
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

A Machine Learning Approach to
Optimizing CNN Deployment on

Tile-Based Systems-on-Chip

Supervisors

Prof. Mario Roberto CASU

Prof. Luca CARLONI

Candidate

William BAISI

October 2024



Abstract

Convolutional Neural Networks (CNNs) play a crucial role in many AI applications,
such as image recognition and classification. Efficient execution of CNNs on
hardware accelerators is critical, particularly in edge computing, where performance,
power efficiency, and real-time constraints must be balanced due to limited resources
and strict power budgets.

This thesis presents an optimization framework for deploying CNN inference tasks
on tile-based System-on-Chip (SoC) architectures. The study investigates various
hardware configurations, including multiple accelerator tiles, memory bandwidth,
computational capabilities, and on-chip local memory capacity, along with different
parallelization strategies to efficiently distribute the CNN workload.

The experiments were conducted leveraging the Embedded Scalable Platform
(ESP), an open-source, tile-based SoC architecture for heterogeneous computing.
ESP allows for the integration of custom accelerators connected through a Network-
on-Chip (NoC) and provides an automated flow to prototype designs on FPGAs,
enabling efficient evaluation of different SoC configurations with various software
applications.

CNNs exhibit significant variability in complexity across layers. For example,
the memory footprint, the ratio of input feature maps (ifmaps) to weight pa-
rameters, and the computational intensity can vary substantially between layers.
This heterogeneity, combined with the configurable nature of tiled architectures,
introduces several trade-offs when optimizing deployment. Each CNN benefits from
an optimal selection and distribution of on-chip resources and each layer in the
network requires custom resource mapping to achieve optimal performance, making
it challenging to determine the best resource allocation and mapping.

To address this, a dataset was collected from extensive FPGA experiments,
capturing the execution latency of CNN inference tasks across different SoC configu-
rations and mapping strategies. While heuristics could help find optimal mappings,
this thesis adopts a Machine Learning (ML) approach, using models trained on
empirical performance data to predict optimal mappings. Such models enabled
the identification of complex relationships between hardware configurations, CNN
topologies, and parallelization schemes that traditional heuristics may overlook.
Models such as Random Forest and Extreme Gradient Boosting were trained
to predict the execution latency of CNN layers mapped onto a given hardware
instance. These models were then integrated into a mapping tool designed to select
optimal configurations for executing CNN layers on the target SoC. Once trained,
these models can generalize to networks with characteristics similar to those in



the training set, reducing the need for profiling new networks and speeding up the
deployment process.

In conclusion, this thesis demonstrates that ML models trained on empirical data
can optimize CNN deployment on tile-based SoCs, eliminating the need for complex
system models or heuristics. By leveraging ML and ESP’s automated flows, this
work enables more efficient CNN deployment in edge computing environments.
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Chapter 1

Introduction

In recent years Artificial Intelligence (AI) has become of growing importance in our
everyday life, transforming how we solve problems and improving our productivity.
The general definition of AI refers to a machine’s ability to mimic human thought
and perform human tasks in real-world conditions. Machine Learning (ML) is a
subset of AI that uses algorithms and data to automatically learn patterns and
make decisions that solve a specific problem[1]. Inside ML great attention is given
to Neural Networks (NN). The building block of a NN is, as in a human brain, the
neuron, more precisely the mathematical representation of it. A biological neuron
consists of three parts: dendrites, an axon, and a cell (soma). The dendrites are
the ways the neuron has to receive inputs from other cells, the soma processes the
information and the axon, if activated, forwards the processed output to other
neurons. The structure of a biological neuron is shown in figure 1.1.

Figure 1.1: Biological Neuron [2]

The mathematical representation of this building block, shown in figure 1.2, is a
set of N inputs that carry information from other cells or from initial inputs that
are multiplied by N weights and added together. This weighted sum is added to a
bias, which represents a possible offset, and is the input of a nonlinear activation
function. The output of this function is the information that is propagated to other
neurons.
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Introduction

Figure 1.2: Mathematical representation of the Neuron

1.1 Multi Layer Perceptron

By concatenating three or more layers of neurons, we build what is known as a
Multi-layer Perceptron (MLP). An MLP has a first layer that receives inputs, a
certain number of hidden layers, and an output layer. Each pair of layers of neurons
is known as a Fully Connected (FC) layer. A representation of the MLP is shown
in figure 1.3.

Figure 1.3: Multi Layer Perceptron [3]

Delving gradually into the mathematical aspect of a NN we can show that we
can represent formally FC layer as vector-matrix multiplication, as shown in figure
1.4.

A NN with a large number of layers is called Deep Neural Network (DNN).
DNNs are part of a bigger paradigm called Deep Learning (DL).
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Figure 1.4: Fully Connected Layer [4]

1.2 Convolutional Neural Networks

The high degree of connectivity present in FC layers could lead to an explosion of
parameters. Convolutional Neural Networks (CNNs) were introduced to address
the problem of image recognition in high-resolution images [5]. The key idea of
this type of network is to exploit the convolution operation to extrapolate features
from the image. Biological studies demonstrate that some neurons activate when
there is a vertical line in their receptive field while others neurons activate when
the line has some different angle. To apply this concept in a Convolutional (CONV)
Layer, a series of weights are convolved with the inputs to extract different kinds of
features, and the outputs are forwarded to the following layer. Early layers detect
low-level patterns like dots and lines while, as we move toward the end of the
network, higher-level features like objects are targeted. The output of the network
is a vector representing the probability of the presence of a given classification
object in the image.

Figure 1.5: Evolution of the detected features towards the network [6]
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Figure 1.5 provides an overview of a CONV Layer. The layer is characterized
by a certain number of input and output channels of a given size, together with
a filter dimension. For each output channel, a set of filters is convolved with the
input feature maps, producing an output feature map. This operation is shown in
figure 1.6.

Figure 1.6: Convolution layer

1.3 Thesis focus
The thesis focuses on optimizing the deployment of CNNs on tile-based System-
on-Chip (SoC) architectures, specifically for edge computing, where performance,
power efficiency, and real-time constraints are critical. This work addresses the
challenge of efficiently executing CNN inference tasks on resource-limited hardware
accelerators.

To achieve this, the study explores different hardware configurations, such as
multiple accelerator tiles, memory bandwidth, and local memory capacity, alongside
parallelization strategies to distribute CNN workloads effectively. The experiments
conducted leverage the Embedded Scalable Platform (ESP), a tile-based SoC
architecture, which allows rapid prototyping of customized SoCs evaluating them
on Field Programmable Gate Array (FPGA).

CNNs exhibit variability across layers in terms of memory and computational
intensity, making efficient deployment complex. This work collects a comprehensive
dataset from FPGA experiments to analyze the impact of different configurations
on the end-to-end CNN execution latency. Finally, we adopt an ML approach
based on Random Forest and Extreme Gradient Boosting models to predict optimal
hardware mappings for CNN layers.
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These data-driven techniques enable the selection of optimal configurations,
speeding up the deployment process, eliminating the need for complex heuristics,
and mitigating the need for system-level modeling. This approach improves resource
allocation and performance, making it ideal for edge computing scenarios.

1.4 Thesis Outline
In the following, we provide the outline of each chapter to guide the reader through
this work.

• Background on Neural Network Acceleration This chapter discusses
the main contributions in the field of Neural Network acceleration, with a
particular focus on tile-based SoC architectures designed for CNN acceleration.
We delve into the architecture and workflow of the ESP, the tile-based SoC
used as the target for CNN acceleration in this work. At the end of the section,
we present state-of-the-art techniques employed for predicting Neural Network
latency.

• Accelerator description This chapter presents the 2D-Convolution acceler-
ator used in the experiments. Since we treated the accelerator as a black box,
we introduce its high-level features as well as its integration within the ESP
architecture.

• Acceleration of CNNs on ESP In this chapter, we describe how we
accelerated different CNNs on ESP, explaining the parallelization strategies
supported and the flexibility in the resource allocation, such as the number of
accelerators and memory tiles. We then describe the structure of the software
application and the performance obtained.

• Experimental Setup and Dataset creation This chapter focuses on how
we built the dataset by profiling CNN inferences on FPGA and the subsequent
post-processing steps to prepare the data for use with the learning algorithm.

• Neural Network Mapping Tool for SoC Architecture leveraging ML
Algorithms This chapter provides an overview of the optimization framework
developed to implement a Mapping Tool which optimizes the execution of
CNN layers on ESP tile-based SoC instances, by providing mappings that
guarantee lower latency. In the second part of the chapter, we describe the
methodology and the models used for the latency prediction task, along with
the performance evaluations.

• Conclusions and Future Works In the final section, we present the con-
clusions and discuss potential improvements to this work within the broader
context of leveraging machine learning for hardware design space exploration.

5



Chapter 2

Background on Neural
Network Acceleration

In this section, we first provide a comprehensive overview of the existing approaches
for accelerating Deep Neural Networks, with particular emphasis on CNNs. We
then focus on tile-based accelerators, a widely adopted class of accelerators built on
arrays of Processing Elements (PEs). We introduce ESP as the target platform for
developing tile-based accelerators in this work. In the final section of this chapter,
we highlight state-of-the-art work on modeling inference using Machine Learning
approaches.

2.1 List of existing approaches

Neural networks are algorithms that exhibit inherent parallelism. There is topo-
logical parallelism in the neurons of FC and CONV layers, as the Multiply-and-
Accumulate (MAC) operations have no data dependencies. This parallelism can
be exploited using parallel computing paradigms to enhance the performance of
neural network hardware implementations.

There are two main types of architectures for parallel computation: temporal
and spatial. An example of these two architectures is shown in figure 2.1. Temporal
architectures feature centralized control, with multiple PEs accessing data solely
from central memory and lacking interconnections. In contrast, spatial architectures
provide each PE with control logic and local memory, and PEs are interconnected
to exchange data, forming a processing array. [4]
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Figure 2.1: Spatial vs Temporal architecture [4]

2.1.1 Temporal architecture and software optimization ap-
proaches

Temporal architectures are commonly used in general-purpose platforms, such as
Central Processing Units (CPUs) and Graphics Processing Units (GPUs). Modern
CPUs are designed as vector processors, where multiple Arithmetic Logic Units
(ALUs) operate simultaneously under the Single-Instruction-Multiple-Data (SIMD)
paradigm. However, CPUs typically reach lower performance in terms of Floating
Point Operations (FLOPS) and FLOPS/WATT when parallelizing DNNs. This
is mainly because achieving high performance in accelerating a specific algorithm
requires highly specialized hardware, whereas CPUs are designed with a general-
purpose architecture, leading to more complex data control compared to GPUs.

GPUs are the most used architecture in training DNNs and, in some cases,
they’re used for inference as well. Among the various GPU manufacturers, Nvidia
has made significant strides in optimizing both GPU hardware and software for DL.
Most DL frameworks, such as PyTorch, TensorFlow, and Caffe, support execution
on Nvidia GPUs. A major advantage is the cuDNN library, which offers a highly
optimized set of primitives for DNNs. In addition to cuDNN, Nvidia provides an
entire suite of libraries for DNN/ML, known as CUDA-X AI.

At the software level, several libraries have been developed to optimize Basic
Linear Algebra Subroutines (BLAS) for both CPUs and GPUs. These libraries
include essential operations like element-wise matrix multiplication, matrix-vector
multiplication, and General Matrix Multiplication (GeMM). For neural networks,
BLAS is particularly useful for optimizing the FC layer, which can be represented as
either a vector-matrix multiplication or a matrix-matrix multiplication in batched
computations.

7
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Optimizing the computation of CONV layers is more complex. While operations
between a weight kernel and subsets of the IFMAPS are simple, the memory access
patterns are much more challenging since we need to access non-contiguous memory
locations. Several computational transformations have been proposed to optimize
the application of BLAS to CONV layers. Many software libraries map convolution
operations into a General Matrix Multiplication (GeMM), as shown in figure 2.2.
This method is highly efficient because the GeMM routine is extensively optimized.
However, it requires duplicating the input data, as a result, this approach demands
substantial memory for temporary storage.

Figure 2.2: Convolution to GeMM transformation[4]

The GeMM-based approach for Convolution can be further optimized using
the Strassen algorithm, which reduces the number of necessary multiplications by
partitioning the matrices. This technique decreases the number of multiplications
by 1/8 with each partition, though it introduces a higher number of additions as
a trade-off. Another approach involves transforming both the IFMAPS and the
weights from the spatial domain to the frequency domain using the Fast Fourier
Transform (FFT) algorithm. In the frequency domain, the CONV operation
simplifies to element-wise matrix multiplication. However, the FFT algorithm
incurs significant computational overhead due to the domain transformation, and
its efficiency has been demonstrated primarily for large weight kernels and unitary
strides.

8



Background on Neural Network Acceleration

2.1.2 Spatial architectures
Spatial architectures, commonly implemented on FPGAs and Application Specific
Integrated Circuits (ASICs), offer high performance but limited flexibility. Neural
networks are particularly well-suited for this hardware due to the fixed and pre-
dictable sequence of operations in each layer, enabling specialized and optimized
circuit designs.

