
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Design and Implementation of Instruction
Fusion Techniques in a RISC-V

Out-Of-Order core

Supervisors

Prof. Maurizio ZAMBONI

Candidate

Chiara RIATTI

October 2024

Abstract

This thesis explores the design and implementation of instruction fusion tech-
niques in a RISC-V Out-of-Order core. Instruction fusion is a microarchitectural
technique that aims at optimising performance by merging multiple instructions
inside the processor into a single operation, without modifying the Instruction Set
Architecture. The study explores the potential of instruction fusion in optimizing
resource utilization, reducing instruction count, and improving execution efficiency
within the Lagarto Ox core, developed at the Barcelona Supercomputing Center.
The work involves the design of a scalable infrastructure capable of supporting vari-
ous fusion idioms, initially focusing on compressed instructions with plans for future
support of normal-sized instructions. Verification and validation are conducted
through custom testbenches, while performance evaluations demonstrate significant
reductions in execution cycles and instruction counts. The study concludes with
an analysis of the physical design impact, emphasizing the trade-offs in area and
frequency for implementing instruction fusion in a RISC-V architecture.

Keywords: Instruction fusion, Out-of-Order core, RISC-V, Microarchitectural
technique.

Acknowledgements

I would like to thank my supervisor, professor Maurizio Zamboni, for his support
in this work.

Moreover, I would like to thank Jonnatan Mendoza and Francesc Moll, my
Master’s thesis advisors at the Barcelona Supercomputing Center, for giving me
the opportunity to work on this project and all the support during my time in the
Barcelona.

i

Table of Contents

List of Tables iv

List of Figures v

Acronyms viii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Instruction Set Architecture 1
1.1.2 Instruction Fusion . 3

1.2 Objectives . 5

2 Background 6
2.1 State of the art . 6
2.2 Computer architecture . 12
2.3 Methodology . 18

3 Design and Implementation 22
3.1 Instruction fusion . 22

3.1.1 Fusion candidates . 23
3.1.2 Fused instruction format . 26

3.2 Fusion support in the Front-End . 28
3.2.1 Fetch stage: Fusion Detector 28
3.2.2 Fetch stage: testbench . 37
3.2.3 Decode stage: Fusion Decoder 39
3.2.4 Decode stage: testbench . 40
3.2.5 Load pairs . 41

3.3 Fusion support in the Back-End . 46
3.3.1 Integer Execution: Fusion ALU 46
3.3.2 Integer Execution: testbench 49
3.3.3 Memory Execution . 49

ii

3.3.4 Memory Execution: testbench 52
3.4 Exception handling . 52

3.4.1 Fetch stage . 53
3.4.2 Reorder Buffer . 53
3.4.3 Program Counter . 57

3.5 Entire core . 58

4 Verification and Performance 60
4.1 ISA tests . 60
4.2 Benchmarks . 62

4.2.1 Performance . 63

5 Physical design impact 66
5.1 Area . 66
5.2 Frequency . 71

6 Conclusions 72
6.1 Future work . 73

Bibliography 75

iii

List of Tables

3.1 Driving signal of the multiplexer to select the fused instruction output 35
3.2 Replace mask and Invalid mask generation 36
3.3 Register constraints . 37
3.4 Register constraints for Load Pairs idiom 45
3.5 Operation supported by the Fusion ALU 48

iv

List of Figures

1.1 Abstraction Layers . 2

2.1 Total dynamic instruction count from paper [10] 7
2.2 Total dynamic instruction bytes fetched from paper [10] 7
2.3 Fusion candidates discussed in [10], taken from paper [5] 10
2.4 Overview of pipeline of Helios architecture to support Fusion from

paper [5] . 10
2.5 Fusion Target of XiangShan Processor from paper [15] 11
2.6 Fusion decode unit implemented in XiangShan Processor from paper

[15] . 11
2.8 The basic structure of a MIPS floating-point unit using Tomasulo’s

algorithm from [18] . 15
2.9 HLIB engineering cycle . 19
2.7 Lagarto Ox core diagram . 21

3.1 Supported fusion sequences . 25
3.2 R4 format . 26
3.3 F_R4 format . 27
3.4 F_R4 fields . 27
3.5 Registers specified by the 3-bit encoding, taken from [22] 28
3.6 Architecture of the Fetch stage . 29
3.7 Focus on F2 stage . 30
3.8 Focus on signals connection inside Fusion Detector: how the input

signals are connected with instantiation #0 of c_detector 31
3.9 Detection of two Scaled Load sequences and one Load Effective

Address . 32
3.10 Detection of four fusible sequences made of two instructions each . . 32
3.11 Focus on output replace and invalid mask of Fusion Detector module 33
3.12 Example of input sequence and generation of the replace and invalid

masks . 33
3.13 Reduction from the 7 masks to to final ones relative to Figure 3.12 . 34

v

3.14 Selection of the fused instruction output 34
3.15 Parallel detection . 36
3.16 Test bench flow of the Fusion Decoder 38
3.17 Decode stage . 39
3.18 Scaled Index family control signals 40
3.19 Example of control signals structure 41
3.20 Output of python script from fused instruction to original instructions. 41
3.21 Percentage of fused micro-ops considering all or just memory fusion

idioms, taken from paper [5] . 42
3.22 Load Pairs fusion sequences . 43
3.23 F_R4 format with Load Pairs . 43
3.24 Opcode of Scaled Index family and Load Pairs family 44
3.25 F_R4 fields of the Load Pairs family 44
3.26 Load Pairs family control signals 45
3.27 Pipeline, focus on integer execution 46
3.28 Integer FU generator . 47
3.29 SystemVerilog implementation of 32-bit LEA operation 48
3.30 SystemVerilog implementation of 64-bit LEA operation 49
3.31 Block diagram of Memory Execution 50
3.32 Effective address calculation in IL instruction, for 32-bits configuration 51
3.33 Effective address calculation in IL instruction, for 64-bits configuration 51
3.34 Effective address calculation in SL instruction, for 32-bits configura-

tion . 52
3.35 Effective address calculation in SL instruction, for 64-bits configuration 52
3.36 Block scheme of Reorder Buffer . 54
3.37 Completed vector boundaries . 55
3.38 Completed vector boundaries, corner case of circular buffer 55
3.39 Modified block scheme of the Reorder Buffer 57
3.40 Program Counter update for Indexed Load and Scaled Load operations 58
3.41 Lagarto Ox core diagram with instruction fusion support 59

4.1 Performance results of the Lagarto OX core without Instruction Fusion 62
4.2 Retired Instructions count for the four benchmarks 64
4.3 Cycles count for the four benchmarks and the ad hoc benchemarks 65

5.1 Area breakdown graph of Fetch Stage. 66
5.2 Fetch Stage area comparison . 67
5.3 Area breakdown graph of Decode Stage 68
5.4 Decode Stage area comparison . 68
5.5 Area breakdown graph of Front-End 69
5.6 Integer execution area comparison 69

vi

5.7 Memory execution area comparison 70
5.8 Overall area comparison . 70
5.9 Critical paths comparison . 71

vii

Acronyms

ISA
Instruction Set Architecture

RISC
Reduced Instruction Set Computer

CISC
Complex Instruction Set Computer

CPU
Central Processing Unit

ALU
Arithmetic Logic Unit

ROB
Reorder Buffer

PC
Program Counter

LEA
Load Effective Address

IL
Indexed Load

SL
Scaled Load

viii

Chapter 1

Introduction

This chapter aims to present the motivation behind the choice of implementing the
instruction fusion technique and the objectives of this thesis work.

1.1 Motivation

1.1.1 Instruction Set Architecture
In a computer, the processor is the physical heart where operations occur. It inter-
prets and performs commands from the computer’s software. The interface between
hardware and software is the instruction set architecture (ISA). The ISA defines
which instructions the processor can execute. Consequently, a CPU implementing
a particular ISA can execute all instructions defined by that architecture. Similarly,
software designed for a specific ISA will run on any processor that supports it.
The same instruction set architecture can be supported by different processors;
however, the specific design and implementation, known as microarchitecture, can
vary between processors [1]. x86-64 and RISCV are ISAs. Skylake is an Intel
microarchitecture, Zen is an AMD microarchitecture, and they both support the
same ISA, x86-64.

In the abstraction hierarchy, the ISA is between the microarchitecture and the
code, as shown in Figure 1.1. The ISA defines all the necessary elements to allow
the processor to communicate with the software: the operations that the processor
can execute, the memory management, the supported registers and data formats.
Two main paradigms that dominate the current CPU development context are
distinguished by their architectural complexity: the Reduced Instruction Set Com-
puter and the Complex Instruction Set Computer. Some examples of RISC ISAs
are MIPS, RISC-V and ARM. On the other hand, x86 is a CISC ISA used by most

1

Introduction

Figure 1.1: Abstraction Layers

Intel and AMD processors.

