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Abstract
This study explores the potential of off-the-shelf Vision-Language Models (VLMs)

for high-level robot planning in the context of autonomous navigation. Indeed, while

most of existing learning-based approaches for path planning require extensive task-

specific training/fine-tuning, we demonstrate how such training can be avoided for

most practical cases. To do this, we introduce Select2Plan (S2P), a novel training-

free framework for high-level robot planning which completely eliminates the need

for fine-tuning or specialised training. By leveraging structured Visual Question-

Answering (VQA) and In-Context Learning (ICL), our approach drastically reduces

the need for data collection, requiring a fraction of the task-specific data typically

used by trained models, or even relying only on online data. Our method facili-

tates the effective use of a generally trained VLM in a flexible and cost-efficient way,

and does not require additional sensing except for a simple monocular camera. We

demonstrate its adaptability across various scene types, context sources, and sens-

ing setups. We evaluate our approach in two distinct scenarios: traditional First-

Person View (FPV) and infrastructure-driven Third-Person View (TPV) navigation,

demonstrating the flexibility and simplicity of our method. Our technique signif-

icantly enhances the navigational capabilities of a baseline VLM of approximately

50% in TPV scenario, and is comparable to trained models in the FPV one, with as

few as 20 demonstrations.
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1 Introduction
Traditionally, autonomous systems rely on a rich array of onboard sensors, such as Li-

DAR, sonar, and stereo cameras, to perceive their environment, make decisions, and navi-

gate safely. These sensors provide a detailed, multi-modal understanding of the surround-

ings, enabling precise navigation even in complex and dynamic environments. However,

the reliance on such comprehensive sensory input presents limitations, particularly in sce-

narios where weight, cost, or environmental constraints make the use of extensive sensors

impractical. Path planning for vehicles is a longstanding problem in robotics, traditionally

addressed using model-based or Reinforcement Learning (RL) approaches [1]–[3]. How-

ever, methods that directly learn from experience often struggle when confronted with

ambiguous or unfamiliar scenarios. Interestingly, recent research has shown that Large

Language Models (LLMs) and Vision Language Models (VLMs) demonstrate surprising

reasoning capabilities that can be adapted for proposing robot paths in arbitrary scenes

[4]. Indeed, these models excel at incorporating common-sense reasoning acquired dur-

ing their long pretraining phase [5]. This ability is crucial in robotics operations, where the

deployment scenario rarely aligns perfectly with the training dataset [6], [7]. While meth-

ods like LoRA [8] reduce the computational cost of fine-tuning LLMs and VLMs, they

still require domain-specific data, which can be costly to obtain. In parallel, In-Context

Learning (ICL) and Retrieval-Augmented Generation (RAG) have shown promising re-

sults in scoping the ability of LLMs at deployment time with no additional fine-tuning,

mitigating these costs.

Our novel framework – Select2Plan (S2P) – combines Visual Question-Answering

(VQA) and ICL with VLMs in a training-free manner, showing remarkable flexibility

across various scenes, contexts, and setups. More specifically, we formulate the planning

problem as a VQA task using visual prompting. A high-level overview of the approach

can be observed in 1.1. Inspired by [9] and [10], we generate a set of position candidates

in the image space and use them as part of a query mechanism to a VLM, to extract the

next robot move. We combine this approach with ICL to enhance the model’s reliability:

we retrieve similar successful samples and use them, along with the current annotated
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Figure 1.1: High-level demonstration of S2P in a TPV scenario. The robot must reach the red

mark from its location, controlled solely via the external camera, shown in the figure. S2P proposes

candidate keypoints – in yellow – and draws them into the original image before requesting a

feasible trajectory to an off-the-shelf VLM. The latter will output a trajectory – green – as a

sequence of keypoints, ideally yielding a trajectory that avoids obstacles – e.g. 3 and 9.

image, as context to support the model’s generalization. In this way, we can generate a

robust path, which can span multiple planning steps within a single response, in contrast

to the iterative approach taken by [9].

We evaluate our system in two different navigation scenarios. The first is a more

traditional FPV, where the robot is equipped with a monocular camera and needs to reach

specific objects in the scene. The challenge in this case is the sensor’s limited view, as the

goal object might get out of view while the robot navigates the environment. As a second

test-bench, we consider a robot controlled through eye-to-hand visual servoing, as in [11],

[12] and as depicted in 1.1. Here, the camera is not physically attached to the robot, and

the far viewpoint inherently limits the depth [13] and spatial resolution. However, given

the widespread use of CCTV cameras, we believe this approach offers new opportunities

and, interestingly, this setup also mirrors the type of data that VLMs are trained on –

static RGB images paired with textual descriptions – making these models well-suited for

tasks involving external camera navigation. We show how our setup can flexibly adapt to

both visual inputs and diverse sources of context, such as videos from the Internet or even

human traversal of the scenario.
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To summarise, our main contributions are:

1. A framework for planning and navigation using only RGB data, leveraging struc-

tured VQA, ICL and retrieval techniques to reduce the task-related data needed to

just a handful of episodes.

2. The application of this framework to two separate scenarios: traditional FPV navi-

gation and infrastructure-driven TPV navigation.

3. An extensive analysis of the impact of different sources of in-context examples on

the system’s overall performance.

Our empirical analysis demonstrates that our approach enhances the navigational abilities

of VLMs without requiring further training, and lays the groundwork for more sophisti-

cated and flexible planning in autonomous systems. To the best of our knowledge, our

approach is the first that can seamlessly adapt to multiple setups and utilise multiple

sources of in-context samples.
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2 Background
Our research lies at the confluence of robot navigation, planning, Large Language

Models (LLMs), Vision Language Models (VLMs), and In-Context Learning (ICL). This

review examines the most pertinent literature, highlighting both commonalities and dis-

tinctions while emphasizing the novel aspects of our methodology.

2.1 Robotic Navigation: Overview

Conventional approaches to robot navigation tasks, including Object Navigation and Vi-

sual Navigation, have predominantly relied on Reinforcement Learning (RL) to develop

policies for complex scenarios. The majority of these methods employ deep RL algo-

rithms that process visual inputs to guide robots through various environments. Seminal

works such as [1]–[3] utilized deep RL algorithms to train agents capable of navigation

using high-dimensional sensory data, effectively leveraging vision for locomotion. While

these approaches successfully enabled robots to learn navigation through trial and error,

they also addressed challenges related to dynamic environments, object detection, and

localization. However, deep RL models generally suffer from limited sample efficiency;

their dependence on training in specific scenarios often results in poor generalization to

novel, previously unseen environments. Moreover, most RL-based methods typically re-

quire extensive training periods and numerous interactions with the environment, render-

ing them computationally expensive. In response to these challenges, recent research has

shifted focus towards transformer-based models for robot navigation. Initially gaining

prominence in Natural Language Processing (NLP), transformers have found application

in robotics due to their superior ability to model long-range dependencies compared to tra-

ditional Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

for sequential data. These models have demonstrated enhanced generalization capabilities

for navigation policies, particularly in tasks involving the comprehension and processing

of spatial and temporal relationships across large-scale environments. A more detailed

examination of these models will be presented in the subsequent section.
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2.2 Transformers, Large Language and Vision Language

Models

2.2.1 Introduction to Transformers and derived models

The transformer architecture, introduced by [14] in the paper "Attention is All You Need",

is a radical departure from familiar sequence-based neural networks such as Recurrent

Neural Networks (RNNs) and Long-Short Term Memory (LSTM). Transformers depend

on a specific mechanism that could be referred to as self-attention, where it can weigh dy-

namically against parts of the input sequence that are less relevant. This self-attention

mechanism proceeds to process all the tokens in parallel, which allows the model to

capture long-range dependencies and relationships of context without requiring the pro-

cessing to be sequential. Fundamentally, the Transformer architecture is based on an

encoder-decoder model that separates input encoding and output decoding into two dif-

ferent processes. While the former is normally regarded as transforming input sequence

into a vector of fixed length, the latter generates the output sequence from that vector.

This architecture allows the training of the model jointly to maximize the conditional log-

likelihood of the output given the input for any kind of task, such as machine translation

and text generation [15]. Figure 2.1 offers a high-level overview of the model. The en-

coder consists of a number of layers chained together, with each comprising a multi-head

attention mechanism and a feed-forward neural network. With such a design, the encoder

is able to extract invariant features from an input sequence while processing all elements

in parallel, thus overcoming the unavailability of parallelization inherent in RNNs, which

process data in sequence. Each position within the sequence is further augmented not

only with word meaning through embedding and position encoding layers but also with

positional information, which is combined for further processing. While the encoder pri-

marily generates contextualized representations with a host of useful information, the de-

coder fundamentally generates sequences based on these contextualized representations

received from the encoder. Similar to the encoder, the decoder is also based on multi-head

self-attention and feed-forward neural network layers that help the model in coherence,

preserving contextual relevance across the generated output.

Attention will be the backbone of the Transformer model, featuring scaled dot-product
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Figure 2.1: Architecture of a Transformer model: The structure consists of an encoder-decoder

framework. The encoder processes input sequences by applying multi-head self-attention mech-

anisms and position-wise feed-forward layers, capturing long-range dependencies. The decoder,

similarly structured, generates output sequences while attending to both the input through encoder-

decoder attention and its own past outputs. Layer normalization and residual connections are used

throughout to stabilize and improve training. Figure and caption taken from original paper [14].

attention and multihead attention. Scaled dot-product attention computes attention scores

through a query, key, and value mechanism whereas multi-head attention applies the

above process in parallel across various representation subspaces. This allows it to jointly

pay attention to information from multiple aspects of the input.

The resulting formula to compute attention is reported in Equation 2.1.

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2.1)

The Transformer takes advantage of position encoding, which was very helpful in cap-

turing the order of words within a sequence. This enables the model to identify exactly
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which position is occupied by each word, when that would often be key to discerning

context and meaning in a flow of text. Sinusoidal position encodings are recommended

due to their simplicity in being able to capture relative positions and understand lengths

of sequences longer than what it was trained with.

Modern LLMs have the transformer architecture and are trained on very large cor-

pora of text data. These include models like OpenAI’s GPT-3 [16] and Google’s BERT

[17], which have raised the bar for state-of-the-art natural language understanding and

generation. GPT-3, for example, has 175 billion parameters and is able to generate highly

coherent and contextually relevant text with the given prompt. While BERT is an advance

to address contextual understanding from both directions of sentences and therefore very

impressive for tasks such as question-answering and named entity recognition.

Pre-training for LLMs starts from the training of large corpora to learn representations

of language, followed by fine-tuning for a special task in order to adapt these represen-

tations to a particular application. The notable size of an LLM combined with enormous

training data imparts it with remarkable capability related to generalization across a wide

range of language tasks and domains.

Besides the improvement in language processing, through Vision Transformers (ViTs),

the transformer architecture has also been extended into the realm of computer vision.

Vision Transformers represent a break from traditional convolutional neural networks -

CNNs - in an adaptation of this model to image data. Introduced by [18], in Vision Trans-

formers, image patches are considered tokens, just like words in an ordered text sequence.

These ViTs divide the image into non-overlapping fixed-size patches, flatten them, and

then linearly project these into a lower dimensionality space to obtain patch embeddings.

