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Summary

Cardiovascular diseases (CVD) are the foremost cause of mortality worldwide,
responsible for approximately 17.9 million deaths annually, as reported by the
World Health Organization(WHO). In order to effectively manage cardiac disease,
which leads to decreased morbidity, the essential step is early detection of the
disease. The main aim of this study is to look in more detail at the performance of
supervised classification machine learning algorithms to detect cardiac anomalies
from rest/stress myocardial perfusion imaging (MPI) in single-photon emission
computed tomography (SPECT). A total of 266 patients who performed a 2-day
stress-rest protocol MPI SPECT were suspected to have a cardiac abnormality.
Altogether, 401 features were extracted from Rest-Stress MPI SPECT images.
These features included different sets, consisting of Rest-Stress, Delta, and combined-
radiomics (a combination of all sets of features). To have training and testing parts,
the data was randomly divided into subsets of 75% and 25%. To evaluate the
performance of classifiers, combinations of three scaling techniques, four feature
selections, nine classification algorithms, and two search strategies were used. For
the purpose of evaluating the model, different metrics consisting of Specificity
(SPE), Sensitivity (SEN), Accuracy (ACC), and Area Under the ROC curve (AUC)
were measured. Having been considered, models built of the combination of Rest-
Stress feature set performed better than models of Rest and Stress. The metrics
results were ACC = 0.83, AUC = 0.86, SPE=0.81, and SEN = 0.81 for the
RobustScaler scaling method, the Logistic Regression (LR) classification algorithm
with selected features from the Model-based Feature Selection (F'S), Random Search
for parameter optimization, and outliers were detected with Z-Score strategy. For
models with the highest performance, interpretability model was implemented.
Shapley values of features are calculated to find the features that have the highest
effect on the output result. As an example, the “Zone distance variance” feature
from the Gray-Level Zone Size Matrix (GLSZM) values, significantly impacted the
final result. The goal is to identify features of high importance rather than focusing
on a wide range of features and spend time and energy on the features that are
more important so that the results can be achieved faster and easier.
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Chapter 1

Introduction

1.1 What are Cardiovascular Diseases?

Health disorders in any part of the heart or the blood vessels come under cardiovas-
cular diseases (CVDs) [1]. The list of disorders that are included under the category
of CVDs is very long, containing conditions such as heart failure, hypertensive
heart disease, rheumatic heart illness, cardiomyopathy, arrhythmia, congenital
heart problems, valvular heart disease, symptoms of carditis, aneurysms, peripheral
artery disease (PAD), thromboembolic disease, and venous thrombosis [2]. CVDs
can also apply to any malfunction or structural problem occurring within the heart
valves. Disease of heart valves, particularly, manifests when the valves of the heart
are not able to render an appropriate opening or closing; this consequently alters
the way blood flows [3].

1.2 Scenario

Cardiovascular Diseases (CVDs) remain the leading cause of death globally [4],
accounting for an estimated 17.9 million deaths per year according to the World
Health Organization [4]. Unhealthy eating, overweight and obesity, a sedentary
lifestyle, and chronic diseases such as diabetes are remarkable causes of heart
disorders [4]. To effectively manage cardiac disease, which leads to a reduction
in mortality and also ultimately lowers the morbidity linked to these disorders,
the essential step is early detection of the disease [4]. Often, the basic symptoms
are similar to those of other diseases, making it difficult for medical professionals
to provide an accurate diagnosis for different cardiovascular diseases [4]. The
identification of cardiovascular diseases is greatly aided by medical imaging. In
order to progress biomedical research and enable early detection of illnesses in
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treatment, imaging is crucial, which it can be done in non-invasive way [5]. Key non-
invasive imaging tools for CVDs assessments include Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and
Single Photon Emission Computed Tomography (SPECT) [6]. CT scans generate
high-resolution, cross-sectional anatomical images by processing multiple X-ray
measurements from different angles, which are valuable for diagnosing cardiovascular
diseases [7]. MRI provides detailed three-dimensional images without ionizing
radiation, making it ideal for assessing soft tissues [8]. Imaging techniques to detect
abnormalities, such as CT and MRI, are popular in medical diagnostics. C'T scan
is a medical imaging technique that forms detailed images of the interior part of
the body [9]. Then, a computer processes several measures of X-rays taken from
different angles to form images that can be stacked to create a three-dimensional
model of the scanned area [7]. CT scans provide high-resolution imaging and
a flexible imaging method used to diagnose heart diseases [9]. MRI is another
imaging technique that maintains a high ratio of signal to noise and offers a three-
dimensional detailed image of the body [8]. MRI is free from ionizing radiation,
which produces fine images of the soft tissues, organs, and interior structures [10].
Nuclear medicine techniques, such as PET and SPECT, are crucial for detecting
early physiological and metabolic changes, often before structural abnormalities
become evident [6]. These techniques produce three-dimensional images, enabling
detailed analysis of blood flow and metabolic activity analysis [6].

In both modalities, gamma rays emitted from radioactive tracers inside the
body are captured to provide insight into the physiological and metabolic activities
[11]. PET and SPECT are useful for research in health at the molecular level [12].
Also, one of the best approaches to discovering diseases and monitoring treatment
procedures [13]. One of the above imaging modalities may be chosen depending on
the exact clinical scenario in hand, information needed, patient characteristics, and
available resources. Particularly, PET and SPECT imaging can detect physiologic
metabolic changes at the cellular level, allowing it to discover diseases in their
early stages well before changes on a structural level occur [12]. Diseases are most
often diagnosed by CT and MRI based on structural abnormalities, which might
occur later in the disease process [14]. SPECT imaging faces challenges such as the
need for expert interpretation, time-consuming analysis, and variability between
observers [15]. Radiomics, with its mathematical approach, addresses these issues
by standardizing image interpretation, reducing variability, and minimizing the
need for extensive expertise [16]. In healthcare, radiomics is an approach that uses
data-characterization algorithms to collect considerable amounts of features from
medical images [17, 18]. Integrating machine learning into radiomics enhances
diagnostic accuracy, but ensuring model interpretability is crucial for clinical trust
and effective patient care [19].

In the past few years, there has been a significant increase in the use of many
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Artificial Intelligence (AI) (Machine Learning (ML) and Deep Learning (DL)) in
different fields such as text detection and recognition [20]. In ML, models are
trained using various probabilistic and statistical techniques on data to identify and
learn different patterns, which are subsequently applied to new data to produce
desired predictions [21]. Nowadays, ML appears to be utilized more often and
has become increasingly important in health [20]. With ML algorithms, it is now
potentially possible to recognize diseases with high precision and accuracy [22].

This study uses SPECT imaging data and machine learning models to enhance
diagnostic accuracy, addressing limitations in traditional imaging methods and
facilitating earlier detection and monitoring of diseases. In this study, we aimed to
implement different ML algorithms, and find the best-performing model and make
it more interpretable for clinical implementation. Upon identifying the optimal
model, the next step is to comprehend its operation.

1.3 Interpretability

Although ML models perform remarkably well, their lack of clarity is a major
obstacle to their wider use in clinical practice [23]. This lack of transparency
is a challenge in medicine, where understanding the decision-making process is
crucial for gaining the trust of healthcare professionals and patients, ensuring
regulatory compliance, and facilitating accurate diagnosis [24]. Instead of only
predicting and focusing on the final results, the interpretation methods provide
an interface that offers additional details. The goal of Interpretable ML (IML)
is to fill the gap that exists between the requirement for transparency and the
performance of complex models [25]. Some models are inherently interpretable
and have self-explain abilities like Decision Trees (DTs), Linear Regression, and
K-Nearest Neighbor (K-NN), while many of the most advanced models like the
Random Forest (RF) model or Neural Networks (NN) and Deep Learning (DL)
models are not easily understandable for humans, which are referred as “black-box”
models [26]. Interpretability tries to understand how these models work and make
them much more understandable for the end user [26].

1.4 Explainable AI (xAI) methods

Explainable Artificial Intelligence (xAl) initiatives have two main objectives. The
first one is to develop methods of machine learning that remain highly performing
in learning, with models allowing their decision-making process and output to be
understood [26]. The second objective has to do with communicating a user-centric
approach to make artificial intelligence understandable for humans [26]. That’s why
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xAIT tries to provide more confidence in learned models and effective collaboration
with artificial and human agents[27].

Generally, xAI methods can be divided into two main types: post-hoc and
ante-hoc methods[28]. Post-hoc is used to provide explanations for the model after
it has been trained [26]. Then, the ante-hoc xAl refers to the incorporation of
interpretability into the ML model development process from the very beginning
[26]. This means that the model is designed to be interpretable from the start,
rather than attempting to make an opaque model interpretable after it has been
trained [29].

Model-specific and model-agnostic are two sub-classes of post-hoc methods [28].
Model-specific methods are designed for specific model categories using specified
characteristics of the models to explain the behavior of the model [26]. Another
interpretability strategies are Model-agnostic techniques. These models are flexible
and can be applied to all ML models, due to their internal structures [26]. The
common and popular techniques are Shapley values, Locally Interpretable Model-
agnostic Explanations (LIME) [30], and Permutation Feature Importance (PFI)
[31]. Shapley values can be useful in explaining the output of any ML model [31].
These values help understand each feature’s effect on model output and identify
the most important features [31]. This approach allows one to focus on the most
important features.

1.5 Research Questions

This study plans to address the following questions about the context of using Al
on healthcare data:

1. How successfully machine learning detects anomalies: How well do
machine learning models identify anomalies in cardiac diseases?
- To investigate this, several machine learning models were deployed and
trained. The main objective is to assess their output results regarding accuracy,
specificity, sensitivity, and other metrics.