Although the operations in neural networks are relatively simple, primarily
consisting of multiply-and-accumulate (MAC) operations, there is a challenge
related to the large volume of data that must be processed. The performance
bottleneck is often the memory access bandwidth required to retrieve parameters.
Each MAC operation involves reading three data elements (input, weight, and
partial sum) and writing one (updated partial sum). DRAM accesses are particularly
expensive in terms of power and latency, consuming roughly two orders of magnitude
more energy than a MAC operation. The high energy cost associated with memory
access has been noted in many modern DNN accelerators, such as DianNao [7].

A typical hardware architecture for a DNN accelerator includes the following
components:

• Off-chip memory: The off-chip memory is generally implemented as DRAM
and it stores the entire network’s weights and activations, often occupying
several GBs of data.

• On-chip global buffer (GLB): This on-chip buffer is large enough to hold
one or multiple chunks of each layer’s weights and inputs, which are fed to a
certain subset of the PEs instantiated in the system. Accessing the GLB is
significantly more energy-efficient, typically requiring two orders of magnitude
less energy than DRAM.

• Array of PEs: It comprises hundreds of PEs, each equipped with an ALU
to perform MAC operations in parallel. PEs usually have local storage in the
form of Private Local Memories (PLMs), which offer even lower energy access
costs compared to the GLB.

• Network-on-Chip (NoC): The array of PEs and the GLB are interconnected
by a NoC, which is used to coordinate data movement across PEs based on
the temporal scheduling and spatial distribution of operations. The NoC can
be configured to work in different modes to handle different communication
patterns.

Due to the high energy cost associated with off-chip DRAM accesses, state-of-
the-art DNN accelerators focus on optimizing on-chip data reuse. This involves
designing PE architectures, efficiently mapping the input dataset to multiple PEs,
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and scheduling operations to maximize data reuse when stored in lower-level
memories such as PLMs or the GLB.

Different layers of CNNs provide different opportunities for data reuse:

• FC Layer: An FC layer can be represented as a matrix-vector multiplication,
offering an opportunity for input reuse. The input neuron vector is repeatedly
multiplied with each row of the weight matrix.

• CONV Layer: The CONV layer provides three key data reuse opportunities:

1. Weight reuse: A weight kernel is reused across multiple regions of the
input feature map during the convolution process. Each kernel is reused
Ho ×Wo times for a given output feature map.

2. Input reuse: The same input feature map is used Co times to generate
each of the output feature maps.

3. CONV reuse: This leverages the sliding window mechanism, where ad-
jacent output pixels share overlapping regions of the input feature map.
The amount of overlap is determined by the kernel dimensions (Hk ×Wk)
and the stride values (sx, sy). This reuse combines both weight and input
reuse.

In a DNN accelerator, each PE performs a subset of MAC operations required
to compute output feature maps. Multiple MACs are executed in parallel across
the PE array, necessitating a spatial and temporal mapping of the operations. This
mapping, known as dataflow, determines how data is loaded, stored, and moved
within the memory hierarchy and across the NoC. The great number of MAC
operations and the large PEs array lead to a wide space of possible mappings. This
work navigates the mapping space with the goal of maximizing data reuse while
minimizing memory accesses.

Different dataflows aim to optimize memory hierarchy efficiency by reusing data
stored in lower-level memories, such as PLMs and the GLB, as much as possible.
To classify dataflows based on their data reuse strategies, Chen et al.[8] introduced
different categories:

• Weight Stationary: This dataflow focuses on reusing weights by keeping
them stationary in the PLMs, while input data and partial sums are moved
across the PE array. Examples include using input forwarding to maximize
CONV reuse, as demonstrated by accelerators like nn-X and Google’s Tensor
Processing Unit (TPU) [9], which map FC layers to matrix multiplication
units.

• Output Stationary: In this dataflow, the PEs accumulate partial sums
locally, reducing the need for global memory accesses.
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• Row Stationary: First introduced in Eyeriss[10], this dataflow maximizes
the reuse of inputs, weights, and partial sums simultaneously. A PE keeps
a row of weights stationary while input pixels are streamed in, with partial
sums being accumulated along the columns of the PE array. This enables
efficient 2D convolution operations by reusing data diagonally and vertically.

Each dataflow approach balances data reuse and memory access efficiency, with
varying strategies depending on the layer types and operational needs of the PE.

2.1.3 The roofline model
We now introduce a useful model that helps understand the system-level behavior
of complex architectures, particularly when dealing with mathematical functions
that involve a large number of operations and transactions between the off-chip
DRAM and the on-chip local buffer. The roofline model relates the total number
of operations (OPS) of a given algorithm and the memory bandwidth to the
performance achieved when executing the algorithm on the underlying hardware.
We refer to the total number of byte transactions required by the algorithm from
the off-chip DRAM as Mtr, and to the execution latency as Trun. The arithmetic
intensity (AI) can be defined as:

AI = OPS

Mtr
(2.1)

The throughput (TH) is defined as:

TH = OPS

Trun
= OPS

NClkCycle × Tclk
(2.2)

The Memory Bandwidth (MBW) is calculated as:

MBW = B

s
(2.3)

Each architecture provides a maximum achievable throughput dictated by the
computation capabilities of its PEs, which we refer to as MAXT H Depending on
the operating region of the system, we can then express the throughput with the
relationship:

TH = min(MAXT H , AI ×MBW ) (2.4)

.
By plotting throughput (TH) on the y-axis and arithmetic intensity (AI) on

the x-axis using a log-log scale, we can identify a memory-bound region at low
arithmetic intensities and a performance plateau at high arithmetic intensities when
the available bandwidth is fully utilized. From this, we can draw a few important
conclusions: if the workload has a low AI, it will place more stress on the memory
bandwidth than on the PEs. Conversely, when the AI is high, it is beneficial to
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parallelize across more PEs or enable the existing ones in the hardware to achieve
higher performance.

Another key insight introduced by the roofline model is that the ideal operating
point for the algorithm is the intersection between the memory-bound region and
the computation-bound region. At this point, the algorithm is utilizing both the
available bandwidth and the maximum computational capabilities of the PEs [11].

Figure 2.3: Qualitative representation of the roofline model

As shown in figure 2.3 we can see the memory-bounded region as well as the
computational-bounded one. Moving up the ceiling of the computationally bounded
part (orange arrow), we are increasing the throughput increasing the parallelism
which can be effectively utilized due to the high AI of the algorithm. Increasing the
memory bandwidth (green arrow) improves throughput in the memory-bounded
region. Finally, we can increase both computational parallelism and memory
bandwidth (red arrow), shifting the intersection point between the two regions
upward.

2.2 Tiled Accelerators
Due to the high energy consumption and performance constraints associated
with long array buses in monolithic accelerators, tiled architectures have emerged
as a popular solution. Homogeneous tiled architectures enhance system-level
performance by utilizing different parallelization strategies and/or specialized
interconnections between tiles of the same type.[12, 13, 14, 15, 16, 17, 18, 19, 20].

In this section, more focus is dedicated to some major contributions in literature
on tiled-based accelerators for DNN acceleration, particularly on Eyeriss and
Google TPU. On top of the hardware architecture, some separate work use these
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two accelerators as a building block for bigger architecture, optimizing mapping of
networks on HW, focusing in particular on efficient data movement.

2.2.1 Eyeriss

Among the significant contributions to tile-based CNN accelerators is Eyeriss [10],
which features a spatial architecture with 168 PEs organized into a four-level
memory hierarchy. The structure of a PE is shown in figure 2.4. Data movement
is prioritized through lower-cost levels, such as PE scratch pads and inter-PE
communication, to minimize access to higher-cost levels, including the on-chi GLB
and off-chip DRAM. Eyeriss introduces a CNN RS dataflow that adapts the spatial
architecture to efficiently map computations for various CNN structures, optimizing
energy usage. The design includes a NoC architecture that supports both multicast
and point-to-point single-cycle data delivery to enable the RS dataflow.

Additionally, run-length compression (RLC) and PE data gating exploit the
statistical occurrence of zero data in CNNs to improve energy efficiency.

The RS dataflow introduced by Eyeriss maximizes data reuse in terms of
weights, IFMAPS, and partial sums. Each 2D convolution is organized into a set
of independent 1D convolutions, which are executed in parallel and mapped onto
the 12x14 matrix of PEs.

Figure 2.4: Eyeriss architecture [10]

The accelerator’s configuration involves a scan chain of registers that serially
reconfigure the hardware for executing a given layer. Each layer of the network is
processed sequentially, and the accelerator can handle batches of IFMAPS from
the same layer, which are processed consecutively. The total configuration time is
approximately 100 µs.

During execution, the accelerator’s goal is to optimize CONV reuse by reusing
the same weight filter for a number of iterations equal to the output feature map
dimensions and the same input pixel for a number of iterations equal to the kernel
dimensions.
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2.2.2 Google TPU
Another milestone in neural network acceleration is the Google TPU [9]. Unlike
Eyeriss, which is specialized for CONV operations, the TPU utilizes matrix multi-
plication to support the execution of various types of layers with a unified dataflow.
This application-specific hardware was developed to meet Google’s need for a 10x
improvement in cost-performance compared to GPUs. The architecture of the
TPU, shown in figure 2.5, is similar to that of a floating-point unit, as the host
server sends instructions to the hardware through a 256-byte-wide PCI bus.

Figure 2.5: Google TPU architecture [9]

The matrix multiplication unit is the core of the architecture, it contains 256x256
MACs that execute 8-bit multiply and accumulate signed or unsigned integers. The
products are connected to a 4 MB 32-bit accumulator that holds 4096, 256-element
of 32-bit accumulation cells. The dimensions of the matrix of PEs was set to 4096
in order to be able to reach the peak performance on the roofline model accounting
also for the use of double buffering. The peak performance can in fact be reached
with half of the PEs working. In addition, the TPU is able to run half of the speed
when the input features are 16-bit and the weights are 8-bit, or at 25% of the
maximum speed handling 16-bit weight and INFMAPS. FC layers are mapped as
vector-matrix multiplication or matrix-matrix multiplication when we are batching
different inputs. As discussed in section 2.1.1 convolution can be mapped to a
matrix-matrix multiplication paying the price of replicating some inputs.

Since the issuing of the instruction is relatively slow the architecture follows the
CISC tradition having a number of Clock Per Instruction (CPI) in the range of
10-20.

The accelerator has several instructions, with the following five being the most
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important:

1. Read_Host_Memory: Read the data from the CPU and store them in the
Local buffer.

2. Read_Weights: Read the weight from the Memory into the Weight FIFO.

3. MatrixMultiply/Convolve: Perform the matrix-matrix multiplication with
as a first operand a B*256 matrix with a 256x256 constant weight operand,
computing the computation in B clock cycles.

4. Activate: Performs the activation operation: ReLU, Sigmoid, etc. The input
is the Accumulator buffer and the output is the Local Unified Buffer.

5. Write_Host_Memory: The result are written back to the CPU host
memory.

The performance of the TPU can be evaluated with the roofline model introduced
in section 2.1.3, executing different algorithms. Starting from the assumption that
the parameters necessariy to the execution of the networks can’t fit the on-chip
memory, the system is either memory-bounded or computationally bounded. The
ideal point for the execution of an algorithm on a given hardware is the roofline knee,
or the point where the memory bandwidth capabilities match the computational
one.

In figure 2.6 are reported six different algorithms, we can see that MLPs and
LSTMs are usually memory-bounded since the Arithmetic intensity is too low for
exploiting efficiently the complete hardware capabilities. For the convolution the
situation is different, we have in fact higher values of arithmetic intensity, and so
the throughput is limited by the overall computational capabilities.

2.2.3 Tangram
Based on what we presented in the last two sections, we now introduce some
important contributions that exploit the hardware architecture as a building block
for a larger structure. In particular, Tangram addresses this problem by constructing
a larger architecture using the Eyeriss accelerator as a foundational building block.

In the previous sections, we assumed a sequential execution of the layers. We
now move to a more advanced paradigm. Specifically, we introduce intra-layer
parallelism, which involves parallelizing the execution of the same NN layer across
multiple accelerators, and inter-layer parallelism, which pipelines the execution of
multiple layers across different tiles.

Scaling the number of PEs within a monolithic accelerator is inefficient, primarily
because it is difficult to achieve a high degree of resource utilization. The natural
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Figure 2.6: Google TPU roofline model [9]

solution is to introduce an array of monolithic accelerators, dividing parallelism
into two different levels: a fine-grained parallelism within each accelerator, where
the micro-architecture manages data movement between PEs, and a coarse-grained
parallelism at the system level, leveraging a NoC for communication between
different accelerators. However, with a large array of monolithic accelerators, the
distance between memory and the internal PEs that perform MAC operations
increases, which in turn raises the energy and latency costs. Tangram addresses
this problem by introducing on-chip data movement that transforms the distributed
local buffers within the accelerator into an idealized global buffer. First, we focus
on the intra-layer parallelism implementation that uses the Buffer Sharing Dataflow
BSD. In figure 2.7 we have an example of the data movement inside the system, in
this example, the output parallelization of the convolution is used, this consists of
the division of the weights across multiple accelerators that will calculate a subset
of the output feature maps. Since accumulation is a commutative operation, the
order of convolution execution does not matter. At T=1, the inputs are loaded into
the three Eyeriss instances, and the partial outputs of the convolution are stored
in their respective local buffers. Then, at T=2, the inputs are exchanged between
the accelerators and another partial output is accumulated. In this scenario, an
additional iteration is required for each of the three accelerators to complete its
assigned output channels: specifically, O[0:2] for Engine 0, O[2:4] for Engine 1, and
O[4:6] for Engine 2.

