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Abstract 
Since their inception, the objective of digital communication systems has been to 

effectively and reliably transmit a series of bits representing a certain type of information.  

Consequently, all engineering choices made in past years to construct such systems 

pursued this goal, overlooking the semantic significance of the information intended for 

transmission. 

Semantic communications, viewed as a potential breakthrough in the Shannon paradigm, 

aim to convey the meaning of a message rather than accurately transmitting every symbol.  

Recent advancements in machine learning have enabled the extraction of such 

information from signals, a development that has the potential to revolutionize signal 

processing techniques in the future. 

This could significantly enhance the performance of telecommunication systems, whose 

design must be conceived with the aforementioned objectives in mind.  

The purpose of this thesis is to provide an overview of semantic communications, 

analysing the current state of the art and the associated challenges.  

In addition to the theoretical analysis, this thesis features an experimental component that 

simulates a textual semantic transmission in a realistic context using a 5G New Radio-

based transmission chain. These experiments aim to make a comparison and to highlight 

the benefits of the new semantic paradigm over conventional communication systems. 
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1. Introduction 
This chapter provides an overview of semantic communications, from principles to 

challenges to be addressed.  

It is worth mentioning that the concept of semantic communications was described 

over 70 years ago by W. Weaver, who in his seminal paper defined three levels of 

problems in communications: the technical level, concerning the accurate transmission 

of symbols; the semantic level, addressing how precisely said symbols convey 

semantic meaning; and the effectiveness level, concerning the effects resulting from 

such information exchange. 

In contrast to the Shannon paradigm, which entails the transmission of every bit of 

information produced by the source, the key idea of semantic communications is to 

extract relevant features for a specific task at the receiver. 

Consider for example, the case where the task to be performed is image recognition; 

the information source would not transmit bits representing the entire image but would 

instead extract the relevant features to represent the subject of the image, such as a 

human being or a specific object.  

It is, therefore, straightforward to understand how omitting the background from the 

transmission would minimize the amount of data transmitted, thereby enhancing the 

system performance in terms of its wireless resource utilization or energy 

consumption, all without compromising the outcome of the task. 

1.1 Information Theory Overview 
Before exploring and defining semantic information, it is useful to briefly recall some 

concepts of classical information theory. However, given its vast scope, this review 

will focus only on those concepts closely related to semantic information theory. 

In 1949, C. Shannon introduced the concept of information entropy [1], which employs 

a probabilistic approach to measure the amount of information in terms of bits. 



Study of Semantic Communications and Simulation of a Use Case 
 

2 
 

Definition 1:  Given a source 𝑋, represented by a discrete random variable that takes 

values from (𝑥1) to (𝑥𝑛) with probabilities 𝑝(𝑥1), 𝑝(𝑥2), . . . , 𝑝(𝑥𝑛), the source entropy  

𝐻(𝑋), defined as: 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) 𝑙𝑜𝑔 𝑝 (𝑥𝑖)

𝑛

𝑖=1

 
 

 (1) 

 

quantifies how many bits of information the source 𝑋 produces on average. 

Definition 2: Given a communication channel with input 𝑋, and output 𝑌,  the mutual 

information between input and output can be expressed as: 

𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) (2) 

Where: 

• 𝐻(𝑌) is the entropy of the output (𝑌) 

• 𝐻(𝑌|𝑋) is the conditional entropy of  (𝑌) given  (𝑋) 

These concepts are of fundamental importance for formulating the Channel Capacity 

Theorem, also known as the Shannon-Hartley Theorem. 

Theorem 1: The maximum achievable rate 𝐶(𝑋) of reliable transmission over a noisy 

channel, defined as: 

𝐶(𝑋) = 𝑚𝑎𝑥
𝑝(𝑥)

𝐼 (𝑋; 𝑌)  (3) 

is equal to the maximum of the mutual information between input and output of the 

channel, where 𝑝(𝑥) represents the probability distribution of the input symbols. 

Furthermore, Shannon defined the asymptotic equipartition property AEP. 

Property 1: For a sequence of i.i.d. random variables generated by a discrete 

memoryless source, the empirical distribution of the sequence converges to the true 

distribution of the source as the sequence length tends to infinity. 
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lim
𝑛→∞

Pr (|−
1

𝑛
log2 𝑃 (𝑋1, 𝑋2, … , 𝑋𝑛) − 𝐻(𝑋)| > 𝜖) = 0 

 (4) 

In simpler terms, the AEP implies that as the sequence length grows, the average 

entropy converges to the entropy of the source with high probability. 

Theorem 2: If (xi) for ( i = 1, … , n ) satisfies the AEP and (H(X) < C), there exists a 

source-channel code with a probability of error (p(xî ≠ xi) → 0). Conversely, the 

error probability will be positive if the constraint on entropy is not met. 

These concepts and theorems lay the groundwork for understanding and optimizing 

communication systems in various scenarios and applications. 

Theorem 1 provides an upper limit for distortion-less transmissions. 

Given a specified distortion (D∗), the minimum transmission information rate ( R ) can 

be described by the Lossy Source Coding Theorem, also known as the Rate-Distortion 

Theorem. 

Theorem 3: For a given maximum average distortion (𝐷∗), the rate-distortion function 

𝑅(𝐷∗) represents the lower bound of the bitrate in transmission. 

𝑅(𝐷∗) = min
𝐷≤𝐷∗

𝐼 (𝑋; 𝑌)  (5) 

where 𝐷 = ∑ 𝑝(𝑥)𝑝(𝑢|𝑥)𝑑(𝑥, 𝑦) with 𝑑(𝑥, 𝑦) being the distortion metric equal to 0 if 

𝑥 =  𝑦, as  

𝑅(𝐷∗) = min
𝐷≤𝐷∗

𝐼 (𝑋; 𝑌) ≤ min
𝐷=0

𝐼 (𝑋; 𝑌) = 𝐻(𝑋)   (6) 

Modern communication systems are based on Shannon's Separation Theorem, which 

distinguishes two stages: 

1. Efficient data compression (source coding) 

2. Mapping the source coded sequence into a channel coded sequence (channel 

coding) 
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1.2 Semantic Information Theory 
1.2.1 Semantic Entropy 
 

Entropy, as defined by Shannon, measures the information content based on the 

uncertainty of the source; however, it overlooks how to measure the amount of 

semantic information for a specific transmission task, where the transmission task is 

the task to be performed at the receiver after the information is received. 

From the point of view of a traditional communication system, the semantic 

information extracted from the source information can be seen as a lossy compression; 

however, in the context of semantic communications, it represents a lossless 

compression, since the extracted information can fully serve the transmission task 

without performance degradation. Therefore, the transmission task makes possible to 

measure the importance of information, recalling the previous image classification 

example, the objects represented in an image are considered essential information 

while the background has a limited relevance to the specific transmission task. 

In the past decades, researchers have tried to find a way to quantify semantic entropy; 

actually, this research area is still very active since no definitive definition has been 

provided. In the following the main contributions are summarized. 

Definition 3: Carnap and Bar-Hillel [2] defined the semantic entropy by the degree of 

confirmation, which is: 

𝐻(𝐻, e) = −lo𝑔 𝑐(𝐻, 𝑒)   (7) 

where 𝑐(𝐻, 𝑒) is the degree of confirmation of the hypothesis 𝐻 over the evidence 𝑒, 

where the hypothesis could be a message, and the evidence could be the knowledge. 

Definition 4: Bao et al. [3] focus on the semantic entropy of a message or sentence 𝑠, 

defining the entropy as: 

𝐻(𝑠) = −𝑙𝑜𝑔2(𝑚(𝑠))   (8) 

Where 𝑚(𝑠) is the logical probability of s, which is: 
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m(s) =
p(Ws)

p(W)
=

∑ 𝑝(𝑤)w∈W,w|=s

∑ 𝑝(𝑤)𝑤∈𝑊
 

 (9) 

Where 𝑊is the symbol set of a classical source, ⊨ is the proposition satisfaction 

relation and 𝑤 ∈ (w ∈ 𝑊, 𝑤| = 𝑠) is the set in which s is true, in the end 𝑝(𝑤) is the 

probability of w, which is equal to 1 if there is no background available. 

Based on the Axiomatic Fuzzy Set theory, Liu et al. [4] defined the semantic entropy 

as: 

𝐻𝐶𝑗(ς) = −Dj(ς)log2Dj(ς) (10) 

where ς is a semantic concept, which can be treated as the transmission task, μς(x) is 

the membership degree for each 𝑥 ∈  𝑋, 𝐶𝑗 is the j-th class and Dj(ς) =
∑  μς(x)𝑥∈𝑋𝐶𝑗

∑  μς(x)𝑥∈𝑋
 is 

the matching degree, which characterizes the entropy of the element 𝑥 on the concept 

ς. Note that the overall semantic entropy can be obtained by summing up that of all 

the classes. 

1.2.2 Semantic Channel 
 

Classical telecommunication systems, relying on Shannon theorem, measure the 

distortion errors introduced by the channel by means of bit-error-rate BER or symbol-

error-rate SER (engineering level error).  

However, since semantic communications focus on the semantic content of a message 

instead of the bits composing it, a different approach to measure the distortion 

introduced by the communication channel is required. 

In order to clarify the difference between the two types of errors, consider a 

transmission where the input message, e.g. “vending machine”, and the recovered 

output is different, e.g. “vending machin”: classical communication systems will 

detect an error, however from a semantic point of view, the input and output message 

can still convey the same meaning, ensuring that the subsequent task is performed  

correctly. Therefore, it does not make sense to evaluate the semantic transmission 

performance based on the BER or SER metrics in the context of a semantic 
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transmission: note that in this case an error would be such only if the meaning of the 

message is changed (e.g. “blending machine” in the context of the provided example). 

There is still no semantic error/noise definition, however Bao et al. [3] introduced two 

kinds of semantic errors based on logic probability: 

1. Unsoundness: the sent message is true, but the received message is false  

2. Incompleteness: the sent message is false, but the received message is true  

Moreover, some communication tasks might tolerate one type of error more than the 

other.  

Semantic noise refers to the disturbance that affects the understanding of the message, 

the effect is a semantic mismatch between the transmitter and the receiver. 

There is still no rigorous definition of semantic noise, however, it can be categorized 

in two types: 

1. Changes to letters or words in the sentence, such as replacing the synonym of 

a word, which could lead to alter the ability of the machine to understand the 

semantic meaning of a sentence. Peng et al. [5] developed a communication 

system for text transmission to deal with such type of semantic noise.  

2. Adversarial semantic noise, that is a kind of subtle noise hardly recognizable 

by the human eye, which have misleading effects on a machine, an example is 

provided in figure 1. 

Different solutions have been proposed to deal with this kind of noise, 

Goodfellow et al. [6] proposed a fast gradient sign method to generate 

perturbation by using the gradient of the loss function, Miyato et al. [7] 

developed a fast gradient method to generate adversarial examples. 

Training Deep Learning based models with this type of noise is important to 

increase the robustness of such systems and to prevent possible attacks. 
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Figure 2: Semantic communication system architecture that considers semantic noise [5] 

 

A noisy semantic channel, in an analogous way with respect to classic information 

theory channels, has a capacity limit such that a transmission rate can be achieved with 

relatively small semantic errors. Bao et al. [3] developed a theorem that provides a 

definition for semantic channel capacity. 

Theorem 4: For every discrete memoryless channel, the channel capacity is expressed 

as:  

𝐶𝑠 = 𝑠𝑢𝑝
𝑃(𝑍|𝑋)

{𝐼(𝑋; 𝑉) − 𝐻(𝑍|𝑋) +  Hs(V)̅̅ ̅̅ ̅̅ ̅̅  }  (11) 

 

where 𝐼(𝑋; 𝑌) is the mutual information between the source 𝑋 and the transmission 

task 𝑉,  𝑝(𝑋|𝑊) is the is the conditional probabilistic distribution that refers to a 

Figure 1: Example of adversarial noise in the image domain [6] 
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semantic coding strategy with the source, encoded into its semantic representation 𝑍, 

𝐻(𝑍|𝑋) is the coding semantic ambiguity and  Hs(V)̅̅ ̅̅ ̅̅ ̅̅ =  − ∑ 𝑝(𝑣)𝐻(𝑣), 𝑣 ∈ 𝑉 is the 

average logical information of the received messages for the task 𝑉.  

The channel capacity has the following property: for any ϵ >  0 and 𝑅 < 𝐶𝑠 there is a 

block strategy such that the maximal probability of semantic error is <  ϵ. 

Moreover, a high 𝐻(𝑍|𝑋) means high semantic ambiguity, and a high 𝐻𝑠(𝑉) means 

that the receiver is highly capable of interpreting the received messages, meaning that 

these two parameters can lead to a channel capacity that could be higher or lower than 

the Shannon channel capacity, or equivalently Thus, depending on the adopted coding 

strategy and the receiver ability to interpret the received messages, a semantic 

communication system can achieve a channel capacity that goes beyond the limit 

imposed by Shannon Theorem. 

Zhijin Qin et al. [8] provided two examples to better understand this concept: 

Given the source sentence:” She parked Jame’s car on the ground floor of the building, 

which has 13 floors with 120 sqm on each floor and is called Smith Building due to 

the creator, William Smith.”, the receiver wants to know where Jame’s car is. 

Case 1: 𝐻𝑠(𝑉) − 𝐻(𝑍|𝑋) > 0,  meaning that the receiver can handle the semantic 

ambiguity. The source sentence can be compressed as “the ground floor of smith 

building”. Even if the semantic ambiguity increases, the receiver can still complete the 

task correctly, as a result, 𝐶𝑠 is higher than Shannon capacity in this case. 

Case 2: 𝐻𝑠(𝑉) − 𝐻(𝑍|𝑋) < 0, meaning that the receiver cannot handle the semantic 

ambiguity. The source sentence can be compressed as “She parked Jame’s car on the 

building”. the receiver cannot find the car based on the received message and therefore 

𝐶𝑠 is lower than the Shannon capacity in this case. 