The Complex Instruction Set Architecture (CISC) supports complex instructions
that can be carried out through multiple clock cycles. This results in denser code,
since a complex operation is encoded in a single instruction, reducing memory
usage and improving cache performance. On the other hand, the decoding of the
instructions is more complicated and complex operations have to be broken down
at microarchitectural level into simpler instructions called micro-op in order to
actually be executed.

The Reduced Instruction Set Architecture (RISC) uses simple instructions that
can be executed in a single cycle. The decoding and execution are simple and that
allows to reduce power consumption. Opposite to the CISC paradigm, executing
a complex instruction requires the processor to carry out each individual basic
step of a complex operation separately. The simplicity of the RISC ISA does not
constrain microarchitectural design choices aimed at enhancing performance. In-
stead, it offers significant flexibility, allowing designers to directly exploit the ISA’s
simplicity for efficient processing or implement advanced hardware techniques such
as out-of-order execution, multiple issue, and, lastly, instruction fusion. Instruction
fusion serves as a mechanism to bridge the gap between RISC and CISC paradigms
by internally synthesizing more complex operations within a RISC processor.

All of the popular commercial ISAs are proprietary. However, RISC-V is a free
and open ISA that is based on the original Reduced Instruction Set Computer
architectures. It is structured as a small base ISA with a variety of extensions [2].
This is significant because it allows smaller device manufacturers to build hardware

2

Introduction

without having to pay royalties. Both for low-power embedded systems and high
performance.

1.1.2 Instruction Fusion
Instruction fusion is a microarchitectural technique used to improve the performance
of modern processors by combining multiple instructions in a single operation. It is
important to distinguish between these matters due to the varying terminology [3] :

• MicroFusion is when multiple micro-ops from the same assembly instruction
are merged into a single micro-op. It happens inside the processor’s pipeline.
MicroFusion can take place in the processors where the backend breaks down
a single instruction into micro-op. Fused micro-ops count as one, from the de-
coders to the reservation station in order to save pipeline bandwidth. However,
they can not be executed so they are split at the execution stage. Examples
are in Intel and AMD CPUs [4].

• MacroFusion is when multiple ops from different assembly instructions are
merged into one micro-op. This is made by the decoding pipeline inside the
CPU. Both Micro and Macro fusion can be supported at the same time.

This thesis concentrates on MacroFusion. The purpose of instruction fusion is to
“maximize resource utilization by saving resources such as Reorder Buffer, Scheduler,
and Load/Store Queue entries” [5], as well as executing more work with fewer bits,
consequently saving power.

Commercial processor with instruction fusion

The technique for fusing instructions is owned by Intel and is protected by a patent
filed in December 2000 [6]. X86 processors support both MicroFusion and Macro-
Fusion. MicroFusion combines load-ALU operations and ALU-store operations.
MacroFusion takes compare operations followed by a branch operation and fuses
them together. The advantages of the technique are an increase in the rename
and retire bandwidth, more storage for instructions in-flight, and power savings by
representing more work in fewer bits [7].

Other examples of instruction fusion in a commercial CISC architecture are AMD
Zen microarchitecture. Zen 1 and Zen 2 support the fusion of a CMP or TEST
instruction immediately followed by a conditional jump into a single instruction.
Zen 3 is able to fuse an arithmetic or logic instruction immediately followed by a
conditional jump. This applies to instructions such as CMP, TEST, ADD, SUB,

3

Introduction

AND, OR, XOR, INC, and DEC, along with all conditional jumps. [4]

Arm also supports some macro-op fusion operations in recent microarchitectures.
An example is Arm Cortex-A78C Core 1 that supports the fusion of the following
instructions [8]:

– CMP/CMN (immediate) + B.cond

– CMP/CMN (register) + B.cond

– TST (immediate) + B.cond

– TST (register) + B.cond

– BICS (register) + B.cond

– NOP + any instruction

In all the processors proposed, the instruction pairs must be adjacent to each other
in the program code in order to be fused. It is possible to see that in all the com-
mercial processors listed here the instruction fusion regards compare-and-branch
sequences, that typically require two instructions both for ARM and x86, and,
based on Intel’s estimation, they make up 15% of all instructions.
In contrast, in a RISC-V architecture, this kind of fusion is not needed because it
already supports a special dedicated instruction format for conditional branches.
The RISC-V Instruction Set Manual states “The conditional branches were designed
to include arithmetic comparison operations between two registers (as also done in
PA-RISC and Xtensa ISA), rather than use condition codes (x86,ARM, SPARC,
PowerPC), or to only compare one register against zero (Alpha, MIPS), or two
registers only for equality (MIPS).” [9]

Instruction Fusion in RISC-V core

The use of macro-op fusion in RISC-V was proposed in a 2016 Berkeley paper [10].
The reason for implementing instruction fusion in a RISCV architecture is that the
instructions of this ISA are simple, and some instructions do not fully utilize the
available resources or do not need all the internal resources that the format allows
them to claim. The resources are better exploited and bandwidth is internally
saved by combining the instructions into a more complex one that the processor
can still handle. The front-end detects the fusible instructions; if the requirements
are met, a fused instruction is created and sent through the pipeline in the same
manner as a regular instruction, but with just one instruction now present rather
than the original’s several. MacroFusion can be seen as the opposite to the process

4

Introduction

of generating many micro-ops from a single ISA instruction that takes place in
CISC cores.
Some examples of commercial RISC-V processors that implement instruction fusion
are Ventana’s Veyron V1 [11] and SiFive’s P870 [12].

1.2 Objectives
The objective of this master’s thesis is to design, implement, and test instruction
fusion support in the Lagarto Ox Out-of-Order core, while preserving a scalable
infrastructure to implement further idioms of fusion.
More detailed objectives are:

• Investigate existing instruction fusion techniques: research the current state
of the art of the usage of instruction fusion techniques focusing in its support
for RISC-V processors

• Design custom instruction fusion techniques for RISC-V: design instruction
fusion architectural support tailored to out-of-order execution and RISC-V
processors, considering its unique characteristics and usage patterns

• Integration into Lagarto Ox Core: RTL development and integration into the
Out-of-Order RISC-V Lagarto OX core

• Verification and validation: develop a verification framework in cocotb for the
derived modules of the instruction fusion feature

• Performance evaluation: performance evaluation of the fusion techniques in
terms of execution efficiency, reduced instruction count, reduced cycle count,
and overall performance

• Trade-off: examine the impact on the area requirements and frequency.

5

Chapter 2

Background

In this chapter are reported the study of instruction fusion techniques present
in RISC-V processor and the theoretical background needed to understand how
this technique can be implemented inside the Lagarto Ox core developed at the
Barcelona Supercomputing Center (BSC).

2.1 State of the art
The use of macro-op fusion in RISC-V was proposed in 2016 in the paper titled
“The Renewed Case for the Reduced Instruction Set Computer: Avoiding ISA Bloat
with Macro-Op Fusion for RISC-V” paper [10].
The objective of the article is to use instruction fusion to increase RISC-V’s code
density and performance without compromising the simplicity that makes it a
Reduced Instruction Set Computer. They analyze the dynamic instruction counts
and bytes fetched for widely used proprietary ISAs, including ARMv7, ARMv8,
IA-32, and x86-64, in comparison with the free and open RISC-V RV64G and
RV64GC ISAs using the SPEC CINT2006 benchmark suite.

In Figure 2.1, the total dynamic instruction count is shown for each of the ISAs,
normalized to the x86-64 instruction count. RV64G executes 16% more instructions
than x86-64, 3% more than IA-32, 9% more instructions than ARMv8, and 4%
fewer instructions than ARMv7. With the use of instruction fusion, the instruction
count for RV64GC is reduced by 5.4%.
Figure 2.2 presents data on the total dynamic instruction bytes fetched. The RV64G
architecture, with its fixed 4-byte instruction size, fetches 23% more bytes per
program than x86-64. Contrary to expectations, the x86-64 architecture exhibits
a relatively low instruction density, with an average of 3.71 bytes per instruction.

6

Background

Figure 2.1: Total dynamic instruction count from paper [10]

Figure 2.2: Total dynamic instruction bytes fetched from paper [10]

Similarly to RV64G, both ARMv7 and ARMv8 architectures employ a fixed 4-byte
instruction size. The use of the RISC-V “C” Compressed ISA extension in RV64GC
results in an average of 3.00 bytes per instruction, 8% fewer dynamic instruction
bytes than x86-64. Moreover, RV64GC retrieves significantly fewer bytes compared
to both ARMv7 and ARMv8 architectures.

The RISC-V “C” Compressed ISA extension encodes frequently used instructions
into 16-bit formats, which occupy half the space of a standard RISC-V instruction
word. This reduction in code size increases fetch bandwidth and aims to enhance
both energy efficiency and overall performance. However, due to the limited space
within a 16-bit format, only a subset of the most common instructions, such as
add, load, and branch, can be compressed. “RVC programs are 25% smaller than
RISC-V programs, fetch 25% fewer instruction bits than RISCV programs, and
incur fewer instruction cache misses” [13].
Given these advantages, it is logical to pair the compressed extension with instruc-
tion fusion to further maximize code density and minimize the instruction count.