We can improve the data reuse across multiple accelerators using a two-dimensional
array and move data across both axes, as shown in figure 2.8.
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Figure 2.7: Tangram 1D BSD [13]

Figure 2.8: Tangram 2D BSD [13]

Focusing on inter-layer parallelism, Tangram proposes the Alternate Layer Loop
Ordering (ALLO), which consists of spatially deploying multiple layers across
the accelerator array in such a way that, as soon as some output features of the
upstream layer are computed, they are sent to the downstream accelerator, allowing
it to start its computation. This approach can only be applied to alternate pairs of
layers because the output features produced by the downstream accelerator are
continuously accessed.

In figure 2.9 we can see that L-3 needs to wait for the completion of L-2 in order
to start his execution.

Figure 2.9: Tangram ALLO [13]
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2.2.4 Planaria and the paradigm of multi-tenant execution
We focus now our attention on Planaria, a system that addresses the the problem of
multi-tenancy on tiled-based SoC using as a building block a TPU-like architecture.
Executing more than one network, sharing the resources of a single hardware
between multiple layers, is a topic of crucial importance. With the increase of DNN
applications, the need for data-center of flexible architecture able to execute more
than a single layer at a time can improve the overall efficiency, in addition, new
algorithms such as speech recognition or voice synthesis require multiple models
deployed on the same hardware. PREMA[18] proposed a preemptive scheduler that
can time multiplex the execution of multiple applications on the same hardware,
but the idea in Planaria[14] is to design a specific accelerator for the multi-tenant
execution.

The key points of a flexible DNN accelerator are first, the ability to split a
monolithic array of PEs into sub-arrays that are effectively a new accelerator.
Second, the implementation of the micro-architectural capabilities that can sustain
such a structure and, finally a task scheduler able to leverage the introduced
flexibility to maximize the throughput. Figure 2.10 highlights the ability to divide
a monolithic array of PEs into different groups [14].

Figure 2.10: Planaria fissionable architecture [14]

In addition to the PEs fission the architecture should divide the local buffer
capabilities, since the weight buffer is inside the PEs this comes for free, while
the activation and the output buffer are implemented using a micro-architectural
solution called Fission Pod. Figure 2.11 shows the complete Planaria architecture.

Planaria includes a compiler capable of generating binaries that can be executed
by the architecture, along with tables that store the number of tiles involved in
the layer execution as well as the corresponding latency. The proposed dynamic
scheduling algorithm for a DNN accelerator leverages the dynamic architecture
fission to optimize resource utilization and task co-location.

The steps followed by the scheduler are:
• Estimating Minimal Resources: The scheduler begins by identifying the min-

imum resources needed for each task to meet its Quality of Service (QoS)
requirements using a task monitor and the configuration tables.
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Figure 2.11: Planaria overall architecture [14]

• Resource Allocation:

– If all tasks fit, the ALLOCATE_FIT_TASKS function assigns the necessary
resources and distributes any remaining resources using a priority-based
scoring function.

– If only a subset of tasks can be co-located, the ALLOCATE_UNFIT_TASKS
function handles competition using a scoring mechanism based on priority,
slack time, and resource requirements.

• Tile-Based Scheduling: To minimize reallocation overheads, scheduling is
performed at the tile level, and preemptions occur only when resource allocation
changes, reducing memory requirements for storing intermediate results.

2.3 Embedded Scalable Platform as a Target Plat-
form for Tiled Accelerators

The ESP is an open-source SoC designed for heterogeneous integration. It is the
result of thirteen years of research and development at Columbia University, with
contributions from other universities. Modern systems must handle a variety of
algorithms, each with distinct hardware requirements, ranging from signal process-
ing to artificial intelligence and cryptography. This broad range of applications
has driven the semiconductor industry to transition from homogeneous multi-core
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processors to heterogeneous SoCs, where traditional general-purpose processors are
combined with highly specialized accelerators. ESP provides a scalable architecture
that domain-specific designers can use to build complex SoCs, which can be im-
plemented and tested on FPGA using an automated flow. Designers benefit from
high flexibility when integrating new accelerators into the platform, supporting
various design languages and synthesis tools. These include C/C++ with Xilinx
Vivado HLS and Siemens Catapult HLS, SystemC with Cadence Stratus HLS and
Siemens Catapult HLS, Keras TensorFlow, PyTorch, and ONNX with hls4ml, as
well as Chisel, SystemVerilog, and VHDL for register-transfer-level design. ESP
also supports the integration of third-party accelerators, such as the Ariane RISC-V
core and the NVIDIA Deep Learning Accelerator [21].

2.3.1 The ESP Architecture
The ESP architecture is a tiled-based multi-core architecture where the designer
can instantiate different types of tiles without sacrificing regularity, enabling an
inherently scalable distributed system. The design environment includes a Graphical
User Interface (GUI), shown in figure 2.12 that assists designers in interactive SoC
floor planning, in a push-button manner for rapid FPGA prototyping.

Figure 2.12: ESP GUI

A key architectural feature of ESP is its modular socket interface, which connects
each tile to the NoC and provides platform services. This socket-based approach,
which follows the latency-insensitive design paradigm, decouples the communication
infrastructure from the internal component design, simplifying the integration of
heterogeneous IPs for both IP designers and SoC architects. Such modularity
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allows the designer to choose a set of services to be instantiated at design time or
enable them at runtime in a simplified version [22].

2.3.2 Network on Chip
Every tile is connected with a packet-switched, multi-plane NoC that follows
A MESI directory-based protocol and a 2D mesh topology. The NoC connects
only with the socket and distributes messages across several physical planes to
enhance accelerator performance while preventing protocol deadlocks. It supports
coherence using three dedicated planes, ensuring deadlock-free communication. Two
additional planes are allocated for handling Direct Memory Access (DMA) requests
and responses between accelerator and memory tiles. Additionally, a separate plane
manages IO/IRQ channels, primarily used for programming accelerators. Below is
a breakdown of the message types handled by each plane:

1. Coherence planes:

• Plane 1: Handles coherence requests from the CPU to the directory.
• Plane 2: Manages forwarded coherence messages to the CPU.
• Plane 3: Coherence bidirectional response messages from and to CPU.

2. DMA planes:

• Plane 4: Manages bidirectional DMA responses to accelerators and coher-
ent DMA requests from accelerators.

• Plane 6: Handles bidirectional DMA requests from accelerators and
coherent DMA responses.

3. IO/IRQ planes:

• Plane 5: Remote Advanced Peripheral Bus (APB) interactions: Requests
and responses between the processor and memory-mapped registers for
configuration. Interrupt handling: Requests and remote acknowledgments
between the processor and remote units. Advanced High-performance
Bus (AHB) communications: Requests and responses to and from the
processor’s Debug Support Unit (DSU) for communication with the De-
bug Ethernet interface. Other AHB transactions: Communicate with
additional peripherals of the IO tile, including UART 4 and a digital
visual interface (DVI), enabling video output in a bidirectional manner.

The router architecture incorporates look-ahead dimensional routing, decoupling
route computation from the critical path and executing it concurrently with
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arbitration, ensuring each hop completes in a single clock cycle. This design is
driven by the Transaction Level Modeling (TLM) abstraction, a high-level approach
that simplifies inter-module communication by abstracting functional unit details.
Functioning as a transparent communication layer, the NoC makes every SoC
component appear as though connected directly to the local bus of the socket. This
capability is enabled by proxy components within each tile, tasked with converting
CPU and accelerator requests into packets suitable for NoC communication and
restoring incoming NoC messages to their original form upon arrival. Each proxy is
equipped with a buffering queue, respecting the latency-insensitive design principles
crucial for shaping key aspects of NoC and socket interface design.

2.3.3 Latency insensitive design
Latency-insensitive design (LID) is the response to limitations within the syn-
chronous design paradigm at the Register Transfer Level (RTL), which traditionally
defines a digital system as a set of interacting modules composed of combina-
tional logic and registers. These modules use input and internal state values each
clock cycle to update their outputs. According to the synchronous paradigm, the
computation within modules and the communication of computed values occur
sequentially without overlap, known as the synchronous hypothesis.

This design approach faced challenges with the advancement of semiconductor
technologies, particularly due to the impossibility of the global wire connecting
modules to scale down as efficiently as local wires and logic gates. This discrepancy
often turned interconnecting paths into critical paths due to increased resistive
and capacitive delays, leading to numerous exceptions to the synchronous design
principles. These exceptions required extensive modifications during CAD flow
stages, without always achieving optimal results.

To address these challenges, LID relaxes timing constraints early in the design
process before accurate global wire estimations are available. This methodology
allows a system to operate correctly regardless of inter-module channel latencies,
provided the functional modules are designed correctly. The key components of
LID include:

• A communication protocol that makes inter-module channel communica-
tions independent of latency

• A shell interface that connects modules to latency-insensitive channels. This
interface is adaptable to any module, ensuring flexibility.

In LID theory, two signals are considered latency-equivalent if they present the
same sequence of valid data events, independent of the timing of these events.
Additionally, if the system’s functionality relies only on the order of these events, is
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defined as a patient system. Latency-equivalent signals must maintain the sequence
of informative events (valid data) despite the presence of stalling events (data
packets without valid information).

Implementing this design involves creating a shell encapsulation around the
module core. This shell includes a buffering stage and synchronization logic,
allowing the module to interface with the latency-insensitive communication channel
effectively. The system must ensure that the core is stallable, meaning it can pause
to wait for new valid inputs indefinitely without losing its internal state.

The shell forwards valid data items from its input port to the core, allowing state
updates and new outputs in the subsequent clock cycle. If an invalid data item
arrives at an input port, the core stalls until a valid item arrives, while valid data
at other ports is temporarily stored for later use. This methodology incorporates a
latency-insensitive protocol using additional signals—a void bit and a stop bit—to
manage data flow and backpressure within the NoC’s various planes. The void bit
differentiates valid from stalling data items, while the stop bit enables backpressure
to manage buffer capacity effectively, preventing data overflow by halting valid
data transmissions until the system stabilizes [23].

This design plays a critical role in the architectural decisions for ESP’s NoC
and socket interfaces.

2.3.4 ESP Tiles

Figure 2.13: ESP Tiles [22]

In the ESP architecture, different types of sockets address different tasks, con-
tributing to the versatility of the system. Figure 2.13 shows a detailed description
of the tiles.
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Accelerator Tile: Unlike many open-source RISC-V platforms, ESP assigns
its accelerators their own dedicated tiles, giving them architectural parity with
processors. These are known as loosely coupled accelerators. The classification of
accelerators is primarily based on how they couple with the processor, impacting
key behavioral trends such as local storage transparency, external memory access,
and how the data are managed.

Processor-Centric Designs: Accelerators are tightly integrated within the proces-
sor pipeline, activated by control logic that decodes instructions from a specific ISA
extension. This integration often limits the internal design due to space constraints,
restricting storage capacity and the use of SRAM banks.

Co-processor Integration: As task complexity increases, designs may feature
accelerators as co-processors, sharing significant resources with the processor but
maintaining a distinct, tightly linked interface for data or instructions. High activity
levels might necessitate direct bus system interfaces, utilizing mechanisms like DMA
or cache coherency.

Loosely-Coupled Accelerators: Offering the highest flexibility, these accelerators
operate independently of the processor, free from ISA constraints, and handle
complex workloads with enhanced parallelism. This model facilitates the integration
of external customized hardware into the system via the socket.

Loosely-coupled accelerators are the ones used in ESP, exploiting IP reuse across
different SoCs and highlighting the platform’s focus on flexibility and scalability.
The accelerator tile in ESP supports various coherence protocols through its runtime
selection capability:

Fully Coherent Model: Utilizes the existing memory hierarchy and an additional
private L2 cache. Coherent-DMA Model: Operates without a private cache but
maintains coherence with the system’s other caches. LLC Coherent Model: Lacks
a private cache and does not maintain coherence with the system. Non-coherent
DMA Model: Entirely bypasses the cache hierarchy. The tile also houses a DMA
controller that manages input and output requests under a latency-insensitive
protocol and includes configuration registers for activating services without processor
intervention.

Processor Tile: Each processor tile houses a core, selectable from a library that
includes options like the RISC-V 64-bit Ariane and the SPARC 32-bit LEON3, each
capable of booting Linux. These tiles integrate external IPs seamlessly, replicating
the configurations of the accelerator tiles, with communication managed through
designated bus systems (AHB for LEON3 and AXI for Ariane).

Memory Tile: Memory tiles serve as gateways to off-chip memory, each
supporting a channel to external primary memory. The configuration of these tiles,
from one to four, depends on the NoC’s size, with each tile containing a portion of
the last-level cache (LLC) and directory to support the MESI coherence protocol.

IO Tile: The IO tile manages off-chip communications and hosts essential
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platform services, including the interrupt controller and interfaces for peripherals
like Ethernet, which supports Secure Shell (SSH) logins and memory-mapped
register access. A frame buffer for DVI video output, a UART console interface,
and a timer for periodic tasks are also included.