2. Performance comparison between different designed classifiers: Which|
classifier or combination of classification algorithms, feature selectors, and
scaling methods has better results?

- The goal is to find the classifier with the best performance on data, and
which features have been selected and have had the greatest impact on the
way the model works and output.

3. Effectiveness of interpretability approaches on the final results and
features: Why this stage is important, while machine learning models are
implemented on data, and results are obtained?
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- This step of the study provides more insightful and accurate explanations of
different models’ decisions and identifies how each feature impacts the final
result. Given that sometimes specialists have to work on a large number of fea-
tures, and this work certainly requires time and high accuracy, interpretability
output makes it possible to focus on the features that have the most impact
on the results.

1.6 Thesis Overview

This study investigates implementing different ML algorithms on extracted features
of MPI SPECT images to identify the classifier with the best performance, and
then with a Shapley Additive eXplanations (SHAP) method, finds the features
with the highest effect of final prediction.

1.

Chapter 1, Introduction: The first chapter presents an overview of heart
diseases and diagnosis approaches. It also talks about the use of machine
learning models in the medical domain, and how can increase transparency
with interpretable ML.

Chapter 2, Literature Review: A summary of previous studies in cardiac
anomaly detection. In addition, in this chapter explanations are provided about
the implemented machine learning algorithms and interpretability methods
and the obtained results.

Chapter 3, Data Preprocessing: Chapter 3, explains the data, as well
as the used method for feature extraction from MPI SPECT images and
the software to do this task. Also, the algorithms used in the pipeline for
feature selection and outlier detection and definitions of the measured metrics,
explanations, and formulas are provided.

Chapter 4, Model Optimization: In chapter 4, creating a pipeline and
also the main search methods are explained. Furthermore, the algorithms to
optimize parameters and hyperparameters are explained. This chapter also
presents an interpretability explanation and how Shapley values are calculated,
and a summary of how SHAP plots can help to understand the rule of each
feature in the final prediction.

Chapter 5, Results of ML Models: In this chapter, the output results
of implementing the designed classifier on the test dataset are illustrated for
all combinations of ML algorithms, scaling methods, and feature selection
strategies. In addition, the results of the top classifiers of each combination
and ROC curves are shown in tables and figures. The comparison between
results can be found in this chapter.
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6. Chapter 6, Result of Interpretability Model: Chapter 6 presents the
output SHAP plots of implementing the interpretability model on selected
ML models with the highest value of metrics and explains each plot.

7. Chapter 7, Conclusion and Future Work: The final chapter summarizes
the study findings and proposes new topics to investigate more in future works.



Chapter 2

Literature Review

2.1 Literature Review

This study includes two main sections. In the first section, different ML algorithms
are implemented, and their results are compared. Then, the model with the highest
output metric values is chosen. The second part focuses on implementing a Shapley
values explainer on the selected model and the features that are selected in the
first step for each combination of the models. ML classification algorithms are
commonly used for prediction, and a variety of research has been conducted on
cardiac disease and anomaly detection [32, 33, 34]. The output results, such as
Accuracy (Acc), Sensitivity (SEN), Specificity (SPE), Area Under the Curve (AUC),
and other metrics of ML models in different fields, are commonly good, but a lack
of transparency of ML models is evident [35]. Different interpretability methods
are used to shed light on the different ML models.

2.2 ML algorithms in the health

The healthcare domain is rich in data due to various monitoring and data collection
tools, and ML has enormous significance in analyzing data that is impossible for
humans to process effectively [36]. ML is the process of learning patterns and useful
information from data [36]. The trained ML model could be used to predict the
result for new cases, which allows medical professionals to identify new patients
more effectively [37].

Identifying heart diseases is one of the most important tasks, in the medicine
[38]. To save lives, a quick, accurate, and efficient diagnosis tool is required [38]. In
common methods, multiple tests must be performed on patients, and they need to be
checked by specialists [38]. Because of this, researchers are interested in predicting
the risk of heart disease and detecting abnormalities by creating various prediction
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and detection models using ML techniques [20]. Different classification techniques
are used for abnormality detection, and a brief definition of each technique will
be provided. All implemented classification algorithms in this study are imported
from scikit-learn [39] library.

2.2.1 Summary of used algorithms
Logistic Regression

Logistic Regression (LR) is a supervised ML method used for binary classification
tasks [39]. LR can be employed to predict the likelihood of developing a specific
illness using observable patient characteristics [39, 40]. It predicts the probability
that a given input belongs to a particular class [39, 40]. LR uses a logistic function,
basically a sigmoid function, to model binary output [39, 40].

x is the input

LR does not require a linear relationship between inputs and target variables [39,
40]. Kannan. et al. [41], used different ML algorithms to predict Cardiovascular
disease (CVD), and LR achieved the best accuracy of 86.51% compared to other
models.

K-Nearest Neighbor

K-Nearest Neighbor (K-NN) is a simple supervised ML algorithm used for classifica-
tion and regression problems [39, 42]. It works based on Euclidean Distance and the
concept of neighborhood. In essence, to classify a new data point, K-NN examines
k neighbors, in the training set and calculates the distances between the test point
and these neighbors [39, 42]. Then it sorts the distance and assigns test points to
the class that has the majority between all classes. The value of ‘k’ is defined by
the user, and it is a positive integer value [39, 42]. The value of accuracy and other
metrics can be changed by changing the value of ‘k’. K-NN has always been used in
different classification problems to measure defined model performance. Shah et al.
[43] implemented various ML algorithms on the existing dataset of the Cleveland
database of UCI repository to predict heart disease. Among all ML algorithms,
K-NN had the highest performance with an accuracy of 90.78% in predicting heart
anomalies.
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Decision Tree

Decision Tree (DT) is a supervised ML method that works for both classification
and regression tasks[39, 44]. With DT, tree-like structures are created. Created
tree with this method consists of a root node (main node), interior node (handle
different attributes), and leaf node (output or class label) [39, 44]. DT divides the
data into two or more sets based on the most important indicators [39, 45]. At
first, the entropy of each feature is calculated and data division is done based on
maximum gain or minimum entropy [44]. As this algorithm analyzes data in a
tree-shape structure, it is possible to have better results in different metrics and
also accuracy values in comparison to other models [39, 45]. Emil, et al. [46] focus
on tree-based algorithms to predict heart disease in patients. Based on published
results, DT could predict patients with heart disease with 81% accuracy, and with
82% accuracy of patients without heart problems.

Random Forest

One well-known ensemble classification method used in ML across various appli-
cations, especially in healthcare, is Random Forest (RF) [39, 47]. It is used in
classification and regression tasks. This method fits multiple DT classifiers in
parallel using a technique called “parallel ensembling” [39, 47]. As a result, it
reduces the overfitting issue and improves accuracy [39, 47]. Siddiqui, et al. [48],
used different ML algorithms to construct and explore models to predict coronary
illness based on different attributes, and between all algorithms, RF achieved 95.8%
accuracy

Adaptive Boosting

Adaptive Boosting (AdaBoost) is an ensemble learning technique that employs an
iterative procedure to make better classifiers by learning from their mistakes and
errors [39, 49]. It has a base learner that trains in each iteration. The procedure
of updating weights is according to the performance of earlier iterations [39, 49].
Instead of parallel ensembling like RF, it uses “Sequential Ensembling”. This
approach creates a robust classifier with a high accuracy and enhances the classifier
efficiency [39, 49]. This method is sensitive to noisy data and outliers, but it
remains a preferred choice for boosting the performance of DTs [50].

Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an ensemble learning model, and it builds
a final model from a series of individual models, usually DTs [39, 51]. Gradient
boosting employs gradient descent to minimize the loss function, similar to what
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happens in NN [39, 51]. XGBoost is a specific type of gradient boosting that
prioritizes precise approximations when selecting the optimal model. XGBoost can
handle large datasets and is also fast to interpret [39, 51].

Support Vector Classification

The main idea of support vector classification (SVC) is to look for the best decision
boundary, or hyperplane, in feature space that separates different classes [39, 52].
Some basic concepts that should be considered are: hyperplane, in an n-dimensional
space, a hyperplane is the set of points z that solve the equation x.w=0, where w is
a vector. The second concept is margin, which is the distance from the hyperplane
to the nearest data point (support vectors) of either class [39, 52]. These nearest
points are termed support vectors. The aim of the algorithms is to maximize
margin. It means that the hyperplane should be very far away from the support
vectors of both classes [39, 52].

2.2.2 Interpretability in Cardiac Anomaly Detection

While models with higher accuracy are generally more desirable, the created ML
classifier can be interpretable. Oftentimes, models with more complexity have
higher accuracy, while they are not easily explainable [26]. The interpretability
of models varies widely. A more interpretable model simplifies understanding
predictions for end users [24]. Interpretability methods can be classified as model-
agnostic and model-specific [28]. Methods that are flexible enough to be used with
any ML model, regardless of its underlying structure, are known as model-agnostic
[28]. Shapley Additive exPlanations (SHAP) [53] and LIME [53] are some methods
that examine how each feature affects the output value. Ibrahim et al. [54], after
implementing XGBoost, utilized Shapley values to identify features that have the
highest contribution to the classification output and tried to demonstrate IML in
CVD prediction. In another study [55] on cardiovascular diseases and detecting
anomalies in left ventricular hypertrophy (LVH), various supervised ML methods
were implemented, which RFs showed the best results. They implemented SHAP
approach for model interpretability, and the results show a considerable impact of
specific features on each patient separately as well as the interactions between each
feature pair [55].
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Chapter 3

Data Processing

3.1 Data Collection

The dataset utilized in this study is a proprietary dataset, specifically developed
for the purposes of this research. Due to its proprietary nature, it is not publicly
available. The data consists of 266 patients suspicious of coronary artery disease
(CAD) under the stress-rest protocol single-photon emission computed tomography
(SPECT) myocardial perfusion imaging (MPI). Conventional MPT SPECT evaluates
the presence, and degree of myocardial ischemia or stroke. SPECT is acquired in
rest and after physical activity or pharmacological stress [56].