 

1.2.3 Semantic Rate Distortion 
 

In 2021, J. Liu et al. [9] formulated rate distortion as: 
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𝑅(𝐷𝑠, 𝐷𝑎) = 𝑚𝑖𝑛 𝐼 (𝑍; �̂�; �̂�) 
 

(12) 

where 𝐷𝑠 is the rate distortion between source, 𝑋, and recovered information �̂�, 𝐷𝑎  is 

the rate distortion between the semantic representation 𝑍 and the received semantic 

representation �̂�. 

The proposed rate-distortion problem seeks a description of the information source, 

via encoding the extrinsic observation, under two distortion constraints, one for the 

intrinsic state (corresponding to the semantic aspect of the source) and the other for 

the extrinsic observation (subject to lossy source coding). 

1.2.4 Semantic Information Bottleneck 
 

Information bottleneck is an approach to finding the optimal compromise between 

compression and accuracy, N. Tishby, F. C. Pereira, and W. Bialek [10] tried to solve 

the following problem: 

𝑚𝑖𝑛
𝑃(𝑍|𝑋)

𝐼(𝑋; 𝑍) − β𝐼(𝑉; 𝑍) (13) 

being 𝑉 the desired semantic representation. 

Definition 5: M. Sana et al. [11] used the previous function as a starting point to 

develop a new loss function: 

ℒ = 𝐼(𝑍; 𝑋) − (1 + α)𝐼(𝑍; �̂�) + β𝐾𝐿(𝑋, �̂�) (14) 

where 𝐼(𝑍; 𝑋) is the compression term, which represents the average number of bits 

required for 𝑋, (1 + 𝛼)𝐼(𝑍; �̂�) is the mutual information term, and 𝛽𝐾𝐿(𝑋, �̂�) is the 

inference term, which is the Kullback-Leibler (KL) divergence between the posterior 

probability at the encoder, 𝑋, and the one captured by the decoder �̂�, in the end α and 

β are the parameters to adjust the weight of the mutual information and the inference 

term. 

Though semantic communication systems theory is an evolving research field, it is 

important to grasp the concepts outlined above, since they could provide valuable 

insights, particularly in designing such communication systems. 
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1.3 Performance Metrics 
As already mentioned in the previous section, BER and SER are not suitable to measure 

semantic communication systems, since the communication focus is shifted from the 

reliable symbol transmission to the effective semantic information exchange. 

In the following of this section, metrics for different types of sources are discussed. 

1.3.1 Bilingual Evaluation Understudy (BLEU) score 
 

BLEU score is commonly used to measure the quality of text after machine translation 

[12], however Xie et al. [13], [14], exploited this metric to measure semantic 

communication system for text transmission.  

Definition 6: The BLEU score between a transmitted sentence 𝑠 and a received 

sentence �̂� is computed as: 

𝑙𝑜𝑔𝐵𝐿𝐸𝑈 = 𝑚𝑖𝑛 (1 −
𝑙�̂�

𝑙𝑠
, 0) + ∑ 𝑢𝑛𝑙𝑜𝑔𝑃𝑛

𝑁

𝑛 = 1

 
(15) 

where 𝑙�̂� is the length of the received sequence, 𝑙𝑠 is the length of the transmitted 

sequence, 𝑢𝑛 defines the weights of the n-grams, i.e. a contiguous sequence of n items 

from a given sample, and 𝑃𝑛 are the n-grams score, defined as: 

𝑃𝑛 =
∑ 𝑚𝑖𝑛(𝐶𝑘(�̂�), 𝐶𝑘(𝑠))𝑘

∑ 𝑚𝑖𝑛(𝐶𝑘(�̂�))𝑘

 
(16) 

where 𝐶𝑘(∙) is the frequency count function for the k-th element in the n-th gram. 

BLEU score evaluates the difference of n-grams between two sentences, and it ranges 

from 0 to 1; a higher score indicates greater similarity between two sentences. 

However, this type of metrics is susceptible to the use of different expressions that 

yields the same meaning of the substituted word. For instance, the two sentences “my 

automobile is fast” and “my car is fast” share the same meaning, however the BLEU 

score will not be one since the length of the n-grams are different. 
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1.3.2 Sentence similarity  
 

Sentence similarity has been proposed as a solution [13] to the discussed issue. It uses 

BERT [15], a deep learning model developed by Google, used in the field of natural 

language processing (NLP) and pre-trained with billions of sentences. 

Definition 7: Semantic similarity is computed as: 

τ(𝑠, �̂�) =
𝐁𝚽(𝐬) ∙ 𝐁𝚽(�̂�)𝐓

||𝐁𝚽(𝐬)||||𝐁𝚽(�̂�)||
 

(17) 

where 𝐁𝚽(∙) is the BERT model, used to map a sentence to its semantic vector space. 

This means that the two sentences are not directly compared, instead the comparison 

involves the resulting semantic vectors: the higher the value of τ the higher the 

similarity. 

Additionally, Sana et al. [11] defined a metric to evaluate the trade-off between the 

transmission accuracy and the number of symbols used for each message: 

γ =
1

𝐸[𝑛]
 ×  (1 −  ψ(𝑠,  �̂�)) 

(18) 

where 𝐸[𝑛] is the number of transmitted symbols per message and 𝜓(𝑠,  �̂�) is the 

semantic error between the transmitted and the received sentence. Moreover, 

depending on the task at the receiver it could be computed using different metrics (such 

as BLEU or MSE). 

1.3.3 Image semantic similarity 
 

The commonly used metrics, such as RCNN (PSNR) and structural similarity index 

(SSIM) fail to count many nuances of human perception, therefore a new metric is 

required to measure semantic information in image transmissions. 

Definition 8: the image semantic similarity [16] between two images is measured as: 

η(𝑓(𝐴), 𝑓(𝐵)) = ||𝑓(𝐴) − 𝑓(𝐵)||
2

2
 (19) 
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where 𝑓(∙) is the image embedding function that maps an image point to point in the 

Euclidean space. 

Deep-Learning based image similarity metrics achieve promising results, as 

convolutional neural networks (CNN) encode high invariance and captures images 

semantics. Deep CNNs trained on a high-level image classification task are often 

useful as a representational space. 

J.Johnson et al. [17] measure the distance of two images in a Very deep convolutional 

network (VGG) feature space as the perceptual loss for image regression problems. 

They define two perceptual loss functions based on a VGG network, ϕ.  

Definition 9: The feature reconstruction loss, defined as 

ℒ𝑓𝑒𝑎𝑡𝑢𝑟𝑒
ϕ,𝑙 (𝐴, 𝐵) =

1

𝐿
||ϕ(𝐴) − ϕ(𝐵)||

2

2
 

(20) 

being ϕ𝑖(𝑥) the activation function of the l-th layer, which is of shape L, encourages 

the two images to have similar representations computed by ϕ. 

Definition 10: The style reconstruction loss, defined as 

ℒ𝑠𝑡𝑦𝑙𝑒
𝜙,𝑙 (𝐴, 𝐵) = ||𝐺𝑙

ϕ(𝐴) − 𝐺𝑙
𝜙(𝐵)||

𝐹

2

 
(21) 

where 𝐺𝑙
𝜙(∙) is the Gram matrix, penalizes differences in colors, textures and common 

patterns. 

R. Zhang et al. [18] conducted an evaluation of deep features across various 

architectures and tasks, showing performance improvements over all previously 

established metrics, and aligning with human perception. Additionally, a deep ranking 

model introduced by J. Wang et al. [19] examines image similarity relationships using 

triplets: a query image, a positive image and a negative image. The relative similarity 

ordering in triplets characterizes the image similarity relationship. 

Moreover, several metrics have been developed to assess the similarity between 

images generated by generative adversarial networks (GANs) [20] and natural images, 

considering the overall image distribution.  
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1.3.4 Speech quality measurement 
 

The global semantic information, such as the voice of a speaker, text information and 

speech delay are required to achieve speech reconstruction.  

Metrics such as perceptual evaluation of speech quality (PESQ) [21], short-time 

objective intelligibility (STOI) [22], and perceptual objective listening quality 

assessment (POLQA) [23] can be adopted to measure the semantic content of speech 

signals. Note that, however, the mentioned metrics rely on the perceived quality of the 

received signal. 

Frechet deep speech distance (FDSD) and unconditional kernel deep speech distance 

(KDSD) are utilized in speech synthesis tasks, to assess the quality of synthetized 

speech. The features of the speech signals are extracted and fed into an assessment 

model to measure their similarity. 

Definition 11: Being 𝐷 ∈ 𝑅𝐾,𝐿the extracted features of the original speech samples and 

𝐷 ∈ 𝑅�̂�,𝐿 the synthesized ones, the FDSD is defined as 

Γ2  =  ||μ𝐷 − μ�̂� ||^2 +  𝑇𝑟[𝚺𝐷 + 𝚺�̂� − (𝚺𝐷𝚺�̂�)
1

2] (22) 

  

where 𝜇 is the average and 𝚺 is the covariance matrix. 

Definition 12: being 𝑞(∙) the kernel function, KDSD [24] is defined as 

Δ =
1

K(K − 1)
 ∑ 𝑞(𝐷𝑖 , 𝐷�̂�)

1 ≤ 𝑖,𝑗 ≤𝐾,   𝑖≠𝑗

 

+  
1

�̂�(�̂� − 1)
 ∑ 𝑞(𝐷𝑖, 𝐷�̂�)  + ∑ ∑ 𝑞(𝐷𝑖 , 𝐷�̂�)

�̂�

𝑗 = 1

𝐾

𝑖 = 11 ≤ 𝑖,𝑗 ≤𝐾,   𝑖≠𝑗

 

(23) 

 

What emerges from the description provided in this section, is that the appropriate 

metric to be used for a certain task is heavily dependent on the task itself. 
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1.4 Challenges 
Semantic communications are a new communication paradigm with breakthrough 

potential; however, this also means that a lot of questions have still to be answered, in 

the following, a summary of the main open points is discussed. 

Semantic theory: although semantic theory has been explored in past decades, most 

efforts have relied on logical probability, limiting the application scenarios. Moreover, 

it appears still unsure whether semantic information can be quantified by the concepts 

of semantic entropy, semantic channel capacity, semantic level rate-distortion theory, 

and the relationship between, inference accuracy and transmission rate. 

Semantic transceiver: designing noise robust semantic communication systems 

represents a significant challenge. Moreover, a general Joint Source Channel Coding 

(JSCC) for different information sources is not available yet. 

Resource allocation: in contrast with conventional communication systems, which 

focuses on traditional engineering issues (e.g. improving bit transmission rate), 

semantic communication systems must address semantic issues too. Resource 

allocation in this case must have the objective to improve communication efficiency 

in semantic domain. However, is still unknown how to measure semantic 

communication efficiency, and how to formulate a resource allocation problem for 

different task-oriented semantic systems. 

Performance metrics: though different metrics have been proposed, there is still no 

metric to evaluate the amount of semantic information that has been preserved or 

missed. Moreover, a more general performance metric, such as BER or SER, is 

required to evaluate the performance of different semantic communication systems. 

Applications: semantic communications applications have still to be determined, this 

new paradigm has attracted interest from VR/AR applications, as well as from the 6G 

projects, however, it is not fully clear yet how this technology will be implemented, 

and which are other possible use cases. 
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2. State of the art 
The following chapter focuses on recent developments in signal processing algorithms, 

as well as in AI and ML techniques, that enable the real time extraction of semantic 

information from a given input. 

Mert Kalfaa, Mehmetcan Gok et al [25] provide a survey on the latest studies 

concerning ML techniques, including convolutional and recurrent deep neural 

networks (DNN) architectures and scene graph generation techniques that make it 

possible to efficiently extract semantic information from signals of various modality, 

such as speech, image and video signals. 

Moreover, to be able to define suitable performance metrics and to implement 

compression or coding, the definition of a language that maps meanings to a predefined 

syntactic structure is needed.  

Therefore, it is of critical importance to establish semantic information and language 

models that are sufficiently general to be suitable in various signal processing 

applications, keeping in mind that these models must be simple enough to be used by 

agents with stringent power and computing limitations. 

The next sections of this chapter present a review of different semantic language 

modalities. 
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2.1 Deep Learning Approaches to 

Semantic Communications 
2.1.1 Natural Languages 
NLP is a research area that explores how computers can be used to understand and 

manipulate natural language text and speech to perform useful tasks [26]. 

A vast amount of work has been done to generate NL sentences given an input signal, 

some notable examples are question answering [27], image and video captioning [28], 

and discourse parsing [29]. 

More recently, works such as “Semantics-empowered communication for networked 

intelligent systems” by M. Kountouris, N. Pappas [30], “Universal Semantic 

Communication” by B. Juba [31] and “Towards a theory of semantic communication” 

by Bao et al. [3] provide a focus on semantic communications using NL. 

NLs provide a universal knowledge for all agents, however, they require to process a 

massive knowledge base, such as for example the English Language, which makes 

these approaches unnecessarily complex for IoT sensors and similar machine-type 

applications.  

2.1.2 Propositional Logic 
Carnap and Bar-Hillel [2] introduce propositional logic as a semantic language, in this 

way, the language is encoded in Boolean symbols corresponding to components and 

primitive properties.  

Logical Operators such as AND (∧), OR (∨), NOT (¬) etc. are used to combine several 

symbols to form molecular sentences describing a state. 

Propositional logic can be tailored for specific applications, avoiding the NLs 

complexity; however, it is challenging to incorporate numerical attributes such as 

velocity and position into this kind of language, resulting in a potentially incomplete 

information about the signals of interest. 



Study of Semantic Communications and Simulation of a Use Case 
 

18 
 

2.1.3 Graph-based Languages 
Scene graph generations from images and videos [32], knowledge graphs and graph-

based question answering [33], and semantic web applications [34] are some of the 

most popular applications of the graph-based languages. 

Graph-based languages are mathematical constructs that can represent components in 

a signal, as well as their relationships and states. Graph nodes and edges can include 

additional attributes to convey a more complete description of the underlying scene, 

providing a complete description for a variety of signals of interest. 

However, NLs still represent the backbone of the majority of graph-based language 

models, and it can lead to an unnecessary complexity for simple machine-type 

applications. 

To solve this issue, Mert Kalfaa, Mehmetcan Gok et al [25] advocate the use of graph-

based languages that can be tailored to specific applications of interest with a relatively 

small knowledge. 