2.3.5 The ESP Methodology

Figure 2.14: ESP design and integration flows[22]

The ESP methodology is driven by the need to sustain the semiconductor
industry’s advancement while managing the increasing complexity of SoC designs.
A description of the flow is provided in figure 2.14. Currently, ESP supports
multiple design flows, enabling designers at different abstraction levels to contribute
to the platform’s IP library. Specifically, ESP facilitates several ways for developing
accelerators:

Traditional RTL Flow: Utilizes standard hardware description languages like Ver-
ilog, VHDL, or Chisel for cycle-accurate design. Commercial HLS Tools: Combined
with ESP’s in-house automation tools, these allow for the creation of accelerators
from loosely-timed or untimed behavioral descriptions in C-like languages, primar-
ily C++ and SystemC. Notable HLS tools supported include Xilinx Vivado HLS,
Mentor Catapult HLS, and Cadence Stratus HLS. Open Source hls4ml Flow: This
can be used to derive synthesizable accelerators from domain-specific libraries such
as Keras, TensorFlow, and PyTorch. Among these, the HLS-based flow deserves
particular attention as it shifts the focus from time-consuming, low-level RTL
descriptions to higher-level system specifications. This transition is crucial as the
complexity of modern SoCs can make features of the RTL flow lead to suboptimal
designs, where significant changes are often required to optimize the architecture,
increasing the risk of introducing bugs.
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HLS leverages system-level synthesizable specifications to explore a vast design
space with various micro-architectural configurations using a range of configuration
knobs provided by advanced HLS tools. These include directives for function
inlining, sharing, and loop pipelining. Timing constraints can also be applied to
influence the number of states in the RTL code, unlike in synthesis where tighter
timing constraints affect the choice of technology.

Figure 2.15: DSE with ESP [22]

With a high-level description, different settings passed to the HLS engine can
generate multiple valid RTL implementations that correspond to distinct points in
a multi-objective design space. It’s crucial to note that these implementations are
part of a latency-equivalent class and they can integrate within an ESP instance
due to the latency-insensitive protocol of the tile sockets. Figure 2.15 shows the
DSE leveraging HLS.

After choosing the best design option, a logic synthesis phase is needed to
schedule and allocate resources for the hardware implementation, typically using
the List-Scheduling algorithm. ESP plays an active role in this phase by providing
accelerator templates to ease the design process and a fully functional accelerator
skeleton based on specified parameters.

This HLS-based approach and its design space exploration at the application
level are essential for designers looking to integrate an accelerator into an existing
system with precise requirements. However, constructing an SoC from the ground
up demands a wider consideration of parameters affecting the entire system’s
functionality, beyond just a single component. This challenge is addressed by ESP’s
FPGA-based rapid prototyping, enabling both hardware and software engineers to
emulate and validate components within the complete system. This comprehensive
approach supports hardware/software co-design, ensuring that all stages of SoC
development are guided by the application-specific workload.
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2.4 Existing approaches on CNN latency predic-
tion

With the growing focus on using edge devices for time-critical application that uses
deep learning algorithms, latency has become a critical factor when running DNNs.
Accurately predicting the latency of DNN inference could be a very important
feature, especially in scenarios where directly measuring latency on actual devices
is impractical or costly. This is particularly important for tasks where an optimal
resource allocation is crucial and profiling of all possible hardware configurations
is impractical. Another important field where predicting latency is crucial is
Neural Architecture Search (NAS) where ML is used for exploring the design
space of the possible neural networks that can solve a specific task, choosing the
optimal architecture given some constraints. In this scenario the execution latency
will probably be one of the most important optimization goals, having a way of
accurately estimating this parameter is a key point of the search. In this section,
we analyze recent contributions in the prediction of latency of DNN inference on
different platforms, in particular nn-Meter[24] that leverage Random Forest models
to predict inference latency on different devices. Other works, such as PerfSAGE
[25] and BRP-NAS [26] use Graph Neural Network to solve this problem.

2.4.1 nn-Meter
For addressing the problem of predicting latency on commercial edge devices such
as CPU, GPU and, VPU, nn-Meter first of all divides the network graph in kernels.
Each of these kernels represents either a single primitive or a fusion of multiple
operations depending on the target device. Depending on the runtime optimization
present on different devices some operations can be merged together or not. A
concrete example is the Conv-Add that is fused on GPU, but not on CPU or VPU.
This operation, along with nn-Meter architecture is shown in figure 2.16. First of
all a dataset composed of 26,000 CNNs was created and then executed on different
edge devices. The overall performance of the models is 99.0% for CPUs 99.1% for
GPUs and 83.4% for VPUs.

The kernel detection is the first step performed by the system, it consists of
the detection of primitives in the Direct Acyclic Graph (DAG), performed using
Depth-first search (DFS), then using a set of rules that describe the fusion of
the various operators in a kernel executed on hardware. All nodes of the graph
have some properties that describe the type of computation (CONV, ADD, FC,
Activations, etc.) and their topological connections to other nodes. In particular,
each node has a single/multiple input/output edge. The fusion rules are influenced
by the connection of the operators. If the DAG consists of two nodes with a single
input and output and the backend supports the fusion, the two nodes will be fused
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Figure 2.16: nn-Meter system architecture [24]

in a single kernel. This represent the simplest case, shown in figure 2.17.

Figure 2.17: DAG with two nodes with single in/outbound

Another possible case can be when two nodes that have a single outbound are
connected to a single node with two inbound. In this case, we can merge the node
in two different ways (Op3, Op4) or (Op3, Op5) being careful to choose one out
of two in order to avoid accounting two times for Op3. In this case, it could also
happen that if Op5 is connected to Op4, we are breaking the DAG hypothesis and
introducing a loop, this situation, shown in figure 2.18, must be avoided.

Figure 2.18: DAG with multiple in/outbounds
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In figure 2.19 we can see the result of the primitive search and the integration
in a DAG where nodes are a fused version that accounts for rules of integration
specific of the target GPU.

Figure 2.19: Kernel detection and fusing layer with a GPU as backend target.
[24]

CONV and depthwise convolutional (DWCONV) kernels are the primary con-
tributors to computational latency in CNN models. Analysis indicates that these
kernels dominate the latency on various devices, accounting for approximately
94.2% on CPUs, 91.91% on GPUs, and 75.5% on Vision Processing Units (VPUs).
FC and element-wise operations also contribute significantly to latency on VPUs.

Conv kernels have a vast number of possible configurations, primarily due to
the wide range of input and output channel numbers (from 3 to 2160 in examined
models). This results in an immense sample space of approximately 0.7 billion
configurations, making exhaustive sampling impractical. Contrary to the assump-
tion presented in some work of linearity between kernel configurations and latency,
observations reveal non-linear and staircase patterns. Parameters like kernel size
(K), input dimensions (HW), and channel numbers (Cin and Cout) do not have
a straightforward relationship. This behavior reflects the underlying complex set
of optimizations that influences the execution time in a nonlinear way. Random
sampling configurations fail to capture critical data points, especially those reflect-
ing hardware-specific optimizations. Missing these crucial configurations leads to
inaccurate latency predictions.

In order to address these challenges nn-Meter uses an adaptive sampling between
all the possible configurations in the design space, in particular analyzing state-of-
the-art neural networks some configurations that are unlikely to be included in a
model are removed from the high dimensional space. In addition, more sampling is
performed around configurations that show higher prediction error.

To capture the non-linearities observed in the data, the model used is the Random
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Forest Regression. Random Forests are ensemble methods based on decision trees
that are very effective in solving this kind of problem. While some studies adopt
XGBoost [27]—which requires tuning numerous hyperparameters—Random Forests
are easier to optimize for high performance. For each kernel type, a different model
is trained and saved, and his dedicated predictor will be used for inferring the
latency.

Finally, the latency of each kernel is summed in order to find the overall latency
of the network.
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Chapter 3

Accelerator description

This section describes the CONV2D accelerator used in the experiments. This
accelerator is an improved version of the CONV2D accelerator available in the
ESP accelerator library, developed in the System Level Design group at Columbia
University.

3.1 Convolution Accelerator
The CONV2D accelerator operates in 16-bit fixed point precision and it is designed
in systemC and synthesizes with the high-level synthesis flow of ESP, leveraging
Cadence Stratus HLS. The accelerator is loosely coupled [28], they are independent
of the processor cores and they don’t share any resources. Within a single invocation,
the accelerator executes large workloads in a coarse-grained manner. The accelerator
has a DMA interface designed to be latency-insensitive, as discussed in section
2.3.4. The accelerator has four main SystemC processes, they communicate with
each other through a multi-bank and multi-port PLM.

• Configure: Configuration of the accelerator pipeline through memory-mapped
registers.

• Load: leverage DMA interface for fetching data from memory, storing them
in the PLMs.

• Compute: Core computation of the accelerator, reading data from input
PLMs and storing them in the output PLMs.

• Store: Leverage the DMA interface for storing the computed results in the
main memory.
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The structure of the accelerator is described in figure 3.1. The accelerator
exploits a double buffering technique using the so-called ping-pong memories.
While a batch of inputs from the first PLM are computed the load process can
fetch, from main memory, the next one and store the data in the second PLM.

Figure 3.1: ESP accelerator structure[22]

The microarchitecture of the Conv2D accelerator is composed of three PLMs:
one for IFMAPS, one for weights, and one for output feature maps. The IFMAPS
and weights are fed into the accelerator’s compute datapath two sets of registers
equal in number to the MAC parallelism. The input collector features a Patch
Extractor, while the weight collector retrieves weights from the weights PLM in
parallel.

A multi-level dataflow is employed to maximize the reuse of both weights and
input features. The accelerator adopts a weight-stationary-local-input-stationary
(WS-LIS) dataflow [29]. This dataflow facilitates weight and input reuse, reducing
both on-chip PLM and off-chip DRAM accesses. To enhance weight reuse, the
accelerator loads part of the filter weights into the weight PLM and applies them
across multiple IFMAPS, which are loaded in chunks. Once a filter chunk is
processed, the next filter chunk is processed. The core of the computation relies on
a MAC array that achieves maximum throughput, enabled by the number of ports
in the PLMs to support parallel data access. The weights have a predictable access
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pattern enabling the fetching of multiple filters weight per clock cycle. accessing
IFMAPS in parallel is impractical without data duplication, so the Patch Extractor
serially reads the required IFMAPS elements from the PLM into the input collector,
also handling padding when necessary. To reduce the overhead from sequential
IFMAPS accesses, the IFMAPS are reused across all filters within the current
chunk for subsequent clock cycles.

The accelerator supports common configurations, in particular filter sizes 1, 3,
5, 7, strides 1, 2, and padding 1, 2, 3. Additionally, it integrates logic for in-place
Batch Normalization, ReLU, and Downsampling (with max/average pooling for
2x2 or 3x3). This fusion of operations minimizes intermediate data storage needs
and off-chip DRAM access, improving both performance and latency.
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Chapter 4

Acceleration of CNNs on
ESP

In this section, we focus on the CNN acceleration on ESP leveraging a varying
number of available resources. Due to the high variations of the memory footprint
of parameters and the number of operations across the layers of the network, it is
crucial to optimize the deployment of each layer targeting the optimal combinations
of CONV parallelization and hardware resources. Finding a balanced mapping
that satisfies the memory and computational requirement is the task we will try
to address in the remaining sections of the thesis. Figure 4.1 shows the memory
footprint of weights and IFMAPS across the layers of ResNet18, together with the
number of operations.

Figure 4.1: ResNet18 Parameters memory footprint and number of operations
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4.1 Parallelization strategies

To parallelize the execution of the CONV layers on multiple accelerators, we
leverage two different parallelization schemes: Output Parallelism (OUTP) and
Input Parallelism (INPP). The main advantage of OUTP is that it splits the
filters among the N convolution accelerators (NConv2D), resulting in each deployed
accelerator producing NF ilt/NConv2D complete output features. The drawback is
that convolving NF ilt/NConv2D filters requires duplicating the IFMAPS across each
deployed accelerator as shown in figure 4.2 with the doubled orange feature map
highlighted on the top left corner, which can lead to memory congestion as the
number of accelerators accessing the same memory buffer region increases.

Figure 4.2: Output parallelism

On the other hand, INPP’s main advantage is that the channels of the IFMAPS
are divided among different accelerators. To convolve the filters with the reduced
size of the IFMAPS, we also divide the number of kernels in each filter. To obtain
the final convolution result, an element-wise addition must be performed on the
partial sums produced by the NConv2D accelerators, as shown in figure 4.3. To
speed up this operation, we employ a dedicated EWA. The element-wise addition
is inherently an operation with very low AI, as it executes a single operation for
each pair of transferred parameters. This property implies that, as the number
of additions increases, the communication between the EWA and memory will be
stressed, potentially saturating the memory bandwidth.
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Figure 4.3: Input parallelism

4.2 Memory organization
In ESP the memory accesses are handled by the MT, the number of these systems
can vary from a minimum of 1 up to 4, this has the direct effect of increasing the
memory bandwidth since each MT is connected to a separate DDR controller. It is
in our interest to maintain the functionality of the execution of our CNNs varying
the numbers of memory tiles to better understand the impact of the memory
bandwidth on the end-to-end inference performance. Depending on the number of
MTs and CONV2D accelerators utilized, the weights and the IFMAPS are stored
in different ways inside the addressable space. The top section of figure 4.4 shows
the case where we have one single MT and one CONV2D accelerator. In this case,
the weights of each layer are stored sequentially in the addressable memory. In the
case of MT=2 and CONV2D=2, instead, we split the weight of each layer on two
separate MT that will be accessed separately by two accelerators. In the last case
we have MT=4 and CONV2D=4.