These are combined with positional encodings to retain certain spatial information. The

sequence of embeddings, which results from this process, is fed into a standard trans-

former encoder. The overview of ViT is presented in Figure 2.2. This approach enables

the Vision Transformers to capture global relationships of an image by utilizing the self-

attention mechanism, thus offering a strong alternative to locally limited receptive fields

of CNNs.

Important advantages of Vision Transformers are long-range dependencies in a picture

they capture, thus enhancing performance within different vision tasks. ViTs achieved

competitive image classification benchmarks for the further extension of this approach to
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Figure 2.2: An illustration of the Vision Transformer (ViT) architecture: input images are split

into fixed-size patches, linearly embedded, and combined with positional encodings. These em-

beddings pass through multiple transformer layers, with self-attention mechanisms capturing

global relationships, before final classification by a fully connected layer. Figure and caption

taken from original paper [18].

object detection and image segmentation.

The transformer architecture had first revolutionized natural language processing,

computer vision, among a few other domains, by outstanding breakthroughs in sequence-

to-sequence tasks. Large Language Models, built on transformers, reached the state-of-

the-art in understanding and generating human languages. Moreover, Vision Transform-

ers showed promising results by applying transformer principles to image data. Together-

the emergence of such wide and challenging tasks across different domains-will testify to

the versatility and power of transformers.

These models began to be used more and more in Robotics and in Navigation espe-

cially, for their notable adaptability. For instance, [19], introduced an Object Memory

Transformer model designed to handle Object Navigation tasks, showcasing improved

memory retention and decision-making abilities. This model allows robots to maintain

a more robust memory of objects and their locations, resulting in more efficient navi-

gation strategies. [20] further expanded on transformer-based models with Visual Nav-

igation Transformer (ViNT), a framework designed to handle diverse visual navigation

tasks by capturing long-term visual features more effectively than traditional RL methods.

[21] introduced NoMaD, a navigation framework that leverages transformers to facilitate

enhanced spatial awareness and adaptability in unseen environments, underscoring the
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model’s potential to outperform RL-based systems in generalization and long-term plan-

ning.

These latest advancements in transformer-based models mark an important milestone

in robot navigation, traditionally plagued by limitations of deep RL methods. Applying

their capability for long-range dependency modeling and memory mechanisms, trans-

former models are emerging as promising models for robot navigation tasks that address

requirement scalability, robustness, and generalization across diverse and complex envi-

ronments.

2.2.2 Evolution of Vision Language Models

Visual Language Models represent the evolution of multimodal learning where models

integrate and process both visual and textual data. There was originally an obvious ten-

dency to propose the use of CNNs for the processing of visual data with transformers for

textual data analysis. After that, there were more and more proposals focused on the joint

training for visual and textual data using two different branches—one for each modal-

ity—followed by a network responsible for fusion. Some of the first examples of VLMs

were indeed those to have emerged in the mid-2010s, and two of the most successful in-

stances being [22] and [23]. They proved to be successful due to their basic principle,

which is the backbone of functionality within the VLMs themselves: enabling the model

effectively to communicate between its visual and textual representations by aligning im-

age embeddings from a visual backbone with that of a text backbone. However, the area

did not take off as expected then due to the lack of big datasets and powerful architec-

tures. Starting from these rather simpler models, the development of the field lead to huge

architectures with billions (and even trillions) of parameters. The companies operating in

this domain moved either to proprietary methods or open-source philosophy.

2.2.3 VLM Architectures

Rather recent developments introduced models such as CLIP—Contrastive Language-

Image Pretraining [24] by OpenAI. A pretraining inspired by CLIP relies on contrasting

an image and its caption, aiming to align both in one embedding space. That was the

capability that realized zero-shot classification tasks enabled through the comparison of

an image directly with textual labels. Training CLIP on a huge dataset of image-caption
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Figure 2.3: Overview of the main VLMs pre-training architectures. Figure and caption taken

from [25].

pairs enables generalization across a wide array of visual and linguistic tasks without

task-specific fine-tuning. Being the architecture public, researchers had the opportunity

to start from CLIP and create more and more advanced models.

One of the key aspects of an effective VLM is how to combine image embeddings into

the text embedding space. The architectures can usually be divided into three macro

categories:

1. Two-Tower VLM where the connection among Vision and Text embeddings is at

the final stage. CLIP is the classic example of this approach.

2. Two-Leg VLM where a single LLM takes text tokens along with tokens from Vision

Encoder.

3. Unified VLM where the backbone is attending to Visual and Textual inputs at the

same time.

The main architectures are reported in Figure 2.3.

In particular, as for techniques for combining visual and textual information, it is possible

to identify strategies such as Shallow/Early, Late, and Deep Fusion [25].

Early Fusion These models all have in common that the interaction between visual

inputs and language happens early on. From a high level, this approach usually does not

process the visual data much before feeding it into a stage that processes text. Thus, it

is also known as "shallow" fusion. Given a well-aligned vision encoder, this can easily

support multiple image inputs, something even far more advanced models often struggle
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with. Because of this, many approaches take the path of early fusion. Two of the major

early fusion methods are discussed below.

Vision Encoder This methodology represents one of the more straightforward ap-

proaches to integrating visual and linguistic processing. A crucial step in this approach is

ensuring compatibility of the outputs of the vision with the input of an LLM, while train-

ing only the vision encoder, hence keeping the latter frozen. The architecture is essentially

a decoder-only transformer with an additional branch for the image encoder. This is rel-

atively easy to implement, intuitive, and usually does not require the introduction of any

additional layers. These architectures share the same final objective as LLMs: maximize

the accuracy of next-token prediction. One of these works, [26], extends the training of

the vision encoder by prefix tuning. They operate by appending a static token to all vi-

sual inputs, which allows the vision encoder to contextually alter its output based on the

response of the LLM to the prefix. A short summary of their approach is given in Figure

2.4.

Figure 2.4: Frozen Inference Interface. The figure demonstrates how Frozen supports: (a) Visual

Question Answering, (b) Outside-Knowledge Question Answering and (c) Few-Shot Image Clas-

sification via In-Context Learning. Figure and caption taken from original paper [26].

Vision Projector/Adapter The primary disadvantage of relying exclusively on a

vision encoder is the fact that guaranteeing its output will be directly compatible with the

LLM is challenging, which restricts potential combinations of vision encoders and LLMs.

This can be done in a more flexible way, by introducing an intermediary layer between

these two networks that rescales the output of the vision encoder to match the expected

input by LLM. You can use a projector in order to align any vision embeddings with
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Figure 2.5: Overview of Bunny [29] architecture. It offers a flexible choice of vision encoder and

LLM backbone combination, which are aligned through the cross-modality projector.Figure and

caption taken from original paper [29]

any LLM. That’s more flexible than simply training the vision encoder. The other option

is freezing both the vision and LLM networks; this speeds up training since adapters are

typically small in size. The projectors can be as simple as a multi-layer perceptron (MLP),

consisting of several linear layers interspersed with non-linear activation functions. Some

examples of models using this approach are:

1. LLaVa family of models ([27] [28]) - The architecture, which appears straight-

forward at first glance, has gained recognition for its focus on training utilizing

high-quality synthetic data (and for its performance).

2. Bunny [29] - An architecture which supports several vision and language back-

bones. It uses [8] to train LLMs component in an efficient way. Overview presented

in 2.5.

3. BLIP-2 [30] utilizes a Q-Former [31] as its adapter for stronger grounding of con-

tent with respect to images.

4. DeepSeek-VL [32] uses instead multiple encoders to preserve both high-level and

low-level details in the image. However, their approach is also based on exploiting

"Deep Fusion" which we will explore further later in the section.

Late Fusion In these architectures, the vision and text models remain completely sep-

arate, with their embeddings only being combined during the loss calculation. Typically,
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Figure 2.6: Overview of CLIP working. While standard image models jointly train an image

feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder

and a text encoder to predict the correct pairings of a batch of (image, text) training examples.

Figure and caption taken from original paper [24]

this involves the use of contrastive loss and [24] is the main example. Here text and image

are encoded separately and are compared via contrastive loss to adjust the encoders. In

Figure 2.6 is reported an overview of the architecture.

Deep Fusion These architectures usually attend to image features in the deeper layers

of the network allowing for richer cross modal knowledge transfer. Typically the training

spans across all the modalities. They, hence, require more time to train but may offer

better efficiency and accuracies. Sometimes the architectures are similar to Two-Leg

VLMs with LLMs unfrozen:

1. GroudingDINO [33] - uses Localization Loss on a cross-modality transformer to

perform zero-shot object detection, i.e, predict classes that were not present in train-

ing. The architecture overview is reported in Figure 2.7

2. Chameleon [34] - treats images natively as tokens by using a quantizer leading to

text-vision agnostic architecture.

3. Flamingo [35] - The vision tokens are computed with a modified version of ResNET

[36] and from a special layer called "Perceiver Resampler", which works as DETR
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[37]. It then uses dense fusion of vision with text by cross-attending vision tokens

with language tokens using a frozen LLM.

4. MoE-LLaVa [38] - uses the Mixture of Experts technique to handle both vision

and text tokens. It trains the model in two stages where only the FFNs are trained

first and later the LLM.

Figure 2.7: The framework of Grounding DINO. In the figure they present: the overall framework,

a feature enhancer layer, and a decoder layer in block 1, block 2, and block 3, respectively. Figure

and caption taken from original paper [33].

Figure 2.8: Chameleon overview. It represents all modalities: images, text, and code, as discrete

tokens and uses a uniform transformer-based architecture that is trained from scratch in an end-

to-end fashion on about 10T tokens of interleaved mixed-modal data. As a result, Chameleon

can both reason over, as well as generate, arbitrary mixed-modal documents. Text tokens are

represented in green and image tokens are represented in blue. Figure and caption taken from

original paper [34]
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2.2.4 VLM Training

Training a VLM is a very complex process that can make use of multiple objectives,

each aimed at performance improvement on various tasks. Below, we review some of the

common objectives during both training and pre-training of VLMs.

Contrastive Loss The model learns from this objective to bring closer the embedding

of related pairs and push further apart the embedding of unrelated pairs. This finds broad

application because the gathering of matching pairs (e.g., image-text pairs) is relatively

simple, and training can take full advantage of a large number of negative (unrelated)

samples. One popular example is CLIP, where they used contrastive loss to align the

embeddings of images and text. [39] also use this approach. [40] further enhances this

by pre-training the vision encoder first using an image-to-image contrastive loss, which

results in better performance when fine-tuned on an image-text task. Another enhance-

ment of the contrastive loss is done by [41], who incorporate image labels and text hashes,

called Unified-CL. In contrast, [42] apply two contrastive losses: one on the alignment of

images and text and one for the alignment of text.

Generative Loss Generative loss treats the VLM as a generator; it is commonly utilized

for tasks such as zero-shot learning and language generation. One of the common forms

is Language Modeling Loss, meant to predict the next token in a sequence. [34] takes

this even further by employing the same loss to predict image tokens, while [43] applies

this across all its tasks. In Masked Language Modeling (MLM), the model learns to

predict masked text tokens given their context. It is best exemplified in the models like

[44]. Masked Image Modeling (MIM) involves masking parts of an image and training

the model on the estimation of these deleted patches. These models using this include

[45] amongst several others, while [46] and [47] are a few of the models that use the

Masked Autoencoder approach (MAE) [48]. In Figure 2.10 is reported the training and

architecture overview of FLAVA. A more integrated approach is Masked Image+Text

Modeling, whereby both image and text tokens are masked together, ensuring the model

captures cross-domain interactions efficiently. [47] exemplifies this combined method.
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Figure 2.9: Florence-2 Architecture. Florence-2 consists of an image encoder and standard multi-

modality encoder-decoder. It is trained on FLD-5B data in a unified multitask learning paradigm,

resulting in a generaslist vision foundation model, which can perform various vision tasks. Figure

and caption taken from original paper [43]

.

