effective, can be vulnerable to various forms of attacks, such as side-channel attacks
and timing attacks. By incorporating cryptography features directly into the
hardware, processors can achieve a higher level of security and efficiency.

1.3 Objectives
The primary objective of this thesis is to design and implement a RISC-V processor
with integrated security features. Specifically, this research focuses on incorporating
the newly ratified RISC-V Cryptography Extensions into a 64-bit core. The goals
of this project include:

• Selecting a suitable available open-source RISC-V core to enhance it for the
goal, rather than designing from scratch.

• Implementing scalar cryptography extensions and integrating them into the
selected core.

• Conducting rigorous testing and validation to ensure the reliability and effec-
tiveness of the implemented hardware.

• Analyzing the performance improvements and security enhancements achieved
through the hardware-based cryptography extensions.

This research contributes to the field of secure processor design and aims to provide
a foundation for future developments in hardware-based security mechanisms. The
successful implementation of these features will not only enhance the security
capabilities of the core but also demonstrate the potential of hardware-level security
measures in protecting sensitive information across various applications.
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Chapter 2

Literature Review

2.1 RISC-V Architecture Overview
The RISC-V architecture is an open-source hardware instruction set architecture
(ISA) that offers extensibility and simplicity. Designed to support a wide range of
devices, from small embedded systems to high-performance computing platforms,
RISC-V’s open nature allows for widespread academic and industry collaboration,
fostering innovation and rapid development.

RISC-V’s modular design includes a base integer instruction set (I), which can
be extended with optional extensions to provide additional functionality. These ex-
tensions include, but are not limited to, multiplication and division operations (M),
atomic instructions (A), floating-point operations (F and D), and various other spe-
cialized capabilities. The extensibility of RISC-V is one of its key strengths, allowing
designers to tailor processors to specific application needs without unnecessary
complexity.

The architecture supports both 32-bit (RV32) and 64-bit (RV64) address spaces,
as well as a 128-bit (RV128) version for future scalability. This flexibility enables
RISC-V to be employed in a diverse array of computing environments, from low-
power embedded devices to powerful server-grade processors.[1]

2.2 Security Features in RISC-V
Security in modern processors is critical due to the increasing prevalence of cyber
threats. RISC-V addresses this need by incorporating various security features
directly into the hardware. This section will discuss privileged modes, Physical
Memory Protection (PMP) and cryptography extensions as key components of
RISC-V’s security architecture.[2]

3
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2.2.1 Privileged Modes: User and Supervisor Modes
In RISC-V, each hardware thread (hart) operates at a specific privilege level,
managed by Control and Status Registers (CSRs). RISC-V defines three primary
privilege levels: Machine (M), Supervisor (S), and User/Application (U). Table 2.1
is shown different levels and modes:

Number of levels Supported Modes Intended Usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like

operating systems

Table 2.1: Supported combination of privilege modes

These levels ensure protection between software components. Code usually runs
in U-mode until a trap (e.g., a supervisor call) forces a switch to a higher privilege
mode (e.g., S-mode). M-mode, with the highest privileges, is the only mandatory
level used for trusted code with full access to the machine. Systems may implement
one to three modes, balancing isolation and complexity.

M-mode, always implemented, grants full access to the machine. Simple systems
may only use M-mode, while more complex implementations add U-mode and
S-mode for better isolation and security.[2]

2.2.2 Physical Memory Protection (PMP)
To ensure secure processing and fault containment, RISC-V incorporates an optional
Physical Memory Protection (PMP) unit. PMP allows the definition of access
privileges (read, write, execute) for specific physical memory regions on a per-hart
basis. These privileges are enforced through machine-mode control registers. PMP
checks are conducted in parallel with Physical Memory Attribute (PMA) checks,
and apply to memory accesses in Supervisor (S) and User (U) modes, as well as
certain Machine (M) mode configurations. PMP ensures that unauthorized accesses
are trapped precisely, preventing potential security breaches.[2]

2.2.3 Cryptography Extensions
The RISC-V Cryptography Extensions are a significant step towards enhancing
security at the processor level. The Scalar Cryptography Extensions (Volume I)
introduce a set of instructions specifically designed for cryptography algorithms,
such as encryption, decryption and hash functions. These instructions enable the
processor to perform cryptography operations more efficiently than traditional
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software implementations. The proposed standard Scalar Cryptography extensions
to the RISC-V ISA are: [3]

Instruction Description
Zknd NIST Suite: AES Decryption
Zkne NIST Suite: AES Encryption
Zknh NIST Suite: Hash Function Instructions
Zksed ShangMi Suite: SM4 Block Cipher Instructions
Zksh ShangMi Suite: SM3 Hash Function Instructions
Zkr Entropy Source Extension
Zkn NIST Algorithm Suite (Zknd, Zkne, Zknh, Zbkb, Zbkc, Zbkx)
Zks ShangMi Algorithm Suite (Zksed, Zksh, Zbkb, Zbkc, Zbkx)
Zk Standard scalar cryptography extension (Zkn, Zkt, Zkr)
Zkt Data Independent Execution Latency
Zbkb Bitmanip instructions for Cryptography
Zbkc Carry-less multiply instructions
Zbkx Crossbar permutation instructions

Table 2.2: List of Scalar Cryptography Extensions

These hardware-accelerated instructions provide several benefits, including
reduced execution time, lower power consumption, and enhanced resistance to
certain types of attacks, such as timing and side-channel attacks.

2.3 CVA6 Core
The CVA6 core, formerly known as Ariane, is a 64-bit application-class RISC-V
CPU designed for high performance and scalability. It adheres to the RV64GC
ISA, which includes the general-purpose extensions (I, M, A, F, D, and C) and
additional custom extensions as needed. The CVA6 core is suitable for running
operating systems like Linux, making it a versatile choice for various applications.
Key features of the CVA6 core include:[4]

• Implements three privilege levels M, S, U to fully support a Unix-like operating
system

• 6-stage pipeline, 32- or 64-bit, In-order issue, Out-Of-Order Execution, In-
Order Commit

• L1 instruction and data caches, as well as an optional L2 caches

• Configurable size, separate TLBs, a hardware PTW and branch prediction
(BTB and BHT)

5
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• Optional features such as MMU, PMP, FPU, cache organization and size and
etc.

• Implements the CVXIF interface to tightly integrate co-processors into the
execution stage

The combination of these features makes the CVA6 core a robust platform for
implementing and evaluating the RISC-V cryptography extensions as a co-processor.

6



Chapter 3

Methodology

3.1 Selection of HDL Language
The choice of hardware description language (HDL) is a critical step in designing
and implementing the RISC-V processor with security features. For this project,
SystemVerilog was chosen due to its extensive feature set, which extends Verilog
with advanced system-level design capabilities. SystemVerilog offers enhanced
data types, concurrency mechanisms, and powerful verification tools, making it
particularly suitable for complex hardware designs.

Another key factor in selecting SystemVerilog is that the chosen core, the CVA6
core, is written in this language, ensuring compatibility and facilitating integration
with the existing design.

3.2 Evaluation of 64-bit Cores
To select the most suitable 64-bit core for integrating cryptography extensions,
several RISC-V cores were evaluated based on compatibility, performance, and
Linux support. The evaluation criteria included:

• ISA Compliance: Adherence to the RV64GC ISA, ensuring support for general-
purpose instructions.

• Performance: Assessment of core performance in terms of processing speed,
efficiency, and support for out-of-order execution.

• Scalability: Capability to support advanced features like virtual memory and
multi-core configurations.

• Community and Documentation: Availability of comprehensive documentation
and an active development community for ongoing support and improvements.

7
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After a thorough evaluation, the CVA6 core was selected due to its high per-
formance, extensibility, and active community support. Its compliance with the
RV64GC ISA and robust feature set make it an ideal platform for this project. Ad-
ditionally, the CVA6 core includes the CVXIF interface, which allows for the tight
integration of a co-processor at the execution stage without requiring modifications
to the main core’s RTL design. In this project, the cryptography extension will be
implemented by designing the accelerator as a co-processor using this interface.

3.3 Exploration of Cryptography Extensions
The next step involved a detailed study of the RISC-V Cryptography Extensions
Volume I. These extensions define a set of instructions specifically designed for
cryptography operations, including:

• NIST Suite: Instructions for AES encryption and decryption, SHA2-256, and
SHA2-512 (Table 3.1)

• ShangMi Suite: Instructions for the SM4 block cipher and SM3 hash function
(Table 3.2)

• Other useful cryptography instructions: Including Bitmanip, Carry-less multi-
ply, and Crossbar permutation (Table 3.3)

Understanding these extensions was essential for designing the cryptography
accelerator. The study focused on the implementation details, expected perfor-
mance benefits, and potential security improvements provided by these hardware-
accelerated instructions.