Figure 4.4: Memory organization
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The intermediate feature maps are stored at specific memory addresses depending
on the topology of the network being executed. In modern CNNs, it is common for
the output of a layer to be forwarded to two separate layers, which then converge
through an element-wise addition. To support the execution of this kind of network,
in the addressable space of each memory tile three different offsets allow us to
store the intermediate IFMAPS, we refer to them as A, B, C. When using more
than one memory tile the memory organization is replicated over the addressable
space handled by each MT, for both the weights and the IFMAPS. The offset
between memory location A in the first MT and A in the second is indeed equal
to the addressable space of a single MT. In figure 4.5 we can see a segment of
ResNet18 where we parallelize the CONV layers on two CONV2D accelerators and
the element-wise additions on two EWAs. In cases like this, using three separate
offsets for intermediate features management guarantees that the same outputs
can be temporally reused without being overwritten by intermediate operations.
To clarify this, we highlight the 2 memory offsets to respectively load the input
features and store the output feature for each operation in this example.

Figure 4.5: Partial IFMAPS allocation in the addressable space in ResNet18
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4.2.1 Optimization of the partial sum addition
in order to optimize the memory bandwidth usage, the EWAs’ accesses are equally
balanced across multiple memory tiles. This crucial operation is necessary for two
different operations:

• Reconvergent paths

• Partial Output Additions at the output of each layer executed by parallelizing
across multiple accelerators with INPP strategy.

In the first case, we limit the number of EWAs to the maximum number of MTs in
the SoC fabric. This happens because the element-wise addition in the reconvegent
paths has the input operators stored in the addressable space handled by the same
MT. We can better understand this concept by referring to figure 4.5 when our SoC
fabric has 2 CONV2D accelerators, 2 MTs, and 2 EWAs. The EWAs that perform
the addition have their inputs stored at the offsets B and C, in both the MTs in
use, the first and the second EWA will leverage, to access the memory, respectively
the first and the second MT independently. In the case of a partial output sum
reduction, the maximum number of EWAs used is half of the MT number, as we
aim to have a single memory transaction per MT by the EWAs, and the inputs of
the addition are stored in the addressable space handled by two MTs. To provide a
clearer understanding of how this last operation is performed, we show the memory
accesses and the corresponding computations in Figure 4.6. Finally, in general, the
workload of the element-wise addition in the reconvergent path is small compared
to the partial sum reduction following the convolution when using INPP.

Figure 4.6: EWAs memory accesses
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4.3 Software application
The application used to deploy the input model on a given SoC fabric implemented
on FPGA is written in C and it leverages the software stack developed for ESP.
First of all the inputs of the application are:

1. Input Model

2. SoC Resources in Use (A Subset of the Resources Available in the
SoCs fabric deployed on FPGA)

(a) Number of Conv2D_Acc
(b) Number of Adders
(c) Number of Memory Tiles

3. Start and Stop Layer

(a) Start Layer
(b) End Layer

Once we have set the number of accelerators we are using we calculate how many
accelerators will access each MT and we proceed to the allocation of the model
with the parallelization strategies among the two introduced in section 4.2. Then
we proceed to sequentially configure all the accelerators involved in the execution
of the current layer. Once we have configured the accelerators we leverage the
function esp_run from the ESP API to invoke the accelerators.
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Algorithm 1 Linux ResNet18 Application - Part 1
1: Read input parameters
2: Declare: accPerMemTiles
3: if numAccelerators ≥ numMemTiles then
4: accPerMemTiles = numAccelerators/numMemTiles
5: else
6: accPerMemTiles = 1
7: numMemTiles = numAccelerators
8: end if
9: Init configuration Parameters of the Network ▷ numChannels, numFilters, etc.

10: Init MemOffset ▷ The value of the offset is the addressable space of a single
memory tile

11: Calculate A, B, C Offsets
12: Calculate INPP partial sum reduction Offsets
13: Allocate space for model Parameters
14: for i = start_i to end_i− 1 do
15: if Parallelism[i] = INPP then
16: Fill the accelerators-reserved buffer region with INPP policy
17: else if Parallelism[i] = OUTP then
18: Fill the accelerators-reserved buffer region with OUTP policy
19: end if
20: end for
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Algorithm 2 Linux Application ResNet18 - Part 2
1: for i = start_i to end_i− 1 do
2: Common Parameters Calculation
3: if Parallelism[i] = INPP then
4: Write Accelerators Configuration registers(INPP Params)
5: else if Parallelism[i] = OUTP then
6: Write Accelerators Configuration registers(OUTP Params)
7: end if
8: if i = start_i then
9: Allocate Inputs

10: end if
11: esp_run(Accelerators)
12: if Parallelism[i] = INPP then
13: Partial Sum reduction Configuration
14: esp_run(Adders)
15: end if
16: if Reconvergent path then
17: Element Wise Addition Configuration
18: esp_run(Adders)
19: end if
20: end for
21: Output checking
22: if Output OK then
23: Test Passed
24: else
25: Test Failed
26: end if

4.4 Evaluation of the performance
To better understand the trade-offs involved in complex SoCs with multiple Conv2D
accelerators, EWA units, and MTs, we analyze the performance of relevant com-
putational kernels using the roofline model. These kernels are selected from the
neural networks we aim to deploy on the ESP. In particular, we want to evaluate
the performance trends as we vary key parameters such as the number of Conv2D
accelerators, the PLM dimensions, the MAC parallelism, and the number of MTs.

The AI of the computational kernels varies depending on the chosen paralleliza-
tion scheme, the number of accelerators utilized in the computation, and the size
of the weight PLMs. Given the weight-stationary nature of our architecture, we
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observe that when the weight PLM is smaller than the size of the weights, the
IFMAPS must be accessed multiple times. This leads to an increase in the total
number of memory accesses, impacting overall performance. Figure 4.7 shows the
evolution of the performance of Layer 2 of ResNet34 when executed with a variable
number of CONV2D accelerators and with different parallelisms.

Figure 4.7: Evolution of the throughput with the variation of Conv2D accelerators
and parallelism on the Performance vs AI plane

We can see in figure 4.7 that, in general, the arithmetic intensity tends to reduce
with the increase in the number of accelerators. This is because the total number
of memory transactions is increasing, while the number of operations of a single
CONV layer remains the same. When we are far from the memory bandwidth limit
imposed by the MTs instantiated in the SoC, the throughput increases with an
increase in the number of CONV2D accelerators. This is expected behavior since
we are splitting the total number of operations onto multiple compute elements,
although we see diminishing returns in increasing the parallelization. For instance,
the performance increase from 1 to 2 accelerators is greater than the increase from
4 to 8. When we reach the memory-bound limit, we can see that we are degrading
the throughput by increasing the number of accelerators. In this case, we are
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increasing the area and worsening the performance, which is indeed the worst-case
scenario.

The following formulas are used to compute the arithmetic intensity based on
memory transactions and the number of operations.

Outputs Dimension:
Odim = OH ×OW ×Nfilt (4.1)

Weights Dimension:
Wdim = KH ×KW ×Nch (4.2)

Inputs Dimension:
INdim = IH × IW ×Nch (4.3)

Memory Transactions:
First of all, we calculate the weight dimension per accelerator

WP A = Wdim

NCONV 2D
(4.4)

For different levels of parallelism, the total memory transactions vary, we differentiate the
calculation for OUTP and INPP. In the following computation, we refer to the data type as dt,
expressed in bytes.

• OUTP: The input feature map per accelerator is equal to the INFMAPS

INP A = INdim (4.5)

The total memory transaction in the case OUTP follow equation 4.6.

Mtr =
3

WP A +
9

WP A × dt
plmw

:
× INP A + Odim

NCONV 2D

4
× dt×NCONV 2D (4.6)

• INPP:
For Input Parallelism the input features maps are split over the accelerators

INP A = INdim

NCONV 2D
(4.7)

and the total number of memory transaction is calculated as:

Mtr_conv =
3

WP A +
9

WP A × dt

plmw

:
× INdim + Odim

4
× dt×NCONV 2D (4.8)

In addition, for input parallelism calculation we have to account for the memory transactions
relative to the partial sums in output of the CONV accelerators:

Mtr_add =
log2(NCONV 2D)−1Ø

i=0

NCONV 2D

2i
×Odim ×Nfilt × dt (4.9)

The total memory transactions for Input Parallelism are:

Mtr = Mtr_conv + Mtr_add (4.10)

For calculating the Arithmetic Intensity we need to calculate the total operations of the
CONV layer:

TotOpsconv = 2× Co ×Ho ×Wo ×KH ×KW × Cin (4.11)
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At this point, we can calculate the Arithmetic Intensity of a given layer deployed on an
SoC configuration having considered system-level parallelism, CONV parallelization, and micro-
architectural properties:

Arithmetic Intensity

AI = TotOpsconv

Mtr
(4.12)

4.4.1 Experimental Results - Variable Parallelization Strate-
gies

The modern CNN’s structures have a very high imbalance in feature maps and
weight dimensions. The usual trend that can be observed is that the inputs have
usually a higher memory footprint in the early layers while the weights footprint
is bigger in the late layers. What we can observe is that usually OUTP performs
better on early layers, while INPP has better results on final layers. This behavior
introduces the need of a mixed parallelism approach. In order to be able to use
different parallelism on subsequent layers we used a common load and store policy
to be able to choose the best deployment. Figure 4.8 shows the performances
obtained by executing each layer of Resnet18 on FPGA with different CONV
parallelization strategies while keeping a constant number of CONV2D accelerators
equal to 8.

Figure 4.8: Evolution of the throughput with the variation of parallelism ResNet18

Figure 4.9 shows the total latency of ResNet18 in different deployment conditions:
when executed utilizing no parallelization strategy, in a single accelerator configura-
tion, the whole network leveraging OUTP and INPP and the mixed parallelization

44



Acceleration of CNNs on ESP

strategy approach. These results are provided for 4, 8, and 16 accelerators.

Figure 4.9: Evolution of the throughput with the variation of the number of
CONV2D Accelerators ResNet18

4.4.2 Experimental Results - Variable Memory Tiles
The variability of memory tiles changes the available memory bandwidth since
every memory tile is connected to a dedicated DDR controller. As mentioned in
section 2.1.3 the memory bandwidth increase improves the performance especially
when we are dealing with low arithmetic intensity kernels. In figure 4.10 we show
a plot of the roofline model built with data collected on FPGA. In particular,
each point is a layer of ResNet34 deployed on different SoCs fabrics, where the
number of CONV2D accelerators is fixed to 8 while we vary the MT utilization.
Each layer has an overall arithmetic intensity that follows the equations in section
4.4. We can clearly see that the points with optimal performance within each
arithmetic intensity interval reflect the properties of the roofline model introduced
in section 2.1.3. In particular, for low values of arithmetic intensity, we are in
the memory-bounded region. As explained in section 2.1.3, when the execution
is memory-bounded, the performance benefits from the increase of the memory
bandwidth, in our case this corresponds to the deployment of more MTs. When the
execution is compute-bound, the performance no longer depends on the memory
bandwidth but only on the accelerator parallelism.
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Figure 4.10: Roofline Model for ResNet34
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Chapter 5

Experimental setup and
dataset creation

When dealing with modern SoCs that contain multiple complex tiles interconnected
by a sophisticated NoC, simulating their behavior becomes very impractical since
it requires a very long execution time and a high-performance hardware setup. An
alternative approach for prototyping and testing is deployment on FPGA. This is
the most suitable approach for the ESP since it has an automated flow that allows
the user to generate bitstreams, deploy them on FPGA, and test real applications
in bare-metal and on top of Linux.