Specialized Cross-Modality Alignments For instance, [30] presents an Image-Grounded

Text Generation loss for generating text highly consistent with the input image. On the

other hand, [45] proposes the Word Patch Alignment method to roughly locate words in

the layout of a document. This becomes particularly significant when tasks require the

model to discern the spatial arrangement of text and images, for instance, document pro-

cessing. This goal makes VLMs understand deep relationships between images and texts.

These make them accomplish a variety of tasks ranging from captioning, text generation

to image understanding.

Training Best-Practices Training VLMs consists of not only choosing appropriate ob-

jectives but also best practices to optimize performance such as effective usage of pre-

training, fine-tuning, instruction tuning, and handling complicated visual inputs [25].

Pre-training The traditional first step is a process called pre-training, where only

a part of the model-for instance, the adapter or projector layer-is trained on large-scale

datasets comprising millions of image-text pairs. In all, the goal of this process is to align

the image encoder with the text decoder. Most pre-training is unsupervised and based

on objectives such as contrastive loss or next-token prediction. One important aspect,

though, is the size of the data: enormous datasets ensure that the model will learn general
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Figure 2.10: FLAVA model overview. The FLAVA model consists of three main components:

an image encoder transformer for unimodal image representations, a text encoder transformer for

unimodal text processing, and a multimodal encoder transformer that integrates the image and

text representations for multimodal reasoning. During pretraining, the model uses masked image

modeling (MIM) and masked language modeling (MLM) for individual image and text inputs,

while contrastive, masked multimodal modeling (MMM), and image-text matching (ITM) losses

are applied to paired image-text data. For downstream tasks, classification heads are added to each

encoder for visual recognition, language understanding, and multimodal reasoning tasks. Figure

and caption taken from original paper [47].

relations between images and text. Text prompts are also often modified to make sure that

in this process, the model really captures the context of the image using the language.

Fine-tuning Fine-tuning follows pre-training as the next stage. Again, this will

depend on the architecture of the model, but several components may be unfrozen and

retrained: the adapter, text, and vision encoders. Specialization allows the model to spe-

cialize further at an increased cost regarding complexity-that is, more parameters are now

trainable. Fine-tuning is generally slow since it involves a high number of parameters;

thus, it usually employs a smaller dataset that is more refined. That would also ensure the

data being utilized here is of better quality and task-specific, hence allowing the model to

focus on performance improvement over specialized tasks.

Instruction Tuning Instruction tuning tends to happen in a post-training, fine-tuning

kind of process for models trying to achieve the status of chatbots. At that point in time,

training data is transformed into some type of instructional format, which usually includes

a large language model. This comes in handy for adapting the VLM to execute tasks that
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require the model to follow instructions-a typical application for conversational AI. That

is, this will make it more responsive and capable of handling human-like interaction.

Efficient Training/Finetuning with LoRA Fine-tuning of all the parameters is com-

putationally expensive for a large-scale model. LoRAs are techniques that can be used to

make training more efficient by reducing the number of trainable parameters. This train

method updates smaller task-specific layers, and not the whole model. This saves much

time and computing resources yet still enables fine-tuning on specialized tasks.

The result is that these combined best practices in the training of VLMs yield models

that are generalizable yet capable of handling specialized tasks across various domains.

2.2.5 Proprietary Models (Closed Source)

The evolution of VLMs has reached a new pinnacle with the creation of large-scale

Vision-Language Models like OpenAI’s GPT-4V [49], Google’s Gemini [50] and Claude

3 [51], among all. These models represent the state of the art for what concerns VLMs.

Given the proprietary nature of these models, direct access to their precise architectural

specifications and parameters remains restricted. The GPT-4V [49] is an extension of

the GPT-4 architecture that supports visual inputs in addition to textual data. It lever-

ages the powers of large-scale language modeling in GPT-4 by further introducing com-

plex visual-processing mechanisms into its architecture. GPT-4V is trained on large-scale

datasets that include, but are not limited to, images with textual descriptions for highly de-

tailed and contextually appropriate descriptions of visual scenes, solving complex visual

questions, and performing advanced joint visual-textual interactions. It follows a unified

architecture where the visual and textual streams are processed in a shared representation

space, thus allowing for seamless integration and mutual enhancement of both modalities.

In April 2024, Google introduced an updated version of Gemini Pro [52], marking a

significant advancement in Vision-Language Models (VLMs). This new iteration lever-

ages a highly efficient transformer-based architecture, specifically optimized for multi-

modal tasks. Gemini Pro 1.5’s key innovation lies in its implementation of advanced

techniques, particularly Ring Attention, which proves crucial for expanding the model’s

context window. Ring Attention represents a novel approach to the attention mechanism,

designed to balance computational efficiency with the capture of important local depen-
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dencies. Unlike traditional full self-attention mechanisms, Ring Attention restricts its

focus to a limited range of neighboring positions. This targeted approach significantly re-

duces computational complexity, making it particularly suitable for tasks involving long

sequences where local context holds greater relevance. The essence of Ring Attention can

be understood through its formula, which applies a locality constraint to the conventional

attention calculation. This modification allows Gemini Pro 1.5 to process an impressive

1 million tokens of context – a substantial increase over its predecessors and competitors.

This technique’s implementation in Gemini Pro 1.5 not only showcases Google’s contin-

ued innovation in the field but also highlights the ongoing efforts to enhance AI models’

ability to handle and understand vast amounts of contextual information across multiple

modalities.

Claude 3 [51] is a suite of three models released in 2024 by Anthropic. The main

differences introduced are the use of the Sparse Transformer Architecture: a novel sparse

transformer architecture, which introducing sparsity into the attention mechanism, makes

it far more efficient. This approach hence significantly reduces the computational com-

plexity and memory requirements, enabling the model to scale to unprecedented sizes

while maintaining challenging performance. Another strong point is the introduction of

the Reversible Transformer Layers, which allow for efficient back-propagation during

training. This innovation allows to further reduction of the memory footprint and enables

training on larger datasets, leading to overall better performance.

These models signify the advancement in joint representation learning and sophisti-

cated handling of diverse multimodal data. They demonstrate a deepened understanding

and generation capability across both vision and language domains, achieving significant

gains in generalization and task performance, thereby setting new benchmarks in the field

of Vision-Language Models. A major disadvantage of these models is the requirement

for a lengthy and expensive training phase. Consequently, recent literature, including

this work, has introduced a new trend: exploiting these models with prompt-engineering

techniques to circumvent additional fine-tuning. Another limitation is their closed-source

nature, which precludes direct hosting and further study. However, in this work, we trans-

form this constraint into an advantage by utilizing APIs, thus eliminating the need for

powerful hardware.
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2.2.6 Benchmarks for Vision Language Models

This chapter highlights the most important benchmarks that could be used in the evalua-

tion of VLMs over a wide range of tasks. These benchmarks allow models to be tested

on perception, reasoning, and knowledge extraction, among others, ranging from visual

question-answering to document-specific challenges.

MMMU (Massive Multi-discipline Multimodal Understanding and Reasoning) First

proposed in 2023, MMMU [53] is an 11.5k document complete benchmark that targets

generalized evaluation on several domains, which evaluates perception, knowledge, and

reasoning. In a zero-shot setting, models are challenged to generate correct answers with-

out fine-tuning or few-shot demonstrations. An improved variant, MMMU-PRO, includes

harder questions and removes data points that could potentially be solved just by the text

inputs themselves.

MME (Multi-Modal Evaluation) MME [54] is a benchmark created in 2023 that has

less than 1000 highly selected images. It consists of 14 subtasks with around 50 images

for each and all with yes/no answers. The benchmark covers different aspects of object

existence, perception of famous objects/people, and the translation of text. This has its

distinctiveness in that none of the examples can be found on the internet, meaning that the

VLMs are not biased in their evaluation.

MMStar First proposed in 2024, MMStar [55] is a high-quality subset of 6 VQA

datasets, with 1,500 samples in total. They are rigorously filtered such that the ques-

tion cannot be answered using only the knowledge in the text, the image must be used

to produce the response, and the sample cannot be directly recalled from LLM training

corpora. This benchmark is more about quality and not the quantity of VLM evaluation.

Math-Vista Math-Vista [56], published in 2023, includes 6.1k documents on mathe-

matics for diverse reasoning types and grade levels. Collected from 31 different sources,

it presents questions with multiple-choice or numeric answers in a manner that lightens

the load of assessing the VLMs’ ability in mathematics.
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AI2D (AI2 Diagrams) Proposed in 2016, AI2D [57] contains 15k diagrams related to

science understanding. Examples: More than 5000 grade school science diagrams with

more than 150,000 rich annotations, with ground truth syntactic parses and over 15,000

associated multiple-choice questions. This benchmark stresses a VLM on its interpreta-

tion of intricate visual and textual relations appearing in scientific contexts.

ScienceQA ScienceQA [58], on the other hand, came out in 2022. It contains 21k

questions, focused on scientific reasoning, elicited with the Chain of Thought paradigm. It

provides the models with an Elaborated Explanation alongside multiple-choice questions,

and it offers chat-like skills by presenting multiple texts alongside images to the VLM.

MM-Vet v2 The MM-Vet v2 [59], despite the size being small with 200 questions in

size, is one of the most popular benchmarks. It comprehensively measures up recognition,

knowledge, spatial awareness, language generation, OCR, and math capabilities. This

benchmark evaluates both single-image-single-text situations and chat-like interactions.

VisDial VisDial [60], proposed in 2020, includes 120k images and 1.2M data points by

reusing the COCO dataset. It evaluates a VLM chatbot for its response from a sequence

of images and text to end Its question in a simulated visual dialog situation.

LLaVA-NeXT-Interleave LLaVA-NeXT-Interleave [61], released in 2024, consists of

17k samples and targets evaluation of a model’s ability in settings that require multiple

input images. This benchmark combines 9 new and 13 existing datasets including Muir-

Bench and ReMI by providing a comprehensive multi-image understanding test.

Other datasets There are various other datasets which further flesh out the landscape

for VLM evaluation. SEED, coming in 2023, provides 19k multiple-choice questions

both for images and videos. VQA is one of the first datasets in this arena, with 2M data

points on generic day-to-day scenarios in 2015. GQA, from 2019, contains 22M samples

directed at compositional question answering, since it relates a number of objects in an

image. Finally, VisWiz, in 2020, offers another unique perspective with 8k samples-

a few generated by the blind-where spoken questions about images and crowdsourced

answers are presented. Together, these benchmarks provide a comprehensive framework
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for evaluating VLMs across different domains, task types, and modes of interaction. In

the continuously evolving area of vision-language modeling, these benchmarks will serve

as an active constituent to quantify progress and adopt improvements.