The following tables summarize the assembly instructions included in these
cryptography extensions:

8



Methodology

RV32 RV64 Assembly Instruction Extension
* aes32dsi rd, rs1, rs2, bs Zknd
* aes32dsmi rd, rs1, rs2, bs Zknd

* aes64ds rd, rs1, rs2 Zknd
* aes64dsm rd, rs1, rs2 Zknd
* aes64im rd, rs1 Zknd
* aes64ks2 rd, rs1, rs2 Zknd/Zkne
* aes64ks1i rd, rs1, rnum Zknd/Zkne

* aes32esi rd, rs1, rs2, bs Zkne
* aes32esmi rd, rs1, rs2, bs Zkne

* aes64es rd, rs1, rs2 Zkne
* aes64esm rd, rs1, rs2 Zkne

* * sha256sig0 rd, rs1 Zknh
* * sha256sig1 rd, rs1 Zknh
* * sha256sum0 rd, rs1 Zknh
* * sha256sum1 rd, rs1 Zknh
* sha512sig0h rd, rs1, rs2 Zknh
* sha512sig0l rd, rs1, rs2 Zknh
* sha512sig1h rd, rs1, rs2 Zknh
* sha512sig1l rd, rs1, rs2 Zknh
* sha512sum0r rd, rs1, rs2 Zknh
* sha512sum1r rd, rs1, rs2 Zknh

* sha512sig0 rd, rs1 Zknh
* sha512sig1 rd, rs1 Zknh
* sha512sum0 rd, rs1 Zknh
* sha512sum1 rd, rs1 Zknh

Table 3.1: NIST Suite Assembly Instructions

RV32 RV64 Assembly Instruction Extension
* * sm4ed rd, rs1, rs2, bs Zksed
* * sm4ks rd, rs1, rs2, bs Zksed
* * sm3p0 rd, rs1 Zksh
* * sm3p1 rd, rs1 Zksh

Table 3.2: ShangMi Suite Assembly Instructions
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RV32 RV64 Assembly Instruction Extension
* * andn rd, rs1, rs2 Zbkb
* * brev8 rd, rs Zbkb
* * orn rd, rs1, rs2 Zbkb
* * pack rd, rs1, rs2 Zbkb
* * packh rd, rs1, rs2 Zbkb

* packw rd, rs1, rs2 Zbkb
* * rev8 rd, rs Zbkb
* * rol rd, rs1, rs2 Zbkb

* rolw rd, rs1, rs2 Zbkb
* * ror rd, rs1, rs2 Zbkb
* * rori rd, rs1, shamt Zbkb

* roriw rd, rs1, shamt Zbkb
* rorw rd, rs1, rs2 Zbkb

* * xnor rd, rs1, rs2 Zbkb
* zip rd, rs Zbkb
* unzip rd, rs Zbkb
* * clmul rd, rs1, rs2 Zbkc
* * clmulh rd, rs1, rs2 Zbkc
* * xperm8 rd, rs1, rs2 Zbkx
* * xperm4 rd, rs1, rs2 Zbkx

Table 3.3: Other useful assembly instructions for Cryptography

3.4 Development of Cryptography Accelerator
The development of the cryptography extensions for the RISC-V architecture was
carried out in multiple stages, each focusing on different aspects of the implemen-
tation process.

The key steps in this development process included:

• Instruction Decoding: The cryptography instructions were decoded based
on the specifications illustrated in Table 3.4.

10
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Table 3.4: Detailed Decoding of Cryptography Instructions

11
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• Module Creation: A dedicated module was developed for each cryptography
extension. The design was guided by the computational details provided in the
Sail model, as outlined in the RISC-V Cryptography Extensions manual.[3]

• Co-Processor Design: The primary module, which integrates with the
main core, was designed to include the instruction decoder and all necessary
components for the cryptography extensions. This co-processor module handles
communication with the main core, managing offloaded instructions, validating
inputs, and ensuring the correctness of outputs when ready. Additionally, it
must efficiently interact with the main core, processing instructions even when
the core is busy or issuing new commands.

Since some instruction types in these extensions are custom and involve immedi-
ate values such as bs, rnum, and shmat, which are not part of the standard OP_IMM
instructions, the decoder must also extract these immediate values to ensure correct
processing by the appropriate modules.

Additionally, certain instructions included in the cryptography extensions are
already documented under other ISAs, such as the Bitmanipulation extension.
These instructions do not need to be re-implemented in this co-processor.

3.5 Integration with CVA6 Core
The integration of cryptography extensions into the CVA6 core will be accomplished
using the CORE-V eXtension InterFace (CVXIF). This interface allows for the
seamless addition of custom coprocessors and ISA extensions without requiring
modifications to the core’s main RTL code.

The CVXIF is a versatile RISC-V extension interface that facilitates the imple-
mentation of custom or standardized instructions by extending the CPU with new
capabilities. This integration is achieved without altering the CPU’s original RTL
design, making it an efficient and non-invasive method for enhancing processor
functionality. Key Features of the CVXIF:

• Low Latency: Provides tightly integrated connections, ensuring minimal delay
in instruction execution.

• Read and Write Access: Allows direct access to the CPU register file, enabling
efficient data handling.

• Minimal Instruction Encoding Requirements: Supports extensions with mini-
mal constraints on instruction encoding, promoting flexibility in design.

12



Methodology

• Dual Write-Back Support: Enables instructions to write back to two registers
simultaneously, enhancing performance for certain operations.

• Dual Read Support: Facilitates instructions that require reading from two
registers at once.

• Ternary Operation Support: Capable of handling operations that involve three
operands, increasing the complexity of possible instructions.

The cryptography accelerator will be connected to the CVA6 core via this
interface, ensuring that the integration is smooth and maintains the integrity of
the original core design.

3.6 Testing and Validation
A comprehensive testing strategy was employed to validate the implementation:

• Functional Testing: The correctness of each cryptography accelerator and
its integration within the CVA6 core was verified. This testing was conducted
using Verilator and VCS simulators.

• Validation with Spike: The Spike RISC-V simulator was used to validate
the functionality and performance of the instructions. Spike served as a
reference simulator to cross-check the execution results of each instruction.

• Regression Testing: The designed module was tested using 52 regression
tests provided by RISC-V for the K extension.

• Code Coverage Analysis: Code coverage analysis was performed to ensure
that all parts of the design were thoroughly tested.

These testing phases ensured the cryptography extensions were implemented
correctly, delivered the expected security benefits, and did not adversely affect the
overall functionality of the processor.

13



Chapter 4

Design and Implementation

4.1 CVA6 Core Overview
The CVA6 project aims to develop a family of high-quality, open-source RISC-V
CPU cores suitable for both ASIC and FPGA implementations. These cores are
written in SystemVerilog and are highly parameterizable, allowing configuration as
either 32-bit (RV32) or 64-bit (RV64) cores with optional features such as floating-
point support, MMU, PMP, and cache organization. CVA6 supports multiple
operating systems, including Linux, FreeRTOS, and Zephyr, and is designed to be
fully compliant with RISC-V specifications while allowing extensions through the
CV-X-IF coprocessor interface.

CVA6 is an industrial evolution of the ARIANE core, originally developed by
ETH Zürich and the University of Bologna, now maintained by the OpenHW
Group. The core features a 6-stage pipeline and implements the RISC-V I, M, and
C extensions, as well as the draft privilege extension, making it capable of running
a full OS at efficient speeds. The CV32A6 and CV64A6 cores, which share the
same SystemVerilog source code, are tailored to meet users’ specific needs through
a range of customizable parameters.

The overview of the CVA6 core is illustrated in Figure 4.1.

4.1.1 Pipeline Stages
The core features a 6-stage pipeline, consisting of the following stages:

• Frontend (2 stages: PC Generation and Instruction Fetch):

– PC Generation: This stage is responsible for generating the next pro-
gram counter (PC). All PCs are logically addressed. If there is a change in
the logical to physical mapping, a fence.vm instruction is issued to flush
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Figure 4.1: CVA6 core overview

the pipeline and TLBs. This stage includes speculation on the branch
target address, branch prediction (whether the branch is taken or not),
and contains both the branch target buffer (BTB) and branch history
table (BHT).

– Instruction Fetch (IF) Stage: The IF stage receives information from
the PC Generation stage, including branch prediction details (predicted
branch, target address, taken/not taken), the current PC (word-aligned
if it was a consecutive fetch), and the validity of the request. The IF
stage then requests address translation from the MMU and controls the
instruction cache interface (I$).