 

2.2 State-of-the-art in semantic 

transformations 
Semantic information is present in various signal modalities, including textual 

descriptions of images, knowledge graphs derived from paragraphs, and correlation 

functions of random processes.  

Semantic transformation or semantic extraction, i.e. the process of transforming or 

extracting this semantic information, involves mapping an input modality to a target 

semantic modality.  

Before delving into the proposed language and signal processing framework for 

semantic communications, the following sections provide a focus on the main semantic 
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transformations for effective signal processing and goal-oriented semantic 

communications reported in the Mert Kalfaa, Mehmetcan Gok, et al. [25] survey. 

 

2.2.1 Object Detection and Segmentation 
Object detection is a core semantic transformation from the visual domain to the 

domain of object classes. Convolutional Neural Network (CNN) represent a 

fundamental component for object detection methods. 

R. Girshick et al [35] introduce Recurrent CNN (RCNN), that utilize selective search 

to propose candidate regions, each processed independently by a CNN and classified 

using Support Vector Machines (SVMs). 

R. Girshick [36]  instead of extracting region features separately, performs a single 

forward pass through a CNN, dividing the resulting feature map into regions using 

Region-of-Interest (RoI) pooling.  

S. Ren, K. He et al. [37] introduce RCNNs with real-time processing capabilities, 

where object regions are proposed by Region Proposal Networks (RPNs) instead of 

selective search. J. Redmon, S. Divvala et al. introduce YOLO [38], which has been 

updated several times since its first release and does not utilize region proposals. 

Instead, the input image is divided into cells performing inference on a limited number 

of boxes within each cell. 

 

Figure 3: YOLO object detection model 
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Moreover, recent works [39] [40] employ network scaling approaches to achieve 

higher detection accuracy within shorter inference times, achieving state-of-the-art 

results for real-time object detection. M. Tan, R. Pang et al. [40] propose a weighted 

bi-directional feature pyramid network to fuse features from multiple levels, while [18] 

applies a network scaling method to the YOLO architecture. 

Segmentation is a semantic transformation applicable to visual inputs, which are 

transformed to 2-D domains such as time-frequency or timescale. Formally, semantic 

segmentation aims to assign a label from a set of categories to each pixel of the image, 

treating each pixel as a random variable. Each label can represent an object class, such 

as a person, plane, or car, or distinct but unspecified clusters in an unsupervised setting.  

J. Shotton, M. Johnson and R. Cipolla [41], propose texton forests, which are 

ensembles of decision trees that act directly on image pixels, as efficient low-level 

features for image segmentation. Alternative approaches include random forest 

classifiers [42], and combinations of SVMs and Markov Random Fields (MRFs) [43]. 

The state-of-the-art in semantic segmentation typically employs convolutional 

architectures in supervised, semi-supervised, and weakly-supervised settings [44]. The 

features extracted by the deeper layers of a CNN are more concentrated on concise 

semantics with low spatial details, whereas shallow layers are more aware of spatial 

details such as edge orientations. 

R. P. Poudel, P. Lamata, G. Montana [45] propose Recurrent Fully Convolutional 

Networks for multi-slice Magnetic Resonance Imaging (MRI) segmentation, 

incorporating a Gated Recurrent Unit (GRU) into the bottleneck of the U-Net 

architecture described in [46]. Furthermore, adversarial training, a protocol in which 

humans introduce adversarial examples to the model, is applied to semantic 

segmentation [47]. 

K. He, G. Gkioxari et al. proposed Mask-CNN [48], a modified version of Faster-

RCNN [37], for the instance segmentation task which aims to assign labels to pixels 

at the object level rather than the class level. Mask-CNN architecture uses ResNet, 

followed by a Feature Pyramid Network (FPN) and a RPN. Features RoI alignment is 
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used to extract the proposed regions. Eventually, bounding-box regression, instance 

classification, and segmentation mask inference are performed. 

 

Figure 4: Mask-RCNN architecture 

Panoptic segmentation is the union of instance and semantic level segmentation, 

introduced by A. Kirillov, K. He et al. [49], this method associates each pixel with 

both instance and class level labels. 
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Figure 5: Different object detection and image segmentation techniques applied to 
the same input 

2.2.2 Image and Video Captioning 
Image captioning or annotation generation is defined as the process of producing 

textual descriptions for images; this encompasses not only the identification and 

description of objects within the frames, but also their relationships and states. 

NL descriptions provide an intuitive way to represent the semantic information 

embedded in image or video. Typically, a CNN backbone is used to extract the visual 

features from the input signals, and recurrent neural networks (RNN) are then used for 

sequence modeling as in [50]. 

 

Several techniques have been employed to improve the caption quality. A. Karpathy 

and L. Fei-Fei in [51] propose the captioning on multiple image regions, visual 

attention on CNNs is instead proposed by K. Xu, J. Ba et al. in [52].  

J. Johnson, A. Karpathy and L. Fei-Fei introduce a method where object detection and 

caption generation tasks are tackled jointly in such a way that the detected visual 

concepts are described with short NL phrases [53]. However, dense captioning has a 
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visual concepts localization issue; a possible solution is provided in [54] where global 

image features are fused with region features. 

D.-J. Kim, J. Choi, I. S. Kweon, et al. [55] extend dense captioning task to relational 

captioning, where given spatial, attentive, and contact relation information, multiple 

captions are generated for each object pair. 

 

Figure 6: Semantic transformation examples in the image domain 

Video captioning, which can be seen as a temporal extension of image captioning, 

relies on architectures that make use of CNNs (2-D or 3-D) to extract visual semantic 

content.  

 

Figure 7: Video captioning pipeline 

Once the semantic content is extracted, Long-Short-Term Memory (LSTMs) 

Networks or RNNs are used to generate NL text sequences, as in [56].  

Finally, recurrent visual encoder architectures are employed to extend the applicability 

of extracted features over longer durations. 
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2.2.3 Scene Graph Generation 
The main idea behind scene graph representation is to convert images into meaningful 

graphs and encode the visual relationships depicted in the image. The resulting 

graphical structure is composed by nodes (the detected objects) and edges connecting 

the nodes (objects relationships). 

J. Johnson, R. Krishna et al. [57] propose scene graph-based description of image 

features (e.g. “man, boat”) and objects relationships (e.g. “man on boat”) and attributes 

(e.g. “boat is white”). More specifically, the semantic information is retrieved by 

means of a Conditional Random Field (CRF) model using scene graph queries. 

 

Figure 8: Scene graph generation 

More generally, the steps needed to generate the graph representation can be 

summarized as follows. Given an image, an object detection module (such as Faster-

RCNN) extracts object region proposals and their visual features. Identified objects 

and their extracted features serve as nodes in the initial graph. The features along these 

nodes and edges are then iteratively refined, and a final graph is inferred based on the 

refined features. 
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In [58] a Region Proposal Network (RPN) is used to extract object proposals and 

proposed objects are paired to obtain a fully connected initial coarse graph. 

Graph-RCN [59] prunes the connections in the initial graph using a relation-proposal-

network (RePN). Then an Attentional Graph Convolutional Network [60], which 

operates on graph-structured data, refines the graph features, by leveraging masked 

self-attentional layers to address the shortcomings of prior methods based on graph 

convolutions or their approximations. 

VCTree model [61] represents another approach to the problem: the features are 

extracted from objects proposals, which are then used to compute a scoring matrix. 

Based on this matrix, the model constructs a dynamic tree using reinforce algorithm 

[62] . Finally, the visual features are encoded into context features and the scene graph 

is generated using supervised learning. 

 

Figure 9: VCTree model 

External prior knowledge for scene graph generation tasks is considered as well. In 

[63] statistics from external texts, such as the conditional probability distribution of a 

predicate given a (subject, object) pair, are used to regularize visual models. In [64] 
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natural language priors are incorporated, and visual and textual relationships are jointly 

learned and aligned, demonstrating that understanding relationships can improve 

content-based image retrieval. 

Scene graphs can be extracted from video signals: in [65] the proposed approach is to 

convert each frame of a video input signal into a scene graph, using  frame and cross-

frame relationships to merge semantic information coming from different frames and 

eventually creating a scene graph that describes the entire video. 

 

2.2.4 Automatic Speech Recognition 
M. Malik, M.K. Malik et al. [66] propose a survey about Automatic Speech 

Recognition (ASR) systems. The conversion of audio signals into NL texts represents, 

in fact, the most popular application of semantic transformation applied to speech 

signals. 

 

Figure 10: ASR pipeline 

The typical process that an audio signal undergoes during ASR tasks involves an initial 

preprocessing step (Filtering, DFT, etc.); the audio features (spectral or temporal) are 

then extracted by means of Mel-frequency Cepstral Coefficients (MFCC) [67], often 

used for timbral description/comparison, or Discrete Wavelet Transform [68]. The 

extracted features undergo the prediction phase, that employs Hidden Markov Models 

(HMM) [69], SVMs [70], RNNs [71] or CNNs [72] to obtain the text equivalent of the 

audio signal. 
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2.3 Deep Learning Models for 

Semantic Communications 
This section will provide a comprehensive overview of the state-of-the-art models 

tailored for different signal inputs, such as video, audio and text. 

The analysis of these models will explore how the modern deep learning techniques 

represent a key player for accurate semantic information extraction/transformation and 

highlight the critical role of deep learning in advancing this rapidly evolving field. 

2.3.1 DeepWiVe: Deep-Learning-Aided Wireless Video Transmission  
Video content is the most demanding type of signal in terms of bandwidth. It accounts 

for 80% of internet traffic, and it is expected to grow further. Therefore, it is necessary 

to develop sustainable solutions to accommodate this increasing demand. 

Consequently, more efficient data compression techniques, especially for wireless 

transmissions, are needed. 

Video compression follows the modular approach employed in the conventional 

transmission systems, where the end-to-end transmission problem is divided into: 

• Source encoding problem 

• Channel encoding problem 

 

Figure 11: Common separation-based digital video delivery system 
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This kind of approach, however, starts to show its limits as more challenging video 

delivery applications emerge, such as virtual reality (VR) or drone-based surveillance 

systems and in general applications that require ultra-low latency requirements. 

Joint source-channel coding (JSCC) represents an alternative to the separation-based 

architecture: it still uses separate modules for compression and communication, but 

jointly optimizes their parameters. 

DeepWiVe [73] is the first-ever end-to-end JSCC video transmission scheme 

leveraging the power of DNNs to directly map video signals to channel symbols.  

 

A. Problem formulation 

The authors consider the problem of wireless transmission in a constrained bandwidth 

setting. Consider a video sequence 𝑿 = {𝑿𝑛}𝑛=1
𝑇 , where 𝑿𝒏 = 𝒙𝟏

𝒏, … , 𝒙𝑵
𝒏 , 𝒙𝒊

𝒏 ∈

𝑅𝐻𝑥𝑊𝑥𝟛 → 𝐶𝑇𝑘, ∀𝑖 ∈ [1, 𝑁], represents the n-th group of pictures (GoP) in the video 

sequence. Each frame is represented as a 24bit RGB image. 

The designed encoding function 𝐸 maps the video sequence 𝑿 to a set of complex 

symbols 𝑧 = 𝑬(𝑋) ∈ 𝑪𝑇𝑘, while the decoding function 𝐷 maps a noise corrupted 

version of the encoder output 𝑦 =  𝑧 +  𝑛 to an approximated version of the original 

sequence �̂� = 𝐷(𝑦).  

In this context the bandwidth restriction is represented by the imposed limitation of 𝑘 

channels per GoP, defining the bandwidth compression ratio as: 

ρ =
𝑘

3𝐻𝑊𝑁
 

(24) 

The additive white Gaussian noise (AWGN) follows a complex gaussian noise 

distribution with zero mean and covariance σ2𝑰, where I is the identity matrix and the 

average power constraint at the transmitter is  

1

𝑇𝑘
𝐸𝑧 [||𝑧||

2

2
] ≤ 𝑃 (25) 
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The channel noise SNR is defined as 

𝑆𝑁𝑅 = 10log10 (
P

σ2
) dB (26) 

B. JSCC Model 

Consider the n-th GoP, the last (𝑥𝑁
𝑛) is the key frame and is compressed and transmitted 

by the key frame encoder 𝑓θ 

𝑧𝑖
𝑛 = 𝑓θ(𝑥𝑖

𝑛, σ2̂), 𝑖 = 𝑁 (27) 

being σ2̂ the estimated channel noise power at the transmitter. 

Each element of 𝑧𝑖
𝑛 represents the In-phase (I) and Quadrature (Q) components of a 

channel complex symbol, which are normalized according to the power and bandwidth 

constraints. 

These values are then transmitted through the channel and the key frame decoder 𝑓θ′ 

maps the noisy received vector back to the original domain 

𝑥𝑖
�̂� = 𝑓θ′(�̂�𝑖

𝑛, σ2̂), 𝑖 = 𝑁 (28) 
 

 

The loss is computed using the peak signal-to-noise ratio (PSNR) [74] or the MS-SSIM 

[75], which are the quality metrics utilized for this task. The network weights (θ, θ′) 

are then updated via backpropagation with respect to the loss gradient. 
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Figure 12: Key frame encoder/decoder network architectures 

The remaining frames, i.e. 𝑥𝑖
𝑛, 𝑖 = 1,2, … , 𝑁 − 1 the interpolation encoder g𝜙 is used 

to encode motion information (𝑓𝑖−𝑡
𝑛 , 𝑓𝑖+𝑡

𝑛 ) and residual information (𝑟𝑖−𝑡
𝑛 , 𝑟𝑖+𝑡

𝑛 ) with 

respect to two reference frames. 

The motion information is estimated by means of a Scaled Space Flow (SSF) [76]: the 

main idea is to blur regions of the frame where traditional pixel warping struggles to 

model motion, and instead compensate those regions using the residual information.  