2.2.7 Applications of LLMs/VLMs in Robotics

Recently, large language and vision-language models have emerged as a revolutionary

force in several fields, including robotics. These have greatly considered the general

perception, interaction, and understanding of the world by robots. With LLMs, such as

GPT-4 [49] built by OpenAI, robotics has gone way beyond simple commands or basic

natural language processing that characterized previous generations. The model serves to

provide reasoning capabilities for robots in developing human-like responses in intuitive

and meaningful ways.

LLMs have significantly improved the power of dialogue systems, allowing robots

to engage in high-level conversations with humans, to understand subtle instructions by

themselves, and to comply with the instructions accordingly. To master complex events,

where only vague or incomplete information is available, one has to cope with adaptive

responses for given changing human input. LLMs execute multi-and complex-component

natural language instructions for tasks, such as instruction execution and planning, at an

unnaturally high level of productivity. This, in turn, greatly increases the productivity

of robots executing complex, multistep manipulations of real-world objects, especially

when these models are used to improve semantic understanding of the world. LLMs also

give robots the ability to quickly adapt to new tasks through novel instructions without

explicit reprogramming. This flexibility is especially valuable in an environment with

continuously changing tasks and requirements. The capabilities of the robots are further

enhanced by incorporating VLMs, which fuse visual and textual information to enhance

understanding of the environment. For example, given a visual scene, VLMs can enable

segmenting and manipulation using textual description. It is an important combination of

vision and language for the progress necessary for true human-robot collaboration. The

robot should be able to understand the human intention and communicate in a pattern that

will allow smooth cooperation between them. Particularly in the big factories or research

environments, meant to be shared by both humans and robots, this ability is growing

ever so critical. Shared autonomy is important in these settings, where the robot has to
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find its balance between autonomous operations and human control. Furthermore, these

technologies enable a wide range of supporting applications aimed at letting a robot need

spoken language or hand gestures as input while claiming to assist people with disabilities.

LLMs and VLMs have hence become quite the tool for a number of tasks including

planning, navigation and manipulation [62], [63].

VLMs have proven very powerful for high-level decision making in robotics because

they combine visual perception with language-based reasoning.

In [64] they showed how a pre-trained language model (LLM) can be used in zero-shot

situations to get a robot solve complex tasks. [4], [63], [65] also studied how enhance the

capabilities of these models in order to perform real-world tasks with zero-shot learning,

which is basically using these models in a variety of situations without further training.

In Appendix A.3 ethical issues of using these models in Robotics.

2.3 In-Context Learning and Retrieval-Augmented Gen-

eration (RAG)

Recent years have shown new methods, using the advantages of machine learning and

Natural Language Processing to enhance the capabilities of models such as LLMs and

VLMs. In-Context Learning and, deriving from it, also Retrieval-Augmented Generation-

RAG combine the strength of LLMs and retrieval systems to raise state-of-the-art perfor-

mance on a wide range of tasks. Activities that involve minimum data preparation have

recently been gaining momentum for ICL. Recent works like [66] have shown ICL inte-

grated with memory-based retrieval to be an effective solution for robotics applications.

These methods commonly rely on a single setup and most of the time require external

modules for object recognition or other advanced techniques to extract textual features.

In particular, our approach differs in adopting a zero-training pipeline, which leverages

Image-Based ICL coupled with VQA to enhance the skills of VLMs further without re-

sorting to other techniques. Moreover, it is enough to collect only a few samples for the

accomplishment of the task. This enables our framework to generalize over both setups of

FPV and TPV without having specialized sensors or large-scale pre-training. Our model

effectively builds navigation plans from Image-Text pairs and generalizes better to chang-

ing scenarios and goals, and even completely different setups, compared with previous
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methods.

2.3.1 Principles of In-Context Learning

In-Context Learning consists in the general capacity of large language models to adopt

the right approach or a possible solution, given only a few examples provided within the

same interaction [67]. This makes the concept crucial for understanding how such models

as GPT-4, or similar architectures, can perform well on tasks that they were not explicitly

trained for. In-Context Learning relies primarily on the ability to use example inputs and

outputs in the prompt to guide the model’s response. In cases where there is a series of

examples or particular context, a user can elicit the model to produce an output relevant

to that without the need for further fine-tuning. The main trick here is how to give the

model the relevant examples so it is guided toward following a common reasoning or

pattern to its responses. For instance, if a model is given several examples of translations

from English to French, it then generalizes from those examples to translate completely

new sentences. The model induces the pattern or structure from provided examples and

applies that pattern or structure to new data. 2.11. It fits these examples to the internal

representations until the context is drawn, while this adjustment is temporary and not

permanent. It only persists for interaction or session length. The models work by taking

the context from a prompt when approaching some new task. One of the key benefits to In-

Context Learning, which we exploit in this work, is that it does not require the retraining

or finetuning of the model on specific tasks. Rather, large-scale pre-training of the model

enables generalization from context given to it. It enables flexibility in how models can

be applied to a wide range of tasks. Powerful as it is, there are limits to In-Context

Learning. However, the quality and relevance of examples given by the prompt are very

sensitive to model performance. There is bound to be some optimum amount of context

beyond which effective use will not be feasible, and this may construe performance for

tasks requiring higher complexity and subtlety. In general, there is only that much impact

on heeding, determined by how well the actual examples in the prompt match the task.

Examples that are poorly chosen, or a lack of context, are likely to result in more incorrect

or uninterpretable responses.
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Figure 2.11: In-Context Learning working overview. In-Context Learning is also called Few-Shot

Learning, since it provides few samples to the model in order to enhance its effectiveness.

2.3.2 Overview of RAG

Retrieval-augmented generation in the broadest sense can be referred to as the enriching

process of generation through some sort of retrieval-based technique. This is done through

the integration of external knowledge with the help of retrieval mechanisms into the gen-

eration process. Introduced in [68], RAG relies on an external retrieval mechanism that

fetches relevant information or documents from a large database. This step in retrieval

helps the model access a wider range of knowledge than it could have learned during

pre-training. For example, the retrieval system, given some query or prompt, searches in

the database or knowledge base for documents or passages related to the input provided.

The information returned then enriches the output of its generative model counterpart.

Of course, the concept of documents can be taken very broadly. For example, one can

use Vision Language Model and retrieve images or text-image combinations. It retrieves

relevant documents and then passes the information to a generative model for the final

response. The generative model embeds the answers based on the content retrieved, both

more generally accurate and contextually richer. Figure 2.12 report the general work-

ing of a RAG system. The retrieved information will add context to the generation that

might not have been learned during its training; hence, responses are a lot more situated

in knowledge from outside, not only with the model’s pre-trained data. This will be par-

ticularly helpful in question answering, summarization, and information retrieval tasks,
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Figure 2.12: RAG Overview. The mechanism is straightforward: given a query (i.e. document

or image), an embedding model processes the input and then perform retrieval from the database

of items with similar embedding. These items are then added to the context in order to enhance

generation of LLMs/VLMs.

where access to external documents can greatly raise the quality of responses generated.

In this architecture, the retrieval and generation are combined in a single pipeline.

The retrieval module can be obtained using assorted techniques including BM25 or some

dense retrieval methods. In this work, we use the output features of a ViT to retrieve

similar context by exploiting the attention mechanism. While RAG offers improvements,

there are still several challenges, such as efficient retrieval mechanisms being required

and the risk of over-retrieving possibly irrelevant or noisy information. There aspects

of balancing retrieval quality with generative capabilities to optimize RAG systems. It

has thereby become of the essence that the retrieval system offers relevant and accurate

documents in regard to effectiveness pertaining to the overall approach. The quality of

generated responses is centered on the quality of the retrieved content. This is the basic

reason behind our using a reranking algorithm Maximal Marginal Relevance (MMR) for

choosing the context that gives best overall examples.

2.3.3 Maximal Marginal Relevance for Retrieval

Maximal Marginal Relevance (MMR) [69] is a method for enhancing relevance and di-

versity among retrieved information. One of the challenges in retrieving documents or

pieces of information from a large collection is selecting those that are not only relevant
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to the query but also diverse in their content. MMR tries to balance the trade-off between

relevance and diversity by modulating the ranking of a document for both its relevance to

the query and its marginal relevance compared to other retrieved documents. The formula

used by MMR to compute the score of a document is reported in Equation 2.2:

MMR def
= arg max

Di∈R\S

[
λ Sim1(Di,Q)− (1−λ )max

D j∈S
Sim2(Di,D j)

]
(2.2)

where λ is an parameter balancing diversity and similarity, S is the set of documents

already selected, R is the full set of documents (retrieved), Di is a single document from

set R and Q is the query document. The function Sim reported in the formula refers

to a generic similarity function. MMR operates by combining relevance scores with a

penalty for redundancy, striving to maximize the relevance of retrieved documents while

minimizing the overlap between them. This results in a more informative and varied set

of retrieval results, which is particularly useful in scenarios where diverse perspectives or

pieces of information are valuable.

The integration of MMR into the RAG pipeline offers enhanced retrieval systems.

This combination is valuable in various applications, including image search engines,

multi-modal content retrieval, etc.

2.4 Tasks in Robotic Navigation

Robotic navigation is a multifaceted field, with tasks that can be range in different direc-

tions. Below are reported the main navigation tasks:

1. Planning and navigation: it is a fundamental aspect of robotics, involving formu-

lation of strategies that successfully enable a robot to act or reach pre-determined

objectives autonomously. The planning role of robotics could be discussed within

the context where the robot decides for a sequence of actions interchanging its ini-

tial state to a desired goal state, considering constraints in the optimization of per-

formance metrics. When applied to navigation, this means the sequence of actions

required to take the robot from any given state to its final state; that is, to reach a

target or execute a task in a certain point. Some tasks in which planning is necessary

are: Some task where planning is necessary are:
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(a) Object Navigation (ObjectNav): In robotics, object navigation entails the pro-

cess of a robot finding its way to an object in an environment autonomously,

using various means that involve perception, mapping, and planning. While

general path planning focuses on how to reach a location, object navigation

specifically targets identifying and moving to objects of interest.

(b) Point Navigation (PointNav): this could be referred to as a specific type of

task in robotics. A robot is put at work to navigate itself toward a, so-called

goal position, which in its essence is a point in space. It can normally be in

the form of a coordinate: (x,y) or in three dimensions (x,y,z). PointNav is to

reach a given point in space, not necessarily due to interaction with objects or

specific actions to accomplish when it reaches that point.

(c) Image Navigation (ImageNav) consists in reaching a particular place in its

environment based on the given target image taken there. Therein, an im-

age depicting the desired destination is given instead of explicit coordinate

or object-based movement instructions, and it takes the cue via sensors and

perception capabilities to find that place.

Quite a number of these tasks, naturally rely hugely on robot perception to achieve

the purpose.

2. Obstacle Avoidance: this is an important ability of robots, whereby a robot is en-

abled to perceive and then move around other objects in its surrounding environ-

ment, making sure no collisions happen. In this task cameras, LiDAR, and ul-

trasonic sensors are exploited to identify obstacles and, as a result, make changes

on the go in the robot trajectory so that it will be capable of passing through them

safely. To achieve the goal with obstacle avoidance by real-time decisions, potential

fields [11], vector field histograms, or other reactive control methods are used.