Figure 1: Normal, MPI SPECT images without any defect.

Figure 2: Abnormal, MPI SPECT images containing the defect.
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3.2 Image Segmentation

A nuclear medical physicist with over five years of experience, segmented the left
ventricle myocardium, using the 3D-slicer software package. An experienced nuclear
medicine physician approved the segmentations and edited them if required. The
image of myocardium from different aspects was evaluated and a 3D shape was
created Figure 3.

Figure 3: Segmentation

3.3 Feature Extraction

Methods that can extract features are various. For example, Al-based radiomics
are either using DL strategies which may automatically learn from features that are
represented in data, or engineered hard-coded features, which frequently require
specialist domain and knowledge [57].

A total of 401 radiomics features were extracted from rest and stress MPI
SPECT images using the Visualized & Standardized Environment for Radiomics
Analysis (ViISERA) [58] software. There were 203 patients have abnormal results
both in stress and rest protocol MPI SPECT. Three different data were created by
combining the extracted radiomics features from MPI SPECT. Data of all patients
in rest, stress, and rest-stress MPI SPECT. All the procedures are evaluated on
each file separately.

3.4 Data Preprocessing

The first step of creating a ML model is data pre-processing. This phase is crucial
as it enhances data quality and refers to all the actions such as data cleaning,
imputation of missing values, data normalization, and feature selection performed
on the data before applying ML algorithms. In the real world, data has many
issues; it can be noisy, contain errors, duplicate values, or miss some elements of
information that can affect ML performance. Preprocessing is time-consuming and
constitutes the most complex aspect of working with data.

12
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3.4.1 Data Cleaning

In this step, data errors and anomalies are detected and fixed. Data cleaning
manages missing values, outliers, and duplicates. First, the number of missing
values in each column and row is counted, and then based on the defined strategy,
an action is done on the data. In this study, a threshold is defined, and if the
number of outliers passes the threshold, the whole column or row is eliminated.
To handle duplicate data problems, every dataset is reviewed and then the first
value is retained, and other values are deleted by the defined procedure. A model’s
output can be negatively impacted by instances where all values or a significant
portion of a column or row, are zero. In these cases, the columns and rows are
removed according to a predefined threshold.

Outlier Handling Strategy

Data points that vary a lot from the dataset, and those that are uncommon in the
neighborhood, are considered outliers. By identifying and discovering outliers in
the dataset, users can learn more about abnormal patterns, and make a decision
to solve the problem by removing errors from the data [59]. Various methods for
outlier detection have been proposed. These methods can be classified based on
how they describe normal data or outliers in categories like distance-based in high-
dimensional data [60], ensemble techniques [61], statistical [62], and density-based
[63]. Methods based on statistics suppose that normal data follow a particular
distribution, and data points with significant deviations from this distribution are
called outliers [64]. In this study, two statistical criteria are considered: Interqurtile
Range (IQR) [65] and Z-Score [66].

IQR is a measure of statistical dispersion or distribution of data points in a
dataset [65]. Although it provides a description of the distribution of the data, it
is mostly unaffected by the non-parametric and non-normality of the data. The
dataset is divided into quartiles to calculate the IQR value [65]. Quartiles are
denoted by @; (lower quartile), )2 (median of the whole data), and Q3 (upper
quartile).

Qi={0eR:Plr<q) =)

QQZ{QERZP(.TSQ):;
3
ng{qeR:P(ﬁgq):Z
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While x is the random variable.

IQR = @3 — Q1

All observations below (@7 — 1.5 x IQR) or above (Q3 + 1.5 x IQR) are detected
as outliers.

The Z-Score method works properly on data that has a normal distribution.
Z-Score calculates how far a point is from the mean of the dataset [66]. When a
data point deviates significantly from the mean value, it means that the value of
the Z-Score of that point is high, and it may be an outlier [66]. To calculate the
Z-Score for each data point, first, for each numeric feature in the dataset, mean (1)
and standard deviation (o) are calculated, and based on these values, the Z-Score
is calculated [66].

X —p

o

7 =

A threshold is defined to qualify a data point as an outlier. Default and common
thresholds are 2, 2.5, and 3. In this thesis, the threshold is set to 3.

Outliers = {X; | |Z;| > threshold}

Without requiring any further steps, Z-Scores can be calculated using the SciPy
[67] library in Python. After detecting anomalies in the dataset, a decision can
be taken to eliminate or handle them by using a specific method. In this study,
outliers are eliminated after recognition.

Techniques to handle Missing Values in datasets

To handle missing values in datasets, different techniques can be used. As previously
mentioned in this thesis, if the number of missing values in a column or row exceeds
the defined threshold, it is possible to eliminate the entire row or column. The
procedure of setting a value to instead of missing data is called imputation. To
choose a suitable imputation method, it is necessary to understand the dataset,
the missing data mechanism, and the missing values [68]. One popular approach is
to substitute the missing values with the 'mean’ value of the variable, measured on
the valid measurements [68].

A particular imputation method is called univariate and uses purely non-missing
values from the i-th feature dimension to impute values [68]. Simplelmputer [39],
which is available in the scikit-learn [39] library, can be used to impute missing
values in a dataset. Missing data can be imputed by a constant value or by a
statistical approach like 'mean’, 'median’, or 'most frequent’ values of the columns
where missing values are located. If the data is numerical, using the ‘mean’ can
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have a better result [68]. In this study, because all data is numeric, the ‘mean’ is
used to impute data.

3.4.2 Data Scaling

Scaling means modifying data in a way that they fit into a given range. This step
is essential since the scale of data affects the performance of many ML algorithms
[69]. Models, specifically those based on distance, might perform poorer, especially
in high-dimensional datasets when the data distribution is not normal [60]. Data
should be scaled to prevent certain features from dominating, only because of
their value. The scaling methods used in this study are Standardization (Z-Score
Normalization), Min-Max Scaling (Normalization), and Robust Scaling [39]. A
class is defined for different types of Scaling methods, and this class will used in a
pipeline for training the model. Here are some brief explanations of each method.
In this thesis, different strategies are implemented using the scikit-learn [39] library.

MinMax Scaling

Min-Max normalization transforms the value of features in a specified range, usually
between 0 and 1 [39]. This method maintains the relative relationships between
features, and it is possible to use this method when features are not distributed
regularly like Gaussian distribution [39, 70]. For each feature:

X/ — X —Xmin
Xmax—Xmin

where X is original value, X,,;, is minimum value of the feature in the dataset,
Xax 18 its maximum value, and X’ is the normalized value.

Standardization (Z-score Normalization)

Z-Score normalization is a scaling method that transforms data to have a mean
equal to zero and a standard deviation of 1 and is suitable for data that has a
distribution like Gaussian or data normally distributed [70, 39].

, X —mean(X)
B std(X)
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Robust Scaling

Robust Scaling method uses the median and the IQR for scaling features. It is
suitable when data contains outliers [39, 70]

, X —median(X)
YT IR

where X is original feature, median(X) is its median value of feature, IQR(X) is
its interquartile value of feature and X’ is the new scaled feature [39, 70].

3.4.3 Feature Selection

Feature Selection allows one to choose the most important features from a dataset
with a high number of features [39]. It helps to avoid overfitting and enhances the
model’s performance. To implement a feature selection/dimensionality reduction
method, it is possible to use scikit-learn modules [39]. It contains several methods,
some of which are used in this study, and are described in the next sections.

Select KBest

SelecKBest [39] is a filter-based technique that selects features without focusing on
a particular ML algorithm. The features are selected and scored using statistical
measures (e.g., chi2, ANOVA F-value) [39]. ANOVA is one of the most frequently
applied methods for analyzing and extracting information using the P-values that
are related to it [39]. It is robust because all the sample sets are assumed to
be normally distributed with equal variance, and all data points or samples are
independent [39, 71]. In this study, the scikit-learn [39] library has been used to
implement ANOVA F-value on features[39]. Subsequently, SelectKBest selects K
features with the highest scores included in the final feature subset[39].

1. At first it defines a set of features and the target variable y:

F:{f17f2>"'7fn}

n: total number of features

2. To calculate the relevance of each feature f; to y, it uses a scoring function S
(ANOVA F-value). s; = S(fi, y). si: Score of feature f;
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3. Sorts scores in descending order. sy > Sx(2) > ... > Sr(n), While (i) is the
index of the i-th ranked feature

4. Select top k according to ranking. Fj, = {fr1), fr@2)s -+ [}

SelectPercentile

In "SelectPercentile" [39], features are scored using a function (ANOVA F-value),
and selected according to their scores about a given percentile: the top features
that fall into the highest percent of all feature scores are retained. The steps are
the same as SelectKBest. After scoring for n features, the top p% of features are

selected. if k = [1%0 X nw, the features with the highest score of k are selected [39].

Select From Model

"Select from Model" [39] is a feature selection technique that needs a model (mostly
a supervised learning estimator) to identify important features and select them.
This method exploits the capability of a model to rank features by their importance
and pick up the top ones [39].