• Instruction Decode (ID): The ID stage is the first pipeline stage of the
processor’s back-end. It decodes instructions from the data stream provided
by the IF stage and passes them to the Issue stage. With the introduction of
compressed or variable-length instructions, this stage also handles instruction
re-alignment and decompression. Furthermore, branch instructions identified
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at this stage are passed to the Issue stage.
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• Issue Stage: The purpose of the Issue stage is to issue decoded instructions
to the various functional units (FUs). It also tracks all issued instructions and
manages the functional units’ status, including receiving write-back data from
the Execute stage. The Issue stage contains the CPU’s register file and uses a
data structure called a scoreboard to track instruction progress and register
write-back locations. This stage manages the first, second, and fourth steps of
instruction execution: issue, read operands, and write-back.

• Execute Stage: The Execute stage encapsulates all functional units (FUs),
including the ALU, branch unit, load/store unit (LSU), CSR buffer, and
multiply/divide unit. Each FU operates independently, with a valid signal for
output data and a ready signal indicating the ability to accept new requests.
The Execute stage processes instructions based on transaction IDs and returns
results with the corresponding transaction ID and valid signal.

– Memory Management Unit (MMU): The MMU is essential for virtual
memory management and address translation in the CVA6 processor. It
translates virtual addresses into physical addresses, providing memory
protection, isolation, and efficient management. The MMU handles both
instruction and data accesses and consists of key components like the
Instruction TLB (ITLB), Data TLB (DTLB), optional Shared TLB, and
the Page Table Walker (PTW).

• Commit Stage: The Commit stage finalizes instruction execution by updating
the architectural state, including writing CSR registers, committing stores,
and writing back data to the register file. This stage distinguishes between
simple register write-back instructions and those requiring additional logic,
such as store commits and freeing the CSR buffer upon instruction retirement.

4.1.2 PMP
The CVA6 core incorporates a Physical Memory Protection (PMP) unit, which offers
both static and dynamic reconfigurability. The static configuration is determined by
the top-level parameter CVA6Cfg.NrPMPEntries, while the dynamic configuration
is managed through the Control and Status Registers (CSRs). The core supports
up to 16 PMP entries.

Although all PMP CSRs are implemented, those corresponding to PMP entries
with numbers equal to or greater than CVA6Cfg.NrPMPEntries are hardwired to
zero. Upon reset, all PMP entries are initialized to zero.

When the L (Lock) bit is set, PMP restrictions are enforced even in Machine
mode (M-mode).
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The PMP grain is defined as 2G+2, with CVA6 supporting only a granularity of
8 bytes (where G = 1). The PMP address length matches the processor’s physical
address length. Given that G = 1, the NA4 mode is not selectable.

Writes to pmpaddr are Write-Any-Read-Legal (WARL) and depend on the
address mode. For naturally aligned power-of-two addressing mode (NAPOT), the
bit is set to 1; for the top boundary of an arbitrary range (TOR), or when PMP is
turned off (OFF), it is set to 0.

If, during a write to pmpcfgX, the Read (R) bit is 0 and the Write (W) bit is 1,
the CSR will not be updated.

4.1.3 PMA
An underlying system can have multiple Physical Memory Attributes (PMA), and
the CVA6 core supports three primary access properties:

• Non-idempotent regions (I/O regions): Due to the nature of a pipelined
CPU architecture, the CPU may speculatively fetch (through branch predic-
tion) and speculatively load (due to speculative execution). This behavior
can cause issues if reads to a region are non-idempotent (i.e., they destroy
state). Therefore, regions marked as non-idempotent will not be accessed
speculatively. Common examples include UART registers or an interrupt
claim register.

• Executable regions (Main memory): Regions marked as executable are
considered code regions, allowing the core to fetch instructions from those
regions.

• Cacheable regions (Main memory): Regions marked as cacheable are
treated as data and instruction regions, enabling the core to fetch, load, and
store data from those regions.

These regions are determined at instantiation-time and cannot be modified during
runtime. The CVA6 core uses specific fields within the cva6_cfg_t configuration
structure to statically define the PMA regions:

• CVA6Cfg.NrNonIdempotentRules: Number of active non-idempotent regions.

• CVA6Cfg.NonIdempotentAddrBase: Base address of the non-idempotent re-
gion.

• CVA6Cfg.NonIdempotentLength: Length of the non-idempotent region.

• CVA6Cfg.NrExecuteRegionRules: Number of active executable regions.
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• CVA6Cfg.ExecuteRegionAddrBase: Base address of the executable region.

• CVA6Cfg.ExecuteRegionLength: Length of the executable region.

• CVA6Cfg.NrCachedRegionRules: Number of active cacheable regions.

• CVA6Cfg.CachedRegionAddrBase: Base address of the cacheable region.

• CVA6Cfg.CachedRegionLength: Length of the cacheable region.

Currently, the following RISC-V-defined PMAs are not supported by CVA6:

• Coherence: The stand-alone CVA6 does not support any coherence protocol,
treating all memory accesses as non-coherent. In coherent systems like Open-
Piton, it is the system’s responsibility to define coherence attributes, where
typically any cacheable region would also be coherent.

• Atomicity: Atomicity is managed by the underlying system, which determines
whether atomicity is supported.

• Reservability: Similar to atomicity, reservability is handled by the underlying
system.

• Vacant Regions: The determination of vacant regions is left to the underlying
system. CVA6 does not check for vacant regions, and accessing such regions
is expected to result in an AXI Decode Error or Slave Error.

4.2 Core-V eXtension InterFace (CV-X-IF)
The Core-V eXtension Interface (CV-X-IF) allows the CPU to be extended with
custom or standardized instructions without altering the CPU’s RTL (Register
Transfer Level) design. Extensions are implemented in separate modules external to
the CPU and integrated at the system level through this interface as a coprocessor.

The coprocessor operates like another functional unit so it is connected to the
CVA6 in the execute stage.
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4.2.1 Features
• Low Latency Access: The interface provides tightly integrated, low-latency

read and write access to the CPU register file.

• Custom Instruction Encoding: CV-X-IF enables custom ALU type in-
structions, custom CSRs (Control and Status Registers), and other related
instructions. Control-Transfer instructions (e.g., branches and jumps) are not
supported.

• Opcode Usage: Unused opcodes by the CPU can be used for extensions,
although it is recommended to avoid using opcodes reserved by RISC-V
International.

• Dual Write-Back: Supports dual write-back instructions based on the
X_DUALWRITE parameter for even-odd register pairs when XLEN = 32.

• Dual Read: Supports dual read operations per source operand based on the
X_DUALREAD parameter, providing up to six 32-bit operands per instruction
when XLEN = 32.

• Ternary Operations: Optionally supports ISA extensions for instructions
using three source operands.

• Instruction Speculation: Indicates whether offloaded instructions should
be committed or killed. (Unsupported in CVA6 yet)

4.2.2 Parameters
CV-X-IF defines two types of parameters.

1. Coprocessor Parameters: Configured for the coprocessor, though not all
values may be supported by the CPU.

2. System Parameters: Determined by the configuration of both the CPU
and the coprocessor, such as X_ID_WIDTH and X_HARTID_WIDTH.

Table 4.1 displays the supported CVXIF parameters in CVA6.

4.2.3 Interfaces
CV-X-IF consists of the following interfaces (as illustrated in Figure 4.2):

• Compressed Interface: Handles signaling for compressed instructions to be
offloaded.
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Name Type/Range Description
X_NUM_RS int unsigned (2..3) Number of register file read ports

that can be used by the eXtension
interface

X_ID_WIDTH int unsigned (3..32) Identification width for the eX-
tension interface

X_MEM_WIDTH n/a (feature not sup-
ported)

Memory access width for loads/s-
tores via the eXtension interface

X_RFR_WIDTH int unsigned (32, 64) Register file read access width for
the eXtension interface

X_RFW_WIDTH int unsigned (32, 64) Register file write access width
for the eXtension interface

X_MISA logic [25:0] MISA extensions implemented on
the eXtension interface

Table 4.1: Supported CVXIF Parameters in CVA6

• Issue Interface: Manages request/response signaling for uncompressed in-
structions to be offloaded.

• Register Interface: Deals with signaling for GPRs (General Purpose Regis-
ters) and CSRs.

• Commit Interface: Signals control related to whether instructions should
be committed or killed.

• Result Interface: Signals the completion of instruction execution and results.

Only the 3 mandatory interfaces (issue, commit, and result) have been imple-
mented. Compressed interface, Memory Interface, and Memory result interface are
not yet implemented in the CVA6.

4.2.4 Operating Principle
The CPU attempts to offload every instruction (compressed or non-compressed)
that it does not recognize as valid. For compressed instructions, the coprocessor
provides a matching uncompressed instruction, which is then offloaded via the issue
interface.