3. Exploration: The independent process in robotics whereby the robot aims to explore

an unknown environment by mapping or solving a particular problem. Due to dif-

ferent sensors on a robot, it perceives the surroundings differently; hence, the robot

makes a systematic movement to new areas and updating the internal representation

or map becomes necessary. The exploration strategy often faces a trade-off between
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maximum area coverage, obstacle avoidance, and optimal path to obtain total and

efficient mapping of the environment.
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3 Methodology
This section details we introduce the general framework developed this work along

with the specific declinations for the two deployment scenarios: Third Person View and

First Person View. In figure 3.1 is depicted the overview of the framework.

(a)

(b)

Figure 3.1: Overview of the proposed approach in FPV (a) and TPV (b). The two settings are

designed to fit two specific scenarios but share their components. The framework takes a live image

from the onboard or a CCTV camera and retrieves similar images from the experiential memory.

It is then annotated and passed, with the sampled images and an optional episodic memory, to

the VLM to retrieve the next commands to send to the platform and explanations. The main

difference is the absence of an Episodic Memory in the TPV setting, where the off-board sensing

setup empirically limits its benefits. Alongside the overview, response examples are presented for

both setups.
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3.1 Framework Architecture

In this section, we present a comprehensive overview of the proposed framework, high-

lighting its architecture and the individual components that work together to achieve the

desired functionality in both deployment scenarios: Third Person View (TPV) and First

Person View (FPV). The framework is designed to leverage multimodal data from various

sources and seamlessly integrate it to facilitate decision-making and action generation for

autonomous systems.

As depicted in Figure 3.1, our approach consists of six key components: an experien-

tial memory, a sampler, an episodic memory, an annotator, a prompt templating engine,

and a vision-language model (VLM). These components interact with each other to pro-

cess real-time data from either onboard sensors or external cameras and generate con-

textually relevant responses and commands. The framework is designed to be versatile,

catering to the specific requirements of both FPV and TPV scenarios while maintaining a

shared core architecture.

3.1.1 Experiential Memory

Experiential Memory denotes a set of annotated images providing contextual knowledge

to guide theVLM through ICL. Each image in this memory is enriched with annotations

that provide useful information, such as the ground truth for a particular situation, in-

formation about dangerous points, or explanations in a human-like manner for decisions

made. These experiences are vital to the system, where the system may remember rele-

vant past events and make an informed decision in real time, similar to how humans use

memory to navigate a new situation based on previously acquired knowledge.

Information gathered from real-world environments can also be used in addition to

simulation-generated data to populate the Experiential Memory.

Visual inputs and contextual data are collected by the system in real-time operation

of robots, which provides both more natural and random variations in capture such as

lighting changes, dynamic objects, and noise in general. These real-world experiences

are particularly valuable since they bring the system closer to the operational scenarios it

will face with complex challenges. Moreover, the system is able to incorporate external

input from, for example, surveillance camera footage or publicly sourced video content,
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Figure 3.2: Swin Transformer Overview (on the left) and transfomer blocks (on the right). The

Swin Transformer Model is a hierarchical model processing images in patches at various resolu-

tions. Figure and caption taken from original paper [70].

increasing exposure to scenarios that may not have been seen in the training data, and

thereby increasing the robustness of generalization across various tasks. Experiences in

the Experiential Memory can be collected in a myriad of ways, and in the results section,

we consider a few combinations of data sources. These include data from similar or

different environments than the test environment, and examples sourced directly from

online footage.

3.1.2 Sampler

The sampler aims to select the most appropriate samples from the Experiential Memory

to be presented to the VLM as context. We feed a Vision Transformer (ViT) – a Swin

Transformer [70] – with the live camera image to recover similar situations from the

Experiential Memory. An overview of the Swin Transformer’s architecture is reported in

Figure 3.2.

We represent the image – and the Experiential Memory samples – as the average

output of the last hidden layer and obtain a feature vector which we employ as the query.

Empirically, we observed that building a diverse context (both similar and different

situations) benefits the model’s generalisation to the current situation. To balance out

the similarity, we incorporated a re-ranking algorithm adapted to our framework into the

retrieving process. We employ a Maximal Marginal Relevance (MMR) [69], which aims

to reduce redundancy and increase sample diversity according to a combined criterion of

query relevance and novelty of information. MMR is defined as follows:

MMR(Q,M,C) = arg max
si∈M\C

[
λ < si,Q >−(1−λ )max

s j∈C
< si,s j >

]
(3.1)
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where Q represents the query image embedding and M the experiential memory. This al-

gorithm operates by iteratively selecting images (samples si ∈ M), to add to the context C,

based on a trade-off between two factors: the image’s relevance – similarity – to the query

and the image’s dissimilarity from the samples that have already been chosen. The goal

is to ensure that each selected image adds new, informative content rather than repeating

information. The scalar λ balances this trade-off.

3.1.3 Episodic Memory

Episodic Memory is the information relevant to the current interaction or episode that

provides the essential basis for informed navigation decisions. Unlike Experiential Mem-

ory, which retains data about past experiences, Episodic Memory deals only with the

current context of the present task or situation. This is the memory that captures impor-

tant information from the current episode, including actions taken by the robot, layouts

of environments, objects that have been encountered, and decisions made during the ses-

sion. The system can ensure relevance and robustness because the focus is on the present

situation.

To avoid the VLM from being overprompted with unnecessary information, we in-

tentionally leave out the full raw context of previous responses or interactions that could

add noise and confusion. Instead, we use a text-based, simplified scene representation.

The distilled format includes some critical information. The simplified structure helps

streamline decision-making and focuses on only the most relevant elements of the current

episode to keep the VLM on track for solving the task at hand. By continuously updat-

ing this memory, the system keeps crystal clear on the context and hence makes proper

predictions of the next best action since this provides the system with the opportunity to

devise new strategies based on a clear and organized summary of the scene rather than

reassessing the entire environment from scratch. In a nutshell, Episodic Memory assumes

an active situational record for real-time decision-making: maintaining the VLM updated

by means of compact, salient information from the present episode provides it with good

performance on immediate reaction and adaptation during the evolution of the scene.
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3.1.4 Annotator

Before presenting the live and episodic images to the VLM, we take inspiration from [9]

and visually annotate them with the possible actions the model can choose from. These

annotations are platform-specific, and are applied as numerical values superimposed on

the image frame; we will discuss them more in this section.

3.1.5 Prompt Templating Engine

The Prompt Template Engine lies at the core of the prompt engineering procedure and

aims at delivering structured and understandable directives to the VLM. Its major role

is to acquire multiple streams of data from the system’s Experiential Memory, Episodic

Memory, and live inputs from the robot’s surroundings and combine them into a coherent

and actionable prompt that would get readily processed by the VLM. The prompt serves

to organize this information in a clear and digestible format that will enable the VLM to

contextualize the information and perform the needed operations efficiently.

It integrates information from three major sources. First, it incorporates pertinent

knowledge from the Experiential Memory, which contains episodes or experiences of the

past that the VLM can refer to in negotiating the present situation. Second, it includes

information from the Episodic Memory that represents the immediate context of the on-

going episode and gets updated in real time as the robot interacts with the environment.

Third, the prompt template embeds live input, such as annotated images of the current

environment providing visual context and identifying salient features such as obstacles,

navigational points, or goal locations. These form a structured prompt combining these

data sources that is designed to direct the VLM on how to perceive the current situation

and what set of next actions to execute. For example, it may explain to the prompt how

the annotated image represents certain actions or decision points about steering direc-

tions, object recognition, or obstacle avoidance. It also represents relationships between

prior episodes and the current episode, thereby informing the VLM of relations between

similar situations it has experienced in the past and the current episode under considera-

tion. These instructions are given in a template format that the VLM can easily parse and

respond to, thus ensuring compatibility with existing robotic systems. We further request

that the VLM provide its output in machine-readable JSON format so it can easily inter-
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face with any control pipeline that may already be deployed on the robotic platform. The

JSON may contain a sequence of suggested actions, justifications taken by the actions,

and any additional data that may actually be used to execute actually the action. This, in

turn, allows for smooth interaction between the VLM and the robot control system: the

prompt is an integral part of the decision-making. In Appendix, we present the full tem-

plate prompts that were used for both deployment scenarios: how the system is adapted to

fit different environments and different tasks while consistency in structure and execution

is followed.

3.1.6 Vision Language Model and In-Context Learning

The VLM is prompted to select a discrete action from the annotated frame, represented by

numerical values, and explain its decision. Depending on the deployment platform, the

model may also produce additional outputs, such as identifying actions that could lead

to dangerous locations or recognizing objects in the scene. To provide context, we use a

History-Injection ICL, where a fictitious chat conversation is created. In the chat, episodes

retrieved from a memory database are split in query (annotated image and prompt) and

answer, and injected into the model as turns of conversation as question and answer. This

yields a multi-turn conversation of k turns, with k equal to the number of ICL samples.

Finally, we explicitly ask the model, based on its previous responses, to process a new

image.

3.1.7 Controller

Finally, the low-level, platform-specific controller executes the selected action on the plat-

form. In the case of the external camera scenario, the positions of the annotations chosen

by the VLM are used as vertices in a piecewise linear path. The robot is then guided along

this path using a PD controller measuring cross-track and heading error as demonstrated

in [12]. In FPV scenario, the controller is embedded into the environment and teleports

the agent to the target location computed on the base of the input command.
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Figure 3.3: Example of the view from the robot in the iThor simulator.

3.1.8 Adaptations to the FPV Setting

We designed our framework with the AI2-THOR simulator [71] as the platform, where

the discrete robot actions comprise the robot’s and camera’s movements. In figure 3.3,

a frame captured by AI2-Thor simulator is presented. As shown in 3.1a, we enable the

VLM to interpret visual annotations that resemble a control overlay inspired by video-

game interfaces. We display the numbers 1 to 7 on a semicircle at the bottom of the

image, providing rotational control, where 4 is the neutral MOVE_FORWARD and the oth-

ers numbers represent various degrees of rotation. Additionally, the model can select

LOOK_UP and LOOK_DOWN commands, associated with the non-displayed numbers 8 and

9. Lastly, number 0 is associated with DONE command to end the episode.

Following a structured procedure, we build the Experiential Memory by manually

navigating the robot in the AI2-THOR environment. At each timestamp, the operator

selects an appropriate action based on the current visual context – i.e. a command num-

ber – and provides a natural language explanation, simulating a “think-aloud” process.

For instance, upon observing a microwave on the left, the explanation would state: “A

microwave is visible on the left, so the system will steer slightly to the left.” The anno-

tated image, the selected command, and the corresponding explanation are inserted in the

Experiential Memory. This process aims to imitate human-like physical movements and

capture the underlying thought processes that drive these actions.
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Finally, we request the VLM a text description of the environment – the list of ob-

jects in the frame – and save it in the Episodic Memory. From it, we create a “circular

compass”, as shown in 3.4, which rotates along with the agent’s rotations and can inform

the model’s decisions since certain objects can be found near affine items or go out of the

field of view due to motion.

We also include the last action, the current vertical view status and the previous com-

mand list: the VLM at each timestamp is asked not only to provide the current action, but

also the next future one, to robustly follow the navigation strategy in act (3.1a).

Figure 3.4: The figure depicts a scenario where the agent uses the compass. The compass keeps

track of the scene content as the robot rotates, remembering insightful information about the

room’s layout. For instance, if the agent is looking for a chair, it will likely rotate towards where

it last saw a table, although it is now out of sight.