7

Background

This combination leverages the strengths of both techniques, achieving denser,
more efficient code while optimizing the performance benefits of RISC-V systems.

With the results of a 5.4% decrease in the effective instruction count when macro-op
fusion is implemented in conjunction with the compressed instruction set extension,
the authors reach the goal of giving the RISC-V ISA denser code and achieving
more work per instruction, without modifying the ISA.

The support for three macro-op fusion has been implemented in the in-order single
core Rocket [14]. In the decode step, the two instructions are fused together if
fusion is feasible. The result of the first instruction is kept visible in case the second
instruction in the fused pair causes an exception.

The work [10] includes an analysis of which idioms increase the instruction count and
could serve as strong candidates for fusion in a RISC-V architecture. The analysis
concludes that, unlike other proprietary RISC ISAs such as ARMv7 and CISC
architectures such as x86-64 and IA-32, RISC-V uses additional instructions for
indexed memory operations, unsigned integer array indexing, and library routines
such as memset and memcpy.
The three macro-op fusion implemented are:

• Load effective address

slli rd, rs1, imm
add rd, rd, rs2

It computes the effective address of a memory location and places the address
into a register. The typical use case is an array offset that is shifted to a
data-aligned offset and then added to the array base address.

• Indexed load

add rd, rs1, rs2
ld rd, 0(rd)

It is an extremely common idiom, that in x86-64 and ARM is implemented as
a single instruction, but RISC-V requires up to three instructions to have the
same behavior. This idiom loads data from an address calculated by adding
two registers. It can also be combined with the Load effective address to
generate a fusion of three instructions.

8

Background

• Clear upper word

slli rd, rs1, 32
srli rd, rd, 32

It zeros the upper 32-bits of a 64-bit register.

Some interesting idioms analyzed by the authors [10] but not implemented are
reported here. An example is the Wide Multiply/Divide idioms: multiplication in
RISC-V generates a product of size 2*XLEN. Two separate instructions are needed
to get the full 2*XLEN of the product:

MULH[[S]U] rdh, rs1, rs2
MUL rdl, rs1, rs2

In order to create immediate values larger than the standard 12 bits that most
RISC-V instructions may use, the Load Upper Immediate instruction is utilized.
This pair loads a 32-bit immediate into a register:

lui rd, imm[31:12]
addi rd, rd, imm[11:0]

ARMv8 employs load-pair and store-pair instructions to transfer up to 128 con-
tiguous bits of data from memory into two separate registers (or vice versa) within
a single operation. In RISC-V, this functionality can be mimicked by combining
consecutive load (or store) instructions that access adjacent memory addresses.
However, these instruction sequences require two write ports on the register file, in
case of the load pairs, three read ports in case of the store pairs.

ld rd1, imm(rs1)
ld rd2, imm+8(rs1)

The complete list of all the idioms analyzed in the article is reported in Figure 2.3.

The article also highlights how crucial the compiler is to achieve the intended
outcome. A fusion-aware compiler, which has the task of increasing the number
of fusible pairings in the compiler-generated code, will ensure that all the work of
supporting macro-op fusion yields results.
Finally, the application will determine the benefits of this technique. There will
not be any improvements if the code of the benchmarks do not come with any of
the fusible opportunities supported by the processor.

9

Background

Figure 2.3: Fusion candidates discussed in [10], taken from paper [5]

The article “Exploring Instruction Fusion Opportunities in General Purpose Proces-
sors” [5], published in 2022, proposes a focus on the fusion of memory instructions.
Instruction fusion is done for consecutive instructions, which is the operation of
fusing instructions that are consecutive in the dynamic execution of the stream,
and contiguous instructions, which is the fusion of memory operations that access
contiguous memory bytes. The authors aim at increasing the number of fused
memory instructions by relaxing these two constraints. They focus on implementing
the fusion of load pairs and store pairs. It consists of the fusion of two loads even if
they access non-contiguous data as long as that data fits within a specific memory
region. This approach can be considered a run time fusion, in contrast to the
static time fusion analyzed in the previous article. Run-time fusion consists of
a speculation on the possibility that those instructions are really fusible because
it requires knowledge that is not available until the execution stage, above all
the effective address. In order to implement the run-time fusion, a mechanism of
prediction and recovery is needed, it is implemented in the Helios architecture as it
is possible to see in Figure 2.4.

Figure 2.4: Overview of pipeline of Helios architecture to support Fusion from
paper [5]

Helios allows to fuse an additional 5.5% of dynamic instructions, bringing a 14.2%
performance uplift over no fusion.

10

Background

Another implementation of instruction fusion in RISC-V is the paper “Accelerate Bit
Manipulation in XiangShan Processer Using RISC-V B Extension and Instruction
Fusion” (2022) [15]. The purpose is to exploit instruction fusion to accelerate bit
manipulation. Instruction fusion is implemented in the decode unit. They propose
10 new instruction fusion candidates after profiling the benchmarks and finding the
frequent idioms for their specific application. They are summarized in Figure 2.5.

Figure 2.5: Fusion Target of XiangShan Processor from paper [15]

The instructions that can be fused are detected in the decode stage by a specific
Fusion Decode Unit. This unit checks every two adjacent instructions to verify that
they match one of the supported pairs. If there is a match, the first instruction
is replaced with the fused instruction and the second is discarded. To keep track
of the fused instruction a bit is added to the control signal. This architecture is
shown in Figure 2.6.

Figure 2.6: Fusion decode unit implemented in XiangShan Processor from paper
[15]

11

Background

To evaluate the results, they use Coremark benchmark. It shows that dynamic
instructions reduce by 18.14%, and the performance improves by 12.09% and a
reduction of 10.74% of cycle count.

2.2 Computer architecture
This project was developed while working on the on-going project of the third
release of the Lagarto family processors. Lagarto Ka [16] and Lagarto Ox are
the second and third generations of the Lagarto core family developed at BSC,
as part of the DRAC project. The DRAC project has as its primary goal the
design, verification, and fabrication of a high-performance processor that integrates
several accelerators and other features in the same system-on-chip, using RISC-V
technology. [17]

Lagarto Ox Core

Lagarto Ox is a reconfigurable core design implementing the RVGC Instruction Set
Architecture. It supports an 11-stage pipeline with Out-of-Order execution and
in-order commit, with the following stages:

1. Instruction Fetch 1

2. Instruction Fetch 2

3. Instruction Fetch 3

4. Instruction Decode

5. Register Renaming

6. Dispatch/Allocation

7. Issue

8. Read Registers

9. Execution

10. Write-Back

11. Commit

The Lagarto Ox core diagram is shown in Figure 2.7. The Front-End of the
processor is responsible for maintaining a continuous stream of instructions in the
pipeline by fetching a new set of instructions from the Instruction Cache during

12

Background

each cycle. These instructions are then decoded, renamed, and dispatched to the
Back-End to its respective instruction scheduler. Register renaming assigns each
instruction a rob id and resolves false dependencies between instructions, keeping
only the true dependencies. The Front-End also incorporates a branch predictor
and a recovery mechanism. These components enable the effective execution of
speculative instructions, allowing the processor to make educated guesses about
the direction of branches and recover accurately if the speculation proves incorrect.

The Back-End issues instructions out-of-order from each instruction queue to the
read register stage, where sources are satisfied from the physical register file or the
bypass network to later arrive at the execution stage on its respective functional
unit. Once instructions are complete, they deliver data to the writeback bus for
back-to-back execution and register file writeback. Later, the reorder buffer will
commit instructions in program order as they are completed. [16]

Out-of-Order core

Out-of-Order execution is a technique designed to exploit instruction-level paral-
lelism, minimize stalls, and enhance overall processor performance by overcoming
the limitations imposed by data dependencies inherent in classical In-Order exe-
cution. In the In-Order execution model, when an instruction requires data from
memory, all subsequent instructions are stalled until the necessary data is retrieved
and ready for use. This stalling occurs even if the subsequent instructions do not
depend on the data being fetched, leading to inefficiencies and reduced performance.
Out-of-Order execution addresses this inefficiency by allowing instructions to exe-
cute as soon as their operands are available, irrespective of their original sequence
in the program. This approach allows instructions that are independent of the
stalled instruction to proceed, thus increasing overall throughput. The execution
order, therefore, is determined by the readiness of the required operands, rather
than by the program’s instruction order.

This technique is based on the Tomasulo algorithm. This algorithm employs several
key structures, including reservation stations, a reorder buffer, and common data
buses (CDB).

Reservation Stations
Reservation stations serve as a waiting area for instructions whose execution is tem-
porarily delayed. These stations monitor the availability of the required operands,
enabling the instruction to be issued as soon as all dependencies are resolved and
the operands are ready.
In the reservation station the instruction is referred to with the value of its tag.

13

Background

After an instruction completes the execution, its result is broadcasted with the
CDB, any instruction or register that was waiting for that result will pick it up.