As shown in Figure 4.3, the offloaded instruction’s acceptance or rejection is
decided by the coprocessor. If rejected, the CPU raises an illegal instruction
exception. If accepted, the coprocessor handles the instruction, including managing
register file operands through the register interface.
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Figure 4.2: Interfaces in CV-X-IF

Figure 4.3: Operating Principle of CVXIF

Instructions offloaded to the coprocessor are speculative; the CPU may later
decide to kill them based on certain conditions. The CPU uses the commit interface
to inform the coprocessor about whether an instruction will be committed or killed.

The final result of an accepted offloaded instruction can be written back to the
coprocessor or the CPU’s register file, signaled through the result interface.

In the execution stage of the CVA6, a dedicated functional unit is implemented
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to manage the CV-X-IF interfaces. The following sections describe the connections
between these interfaces and the CVA6 core.

An explanation of the three interfaces used in CVA6 is provided below.

Issue Interface

• Request Phase: The operands are connected to the issue_req.rs signals.
The scoreboard transaction ID is connected to the issue_req.id signal, ensur-
ing that the scoreboard IDs and offloaded instruction IDs are linked together.
This linkage allows the CVA6 to execute instructions out of order with the
coprocessor, similar to other functional units within the core. The undecoded
instruction is connected to the issue_req.instruction signal. The validity
of the CV-X-IF functional unit is indicated by the issue_req.valid signal.
All issue_req.rs_valid signals are set to 1, with the validity of source
registers guaranteed by the valid signal transmitted from the issue stage.

• Response Phase: If the issue_resp.accept signal is asserted during a trans-
action (i.e., both valid and ready are set), the offloaded instruction is accepted
by the coprocessor, leading to a result transaction. If issue_resp.accept
is not asserted, the offloaded instruction is deemed illegal, and an illegal
instruction exception will be raised as soon as no result transaction is written
on the writeback bus.

Commit Interface

The valid signal of the commit interface is connected to the valid signal of the
issue interface. Similarly, the id signal of the commit interface is connected to the
id signal of the issue interface, which corresponds to the scoreboard ID. Notably, the
killing of offloaded instructions is not supported in this implementation; therefore,
all accepted offloaded instructions are committed to execution, and instruction
termination is not possible.

Result Interface

• Request Phase: The ready signal of the result interface is always asserted,
indicating that the CVA6 is always prepared to accept a result from the
coprocessor for an accepted offloaded instruction.

• Response Phase: The result response is directly connected to the writeback
bus of the CV-X-IF functional unit. The valid signal of the result interface
is connected to the valid signal of the writeback bus. Additionally, the id
signal of the result interface is connected to the scoreboard ID of the writeback
bus. The write enable signal of the result interface is connected to a dedicated
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CV-X-IF write enable (WE) signal in CVA6, which signals the scoreboard
whether a writeback should occur in the CVA6 register file. The exccode and
exc signals of the result interface are connected to the exception signals of
the writeback bus. Notably, exceptions from the coprocessor do not populate
the tval field in the exception signal of the writeback bus.

Three registers are incorporated to hold illegal instruction information in scenar-
ios where a result transaction and a non-accepted issue transaction occur within
the same cycle. In such cases, result transactions are prioritized and written to the
writeback bus due to their association with an older offloaded instruction. Once
the writeback bus is free, an illegal instruction exception will be raised using the
information stored in these three registers.

4.3 Cryptography Accelerator
Figure 4.4 illustrates the block diagram of the CVA6 core, highlighting the placement
of the CVXIF functional unit, which is specifically designed to execute cryptography
extensions. As depicted, this functional unit is integrated within the execution
stage. The flow of cryptography instructions is as follows:

• The instruction is fetched and placed in the instruction queue.

• The CVA6 decodes the instruction during the ID stage, identifies it as an
offload instruction and determines that the CVXIF functional unit is required.

• The instruction is issued at the issue stage, with the associated information
saved in the scoreboard.

• Data is transmitted through the CVXIF interfaces to the CVXIF functional
unit.

• The functional unit processes the instruction, interacts with the coprocessor
and retrieves the result.

• The result is stored in the scoreboard.

• The instruction is committed in order at the commit stage.

The scoreboard maintains the following information for each instruction:

• PC: The program counter (PC) of the instruction.

• FU: The functional unit to be used.
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• OP: The operation to be performed within the functional unit.

• RS1: The address of the first source register.

• RS2: The address of the second source register.

• RD: The address of the destination register.

• Result: The result of the instruction. For unfinished instructions, this field
also holds immediate value.

• Valid: A flag indicating whether the result is valid.

• Use I Immediate: A flag that indicates whether the immediate value should
be used as operand B.

• Use Z Immediate: A flag that indicates whether the Z-Immediate (zimm)
should be used as operand A.

• Use PC: A flag set when the PC should be used as operand A, typically in
the context of exceptions.

• Exception: Indicates whether an exception has occurred.

• Branch Predict: Data related to branch prediction stored in the scoreboard.

• Is Compressed: A flag that signals whether the instruction is compressed.
This information is crucial at the commit stage for determining the correct
jump offset, such as +4 or +2.
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Figure 4.4: CVA6 + Cryptography Accelerator
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Figure 4.5 presents the block diagram of the cryptography accelerator and its
submodules, covering all instructions in the scalar cryptography extension Volume
I [3].

Figure 4.5: Cryptography Accelerator Block Diagram

As shown in the block diagram, instructions received from the issue interface are
decoded, and the corresponding module processes the instruction to generate the
result, which is then delivered to the result interface. The main core implements
modules not represented in the figure through other extensions. The implementation
of these modules is based on the Sail model provided in the manual. Since this
project focuses on 64-bit operations, only 64-bit instructions are discussed in this
section.

In this section, the instructions from the NIST and ShangMi suites are covered.
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For a comprehensive overview of other cryptography instructions and details on
their implementations, please refer to the Scalar Cryptography Manual [3].

4.3.1 AES Encryption/Decryption
AES (Advanced Encryption Standard) is a symmetric encryption algorithm widely
used for securing data. It operates on fixed-size blocks of data (typically 128 bits)
and uses keys of 128, 192, or 256 bits. The encryption process involves multiple
rounds, where each round includes steps like substitution (using S-boxes), permu-
tation, mixing (using MixColumns), and adding the key (using XOR operations).
Decryption is the reverse of encryption, applying inverse operations in reverse order
to retrieve the original plaintext from the ciphertext. AES is known for its speed,
security, and efficiency, making it a standard choice for encrypting sensitive data.

The encryption and decryption processes are performed in two phases: Key
Expansion and Encrypt/Decrypt. These operations are completed after executing
the required number of rounds for a set of instructions. Figures 4.7 and 4.6 illustrate
these two phases and the necessary instructions for the encryption/decryption of a
single block.

Within the cryptography accelerator, two submodules handle the calculation of
S-boxes and Mix Columns. These operations are implemented using circuits rather
than lookup tables (LUTs). For AES64, there are eight S-Box modules and two Mix
Columns modules. The Mix Columns modules differ between the encryption and
decryption phases, so there are a total of four. All AES instructions, as explained
below, are executed within this module, with the result selected based on the
decoded instruction. This implementation is a combinational circuit, meaning that
the result is available in the same clock cycle as the issue stage.

The S-Box implementation is based on the techniques described in [5]. This
reference presents new methods for reducing the depth of circuits used in cryptog-
raphy applications while maintaining a relatively small gate count. Specifically,
the AES S-Box circuit has a depth of 16 and uses only 128 gates. For the inverse
S-Box, the depth is also 16, with 127 gates. Both the S-Box and its inverse share
a common middle part consisting of 63 gates. In comparison, the best previous
design for the AES S-Box had a depth of 22 and 148 gates.
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Figure 4.6: Key Expansion Phase of AES Encryption
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Figure 4.7: AES Encryption Phase for One Block
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The Sail model for these instructions is provided below:

AES64DS: Uses the two 64-bit source registers to represent the entire AES state,
and produces half of the next round output, applying the Inverse ShiftRows and
SubBytes steps.

1 function clause execute ( AES64DS (rs2 , rs1 , rd)) = {
2 let sr : bits (64) = aes_rv64_shiftrows_inv (X(rs2)[63..0] ,

X(rs1) [63..0]) ;
3 let wd : bits (64) = sr [63..0];
4 X(rd) = aes_apply_inv_sbox_to_each_byte (wd);
5 RETIRE_SUCCESS
6 }

AES64DSM: Uses the two 64-bit source registers to represent the entire AES
state, and produces half of the next round output, applying the Inverse ShiftRows,
SubBytes and MixColumns steps.