1. It defines a set of features and the target variable y:

F={f,fo,---. fa}

where n: is the total number of features
2. Using the feature set F' and target variable y, it trains a model (M)

3. It extracts feature importances I from model [ = {Iy, I5,...,I,}, I; is impor-
tance score for feature f;

4. It defines a threshold (t) for feature selection. The threshold is defined by the
user as a constant number

5. Finally, it selects the feature with an importance score value greater than the
threshold

Fselected = {fl cr | IZ > t}
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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [39, 72] is a technique to reduce the dimen-
sions of data by transforming original features into new ones, that are uncorrelated
and called principal components [39]. It involves several steps: data standard-
ization, variance computation, and eigen decomposition to find eigenvalues and
eigenvectors, and then choosing the top components (the ones with the highest
value) to transform the data [39].

3.5 Metrics

The main goal of this section is to provide an overview of the metrics, that assess
how well the chosen supervised ML algorithms are successful in determining heart
anomaly detection. The metrics are based on the number of True positive, True
negative, False positive, and False negative cases|73].

1. True Positive (TP): The number of instances that the model correctly
predicts as positive results. The value of TP corresponds to the number of
cases that are classified as abnormal, being truly abnormal [39].

2. True Negative (TN): The number of instances that the model correctly
predicts as negative results. The value of TN corresponds to the number of
cases that are classified as normal, being truly normal [39].

3. False Positive (FP): The number of instances that are negative, but the
model corresponds by mistake as positive. An indication of cases that are
classified as abnormal while the correct value is normal [39].

4. False Negative (FN): The number of instances that are positive, while were
mistakenly classified as negative. Abnormal outcomes are classified as normal
(39].

In this study, the main metrics are considered as follows:

1. Accuracy (ACC): Ratio between the number of accurately predicted in-
stances and the number of all the instances [39]. To evaluate the performance
of a model, focusing on just accuracy may lead to bias, especially when the
data is imbalanced [39].

TP +TN
TP+TN+ FP+ FN
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. Precision (PR): It indicates the ratio of true positive predictions in compar-
ison to all positive forecasts [39].

TP

Procision — — ~ 4

recision = s
. Sensitivity (SEN): also called Recall or True Positive Rate (TPR), the ratio
of positive instances that are predicted as positive [39)].

TP

Sensitivity — 1
ensitivity = 7oy

. Specificity (SPE): Specificity also called True Negative Rate. It gives the

ratio of negative instances that are correctly detected by the model [39].

TN

Specificity = TN © FP
. Receiver Operating Characteristic (ROC): The ROC curve is a tool to
evaluate the performance of detection classification models. It shows the True
Positive Rate (TPR) versus the False Positive Rate across different threshold
levels. The best point for the ROC curve is the top-left in the plot, which
represents a better classifier and high TPR and lower FPR [39].

. Area Under Curve (AUC): The AUC is the area under the ROC curve.
This value summarizes the model’s performance based on different thresholds.
In binary classification models, the AUC value 1 corresponds to an excellent
classifier [39]. If AUC = 0.5, it means that the classifier is doing random
guessing. AUC < 0.5 means that the classifier is not working well. To have
the best value for Sensitivity and Specificity, it is necessary to find the optimal
threshold, which in this project, is done by Youden Index [74].

J = mtax{sensitivity(t) + specificity(t) — 1} = mlgx{q(t) —p(t)}
where ¢ is any threshold value

. F1-Score: The value of F1l-score comes from combination of precision and
recall. It provides a better understanding of a model’s performance. Calcu-
lating the balanced average of PR and Recall, makes sure both FP and FN
values are taken into account [39].

F1-Score = 2 - < Precision - Recall )

Precision + Recall
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In this study, the scikit-learn [39] library has been used to measure the mentioned
metrics faster and more accurately [75]. The value of metrics is calculated for
both train and test parts of data in a designed separate function. An independent
function has been designed to calculate different metrics for the train and test part
of the data. In this function, necessary metrics for accuracy, confusion matrix,
area under the curve, and mentioned metrics are called. Finally, all the results are
stored in a file to use in the plotting section.
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Chapter 4

Model Optimization

The thesis goal is to test all the methods described in chapters 2 and 3 and find
the best model based on values like Accuracy, AUC, Specificity, and Sensitivity.

4.1 Pipeline

In ML, a pipeline [39] is a system that sequentially applies selected methods/trans-
formations to the data. For example, a pipeline might implement preprocessing,
feature selection, training the model, and model evaluation. Hyper-parameter
tuning is considerably simpler when using methods like cross-validation inside
pipelines. In addition, it is possible to use of different Optimization techniques like
grid search and random search in a pipeline.

4.1.1 Create a Pipeline

This study discusses a pipeline constructed in a separate class, with input parameters
and values from other classes by several imputation, scaling, transformers, and
estimators that are tested on input data.

For the pipeline, a specific class is created at the beginning. Then the pipeline
method is called from the scikit-learn [39] library. The goal of this pipeline is to
apply a list of transformers and a final estimator. At first, to handle missing values,
the imputation class is called which offers a list of possible strategies (‘mean’,
'median’, 'most frequent’), that in this study, 'mean’ has been selected [39] . After
imputation, the input data should be scaled. For this purpose, a scaling class that
contains different scaling strategies is defined and called. Scikit-learn offers some
methods of the preprocessing library for scaling data properly, such as Min-Max
scaling, Standard scaling, and Robust scaling [39] . The next step involves using
transformers . To accomplish this, an independent class is defined that consists of

21



Model Optimization

different feature selection algorithms, and also the number of features that should
be selected is determined which in this study is set to 35 features. Sklearn library
provides different methods for feature selection [39] . In this thesis, SelectKBest,
Select Percentile, Select from Model, and PCA are called and used [39] . Finally, a
component of the pipeline is the estimator. Various estimators have been included
in a specific class which fit on data in the last step.

4.2 Main Search Methods

Data is divided into training and test parts in percentages of 75% to 25% by
stratification. To train the model, a search method has been designed. In this
method, two possible search algorithms are used to train various models and
optimize parameters: Grid Search and Random Search.

The procedure works such that in each iteration, the imputation strategy is set
to ‘mean’, and for the scaling method, puts one of the defined methods and then
takes one of the feature selection methods, and finally takes one of the classification
algorithms. This entire procedure is encapsulated within the pipeline. For cross-
validation, ShuffleSplit is used, which provides indices for splitting data to test and
train parts. The model fits on train data [39]. Finally, this model is implemented
on the test dataset, and the resulting model’s parameters and hyperparameters are
saved into a file [39].

After training the model using the training dataset and evaluating its perfor-
mance on the test dataset, it is important to know that the test set gives an
internal evaluation of the ability of the model for generalization [76]. Although the
performance shows how the model works well with previously unseen data from the
same dataset, it is possible that it does not guarantee robustness or applicability to
completely independent data sources [76]. Another essential part of the model can
help in generalizing and preventing overfitting to dataset specifics. An external
validation set should be constructed from an entirely different but similar dataset,
which does not overlap with the training and/or testing set of the model. In this
study, the model is not implemented on any external validation set [76].

4.2.1 Grid Search

Grid search [39, 45] is a search method to find the best parameters for machine
learning models. It runs through all the possible combinations of provided hyperpa-
rameters [39] . This method takes a list of hyperparameters and iteratively trains
all the possible combinations [39] . The best hyperparameters that optimize the
performance metrics are the output. Its working procedure is as follows:

1. In the first step it defines a hyperparameter space H with n hyperparameters.
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H=Hy xHyx---xH, (1)

H; is the set of possible values for the i-th hyperparameter, and x identifies
the cortesian product

. Making a grid with all possible combinations of hyperparameters is the next
step:
{(hd B3, BL), (B3B3, h2), o (R by i) )

where m is the total number of possible combinations, calculated as:
m = |Hy| x |Hy| X -+ X |H,|
being |H;| the cardinality of the set H;

. After that, the algorithm uses cross-validation to estimate the performance of
the model:

K
E(W, S, h) =1/K > Eu(hi, b, ... hi)

k=1
K is the chosen number of foldes in cross validation and E), represents perfor-
mance metric for k-th fold.

. Finally, according to the aim of the model, maximizing or minimizing the
given performance metric, it selects the combination of hyperparameters:

A

(Wi hy, ... hY) =arg min  E(h), b}, ... h)
(h3,h,...h%)

or

(B3, h3,....h;) =arg  max E(h],hj,... h)
(h],h,....h%)

4.2.2 Random Search

Another method to optimize hyperparameters is random search [39, 77]. In com-
parison to grid search, this method is less exhaustive and faster, since it randomly
samples among the hyper-parameter combinations [39]. It defines a probability
distribution for each hyper-parameter and then it samples from this distribution
[39]. The procedure is the same as the grid search. Apart from the random sampling
of hyper-parameter combinations from (1).

{(h1 b, b (W RS, h2), o (BB, b))

while A/ is sampled from distribution P;.
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4.3 Interpretability

In this study, 401 features from 266 cases are used for training models. Because of
using different feature selection algorithms, it was decided to extract more valuable
features and store them in separate files based on the feature selector algorithms, so
that they can be used in the interpretability stage. In SelectKBest, PCA, and Select
from Model algorithms, 35 features were selected, whereas, in Select Percentile
algorithm, 7% of features were chosen, which was about 30 features.

Based on cooperative game theory, Shapley value is a concept in which each
player who makes even a small contribution to the overall outcome produced by the
team, will earn a part of it [53]. If the total payoff can be measured, Shapley values
capture the marginal contribution of each player to the final result [78]. In the
ML model, different features cooperate together to produce an output result, and
Shapley values help to measure the contribution of each feature to the final result
[78]. In simple terms, Shapley values are calculated by making carefully considered
changes to the input features and observing how these modifications align with the
eventual model prediction [78]. Then, the Shapley value of the feature is found as
an average marginal contribution to the total model output [78].