Registers Rename
When instructions are executed out of sequence relative to their original program
order, three types of data hazards may arise:

• Read-After-Write (RAW) Hazard: this is a true dependency that occurs when
an instruction attempts to read a value before a preceding instruction has
written it. If not managed properly, this leads to incorrect data being read.
To avoid this, instructions must be executed in their original program order.

• Write-After-Write (WAW) Hazard: it occurs when an instruction attempts to
write a value before a prior instruction has completed its write. The result is
that the final value stored may be incorrect. WAW hazards can be mitigated
using register renaming, which ensures that each write operation targets the
correct version of the register.

• Write-After-Read (WAR) Hazard: it arises when an instruction tries to write a
value before a previous instruction has read it, potentially causing the previous
instruction to read the wrong value. Like WAW hazards, WAR hazards are
addressed using register renaming.

WAW and WAR hazards are not true dependencies because they are a result of
the limited number of registers available in the register file. Tomasulo’s algorithm
avoids data hazards by using register renaming. Physical registers are mapped
to logical registers so that different instructions can use the same logical register
without conflict.
On the other hand, RAW hazards are solved by ensuring that instructions with
true data dependencies wait in reservation stations until all their required operands
are available.

Tomasulo’s Algorithm
Figure 2.8 shows the basic structure of a Tomasulo-based processor. The instruc-
tions are sent from the instruction unit to the instruction queue, from which they
are issued in order to the reservation stations. If a reservation station is available,
the instruction and its renamed operands, source registers and tag, are inserted
into the reservation station.
While the instruction waits in the reservation station, it checks the common data
bus for the tag of its sources. If the tag is found, it gets the value for the sources
and keeps it in the reservation station, solving one of the sources. When all the
operands are available, the instruction can be issued, effectively executing the

14

Background

instructions out of order.
When the instruction is ready, it gets dispatched to its functional unit. After the
computation is completed, the result is broadcasted on the common data bus to
solve the source value of the instructions at the reservation stations, the tag is also
broadcasted to the register file [18].

Figure 2.8: The basic structure of a MIPS floating-point unit using Tomasulo’s
algorithm from [18]

Reorder Buffer

The primary purpose of the ROB is to allow instructions to be executed out of
order while ensuring that their results are committed to the architectural state of
the processor in program order.
The Reorder Buffer monitors in-flight instructions as soon as they come out from
the Dispatch State, going into the Back-End of the processor. Once the instruction
meets the criteria for wake-up and is selected, it passes from the Issue Stage to
the Execute Stage. At this point, when an instruction completes execution, its
result is stored in a reservation station, which the ROB keeps track of, along with
a tag (rob id) indicating its program order and a completion bit per entry. Once
an instruction is ready to be committed, it is committed respecting the program
order. The ROB assigns incrementing rob ids to instructions while they are still in
program order. When an instruction reaches the head of the ROB and is ready
to be committed, the actual commit process occurs. Since the instructions within
the ROB are stored in the order they appear in the program, the commit process

15

Background

naturally respects the original program order. This ensures that, even if instructions
are executed out of order, they are committed in the correct sequence, maintaining
the consistency and correctness of the program’s execution.

The ROB is implemented as a circular buffer, the oldest instruction is pointed by
the rob head, and the newest is pointed by the rob tail. On one side there is the
ROB as just the memory, on the other the FIFO controller implements the control
system for the circular buffer. The module receives read and write requests and
replies by granting such requests and providing indexes for the operations to take
place in the actual memory. The module evaluates the number of available and
consumed slots based on the state of the write and read pointers, and grants the
write and read requests. Slots need to be read before they can be rewritten, giving
a limitation to how far the pointers can be from each other, and thus assuring a size
limitation for the FIFO. The module has two status flags that indicate when the
FIFO is full or empty, and two status signal that indicate the number of available
slots and the number of consumed slots.

Precise Exception
Exceptions are handled when detected, contrary to interrupts that are handled
when convenient. The architectural state should be consistent when the exception
is ready to be handled. This means that all the previous instructions should
be completely retired, and no later instruction should be retired. To implement
the mechanism of precise exception in an out-of-order execution, the instructions
are dispatched and executed out of order but the retirement should happen in
order. Basically, reorder the instructions before making the results visible to the
architectural state, using the Reorder Buffer.

Explicit Renaming

Tomasulo’s algorithm is implemented to support out-of-order execution, but the
implementation in the core is not precisely the one described by the algorithm.
The reservation station, as they are described, are too complex, thus they are
implemented differently while maintaining the same conceptual behavior. Lagarto
Ox splits the reservation station job between the Reorder Buffer, the Rename Unit,
the Issue Queues. The mechanism used is called Explicit Renaming.

Tomasulo’s algorithm provides Implicit Register Renaming, where the registers
are renamed to the reservation station tags. Explicit Renaming uses a physical
register file that is larger than the number of registers specified by the ISA. What
is needed is a translation table to map the ISA registers to the physical ones, and a
mechanism to know which physical registers are free and can be assigned. It allows

16

Background

to remove all WAW and WAR hazards, decouples renaming from scheduling, allows
the implementation of out-of-order execution and makes precise exception easier
since all that is needed to do to get the precise state of the execution is to undo the
table mapping. As instructions are renamed, their register specifiers are explicitly
updated to point to physical registers located in the Physical Register File [19].
The MIPS R10k, Alpha 21264, Intel Sandy Bridge, ARM Cortex A15 cores and
the Berkeley Out-of-Order Machine (BOOM) are all example of explicit renaming
out-of-order cores [20].

Recovery mechanism

Context recovery refers to the techniques used to handle and recover from instruc-
tion level errors, generally mis-speculations of control and data flow instructions
that may occur during the execution among the out-of-order processor pipeline.
Speculative execution involves the processor speculatively executing instructions
before it is known whether they are actually needed. If it turns out that the
instructions are not needed (e.g. because the branch is mispredicted), their effects
are discarded; this process will involve the context recovery of the processor up to
a point where the state is consistent with respect to the required recovery point.

Checkpoints are snapshots of the processor’s state (e.g. program counter, register
file, etc.) taken at certain points in time, typically before a branch instruction.
If a branch is mispredicted, the core can restore the state from the last correct
checkpoint, effectively rolling back to the point before the misprediction occurred.
Upon detecting the misprediction, usually after the branch instruction is resolved,
the recovery mechanism:

• Flushes the pipeline: all instructions in the pipeline following the mispredicted
branch are invalidated.

• Restores the checkpoint: the processor’s state is rolled back to the checkpoint
taken before the branch, and execution resumes from the correct path.

The ROB plays the vital role of identifying the precise exception point, meaning
that the core can determine which instruction caused the exception by referring to
the ROB.

Instruction Queues

The instruction queue in the Lagarto Ox core is a parametric out-of-order queue.
The queue aims to solve the necessity of out-of-order instruction issue.
Instruction sources are stored in Content-Addressable Memories (CAMs), where
the rest of instruction data is stored in Random-Access Memories (RAMs) in

17

Background

the same index. Destinations are completed through the write-back bus and set
dependent instructions as ready using the CAMs and ready source vectors. When
an instruction has all its sources ready can be issued if there is a functional unit
ready at execution stage to execute it.

The instruction queue stores instructions coming from dispatch. Here, the instruc-
tions wait until its operands are ready. Register destinations are completed through
the write-back bus, which are compared to instruction register sources using CAMs,
and set as ready the matching ones. When an instruction has all its sources ready,
and there is a functional unit in the execution stage ready to compute it, the issue
logic selects it and issues the data from the queue.

2.3 Methodology
In this section, the used of System Verilog is explained, as well as the use of the
HLIB hardware library and its engineering cycle.

System Verilog

SystemVerilog is a hardware description and verification language that extends
the capabilities of Verilog. SystemVerilog combines features from both HDLs and
hardware verification languages (HVLs). This means that designers can design
hardware and verify it within the same framework.
It is built on Verilog’s syntax and semantics, adding new features to enhance the
modeling of hardware designs. It introduces new data types, such as unpacked
arrays, the definition of interfaces, which simplify the connection between different
modules in a design. Moreover, SystemVerilog allows modules to be parameterized
to create reusable and flexible hardware components.
For what concerns hardware verification, it supports assertions, used to check
whether specific conditions hold true at particular points in time during the
execution of a design, constained random verification, functional coverage and
object-oriented programming.

HLIB

HLIB is a general-purpose open-source SystemVerilog hardware library, developed
at the BSC. It provides a collection of commonly used, highly parameterized mod-
ules designed to minimize micro-architectural hardware implementation overhead

18

Background

while improving code maintenance, modularity, and readability. Additionally, HLIB
aims to simplify the verification process by defining a clearly defined engineering
cycle and the use of the cocotb framework.

The objective is to cut RTL design development time by offering a comprehensive
methodology, code guidelines, conventions, and tools, alongside a set of hardware
modules that adhere to these standards.

The engineering cycle

To include a new module in the library, HLIB follows a specified engineering cycle
shown in Figure 2.9. At the end of the cycle, the module will be fully documented
in order to be easily accessed by everyone.