1 function clause execute ( AES64DSM (rs2 , rs1 , rd)) = {
2 let sr : bits (64) = aes_rv64_shiftrows_inv (X(rs2)[63..0] ,

X(rs1) [63..0]) ;
3 let wd : bits (64) = sr [63..0];
4 let sb : bits (64) = aes_apply_inv_sbox_to_each_byte (wd);
5 X(rd) = aes_mixcolumn_inv (sb [63..32]) @ aes_mixcolumn_inv (

sb [31..0]) ;
6 RETIRE_SUCCESS
7 }

AES64ES: Uses the two 64-bit source registers to represent the entire AES state,
and produces half of the next round output, applying the ShiftRows and SubBytes
steps.

1 function clause execute ( AES64ES (rs2 , rs1 , rd)) = {
2 let sr : bits (64) = aes_rv64_shiftrows_fwd (X(rs2)[63..0] ,

X(rs1) [63..0]) ;
3 let wd : bits (64) = sr [63..0];
4 X(rd) = aes_apply_fwd_sbox_to_each_byte (wd);
5 RETIRE_SUCCESS
6 }

AES64ESM: Uses the two 64-bit source registers to represent the entire AES state,
and produces half of the next round output, applying the ShiftRows, SubBytes
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and MixColumns steps.

1 function clause execute ( AES64ESM (rs2 , rs1 , rd)) = {
2 let sr : bits (64) = aes_rv64_shiftrows_fwd (X(rs2)[63..0] ,

X(rs1) [63..0]) ;
3 let wd : bits (64) = sr [63..0];
4 let sb : bits (64) = aes_apply_fwd_sbox_to_each_byte (wd);
5 X(rd) = aes_mixcolumn_fwd (sb [63..32]) @ aes_mixcolumn_fwd (

sb [31..0]) ;
6 RETIRE_SUCCESS
7 }

AES64IM: The instruction applies the inverse MixColumns transformation to
two columns of the state array, packed into a single 64-bit register.

1 function clause execute ( AES64IM (rs1 , rd)) = {
2 let w0 : bits (32) = aes_mixcolumn_inv (X(rs1)[31.. 0]);
3 let w1 : bits (32) = aes_mixcolumn_inv (X(rs1) [63..32]) ;
4 X(rd) = w1 @ w0;
5 RETIRE_SUCCESS
6 }

AES64KS1I: This instruction implements the rotation, SubBytes and Round
Constant addition steps of the AES block cipher Key Schedule. Note that rnum
must be in the range 0x0..0xA. The values 0xB..0xF are reserved.

1 function clause execute ( AES64KS1I (rnum , rs1 , rd)) = {
2 if( unsigned (rnum) > 10) then {
3 handle_illegal (); RETIRE_SUCCESS
4 } else {
5 let tmp1 : bits (32) = X(rs1) [63..32];
6 let rc : bits (32) = aes_decode_rcon (rnum); // round number

-> round constant
7

8 let tmp2 : bits (32) = if (rnum == 0xA) then tmp1 else
ror32(tmp1 , 8);

9 let tmp3 : bits (32) = aes_subword_fwd (tmp2);
10 let result : bits (64) = (tmp3 ^ rc) @ (tmp3 ^ rc);
11 X(rd) = EXTZ( result );
12 RETIRE_SUCCESS
13 }
14 }
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AES64KS2: This instruction implements the additional XOR’ing of key words as
part of the AES block cipher Key Schedule.

1 function clause execute ( AES64KS2 (rs2 , rs1 , rd)) = {
2 let w0 : bits (32) = X(rs1) [63..32] ^ X(rs2) [31..0];
3 let w1 : bits (32) = X(rs1) [63..32] ^ X(rs2) [31..0] ^ X(rs2

) [63..32];
4 X(rd) = w1 @ w0;
5 RETIRE_SUCCESS
6 }

4.3.2 SHA-2 Hash Functions
The SHA-2 (Secure Hash Algorithm 2) family consists of cryptography hash
functions designed to ensure data integrity. SHA-2 includes different hash functions
with varying output sizes, notably SHA-256 and SHA-512, which produce hash
values (also known as digests) of 256 and 512 bits, respectively. These functions
process data in blocks (512 bits for SHA-256 and 1024 bits for SHA-512) and
perform a series of operations including bitwise shifts, rotations, and modular
additions. The final hash value, which is unique to the input data, can be used
to verify data integrity or as a digital fingerprint in various security applications.
SHA-2 is widely used in digital signatures, certificates, and password hashing due
to its robustness and resistance to collision attacks.

The SHA-256 and SHA-512, are implemented using two distinct modules. These
modules efficiently compute the necessary operations primarily through binary
rotation, shifting, NOT, and XOR, as described in the Sail code snippets below.[3]

SHA-256

These instructions are supported for both RV32 and RV64 base architectures. For
RV32, the entire XLEN source register is operated on. For RV64, the low 32 bits
of the source register are operated on, and the result sign is extended to XLEN
bits. Though named for SHA2-256, the instruction works for both the SHA2-224
and SHA2-256 parameterizations

SHA256SIG0: Implements the Sigma0 transformation function as used in the
SHA2-256 hash function.

1 function clause execute ( SHA256SIG0 (rs1 ,rd)) = {
2 let inb : bits (32) = X(rs1) [31..0];
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3 let result : bits (32) = ror32(inb , 7) ^ ror32(inb , 18) ^ (
inb >> 3);

4 X(rd) = EXTS( result );
5 RETIRE_SUCCESS
6 }

SHA256SIG1: Implements the Sigma1 transformation function as used in the
SHA2-256 hash function.

1 function clause execute ( SHA256SIG1 (rs1 ,rd)) = {
2 let inb : bits (32) = X(rs1) [31..0];
3 let result : bits (32) = ror32(inb , 17) ^ ror32(inb , 19) ^

(inb >> 10);
4 X(rd) = EXTS( result );
5 RETIRE_SUCCESS
6 }

SHA256SUM0: Implements the Sum0 transformation function as used in the
SHA2-256 hash function.

1 function clause execute ( SHA256SUM0 (rs1 ,rd)) = {
2 let inb : bits (32) = X(rs1) [31..0];
3 let result : bits (32) = ror32(inb , 2) ^ ror32(inb , 13) ^

ror32(inb , 22);
4 X(rd) = EXTS( result );
5 RETIRE_SUCCESS
6 }

SHA256SUM1: Implements the Sum1 transformation function as used in the
SHA2-256 hash function.

1 function clause execute ( SHA256SUM1 (rs1 ,rd)) = {
2 let inb : bits (32) = X(rs1) [31..0];
3 let result : bits (32) = ror32(inb , 6) ^ ror32(inb , 11) ^

ror32(inb , 25);
4 X(rd) = EXTS( result );
5 RETIRE_SUCCESS
6 }
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RV32: SHA-512

These instructions are implemented on RV32 only. Used to compute the transform
of the SHA2-512 hash functions in conjunction with the other high/low half
instruction. The transform is a 64-bit to 64-bit function, so the input and output
are each represented by two 32-bit registers.

SHA512SIG0H: Implements the high half of the Sigma0 transformation, as used
in the SHA2-512 hash function.

1 function clause execute ( SHA512SIG0H (rs2 , rs1 , rd)) = {
2 X(rd) = EXTS ((X(rs1) >> 1) ^ (X(rs1) >> 7) ^ (X(rs1) >> 8)

^
3 (X(rs2) << 31) ^ (X(rs2) << 24) );
4 RETIRE_SUCCESS
5 }

SHA512SIG0L: Implements the low half of the Sigma0 transformation, as used
in the SHA2-512 hash function.

1 function clause execute ( SHA512SIG0L (rs2 , rs1 , rd)) = {
2 X(rd) = EXTS ((X(rs1) >> 1) ^ (X(rs1) >> 7) ^ (X(rs1) >> 8)

^
3 (X(rs2) << 31) ^ (X(rs2) << 25) ^ (X(rs2) << 24) );
4 RETIRE_SUCCESS
5 }

SHA512SIG1H: Implements the high half of the Sigma1 transformation, as used
in the SHA2-512 hash function.

1 function clause execute ( SHA512SIG1H (rs2 , rs1 , rd)) = {
2 X(rd) = EXTS ((X(rs1) << 3) ^ (X(rs1) >> 6) ^ (X(rs1) >>

19) ^
3 (X(rs2) >> 29) ^ (X(rs2) << 13) );
4 RETIRE_SUCCESS
5 }

SHA512SIG1L: Implements the low half of the Sigma1 transformation, as used
in the SHA2-512 hash function.