Features
Outcome 028
—— MODEL ——» 0S8 -
03

Figure 4: A simple diagram of how individual features can contribute to a model’s final prediction score.

As an example of how Shapley values work, Figure 4 displays the contribution
of each feature to the output result, and according to participation, scores each
feature. Different methods are available to calculate the Shapley values. These
methods can be used based on the classifier type. For example, for tree-based
classifiers like Random Forest (RF), it is better to use TreeExplainer [79], while
for Deep Learning (DL) models, DeepExpaliner [80] should be used. In this study,
the Explainer [81] was used to compute the Shapley values. Explainer is a primary
explainer interface of the SHAP library, and it accepts any combination of model
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and masker that is a function to ‘mask’ out hidden features of the form [81]. This
explainer returns a callable subclass object that implements the specific estimation
algorithm that was chosen [82].

4.3.1 Shapley Values Calculation

The Shapley value for feature i in a model that has n features is calculated as
follows [54]:

S = s i) - w(s))

b= Y

SCN\{i}

N: Set of all features (or players in a game)

S: Subset of N that does not include feature ¢ (coalition of players)

|S|: Number of features in subset S

v: Characteristic function that maps subsets of players to real numbers

v(S): Value of coalition S (describes the total expected sum of payoffs the members
of S can obtain by cooperation)

| N|: Number of features (players) in N, [N| = n.

4.3.2 Expected Value

It refers to the model’s average output value throughout the whole dataset. Ex-
pected value acts as a baseline, and provides a reference point from which SHAP
values add or subtract to explain a particular prediction [54].

BIF(X)] = 3 3 f(x)

where K is the number of instances in the dataset, X is the dataset containing
points z; and f(x;) is the model prediction for an input z

4.4 Shapley Additive exPlanation (SHAP) plots

Shapley Additive exPlanation (SHAP) plots are utilized to increase understanding
and analysis of predictions of ML models [81]. SHAP plots enhance model inter-
pretability, identify key drivers with the help of summary and bar plots, and show
the importance of features for specific predictions with force and waterfall plots
[81].
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1. Summary plot: This plot displays how Shapley values are distributed for
each feature. It shows the level of feature importance and also how the model’s
output is impacted by the feature values. For each feature, summary plots
show in a brief and useful approach, the size, direction, and prevalence of an
effect [81]. SHAP summary plots do not combine the quantity and prevalence
of an effect into a single value and therefore can represent infrequent high-
magnitude impacts [83]. To find the most influential features in the model’s
prediction and also the effect of each feature on the output result, this plot
is a suitable choice [83]. The y-axis contains the names of features, and the
x-axis represents the Shapley value. As the density of points for a feature
increases, shows the distribution of Shapley values per feature [83].

2. Bar Plot: It takes the mean absolute value of each feature across all instances
of the dataset. The mean absolute value is not the only way to create a global
measure of feature importance, it is possible to use any number of transformers
(84, 81].

3. Waterfall Plot: The goal of this plot is to show the effect of SHAP values
for every feature on model output and explain how the output value moves
from the expectation results under the background data distribution [85]. The
y-axis contains features and the value of the selected data instance. SHAP
values are indicated on a scale by the x-axis. The SHAP value of each specific
feature value represents a bar in the waterfall plot. In addition, the calculated
expected prediction value E(f(x)) and the real prediction value for the instance
f(z;) are shown on the x-axis [81]. The procedure is that bars start from the
expected prediction value and move to reach the actual prediction.

4. Heatmap Plot: A heatmap plot is designed in a way to reveal the population
substructure of a dataset through supervised clustering. This clustering is to
cluster data points by their explanation, not by the original value of features
[86].

5. Decision Plot: For numerous predictions, the decision-making process can
be shown by looking at a decision plot. This plot indicates the cumulative
effect of all features on the outcome of the model. In this plot, if one predicts,
the value of the features will be printed, otherwise, it is not possible to print
the values [53].

6. Beeswarm Plot: A beeswarm plot can be useful in providing an overview of
the relationship between a model’s output and the key features of a dataset.
Every feature has a dot for each occurrence where an explanation is given [53].
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Chapter 5

Results of Implementing
Machine Learning Model on

Different Datasets

5.1 Output Results of Different Combinations of
Classification, Feature Selection, and Scaling
Strategies

Various outlier detection and search algorithms have been applied to the data. The
results obtained from each combination are given below.

As mentioned in the data cleaning section in Chapter 3, two methods were used
for detecting outliers: Z-Score and IQR. Three types of data are available: the
first one contains 401 extracted features from the rest protocol where the number
of abnormal cases was 203 and normal cases was 63, the second one contains 404
features from the stress protocol, and the last dataset includes 401 features from
both rest and stress protocols.

5.1.1 Results on Rest Data, Optimization through Random
Search, Outliers Detected by IQR

After the preprocessing stage, the designed model tried different combinations
of feature selection, classification, and scaling methods on both the training and
test parts of the data. On the first try, the model was implemented on Rest
data. At first, the Rest data was examined, and the 'IQR’ method was used to
identify outliers. Then, the search method sets on the 'random search’ to optimize
parameters.
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ACC, SPE, SEN, and AUC values are measured on both the training and test
parts of the dataset, but results are given only for the test dataset. ACC Figure 5,
AUC values Figure 6, SPE values are visible in Figure 7, and the results of SEN
are illustrated in Figure 8 for selected classifiers with each of three scalers and
each of the four feature selectors, optimized with random search on Rest dataset.
The number of selected features is 35 for ’SelectKBest’, 'PCA’, and ’Select from
Model’. The number of selected features for 'SelectPercentile’ is 30, which is 7% of
all features.

This study focuses on choosing the classifiers with the highest value of SPE,
SEN, ACC, and AUC metrics. Table 1, represents the classifiers with the highest
values of the mentioned metrics. Classifiers with LR, RF, AdaBoost, and K-NN
classification algorithms have better performances.

Scaling Classification Feature Selector ACC SPE SEN AUC
StandardScaler LR PCA 0.74  0.75 0.7 0.76
MinMax LR PCA 0.76  0.69 0.8 0.75
RobustScaler K-NN Select k Best 0.7 0.75  0.76 0.75
StandardScaler AdaBoost Select from Model  0.77 0.88  0.54 0.75
MinMax RF Select k Best 0.7 0.69 0.78 0.72

Table 1: Best classifiers of implementing random search on Rest data, outliers were detected with IQR, and the
value of SEN: Sensitivity, SPE: Specificity, ACC: Accuracy, AUR: Area Under the Curve

As models are applied to different values of parameters and hyperparameters, the
output of each one is different. The output results are stored in a file to recognize
the combinations with the highest performance. As mentioned, accuracy is not
always reliable, particularly in the presence of imbalanced data, where used data in
this study is imbalanced. Therefore, additional metrics are considered. The AUC
is especially important and varies across different combinations of parameters and
hyperparameters. Youden index for the test part was calculated based on TPR and
FPR. Then, all calculated values for the Youden index are sorted incrementally.
Then, the optimal threshold is calculated for ROC-AUC curve of each combination.

Plots of ROC-AUC for some combinations with the highest metric values are
displayed based on the name of the classification algorithm. Figure 9 shows the
ROC curves and the value of AUC for each combination on the test part of the
data. Figure 10 displays the ROC curves and AUC value for each combination on
the training data.
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Figure 5: ACC of the selected classifiers with each of Figure 6: AUC of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
search on Rest data search on Rest data

29



Results of Implementing Machine Learning Model on Different Datasets

_ Specificity
Ada boost \ MinMax- 044 0.8

Ada boost \ MinMax -
o189

Ada boost \ RobustScaler

Ada boost \ Rnbusﬁcaler-n 019 0o

Ada boost | Standard - 644 019 . 019

B MinM (20
Bagging \ MinMax - agging | MinMax -

Bagging \ Standard - 0.38 .
Ot\MinMax- 025 012 . 019
Dt \ RobustScaler- a.31 - .

Dt \ Standard -

Bagging \ RobustScaler - o.!l| 044 036 036

Bagging \ Standard - .

o8

Dt\ Standard - 012 o

Extra tree \ MinMax - o.ae --
Extra tree \ RobustScaler - .H

Extra tree \ Standard - 06

Gboost | MinMax

Gboost \ RobustScaler -

H
g

Classifiers
Classifiers

Gboost \ Standard -
-8

0.2z
.t Knn \ MinMax - o.28
038

Knn \ RobustScaler -

Knn\ Standard - 0.36 052 044 054

. -

-04

Lr\ RobustScaler -
Lr \ Standard -
Rf\ MinMax- e44 036 03

mmmm.ﬂﬂﬂn
Rf\ Standard- o028 052 .

Sve | MinMax - o 0.14 -02

smm..mm... o '

smsw..d.- 02t -E

| EEE

. t B
33 2 %

Feature Selector Feature Selector
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Figure 10: ROC curves of random search for the
train data of Rest with the highest AUC values

Figure 9: ROC curves of random search for the test
data of Rest with the highest AUC values
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5.1.2 Results on Rest Data, Optimization through Grid
Search, Outliers Detected by IQR

The other setting applied to Rest Data is changing the optimization method. ’Grid
search’ was replaced with random search.