5.1 Experimental setup
For testing and evaluating the flexible infrastructure presented in section 4 we
synthesize 18 different bitstreams targeting two different boards, the profpga-
xcvu440 and the profpga-xcvu19p. Each bitstream has a self-explaining name that
describes the features of the CONV2D accelerators in the SoC. The first field is the
number of MAC units, of each accelerator instantiated in the system, concatenated
with a code indicating the PLM configuration. Specifically, SI/BI stands for
Small/Big input/output PLM, while SW/BW stands for Small/Big Weights PLM.
Finally, 16FP/32FP indicated the datatype utilized in the accelerator design,
namely 16 fixed-point and 32-fixed point. Each of the 18 bitstreams overviews is
shown in table 5.1 highlighting the number of CONV2D Acceleratotors and the
dimension of their PLMs, the number of EWAs, and the target board. In order to
test the correctness of the applications that we run, we use a Linux application, to
verify each configuration. Leveraging Linux system calls is extremely useful during
debugging applications since we can handle files and folders, as well as using secure
copy between the FPGA and a remote machine. On the other hand, evaluating the
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Bitstream Name N CONV2D PLM I PLM W PLM O N EWA Target Board
8-SI-SW-32FP 16 4096 9216 4096 4 profpga-xcvu440
8-BI-SW-32FP 16 16384 9216 16384 2 profpga-xcvu440
8-SI-BW-32FP 16 4096 32768 4096 4 profpga-xcvu440
16-SI-SW-32FP 16 4096 9216 4096 4 profpga-xcvu440
16-BI-SW-32FP 16 16384 9216 16384 2 profpga-xcvu440
16-SI-BW-32FP 16 4096 32768 4096 4 profpga-xcvu440
32-SI-SW-32FP 16 4096 9216 4096 1 profpga-xcvu440
32-BI-SW-32FP 16 16384 9216 16384 1 profpga-xcvu440
32-SI-BW-32FP 16 4096 32768 4096 4 profpga-xcvu440
8-SI-SW-16FP 32 4096 9216 4096 4 profpga-xcvu19p
8-BI-SW-16FP 32 8192 9216 8192 2 profpga-xcvu19p
8-SI-BW-16FP 32 2048 18432 2048 4 profpga-xcvu19p
16-SI-SW-16FP 32 4096 9216 4096 4 profpga-xcvu19p
16-BI-SW-16FP 32 8192 9216 8192 1 profpga-xcvu19p
16-SI-BW-16FP 32 2048 18432 2048 2 profpga-xcvu19p
32-SI-SW-16FP 32 4096 9216 4096 4 profpga-xcvu19p
32-BI-SW-16FP 32 8192 9216 8192 1 profpga-xcvu19p
32-SI-BW-16FP 32 2048 18432 2048 2 profpga-xcvu19p

Table 5.1: Bitstreams under test

real performance of our hardware infrastructure on top of Linux can be challenging.
When running the operating system, numerous processes are executed concurrently,
which may result in the process invoking the accelerator not being scheduled
immediately or assigned a high priority. Given the substantial size of the Linux
operating system and the relatively limited efficiency of the Ariane core, the overall
execution speed is not optimal. Furthermore, invoking the accelerator triggers
a context switch from user space to kernel space, which introduces significant
overhead. Additionally, when multiple accelerators are invoked using the esp_run
function, the pthread library is employed for thread management, further increasing
overhead due to its inherent complexity. For these reason, we decided to use a bare-
metal application to evaluate the end-to-end execution performances, while keeping
the Linux-based deployment flow only for functional validation. The main idea is
to generate some binary files with the configurations of the various accelerators and
the numbers of invocations. The bare-metal application will read these binary files
and execute the network. In order to profile the execution time, we leverage esp
monitors that are registers dedicated to counting the number of clock cycles that
the program will take to execute. At the end of the execution of the application,
the result of the profiling is written using a simple printf function call.
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5.2 Batch evaluation
Our goal is to evaluate the performance of our system by using all the available
knobs introduced so far. Each of the 18 bitstreams under test is configured with a
fixed number of tiles. Our goal is to explore all possible combinations of execution
mappings, which results in a very high number of combinations to be profiled.

To manage this, we developed a testing infrastructure, the structure of which is
summarized in the directory tree below:

TEST
|-- README
|-- bitstreams.txt
|-- batch_eval.sh
|-- scripts
| |-- bs_eval.sh
| ‘-- utils.sh
|-- devcom
| |-- check.sh
| | |-- parser.py
| |-- csv
| | |-- resnet18.csv
| | |-- resnet34.csv
| | |-- resnet50.csv
| | |-- squeezenet10.csv
| | |-- squeezenet11.csv
| |-- layer_struct
| | |-- resnet18.csv
| | |-- resnet34.csv
| | |-- resnet50.csv
| | |-- squeezenet10.csv
| | ‘-- squeezenet11.csv
| |-- log
| | |-- resnet18.log
| | |-- resnet34.log
| | |-- resnet50.log
| | |-- squeezenet10.log
| | ‘-- squeezenet11.log
| ‘-- validation
| |-- resnet18_validation.log
| |-- resnet34_validation.log
| |-- resnet50_validation.log
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| |-- squeezenet10_validation.log
| ‘-- squeezenet11_validation.log
‘-- transcript

• README: Contains instructions and an overview of the testing infrastruc-
ture, guiding users on how to set up and execute the experiments.

• bitstreams.txt: A text file listing all the bitstreams to be tested. Each line
specifies the bitstream name, number of CONV2D accelerators, and EWAs

• batch_eval.sh: The main script that orchestrates the batch evaluation of
different bitstreams and configurations. It automates the entire testing process
by sequentially programming the FPGA, compiling applications, and managing
the execution flow.

• scripts/

– bs_eval.sh: A script used to evaluate individual bitstream configura-
tions. It handles the execution of all possible combinations of accelerator
deployments for a given bitstream.

– utils.sh: A script containing utility functions and common routines used
in the testing infrastructure. This includes preprocessing steps like setting
up the FPGA environment and compiling applications.

• devcom/: Directory containing information related to the communication
between the local machine and the device.

– log/: Directory containing log files from the execution of tests. These log
files capture the output from the FPGA during the execution of the tests
for each network.

– parser.py: A Python script used to parse log files and extract relevant
information from the test outputs.

– layer_struct/: Directory containing CSV files that describe the layer
structures of the neural network models. These files are used by the parser
in assigning each layer latency to a given layer structure.

– validation/: Directory containing validation files. When the parser
extracts the information from the log it generates these files that keep
track of the inconsistencies between the expected result of the test and
the one present in the log.

– check.sh: A script that checks for outliers in the latency data. If a
measurement is below an execution time threshold it raises an error.
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– csv/: Directory containing CSV files with parsed results from the tests.
These files contain the results for each neural network model tested.

• transcript: A file containing a complete transcript of the execution process,
including messages and outputs from the scripts and the FPGA. It serves as a
comprehensive log for debugging and verification purposes.

Each profiling task consists of executing a full CNN inference on a given SoC
configuration that utilizes a portion or all of the resources available on the bitstream.
Executing all the tests sequentially by waiting for the maximum execution time
before launching the next test is impractical due to the significant variation in
latency across different workloads and deployments.

To efficiently execute the batch of experiments, we built an infrastructure that
synchronizes the various machines involved in the process. The infrastructure
comprises two primary machines:

• Machine A: This is the machine where the ESP repository lives, together with
all the bitstreams, software applications, and the testing infrastructure. It is
responsible for programming the FPGA, compiling the bare-metal application,
generating the binary files necessary for execution, and loading these onto the
FPGA. It also initiates the execution.

• Machine B: This machine is physically connected to the FPGA through the
UART, and runs a script that monitors the UART output from the FPGA.

We implemented a synchronization mechanism between Machine A and Machine
B. After Machine A launches the execution, the testing script pauses, waiting for a
token indicating that the inference has been completed. Machine B continuously
monitors the log file generated by minicom, which captures the messages printed by
the application over UART. Once Machine B detects a specific keyword signaling
completion, it sends a token back to Machine A, allowing it to resume and launch
the next inference. Since the machines are on different servers, we use an empty file
transferred via the secure copy command (scp) as the synchronization token. This
procedure is repeated for each inference. After covering all possible configurations
for a bitstream, we reprogram the FPGA with a new bitstream and repeat the
process for all the networks under test. Figure 5.1 shows the interaction between
Machine A, B and the FPGA.

Several issues can prevent the test execution from completing successfully, such
as:

• Programming Faults: Errors during the programming of the FPGA can
halt the testing process.
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Figure 5.1: Diagram of the automated testing infrastructure

• Load Errors: Error during the load of the binaries file leveraging esp_link
that is the communication protocol that enables the communication between
and external machine and ESP.

• Execution Failures: The application may fail to complete execution due to
the stress of consecutive FPGA programming cycles.

To mitigate these issues, we implement timeout mechanisms for the programming
step and the execution phase. If a timeout occurs or an error is detected, the board
is reprogrammed, and the test resumes from the last successful point.

Algorithms 3, 4 and 5 summarize the steps explained in this section.

5.2.1 Post processing of data
In order to prepare the dataset for the learning models that we will discuss in
section 6.2.2, we need to post-process the collected data into an appropriate format.
When we profile the execution of a CONV layer that is followed by an element-wise
addition, the total latency result in terms of clock cycle is the sum of the two
contributions. However, to provide a significant figure estimating the performances
of the convolution kernel itself, we depurate the total latency of the contribution of
the adder. Another important task in the post-processing is related to the addition
of the total memory transaction and the arithmetic intensity, using formulas of
section 4.4.

5.2.2 Dataset
The networks considered in this work are ResNet18/34/50 and SqueezeNet1.0/1.1,
deployed on the 18 bitstreams of table 5.1 testing all the possible combinations of
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Algorithm 3 CNN Batch evaluation
1: Input: Bitstream under test in the file ‘bitstreams.txt‘
2: Output: Execution of FPGA configurations with logging

Clean the design folder from the previous execution Initialize log_file
Initialize number_of_layers Initialize home_dir

3: for each bitstream in bitstreams_file do
4: Extract bitstream, n_conv2d_acc, n_adder_acc from the line
5: Extract mac, plm_in, plm_w, d_type from bitstream
6: Log the current bitstream and MAC, PLM, and data type details
7: Change to the directory ‘bitstream‘
8: Source the environment setup script
9: if bitstream = last_bitstream then

10: Set last_bitstream_flag ← 1
11: else
12: Set last_bitstream_flag ← 0
13: end if
14: Source and execute the preprocessing script with parameters:
15: mac, plm_in, plm_w, d_type, resnet_raw, log_file
16: Source and execute evaluation script ‘bs_eval.sh‘ with parameters:
17: n_acc, n_add, number_of_layers, mac, plm_in, plm_w, d_type,

last_bitstream_flag, log_file
18: Return to home_dir
19: end for

Algorithm 4 Bitstream Preprocessing (‘utils.sh‘)
1: Input: mac, plm_in, plm_w, d_type, resnet_raw
2: Output: FPGA bitstream and header setup for the evaluation
3: Set bitstream format string bitstream← ”mac-plm_in−plm_w-d_type”
4: Use a case statement to assign the correct header based on mac and d_type
5: Substitute the string in cnn_application with the header information
6: Select the target FPGA
7: 1. Compile cnn_application
8: 2. Compile cnn_config_application
9: 3. Program target FPGA
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Algorithm 5 Bitstream Evaluation (‘bs_eval.sh‘)
1: Input: p_acc, n_adder, number_of_layers, mac, plm_in, plm_w, d_type,

last_configuration, log_file
2: Output: Log of configuration testing, FPGA inference results
3: Compute log2_acc and log2_add (log base 2 of conv2d_acc and n_adder)
4: Initialize last_inference← 0
5: for par = 0 to 1 do ▷ Parallelism 0: OUTP, Parallelism 1: INPP
6: for i = 0 to log2_acc do
7: Calculate p_acc← 2i

8: for j = 0 to log2_add do
9: Calculate n_add← 2j

10: for mem_tiles = 1 to max_mem_tiles do
11: if last configuration and last bitstream then
12: Set last_inference← 1
13: end if
14: Generate configuration for p_acc, n_add, mem_tiles
15: Run inference on FPGA with timeout mechanism
16: if timeout occurs then
17: Reprogram the board and retry inference
18: end if
19: Wait for inference to complete or timeout
20: end for
21: end for
22: end for
23: end for
24: if last_bitstream = 1 then
25: Wait for the final log file and copy the results
26: end if

54



Experimental setup and dataset creation

resources utilization described in 4. Leveraging the testing infrastructure described
in this chapter we collected up to 170.000 datapoints. Table 5.2 shows the total
number of observations for each network.

Network Number of observations
resnet18 20977
resnet34 38641
resnet50 57409
squeezenet10 27601
squeezenet11 27601

Table 5.2: Dataset dimension
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Chapter 6

Neural Network Mapping
Tool for SoC Architectures
Leveraging ML Algorithms

In this chapter, we discuss the goals and structure of a Mapping Tool for CNNs
on tile-based SoCs. Our goal is to optimize the CNN deployment on a given
SoC configuration, finding the best mapping for each layer of the network. A
mapping is a deployment of a CONV layer on a given SoC configuration utilizing a
Parallelization Scheme (PS) = {#MT, #CONV_2D, #N_ADD, PARALLELISM = {OUTP,
INPP}} that leverages all or part of the total resources available in the input SoC
configuration. The infrastructure introduced in Section 4 is very flexible, and
the space of possible deployments is indeed vast. Having such flexibility, while
maintaining the correctness of the algorithm, is generally advantageous, as it allows
tailoring the deployment of a layer on the SoC with finer granularity. On the
other hand, when performance varies significantly across different deployments
and depends on memory and computational capabilities, finding the best mapping
can be challenging. Memory bandwidth capabilities depend on the number of
MTs in use providing off-chip DRAM access, while memory requirements depend
on the dimensions of the on-chip PLMs distributed inside the accelerator tiles,
the number of CONV2D accelerators in use, and the PS. All of these parameters
are encapsulated in the arithmetic intensity of the layer mapped using a given
PS. Computational capabilities depend on the number of CONV2D accelerators
in use and the MAC parallelism inside each accelerator. This heterogeneous
aggregation of micro-architectural and system-level parameters determining end-to-
end inference performance introduces multiple trade-offs. To explore the space of
possible mappings, we chose to leverage a data-driven approach by training machine
learning models on the data collected with the test infrastructure introduced in
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Section 5. The goal of the model is to predict the latency of a CNN layer execution
based on: the CNN layer structure, the SoC configuration, the parallelization
strategy, the arithmetic intensity, and the total memory transactions. The set of
possible PS on a given SoC configuration represents our mapping space. Leveraging
a Latency Predictor to find the best mapping of a network involves predicting the
latency for all possible PS for all the sequential layers of the network and finding
the minimum.