1 function clause execute ( SHA512SIG1L (rs2 , rs1 , rd)) = {
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2 X(rd) = EXTS ((X(rs1) << 3) ^ (X(rs1) >> 6) ^ (X(rs1) >>
19) ^

3 (X(rs2) >> 29) ^ (X(rs2) << 26) ^ (X(rs2) << 13) );
4 RETIRE_SUCCESS
5 }

SHA512SUM0R: Implements the Sum0 transformation, as used in the SHA2-512
hash function.

1 function clause execute ( SHA512SUM0R (rs2 , rs1 , rd)) = {
2 X(rd) = EXTS ((X(rs1) << 25) ^ (X(rs1) << 30) ^ (X(rs1) >>

28) ^
3 (X(rs2) >> 7) ^ (X(rs2) >> 2) ^ (X(rs2) << 4) );
4 RETIRE_SUCCESS
5 }

SHA512SUM1R: Implements the Sum1 transformation, as used in the SHA2-512
hash function.

1 function clause execute ( SHA512SUM1R (rs2 , rs1 , rd)) = {
2 X(rd) = EXTS ((X(rs1) << 23) ^ (X(rs1) >> 14) ^ (X(rs1) >>

18) ^
3 (X(rs2) >> 9) ^ (X(rs2) << 18) ^ (X(rs2) << 14) );
4 RETIRE_SUCCESS
5 }

RV64: SHA-512

These instructions are supported for the RV64 base architecture.

SHA512SIG0: Implements the Sigma0 transformation function as used in the
SHA2-512 hash function.

1 function clause execute ( SHA512SIG0 (rs1 , rd)) = {
2 X(rd) = ror64(X(rs1), 1) ^ ror64(X(rs1), 8) ^ (X(rs1) >>

7);
3 RETIRE_SUCCESS
4 }

SHA512SIG1: Implements the Sigma1 transformation function as used in the
SHA2-512 hash function.

36



Design and Implementation

1 function clause execute ( SHA512SIG1 (rs1 , rd)) = {
2 X(rd) = ror64(X(rs1), 19) ^ ror64(X(rs1), 61) ^ (X(rs1) >>

6);
3 RETIRE_SUCCESS
4 }

SHA512SUM0: Implements the Sum0 transformation function as used in the
SHA2-512 hash function.

1 function clause execute ( SHA512SUM0 (rs1 , rd)) = {
2 X(rd) = ror64(X(rs1), 28) ^ ror64(X(rs1), 34) ^ ror64(X(

rs1) ,39);
3 RETIRE_SUCCESS
4 }

SHA512SUM1: Implements the Sum1 transformation function as used in the
SHA2-512 hash function

1 function clause execute ( SHA512SUM1 (rs1 , rd)) = {
2 X(rd) = ror64(X(rs1), 14) ^ ror64(X(rs1), 18) ^ ror64(X(

rs1) ,41);
3 RETIRE_SUCCESS
4 }

4.3.3 SM4 and SM3 Functions
SM4 and SM3 are cryptography algorithms standardized by the Chinese government
for encryption and hashing, respectively.

SM4 is a symmetric block cipher algorithm used for encryption and decryption.
It operates on 128-bit blocks and uses a 128-bit key. The algorithm involves 32
rounds of substitution and permutation operations, making it secure and efficient
for various applications such as wireless communication and data encryption.

SM3 is a cryptography hash function similar in structure to SHA-2. It generates
a 256-bit hash value from input data of any length. SM3 is designed to provide data
integrity and authentication, ensuring that even a small change in the input data
produces a significantly different hash value. It’s widely used in digital signatures
and other security protocols within China.

Similar to the AES algorithm, the SM4 S-Box is computed using a combinational
circuit, as described in the same paper referenced in the AES section [5].
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The Sail model for these functions is detailed in the [3], which outlines how
these cryptography algorithms are implemented in a formalized manner.

These instructions are supported for the RV32 and RV64 base architectures.

SM3P0: Implements the P0 transformation function as used in the SM3 hash
function.

1 function clause execute (SM3P0(rs1 , rd)) = {
2 let r1 : bits (32) = X(rs1) [31..0];
3 let result : bits (32) = r1 ^ rol32(r1 , 9) ^ rol32(r1 , 17);
4 X(rd) = EXTS( result );
5 RETIRE_SUCCESS
6 }

SM3P1: Implements the P1 transformation function as used in the SM3 hash
function.

1 function clause execute (SM3P1(rs1 , rd)) = {
2 let r1 : bits (32) = X(rs1) [31..0];
3 let result : bits (32) = r1 ^ rol32(r1 , 15) ^ rol32(r1 , 23)

;
4 X(rd) = EXTS( result );
5 RETIRE_SUCCESS
6 }

SM4ED: Accelerates the block encrypt/decrypt operation of the SM4 block cipher.
Implements a T-tables in hardware style approach to accelerating the SM4 round
function. A byte is extracted from rs2 based on bs, to which the SBox and linear
layer transforms are applied, before the result is XOR’d with rs1 and written back
to rd. On RV64, the 32-bit result is sign extended to XLEN bits.

1 function clause execute (SM4ED (bs ,rs2 ,rs1 ,rd)) = {
2 let shamt : bits (5) = bs @ 0b000; // shamt = bs*8 //
3 let sb_in : bits (8) = (X(rs2) [31..0] >> shamt) [7..0];
4 let x : bits (32) = 0 x000000 @ sm4_sbox (sb_in);
5 let y : bits (32) = x ^ (x << 8) ^ ( x << 2) ^
6 (x << 18) ^ ((x & 0 x0000003F )

<< 26) ^
7 ((x & 0 x000000C0 ) << 10);
8 let z : bits (32) = rol32(y, unsigned (shamt));
9 let result : bits (32) = z ^ X(rs1) [31..0];
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10 X(rd) = EXTS( result );
11 RETIRE_SUCCESS
12 }

SM4KS: Accelerates the Key Schedule operation of the SM4 block cipher. Imple-
ments a T-tables in hardware style approach to accelerating the SM4 Key Schedule.
A byte is extracted from rs2 based on bs, to which the SBox and linear layer
transforms are applied, before the result is XOR’d with rs1 and written back to rd.
On RV64, the 32-bit result is sign extended to XLEN bits.

1 function clause execute (SM4KS (bs ,rs2 ,rs1 ,rd)) = {
2 let shamt : bits (5) = (bs @ 0b000); // shamt = bs*8 //
3 let sb_in : bits (8) = (X(rs2) [31..0] >> shamt) [7..0];
4 let x : bits (32) = 0 x000000 @ sm4_sbox (sb_in);
5 let y : bits (32) = x ^ ((x & 0 x00000007 ) << 29) ^ ((x

& 0 x000000FE ) << 7) ^
6 ((x & 0 x00000001 ) << 23) ^ ((x

& 0 x000000F8 ) << 13) ;
7 let z : bits (32) = rol32(y, unsigned (shamt));
8 let result : bits (32) = z ^ X(rs1) [31..0];
9 X(rd) = EXTS( result );

10 RETIRE_SUCCESS
11 }
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Chapter 5

Testing and Validation

5.1 Functional Testing of Modules

Functional testing ensures that each module performs its intended operations
correctly. Test suites developed by the RISC-V community in the K extension are
used to verify the functionality of each instruction. These test suites consist of
several assembly programs where specific instructions are executed multiple times
with varying input values. In the initial phase, each instruction is tested manually
by examining the output waveforms to evaluate the results of each module. Figure
5.1 shows an example of the output for instructions of the SHA2 family. This
simulation is performed using the VCS and Verilator simulators. Each instruction
is tested individually with a single input to debug the hardware and connections
between submodules and the main core.

Figure 5.1: Waveforms of the SHA2 family results

In the second phase, Spike, the RISC-V ISA simulator, is used to automatically
validate the results of each instruction with multiple inputs. Results from Spike
and the core simulator are logged, and after simulation, the log data are compared
to verify register values after executing each line.
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5.2 Regression Test and Code Coverage Analysis
Regression testing was conducted to ensure that integrating the cryptography
extensions did not introduce any regressions or unintended behaviors in the CVA6
core. This involved running a comprehensive suite of tests where the core executes
all tests sequentially without terminating the simulation. After executing all 52
tests, the simulation results for each file are represented in Table 5.1. The table
displays the number of assembly instructions in each file, simulation time, and
execution details.

By running all instructions without terminating the simulation, code coverage
metrics for the cryptography accelerator were obtained. Code coverage analysis,
performed using VCS and Verdi, included:

• Statement Coverage: Ensuring that every statement in the HDL code was
executed at least once.

• Path Coverage: Ensuring that all possible paths through the code were
exercised.

High code coverage percentages indicate a robust test suite, providing confidence
in the correctness and completeness of the hardware design. Figure ?? shows the
code coverage results. The identified gaps were due to unused signals from the
main core to the co-processor and incomplete coverage of all registered files.