Grid search, also known as the exhaustive search method, assesses all potential
combinations of a defined set of parameters by iteratively exploring various combi-
nations and cross-validating to find the values that provide the best performance
on the dataset. The advantage of grid search is that it is exhaustive and finds the
best combination. By implementing this model on data, different metrics have
been considered. ACC of selected classifiers with each of the three scalers and
four feature selectors, optimized with ’grid search’ on the 'Rest’ dataset is shown
in Figure 11. Figure 12 illustrates all the obtained values of AUC for different
combinations of scaling, feature selector, and classification algorithms. Two other
metrics are SPE and SEN which all values are displayed in Figure 13, and Figure 14.

The aim of finding these metrics is to recognize models with the highest per-
formance and in the next step, to use them to determine the interpretability of
features. Table 2 lists of the models with the best results.

Scaling Method Classification Feature Selector ACC SPE SEN AUC

RobustScaler RF PCA 0.77 0.87 0.64 0.8
StandardScaler LR PCA 0.74 0.75 0.7 0.76
MinMax LR PCA 0.76  0.69 0.8 0.75
StandarScaler SVC PCA 0.76 0.81 0.74 0.73
MinMax K-NN SelectPercentile 0.73 0.69 0.72 0.72

Table 2: Best classifiers of implementing grid search on Rest data, outliers were detected with IQR and value of
SEN: Sensitivity, SPE: Specificity, ACC: Accuracy, AUC: Area Under the Curve

According to Table 2, models with RF, LR, SVC, and K-NN had better output
results, therefore, the ROC plots of the models are illustrated in Figure 15 for test
data, and Figure 16 for training part of data.
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Figure 11: ACC of the selected classifiers with each of Figure 12: AUC of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with grid search feature selectors (columns), optimized with grid search
on Rest data on Rest data
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data of Rest with the highest AUC values data of Rest with the highest AUC values
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5.1.3 Results on Stress Data, Optimization through Ran-
dom Search, Outliers Detected by IQR

The second data type in this study consists of features extracted from the stress
protocol. The outliers are detected with the 'IQR’ method and to optimize hyper-
parameters and parameters, the 'random search’ is used. ACC of selected classifiers
with each of the three scalers and four feature selectors, optimized with the random
search on the Stress dataset shown in Figure 17. The output results for AUC
illustrated in the figure Figure 18. SPE and SEN are two other metrics that are
evaluated and can be seen in Figure 19 and Figure 20.

In some combinations, it is clear that results for some metrics are 1 in both train
and test parts, and it shows that the model may have over-fitted or under-fitted.
Therefore, these models are not reliable and should not be examined. Models with
the best results can be seen in Table 3.

Scaling Method Classification Feature Selector ACC SPE SEN AUC

MinMax K-NN Select from Model  0.87 0.94 0.98 0.94
StandardScaler K-NN Select K Best 0.87 094 084 0.92
MinMax K-NN PCA 0.84 0.5 0.9 0.73
MinMax DT PCA 0.73 0.56 0.82 0.75

Table 3: Best classifiers of implementing random search on Stress data, outliers detected with IQR and value of
SEN: Sensitivity, SPE: Specificity, ACC: Accuracy, AUC: Area Under the Curve

Models with K-NN classification had better output values. ROC figures of
different combinations are displayed in Figure 21 and Figure 22.
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Figure 17: ACC of the selected classifiers with each of Figure 18: AUC of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
search on Stress data search on Stress data
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Figure 19: SPE of the selected classifiers with each of Figure 20: SEN of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
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Figure 21: ROC curves of Random search on the Figure 22: ROC curves of Random search on the
test data of Stress with the highest AUC values train data of Stress with the highest AUC values
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5.1.4 Results on Stress Data, Optimization through Ran-
dom Search, Outliers Detected by Z-Score

Another method that has been tested on obtained data of stress protocol was
‘Z-Score’ to identify the outliers. To optimize the parameters and hyperparameters,
the random search algorithm was used. According to the results obtained for the
metrics, it can be concluded that the implementation of the "Z-Score’ has improved
the results of the desired metrics in this part of data. All outputs of ACC, AUC,
SPE, and SEN are shown as heat maps in figures Figure 23, Figure 24, Figure 25,
and Figure 26. The values clearly show that the K-NN, SVC, and LR algorithms

produce better results.

The best combinations of classification, feature selector, and scaling strategies

are visible in Table 4.

Scaling Method Classification Feature Selector ACC SPE SEN AUC
StandardScaler SVC Select k Best 0.83 092 095 0.95
StandardScaler LR Select from Model 0.83 0.92 0.88 0.95

MinMax K-NN Select K Best 0.85 0.92 0.76 0.90
MinMax K-NN Select from Model  0.81 0.85 0.88 0.89
StandardScaler K-NN Select from Model 0.78  0.85  0.68 0.78

Table 4: Best classifiers of implementing random search on Stress data, outliers detected with Z-Score and value

of SEN: Sensitivity, SPE: Specificity, ACC: Accuracy, AUC: Area Under the Curve

The AUC plot of test and training data for combinations of classification,
feature selection, and scaling method with the highest value of AUC are displayed

in Figure 27, and Figure 28
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Figure 23: ACC of the selected classifiers with each of Figure 24: AUC of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
search on Stress data search on Stress data
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Figure 25: SPE of the selected classifiers with each of Figure 26: SEN of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
search on Stress data search on Stress data
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5.1.5 Results on Rest Data, Optimization through Random
Search, Outliers Detected by Z-Score

Another tested combination used the ‘Z-score’ to identify outliers in the data
obtained from the Rest protocol. To optimize parameters and hyper-parameters, a
‘random search’ was used. ‘Z-score’ uses a threshold to identify outliers, and the
common value for that is 2, 2.5, and 3, which in this study has been set to 3. As the
Z-score has a limited threshold, a number of cases are eliminated. The number of
patients reduces from 266 to 229. All combinations based on three scaling methods,
four feature selector algorithms, and nine classification algorithms are applied to
training and test data. The result of classifiers with the highest metric values is in
table Table 5.

Scaling Method Classification Feature Selector ACC SPE SEN AUC

MinMax RF Select from Model  0.81 0.69 0.89 0.85
MinMax LR PCA 0.79 0.77 0.82 0.84
StandardScaler RF Select from Model  0.78 0.85 0.76 0.79
StandardScaler K-NN Select from Model  0.76 0.69 0.8 0.73
RobustScaler LR SelectPercentile 0.79 0.69 0.78 0.74

Table 5: Best classifiers of implementing random search on Rest data, outliers detected with Z-Score and value of
SEN: Sensitivity, SPE: Specificity, ACC: Accuracy, AUC: Area Under the Curve

The results of all combinations for different metrics are plotted in heatmaps.
The ACC results are visible in Figure 29. The results of AUC, SPE, and SEN are
illustrated in Figure 30, Figure 31, and Figure 32.

Based on results in Table 5, the classifiers with LR, K-NN, and RF classification
algorithms perform better. Therefore, the ROC curves of some combinations with
the highest value of AUC are illustrated in Figure 33, and Figure 34.
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Figure 29: ACC of the selected classifiers with each of Figure 30: AUC of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
search on Rest data search on Rest data
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Figure 31: SPE of the selected classifiers with each of Figure 32: SEN of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
search on Rest data search on Rest data
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Figure 33: ROC curves of Random search on test
data of Rest with the highest AUC values

Figure 34: ROC curves of Random search on train
data of Rest with the highest AUC values
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5.1.6 Results on Combined Data, optimization through
Random Search, Outliers Detected by Z-Score

In this stage, Rest and Stress features are combined, and a combined file is created.
To detect outliers, the 'Z-Score’ method is implemented on the data, and for
parameter and hyper-parameter optimization, the 'random search’ was used.

The output results are shown in different figures. The first one, Figure 35
displays all the output values for the ACC metric. The next measured metric is
AUC, all output results illustrated in Figure 36. Two other important metrics are
SPE and SEN. The heatmap plot of both are displayed in Figure 37 and Figure 38.

Models with better results have been displayed in Table 6. Models with LR and
SVC classification algorithms perform better on data.

Scaling Method Classification Feature Selector ACC SPE SEN AUC

RobustScaler LR Select from Model  0.83 0.81 0.81 0.86
RobustScaler LR PCA 0.78 0.81  0.77 0.84
RobustScaler SVC Select from Model  0.81 0.85 0.77 0.86
StandardScaler SvVC Select from Model  0.78 0.81 0.83 0.86
StandardScaler LR Select from Model  0.81 0.81 0.81 0.85

Table 6: Best classifiers of implementing random search on Rest-Stress data, Outliers detected with Z-Score and
value of SEN: Sensitivity, SPE: Specificity, ACC: Accuracy, AUC: Area Under the Curve

ROC plots of some combinations of scaling methods, feature selection strategies,

and classification algorithms with the highest value of AUC have been illustrated
in Figure 39 and Figure 40.