To that end, in scale-space warping (SSW) a frame is first transformed into a fixed-

resolution volume 𝑿𝑖+𝑡

𝑛
,. The SSW 𝑓𝑖+𝑡

𝑛 ∈ 𝑅𝐻𝑥𝑊𝑥3 that warps 𝒙𝑖+𝑡
𝑛  to x̃i+t

n  is defined 

as: 

x̃i+t
n = 𝑆𝑆𝑊(𝒙𝑖+𝑡

𝑛
, 𝑓𝑖+𝑡

𝑛 ) (29) 

  

  

The network ℎη [77] is used to estimate the space flow 𝑓𝑖+𝑡
𝑛 , which progressively 

downsamples the input using convolutional layers before upsampling it back to the 

original frame dimensions. 
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Figure 13: SSF estimator network architecture 

The residual is then defined as  

ri+t
n = xi

n − x̃i+t
n  (30) 

  

  

Then, the interpolation encoder defines the mapping 

zi
n = g𝜙(𝑥𝑖

𝑛, 𝒙𝑖−𝑡
𝑛

, 𝒙𝑖+𝑡
𝑛

, 𝐫𝑖−𝑡
𝑛 , 𝐫𝑖+𝑡

𝑛 , 𝐟𝑖−𝑡
𝑛 , 𝑓𝑖+𝑡

𝑛 , σ2̂) (31) 

The 𝑧𝑖
𝑛 vector is power normalized and transmitted over the channel, then given �̂�𝑖

𝑛, 

the interpolation decoder estimates the SSF, the residual and a mask. 

(𝐟𝑖−𝑡
𝑛 , 𝑓𝑖+𝑡

𝑛 , ri
n, mi

n) = g𝜙′(�̂�𝑖
𝑛, σ2̂) (32) 

where 𝑚𝑖
𝑛 ∈ 𝑅𝐻𝑥𝑊𝑥3, that, for each H and W index, the sum of values along the 

channel dimension is equal to 1, which is achieved by softmax activation. 

The reconstructed frame is defined as: 

�̂�𝑖
𝑛 = (mi

n)1 ∗ 𝑆𝑆𝑊(𝒙𝑖−𝑡
𝑛 , �̂�𝑖−𝑡

𝑛 ) + (mi
n)2 ∗ 𝑆𝑆𝑊(�̂�𝑖+𝑡

𝑛 , �̂�𝑖+𝑡
𝑛 ) + (mi

n)3 ∗ �̂�𝑖
𝑛 (33) 
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where ∗ represents element-wise multiplication. 

 

Figure 14: Information flow over the interpolation network 

The more diverse are the frames with respect to the reference frames, the more 

information needs to be transmitted to interpolate the frame accurately. Therefore, for 

each GoP the available bandwidth must be carefully allocated, the problem is 

formulated as Markov Decision Process (MDP), defined by the tuple (𝑆, 𝐴, 𝑃, 𝑟), 

where S is the set of states, A is the action set, P is the probability transition kernel and 

r is the reward function and solved using reinforcement learning. 

 

Figure 15: Bandwidth allocation network architecture 

In the end, the DeepWiVe performance are compared to H.264 video compression 

codecs for source coding, paired with LDPC codes for channel coding. 

In Figure 16, the effect of channel estimation error on DeepWiVe performance is 

displayed: it is possible to observe that the performance of the traditional methods 

abruptly degrade when a certain 𝑆𝑁𝑅𝑒𝑠𝑡 value is reached, which comes from the fact 

that when the SNR decrease the channel capacity decreases too, leading to certain 

LDPC rate and modulation order pairs to communicate at a rate higher than the channel 
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capacity. Instead, it can be seen how DeepWiVe performance degrades gradually for 

both the considered metrics. 

 

Figure 16: Effect of channel estimation error on DeepWiVe performance 
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Figure 17: Visual examples of the performance difference 

Moreover, the model performance with and without optimal bandwidth allocation is 

evaluated: Figure 18 shows how the bandwidth allocation significantly improves the 

system performance. It can also be observed that, when the bandwidth allocation ratio 

ρ is smaller, i.e., the available channel bandwidth is more limited, the gain from 

bandwidth allocation is more significant. 
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Figure 18: Uniform vs optimal bandwidth allocation comparison 
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2.3.2 DeepSC 
Deep Learning Enabled Semantic Communication System [78], a semantic-based 

communication system for text, which has been chosen as the starting point for the 

research activity in this thesis. 

The whole system model is developed using the pytorch library [79].  

The semantic transceiver consists of:  

• a semantic encoder, responsible for semantic information encoding 

• a channel encoder, guarantees the correct data transmission over the 

transmission medium 

• a channel decoder, which recovers the received data 

• a semantic decoder, responsible for semantic information decoding 

 

Figure 19: DeepSC framework 

The input sentence 𝒔 = [𝑤1, 𝑤2, … , 𝑤𝐿], where 𝑤𝑖 is the l-th word of the sentence, is 

encoded as 

𝒙 = 𝐶α (𝑆𝛽(𝒔)) (34) 

where 𝑥 ∈ 𝐶𝑀𝑥1, with 𝑀 being the coherent time, 𝑆𝛽(∙) is the semantic encoder 

network with the parameter set 𝛽 and  𝐶α(∙) is the channel encoder with the parameter 

set α. 

The received signal, given that x is transmitted, will be 
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𝒚 =  ℎ𝒙 +  𝒏 (35) 

The channel allows backpropagation for end-to-end training of the encoder and the 

decoder, physical channels are formulated by neural networks. 

Given the received signal, the decoded sentence can be represented as:  

�̂� = 𝑆𝜒
−1(𝐶𝛿

−1(𝒚)) (36) 

𝑆𝜒
−1(∙) is the semantic decoder network with the parameter set 𝜒 and  𝐶𝛿

−1(∙) is the 

channel encoder with the parameter set 𝛿. 

The cross-entropy (CE) is used as the loss function to measure the difference between 

the received and the transmitted sequence, and it is formulated as 

ℒ𝒞ℰ(s, ŝ; α, β, χ, δ) = 

− ∑ 𝑞(𝑤𝑙)𝑙𝑜𝑔(𝑝(𝑤𝑙)) + (1 − 𝑞(𝑤𝑙))𝑙𝑜𝑔(1 − 𝑝(𝑤𝑙)) 

(37) 

where 𝑞(𝑤𝑙) is the real probability that the l-th word, 𝑤𝑙, appears in estimated sentence 

𝑠, and 𝑝(𝑤𝑙) is the predicted probability that the i-th word, wi, appears in sentence �̂�. 

Mutual information is important to provide extra information to train the receiver. It 

can be computed as follows 

𝐼(𝑥, 𝑦) = ∫ 𝜒 × 𝑦𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦 = 𝐸𝑝(𝑥,𝑦) [𝑙𝑜𝑔

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
] 

 

(38) 

where 𝜒  and 𝑦 are the spaces for x and y, and (𝑥, 𝑦) is a pair of random variables from 

this space. 𝑝(𝑥) and 𝑝(𝑦) are the marginal probability of sending x and receiving y. 

The mutual information is equivalent to the Kullback-Leibler (KL) divergence 

between the marginal probabilities and the joint probability; therefore, we can re-write 

the mutual information as: 

𝐼(𝑥, 𝑦) = D𝐾𝐿(p(x, y) || p(x)p(y)) 
 

(39) 

N. Kalchbrenner et al. [80] state the following theorem: 

Theorem 5: The KL divergence admits the following dual representation 
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D𝐾𝐿(P||Q) = sup
T:Ω→R

𝐸𝑃 [𝑇]  −  𝑙𝑜𝑔(𝐸𝑄 [𝑒𝑇]) 
 

(40) 

where the supremum is taken over all functions T such that the two expectations are 

finite.  

Moreover, according to theorem 5, the KL divergence can also be represented as  

D𝐾𝐿(p(x, y) || p(x)p(y))  ≥  𝐸𝑝(𝑥,𝑦) [𝑇]  −  𝑙𝑜𝑔(𝐸𝑝(𝑥)𝑝(𝑦) [𝑒𝑇]) 
 

(41) 

By utilizing (39) and (41) the mutual information lower bound can be obtained. An 

unsupervised training method is used for the network T to find a tight bound on the 

mutual information. 

The encoder can be optimized by maximizing the mutual information using the related 

loss function defined as 

ℒ𝑀I(𝑥, 𝑦; 𝑇) = 𝐸𝑝(𝑥,𝑦)[𝑓𝑇] − 𝑙𝑜𝑔(𝐸𝑝(𝑥)𝑝(𝑦)[𝑒𝑓𝑇]) 
 

(42) 

where 𝑓𝑇 is composed by a neural network. 

The encoder can be optimized by training α and β, i.e. the semantic encoder and the 

channel encoder parameters, when the mutual information is obtained. Therefore, the 

loss function can be represented by ℒ𝑀𝐼(𝑥, 𝑦; 𝑇, 𝛼, 𝛽 ) 

 

Figure 20. DeepSC network structure 

Figure 20 depicts the proposed DeepSC network structure, the input data is processed 

by an embedding layer and by the semantic encoder, which is composed of multiple 

transformer encoder layers. 

The core of the transformer layer is the multi-head self-attention mechanism, which 

enables the transformer to view the previous word in the sequence, thereby improving 

its ability to predict the next word in the sentence. 
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The output is then processed by the channel encoder, which generates the complex 

symbols to be transmitted on a channel, which is interpreted as one layer in the model. 

The original work featured three types of channels, namely, the AWGN channel, the 

Rician channel and the Rayleigh channel. 

At the receiver side the channel decoder is used for symbol detection and, successively, 

the semantic decoder is used for text estimation. 

The loss function used to train the model can be expressed as 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐶𝐸(𝑠, �̂�; 𝛼, 𝛽, 𝜒, 𝛿) − 𝜆ℒ𝑀𝐼(𝑥, 𝑦; 𝑇, 𝛼, 𝛽 ) 
 

(43) 

The first term in (43) is the loss function which evaluates the sentence similarity, that 

aims to minimize the semantic difference between the transmitted and the received 

sentence; the second one is the loss function for mutual information, weighted by the 

parameter λ (0 ≤ 𝜆 ≤ 1). 

Algorithm 1: DeepSC Network Training 
Input: The background knowledge set K, the initialized weights W and bias b 

Output: The network 
              𝑺𝛃(∙), 𝑪𝜶(∙), 𝑪𝜹

−𝟏(∙), 𝑺𝛘
−𝟏(∙)  

1: Create the index to words and words to index dictionaries, and then embedding  
     words.     
2: while stop criterion is not met do:  
3:           Train the mutual information model 
4:           Train the whole network 
5: end while 

 

The training process of the model consists of two phases carried out subsequently, at 

first, the mutual information model is trained to estimate the achieved data rate, then 

the whole system is trained with (43) as the loss function. Algorithms 2 and 3 report 

the pseudo-code of these processes in detail. 

Training of Mutual Information Estimation Model: A minibatch is a set of sentences 

𝑺 ∈ ℛ𝐵𝑥𝐿𝑥1, where 𝐵 is the batch size and 𝐿 is the sequences length. The sentences are 

then represented as a dense word vector 𝑬 ∈ ℛ𝐵𝑥𝐿𝑥𝐸, where 𝐸 is the dimension of the 

word vector. Subsequently, the semantic information is extracted by the semantic 
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encoder, obtaining 𝑴 ∈ ℛ𝐵𝑥𝐿𝑥𝑉, with 𝑉 being the dimension of the transformer 

encoder output. 

In order to take into account the physical channel effects, 𝑴 is encoded into complex 

symbols 𝑿 ∈ ℛ𝐵𝑥𝑁𝐿𝑥2. The received signal 𝒀, distorted by the channel noise, is used 

to compute the mutual information loss ℒ𝑀𝐼. The computed loss is then used to 

optimize the weights and the bias of 𝑓𝑇(∙) through the stochastic gradient descent 

(SGD). 

Training of the whole network: The sample batch is processed in the same way as it is 

in the first training phase. When 𝐘 is received, the decoded signal �̂� ∈ ℛBxLxV  is 

obtained by means of the channel decoder layer. Moreover, the semantic decoder layer 

estimates the transmitted sentences �̂�. Finally, the total loss ℒtotal is computed and the 

whole network is optimized by the SGD. 

This operation is carried out until the max iteration is met or none of terms in the loss 

function is decreased any more. Training jointly the two encoders can preserve 

semantic information when compressing data. 

Algorithm 2: Train Mutual Information Estimation Model 
Input: The background knowledge set K 

Output: The mutual information estimated model 𝑓𝑇(∙) 
1: Transmitter:     
2:          BatchSource(K) → S. 
3:          𝑺𝜷(𝑺) → M. 
4:          𝑪𝜶(𝑀) → X. 
5:          Transmit X over the channel 
6: Receiver: 
7:          Receive Y 
8:          Compute loss ℒ𝑀𝐼 by (57) 
9:          Train T → Gradient descent (𝑇, ℒ𝑀𝐼) 
 

 

Algorithm 3: Train The Whole Network 
Input: The background knowledge set K 

Output: The network 
              𝑺𝛃(∙), 𝑪𝜶(∙), 𝑪𝜹

−𝟏(∙), 𝑺𝛘
−𝟏(∙)  

1: Transmitter:     
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2:          BatchSource(K) → S. 
3:          𝑺𝜷(𝑺) → M. 
4:          𝑪𝜶(𝑀) → X. 
5:          Transmit X over the channel 
6: Receiver: 
7:          Receive Y 
8:          𝑪𝜹

−𝟏(𝒀) → �̂�. 
9:          𝑺𝝌

−𝟏(�̂�) → �̂�. 
10:        Compute loss function ℒ𝑡𝑜𝑡𝑎𝑙 by (58) 
11:        Train 𝛽, 𝛼, 𝛿, 𝜒 → Gradient descent (𝛽, 𝛼, 𝛿, 𝜒, ℒ𝑡𝑜𝑡𝑎𝑙)  
 

 

 

Figure 21: Network training representation: phase 1 trains the mutual information 
estimation model; phase 2 trains the whole network [78] 

 

 

2.3.3 L-DeepSC: A Lite Distributed Semantic Communication System 
for Internet of Things 
Internet of Things (IoT) networks are providing more and more intelligent services by 

processing a massive amount of data [81]. The DL-enabled IoT devices are capable of 

exploiting different data types; however, the limited capabilities in terms of storage, 

computing and battery still prevent from wide applications of DL [82], which is usually 
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trained and updated at the cloud/edge platform based on data from the IoT devices 

[83]. 