6.1 Mapping Tool Overview

Figure 6.1: Mapping Tool

The inputs of the mapping tool are two. First, the .onnx standard format
of a Network we wish to map, contains all the information on the topology, the
layers structure, and the operators that are used. The second is an instance of an
ESP SoC, that has a given number of Conv2D Accelerators, along with his PLMs
dimensions, the number of adders, and the data type used in the calculation (16FP
or 32FP).

The first step of the mapping flow is highlighted in the top section of figure
6.1 and consists of parsing the layers in the target network and extracting all the
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structural information. Once we collect all the Conv layers, the Additions, the
activations, Batch Normalization (BN), and Pooling, we merge all of them in a way
that is proper to the underlying hardware. As we discussed for other platforms in
section 2.4, CONV accelerator usually performs operations such as ReLu, BN, or
pooling within the computation of the CNN layer [24]. The CONV2D accelerator
presented in section 3 also performs these operations internally. Once we have built
a graph that reflects the network structure as it will be executed on ESP, the tool
guides the user in efficiently handling memory offsets organization, in particular in
the presence of reconvergent paths. After the parsing step, the tool also provides an
informative table of the Network summary in a dedicated log file. An example of
this graph reorganization is shown in figure 6.2, and an instance of the informative
table is displayed in 6.1

Figure 6.2: Graph integration of Conv, Activation and Pooling from ResNet18

Since ResNets have reconvergent paths composed of at most two CONV layers,
the tool provides a memory offset organization in order to store partial input
features map without overwriting useful data in main memory. This process reflects
the concepts introduced in section 4.2. The output of this step is provided by the
tool under the form of a table in the log file, an example for ResNet 18 is provided
in 6.2.
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Layer Layer Type Input Shape Output Shape Kernel Size Padding ReLU Pooling Batch Norm
Layer 0 Conv [3, 224, 224] [64, 56, 56] [64, 7, 7] 1 1 1 2
Layer 1 Conv [64, 56, 56] [64, 56, 56] [64, 3, 3] 1 1 0 2
Layer 2 Conv [64, 56, 56] [64, 56, 56] [64, 3, 3] 1 0 0 2
Layer 3 Add [64, 56, 56] [64, 56, 56] - - 1 0 1
Layer 4 Conv [64, 56, 56] [64, 56, 56] [64, 3, 3] 1 1 0 2
Layer 5 Conv [64, 56, 56] [64, 56, 56] [64, 3, 3] 1 0 0 2
Layer 6 Add [64, 56, 56] [64, 56, 56] - - 1 0 1
Layer 7 Conv [64, 56, 56] [128, 28, 28] [128, 3, 3] 1 1 0 2
Layer 8 Conv [128, 28, 28] [128, 28, 28] [128, 3, 3] 1 0 0 2
Layer 9 Conv [64, 56, 56] [128, 28, 28] [128, 1, 1] 1 0 0 2
Layer 10 Add [128, 28, 28] [128, 28, 28] - - 1 0 1
Layer 11 Conv [128, 28, 28] [128, 28, 28] [128, 3, 3] 1 1 0 2
Layer 12 Conv [128, 28, 28] [128, 28, 28] [128, 3, 3] 1 0 0 2
Layer 13 Add [128, 28, 28] [128, 28, 28] - - 1 0 1
Layer 14 Conv [128, 28, 28] [256, 14, 14] [256, 3, 3] 1 1 0 2
Layer 15 Conv [256, 14, 14] [256, 14, 14] [256, 3, 3] 1 0 0 2
Layer 16 Conv [128, 28, 28] [256, 14, 14] [256, 1, 1] 1 0 0 2
Layer 17 Add [256, 14, 14] [256, 14, 14] - - 1 0 1
Layer 18 Conv [256, 14, 14] [256, 14, 14] [256, 3, 3] 1 1 0 2
Layer 19 Conv [256, 14, 14] [256, 14, 14] [256, 3, 3] 1 0 0 2
Layer 20 Add [256, 14, 14] [256, 14, 14] - - 1 0 1
Layer 21 Conv [256, 14, 14] [512, 7, 7] [512, 3, 3] 1 1 0 2
Layer 22 Conv [512, 7, 7] [512, 7, 7] [512, 3, 3] 1 0 0 2
Layer 23 Conv [256, 14, 14] [512, 7, 7] [512, 1, 1] 1 0 0 2
Layer 24 Add [512, 7, 7] [512, 7, 7] - - 1 0 1
Layer 25 Conv [512, 7, 7] [512, 7, 7] [512, 3, 3] 1 1 0 2
Layer 26 Conv [512, 7, 7] [512, 7, 7] [512, 3, 3] 1 0 0 2
Layer 27 Add [512, 7, 7] [512, 7, 7] - - 1 0 1

Table 6.1: Network Layer Summary

Layer Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Name Conv0 Conv1 Conv2 Add0 Conv3 Conv4 Add1

In/Out a→c c→a a→b c, b→a a→b b→c a, c→b

Layer Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13
Name Conv5 Conv6 Conv7 Add2 Conv8 Conv9 Add3

In/Out b→a a→c b→a c, a→b b→a a→c b, c→a

Layer Layer 14 Layer 15 Layer 16 Layer 17 Layer 18 Layer 19 Layer 20
Name Conv10 Conv11 Conv12 Add4 Conv13 Conv14 Add5

In/Out a→b b→c a→b c, b→a a→b b→c a, c→b

Layer Layer 21 Layer 22 Layer 23 Layer 24 Layer 25 Layer 26 Layer 27
Name Conv15 Conv16 Conv17 Add6 Conv18 Conv19 Add7

In/Out b→a a→c b→a c, a→b b→a a→c b, c→a

Table 6.2: Layer Memory organization for ResNet18
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After extracting the topology of the network and reorganizing the kernels ac-
cording to the hardware support, we focus on the mapping task itself. We define
an SoC Configurations as SOC_CFG={NMT , NADD, NCONV 2D, DATA_TYPE,
NMAC , PLM_IN(OUT), PLM_W}. We remind that a mapping is a deployment of
a CONV Layer on the SoC utilizing a PS = {#MT, #CONV2D, #N_ADD, PAR-
ALLELISM = {OUTP, INPP}}. It is important to notice that when #CONV2D is
equal to one, no parallelization scheme is applied. In addition, #MT, #CONV2D
and #N_ADD must always satisfy the following rules:

MTP S ≤ CONV 2DP S (6.1)

CONV 2DP S ≤ NCONV 2D (6.2)

CONV 2DP S = 2k with 0 ≤ k ≤ log2(NCONV 2D) (6.3)

N_ADDP S ≤ NADD (6.4)

N_ADDP S = 2k with 0 ≤ k ≤ log2(NADD) (6.5)

The space of the possible PS has the dimensionality of

PSspace = 2 ∗ log2 (NADD) ∗ log2 (NCONV 2D) ∗ log2 (NMT ) (6.6)

where we account for the parallelization strategy multiplying by the factor 2 in
front. A model capable of predicting the latency of a layer deployed with a given
PS can be used to explore the entire space of possible PS and pick the one with
the expected minimum latency for each layer. Algorithm 6 summarizes how the
latency predictor is used to find the best PS for each network layer.

The output of the mapping tool is a report that provides a list of suggested
mappings for a given network and a given SoC configuration. We show an example
input SoC configuration in table, and the corresponding mapping tool output for
ResNet18 in table 6.3.
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Algorithm 6 Find Layer Mapping
1: procedure FindLayerMapping(layer, soc)
2: ▷ Input: layer, soc
3: ▷ Output: best_soc_cfg, min_latency
4: ▷ Initialization
5: min_latency ←∞
6: ▷ Execution
7: for i← 0 to log2(soc[′p_acc′]) do
8: p_acc← 2i

9: for j ← 0 to log2(soc[′n_add′]) do
10: n_add← 2j

11: for w ← 0 to log2(soc[′mem_tiles′]) do
12: mem_tiles← min(2w, p_acc)
13: for parallelism← 0 to 1 do
14: soc_cfg ← {
15: ’mem_tiles’: mem_tiles,
16: ’n_add’: n_add,
17: ’p_acc’: p_acc,
18: ’data_type’: soc[′data_type′],
19: ’mac’: soc[′mac′],
20: ’plm_in’: soc[′plm_in′],
21: ’plm_w’: soc[′plm_w′]
22: }
23: latency ← latency_predictor.predict(layer, soc_cfg, parallelism)
24: if latency < min_latency then
25: min_latency ← latency
26: soc_cfg[′parallelism′]← parallelism
27: best_soc_cfg ← soc_cfg
28: end if
29: end for
30: end for
31: end for
32: end for
33: return best_soc_cfg, min_latency
34: end procedure
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mem_tiles n_add p_acc data_type mac plm_in plm_w
4 2 32 2 16 4096 9216

mem_tiles n_add p_acc data_type mac plm_in plm_w parallelism predicted_latency
4 1 16 2 16 4096 9216 OUTP 3,691,866
4 1 16 2 16 4096 9216 OUTP 3,692,269
4 1 16 2 16 4096 9216 OUTP 3,691,866
4 1 16 2 16 4096 9216 OUTP 3,692,269
4 2 8 2 16 4096 9216 INPP 1,658,939
4 2 32 2 16 4096 9216 OUTP 2,492,627
2 1 2 2 16 4096 9216 OUTP 594,519
4 2 32 2 16 4096 9216 OUTP 2,492,224
4 2 32 2 16 4096 9216 OUTP 2,492,627
4 2 16 2 16 4096 9216 INPP 1,635,571
4 1 16 2 16 4096 9216 INPP 3,386,103
2 1 2 2 16 4096 9216 INPP 842,182
4 1 16 2 16 4096 9216 INPP 3,385,037
4 1 16 2 16 4096 9216 INPP 3,386,103
4 2 32 2 16 4096 9216 INPP 3,185,959
4 2 32 2 16 4096 9216 INPP 3,980,185
4 2 4 2 16 4096 9216 INPP 992,670
4 1 16 2 16 4096 9216 INPP 3,997,516
4 2 32 2 16 4096 9216 INPP 3,980,185

Table 6.3: SoC configuration on top and tool’s mapping output for ResNet18
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6.2 Latency predictor

In this section, we describe the steps we followed in the creation of a latency
predictor model leveraging ML and evaluate the performances after integrating it
in the mapping tool introduced in section 6.1

6.2.1 Dataset

Our goal is to train a model that can predict the latency of CONV layers mapped
on tile-based SoCs with acceptable error. The model’s inputs include the structure
of a CNN layer, the SoC configuration, the convolution parallelization, the layer’s
arithmetic intensity, and the total memory transactions. An example of the
information contained in each observation of the dataset is shown in Table 6.4.

CNN Layer Structural Information
n_channels n_filters feature_map_height
64 64 56
feature_map_width filter_dim stride
56 3 1
do_relu pool_type out_height
1 0 56
out_width weight_dim infmap_dim
56 36864 200704
tot_ops_conv
231211008

SoC Configuration
mac plm_in plm_w
8 4096 9216
mem_tiles data_type n_con2D
1 2 1
n_ewa
1

Additional Parameters
arithmetic_intensity total_memory_transactions parallelism
62.72 3686400 OUTP

Latency (Target)
tot_cycle_convs

40473908

Table 6.4: Information in a datapoint grouped by CNN Layer Structure, SoC
Configuration, Additional Parameters, and Latency
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6.2.2 Learning Models
To implement our latency predictor we now focus on the exploration of well-known
models, starting with Random Forest (RF), Extreme Gradient Boosting (XGB),
and Multi-Layer Perceptron (MLP). In order to easily explore different possibilities,
a versatile API was implemented to enable the user to choose the target model to
experiment with, as well as apply pre-training scaling and/or Principal Component
Analysis (PCA). In this section, we highlight the results obtained by exploring
different model configurations with a particular focus on RF and XGB, which
displayed the most promising performances. Algorithm 7 shows the high-level
description of the API implemented.
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Algorithm 7 Model Training and Evaluation (Part 1)
1: Input: Training dataset, Testing dataset, Model choice (MLP, Random Forest, XGBoost)
2: Output: Trained model, Evaluation metrics, Plots
3: Step 1: Dataset Preparation
4: Load pre-processed datasets into DataFrames: ‘resnet18‘, ‘resnet34‘, etc.
5: Step 2: Configuration Setup
6: Set configurations for scaler_choice, model_choice, and flags for analysis options.
7: Step 3: Dataset Partitioning
8: Define training and testing set choices for each dataset.
9: Iterate through all possible combinations of datasets using itertools.product.