Figure 5.2: Code Coverage Results
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Test File Simulation Time (ns) #Clock_Cycle CPU Time (s) Assembly Code (lines)
aes64ds-01.S 11478.5 7582 5.58 1288
aes64ds-rwp1.S 5607.5 3668 5.13 572
aes64dsm-01.S 11478.5 7582 4.65 1288
aes64dsm-rwp1.S 5607.5 3668 3.71 572
aes64es-01.S 11478.5 7582 5.53 1288
aes64esm-01.S 11478.5 7582 5.04 1288
aes64esm-rwp1.S 5607.5 3668 3.3 572
aes64es-rwp1.S 5607.5 3668 3.87 572
aes64im-01.S 9270.5 6110 6.42 1020
aes64im-rwp1.S 18408.5 12202 6.87 2044
aes64im-rwp2.S 4251.5 2764 4.13 382
aes64ks1i-01.S 10137.5 6688 5.91 1123
aes64ks2-01.S 17475.5 11580 10.33 1992
brev8-01.S 11925.5 7880 6.54 1344
pack-01.S 75117.5 50008 19.01 8956
packh-01.S 75117.5 50008 51.45 8956
packw-01.S 75117.5 50008 50.3 8956
sha256sig0-01.S 9270.5 6110 6.33 1020
sha256sig0-rwp1.S 18408.5 12202 7.61 2044
sha256sig0-rwp2.S 4251.5 2764 3.58 382
sha256sig1-01.S 9270.5 6110 6.1 1020
sha256sig1-rwp1.S 18408.5 12202 7.29 2044
sha256sig1-rwp2.S 4251.5 2764 3.36 382
sha256sum0-01.S 9270.5 6110 6.28 1020
sha256sum0-rwp1.S 18408.5 12202 7.66 2044
sha256sum0-rwp2.S 4251.5 2764 4.8 382
sha256sum1-01.S 9270.5 6110 6.79 1020
sha256sum1-rwp1.S 18408.5 12202 8.91 2044
sha256sum1-rwp2.S 4251.5 2764 3.98 382
sha512sig0-01.S 9270.5 6110 5.74 1020
sha512sig0-rwp1.S 18408.5 12202 8.31 2044
sha512sig0-rwp2.S 4251.5 2764 4.04 382
sha512sig1-01.S 9270.5 6110 6.46 1020
sha512sig1-rwp1.S 18408.5 12202 6.93 2044
sha512sig1-rwp2.S 4251.5 2764 4.07 382
sha512sum0-01.S 9270.5 6110 5.93 1020
sha512sum0-rwp1.S 18408.5 12202 7.25 2044
sha512sum0-rwp2.S 4251.5 2764 3.92 382
sha512sum1-01.S 9270.5 6110 6.02 1020
sha512sum1-rwp1.S 18408.5 12202 7.93 2044
sha512sum1-rwp2.S 4251.5 2764 3.36 382
sm3p0-01.S 9270.5 6110 6.43 1020
sm3p0-rwp1.S 18408.5 12202 8.25 2044
sm3p0-rwp2.S 4251.5 2764 4.98 382
sm3p1-rwp1.S 18408.5 12202 6.75 2044
sm3p1-rwp2.S 4251.5 2764 3.88 382
sm4ed-01.S 45039.5 29956 24.81 5320
sm4ed-rwp1.S 12654.5 8366 5.89 1431
sm4ks-01.S 45039.5 29956 23.26 5320
sm4ks-rwp1.S 12654.5 8366 6.97 1431
xperm4-01.S 78480.5 52250 54.99 9350
xperm8-01.S 57084.5 37986 32.29 6791

Table 5.1: Simulation Results of Regression Tests
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5.3 Summary
In summary, the testing and validation of the cryptography modules involved rigor-
ous functional and regression testing to ensure accurate operation and integration.
Functional testing was performed both manually and automatically using different
simulators to verify instruction functionality. Regression testing confirmed that no
new issues were introduced by the cryptography extensions. Code coverage analysis
further validated that the test suite thoroughly exercised the design, though some
gaps were noted and addressed. These comprehensive testing efforts ensure the
reliability and correctness of the cryptography modules in the CVA6 core.
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Results and Discussion

The results for area and power consumption were extracted using Synopsys tools
with the NangateOpenCellLibrary technology library. For power analysis, an AES
block encryption and decryption was executed, as described in the Performance
Analysis section.

The VCD (Value Change Dump) file for these programs was generated using
Verilator and served as the switching activity input for the power report. In the
following sections, the Area Report and Power Report present the respective results.

The critical path of the design is inside the CVA6 core and is not related to the
added co-processor. Since these paths are independent of the added modules and
are based on the main core itself, a detailed timing report is not covered in this
thesis. However, the final achievable synthesis using this technology library yields a
clock period of 3.6 ns, corresponding to a frequency of approximately 277.78 MHz.

6.1 Area Report

This section provides a detailed comparison of the area utilization between the
CVA6 core and the Cryptography accelerator. The table 6.1 summarizes the key
metrics and areas for both components, expressed in square micrometers (µm2).

The total combinational area in CVA6 is 233,009.3510 µm2, whereas in the
Cryptography accelerator, it is significantly smaller, at 8,905.9459 µm2. The
non-combinational area follows a similar pattern: CVA6 occupies 128,095.2301
µm2, while the Cryptography accelerator occupies only 194.1800 µm2.

When the Cryptography accelerator is integrated with the CVA6 core, there is
an overall increase in area by 2.52%. This suggests that while the Cryptography
accelerator adds functionality, it does so with minimal impact on the overall area.
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Metric CVA6 Cryptography Accelerator
Number of ports 2451 504
Number of nets 242354 7295
Number of cells 225408 7264
Number of combinational cells 200805 7187
Number of sequential cells 24106 73
Number of buf/inv 33844 1145
Number of references 82 32
Area (µm2) CVA6 Cryptography Accelerator
Combinational Area 233,009.3510 8,905.9459
Buf/Inv Area 21,014.2659 618.1840
Noncombinational Area 128,095.2301 194.1800
Absolute Total Area 361,104.5811 9,100.1259

Table 6.1: Comparison of Area Metrics between CVA6 and Cryptography Accel-
erator

6.2 Power Report
The power report generated by the Synopsys Compiler is divided into two main
components: dynamic power and static power. The total power consumption
(Ptotal) is calculated using the following formula:

Ptotal = Pdynamic + Pstatic

Static Power

Static power is the power dissipated when the circuit is not switching, which
is primarily caused by leakage currents. The total static power is given by the
following formula:

Pstatic =
Ø

∀ celli
leakage_power(celli)

The leakage power consumption for each standard cell is specified in the tech-
nology library.

Dynamic Power

Dynamic power is the power dissipated when the circuit is active, i.e., when the
voltage on a net changes due to external stimuli. Dynamic power is composed of
two components: switching power and internal power.
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Switching Power

Switching power is the power dissipated due to the charging and discharging of
the capacitive load at the output. The load capacitance is contributed by both
the net capacitance (which can be estimated or back-annotated) and the input pin
capacitances of the fanout cells. Switching power depends on:

• Total capacitive load,

• Rate of logic transitions,

• The supply voltage Vdd.

The total switching power is calculated as:

Pswitching =
Ø

∀ neti

switching_power(neti)

The switching power for a given net can be computed using the following formula,
derived from solving a simple RC circuit:

switching_power(neti) = 0.5 × V 2
dd × Cload(neti) × toggle_rate(neti)

Here:

• Cload(neti) is the load capacitance on the net,

• toggle_rate(neti) is the number of transitions per unit of time.

Internal Power

Internal power is the power dissipated within the boundaries of a cell. This includes
power dissipation due to:

• The charging and discharging of capacitances internal to the cell,

• A short-circuit current flowing momentarily between the pull-up and pull-down
networks during switching.

The total internal power is computed as:

Pinternal =
Ø

∀ celli
internal_power(celli)
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Power Reports

Table 6.2 shows the power report of the CVA6 core for different programs, while
Table 6.3 presents the power consumption of the cryptography accelerator separately.
In the case where the cryptography accelerator is used, the total power consumption
should be the sum of both the CVA6 and the accelerator. This combined total can
then be compared with the power consumption when the cryptography accelerator
is not used.