Therefore, transmitting accurate data to the cloud/edge platform over wireless 

channels with limited bandwidth and reducing the number of DL parameters to lower 

the latency and the power consumption represent two crucial problems. 

A promising approach to the first problem is represented by semantic communication 

systems, which are more robust to channel variation and are able to achieve better 

performance in terms of source recovery, especially in low SNR regime. To deal with 

the second issue, a network slimmer can be applied to compress DL models without 

degrading their performance [84]. 

L-DeepSC [85] is a model developed for IoT devices, starting from the already existing 

DeepSC [78], to which a network slimmer has been applied. The model focuses on 

text data, which can be used to generate semantic features to be transmitted to the 

center to perform intelligent tasks. 

 

 

Figure 22: Proposed distributed semantic network 

As already stated, DeepSC will be extensively described in the next chapter; 

however, to understand the following part of this subsection, it is important to grasp 

the model structure, which can be divided into three parts: 

• Transmitter part: which includes semantic encoder and channel encoder 
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• Physical Channel 

• Receiver part: which includes channel decoder and semantic decoder 

The main limitations of DeepSC for IoT networks are represented by the huge 

number of parameters and by the fading channel effects on model training. 

The source message s is embedded into S, and then encoded into: 

𝐗 = σ(𝐖T𝐒 + 𝐛T) (44) 

  

  

where 𝑿 are the semantic features transmitted to the cloud/edge platform, 𝑾𝑇 and 𝐛T 

are the trainable parameters and σ is the sigmoid activation function. 

From the received symbol, which is affected by the channel matrix and the AWGN, 

the cloud/edge platform recovers the embedding matrix 

Ŝ = σ(𝐖𝑅𝐘 + 𝐛𝑅) (45) 

  

  

After the de-embedding layer, the estimated source message  �̂� is retrieved and the 

parameters can learn to recover the original message s. The model uses the same loss 

function used in DeepSC for optimization purposes. 

The channel impacts can be mitigated by exploiting CSI at the cloud/edge, if H is 

known then the received symbol can be processed by 

�̃� = (𝐇H𝐇)−1𝐇H𝐘 = 𝐗 + �̃� (46) 

where �̃� = (𝐇H𝐇)−1𝐇H𝐍. The previous discussion shows the importance of CSI. 

Genearlly, CSI can only be estimated generally by means of traditional estimators, 

such as least-squared (LS), linear minimum mean-squared error (LMMSE) or 

minimum mean-squared error (MMSE). The authors use LS estimator for simplicity. 
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To increase the LS estimator resolution, a deep de-noise network, i.e. attention-guided 

denoising convolutional neural network (ADNet) [86], is exploited. ADNet includes 

four blocks: 

1. Sparse block: extracts features from the input 

2. Feature enhancement block 

3. Attention block: extracts hidden noise information 

4. Reconstruction block: reconstructs the de-noised image 

 The rough CSI estimated by the LS estimator with few pilots is 

𝑯𝑟𝑜𝑢𝑔ℎ = 𝐘p𝐗p
H = 𝐇 + 𝐍𝐗p

H = 𝑯 + �̂� (47) 

  

  

where 𝒀𝑝 = 𝑯𝑿𝑃 + 𝑵 is the receiver pilot signal, 𝑿𝑝 is the transmitted pilot signal 

and �̂� = 𝑵𝑿𝑝
𝐻 . 

The refined CSI is denoted as 

𝑯𝑟𝑒𝑓𝑖𝑛𝑒 = ADNet(𝐇rough) (48) 

  

  

ADNet is trained using the loss function ℒ(𝑯𝑟𝑒𝑓𝑖𝑛𝑒 , 𝑯) =
1

2
||𝑯𝑟𝑒𝑓𝑖𝑛𝑒 −  𝑯||𝐹

2 , with 

proper training ADNet can mitigate noise impacts without prior channel information. 

 

Figure 23: Proposed CSI refinement 
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To reduce latency due to the huge amount of model weights, the proposed solution is 

a pruning-quantization mixture. Initially, weights are pruned according to the 

following algorithm: 

Algorithm 4: Network Sparsification 
Input: The pre-trained weights W, the sparse ratio γ. 
Output: The pruned weights 𝑾𝑝𝑟𝑢𝑛𝑒𝑑  
1: Count the total number of connections, M. 
2: Sort the whole connections from small to large, s. 
3: Obtain the threshold by (37) with M and γ, 𝑤𝑡ℎ𝑟𝑒 
4: for n = 1 to N do 
5:         Prune the connections by (36), 𝑾𝑝𝑟𝑢𝑛𝑒𝑑

𝑛  
6: end for 
7: Fine-tune the pruned model by loss function  (35). 

 

The loss function is 

ℒ𝐶𝐸(𝑠, �̂�) = ∑(𝑞(𝑤𝑖) − 1)𝑙𝑜𝑔(1 − 𝑝(𝑤𝑖)) −

𝑖=1

∑ 𝑞(𝑤𝑖)𝑙𝑜𝑔(𝑝(𝑤𝑖))

𝑖=1

 (49) 

  

  

where 𝑞(𝑤𝑖) is the probability that the word 𝑤𝑖 appears in the sentence s, and 𝑝(𝑤𝑖) 

is the predicted probability that the word 𝑤𝑖 appears in the reconstructed sentence �̂�. 

The pruning function is:  

𝑊𝑖,𝑗
𝑛 = {

𝑊𝑖,𝑗
𝑛 , 𝑖𝑓|𝑊𝑖,𝑗| > 𝑤𝑡ℎ𝑟𝑒 ,

0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(50) 

with 

𝑤𝑡ℎ𝑟𝑒 = 𝑠𝑀𝑥𝛾 (51) 

where s is the sorted weights value from the least to the most important one, M is the 

total number of connections, and 𝛾 is the sparsity ratio between 0 and 1, which 

indicates the proportion of values to prune. 

The quantization step follows instead the following algorithm: 

Algorithm 5: Network Quantization 
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Input: The pre-trained weights W, the quantization level m, the correlation 
coefficient c, and the calibration data K. 
Output: The pre-trained weights 𝑾𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 and the activation range [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] 
1: Phase 1: Weights Quantization. 
2: for n = 1 to N do 
3:       Compute the range of weights, [𝑚𝑖𝑛(𝑊𝑛), 𝑚𝑎𝑥(𝑊𝑛)] 
4:       Quantize the weights by (38), �̃�𝑛 
5: end for 
 
6: Phase 2: Activations Quantization 
7: for k = 1 to K do 
8:     for n = 1 to N do 
9:            Update the dynamic range of activation by (40) and (41), [𝑥𝑚𝑖𝑛

𝑛 (𝑡), 𝑥𝑚𝑎𝑥
𝑛 (𝑡)] 

10:   end for 
11: end for 
12: Quantize the activations by (42). 
13: Fine-tune the quantized model by STE and loss function 

The quantization function is 

𝑾𝒊,𝒋
̃ 𝑛

= 𝑟𝑜𝑢𝑛𝑑 (𝑞𝑤 (𝑾𝑖,𝑗
𝑛 − 𝑚𝑖𝑛(𝑾𝑛))) (52) 

where 𝑞𝑤 is the scale factor to map the dynamic range of float points to an m-bits 

integer, given by 

𝑞𝑤 =
2𝑚 − 1

𝑚𝑎𝑥(𝑾𝑛) − 𝑚𝑖𝑛(𝑾𝑛)
 

(53) 

An exponential moving average (EMA) is used to reduce the influence from the 

outliers, the range is computed as  

𝑥𝑚𝑖𝑛
𝑛 (𝑡 + 1) = (1 − 𝑐)𝑥𝑚𝑖𝑛

𝑛 (𝑡) + 𝑐𝑚𝑖𝑛(𝑿𝑛(𝑡)) 

𝑥𝑚𝑎𝑥
𝑛 (𝑡 + 1) = (1 − 𝑐)𝑥𝑚𝑎𝑥

𝑛 (𝑡) + 𝑐𝑚𝑎𝑥(𝑿𝑛(𝑡)) 

(54) 

(55) 

The activations output is quantized by 

𝑿�̃� = 𝑐𝑙𝑎𝑚𝑝(𝑟𝑜𝑢𝑛𝑑(𝑞𝑥(𝑿𝑛 − 𝑥𝑚𝑖𝑛
𝑛 )); −𝑀, 𝑀) (56) 

𝑐𝑙𝑎𝑚𝑝(∙) is used to eliminate the quantized outliers, and it is deifned as 

clamp(Xn; −T, T) = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑋𝑛, −𝑇), 𝑇) (57) 

where 𝑇 = 2𝑚 − 1, i.e. the border of the m-bits integer format. 
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The straight-through estimator (STE) is used to estimate the gradient of the quantized 

weights in the backpropagation; this is necessary since the rounding operation is not 

derivable. 

 

Figure 24: Flowchart of the proposed joint pruning-quantization, the values serve as 
an example. 

(a) shows the original weight matrix, (b) the pruned weights, (c) the quantized 
weights 

The constellation resulting from the semantic source message (Figure 25) is more 

complex with respect to the traditional bits constellations: since it is not limited to few 

points, it is more demanding from the hardware point of view. Therefore, the two-stage 

quantization process is used to narrow the range of constellations. In fact, the learned 

high-resolution constellation is converted into a low-resolution constellation with 

fewer points. 

 

Figure 25: Comparison between full-resolution constellation and low-resolution 
constellation 
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The performance of the same constellation with different resolutions is tested, Figure 

26 shows that even a 4-bits constellation achieves good performance in terms of BLEU 

score 

 

Figure 26: BLEU scores for different constellation sizes 

Moreover, the performance of different estimators is compared, showing how, in terms 

of Mean Squared Error (MSE), the LS estimator with ADNet outperforms the other 

considered estimators (Figure 27). 

 

Figure 27: MSE for different types of estimators 

The next comparison considers L-DeepSC versus more traditional approaches over 

Rayleigh and Rician channels for a certain range of SNR values, showing that L-

DeepSC outperforms the mentioned approaches.  
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Figure 28: BLEU score vs SNR under Rician fading channel 

 

Figure 29: BLEU score vs SNR under Rayleigh fading channel 

Then the influence of the sparsity ratio γ and the quantization ratio m on the model 

performance is assessed, showing how the performance over different SNRs is almost 

unaffected until a limit value, which is > 0.9 for γ and < 4 for m, is reached. 

 

 

Figure 30: BLEU scores of different SNRs versus sparsity ratio 𝜸 
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Figure 31: BLEU scores of different SNRs versus sparsity ratio m 

Note that the authors do not specify under which conditions the Huffman + Rs with 

perfect CSI and the Huffman + Turbo with perfect CSI are tested. For this reason, even 

if the proposed model shows promising results, further tests are preferable to 

confidently state that L-DeepSC offers unequivocally better performance than the 

traditional networks.  

2.3.4 DeepSC-S: Semantic Communication System for Speech 
Transmission 
Most DL-based pre-processing techniques for speech signals focus on the magnitude, 

spectra, or Mel-frequency Cepstrum [87], before feeding into a learning system. These 

extra operations capture the unique features of speech signals; however, they run 

counter to the motivations behind artificial intelligence. 

This is the motivation that led Zhenzi Weng and Zhijin Qin to propose a DL-enabled 

semantic communication system for speech signals, named DeepSC-S [88]. 

 

Figure 32: The proposed system model [88] 

The system input 𝒔 = [𝑠1, 𝑠2, … , 𝑠𝑊] is a sample sequence with W samples, drawn from 

a speech dataset. A batch of input sequences 𝑺 ∈ 𝑹𝐵𝑥𝑊, where 𝐵 is the batch size, is 

fed each time to the transmitter. The input sample sequences, are framed into 𝒎 ∈
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𝑹𝐵𝑥𝐹𝑥𝐿 for training before passing through an attention-based encoder, i.e. the 

semantic encoder 𝑻α
𝑆 , where 𝐹 is the number of frames and 𝐿 is the length of each 

frame. The semantic encoder outputs the learned features 𝒃 ∈ 𝑹𝐵𝑥𝐹𝑥𝐿𝑥𝐷. The channel 

encoder, 𝑻β
𝐶  , which is a CNN layer with 2D CNN modules, converts 𝒃 into 𝑼 ∈

𝑹𝐵𝑥𝐹𝑥2𝑁. Finally, 𝐔 is reshaped into the encoded symbol sequence 𝐗 ∈ 𝐑BxFNx2in 

order to be transmitted as complex symbols. Note that the NN parameters of the 

semantic encoder and the channel encoder are denoted as 𝛂 and 𝛃 respectively.  

Thus, each encoded symbol sequence is expressed as: 

𝑿 = 𝑻β
𝐶(𝑻α

𝑆 (𝑺)) (58) 

The transmitted symbols are normalized to ensure that the total transmitted power is 

equal to 1. 

 

Figure 33: The proposed semantic encoder and semantic decoder structures [88] 

The channel layer takes 𝒙 as input and outputs the signal 𝒚, modeled as 

𝒀 =  𝑯 ∗ 𝑿 +  𝑾 (59) 

Where 𝑯 are the coefficients of a linear channel and 𝑾 indicates independent and 

identically distributed (i.i.d) Gaussian noise samples. 

In a similar way with respect to the transmitter, the receiver consists of a channel 

decoder, 𝑹𝜒
𝐶 , to mitigate channel distortion and attenuation, and a semantic decoder, 

𝑹𝛿
𝐶, recovers speech signals based on the extracted, and learned, semantic features. 
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Note that 𝜒 and 𝛿 represent the channel and semantic decoder parameters. The decoded 

signal �̂� is obtained by 

�̂� = 𝑹𝛿
𝐶 (𝑹𝜒

𝐶(𝒀)) (60) 

The MSE is used as the loss function to measure the difference between 𝑺 and �̂� 

ℒ𝑀𝑆𝐸(𝜽𝑇 , 𝜽𝑅) =
1

𝑊
 ∑ (𝑠𝑤 − 𝑠�̂�)2

𝑊

𝑤 = 1

 
(61) 

being 𝜽𝑇 and 𝜽𝑅 the transmitter and the receiver parameters respectively, and 𝑠𝑤 and 

𝑠�̂� the w-th element of vectors 𝒔 and �̂� respectively.  