3.1.9 Adaptations to the TPV Setting

Hardware Setup

The rover used for this project is a Turtlebot3 Burger (Figure 3.5). The TurtleBot3 Burger

is a compact, affordable, and versatile open-source mobile robot designed for research,

education, and hobbyist applications. Developed by ROBOTIS, it features a modular de-

sign, allowing for easy customization and upgrades. Traditionally equipped with a Rasp-

berry Pi for onboard computation and a suite of sensors, including a 360-degree LiDAR

and an inertial measurement unit (IMU), the TurtleBot3 Burger is capable of autonomous

navigation, mapping, and obstacle avoidance. Its compatibility with the Robot Operating

System (ROS) enhances its flexibility, enabling users to implement various algorithms

and participate in a vibrant community for collaborative development and learning.
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However, in this project we used the rover only with a Wi-Fi module as on-board

sensors, to receive command messages and a Raspberry PI to eleborate them.

Figure 3.5: The figure represents the TurtleBot3 Burger. We made use of this robot in our experi-

ments, especially for the data annotation step.

TPV Methodology

We follow the setup described in [11], [12], utilizing a visual servoing system [72], [73]

where the robot is controlled remotely through cameras installed in the environment. Se-

curity cameras capture raw frames of the area, which are then annotated and combined

with samples from the Experiential Memory. This combined input is then processed by

the VLM to predict the next set of trajectory points for the robot to follow. Figure 3.1b

provides a visual summary of the framework components.

The annotation process for the live frames begins with detecting the robot’s position

using a YOLO model, which marks the robot’s current location with the number 0, making

the task independent of the robot’s embodiment. During the system’s initial setup, a

segmentation mask of the scene’s floor is created using the Segment Anything model [74]

and saved as a binary mask. This step is performed only once during the initial setup

phase and, as a result, does not account for any new objects or obstacles that may appear

later in the scene.

Once the robot’s position is identified, we generate a grid of concentric circles around

it, with numbers assigned at equal intervals and increasing radii. These numbers represent

potential positions for the robot to move to, but only traversable positions are considered,

as determined by filtering with the segmentation mask.

Next, the VLM is tasked with choosing a sequence of points, guiding the robot from

its current location to the desired end goal. This goal could be specified as a particular

object in the scene or as a predefined safe zone, such as a red circle clear of obstacles, as
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depicted in Figure 3.1b.

Optionally, the image can be cropped to focus solely on the labels and the target

destination. This reduces the image size processed by the model, thereby lowering com-

putational costs and improving the model’s attention to crucial details in the scene.

After the VLM outputs a sequence of points, these points are mapped back to coor-

dinates in the image space. The robot then follows this path using a PID controller [12].

During inference, the VLM typically produces a sequence of three to four points. As

the robot successfully tracks the first one or two points, the system updates the sequence

dynamically to guide the robot to its target efficiently.

3.2 Experimental Setup

3.2.1 Data Collection and Annotation

The data collection process has been done in two different versions, since we have two

different setups.

FPV: Data Collection

Starting from the first person view, we manually navigate the robot through the environ-

ments, recording one episode per target object, resulting in a total of just 25 episodes.

This database is extremely limited purposefully to demonstrate that even few episodes

can establish an effective framework, thereby challenging the generalization capabilities

of trained models. The process of collection starts with the operator spawned in a ran-

domly picked scene (e.g. Kitchen1) and a random object (from the objects chosen for

"train"). The operator, following its reasoning, at each timestamp chooses a numerical

command and afterwards gives the explanation for his choice. This constitutes a human-

like sub-optimal ground truth, which composes the system’s Experiential Memory and

helps the model generate situation-grounded strategies. In Figure 3.6, we present an ex-

ample of a single step recorded.
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Figure 3.6: Visualization of the decision-making process by the robot. The left image shows the

initial scene with the chair in front of the robot. The right image highlights the robot’s forward

movement based on the command issued (Command: 4), as indicated by the numbered path mark-

ers. The explanation box describes the robot’s reasoning: "I see the chair in front of me. I will

proceed forward," demonstrating how visual inputs and navigation decisions are processed.

TPV: Data Collection

We evaluate our approach on a custom dataset recorded in four rooms of the Oxford

Robotics Institute premises – see A.1 – where we collected expert trajectories by teleop-

erating a TurtleBot3 rover.

Before starting, we load a single picture of each room and using [74], we extract

the mask of the floor from each one. This process is executed once, during the initial

setup. The objective of this step is to delete all the walls from the picture, which are fixed

non-traversable areas. The trajectories recorded encompass a range of difficulty levels,

from simple paths with minimal obstacles to more complex routes that include various

dynamic and static obstacles, representing real-world navigation challenges. After having

saved the pictures, we annotate them following these steps:

1. Identify the position of the rover using a custom Object Detector [75], finetuned

from YOLO. This step is not strictly necessary but it greatly helps in the annotation

process. We then superimpose the number 0 on the image, in order to make the task

embodiment-agnostic, since from now on: there is an AGENT in position 0 (even if

it’s not a robot anymore).

2. Starting from position 0, in the annotation process, we take the next image (one

step into the future, since we have a full video recorded) and identify the robot, in

the original picture we create concentric circles with center in the position of label
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(a) Camera 1: ORI Office #1 (b) Camera 2: Narrow corridor

(c) Camera 3: Wide corridor (d) Camera 4: ORI Office #2

Figure 3.7: Examples scenes in the TPV scenario. Random obstacles are placed to challenge the

planner, e.g. the blue chair. in subfigure 3.7b

0 and the distance between the center and the new position as radius. The numbers

chosen as labels are totally random and while we get further from the center, the

number of labels per circle increases. We repeat this process 3/4 times for each

trajectory.

3. We then use the binary mask collected during the initial setup to delete all the points

overlapping with walls. In this way, we obtain a much less noisy annotation.

4. Last, but not least, we use the last timestamp as the target position. Instead of

extracting a new circle of points, we use the last location as coordinates for a red

circle. In this way, on the picture we obtain the position 0 (start of the trajectory),

numeric labels, identifying the path of the human operator, in between and finally

the red circle which is the end goal of the rover.

3.2.2 Model Selection: VLM

We compare different VLMs, in order to understand which is better as zero-shot planner.

To benchmark this, we use a split (100 images) of the dataset recorded for the TPV sce-

nario. The experiment is built to understand if these models can understand the task at
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hand. We keep only the images with 1-step trajectories and ask the model where to go

next in order to reach the red circle. This is a much easier version of the final task but

is useful to get insightful results. We compared both open-source ([76], [27], [32]) and

proprietary models ([50], [49]. We use as main metric the accuracy, since this is basically

a classification problem (configured as VQA). Results are reported in Table 3.1.

Model Accuracy

Idefics2 0.347

LLava-Mistral7B 0.58

Gemini Pro 1.0 0.683

Claude Opus 0.78

GPT4V 0.844

Gemini Pro 1.5 0.950

Table 3.1: VLMs results: comparison between the zero-shot abilities of the models in finding the

best next step towards the target.

As we can extract from the results, the most promising model is Gemini Pro 1.5

(gemini-1.5-pro-001), so we empirically decide to focus on it from now on. Our

framework relies mostly on ICL, so the huge context-window of this model fits in our

work perfectly.

3.2.3 First Person View

Among the several simulators proposed to facilitate the Embodied Navigation tasks [71],

[77], [78], we selected AI2-THOR’s ObjectNav task, whose goal is to navigate towards a

predefined target object.

We follow the evaluation procedure of [79], using the same metrics and setup, with

different object classes for training and testing1. We hence compare our approach to [79]

[80], [81], [82]. Due to resource constraints, we evaluate our framework on 300 episodes

1[79] chose as training objects: HousePlant, Sink, TableTop, Knife, Fridge, Bowl, Cabinet, Cloth, Key-

Chain, WateringCan, Bed, Lamp, Book, Chair, LightSwitch, Candle, Painting, Watch, Cabinet, Toilet,

SprayBottle (for us, there is one episode for each one of them in the experiential memory). As test ob-

jects they chose: Toaster, Microwave, Television, LapTop, RemoteControl, CellPhone, Mirror, AlarmClock,

Toiletpaper, SoapBottle.
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per scene type, and limit maximum number of steps per episode to 25, thereby increasing

the complexity of the task.

3.2.4 Third Person View

We annotate – see 3.1.9 – the images and manually mark the labels overlapping with ob-

stacles or non-traversable locations as dangerous. We compare the results of our model

against a zero-shot approach on this dataset. We test different Experiential Memories,

composed of scenes from the same or different cameras, called scenarios A and D, respec-

tively – see 3.8. In addition, we will show results with trajectories performed by a human

in the same scenes – scenario H – simulating the images usually captured by security

cameras; this would demonstrate how a person move in an office room, avoiding obsta-

cles such as chairs, boxes, etc. Finally, we will also use short clips of robots from the web

[83], [84] – scenario O – to validate how general and different from the target scenario the

samples in the context can be, while still allowing the model to understand the task and

mimic it successfully. In Appendix, we present samples for each context scenario. The

Figure 3.8: Experiential Memories for TPV: Scenario D includes experiences from the same en-

vironment excluding the inference room, O from online videos and H from the same environment

but with a human as navigator instead of a robot.

main metric to evaluate our system is the Trajectory Score (TS), defined as:

TS =
N

∑
i=0

Si
Pci

max(len(Pi), len(Gi))
T Si ∈ [0,1] (3.2)

where Pci is the number of correct predicted points, Pi is the predicted sequence and Gi is

the ground truth sequence, and Si indicates if the selected point is safe, at iteration i. The

maximum value of this trajectory score is N, in our case 300, which is also the maximum

TS value. The purpose of this metric is to measure to which extent the model is able to
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reproduce human-like navigation. Moreover, we measure the number of dangerous points

selected during the evaluation process.

D =
N

∑
i=0

Di Di ∈ {0,1} (3.3)

where Di indicates if at episode i a dangerous point has been selected or crossed, simulat-

ing a collision.

To make the evaluation goal-agnostic, we consider as end-goal a red circle, superim-

posed on the picture and report results averaging three consecutive runs.
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4 Results
In this chapter, we provide a detailed analysis of the performance of our proposed

framework under different deployment scenarios. We compare the outcomes with state-

of-the-art approaches and demonstrate the strengths and limitations of our methodology

in both Third Person View (TPV) and First Person View (FPV) settings. The evalua-

tion metrics include Trajectory Score (TS) and Danger Score (D) for TPV, as well as

Success Rate (SR) and Success weighted by Path Length (SPL) for FPV. These metrics

collectively offer a comprehensive view of the framework’s effectiveness, robustness, and

generalizability across various experimental conditions.

4.1 Third Person View (TPV) Scenario

Our In-Context Learning (ICL) approach demonstrated significant improvements in the

TPV scenario. The highest Trajectory Score (TS) achieved was 270.70 in context scenario

A, which allows unrestricted retrieval from the database, compared to the baseline zero-

shot approach, which scored 147.82. This represents a 54.6% improvement, indicating

that our model can effectively leverage contextual information to enhance navigational

accuracy and safety. Results are reported in Table 4.1.