48



Results of Implementing Machine Learning Model on Different Datasets

Accuracy
e B 48 1
s oo\ Rovustscaer a7 077 o7 (o1,
——

Bagging \ MinMax

Bagging \ Rnbuslﬁ:aler. 073

ROC-AUC
Ada M\Hinmx.u o7 07
Ada boost | RobustScaler - HE.
Ada boost\Sundard-E 07 . 071
Bagginu\llllnlhx-. 067 . 066 I
Bagging \ RoanstScaler-. 0.66 . 060

o8s

Bagging \ Standard .’_ Bagging \ mmm.,: 0,68 - 066 o
-
Dt \ MinMax - H 033 En Dty MinMax- 067 051 067 068
Dt\ﬂnbusﬁcaler-ﬂ e ) Dt\RobustScaler- 038 066 054 057
Dt\sunaans‘li . L Dt\Standard- 065 057 082 0862 o
Extra tree \ MinMax - Extra tree \ Ninmx. 0.67 . 069
Extra tree \, RobustScaler - nﬂ.n Ewam\RnbnstSnlnr-. 0.6 . o068
Emam\smd-m-.n.n Em-nuee\sundard. 0.69 . 058
E -a10 g Gboost\NInMnxv. 052 ﬁ [ a0
% ‘Gboost \ RobustScaler .-H % Gboost \ nabnstsaler-. 064
6 Gboost \ Standard - nnnn 5 Gboost \ Standard- 0.7 051
Knin | MinMa: .H Knn\ MinMax- 065 0.64
Knn '\ RnbustS:alerAH 0.7 ’: Knn \ RobustScaler- 068 0.65 o
Knn \ Standard IE 07 . foe Knn \ Standard - o9
Lr\ MinMax H Lr\MInMax....
Lr\ RobustScaler Lry Robustscaler.-.. | s
Lr\ Standard .
Rl\MhNﬂ-H Rf\ MinMax
040
Rf\ RobustScaler - Rf\ RobustScaler
053

LY

=
&

Sele:tkﬂesl.

Select from Model - £

H
&
E

~0.30

Figure 35: ACC of the selected classifiers with each of Figure 36: AUC of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
search on Rest-Stress data search on Rest-Stress data
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Figure 37: SPE of the selected classifiers with each of Figure 38: SEN of the selected classifiers with each of
the 3 scalers, 9 classification algorithms (rows), and 4 the 3 scalers, 9 classification algorithms (rows), and 4
feature selectors (columns), optimized with the random feature selectors (columns), optimized with the random
search on Rest-Stress data search on Rest-Stress data
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Figure 39: ROC curves of Random search on test
data of Rest-Stress with the highest AUC values

Figure 40: ROC curves of Random search on train
data of Rest-Stress with the highest AUC values
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5.2 Results Comparison

Here we take a closer look at the results obtained from different models. Among the
results obtained on Rest data, where outliers were detected with the ‘IQR’ method,
and parameter and hyper-parameter optimization approach were random search,
the classifier with Logistic Regression (LR) classification algorithm, Principal
Component Analysis (PCA) as feature selector, and StandardScaler as scaling
method, had better results. Accuracy of 0.74, specificity of 0.75, sensitivity of 0.70,
and AUC value of 0.76 were the metric values. By implementing grid search as
an optimization method on the Rest data, which outlier detection was ‘IQR’, the
best classifier recognized with the Logistic Regression (LR) classification algorithm,
PCA feature selector, and StandardScaler as the scaling method. The obtained
result for metrics is an accuracy of 0.74, specificity of 0.75, sensitivity of 0.7,
and AUC of 0.76. Other data used in this study were extracted features from
the Stress protocol. The outliers were detected with ‘IQR’, and parameters and
hyper-parameters were optimized through random search. The best classifier had
K-Nearest Neighbor (K-NN) as the classification algorithm, Select from Model
feature selector, and MinMax as a scaling method. The results of the metrics are:
accuracy of 0.87, specificity of 0.94, sensitivity of 0.98, and AUC of 0.94. Another
method to detect outliers which are used in this study was ‘Z-score’. Parameters and
hyper-parameters were optimized with the random search on Stress data. The best
classifier used ’Support Vector Classification (SVC)’ as a classification algorithm,
"‘Select K Best” as a feature selector, and ’StandardScaler’ as a scaling method. The
best metric results are an accuracy of 0.83, specificity of 0.92, sensitivity of 0.95,
and AUC of 0.95. "Z-score’ was implemented on the Rest data to detect outliers,
and the optimization method was a random search. The best classifier had the
combination of 'LR’ as the classification algorithm, 'PCA’ as the feature selector,
and 'MinMax’ as the scaling strategy. The results of metrics are an accuracy of
0.79, specificity of 0.77, sensitivity of 0.82, and AUC of 0.84. By implementing
‘Z-score’ as an outlier detector on combined data of Rest and Stress, and optimizing
the parameters and hyper-parameters by random search, the best classification
was Logistic Regression (LR), and the feature selector was ’Select from Model’,
and the scaling method was 'RobustScaler’. The best values of metrics are an
accuracy of 0.83, specificity of 0.81, sensitivity of 0.81, and AUC of 0.86. Finally,
the classifiers on combined data are recognized as more acceptable than others,
because the greater number of combinations of classification algorithms, feature
selectors, and scaling methods had better performance in comparison to other data
and classifiers.
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Chapter 6

Results of Implementing
Interpretability Method on
Selected Models

6.1 SHAP plots of the Selected Models for The
Combined Dataset

In this section, some analytical plots of the outputs of different combinations are
displayed. According to Table 6, the best results are for combined Rest-Stress data
with "Logistic Regression (LR)’ classification algorithm and ’Select from Model’
as feature selector, and 'RobustScaler’ to scale features: the value of metrics is
ACC = 0.83, AUC= 0.86, SPE=0.81, SEN = 0.81. As this model was applied to
training and test data, selected features with the highest importance and the best
parameters or hyper-parameters were stored in separate files, to be used in the
interpretability part.

According to Figure 41, Figure 42, Figure 43, Figure 44, and Figure 45, the
feature ‘Zone distance variance.1’ [58] has the highest Shapley value and effect
on outcome. In the bar plot Figure 41, on the x-axis, the mean SHAP value
represents the average influence of a feature on model predictions. In the y-axis, the
features are sorted based on importance. The x-axis in the summary plot Figure 42
represents the Shapley value and the impact of a feature on the model’s output.
The color shows feature values ranging from low (blue) to high (red). Every dot in
the summary plot indicates a single instance in the dataset. On the waterfall plot
Figure 43, the starting point is the base value, obtained from calculating average
prediction values across the dataset. The value on each feature step represents
the Shapley value of that feature’s contribution to the final prediction. In the
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Figure 41: Bar plot of Shapley values of implementing designed interpretability model on Rest-Stress selected
features
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Figure 42: Summary plot of Shapley values of implementing designed interpretability model on Rest-Stress
selected features

decision plot Figure 44, along the y-axis, features are sorted by their contribution
to the final prediction. The X-axis consists of the cumulative Shapley value, and it
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Figure 43: Waterfall plot of Shapley values of implementing designed interpretability model on Rest-Stress
selected features
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Figure 44: Decision plot of Shapley values of implementing designed interpretability model on Rest-Stress selected
features
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shows how every single feature adds up to the total prediction value of the model,
based on each instance. Every single line indicates an instance of the dataset. The
movement of the line horizontally from up to down shows the impact of a feature
on the prediction. The middle line in this plot is the expected value of the model
output and acts as a reference point. It is the average prediction value of the model
without considering feature effects. The heatmap plot Figure 45 is used to display
Shapley values of features for several instances. In addition, it shows the interaction
and cumulative effect of feature contributions throughout the dataset. The x-axis
shows samples in the dataset. The y-axis is to show features from highest value to
lowest value. To show the bigness of Shapley values, color density indicates the
contribution of each feature for each instance of the dataset. For example, instances
of the “Zone distance variance.1l’ [58] feature, between 65 to 75 have the highest
positive impact while instances between 100 to 105 have the highest negative value.
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Figure 45: Heatmap plot of Shapley values of implementing designed interpretability model on Rest-Stress
selected features
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6.2 SHAP Plots of The Selected Model for The
Rest Dataset

In Table 1 models with the best results on the 'Rest’ data are illustrated, the
model with ’StandardScaler’ as scaling method, "Logistic Regression (LR)’ as the
classifier, and 'PCA’ as feature selection method and 'random search’ as parameter
optimization strategy had metric values as ACC = 0.74, AUC = 0.76, SPE = 0.75,
and SEN = 0.7.
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Figure 46: Bar plot of Shapley values of implementing designed interpretability model on Rest selected features

Interpretability model implemented on this model and results have been displayed
in Figs, Figure 46, Figure 47, Figure 49, and Figure 50. According to plots, the
feature ‘Zone size entropy.2’ [58], which is a radiomics feature that measures the
uncertainty /randomness in the distribution of zone sizes and gray levels, has a
higher Shapley value and affects predicted outcomes more than other features. A
higher value of this feature shows that texture structure is more complicated and
heterogeneous. Different plots also show more balanced interaction and cooperation
of the features in the output result.
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Figure 47: Summary plot of Shapley values of implementing designed interpretability model on Rest selected
features
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Figure 48: Summary plot of Shapley values of implementing designed interpretability model on Rest selected
features
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Figure 49: Decision plot of Shapley values of implementing designed interpretability model on Rest selected
features
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Figure 50: Heatmap plot of Shapley values of implementing designed interpretability model on Rest selected
features
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6.3 SHAP Plots of the Selected Models for The
Stress Dataset

By implementing the model with the 'random search’ for parameter optimization
and 'IQR’ for outlier detection on Stress data, different metrics were measured
Table 3, the classification algorithm was 'K-Nearest Neighbor (K-NN)’| the feature
selection method was "Select from Model” and for scaling, 'MinMax’ was used. ACC
= 0.87, SPE = 0.94, SEN = 0.98, and AUC = 0.94 were the metrics value of the
best model. SHAP plots have been illustrated in Figure 51, Figure 52, Figure 53,
Figure 54, and Figure 55.
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Figure 51: Bar plot of Shapley values of implementing designed interpretability model on Stress selected features

According to the drawn plots, it is obvious that the feature ‘Low dependence
emphasis.1’ [58] has a higher impact than other features on the final result. This
feature measures the number of times that pairs of pixel values with a given spatial
relationship occur simultaneously. The concentration of this feature is on pairs of
pixels with both low grey-level values and independence in spatiality.