Note that semantic encoder/decoder and channel encoder/decoder are jointly designed; 

therefore, both parameter sets 𝜽𝑇 and 𝜽𝑅 can be adjusted at the same time. More 

specifically, the SGD algorithm is adopted for training; denoting the parameters of the 

whole system as 𝜽, the update is iteratively carried out as follows: 

𝜽(𝒊+𝟏) ← 𝜽(𝒊) − 𝛈∇𝜽(𝒊)ℒ𝑀𝑆𝐸(𝜽𝑇 , 𝜽𝑅) (62) 

where η is a learning rate and ∇ is the differential operator. 

The metrics employed to evaluate the system performance are: 

• the signal-to-distortion ratio (SDR) [89] 

𝑆𝐷𝑅 = 10𝑙𝑜𝑔10 (
||𝒔||

2

||𝒔 − �̂�||
2) 

(63) 

which represents that the speech information is recovered with better quality, 

i.e. easier to understand for human beings 

• The perceptual evaluation of speech distortion (PESQ) [90], integrated by 

means of an open-source assessment model developed by ITU-T [91]. 
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Figure 34: The proposed system architecture [88] 

First, DeepSC-S performance in terms of MSE under AWGN, Rayleigh and Rician 

channels are evaluated, it can be seen how the model performs poorly with Rayleigh 

channels, however, the MSE values achieved under the Rician channel condition 

makes the model robust. 

 

Figure 35: DeepSC-S MSE loss 

For this reason, the Rician channel model is considered, and it can be observed that 

the MSE loss converges after about 400 epochs of training. 

 

Figure 36: MSE Loss vs Epoch under the Richian channel with SNR = 8 dB 
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DeepSC-S is finally compared with a traditional communication system with extra 

feature coding for speech transmission, under AWGN, Rayleigh and Rician channels, 

and assuming accurate CSI knowledge. 

 

Figure 37: SDR score versus SNR for the different tested communication systems  

 

Figure 38: PESQ score versus SNR for the different tested communication systems 

Plots in Figure 37 and Figure 38 show that DeepSC-S outperforms the traditional 

systems in terms of both SDR and PESQ scores. However, as for the previous case, no 

specific details are provided about the traditional and the semi-traditional systems 

employed; for this reason, further investigation are needed to draw definitive 

conclusions. 
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3. Methodology  
The following sections provide the rationale behind the use case selection and a 

detailed description of the DL model used to test semantic transmission performance. 

 

3.1 Use case: Text transmission 
3.1.1 Rationale of Use Case  
The use case selected for this thesis is text transmission in a 5G NR-based 

environment. Several considerations motivate this choice, which can be summarized 

as follows. 

Text transmission inherently focuses on the accurate conveyance of meaning rather 

than on mere data exchange.  Textual information consists of discrete symbols, i.e., 

words, each tied to specific semantic meanings. Thus, text can be considered an ideal 

candidate for exploring the nuances of semantic communication, since its goal is to 

ensure that the intended meaning is faithfully received and understood, rather than 

merely transmitting the source data. 

Moreover, text is a fundamental form of communication, used across several domains, 

which highlights its relevance as a use case. By focusing on text, this research 

addresses an essential aspect of communication. 

Additionally, text transmission, compared to audio and video transmission, is 

characterized by a relatively low level of complexity, making it an appropriate choice 

for an initial approach to semantic communication. Moreover, this reduced complexity 

facilitates the evaluation of key variables, making it easier to draw relevant 

conclusions. 

Another key reason for choosing text-based communication is is its greater 

interpretability and explainability compared to other modalities such as audio or video. 
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The ability to analyse the reasons behind observed phenomena and to clearly depict 

the remarkable findings is fundamental in the context of a thesis project. 

The listed factors collectively ensure that text transmission is a relevant and practical 

use case to understand the mechanisms that drive semantic communication. 

The performed experiments aim to make a comparison between textual semantic 

transmission and a traditional 5G NR-based transmission chain, highlighting the 

eventual benefits of the new semantic paradigm. 

3.2Adaptation of the DNN model 
This section outlines the enhancements applied to the original DeepSC model. The 

goal is to assess the performance of the proposed semantic solution in an environment 

that more accurately simulates a modern communication system scenario. In fact, the 

original model presents three major limitations that prevent it from being directly 

compared with contemporary communication systems. 

Problem 1: As described in the previous section, the original model implements three 

selectable physical channels as a network layer: the AWGN channel which adds noise 

to the transmitted symbols, the Rician channel and the Rayleigh channel, which 

simulate the effects of fading on the wireless transmission. To allow the model to better 

predict the behaviour of transmitted signals as they propagate through complex 

environments, a more accurate and realistic channel model is needed. 

Problem 2: The model assumes a Single-Input Single-Output transmission system. 

While simpler, this assumption does not address the challenges posed by contemporary 

communication technologies, which predominantly utilize Multiple-Input Multiple-

Output (MIMO) systems. MIMO has become a fundamental part of modern days 

communications, due to the higher data rate and reliability compared to SISO systems 

[92]. Moreover, since the scope of this study is to test the performance of a semantic 

communication system in a 5G New Radio-based scenario and to compare it to the 

traditional 5G New Radio transmission chain, the implementation of MIMO 

capabilities is fundamental for the scope of this project. 
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Problem 3: The simulator does not implement pre-coding or equalization techniques, 

which are crucial for mitigating inter-symbol interference, especially in a MIMO 

scenario. Consequently, these techniques are essential components of a realistic 

transmission system. 

The remaining part of this section details the specific modifications made to transform 

the original model into a more robust and realistic version, enhancing its ability to 

provide more accurate simulation results.  

3.2.1 Clustered Delay Line Channel Model 
Problem 1 is tackled by introducing a Clustered Delay Line channel model (CDL). 

Clustered Delay Line models are defined by the European Telecommunication 

Standard Institute (ETSI) [93] and are particularly useful for modelling the multipath 

propagation environment. 

In CDL models, the multipath components are organized into clusters, where each 

cluster represents a group of signal paths that arrive at the receiver; they mimic 

propagation mechanisms that characterize real life scenarios, such as reflections off 

the same or similar objects in the environment. 

Each cluster is characterized by: 

• a normalized delay, i.e. the delay of a certain cluster with respect to the 

earliest arriving cluster;  

• a power in dB, which is the cluster signal power; 

• an angle of departure (AOD), that is the azimuth angle at which a signal 

departs from the transmitter, measured in the horizontal plane from a 

reference direction; 

• an angle of arrival (AOA), that is the azimuth angle at which a signal arrives 

at the receiver, measured in the horizontal plane from a reference direction;  

• a zenith angle of departure (ZOD), the angle at which a signal departs from 

the transmitter, measured in the vertical plane from the zenith;  
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• a zenith angle of arrival (ZOA), the angle at which a signal arrives at the 

receiver, measured in the vertical plane from the zenith. 

A total of five CDL models exist, which can be divided into two groups: Non-Line-

Of-Sight (NLOS) profiles, that are CDL-A, CDL-B, CDL-C, and Line-Of-Sight 

(LOS) profiles, that are CDL-D and CDL-E. The first group simulate an urban 

environment, with more obstacles and, therefore, a more challenging scenario, while 

the second group is more suitable to represent high quality channels with a more 

direct signal path. 

For this thesis, a CDL-B model is used, since it strikes a balance in complexity 

between CDL-A and CDL-C. The two LOS models are excluded since a clear and 

high-quality path does not accurately represent urban scenarios, which is the primary 

context for the considered use case. 

 

 

Figure 39: CDL-B cluster parameters 
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A 3GPP compliant CDL-B simulator built in MATLAB is used for the scope. This 

simulator can generate channel matrices containing the CDL-B coefficients with 

dimensionality [4 x 32], where 4 is the number of antennas equipped to each user and 

32 is the number of antennas at the transmit side. For the purpose of this thesis, a total 

of 40000 channel realization are generated, i.e. 10 simulations of 4000 time slots (2 

seconds, as detailed in Table 2), which correspond in total to a simulation of 20 

seconds. The scenario considered is limited to a downlink transmission, with a base 

station (BS) at the transmit side and a mobile use (UE) at the receiver side. 

This implementation provides DeepSC model with a more realistic physical channel 

layer. 

 

3.2.2 Multiple-Input Multiple-Output (MIMO) Transmission 
Problem 2 is solved by properly implementing MIMO transmission in DeepSC model.

 

Figure 40. MIMO system representation, on the left side the transmitting antennas, 
on the right side the receiving antennas 

MIMO technology, which relies on the usage of several transmitting antennas 𝑛𝑡 and 

receiving antennas 𝑛𝑟 operating at the same time on the same frequencies, allows to 

increase the spectral efficiency of the system. This results in significant improvements 

in data throughput, coverage, and reliability.  
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MIMO can operate in two different modes, which are Spatial multiplexing (SM) and 

Space Frequency Coding (SFC) 

SM allows to simultaneously transmit multiple independent data flows on different 

spatial paths. In this operating mode, each antenna sends a different data stream; at the 

receiver, each stream is captured by multiple antennas and advanced space-time 

algorithms are needed to separate the different data flows. The maximum number of 

separable streams is given by the minimum between the number of receiving antennas 

and the number of transmitting antennas. This approach dramatically increases the 

system capacity, since the total data rate is multiplied by the number of data flows.  

The system capacity, which in SISO systems can be described as 

𝐶 ≈ 𝑊 ∙ 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅)    [𝑏𝑖𝑡/𝑠] 
 

(64) 

Adopting MIMO SM mode, the system capacity becomes 

𝐶 ≈ 𝑊 ∙ 𝑁 ∙ 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅)    [𝑏𝑖𝑡/𝑠] 
 

(65) 

where 𝑁 is given by 𝑚𝑖𝑛(𝑛𝑡 , 𝑛𝑟). 

SFC mode, instead, enhances the reliability and the robustness of the transmission for 

a single data flow. Different copies of the same data flow are transmitted through 

different antennas, i.e., different spatial paths; therefore, the receiving antennas 

recover all the same data. This operation ensures that, even if the transmitted signal is 

degraded during their propagation in the wireless channel over a certain path, there is 

probably another path, or more, where the signal quality makes up for this loss. In this 

way, the overall information can still be recovered by the appropriate algorithms at the 

receiver. 

SM and SFC serve different purposes, both of which are fundamental in modern 

communication systems. However, for the purpose of this thesis, the SFC mode is 

implemented in the semantic model, since the primary focus is to evaluate the 

reliability of the semantic transmission paradigm. 
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Considering the modified DeepSC implementation with MIMO support, each batch of 

encoded sentences 𝑿 ∈ ℛ𝐵𝑥𝑁𝐿𝑥2, is reshaped as 𝑿 ∈ ℛ𝐵𝑁𝐿𝑥2: this flattening on two 

dimensions, allows the handling of multiple copies of the same batch.  

Signal 𝑿 is then properly pre-coded (more details are provided in the next sub-section), 

obtaining a new pre-coded signal 𝑿𝒕𝒙  ∈ ℛ𝑛𝑡𝑥𝐵𝑁𝐿𝑥2, that is transmitted over the 

physical channel. The recovered message at the receiver side, can be denoted as 

𝒀 = 𝑯𝑿𝒕𝒙 + 𝒏 
 

(66) 

where 𝒏 is the introduced noise vector. Depending on desired configuration, the 

channel matrix 𝑯 can include the CDL-B coefficients computed by the aforementioned 

MATLAB simulator or can collect random variables that statistically represent Rician 

or Rayleigh fading channels. In particular, the Rician channel matrix is composed of 

random variables with mean √ 𝐾

𝐾+1
 and standard deviation √ 1

𝐾+1
, where 𝐾 is the Rician 

K factor, defined as: 

𝑲 =
𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝑳𝑶𝑺 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔

𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝑵𝑳𝑶𝑺 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔
 

 

(67) 

The Rayleigh coefficients are, instead, realizations of a random variable with mean 0 

and standard deviation 1

2
. The AWGN channel, instead, does not implement MIMO 

transmission. 

The received signal is then demodulated by implementing equalization techniques, 

which are detailed in the next sub-section. 

With the enhancements described, DeepSC now support both SISO and MIMO 

transmissions. In particular, the simulator supports a maximum of 32 𝑛𝑡 and 4 𝑛𝑟.  

 

3.2.3 Pre-coding and Equalization Techniques 
Lastly, pre-coding and equalization techniques have been introduced to increase the 

system robustness. 
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The implemented pre-coding techniques assumes that the channel matrix 𝑯 is perfectly 

known at the transmitter. By means of the single values decomposition (SVD), it is 

possible to get 

𝑯 = 𝑼𝚺𝐕𝐇 
 

(68) 

where, given that 𝑯 is a 𝒎 𝒙 𝒏 matrix, 𝑼 is an orthogonal matrix with dimensions 

𝑚 𝑥 𝑚, where the columns are the left singular vectors of 𝑯, 𝚺 is an 𝒎 𝒙 𝒏 matrix 

containing the singular values of 𝑯 in descending order and 𝑽𝑯 is an 𝑛 𝑥 𝑛 matrix 

containing the right singular vectors. 

The matrix 𝑽, obtained as 𝑽 = (𝑽𝑯)𝑯 is the pre-coding matrix used at the transmitter. 

The sequence of symbols to be transmitted is multiplied by the pre-coding matrix 

before the transmission. Hence, the transmitted signal 𝑿𝒕𝒙 can be written as: 

𝑿𝒕𝒙 = 𝐕𝐗𝐌𝐈𝐌𝐎 
 

(69) 

 

Algorithm 6: Pre-coding in a MIMO setting 
Input: The sample batch B, the channel matrix 𝑯, 𝑡ℎ𝑒 batch of encoded sentences  

            𝑿 

Output: The pre-coded signal 𝑿𝒕𝒙 
 
1: Perform 𝑆𝑉𝐷(𝑯) → 𝐔, 𝚺, 𝐕𝐇  
2: Compute 𝑽 = (𝑽𝑯)𝑯 
3: Re-shape 𝑿 →  𝑿 ∈ ℛ𝐵𝑁𝐿𝑥2 
4: Generate 𝑛𝑡 copies of 𝑿 → 𝑿𝑴𝑰𝑴𝑶 ∈ ℛ𝑛𝑡𝑥𝐵𝑁𝐿𝑥2 
5: Generate the pre-coded signal as 𝑿𝒕𝒙 = 𝑽𝑿𝑴𝑰𝑴𝑶 

 

To mitigate the channel distortions, two different equalization techniques are 

implemented, depending on the considered type of channel. 