In addition to the overall TS improvement, the framework showed a remarkable 38%

Mode CL Scenario TS (/300) ↑ D (/300)↓

Zero-Shot 0 - 147.82 76

ICL (Ours) 10 A 270.70 2

ICL (Ours) 10 D 247.24 8

ICL (Ours) 10 H 219.58 13

ICL (Ours) 10 O 235.83 16

Table 4.1: TPV results: comparison between the zero-shot and our framework on the same sce-

nario but using different types of context sources (based on Scenario column).
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reduction in selecting dangerous points (reported as D in the table), which indicates lo-

cations with a high risk of collision. This reduction is crucial for real-world applications,

where safety and reliable navigation are paramount. Such performance gains were consis-

tent across different context scenarios, further highlighting the versatility and adaptability

of the proposed approach.

4.1.1 Detailed Analysis of Context Scenarios

Scenario A (Unrestricted Context)

In scenario A, the model had access to the entire database of contextual information.

This scenario yielded the highest TS (270.70) and the lowest D (2) scores, illustrating

that a rich and unrestricted context significantly boosts the model’s ability to predict safe

and efficient trajectories. The model effectively utilized diverse data sources to improve

decision-making, avoiding hazardous locations and minimizing path deviations.

Scenario D (Different rooms Context)

When the context was restricted in scenario D, the model still performed exceptionally

well, achieving a TS of 247.24 and a D of 8. Although there was a slight decrease in

performance compared to scenario A, the model’s ability to generalize and adapt to a

limited context set was evident. This scenario underscores the model’s capability to func-

tion efficiently even when the available contextual information is limited, demonstrating

robustness and flexibility.

Scenario H (Human-Driven Trajectories)

Scenario H involved using context derived from human-driven trajectories. The TS of

219.58 and D of 13 indicate that the model was able to effectively incorporate human

behavioral patterns into its decision-making process. This is a significant finding as it

showcases the model’s potential to learn from human demonstrations and adapt to diverse

navigation styles, potentially useful for personalized navigation systems.
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Scenario O (Online Video Data)

With scenario O, which utilized context from online videos, the model achieved a TS

of 235.83 and D of 16. This performance, while slightly lower than other scenarios,

demonstrates the model’s ability to leverage external, non-specific sources of informa-

tion to improve navigation. This adaptability is particularly valuable for scenarios where

real-time contextual data might be scarce, making the approach suitable for dynamic and

unpredictable environments.

4.1.2 Implications and Future Directions

The results from the TPV scenario suggest that our ICL-based framework can signifi-

cantly enhance the safety and efficiency of autonomous navigation systems by leveraging

contextual information. Future work could explore integrating additional modalities of

context, such as sensor data from the environment or user-provided preferences, to fur-

ther improve performance.

4.2 First Person View (FPV) Scenario

4.2.1 General Performance Evaluation

In the FPV setup, our framework, referred as Select2Plan (S2P), was evaluated against

state-of-the-art methods in a variety of scenarios. The average Success Rate (SR) of

46.16% in known scenes with known objects reflects the model’s ability to perform well

even with a minimal training dataset. Compared to the best-performing model [79], which

was trained on 8 million episodes, S2P required only a fraction of the data, specifically

one episode per object type. Despite this, S2P managed to achieve comparable results,

highlighting the efficiency of our approach in leveraging pre-trained Vision-Language

Models (VLMs) for efficient knowledge transfer.

Known Scenes and Known Objects

In the most favorable scenario, where both scenes and objects were familiar to the model,

S2P achieved a SR of 46.16% and an SPL of 28.01%. While this was lower than the

top-performing models such as GVSN, which achieved an average SR of 83.73% and
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an SPL of 57.03%, it is important to note that S2P was working with significantly less

data and with no training at all. This indicates that while extensive training can enhance

performance in familiar environments, our approach remains competitive with a much

smaller data footprint.

Known Scenes and Novel Objects

In scenarios with known scenes but novel objects, the SR of S2P was 37.75% with an

SPL of 24.66%, outperforming the state-of-the-art models in several cases. Notably, the

performance in the bathroom setting reached an SR of 54%, surpassing even the best

model’s performance in this particular scenario. This suggests that S2P’s ability to gen-

eralize across unseen objects, combined with its minimal data requirements, makes it

particularly suited for environments where new objects are frequently encountered.

Novel Scenes and Known Objects

When presented with novel scenes but known objects, S2P achieved an SR of 41.17%

and an SPL of 24.50%. It outperformed the best models in certain settings, such as the

kitchen and bathroom, where it showed a clear advantage in navigating unfamiliar envi-

ronments. This suggests that our model can effectively transfer its knowledge from known

to novel environments, an essential trait for real-world applications where environmental

conditions are often unpredictable.

Novel Scenes and Novel Objects

In the most challenging scenario, involving both novel scenes and novel objects, S2P’s

performance remained robust, achieving an SR of 38.95% and an SPL of 28.62%. This

was significantly higher than the state-of-the-art models, with the closest competitor achiev-

ing only 28.67% as Success Rate. S2P’s ability to maintain high performance in such a

challenging scenario highlights its strong generalization capabilities and reinforces the

value of integrating VLMs for navigation tasks.

4.2.2 Implications for Real-World Applications

The FPV results demonstrate that our approach, utilizing a significantly smaller dataset,

can achieve competitive performance across a range of challenging scenarios. Results

48



are reported in Table 4.2. This has profound implications for deploying autonomous

navigation systems in real-world environments where comprehensive datasets are often

unavailable or costly to obtain.

Eval. set Method
SR ∥ SPL %

Kitchen Living room Bedroom Bathroom Average

Known scenes
& Known objects

Random policy 10.40 ∥ 4.80 11.47 ∥ 3.40 13.07 ∥ 8.20 21.60 ∥ 11.13 14.13 ∥ 6.88

Scene priors 50.67 ∥ 34.27 67.07 ∥ 29.43 69.07 ∥ 22.47 71.33 ∥ 28.73 64.53 ∥ 28.73

SAVN 46.27 ∥ 38.27 56.93 ∥ 40.60 74.67 ∥ 35.47 81.87 ∥ 46.53 64.93 ∥ 40.22

VTNET 57.60 ∥ 43.20 68.53 ∥ 45.03 86.53 ∥ 38.53 76.13 ∥ 52.30 72.20 ∥ 44.77

GVSN 63.20 ∥ 50.27 88.00 ∥ 52.43 94.27 ∥ 59.07 89.47 ∥ 66.37 83.73 ∥ 57.03

Ours 45.50 ∥ 31.05 28.50 ∥ 19.0 50.40 ∥ 25.29 60.25 ∥ 36.70 46.16 ∥ 28.01

Known scenes
& Novel objects

Random policy 2.93 ∥ 0.66 5.60 ∥ 0.93 8.80 ∥ 2.53 8.13 ∥ 2.03 6.37 ∥ 1.54

Scene priors 21.07 ∥ 14.55 23.20 ∥ 9.40 19.47 ∥ 12.17 30.53 ∥ 18.47 23.57 ∥ 13.65

SAVN 17.27 ∥ 8.30 27.20 ∥ 7.60 37.87 ∥ 20.47 32.53 ∥ 16.50 28.72 ∥ 13.22

VTNET 26.53 ∥ 12.27 49.07 ∥ 23.97 35.87 ∥ 18.63 36.67 ∥ 22.53 37.03 ∥ 19.35

GVSN 32.67 ∥ 20.13 58.53 ∥ 32.50 53.07 ∥ 20.97 49.07 ∥ 25.60 48.33 ∥ 24.80

Ours 30.00 ∥ 19.01 23.00 ∥ 18.70 44.00 ∥ 32.44 54.00 ∥ 28.51 37.75 ∥ 24.66

Novel scenes
& Known objects

Random policy 6.00 ∥ 0.87 4.20 ∥ 1.27 3.47 ∥ 0.37 4.67 ∥ 1.30 4.58 ∥ 0.95

Scene priors 11.60 ∥ 6.23 13.87 ∥ 8.27 17.20 ∥ 10.83 15.07 ∥ 8.40 14.43 ∥ 8.43

SAVN 26.80 ∥ 10.70 31.33 ∥ 6.00 43.87 ∥ 15.63 21.73 ∥ 8.33 30.93 ∥ 10.17

VTNET 35.73 ∥ 12.30 40.93 ∥ 13.93 57.87 ∥ 17.83 47.60 ∥ 10.73 45.53 ∥ 13.70

GVSN 44.13 ∥ 18.50 48.00 ∥ 27.53 68.67 ∥ 19.50 60.53 ∥ 26.07 55.33 ∥ 22.90

Ours 50.00 ∥ 32.40 28.70 ∥ 17.85 24.00 ∥ 12.79 62.00 ∥ 34.94 41.17 ∥ 24.50

Novel scenes
& Novel objects

Random policy 1.60 ∥ 0.43 3.87 ∥ 0.80 3.60 ∥ 0.33 2.27 ∥ 0.93 2.83 ∥ 0.63

Scene priors 2.93 ∥ 1.13 10.80 ∥ 3.13 23.07 ∥ 7.60 15.87 ∥ 6.37 13.17 ∥ 4.56

SAVN 17.33 ∥ 5.97 13.60 ∥ 4.50 25.47 ∥ 5.50 12.27 ∥ 4.37 17.17 ∥ 5.08

VTNET 26.67 ∥ 7.03 19.47 ∥ 9.03 16.93 ∥ 7.40 16.93 ∥ 7.40 22.43 ∥ 6.79

GVSN 34.40 ∥ 7.30 17.87 ∥ 8.10 32.40 ∥ 9.60 30.00 ∥ 6.57 28.67 ∥ 7.89

Ours 52.40 ∥ 40.75 35.40 ∥ 21.61 26.00 ∥ 17.48 42.00 ∥ 34.65 38.95 ∥ 28.62

Table 4.2: Comparison of SR and SPL across different environments (kitchen, living room, bed-

room, and bathroom). The table shows that S2P outperforms trained models in novel scenes,

particularly in terms of average SR and SPL, indicating superior generalization across different

environments and object configurations with minimal data needed.
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5 Discussion and Conclusion
This work presents the use of In-Context Learning combined with a VLM and shows

its capability for improving state-of-the-art reasoning and planning of autonomous nav-

igation systems. The results show that our method, without specific training or large

datasets, significantly outperforms zero-shot baseline performance. This may prove im-

portant in many applications where data is limited. The fact that it can immediately adapt

to various and dynamic contexts without extensive data collection and retraining shows

its flexibility and scalability.

A key strength of the work is how effectively In-Context Learning allows the model

to incorporate new information on the fly and make contextually informed decisions. For

instance, the model leveraged the scene and previous trajectories to navigate open spaces

it had never seen before without a significant amount of computational resources and

time saved due to its reliance on minimal data instead of exhaustive training procedures.

This positions our framework as one potential solution for when rapid adaptation may be

required, such as robotic exploration or autonomous driving.

By combining various contextual hints, our model significantly reduced navigation er-

rors and achieved higher trajectory scores, especially in challenging situations. This em-

phasizes the importance of context within the autonomous world: the more detailed the

information an agent could gather from the scene, the more advanced its decision-making

capabilities would be. Hence, our framework provides the foundation for developing

even more intelligent systems for navigation with limited data. While these results are

promising, many aspects need further research. The future work could include additional

modalities such as audio and depth information that help better understand the context. A

multimodal approach would permit the model to navigate more complex environments,

such as indoor scenes with moving objects or outdoor scenes with varied terrain. Rein-

forcement learning and curriculum learning are methods that could further optimize the

model to learn from simulated environments in order to enhance its generalization ca-

pability to practical scenarios, such as navigation on city roads and search-and-rescue

operations.
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Another very promising line of investigation involves the study of human-AI collabo-

ration in navigation. Indeed, human feedback or interactive learning will make the model

more intuitive to use in shared environments like factories or warehouses for general

safety and efficiency. While our experiments are performed in controlled and simulated

environments, the eventual goal is to deploy our technology in practical applications.