Power Group Internal
Power
(W)

Switching
Power
(mW)

Leakage
Power
(mW)

Total
Power
(W)

Execution
Time(cycles)

With Accelerator
Encryption 309.0295 502.5311 7.5093 309.5320 4,274
With Accelerator
Decryption 309.0252 501.8715 7.5094 309.5271 4,460
Without Acc.
Encryption 309.0554 519.8745 7.5098 309.5753 66,960
Without Acc.
Decryption 309.0372 522.9204 7.5095 309.5601 405,544

Table 6.2: CVA6 Power Report (With and Without Accelerator)

Power Group Internal
Power
(mW)

Switching
Power
(mW)

Leakage
Power
(uW)

Total
Power
(mW)

Execution
Time(cycles)

Encryption 9.3427 7.6979 210.4243 17.0406 4,274
Decryption 11.9716 9.6859 210.4214 21.6574 4,460

Table 6.3: Cryptography Accelerator Power Report (Encryption and Decryption)

The total power consumed by the core is the sum of the power consumed by
the CVA6 core and the cryptography accelerator:

Ptotal = PCVA6 + PAccelerator

When the cryptography accelerator is not used, only the power consumption of the
CVA6 core is considered:

Ptotal = PCVA6

For encryption, the CVA6 core alone consumes approximately 309.58 W, while
adding the cryptography accelerator increases the total power to 309.60 W (CVA6
+ 17.04 mW from the accelerator). This represents an increase of approximately
0.007% in total power consumption.
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Similarly, for decryption, the CVA6 core alone consumes 309.56 W, and adding
the cryptography accelerator brings the total to 309.58 W (CVA6 + 21.66 mW
from the accelerator). This results in a 0.01% increase in total power.

This comparison highlights how much power is related to the added module
in case of using the accelerator. However, without the accelerator, the program’s
execution time increases, resulting in higher internal power and leakage power,
compared to when the accelerator is used, and the program finishes more quickly.
Consequently, longer execution times lead to greater power consumption.

It can be observed that the CVA6 power in encryption without the accelerator
is 309.5753 W and with the accelerator is 309.5320 W, while in the decryption
phase, the power without the accelerator is 309.5601 W and with the accelerator is
309.5271 W.

At the end, comparing the total power of the whole core:

• Encryption: without accelerator = 309.5753 W, with accelerator = 309.60 W.

• Decryption: without accelerator = 309.5601 W, with accelerator = 309.58 W.

Analysis: The use of the cryptography accelerator results in a slightly higher
total power, but due to the reduced execution time, it also lowers internal and
leakage power, making the overall power efficiency more favorable.

6.3 Performance Analysis
For the performance analysis, two types of C programs were evaluated to assess the
performance of AES, which is a critical component in this implementation. The
core developed and executed four C programs, with results checked for encryption
and decryption. Specifically, two C programs were used for encryption and two
for decryption, with each developed to run both with and without cryptography
extensions.

To measure performance, the number of instructions executed and the execution
time were recorded for a single block of data during the simulation. The results
are summarized in Table 6.4.

As shown in the table, the use of the cryptography accelerator significantly
improves both the number of instructions executed and the execution time.

• Encryption: Without the accelerator, the process required 27,465 instructions
and took 66,960 cycles to complete. With the accelerator, the instruction
count was reduced to just 158, and the execution time dropped dramatically
to 4,274 cycles. This represents a performance improvement of approximately
94% in execution time.
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Operation Accelerator Number of In-
structions

Execution Time
(cycles)

Encryption Without Accelerator 27,465 66,960
With Accelerator 158 4,274

Decryption Without Accelerator 205,439 405,544
With Accelerator 205 4,460

Table 6.4: Performance Analysis of AES with/without Cryptography Extensions

• Decryption: Without the accelerator, the process required 205,439 instruc-
tions and took 405,544 cycles. With the accelerator, the instruction count was
reduced to 205, with the execution time reduced to 4,460 cycles, indicating a
performance improvement of approximately 98% in execution time.

The "Number of Instructions" refers to the cumulative count of assembly instruc-
tions executed from the initiation of the KeyExpansion phase until the conclusion
of the encryption/decryption function. The execution time represents the total
cycles measured during the Verilator simulation of the compiled C program. This
substantial reduction in both instruction count and execution time highlights the
efficiency and effectiveness of the cryptography extensions in optimizing the AES
operations.

6.4 Discussion
The successful integration of cryptography extensions into the CVA6 core demon-
strates the feasibility and benefits of incorporating hardware-level security features
into modern processors. The outcomes of this project offer valuable insights
into various aspects of processor design, particularly in the context of balancing
performance, security, and resource efficiency.

6.4.1 Design Trade-offs
The integration of cryptography extensions required careful consideration of several
design trade-offs. While the inclusion of dedicated cryptography hardware increased
the core’s resource utilization, the performance gains—especially in terms of reduced
instruction count and execution time—made these trade-offs worthwhile. The
modular nature of the CVA6 core proved advantageous, allowing for seamless
integration of new features without significant disruption to the core architecture.
The enhancements in encryption and decryption performance, as evidenced by the
reduction in execution cycles, underscore the efficiency of the design despite the
added complexity.
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6.4.2 Security Implications
The addition of hardware-based cryptography extensions substantially bolstered the
security posture of the CVA6 core. By offloading critical cryptographic operations
from software to dedicated hardware, the design effectively mitigated the risks
associated with software-based vulnerabilities and side-channel attacks. This
hardware-centric approach not only enhances data integrity and confidentiality
but also provides a more secure execution environment for applications demanding
high levels of security. The shift towards hardware-based security mechanisms
aligns with the growing need for robust and resilient systems in an increasingly
interconnected world.

50



Chapter 7

Conclusion and Future Work

7.1 Conclusion
This thesis has successfully demonstrated the design and implementation of a RISC-
V processor integrated with advanced security features, addressing contemporary
cybersecurity challenges. The primary objective was to incorporate the newly
ratified RISC-V Cryptography Extensions into a 64-bit core, significantly enhancing
the processor’s capability to execute cryptography tasks both efficiently and securely.

The key accomplishments of this work include:

• Core Selection and Integration: The project commenced with a thorough
evaluation of existing 64-bit RISC-V cores, ultimately selecting the CVA6
core as the optimal platform for integration. This core, adhering to the 64-bit
RISC-V instruction set, provided a robust foundation for the addition of
cryptography functionalities.

• Cryptography Accelerator Development: A cryptography accelerator was
meticulously designed and integrated into the CVA6 core. The development
process involved rigorous functional testing, spike simulation validation, and
comprehensive regression testing to ensure the correct and efficient operation
of the cryptography instructions.

• Performance Improvements: The integration of the cryptography ac-
celerator led to significant performance improvements, particularly in the
implementation of the AES algorithm. The results demonstrated an approx-
imate 15-fold increase in speed and a reduction in code size, validating the
effectiveness of the hardware-level enhancements.

• Security Enhancements: By isolating critical cryptography functions from
the main processor and ensuring constant-time execution of algorithms, the
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implementation significantly reduced vulnerabilities to attacks such as side-
channel threats. These hardware security measures provide a robust defense
against various cyber threats.

In conclusion, this thesis contributes valuable insights into secure processor
design, particularly within the context of the open-source RISC-V architecture.
The enhancements achieved not only improve the security capabilities of the CVA6
core but also lay the groundwork for future research and development in hardware-
based security mechanisms.

7.2 Future Work
The successful integration of cryptography extensions into the CVA6 core opens
several avenues for future research and development. Potential areas of exploration
include:

• Advanced Cryptography Algorithms: Extending the hardware support
to include more complex algorithms such as elliptic curve cryptography (ECC)
and post-quantum cryptography schemes. This would further enhance the
security features of the processor, making it suitable for a wider range of
applications.

• Optimized Hardware Architectures: Investigating further optimizations
in hardware design to improve performance and reduce resource overhead. This
could involve refining the accelerator design or exploring alternative hardware
architectures that balance performance, area, and power consumption more
effectively.

• Integration with Other Security Features: Combining cryptography
extensions with other hardware-based security mechanisms, such as secure boot
and trusted execution environments (TEEs), to create a more comprehensive
and secure processing environment. This integration could provide a more
holistic approach to security in embedded systems and other applications.

• Scalability and Flexibility: Exploring the scalability of the cryptography
accelerator to support a broader range of applications, from low-power em-
bedded systems to high-performance computing environments. Additionally,
investigating ways to make the accelerator more flexible, allowing for dynamic
reconfiguration based on the security requirements of different applications.

• Real-world Applications and Benchmarks: Evaluating the performance
and security of the enhanced CVA6 core in real-world applications and bench-
marks. This would involve deploying the core in practical scenarios to measure
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its effectiveness in a variety of use cases, providing valuable feedback for further
improvements.

The work presented in this thesis establishes a strong foundation for future
developments in secure processor design, particularly in the context of the open-
source RISC-V architecture. As cybersecurity threats continue to evolve, the
need for robust, hardware-based security measures will only grow, making this an
exciting and critical area of ongoing research.
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