 

Zero-Forcing (ZF) Equalization: 
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ZF equalization is a linear equalization technique used to mitigate the Inter-Symbol 

Interference (ISI), which arise when multiple signals are transmitted simultaneously 

over the same channel, interfering with each other. 

In the context of MIMO systems, the ZF equalization is carried out by multiplying the 

inverse of the channel matrix by the received signals, effectively compensating for the 

interference components affecting each antenna. 

In the context of this project, since the transmitted signal is pre-coded, the received 

signal 𝒀 can be re-written as 

𝒀 = 𝑯𝑿𝒕𝒙 + 𝒏 = 𝑯𝑽𝑿𝑴𝑰𝑴𝑶 + 𝒏 
 

(70) 

Therefore, recalling (61), the ZF equalization can be carried out by multiplying the 

received signal by 𝑼𝑯 and 𝑽𝑯, obtaining 

𝑼𝑯𝜮𝑯𝒀 = 𝑼𝑯𝜮𝑯𝑯𝑽𝑿𝑴𝑰𝑴𝑶 + 𝑼𝑯𝜮𝑯𝒏 = 

 𝑼𝑯𝜮𝑯𝑼𝜮𝑽𝑯𝑽𝑿𝑴𝑰𝑴𝑶 + 𝑼𝑯𝜮𝑯𝒏 =   𝑿𝑴𝑰𝑴𝑶 + 𝑼𝑯𝜮𝑯𝒏 
 

 

(71) 

ZF equalization nullifies the effects of ISI on the transmitted signal, however, as it can 

be observed in (64), it also amplifies the noise component of the received signal. 

Minimum Mean Squared Error (MMSE) Equalization: 

MMSE is a linear equalization technique with the goal of finding an equalization 

matrix 𝑾𝑴𝑴𝑺𝑬 that minimizes the mean squared error between the transmitted signal, 

in the context of this thesis the encoded sample batch 𝑿 is considered, and the 

estimated signal at the receiver expressed as �̂� = 𝑾𝑴𝑴𝑺𝑬 ∙ 𝒀, where 𝑾𝑴𝑴𝑺𝑬 

corresponds to 

𝑾𝑴𝑴𝑺𝑬 = 𝒂𝒓𝒈𝒎𝒊𝒏 ||𝑿 − �̂�||
𝟐

 
 

(72) 

By minimizing the mean squared error between the transmitted and the received signal, 

the MMSE equalizer strikes a balance between eliminating ISI and controlling noise 

amplification. This is in contrast with the Zero-Forcing (ZF) equalizer, that only 

focuses on inverting the channel matrix to eliminate ISI, being, therefore, less robust 

against noise. 
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The MMSE equalizer matrix can be computed as follows:  

𝑾𝑴𝑴𝑺𝑬 = 𝑯𝒆𝒒
𝑯 ∗ (𝑯𝒆𝒒

𝑯 ∗ 𝑯𝒆𝒒 + (𝑵𝟎 ∗ 𝑰))
−𝟏

 
 

(73) 

where 𝑯𝒆𝒒 is the equivalent matrix computed as 𝑯𝒆𝒒 = 𝑽𝑯 with shape 𝑛𝑟 × 1, 𝑁0 is 

the noise power computed as the ratio of the received signal power and the SNR in 

linear units 𝑁0 = 𝑃𝑟𝑥/𝑆𝑁𝑅𝑙𝑖𝑛𝑒𝑎𝑟 and 𝑰 is the identity matrix with shape 𝑚 × 𝑚, where 

𝑚 is the number of columns of 𝑯𝒆𝒒. 

This type of equalization is more suitable to equalize the received signal when CDL-

B channel model is considered, since a more robust protection against noise and ISI is 

required for a richer radio channel. 

Algorithm 7: MMSE equalization 
Input: The matrix 𝐕, the channel matrix 𝑯, 𝒕𝒉𝒆 𝒏𝒐𝒊𝒔𝒆 𝒑𝒐𝒘𝒆𝒓 𝑁0 

Output: The estimated signal �̂� 
 
1: Compute the equivalent matrix 𝑯𝒆𝒒 = 𝑽𝑯 
2: Compute the hermitian of the equivalent matrix 𝑯𝒆𝒒

𝑯  
3: Generate the identity matrix 𝐼 

4: Compute the MMSE matrix as 𝑾𝑴𝑴𝑺𝑬 = 𝑯𝒆𝒒
𝑯 ∗ (𝑯𝒆𝒒

𝑯 ∗ 𝑯𝒆𝒒 + (𝑵𝟎 ∗ 𝑰))
−𝟏

 
5: Compute the estimated signal as �̂� = 𝑾𝑴𝑴𝑺𝑬 ∙ 𝒀 

 

In conclusion, the implemented techniques simulate a more realistic MIMO 

transmission line. With all refinements previously described, the model is ready to be 

tested and compared with a more traditional communication system, i.e. a 5G New 

Radio-based simulator, to assess the performance of the updated model.  
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3.3 5G New Radio Simulator 
To compare the semantic system to the contemporary telecommunication systems, a 

5G NR simulator, courtesy of TIM, is used. In this section, a high-level description the 

simulator is provided. 

 

Figure 41. 5G NR simulator, PDSCH transmission chain  

Figure 41 depicts the simulator building blocks in detail, as it can be seen, a mixture 

of MATLAB and C languages is used for the implementation. In particular, the 

transmission chain implements a Low-Density Parity-Check (LDPC) encoder, the 

rate-matching block used to adjust the coding rate, the Hybrid Automatic Repeat 

Request (H-ARQ) block responsible for the retransmission (up to 3 retransmissions 

per block) and the modulation block which supports several modulations (ranging 

from the QPSK to the 256-QAM). The combined action of the mentioned blocks 

makes possible for the simulator to implement the Adaptive Modulation and Coding 

Mechanism, which adjust the modulation and coding scheme (MCS) according to the 

channel conditions. Table 1 reports the available MCS according to the 5G 3GPP 

standard [94]. 
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Table 1: MCS index table 2 for PDSCH 

MCS Index 
IMCS  

Modulation Order 
 Qm Target code Rate R x [1024] Spectral 

efficiency 
0 2 120 0.2344 
1 2 193 0.3770 
2 2 308 0.6016 
3 2 449 0.8770 
4 2 602 1.1758 
5 4 378 1.4766 
6 4 434 1.6953 
7 4 490 1.9141 
8 4 553 2.1602 
9 4 616 2.4063 

10 4 658 2.5703 
11 6 466 2.7305 
12 6 517 3.0293 
13 6 567 3.3223 
14 6 616 3.6094 
15 6 666 3.9023 
16 6 719 4.2129 
17 6 772 4.5234 
18 6 822 4.8164 
19 6 873 5.1152 
20 8 682.5 5.3320 
21 8 711 5.5547 
22 8 754 5.8906 
23 8 797 6.2266 
24 8 841 6.5703 
25 8 885 6.9141 
26 8 916.5 7.1602 
27 8 948 7.4063 
28 2 reserved 
29 4 reserved 
30 6 reserved 
31 8 reserved 

 

 

This model provides a 3GPP specification compliant radio interface and a reliable tool 

to evaluate 5G NR-based point-to-point communications between a NR base station 

(gNodeB) and a single User Equipment (UE) node, in SISO or MIMO mode. 

The simulation framework makes use of two types of channel models, compliant to 

the 3GPP specifications, i.e. TDL and CDL. As previously discussed, the CDL-B 

model is used to perform the experiments. Additionally, the UE speed is assumed to 

be 5 Km/h, simulating a walking pedestrian. 

Moreover, a Huffman encoder [95], and decoder, are used to encode the sentences in 

binary code, these blocks are also implemented in python. The encoder builds a 
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codebook containing the variable length binary encoding of each character that can be 

found in the test set. More specifically, more common symbols, characters in this case, 

are associated with fewer bits than less common symbols, generating a prefix-free 

binary tree, used then at the receiver side to decode the received bits and return the 

original characters. 

Two additional blocks have been inserted in the transmission chain, the first one at the 

transmitter side organizes the bits in transport blocks (TB), the second one at the 

receiver side rearranges the TBs to manage the retransmissions. The final structure of 

the transmission chain is represented in Figure 42. 

 

Figure 42: Representation of the modified simulator transmission line 

Table 2 shows some of the parameters used during the simulations. 

Table 2: Simulator Parameters 

Parameter name Value 

System Bandwidth [MHz] 80 

Sub-carrier spacing [kHz] 30 

Slot duration [ms] 0.5 

N. of TX antennas in vertical dimension per panel 4 

N. of TX antennas in vertical dimension per panel 4 

N. of antenna panels 1 

N. of TX antennas  32 
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N. of RX antennas 4 

N. of antennas elements in azimuth 4 

N. of antennas elements in elevation 4 

N. of polarizations 2 

N. of codewords 1 

N. of layers for first codeword 2 

N. of resource blocks allocated 217 

Max. H-ARQ transmission 4 

MCS Table 256-QAM [Table 1] 

Beamforming Scheme ‘PMI-based’ 

Channel Model ‘CDL_3GPP’ 

Channel Power Delay Profile ‘CDL_B’ 

Mobile Speed [km/h] 5  

Carrier Frequency [MHz] 3.64e3 

Simulation length in number of slots 4000 
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4. Results 
In this chapter the results achieved by the authors of [13] are presented and compared 

with those based on the improvement presented in Chapter 3.  

Moreover, the modified DeepSC performance is compared with the 5G NR-based 

simulator over the text transmission task. 

 

4.1 Results from the original 

model 
In the reference paper [13], Xie et al. compare DeepSC other DNN algorithms and the 

traditional channel coding approaches under AWGN and Rayleigh fading channel, 

assuming perfect knowledge of Channel State Information (CSI) for all schemes. 

Simulation Settings: 

The adopted dataset is part of the proceedings of the European Parliament, consisting 

of several thousand of sentences, being pre-processed into sentences of lengths 

between 4 and 30 words, and more than 22 thousand different words. 

As Table 3 shows, the DeepSC model includes three transformer encoder layers and 

three transformer decoder layers, which are set with 8 heads for the multi-head 

attention mechanism and 128 units, with a linear activation function. At the transmitter 

side, the two dense layers are set with 256 units and 16 units respectively, while at the 

receiver side the first dense layer is set with 256 units and the second one with 128 

units. The MI model makes use of two dense layer set at 256 units to extract the 

information and one dense layer with 1 unit to integrate the information. 
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Table 3: DeepSC model settings 

 Layer Name Units Activation 

 3×Transformer Encoder 128 (8 heads) Linear 

Transmitter Dense 256 ReLu 

 Dense 16 ReLu 

Channel AWGN/Rician/Rayleigh None None 

 Dense 256 ReLu 

Receiver Dense 128 ReLu 

 3×Transformer Encoder 128 (8 heads) Linear 

 Prediction Layer Dictionary Size Softmax 

MI Model Dense 256 ReLu 

 Dense 256 ReLu 

MI Model Dense 1 ReLu 

 

Both Joint source-channel coding based on neural network and typical methods to 

separate source and channel coding are analysed: 

• DNN based JSSC [96] where the network consists of Bi-directional Long 

Short-Term Memory (BLSTM) layers, labelled as JSCC in the following 

figures 

• The traditional methods where source and channel coding are separated use the 

following technologies: 

- Source coding: Huffman coding, Brotli coding and fixed-length (5-bit) 

coding 

- Channel coding: Turbo coding and Reed-Solomon (RS) coding 

The metrics used to evaluate the system performance are the BLEU score and the 

sentence similarity score. 
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Figure 43. BLEU score versus SNR [13] 

Figure 2Figure 43 displays the BLEU score performance, considering different n-grams 

values, of the considered systems, under the same number of transmitted symbols, over 

a range of SNR values. More specifically, the proposed DeepSC is compared to the 

DNN base JSCC, both trained over the AWGN and Rayleigh fading channels, to 

Huffman coding + RS coding in 64-QAM, 5-bit coding with RS coding in 64-QAM, 

Huffman coding with Turbo coding in 64-QAM, 5-bit coding with Turbo coding in 

128-QAM and Brotli coding with Turbo coding in 8-QAM. 

On the AWGN channels, Brotli + Turbo and Huffman + Turbo outperform the other 

approaches when the SNR is higher than 12 dB, due to the decreased channel 

distortion. However, in the low SNR regime, DL enabled approaches perform better. 

On the Rayleigh fading channel, instead, DeepSC outperforms all the other approaches 

regardless of the SNR value or the number of n-grams considered. 
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Figure 44. Sentence similarity versus SNR [13] 

Figure 44 displays the sentence similarity score of the considered model, under the 

same number of symbols, in a certain SNR range and over the AWGN and the 

Rayleigh Fading channels. Figure 44 (a) and (b) show similar tendencies to Figure 43 

(a) and (b). In Table 4 few representative results, obtained over Rayleigh fading 

channel and SNR 18 dB, are shown. 

Table 4: Example of a reconstructed sentence with different methods 

Transmitted sentence it is an important step towards equal rights for all 

passengers. 

DeepSC it is an important step towards equal rights for all 

passengers. 

JSCC it is an essential way towards our principles for democracy. 

Huffman + Turbo rt is an imeomant step tomdrt equal rights for atp passurerrs. 

Huffman + RS it is an important step towards ewiral rlrsuo for all 

passengess. 

Bit5 + Turbo it is an yoportbnt ssep sowart euual qighd fkr ill passeneers. 