Figure 2.9: HLIB engineering cycle

The cycle starts with the definition of the specifications related to the new mod-
ule. Then, all the submodules must be defined and their specifications must be
documented. At this point, the actual RTL design can take place, putting in the
comments the information collected in the previous steps.
Once the module implementation is finished, a proper test bench has to be imple-
mented using the Library infrastructure, which relies on cocotb. The test bench is
used to verify the specificated features and behavior of the module but can also
help to estimate the performance. After the verification process is completed, that
is, the module passes the test benches checks and standard linting test, the module

19

Background

is ready to be synthesized with CI support. An industrial level tool-chain, such as
Synopsys Design Compiler or Cadence Genus, is used to generate the synthesis,
the resultant netlists will be used for performance, area, frequency, and scalability
analysis.
The last point of the cycle is the evaluation of all the possible improvements that
can be done in the current module after the evaluation of the synthesis results.

cocotb

During the development of an HLIB module, the verification process is performed
through cocotb test benches. Cocotb is an open source COroutine-based COsimu-
lation TestBench environment for verifying VHDL and SystemVerilog RTL. It is
possible to write complex test benches using high-level code with python, cocotb
will decouple the testing from the cycle-accurate simulator. Cocotb allows users to
interface directly with the toplevel module as the Design Under Test (DUT) [21].

20

Background

Figure 2.7: Lagarto Ox core diagram

21

Chapter 3

Design and Implementation

This chapter details the design and implementation of the RTL code for introducing
the support of instruction fusion in the Lagarto Ox core.
The following sections will cover the design considerations, methodology, imple-
mentation of the RTL code, and how the code was verified and validated.

3.1 Instruction fusion

The subject of this work concerns the RTL implementation of instruction fusion in
the RISC-V Out-of-Order Lagarto Ox core.
The fusion technique implemented is static time fusion, based on the work proposed
in the 2016 Berkley article [10]. The instructions are considered fusible if they are
adjacent in the code and in the same fetch window. The resulting fused instruction
is encoded on 4 bytes, the size of an uncompressed instruction. At the moment,
the fusible candidates are made of only compressed instructions, however, the
design choices take into account the possibility of supporting the uncompressed
instructions in future implementations.

To be fused, the instructions have to show some dependencies, in particular for
all the three fusion candidates implemented the destination register has to be the
same. If a sequence of instructions presents the same destination register, they can
be interpreted as partial computations that contribute to the same final result, so
it makes sense to group them into a single computation, consequently saving all
the work of storing the intermediate results and the propagation of the instructions
in the pipeline. This is the case for the RISC-V simple ISA that needs step-by-step
computations to carry out a more complex operation.

22

Design and Implementation

3.1.1 Fusion candidates
The choice of which instructions fusion to support is based on the considerations
made in the Berkley article [10]. The Indexed Load idiom is an interesting addition
to the RISC-V architecture that can require up to three instructions compared to
one instruction of x86, ARM and MIPS. The Indexed Load affects the calculation
of the effective address of a load instruction, consequently it makes sense to give
support for the fusion of the Load Effective Address idiom and the Scaled Load
idiom, which is the union of the first two.

Load Effective Address (LEA)

The LEA idiom calculates the effective address of a memory location and puts the
address in a register [10].

slli rd, rs1, imm
add rd, rd, rs2

The resulting fused instruction has two source registers, one immediate and one
destination register.

f_lea rd, rs1, rs2, imm

In order to be fusible the two instructions have to satisfy the following requirements:

• the immediate has to be a value smaller than 32, thus it will be encoded on
5 bits, because that is the maximum value of shifting position that can take
place

• the destination registers of the two instructions have to coincide

• the first source register and the destination register of the add instruction
have to coincide

The implemented instruction fusion supports only compressed instructions, and
all possible combinations of c.slli and c.add, c.addw are supported. However, the
format defined for these instructions has also been made to support uncompressed
versions of these instructions, so that they can be easily integrated.

23

Design and Implementation

Indexed Load (IL)

The IL idiom loads data from an address calculated by adding two registers.

add rd, rs1, rs2
ld rd, 0(rd)

The resulting fused instruction has two source registers and one destination register.

f_il rd, rs1, rs2

The constraints needed to be satisfied for the instructions to be fusible are:

• the immediate value of the load has to be zero since the calculation of the
offset is executed by the add instruction

• the destination register of the two instructions has to coincide

• the source and destination registers of the load instruction have to coincide

All possible combinations of c.add, c.addw and c.ld, c.lw are supported. Again,
the format of the generated fused instructions is made so that it can also support
the fusion of not compressed instruction since they will have two different source
registers and one destination, whereas with compressed there is only one source
register, the destination register acts like a source.

Scaled Load (SL)

The SL idiom loads data from an address calculated by adding one register to a
shifted register value.

slli rd, rs1, imm
add rd, rd, rs2

ld rd, 0(rd)

The resulting fused instruction has two source registers, one immediate and one
destination register.

f_sl rd, rs1, rs2, imm

In order to be fusible, the three instructions have to satisfy the following require-
ments:

• the immediate has to be a value smaller than 32

• the destination registers of the three instructions have to coincide

24

Design and Implementation

• the first source register and the destination register of the add instruction
have to coincide

• the source and destination registers of the load instruction have to coincide

All the possible combinations of c.slli, c.add, c.addw and c.ld, c.lw are supported.
Again, the format is designed to accommodate also the future support of uncom-
pressed instructions.
In summary, the core supports the fusion of the instruction sequences found in
Table 3.1. The table also shows the constraints regarding the registers.

Figure 3.1: Supported fusion sequences

The instruction fusion possibilities made of the three idioms, with the support for
only compressed instructions, end up being a total of 10 fusible sequences.
The support can be easily extended to the uncompressed instructions since the
format accommodates them as well.
The three idioms implemented for the fusion are grouped as the Scaled Index
family of fusion instructions. This is done to group them since they conceptually
have the same function and to differentiate them from other idioms that can
supported in the future, with the aim of being capable of enabling and disabling a
particular family of fusion support based on the necessity.

25

Design and Implementation

3.1.2 Fused instruction format
The three idioms composing the Scaled Index family have been encoded in the
same format. The instructions need, at most, two source registers, one immediate
of 5 bits and one destination register.

A new format called F_R4 has been defined, it has been designed starting from
the standard R4 format. R4-type instructions specify three source registers (rs1,
rs2 and rs3) and a destination register (rd). This format is only used by the
floating-point fused multiply-add instructions [22].

The abbreviations used in the table of instruction formats are:

• opcode: 7-bits operation code.

• func3: unsigned immediate for 3-bits function code.

• func2: unsigned immediate for 2-bits function code.

• rd: destination register number for operand x.

• rs1: first source register number for operand x.

• rs2: second source register number for operand x

• imm(5): unsigned 5-bit immediate for operand x.

Figure 3.2: R4 format

The encoding definition described lies outside the standard specification of the
RISC-V ISA, but by adding an extra bit to the inter-stage buffer between the fetch
and decode stages, the full 32-bit encoding space can be utilized without adhering
to a specific instruction format. This approach offers significant flexibility in the
design, enabling the support of an extended range of fusible idioms and facilitat-
ing more versatile internal decoding processes. While it is technically feasible to
exceed the 32-bit instruction size to encode additional information, this would
introduce increased complexity to the processor’s buses, affecting both compressed
and non-compressed cases. Such complexity can potentially undermine the simplic-
ity and efficiency of a RISC ISA, consequently affecting the energy/performance
ratio. However, it is worth mentioning that this design choice could be appropriate

26

Design and Implementation

for certain domain-specific architectures, which are not the focus of the current
processor design.

This new format tailored for fused instruction is based on an already existing
one because it is convenient to be able to reuse the decoder already present in
the architecture. By respecting the fields of the opcode, func2, and func3 it is
possible to decode the fused instruction without many modifications. The rest of
the fields are for the registers and immediate values and can be modified without
any problem.

Figure 3.3: F_R4 format

The F_R4 format, reported in Figure 3.3 has the same structure as the R4 format
but the rs3 field is substituted by the immediate value on 5 bits.
The opcode is common for the entire family and it is 7’b0. To differentiate the
three idioms within the family, the field func2 is used. The field func3 encodes
the width of the instructions that make up the original sequence. The encoding is
shown in Figure 3.4.
This format is general for all combinations of compressed and uncompressed in-
structions that are part of the Scaled Index family. The only limitation is that only
double word shift left logic is considered.

Figure 3.4: F_R4 fields

It is interesting to note that the instructions addw, ld, lw in compressed format
are encoded with the version of the 3-bit registers, so the source and destination
registers can only be s0, s1, a0-a5 [22], as shown in Figure 3.5.