Model evaluation in dynamic, unstructured scenes with unpredictable obstacles and dif-

ferent weather conditions will be crucial in establishing the robustness and reliability. In

all, this work sets the foundation for creating scalable, flexible, and contextually aware

navigation systems with In-Context Learning using VLMs. Our results show excellent

navigation performance can be achieved with very minimal data, making this framework

quite attractive for a wide range of applications. As these models become increasingly

powerful, applications within complex environments will play a significant role in the

development of intelligent and adaptive autonomous systems.
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A Appendix

A.1 Prompt Engineering

In this section we present the prompts used during the evaluation of the two modalities

under study.

A.1.1 TPV Prompt

In the Third Person View scenario, we use a simple yet effective prompt. We explicitly

ask to the model to follow the same reasoning used before, since we inject samples in its

history. We ask the model to provide the response in JSON format.

"""

Given an image from an external camera depicting a room, locate the robot

labeled with a number 0 and the target location marked with a red circle.

Note that the body of the robot under label 0 is not an obstacle.

Based on your previous analysis, apply the same reasoning on this new scenario.

Determine the optimal sequence of numbered points that the robot should follow

to reach the target without encountering any obstacles.

Reply in this JSON format:

{

DANGEROUS: [<number>, <number>..]

COMMANDS: [<number>, <number>..].

}

"""
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A.1.2 FPV Prompt

In the First Person View scenario, we use a more articulated prompt. The main difference

is that in this setup we need to inform the model about the control overlay and we use

the prompt to give the model feedbacks as well. Also in this case, we ask the model to

provide the response in JSON format.

"""

NAVIGATION MEMORY: still_empty.

Remember your navigation memory is just a hint! You must rely on what you see.

TASK: Navigate to a TARGET_OBJ.

You are given an annotated picture of what you can see from your camera.

LAST ACTION:

no_action.

SUGGESTED ACTION:

no_strategy.

COMMAND SYSTEM GUIDE:

The yellow overlay you see is a command system:

- Command 1: Rotate the view 45° right.

- Command 2: Rotate the view 30° right.

- Command 3: Rotate the view 15° right.

- Command 4: Move forward.

- Command 5: Rotate the view 15° left.

- Command 6: Rotate the view 30° left.

- Command 7: Rotate the view 45° left.

- Command 8 (not displayed): Look up.

- Command 9 (not displayed): Look down.

Tips:

- Use point 4 to explore going forward.
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- Points 1, 4 and 7 are usually used to explore the room. Try to get into areas where

the likelihood of finding the TARGET_OBJ is higher.

- Points 2, 3, 5, and 6 are typically used to fine-tune your direction towards

the target or to avoid obstacles.

STEPS:

a. Identify objects semantically related to the TARGET_OBJ. Consider whether the target

is typically found in higher or lower areas and act accordingly.

b. If you are in a closed space, e.g. a corridor, try to move towards open space.

c. If you don’t see the TARGET_OBJ in the scene, navigate towards areas where the

probability of finding the TARGET_OBJ is higher

(use objects in the NAVIGATION MEMORY as a reference).

For example, a cushion is likely found in a bedroom.

d. Keep in mind your body is large, so you need a large turn angle.

Aim for open areas when avoiding walls.

e. If you are stuck, your priority will be to avoid the obstacles

going towards an open space.

f. Return also the next command for your future self. In case you

forget the past.

g. If you are CLOSER THAN 1 METER from the TARGET_OBJ and you are sure of it,

return command 0 to end the episode.

Reply in this JSON format:

{

"objects": ["obj1", "obj2", ...],

"explanation": "explanation",

"command": "number",

"next_step_command": "number",

}

"""
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A.2 Examples of different context samples

In the following sections, we suppose, for simplicity, to be at inference time and with a

sample from Camera 1 3.7a.

A.2.1 Scenario D

In Scenario D, we evaluated Camera 1 using samples exclusively from Cameras 2, 3, and

4 to test the model’s generalization capability across different perspectives while main-

taining consistent operational context and rover configuration. Images were chosen to

preserve exact spatial layouts and furniture arrangements across camera viewpoints, en-

suring consistent environmental characteristics.

(a) Inference Camera #1 (b) Inference Camera #2

Figure A.1: Example of retrieved samples starting from a frame taken by Camera #4. On the left

there is a very similar room while on the right a very dissimilar one (thanks to MMR reranking).

Figure A.1 shows two views from Camera 4 with visual similarities to Camera 1, us-

ing comparable furniture and color schemes. This setup tests the model’s retrieval mecha-

nism for identifying relevant contextual information from diverse sources. Given the high

similarities between scenes, we implemented a Maximum Marginal Relevance (MMR)

approach as discussed in Section 3. MMR enriches the contextual dataset by varying

content without redundancy, stimulating effective decision-making and reinforcing the

model’s understanding of spatial relationships and navigation dynamics. This approach

helps avoid "overfitting" to particular visual features, promoting a more generalized envi-

ronmental understanding. Scenario D demonstrates the development of robust navigation

models through cross-camera evaluations. By using similar images from different cam-

eras, we showcased the model’s ability to generalize and adapt to changing visual inputs.
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The MMR technique further enhanced context capture and scene interpretation. These

findings suggest potential applications in real-world scenarios where autonomous systems

must navigate complex environments captured from multiple viewpoints.

A.2.2 Scenario O

To further demonstrate the flexibility and robustness of our proposed approach, we ex-

plored the performance of our model in a unique scenario, labeled as Scenario O. This

scenario was specifically designed to test the model’s ability to generalize to new envi-

ronments using real-world data sources very different from the deployment scenaio. For

this purpose, we selected two publicly available online videos depicting robots navigating

various environments. These videos, sourced from [84] and [83], provided a diverse set

of visual contexts and navigation challenges.

From the selected videos, we extracted a total of 30 to 40 frames, capturing different

segments of the robots’ trajectories. The frames were carefully chosen to include a variety

of navigation situations, such as obstacle avoidance and open spaces, to comprehensively

test the model’s adaptability. Each frame was then automatically annotated to include

ground truth about the correct trajectory. These annotations served as the contextual input

for our model, simulating a real-world context retrieval scenario. Figure A.2 depicts an

example of retrieved samples and annotation result.

A.2.3 Scenario H

In Scenario H, we explored the integration of human-centric contextual information into

our navigation system using human activity annotated video sources from CCTV cameras.

This approach represents a practical application of our model in environments where vis-

itor behavior influences navigation choices.

We installed CCTV cameras at selected locations to capture real-time human activity

footage. The video selections showcased various individuals navigating narrow corridors

and avoiding typical obstacles like chairs and desks. This rich contextual information

aimed to enhance the model’s understanding of human activities within the environment.

The generated data from these behavioral observations provided insights into how typical

human behavior patterns could inform and constrain navigational choices. This scenario
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(a) Original Frame #1 (b) Annotated Version #1

(c) Original Frame #2 (d) Annotated Version #2

Figure A.2: The figure depicts examples of the original frames extracted by the online footage

and their respective annotated versions.

demonstrates the potential for incorporating human activity data to improve autonomous

navigation systems in populated environments.

Once the filmed videos were collected, we methodically labelled human movement

trajectories as well as points of interest and potential navigational impediments. The

formatted footage and annotations would serve as the contextual information for a nav-

igational model to apply human activities to show how human engagement influenced

decision-making. Knowledge gained from the processing and labelled annotations of

video footage towards human actions and the influences towards navigation, presented

possible implications of the model’s understanding surrounding evolving situations in a

way which made predictions easier within a real-world activity.

The observations, annotations, and framing of the observed dynamic context gave us

some sense of how our model behaved to leverage information on intent and predict out-

comes based upon human articulated exchange. In terms of navigation accuracy, human

behavior contextual information improved navigation choice outcomes significantly. The

potential to understand human directional intent was mitigated where the model used hu-

man behavioral contextual information as a basis for reduced collision points in enhancing

safety during wayfinding. Each input where the model exercised an understanding which

displayed human activity or intent allowed for a development in proactive path making
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(a) Example Human-Centered Context #1

(b) Example Human-Centered Context #2

Figure A.3: The figure depicts examples of the original frames extracted from CCTV cameras.

choices which might produce enhanced navigation.

Summarizing, Scenario H emphasizes the necessity of embedding data occupying a

direct human context in autonomous navigational frameworks. Utilizing footage from

CCTV cameras to annotate the context can provide the model with additional structured

information related to contexts of human behavior in the model’s workspace. Not only

does this practice improve navigation performance, it prepares the model’s navigation be-

havior for real-world applications, where the presence and interaction of other humans

is an essential element of navigation. Findings presented in this scenario highlight the

prospect of advancing more intelligent and adaptive autonomous systems that can navi-

gate a populated space with relative ease and safety.
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A.3 Ethical Considerations of VLMs

A.3.1 Biases and Ethical Considerations

Special ethical issues connected with the application of VLM in robotic navigation in-

clude bias and discrimination within automated decision-making processes. Similar to

many other AI systems, VLMs are able to reflect and amplify the biases involved in their

training data. For the most part, a bias arises where unequal treatment based on arbitrary

characteristics ultimately leads to discriminatory effects against one group. This form

of bias may be in historical data, reflecting inequalities of the past that VLMs could be

unaware of solidifying within operational systems.

A.3.2 Impact on Employment

The introduction of automation by technologies such as VLMs is usually associated with

changes in employment patterns. Although productivity gains can translate into height-

ened wealth overall, they often also mean significant labor market disruptions, particularly

in those roles that are quite susceptible to automation.

Historical trends tend to point to the shifts in labor, either due to technological changes

or otherwise, with estimates as high as 50% reduction of agricultural workers in the UK

between the years of 1950 and 1970. As such, technological shifts in productivity and

benefits must be carefully considered not only in terms of how benefits are divided but

also who may be potentially harmed by said technologies.

A.3.3 Addressing Bias in AI Systems

The efforts at reducing bias from AI or robotic systems are at a very nascent stage. One

of the challenges is to create unbiased datasets and a notion of fairness in mathematics

that works universally. There are numerous technical approaches to find and reduce bias.

But those solutions very often get faced with a lot of restrictions because the sociotech-

nical systems are very complex, and so is the behavior of humans. These issues have

consequently been addressed as different institutional proposals emphasize the need for

collaboration between technologists and ethicists in devising frameworks that guarantee

the fairness and accountability of AI applications.
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A.3.4 Ethical Implications of Automation

The use of VLMs for robotic navigation has ethical implications related to larger issues

of justice and equity in society. These debates range from the alarmist views, foreseeing

generalized unemployment due to automation, to the optimistic view of those who believe

that in the future, productivity increases could generate new types of employment. These

are moral dilemmas that policymakers and researchers should consider, factoring in both

the immediate effects of technologies on the labor market and long-term consequences in

terms of social equity.
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