Bit5 + RS It iw an ymp!rdbnd stgo to!atds eq.al ryghts dkr alk 

passengers. 
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Figure 45. BLEU score (1-gram) versus the average number of symbols used to 
represent a word with SNR = 12 dB [13] 

Figure 45 displays how a greater number of symbols is beneficial for DeepSC, in fact, 

as the number of symbols used to represent a word increases the distance between 

constellations increases too. Moreover, this figure highlights the DeepSC difficulties 

to understand longer sentences, since the sentence structure becomes more complex. 
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Figure 46. SNR vs MI for different trained encoders [13] 

Figure 46Figure 47demonstrates the relationship between the mutual information and 

SNR after training. It appears clear that the encoder trained with the MI model 

outperforms the one trained without it, demonstrating the benefits of incorporating the 

mutual information into the system’s loss function. 
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Figure 47. Impact of different learning rates with training, SNR = 12 dB [13] 

 

Figure 47 is useful to understand the relationship between the loss value and the mutual 

information during the training: it can be seen as after epoch 40 the loss and the mutual 

information float around the same values. 

Finally, the authors provide a complexity analysis in terms of the average processing 

runtime per sentence, excluding the runtime of source coding and decoding. 

 DeepSC JSCC RS coding Turbo coding 

Runtime 3.27 ms 2.71 ms 4.14 ms 8.59 ms 

 

From the table, the DL enabled approaches have lower runtime than the traditional 

approaches, with JSCC requiring the lowest average runtime due to its simple 
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architecture, at the expense of semantic processing capabilities. DeepSC on the other 

hand, performs better than the traditional approaches. 

Considering the achieved results, DeepSC seems a promising semantic model. 

However, the settings of the traditional approaches are not stated explicitly in the 

reference paper [13]. It should be noted that results obtained with traditional 

approaches are suspiciously underperforming, e.g., the Turbo+Huffman scheme shows 

poor performances even with rather high Signal to Noise ratio, which suggests 

suboptimal radio chain configuration. For instance, it is not explained how, and if, the 

retransmission of the traditional approaches is managed, and the code-rate is not 

mentioned for any of them. Therefore, a deeper knowledge of the testing conditions 

would be needed to draw meaningful conclusions. 

4.2 Results from the updated 

model 
In this section the results obtained using the DeepSC model, original model and 

updated model, and the 5G NR simulator are presented.  

The following DeepSC results are obtained using both SISO and MIMO (32 × 4) 

systems, over the Rician fading channel, the Rayleigh fading channel and the CDL-B 

channel models. For the DeepSC case, the dataset of CDL-B matrices, obtained 

through the TIM-proprietary simulator, is split into training, validation and test sets, 

since it is a good practice to validate and test the model using different data with 

respect to the data used during the training phase. 

During the training phase, the SNR changes in a range from 5 dB to 10 dB: this is done 

to enable the models to perform effectively in both low and high SNR regimes. In the 

validation phase, the SNR is fixed to 20 dB to evaluate the model evolution while it is 

not affected by the channel noise, while the test process considers SNR values ranging 

from -4 dB to 20 dB. 
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The transmitted signal and the channel matrix coefficients are normalized to ensure 

that the signal power at the transmitter and the average power of the channel 

coefficients is equal to 1. 

The first test is carried out on the SISO systems. In Figure 48, the two graphs represent 

the 1-gram BLEU score achieved on the considered channels: as it can be seen, the 

Rayleigh channel and the Rician channel perform slightly better than the CDL-B one. 

In fact, with respect to the other mentioned channels, the CDL-B channel is richer, i.e. 

the multi-path components are more prominent, therefore, its performance is expected 

to be worse. Moreover, the BLEU score is greatly affected by the SNR value. Note 

that, the obtained results are compatible with the ones from the reference paper [78]. 

However, since during this experiment an MMSE equalization is assumed, instead of 

a ZF equalization, the obtained results are slightly better. 

 

Figure 48: SISO BLEU score (4 n-gram). 

Considering the Sentence similarity score (Figure 49) the results on the three channels 

are similar to the ones already seen in the BLEU score plot. The fact that the achieved 

values are similar means that the occurred errors do not have a big impact on the model 

ability to recognize semantic patterns in the received sentences. It is worth noting that, 

even at low SNR values, the sentence similarity score remains above 90% across all 
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channel conditions. This indicates that the meaning of the transmitted sentences is 

generally conveyed accurately, even in particularly challenging scenarios. 

 

 

Figure 49: SISO sentence similarity score. 

 

MIMO system results (Figure 50) show a significant difference in performance in a 

low SNR regime: while the model performs similarly across the three channels when 

SNR exceeds 5 dB, it shows better performance in CDL-B channel conditions 

compared to the Rayleigh channel at lower SNR values. These results can be 

explained by considering that MIMO systems gain greater advantages in 

environments with rich multipath conditions. Moreover, it can be observed how 

MIMO improves the model performance, since the achieved BLEU scores are much 

higher than the ones obtained in the SISO case. 
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Figure 50: MIMO BLEU score (4 n-gram). 

 

Similar conclusions can be drawn from the comparison of the sentence similarity 

scores (Figure 51). For the CDL-B scenario, the model offers slightly better 

performance; however, it shows very good performance in terms of semantic 

reconstruction of the transmitted sequence across all considered channel models. 

 

Figure 51: MIMO sentence similarity score. 
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Figure 52 displays the relationship between the mutual information and the SNR 

estimated at the receiver side. As expected, MI appears directly proportional to SNR, 

except for several outlier values observed mainly during the early epochs of training. 

As training progresses, the MI neural network provides increasingly reliable 

estimates. Moreover, the advantages of a MIMO system become evident, as it 

enhances  mutual information and, consequently, boosts  channel capacity. 

 

Figure 52: MI VS SNR graph of CDL-B MIMO (top-left), CDL-B SISO (top-right), 
Rayleigh MIMO (bottom-left), Rayleigh SISO (bottom-right). 

The comparison between the original and the modified DeepSC models shows the 

benefits of the introduced changes. In the following part of this section, the new DeepSC 

is compared to the traditional 5G-based solution based on the NR link simulator 

described in 3.3. To ensure a fair comparison between the two models, both are tested 

using the CDL-B channel. 

Errore. L'autoriferimento non è valido per un segnalibro. reports the BLER values 

for each retransmission performed by the simulator at different SNR values. 
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Table 5: 5G NR simulator BLER vs SNR 

MCS SNR 

[dB] 

BLER -TX 

attempt 1 

BLER - First 

Retransmission 

BLER - Second 

Retransmission 

BLER -Third 

Retransmission 

3 -4 0.010897 0 0 0 

5 0 0.120472 0 0 0 

7 4 0.094076 0 0 0 

8 8 0.045872 0 0 0 

12 12 0.096756 0 0 0 

14 16 0.109597 0 0 0 

15 20 0.083379 0 0 0 

 

Figure 53Errore. L'origine riferimento non è stata trovata. displays a comparison 

between the BLEU scores and the similarity scores achieved by the 5G NR-based 

transmission chain and the modified DeepSC model. It is noteworthy that the simulator 

outperforms the proposed semantic model, primarily due to its reliance on the H-ARQ 

retransmission mechanism, which effectively addresses transmission errors.This 

capability, along with other factors, contributes to the perfect reconstruction of the 

sentence at the receiver. The results show clearly that, for the considered use case, the 

proposed new DeepSC model is a sub-optimal solution compared to the traditional 

approach in terms of reliability. 

 

Figure 53: Comparison between the 5G NR Simulator & the DeepSC model 



Study of Semantic Communications and Simulation of a Use Case 
 

82 
 

Figure 54 presents a comparison of the average resource elements allocated per 

transmitted word by the two approaches. DeepSC encodes each word using 8 complex 

symbols, regardless of the channel conditions. In contrast, the 5G NR simulator 

employs an adaptive coding and modulation technique that adjusts the number of 

resource elements allocated per word based on channel quality, specifically the SNR. 

When the SNR is higher, fewer parity bits are required, resulting in the encoding of 

words with fewer resource elements. Conversely, in a low SNR regime, where channel 

quality is poor, the simulator allocates more resource elements per word. To make 

these assessments, the average number of resource elements per word 𝑁𝑅�̂� is computed 

as follows: 

𝑁𝑅�̂� = (𝑁𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 
× 𝑁𝑂𝐹𝐷𝑀 𝑆𝑦𝑚𝑏𝑜𝑙𝑠

×  𝑁𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐵𝑙𝑜𝑐𝑘𝑠 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑥 𝑁𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠) ÷  𝑁𝑤𝑜𝑟𝑑𝑠 
 

(67) 

Table 2 reports the value assigned to each term in the formula. 𝑁𝑤𝑜𝑟𝑑𝑠 is the total 

number of transmitted words and can be computed as 

𝑁𝑤𝑜𝑟𝑑𝑠 = 𝑁𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 × 𝑁𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 × 𝐿𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
 

(68) 

Where 𝑁𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 is the total number of transmissions occurred during the 

simulation time (it depends on the BLER, therefore this value changes with the SNR), 

𝑁𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 = 4000 is the number of sentences in the test set, 𝐿𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 = 30 is 

the length in terms of words of each sentence of the test set. 

The results clearly show that in  high SNR regimes, the traditional method performs 

better than DeepSC. However, in low SNR regime, DeepSC uses less symbols per 

word on average, meaning that the proposed model produces good results, in terms of 

sentence reconstruction quality, while utilizing less bandwidth than the traditional 
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method. 

 

Figure 54: Average number of resource elements per transmitted word 
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5. Conclusions 
5.1 Findings Summary 
The experiment carried out for this thesis projectuses the text transmission task as a 

test caseto compare the performance of a modified version of the DeepSC model- 

which included a CDL-B channel model, MIMO capabilities and MMSE equalization- 

with that of a traditional 5G NR-based transmission line. The latter implements a 

Huffman encoder/decoder and an Adaptive Modulation and Coding mechanism. 

The results obtained confirm that the implemented equalization technique and MIMO 

transmission capabilities enhance the model’s performance, as reflected in both 

performance metrics considered, i.e. BLEU Score and Similarity Score. This 

improvement can be attributed to several factors: 

• the impairments introduced by the channel is mitigated by the effect of the 

MMSE equalization 

• MIMO transmission exploits spatial diversity, is one of the copies of the signal 

is attenuated on a certain path, it is probable that a copy on another path is less 

attenuated, hence increasing the probability of receiving a signal with good 

quality 

• MIMO, as expected, also enhances the total channel capacity 

Even if the investigated paradigm is promising, the comparison with the traditional 5G 

NR-based transmission line clearly indicates that the latter outperforms the proposed 

semantic transmission line. 

However, although the semantic communications paradigmwas theorized decades ago, 

it is still in its early stage of development. This suggests that more refined theories, 

applications, and models are expected to emerge in the coming years. 
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Semantic communications is a fascinating research field, with a breakthrough 

potential. However, at the current development state, it is not necessarily beneficial to 

completely replace traditional communication systems with semantic 

communications. 

5.2 Next Works 
This thesis project provides some insights into the semantic communications, 

particularly in the context of text transmission use case. However, several areas require 

further investigation. An overview about the areas where additional research is 

required is presented in this section. 

1. Additional modifications to the semantic model: 

Several modifications can be investigated to increase the model performance, 

starting with number of layers. The proposed model is a relatively simple 

architecture: additional layers could be introduced to encode the sentences, at the 

expense of an increased complexity. 

Possibly, the multi-head attention mechanism can be revised too, the number of 

transformers as well as the number of head can be adjusted, with the goal of 

enhancing the performance of the model in terms of semantic meaning extraction. 

2. Implementation of precoding techniques into the neural network: 

For each transmission, the proposed model performs an SVD to obtain the 

precoding matrix. However, this process is carried out in the channel layer, making 

it transparent to the neural networks. An alternative approach could involve 

integrating the precoding process within the neural network layers. This way, after 

the training phase, the neural network would be capable of executing the precoding 

operations internally based on the current scenario, eliminating the need for 

specific precoding operations in the subsequent phases. 

3. Evaluation of more challenging scenarios from a radio point of view: 

The results show that, even if the 5G NR-based transmission line outperforms the 

modified DeepSC model, the semantic model utilizes  slightly less total bandwidth 

at low SNR values.. Therefore, it would be interesting to investigate how more 

challenging scenarios would affect the performance of both systems and whether 
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the proposed model could surpass the traditional paradigm in terms of bandwidth 

efficiency. 

4. Evaluation of link adaptation schemes for the semantic communication models: 

As it is implemented, DeepSC utilizes the same number of symbols regardless of 

the channel conditions, while the 5G NR simulator takes advantage of the Adaptive 

Coding Rate mechanism. It would be interesting to investigate the benefits of the 

introduction of link adaptation schemes for the DeepSC model, changing the 

number of symbols used to encode a sentence based on the channel quality 

5. Application of the proposed transmission scheme to goal oriented scenarios: 

This thesis considers text transmission as use case; however, as [25] suggests, 

semantic communications perform better in goal-oriented systems, where the 

exchange of data is performed with a specific objective. For example, considering 

an image classification task, the model could extract and transmit only the semantic 

features of a specific subject in the image. 

In this kind of scenarios, the semantic paradigm could provide significant benefits: 

all the surplus information could be excluded from transmission, resulting in 

savings in both bandwidth and processing workload at the receiver side. 

The considered use case still requires the transmission of all data, i.e., the 

sentences, therefore the semantic model is not able to fully realize its potential, 

showing its limitations compared to traditional approaches.  

6. Image and Video transmission use cases: 

In Chapter 3 the rationale behind the choice of the use case is explained. Text 

transmission has been chosen due to its interpretability and reduced computational 

complexity.  

However, this approach does not fully leverage the capabilities of the semantic 

model. Image and video transmission instead, are more suitable use cases, since 

they allow for a greater amount of data to be discarded, depending on the goal of 

the communication. 

Some potential use cases are: 

• Surveillance and security systems, in this case a semantic model could 

focus on transmitting only the critical segments of videos, for example, 

where movement or suspicious activities are detected. 
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• Augmented reality, where a system could transmit only the elements that 

are strictly relevant to enhance the immersive experience. 

• Telemedicine, in the case of medical imaging, a semantic model could 

prioritise the transmission of regions significant to the diagnosis. 

All proposed examples could allow faster communications requiring less 

bandwidth with respect to traditional communication systems. 

Ultimately, the field of semantic communications has great potential, especially for 

goal-oriented tasks. Rigorously defining the theory behind this new paradigm, 

exploring new applications, and conducting future research are crucial steps for 

refining these models and understanding the boundaries of what this paradigm can 

achieve. 
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