27

Design and Implementation

Figure 3.5: Registers specified by the 3-bit encoding, taken from [22]

3.2 Fusion support in the Front-End
The Front-End of the core is made of Fetch, Decode, Rename, Dispatch and
Allocation stages. To support instruction fusion, some modifications in the Fetch
and Decode stage are needed. The fusible sequences are detected in the last stage of
Fetch, contrary to other designs seen before that place the detection in the Decode
stage. It is a design choice: the added complexity is moved from the Decode stage
to Fetch, this allows to save entries in the queue between Fetch and Decode.

3.2.1 Fetch stage: Fusion Detector
The Fetch Unit in the Lagarto Ox processor supplies a constant stream of instruc-
tions to the pipeline by requesting a new set of instructions from the Instruction
Cache every cycle. Each instruction can be a 16 or 32-bit boundary due to the
“C” extension support. The Fetch Unit can provide up to 8 16-bit instructions per
cycle or any combination of instructions that fit the 128-bit read bus bandwidth of
the full associative instruction buffer.

In the Fetch stage, the fusible sequences defined in Figure 3.1 are identified and
encoded into a single fused instruction. The detection and encoding takes place in
the F2 stage of fetch, where the Fusion Detector module identifies and processes the
fusible sequences. The F2 stage is the last stage of Fetch. By detecting the fusion
opportunities here, it is possible to reduce the fetch-decode inter-stage queue entries,
because there will only be one instruction and not the original sequence. This
optimization significantly benefits the queue, especially when detecting sequences
of uncompressed instructions will be introduced: a sequence of three instructions
of 4-byte each (Scaled Load idiom) will become a single 4-byte instruction, saving
4 entries in the queue (each queue entry is 2 bytes, thus a compressed instruction
takes one entry and an uncompressed instruction two).

The supported instruction fusion process combines two or three compressed 2-byte
instructions into a single 4-byte instruction. When two instructions are fused,
there is no reduction in the number of entries in the fetch-decode queue. This

28

Design and Implementation

is illustrated in Figure 3.10, where four sequences of two instructions are fused
without any reduction in queue entries. However, when three instructions are fused,
one entry in the queue is saved, as depicted in Figure 3.9. This effect is limited
to the fetch-decode inter-stage queue; in subsequent pipeline stages, such as the
Decode, Rename stage, Reorder Buffer, and Instruction Queues, one or two entries
are saved due to the fusion in every structure, depending on whether two or three
instructions were fused.
The saved entry is marked as invalid, as illustrated in Figure 3.9. The writing
mechanism of the queue typically stops at the first invalid instruction, so if an empty
entry is gained through fusion, writing stops, and the following valid entries must
wait to enter the queue until the next cycle. However, the fetch queue supports
an unordered write mechanism that enables the writing of all valid instructions
without being halted by an invalid one. This feature makes it possible to increase
efficiency by taking advantage of the empty slots obtained with the fusion.

Figure 3.6: Architecture of the Fetch stage

In the F2 stage, the predecoding of instructions is carried out to support the “C”
extension. Prior to this module, the data is propagated as 8 entries of 16 bits each,
which can represent any combination of 16-bit or 32-bit instructions. The key role
of the predecoder is to discern compressed instructions.

29

Design and Implementation

The predecoder, combined with the post-fetch correction module, is also used to
identify and correct jump instructions.
The write enable signals for the fetch queue are generated by combining the mask
of incoming valid signals with the corrections generated during the F2 stage. The
detection of the fusion opportunities takes place in this stage, parallel to the post
fetch correction, with the Fusion Detector module, as shown in Figure 3.6.

Figure 3.7: Focus on F2 stage

The Fusion Detector module generates fused instructions when a fusible sequence
is detected. Consequently, there are two instruction flows: the normal flow and the
fused instructions. For each entry in the Fetch Queue, the correct flow must be
accurately selected. To achieve this, the Fusion Detector provides a mask, called
replace_mask, that drives the multiplexer responsible for selecting the appropriate
entry. This mask indicates the positions of valid fused instructions and is also used
to indicate the fused instruction in the Fetch Queue, effectively adding an extra
bit.
When three compressed instructions are fused into a single 32-bit instruction,
one entry in the queue becomes vacant. This vacant entry must be invalidated
using an additional mask generated by the module, called invalid_mask, which is
integrated with the existing masks that generate the write enables of the inter-stage
queue. As previously analyzed, considering the possibility of unordered writes, this
invalid entry will be filled with the next valid instruction, if one is available. This
mechanism is shown in Figure 3.7.

30

Design and Implementation

Fusion detector

The Fusion Detector is a combinational module that takes as input 8 entries of
16 bits each, corresponding to the fetch bandwidth. Each entry can either be a
compressed instruction or part of a normal-sized instruction, which consists of two
consecutive entries. This information is provided by instr_compressed_i input
vector.
The Fusion Detector module instantiates 7 c_detector modules.

Figure 3.8: Focus on signals connection inside Fusion Detector: how the input
signals are connected with instantiation #0 of c_detector

The detection occurs within this module. Each c_detector takes three consecu-
tive entries as input, as the longest fusible sequence comprises three compressed
instructions, and verifies if they match one of the fusible sequences supported.
In Figure 3.8, the input signal connections for the initial instantiation of the
c_detector module are illustrated. For each subsequent instantiation, the input
signals are taken by shifting one position in the input vector. Specifically, the
first instance (#0) uses input data from positions 0 to 2, the second (#1) uses
input data from positions 1 to 3 and this pattern continues incrementally for each
successive instantiation. The final c_detector receives two valid entries as input,
with the last input set to 0 since there are no entries left. This configuration
implies that no sequence of three instructions can be detected, but sequences of
two instructions are still detected normally.
With seven instances of c_detector, every possible starting point of a fusible se-
quence is examined, as shown in Figure 3.9, where two Scaled Load and one Indexed
Load are detected. Another example is in Figure 3.10, where 4 fusible sequences
of two instructions are detected. These two cases are examples of the maximum

31

Design and Implementation

throughput achievable, with three instructions in the output in the first case and
four instructions in the second, instead of the original eight.

Figure 3.9: Detection of two Scaled Load sequences and one Load Effective
Address

Figure 3.10: Detection of four fusible sequences made of two instructions each

Each c_detector generates a replacement mask, an invalidation mask, and a fused
instruction of 32 bits, which occupies two 16-bit slots, as shown in Figure 3.11.

To generate the final masks, two instantiations of the shift_bitwise_reductor sub-
module are used: one for generating replace_mask_o and one for generating
invalid_mask_o.
The submodule is in charge of abstracting the generation of reductions in control

32

Design and Implementation

Figure 3.11: Focus on output replace and invalid mask of Fusion Detector module

logic when partial results are obtained in batch processing logic styles and need
to be reduced and shifted with a specific amount to correspond to the elements
processed in each batch. In batch processing logic styles, partial results from
multiple operations need to be reduced and shifted appropriately to ensure they
correspond accurately to the processed elements in each batch.

Figure 3.12: Example of input sequence and generation of the replace and invalid
masks

To generate the two masks an OR bitwise reduction is used. Every c_detector
generates the masks, but at the end only one mask is needed. As an example,
Figure 3.12, shows on the left side the masks generated by every c_detector, based
on the fusible instruction found, and on the right the final expected masks that
will be the output of the Fusion Detector module.
Figure 3.13 shows how the 7 masks are positioned and why an OR reduction is
needed: every time there is a 1 in the batch, there should be a 1 in the final mask.

33

Design and Implementation

Figure 3.13: Reduction from the 7 masks to to final ones relative to Figure 3.12

Finally, Figure 3.14 shows how the final instruction is selected. To select the
appropriate ‘fused slots’ from the c_detector, six multiplexers are used. The first and
last slots of the fused instruction output are always fixed, while each of the remaining
slots will either be the second half of the previous fused instruction or the first half
of the current fused instruction. The multiplexers used to perform this selection
are controlled by the signal sel_mux, which is set to 1 when replace_mask_o[i]
is greater than replace_mask_o[i-1], as summarize in Table 3.1. Those are the
only possible combinations of signals, each replacement mask coming from the
c_detector tells if there are no matches, 2 instructions fused or 3 instructions fused.

Figure 3.14: Selection of the fused instruction output

The Fusion Detector has been designed as a scalable module to accommodate the
detection of additional fusion sequences. This scalability can be achieved through
two primary approaches. The first approach involves increasing the complexity of
the c_detector module. The second approach, illustrated in Figure 3.15, involves
allocating multiple detectors operating in parallel. In this parallel configuration,
the same input instruction sequence is processed by two sets of detectors, each

34

Design and Implementation

replace_mask_o[i] replace_mask_o[i-1] sel_mux[i]
000 000 0
000 011 0
011 000 1
011 111 0
111 000 1

Table 3.1: Driving signal of the multiplexer to select the fused instruction output

tasked with recognizing different families of fusible instructions. The outcomes
from these detectors must then be appropriately selected. In both cases, the bitwise
reduction mechanism together with the replace mask generation are employed to
select the wanted outcome, giving the opportunity to prioritise the outcome of
certain detectors over others and resulting in a hierarchy among fusion families,
where certain fusion sequences are given precedence.
Moreover, ambiguity in detection is avoided, as fusible instruction sequences are
identified beginning with their first instruction. However, overlapping can occur, an
example is the case of Scaled Load and Indexed Load sequences: when a detector
recognises the Scaled Load sequence the following one will always detect a Indexed
Load sequence. This overlap is resolved using the above mentioned mechanism,
where priority is given to the Scaled Load sequence over the Indexed Load sequence,
as the former fuses three instructions rather than just two.