10: for each valid partition (non-empty training and testing) do
11: Create new training and testing datasets by concatenating the DataFrames.
12: Remove unnecessary columns and split them into features and target variables.
13: Step 4: Data Pre-processing
14: if StandardScaler is selected then
15: Scale features using StandardScaler
16: else if MinMaxScaler is selected then
17: Scale features using MinMaxScaler
18: else
19: No scaling is applied.
20: end if
21: Step 5: Dimensionality Reduction
22: if PCA is applied then
23: Apply PCA transformation to datasets
24: end if
25: Step 6: Model Selection
26: if model_choice is ‘MLP‘ then
27: Build MLP model
28: else if model_choice is ‘Random Forest‘ then
29: Build Random Forest model
30: else if model_choice is ‘XGBoost‘ then
31: Build XGBoost model
32: else
33: Raise error for invalid model choice
34: end if
35: Perform model training and evaluation on each partition.
36: end for
37: Output results to log file and display on the console.
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Algorithm 7 Model Training and Evaluation (Part 2)
1: if model is ‘MLP‘ then
2: Compile and train the model for 50 epochs with batch size 32
3: Save model
4: else if model is ‘Random Forest‘ then
5: Fit the Random Forest model and extract feature importances
6: Save model
7: else if model is ‘XGBoost‘ then
8: Fit the XGBoost model
9: Save model

10: end if
11: Log training results and generate training and validation plots.

Random forest

Random forest is an ML method that combines multiple decision tree to create a
robust learning model. The dataset is randomly sampled, during a process called
bagging, and the samples are used to train a set of decision trees. By creating
a random subspace, each tree can learn different patterns within the same data,
leading to more stable and accurate predictions. As usually done with regression
problems, each tree provides a decision and the final prediction is obtained with a
weighted average of such decisions. Some important hyperparameters in the model
configurations are:

• max_depth: this parameter sets the max depth of the individual tree. Setting
this value to a small number creates shallow trees that are able to capture less
complex patterns in the data but also prevent overfitting. It is a good practice
to set a max_depth if the dataset contains irrelevant features or if it is noisy.

• max_features: this is the specify the number of features that are considered
in the splitting of a node into each decision tree.

• n_estimator: this is the number of total trees that will be included in the
Forest ensemble.

• min_sample_split: this parameter sets the required sample to split a node
in a given decision tree. By default set to 2.

• min_sample_leaf: this is the minimum number of samples required to be
present in a leaf node of a decision tree. By default set to 1.[30]

In order to evaluate the results of a given model in predicting the execution
latency of a Network on a given SoC, we treated each network’s dataset as in-
dependent and explored all the possible combinations of networks to build the
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training set, while evaluating the R-squared score for the target network. This
approach results in a comprehensive overview of the performance of the models
in real conditions. In fact, each network under test is completely excluded from
the training and validation set. We use R-squared as a metric for the evaluation
of the model. This metric evaluates how far the scatter data points are from the
fitted regression line and is expressed between 0% and 100%[31]. The left scatter
in figure 6.3 has a low R-squared score, while the right has a high one.

Figure 6.3: Representation of a low and high R-squared score, respectively left
and right. [31]

Listing 6.1 shows the configuration of the RandomForestRegressor used in this
first class of experiments.

Listing 6.1: Random forest model
1 # Conf igurat ion parameters
2 s c a l e r_cho i c e = ’ ’
3 model_choice = ’ random_forest ’
4 apply_pca = False
5

6 # . . .
7

8 # Model Cfg
9 de f build_random_forest ( ) :

10 model = RandomForestRegressor (
11 max_depth=22,
12 n_estimators =25,
13 min_samples_leaf=1,
14 min_samples_split =2,
15 max_features=6,
16 oob_score=True ,
17 random_state=10,
18 verbose=3
19 )
20 re turn model
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The heatmap in figure 6.4 highlights the results of this batch of training on mul-
tiple datasets for three different networks: ResNet18, Squeezenet10, and ResNet50.
The first two networks obtain overall a good score, this is because the range of the
latency of execution of the target network is within one of the networks used in
the training set. Tree-based models tend to struggle with predictions outside their
training range, which limits our ability to map networks that may exhibit higher
latencies than those used for training. In real condition of use of the mapping tool,
the natural choice of the model’s training dataset consists in using the data from
all the available networks to build the training set. In figure 6.4, we highlighted
in blue the set of training networks that provide the overall best result and in
yellow the results of the set that contains all the available networks. In ResNet18
we excluded from the possible choice all the dataset that include ResNet34 in the
training set. This is because the two networks share all the layers and so in this
condition, the input of the testing network will be equal to the training one and the
model will achieve results that are too optimistic. Notice that this could happen in
real conditions, in fact, ResNet18 and ResNet34 are formally two separate networks.
Nevertheless, we preferred to exclude it from the evaluation for a fair evaluation.

Figure 6.4: Heatmaps of ResNet18, Squeezenet1.0 and ResNet50 with different
training sets leveraging Random Forest Regressor
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Extreme Gradient Boosting

In this section, we discuss the results obtained from training and testing an xgboost
model with the same combinations used in the previous section.

Listing 6.2: XGBoost model
1 # Conf igurat ion parameters
2 s c a l e r_cho i c e = ’ ’
3 model_choice = ’ xgboost ’
4 apply_pca = False
5

6 # . . .
7

8 de f bui ld_xgboost ( ) :
9 model = XGBRegressor ( o b j e c t i v e=’ reg : squarede r ro r ’ ,

10 n_estimators =600 ,
11 l e a rn ing_rate =0.008 ,
12 max_depth=11,
13 random_state=42)
14 re turn model

As done for Random Forest, we evaluate which are the best training sets when
we test the model, as shown in figure 6.5. The results of the two models are in
general comparable, with XGBoost almost always scoring higher results.

In real conditions of use of the mapper is impossible to know in advance which
combination of available networks, used in the training dataset, is the most suited
to train a model that maps a given network. The straightforward choice that
doesn’t need any prior knowledge is to include all the available networks in the
training set. In figure 6.6 and 6.7 we evaluate the difference between the training
dataset that includes all the available networks and the best-performing training
dataset. The results of the two are in all cases very similar, concluding that
choosing all the available networks is in general a reasonable choice. An additional
feature that the mapper could implement is a metric that enables the evaluation of
which subset of available networks in the training set is most likely to generate a
well-performing model. Given the correlation between model size and latency, this
metric could leverage statistical tools to predict whether the execution time of the
target network will fall within the range of the networks used in the training set.
Some preliminary explorations have been made in this direction, but it remains an
open problem. To evaluate the best achievable performance of the tool, we used
the best-performing XGBoost regressor as the latency predictor for each mapped
network, noting that the performance difference between this model and the one
trained on all available networks is small and should not significantly degrade the
mapper’s overall performance.
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Figure 6.5: Heatmaps of ResNet18, Squeezenet1.0 and ResNet50 with different
training sets leveraging XGBoost regressor

Figure 6.6: R-sqared random forest:
best Dataset vs Complete dataset

Figure 6.7: R-sqared xgboost: best
Dataset vs Complete dataset

Multi-layer perceptron

Several experiments were conducted by building various MLP models and training
them on different combinations of input networks. To reduce the dimensionality
of the dataset, we applied PCA in combination with a standard scaler. Other
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approaches explored alternative scaling techniques, such as MinMax scaling. How-
ever, none of these methods achieved results comparable to those obtained using
ensemble techniques, which proved to be highly effective for this type of regression
problem.

6.3 Mapper performance
We now aim to assess the performance of the mapping tool in addressing the
problem of finding the best PS for a given network deployed on a given SOC_CFG.
For each CONV layer, we identify the PS that has the predicted minimum latency,
referring to this set of PS as the Predicted Best Mapping (PBM). The predicted
latency of the PS for each layer is derived from the predictor’s model inference
output, and differs from the actual latency measured on FPGA during the data-set
collection. Therefore, we evaluate the Percentage Error (PE) and the Absolute
Error (AE) relative to the same PBM measured on FPGA.

Figure 6.8: Percentage Error and Distance over the selected 50 SOC_CFG

Next, we need to assess how far we are from the Measured Best Mapping
(MBM), which is the set of PS that provides the lowest measured latency when
deployed on the SOC_CFG under test on FPGA. To this end, we introduce the
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Percentage Distance (PD) and the Absolute Distance (AD). To evaluate the per-
formances of a significant batch of SOC_CFGs, we selected 50 SOC_CFGs from
the possible subsets of resources in our 18 bitstreams. The total dimensional-
ity of this space of SOC_CFGs is given by the sum of the SOC_CFGspace =
log2 (NADD)× log2 (NCONV2D)× log2 (NMT) for each bitstream. For all these config-
urations we evaluate the MBM and we choose the 50 best-performing SOC_CFG.
In figure 6.8, we show the evolution of the PE and the PD over the selected 50
SOC_CFG.
To provide a more compact representation of these results, we define the Mean
Percentage Error (MPE), the Mean Percentage Absolute Error (MAPE), and the
Mean Absolute Error (MAE), as follows:

MPE = 1
n

nØ
i=1

ŷi − yi

yi

× 100 (6.7)

MAPE = 1
n

nØ
i=1

----- ŷi − yi

yi

-----× 100 (6.8)

MAE = 1
n

nØ
i=1
|ŷi − yi| (6.9)

where:

• n is the number of SoCs

• yi is the measured latency

• ŷi is the predicted latency

To assess the mapping capabilities of the tool, we introduce the Mean Percentage
Difference (MPD) and the Mean Absolute Difference (MAD) defined as:

MPD = 1
n

nØ
i=1

m̂i −mi

mi

× 100 (6.10)

MAD = 1
n

nØ
i=1
|m̂i −mi| (6.11)

where:

• n is the number of SoCs

• mi is the measured latency of the Measured Best Mapping

• m̂i is the measured latency of the mapping suggested by the tool
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We don’t need to introduce the Mean Absolute Percentage Difference (MAPD)
since the distance from the MBM will always be greater or equal to zero. In
particular, it will be zero when PMB and MBM are the same or, in other words,
when the mapper is able to identify all the best-performing mappings across the
network’s layers.

The results of the evaluation of the batch of SOC_CFG are provided in table
6.5. Overall the mapper shows an accuracy in predicting the latency of the PBM
that oscillates between 6.6% MAPE for ResNet34 and 14.2% for Squeezenet1.1.
The MPD, provided in table 6.6, is instead 13.6% for ResNet34 and 21.2% for
ResNet50 that is, as expected, the worst performing network. A final note is
on Squeezenet1.0, which shows good results in terms of MPE and MAPE, with
a significant degradation in MPD and MAD. This happens because the model
fails to find the best mapping for few layers that impact significantly on the final
performance due to the smaller dimension of the model. A solution to overcome
this problem could be to keep track of these critical layers and include more
measurements of similar configurations in the training set.

Target Network MPE (%) MAPE (%) MAE
ResNet18 -3.105 9.605 5672445
ResNet34 -0.646 6.648 7676807
ResNet50 -14.930 16.109 30132143

Squeezenet1.0 1.648 6.680 1724217
Squeezenet1.1 13.502 14.252 2116897

Table 6.5: Mean Inference Error

Target Network MPD (%) MAD
ResNet18 14.075 7094909
ResNet34 13.684 13500032
ResNet50 21.276 31893812

Squeezenet1.0 20.167 6104921
Squeezenet1.1 16.912 2284314

Table 6.6: Mean Inference Distance
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Chapter 7

Conclusion and future works

In this section, we discuss possible extensions of the mapping tool leveraging the
versatility of the latency prediction model that we implemented. Finally, we provide
the conclusions of the thesis.

7.1 Design Space Exploration Tool
In section 6.1 we implemented an infrastructure that leverages ML models to
optimize the deployment of a CNN on a given input SOC_CFG. Here, we propose
a possible alternative to this flow to create a constrained DSE tool. The goal is to
provide the user with a Pareto curve with different possible SoCs that are within
the boundaries of the given constraints, and how these SoCs will perform when
deployed on FPGA.

The first step of this different structure, shown in figure 7.1, is to generate a set
of synthetic SoC from the available constraints and proceed to find the PBM for
each of them. Once we have the predicted latency for all of them we calculate the
area of each SoC, based on the information provided by the FPGA logic synthesizer
summing the contribution of each tile independently, then selecting the ones that
are Pareto optimal. To reach this goal, we implemented a simple version of the
DSE tool in figure 7.1, setting the following constraint:

• Number of CONV2D=32

• Number of EWA=2

• Number of MTs=4

We excluded the micro-architectural parameters inside the CONV2D accelerators,
namely PLMs dimensions, MAC parallelism, and data type, fixing them to PLM_IN:

74



Conclusion and future works

Figure 7.1: Design Space Exploration Tool

4096, PLM_W: 9216, MAC: 8, DATA_TYPE: 2, from the possible SoCs in the
DSE. The results of this proof of concept are highlighted in figure 7.2.

Figure 7.2: Pareto Curve in Output of the DSE tool
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7.2 Conclusions
In conclusion, we demonstrate the possibility of mapping popular CNNs on complex
tile-based SoCs leveraging a data-driven approach. As opposed to intensive system
modeling and development of heuristics, traditionally employed to deploy computa-
tional kernels onto hardware efficiently, Machine Learning offers an empirical model
that learns specific patterns within raw data. The versatility of a latency predictor
could be leveraged by moving towards a structure as the one in 7.1, integrating
different metrics in ranking the SoCs and focusing on the micro-architectural pa-
rameters. Another interesting possibility could be to model the power performance
during FPGA execution and train a model able to predict the power consumption
of a given deployment, creating, along with SoC area and CNN execution latency,
a multi-objective DSE tool. While our focus was on FPGA platforms, this method-
ology could be extended to profile other technologies, making it relevant also for
ASIC designs. Given the high cost of producing ASIC and the rapid evolution of
software applications, especially in the context of machine learning, this approach
could be instrumental in mapping new applications efficiently onto existing ASIC.
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