However, in the majority of plots, 'Low dependence emphasis.1’ has a higher
effect on the outcome, in the waterfall [58] plot, ‘Cluster shade’ [58] highest negative
value among other SHAP values.
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Figure 52: Summary plot of Shapley values of implementing designed interpretability model on Stress selected
features
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Figure 53: Waterfall plot of Shapley values of implementing designed interpretability model on Stress selected
features
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Figure 54: Decision plot of Shapley values of implementing designed interpretability model on Stress selected
features
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Figure 55: Heatmap plot of Shapley values of implementing designed interpretability model on Stress selected
features
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6.4 SHAP Plots of the Selected Model for The
Rest Dataset

Until now, all parameters were optimized by random search. Another search
method used in this study is 'Grid Search’. It is an exhaustive search approach
implemented on one combination of classification, feature selection, and scaling
strategies. Outliers of data were detected by 'IQR’ and this method was imple-
mented on Rest data. The best result based on Table 2, is a model with the
"StandardScaler’ method for scaling, Logistic Regression (LR) for the classification
algorithm, and for feature selection, 'PCA’ used. Output value for different metrics
is ACC=0.74, SPE = 0.75, SEN = 0.70, and AUC = 0.76. Different SHAP plots
are drawn for this model and visible in figures, Figure 56, Figure 57, Figure 58,
Figure 59, and Figure 60.

Figure 56 is the bar plot of implementing interpretability on extracted features.
In the y-axis, the names of features are listed, and the x-axis shows the mean SHAP
value, which represents the average contribution of each feature to the model’s
prediction across all data points. The larger value means, the feature, on average,
has a stronger impact on the model prediction. 'Zone size entropy.2" [58] and "Joint
maximum.3" [58] are the most impacted features, each with a mean SHAP value
of +0.05, indicating that these features consistently contribute significantly to the
model’s predictions. The "Sum of 16 other features" has a cumulative mean SHAP
value of +0.14, indicating that while these individual features may not be listed
separately, together they still have a notable impact on the prediction.

The summary plot Figure 57, gives a brief summary of how each feature affects
the model’s output for every instance in the dataset. The names of the features are
listed in the y-axis, and ranked by importance, with the most important features
at the top. The x-axis represents the SHAP values, which show the impact of
each feature on the model’s output. Positive SHAP values, push the model output
higher, and negative SHAP values, push the model output lower. The color of
each point indicates the feature value; Red means high feature value, and blue
means low feature value. The top features, such as "Zone size entropy.2" [58] and
"Joint maximum.3" [58], have a wide spread of SHAP values, indicating they have
a significant impact on model predictions across instances. For example, "Zone
size entropy.2" [58] has both positive and negative SHAP values. This indicates
that depending on its value for an instance, it can either increase or decrease the
model’s prediction. Red points (high values) on the right-hand side of the plot
for a feature show that high values of this feature increase the prediction, while
blue points (low values) on the left-hand side show that low values decrease the
prediction. The plot also shows how the value of a feature affects its contribution.
For example, for "High dependence emphasis.1" [58], higher values (red) tend to
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Figure 56: Bar plot of Shapley values of implementing designed interpretability model on Rest selected features

have positive SHAP values, pushing the prediction higher, while lower values (blue)
tend to push the prediction lower.

Figure 58 represents SHAP waterfall plot of implementing the designed inter-
pretability model. The waterfall plot calculates the final expected outcome by
adding or subtracting the contributions of each individual feature from the base
value, which is the expected output of the model. The base value is the average
model output along the dataset, which is shown at the left end of the plot (E[f(x)]
= 0.886), this plot starts with that value. It also has a final prediction, which is the
model’s output for the specific instance. This plot uses some bars in two blue and
red colors. Red color bars represent features that positively contribute to the final
prediction, pushing the value higher than the base value. For instance, 'Large zone
emphasis.2" [58] adds 4+0.04 to the model’s prediction. Blue color bars illustrate
features that negatively contribute to the final prediction. The plot moves from
left to right and starts from the base value. Each feature’s contribution is added or
subtracted, showing the cumulative effect on the prediction. Features with more
effective contributions (positive or negative) appear earlier in the flow. Features
with smaller contributions appear towards the end.

Figure 59 displays the contribution of various features in the model output as a
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Figure 57: Summary plot of Shapley values of implementing designed interpretability model on Rest selected
features
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Figure 58: Waterfall plot of Shapley values of implementing designed interpretability model on Rest selected
features

decision plot. In the y-axis, features are represented which are used as model input
variables. These features are statistical measurements by ViSERA [58] platform.
The x-axis displays the Shapley values, ranging approximately from -0.5 to 1.5.
These values show the degree to which each feature influences the prediction made
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by the model from the base value (shown in blue) to the final estimate (as seen in
magenta). Blue lines represent features that reduce the outcome of the model. A
line that shifts left (negative Shapley values) indicates that the feature reduces the
assumption made by the model. Purple lines indicate features that enhance the
outcome of the model. The lines show the contribution of the values of each feature
to a specific output. A larger influence on the ultimate model output is indicated by
a steeper slope. Features like "Zone size entropy.2" [58], "Joint maximum.3" [58], and
"Dependence count variance.2" [58] have significant contributions, either positively
or negatively, to the model’s decision. Which features push the prediction into
higher or lower outcomes are indicated by the purple (positive) and blue (negative)
Shapley values. For example, features at the top of the plot typically push the
estimation lower, into 0, but features at the bottom get the prediction higher, closer
to 1 or higher.
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Figure 59: Decision plot of Shapley values of implementing designed interpretability model on Rest selected
features

Figure 60 visualizing the impact of different features (y-axis) on the predictions
of the model for multiple instances (x-axis). Red or pink color represents positive
Shapley values, meaning the contribution of the feature is in a positive way to the
model’s prediction, while blue color meaning is the feature that pulls the prediction
down. The intensity of the color reflects the magnitude of the SHAP value, with
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darker shades indicating stronger impacts. As each instance’s final prediction is
generated by adding the Shapley values, the top black curve shows the expected
model output for each instance. With both positive (red) and negative (blue)
effects, the features at the top of the chart, like "Zone size entropy.2" [58] and
"Joint maximum.3" [58], appear to vary greatly in their impact among various
instances. Certain variables appear to have fewer changes in their SHAP values,
such as "Dependence count non-uniformity normalised.1" [58] and "Sum of 16
other features" near the bottom. This suggests that they may contribute equally
throughout multiple instances or have less of an overall impact.
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Figure 60: Heatmap plot of Shapley values of implementing designed interpretability model on Rest selected
features
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Chapter 7

Conclustion and future work

7.1 Future Work

While this thesis has made progress in applying interpretable ML algorithms for
detecting cardiac anomalies, there are many areas for future enhancement. The
focus of this study was mainly on using a basic SHAP explainer [81] to interpret
models with the highest performance. Moving forward it would be beneficial to
explore an array of SHAP explainers, like Partition SHAP, Tree SHAP [79], Deep
SHAP [80], and Linear SHAP that are designed for types of models and data
structures. By focusing on the obtained results of various explainers, a more
comprehensive understanding of model behavior and factors that impact cardiac
anomaly detection can be attained. To ensure the robustness and transparency of
the models, including interpretability techniques to SHAP [81] methods, will play
a vital role. One such method is LIME (Local Interpretable Model Explanations)
[30] which offers localized approximations to explain predictions. By combining
LIME with SHAP can gain insights into how the model makes decisions. It is
important to develop and test a framework that links designed models and datasets.
Additionally, Permutation Feature Importance (PFI) [31], Partial Dependence Plots
(PDP), and Individual Conditional Expectation (ICE) are other interpretability
strategies, that offer remarkable opportunities for future research. When the values
of a feature are randomly rearranged, PFI helps to understand the impact of every
feature on the final outcome, by evaluating the change in model performance. To
explore deeper into how the model behaves across feature spaces, PDP and ICE
(87, 88, 89] plots visually show the relationship between feature values and the
model’s prediction.
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7.2 Conclusion

This study has attempted to demonstrate that using supervised classification
machine learning algorithms may offer the potential to automatically identify
cardiac abnormalities from data of Rest-Stress Myocardial Perfusion Imaging (MPI)
Single-Photon Emission Computed Tomography (SPECT). Both rest and stress
datasets with 266 samples and 401 features from the Rest-Stress MPI SPECT
images to find out which combination of feature selection methods, machine
learning algorithms, scaling techniques, and parameter optimization methods, when
subjected to stringent testing, yield the best model. The best of these methods
was that involving a classifier based on Logistic Regression, feature selection
using Select from Model, RobustScaler for data scaling, and RandomSearchCV
for parameter optimization. It achieved important metrics: ACC = 0.83, AUC =
0.86, SPE = 0.81, SEN = 0.81. We used SHAP (Shapley Additive exPlanations)
values to make our best model interpretable to understand the feature role or
contribution in the prediction. The interpretability approach emphasizes identifying
high-importance features to the task, thus making analysis centered and efficient.
Identifying critical features helps bring faster and more precise results for clinicians
and researchers toward better detection, treatment, and management of cardiac
anomalies. According to this study, interpretable machine learning models can
be applied to medical diagnostics to provide more clarification and make health
outcomes reliable.
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Appendix A
Github

Codes of this project are available at the following link:

https://github.com/Al-in-Cardiovascular-Imaging /Interpretable-ML-Classification.git|
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