C detector

The c_detector is a combinational module, designed to detect the 10 fusible can-
didates in Figure 3.1, from a sequence of three compressed instructions. Upon
identifying a match, it generates the fused instruction, the replacement mask, and
the invalidation mask.
The inputs to the module consist of three 16-bit instructions and a 3-bit vector
indicating whether each instruction is compressed. The outputs include a 32-bit
fused instruction, which is generated as two 16-bit instructions, a 3-bit replacement
mask indicating which input instructions were part of the fusion, and a 3-bit
invalidation mask indicating which input instructions are no longer valid due to
their inclusion in the fusion process, leaving them outside the two halfword slots.
The invalidation mask is essential because when a sequence of three instructions
is fused, the resulting fused instruction occupies two slots. Consequently, the slot
previously occupied by the last instruction of the sequence becomes vacant and
must be invalidated. The two masks cannot take any value, the only possible cases
are summarized in Table 3.2.

35

Design and Implementation

Figure 3.15: Parallel detection

replace_mask_o invalid_mask_o
No matches 000 000

2 instructions fusion 011 000
3 instructions fusion 111 100

Table 3.2: Replace mask and Invalid mask generation

Functionally, the module behaves as a decoder. It searches for a matching pattern
and, rather than generating control signals, encodes the fused instruction and the
associated masks. The detector’s structure employs if statement to verify whether
an instruction is compressed and case statement to identify the specific instructions

36

Design and Implementation

of interest.

Upon identifying an instruction sequence that matches one of the supported fusible
sequences, an additional if statement ensures that the registers of these instruc-
tions are coherent with the fusion requirements, explained in Subsection 3.1.1 and
summarized in Table 3.3.

F_LEA F_IL F_SL
add rd = ld rd add rd = add rs1 add rd = add rs1 slli rd = ld rs1
ld rs1 = ld rd slli rd = add rs1 slli rd = add rs1 ld offset = 0
ld offset = 0 slli imm5 = 0 slli rd = ld rd slli imm5 = 0

Table 3.3: Register constraints

If the register coherence check is successful, the fused instruction is generated along
with the two masks, as previously described. The generated instruction is encoded
according to the format outlined in Figure 3.3 and 3.4.
In the event that the register check fails or no fusible instructions are detected, all
outputs are set to zero.
The c_detector is implemented so that if a Load Effective Address idiom is detected,
it will check also the next instruction to see if it is a Scaled Load, and if a match is
found the output is the Scaled Load idiom.

3.2.2 Fetch stage: testbench
Fusion Detector and C detector have been tested with ad hoc testbenches inside
the cocotb framework.
Initially, the behavior of the C detector was evaluated by providing the ten sup-
ported fusion candidates as input. It was verified that these candidates were
correctly detected and that the generated masks and output instructions conformed
to the specifications outlined in Table 3.2 and the defined format in Figure 3.3 and
3.4, by comparing the output of the DUT to the expected output using assertions,
as reported in Figure 3.16.
Subsequent tests were performed to ensure that incorrect sequences were not de-
tected erroneously. Random sequences of instructions were tested, resulting in no
fusion detections. Additionally, sequences that matched fusible candidates but did
not meet the register requirements were also tested, confirming that these were
correctly identified as non-fusible.

37

Design and Implementation

Figure 3.16: Test bench flow of the Fusion Decoder

Then, the Fusion Detector was tested. The previous test already verified the
correctness of the detection, now the focus is to verify that the seven outputs of
the C detectors are correctly selected and generate the output. Four tests were
carried out to cover different scenarios, with the same flow used for the c_detector
and present in Figure 3.16:

• The example reported in Figure 3.12, where a SL is detected in position 0 and
3, and a LEA in position 6

• The sequence of 4 repetition of c.add, c.ld, as in Figure 3.10 to verify that 4
IL are detected and correctly generated

• The sequence of 2 repetition of c.slli, c.add, c.ld, and c.add, c.ld, to verify
that 2 SL and one IL are detected

• The sequence presented before with the second repetition of the SL idiom with
the wrong registers, to verify that one SL and one IL are detected, while the
second SL should not be detected because of the registers requirements.

After verifying the correct operation of the Fusion Detector module, it was inte-
grated into the Fetch stage. The signals were connected as illustrated in Figure
3.7, with the additional bit is_fused, which indicates that the entry is a fused
instruction, included in the signals transmitted from the Fetch stage, through
the inter-stage queue, to the Decode stage. Furthermore, unordered writes in the
inter-stage queue were enabled.
To ensure that this integration did not disrupt the normal functionality of the
Fetch stage, the fetch test bench was executed and verified to work correctly.

38

Design and Implementation

3.2.3 Decode stage: Fusion Decoder
In the decode stage, the 4-wide instruction decoder is instantiated and capable of
handling any combination of 16-bit and 32-bit instructions. It generates control
information for all the different parts of the pipeline. Additionally, it detects invalid
instructions that will be reported to the exception collector.
The fused instructions are 32 bits long and managed as an extension of the proces-
sor’s executable instructions. However, this management is purely internal, as the
fused instructions do not constitute an extension of the Instruction Set Architecture.

In the decode stage, a new decoder specialized for fused instructions operates in
parallel with the standard decoder. This Fusion Decoder mirrors the structure of
the original decoder, with the generation of immediate values and register informa-
tion tailored to the requirements of the fused instructions.

To determine the appropriate output between the normal decoder and the fused
decoder, a multiplexer is utilized, which is controlled by the is_fused flag, the
information coming from the fetch stage, shown in Figure 3.17.

Figure 3.17: Decode stage

Two scenarios can arise during the decoding process. In the case of a normal
instruction, the RISC-V decoder will correctly decode and process the instruction,
while the fused decoder will output an ‘illegal’ instruction. Reversely, when the
instruction is a fused instruction, the fused decoder will produce the correct decoded
output, and the RISC-V decoder will generate an ‘illegal’ instruction.

Definition of the Control signals

The Load Effective Address instruction is executed within the integer execution
unit because all original instructions are processed there. To support this operation,
it is necessary to enhance the Arithmetic Logic Unit to perform two calculations

39

Design and Implementation

simultaneously (shift and load). The chosen approach involves incorporating a new
ALU specialized for arithmetic fusion operations. Thus, this operation is issued to
the Integer Queue and to the functional unit FUSION_ALU_UNIT.

Indexed Load and Scaled Load instructions are executed within the memory
execution unit because they both involve a load operation derived from the original
fused instructions. The memory execution unit already has the infrastructure
necessary to manage load operations. Therefore, the modification required is
to enhance the complexity of calculating the effective address. Consequently,
both instructions are issued to the Memory Queue: IL is executed in the usual
memory functional unit, while SL is executed inside a specialized functional unit
MEM_SHIFT_UNIT.

Figure 3.18: Scaled Index family control signals

The control signal information is present in the spreadsheet in Figure 3.18. From this
spreadsheet the package containing the control signals is automatically generated
with a Python script. Each instruction has a unique structure that contains its
control signals in a human-readable way.
The control signals produced upon the detection of the slli + addw sequence are
shown in Figure 3.19, and it is possible to see the correspondence with the data
defined in the spreadsheet. There is also an additional signal, enclosed within an
ifdef statement, that is used only in simulation for debugging purposes.

3.2.4 Decode stage: testbench

To test the fusion decoder, all 10 fused instructions were provided as input. The
testbench verifies that the debug signal output from the decoder matches the
expected value of the debug signal. This debug value is part of the control signals
generated for every instruction, and it is unique, so it is sufficient to verify its cor-
rectness. This signal is used solely for simulation purposes to facilitate debugging,
as illustrated in Figure 3.19.
The input instructions were generated manually according to the format specified

40

Design and Implementation

Figure 3.19: Example of control signals structure

in Figure 3.3 and validated before being used on the test bench. A Python script
was used for this validation, and it turned out to be valuable during the debugging
process as well.

The Python script, given a fused instruction in hexadecimal or binary format, gen-
erates all the information about the original instructions. Specifically, it identifies
which fused instruction it is, the corresponding original instructions, the registers
involved, and the immediate value. It is useful in ensuring the correctness and
facilitating the debugging of the entire pipeline.

Figure 3.20: Output of python script from fused instruction to original instruc-
tions.

3.2.5 Load pairs
After implementing support for the Scaled Index family, the objective was to extend
this support to include Load Pairs as well. The reason behind this extension lies in
the potential to enhance instruction fusion capabilities by incorporating a broader
range of instruction sequences.

41

Design and Implementation

As discussed in Section 2.1, it is possible to replicate in a RISC-V architecture the
load-pair instruction supported in ARMv8 by fusing consecutive load instructions
that access contiguous memory addresses. This case is a static time fusion because
it occurs during the decode stage, as it is not necessary to know the exact address
of the load, it is sufficient that the pair of loads share the same base register and
have immediate values that allow consecutive memory access [10]. Then, 128 bits
can be accessed with single 4-byte instruction, thus a single memory access, by
fusing two load word instructions, as shown in the sequence below.

Ld rd1, imm (rs1)
Ld rd2, imm + 8 (rs1)

Load Pair rd1, rd2, imm (rs1)
The reason to explore memory instruction fusion is supported by the 2022 article [5],
which demonstates, reported in Figure 3.21, that memory pairing idioms are more
common than other idioms, and furthermore, they also provide larger performance
benefits as they not only reduce IQ/ROB pressure but also LQ and SQ pressure.

Figure 3.21: Percentage of fused micro-ops considering all or just memory fusion
idioms, taken from paper [5]

However, only the Front-End implementation was developed, as supporting Load
Pairs in the Back-End proved to be non-trivial and exceeded the scope and time
constraints of this thesis. Unlike the Scaled Index family, Load Pair instructions
require two different destination registers rather than a single destination. This
requires handling multiple rename destinations and accommodating multiple write-
back operations in the Load/Store Unit.

Although the support for this instruction idiom remains incomplete, the modifica-
tions introduced in the Front-End provide valuable insights. They demonstrate that
the support implemented for the first family of fusion is indeed scalable, making
the extension to this new fusion family relatively straightforward.
The Load Pairs fusion family comprises consecutive load instructions that target
memory at contiguous positive locations. Consistent with the previously mentioned

42

Design and Implementation

design approach, only compressed instructions were considered, specifically the ld
and lw instructions in all possible combinations. Two consecutive loads share the
same source register, with appropriate offsets, but have two distinct destination
registers. For fusion to occur, the load operations must access contiguous memory
addresses. Consequently, if the first operation is a load double-word instruction,
the offset must be eight, while if it is a load word instruction, the offset is four.
This is summarized in Figure 3.22.

Figure 3.22: Load Pairs fusion sequences

The format selected to support this fusion family is the custom-designed F_R4
format. In this configuration, the destination register field is assigned to the
destination register of the first load instruction, while the second source field, given
that there is only one source, will be interpreted as the second destination register.
This format is illustrated in 3.23.

Figure 3.23: F_R4 format with Load Pairs

The opcode defining these fusion sequences is 7’b0000001. The func3[2] field is not
used, whereas the func2 and func3[1:0] fields are employed to specify the width of
the two load instructions that constitute the fused sequence, as depicted in Figure
3.24 and 3.25.

43

Design and Implementation

Figure 3.24: Opcode of Scaled Index family and Load Pairs family

Figure 3.25: F_R4 fields of the Load Pairs family

After establishing the encoding for the resulting fused instruction, the detector
must be modified to support this new family of fused instructions. The existing
c_detector module has been modified to detect these sequences by increasing its
complexity. This approach was chosen because the detector remains sufficiently
simple, thus there is no need for parallelization. Moreover, the Load Pair sequences
do not overlap with the already supported fusion sequences, making their detection
within the existing module a straightforward task. The implementation required
only the addition of specific case statements without necessitating changes to the
mask generation or multiplexer selections.
The two instruction families do not overlap, as they share no common starting
point for fusion. However, the final instruction in a Scaled Load or Indexed Load
sequence could potentially be a load, which might appear to form a fusible sequence
with the subsequent instruction. Nevertheless, one of the constraints for the Load
Pair fusion is that the source register must differ from the destination register. This
requirement is the opposite of what is needed for the Scaled Load and Indexed
Load sequences, where the source and destination registers are the same. As a
result, there is no ambiguity between the two fusion families.

The detection process involves verifying that the base register is the same for both
loads, ensuring that the offset results in adjacent memory accesses, confirming that
the first load’s destination register differs from its source register, and checking that

44

Design and Implementation

the immediate values are correct according to the specific sequence requirements.
These requirements are summarized in Table 3.4.

F_LP
ld1 rd != ld1 rd
ld1 rs1 = ld2 rs1

ld2 imm = ld1 imm + offset

Table 3.4: Register constraints for Load Pairs idiom

Regarding the decoder, integrating support for the new fusion sequences is relatively
straightforward. It primarily involves adding the logic necessary to detect these
sequences and defining the appropriate control signals, as illustrated in Figure 3.26.

Figure 3.26: Load Pairs family control signals

45

Design and Implementation

3.3 Fusion support in the Back-End
The Back-End is composed of the instruction queues and four datapaths: integer,
floating point, memory, and system.
The fused instructions that belong to the LEA idioms are issued to the integer
datapath, whereas the ones that belong to the IL and SL idioms belong to the
memory datapath.

3.3.1 Integer Execution: Fusion ALU
The integer execution module receives operations from the integer issue queue and
processes them in the functional units.
In the integer execution, shown in Figure 3.27, operations proceed through the
following stages:

• Issue: the operations are received by the pipeline

• Register Request (RR): all operations request registers to read from the
Register File, it can be performed in the same cycle of Issue.

• Execute (Exe): the execution of the instruction is performed within the
functional unit

• Complete (CMPLT): the result is registered, and target control operations
take place

Figure 3.27: Pipeline, focus on integer execution

The Integer Functional Unit Generator module generates the necessary instances
of integer functional units required for processor execution. Given a specified
number of ports, this module instantiates functional units on each port according
to the parameters ALU_FU_VEC, MULU_FU_VEC, DIVU_FU_VEC, and
BRU_FU_VEC.
For example, with the configuration:

ALU_FU_VEC = 4’b1011, MULU_FU_VEC = 4’b1000,
DIVU_FU_VEC = 4’b1000, BRU_FU_VEC = 4’b0101

46

Design and Implementation

the Integer Functional Unit Generator will create an arrangement as follows, it can
also be seen in Figure 3.28:

• ALU (Arithmetic Logic Unit) on ports 0, 1, 3

• MULU (Multiply Unit) on port 3

• DIVU (Divide Unit) on port 3

• BRU (Branch Unit) on ports 0, 2

This configuration means that port 0 can handle both ALU and BRU operations,
port 1 can handle ALU operations, port 2 can handle BRU operations, port 3 can
handle ALU, MULU, and DIVU operations.

Figure 3.28: Integer FU generator

Fusion ALU

A new arithmetic logic unit has been designed to execute fused instructions. Cur-
rently, the only fused instruction that it supports is the Load Effective Address
instruction. This new ALU is implemented as an extension of the existing ALU,
incorporating support for all standard operations as well as the additional LEA
operation.

The new parameter, ALU_FUSION_VEC, has been added to the Integer Func-
tional Unit Generator. The Fusion ALU supports all operations of the standard
ALU, with the added capability of executing LEA instructions. Therefore, only
one of the two ALUs can be allocated to a given port at a time. The constraint is
that a fusion ALU can be allocated only if the normal ALU parameter is enabled;
in this case, only the fusion ALU is allocated to that port. If only the fusion ALU
is enabled, it cannot be allocated. As shown in Figure 3.28.

47

Design and Implementation

The Fusion Arithmetic Logic Unit (FUSION_ALU) is a combinational module
that performs a series of operations involving operand 1, operand 2, and/or an
immediate value. The supported operations include all those of the standard ALU,
with the addition of LEA, as detailed in Table 3.5.

OP Name

HL_ADD Addition
HL_SUB Substraction
HL_XOR Logical HL_XOR
HL_OR Logical HL_OR

HL_AND Logical HL_AND
HL_SRA Arithmetic Right Shift
HL_SRL Logical Right Shift
HL_SLL Logical Left Shift
HL_SLT Set if Less Than

HL_F_LEA Load Effective Address

Table 3.5: Operation supported by the Fusion ALU

The LEA operation is encoded using the signal HL_F_LEA, and the operation
size, whether it is add or addw, is encoded in the input signal size_i.

As the ALU, it can be configured for 32-bit size operations only or 64-bit size
operations included:

• 32-bit size : only 32-bits operations are allowed, as a consequence there is no
need to extend the result. The LEA operation is reported in Figure 3.29

• 64-bit size : operations are performed on 64 bits. If the addition is on 32
bits, the result is sign-extended to 64 bits. The LEA operation is reported in
Figure 3.30

Figure 3.29: SystemVerilog implementation of 32-bit LEA operation

48

Design and Implementation

Figure 3.30: SystemVerilog implementation of 64-bit LEA operation

3.3.2 Integer Execution: testbench
The module has been validated using a comprehensive testbench. This testbench
is an extended version of the one previously used for the ALU module, which
incorporates additional support for LEA operation.

Two distinct sets of tests were conducted: one for 32-bit operations and the other for
64-bit operations. Each test set comprised 1000 random operations. The operands
included a mix of signed and unsigned values, as well as varying sizes.
This approach ensured that all possible operations supported by the Fusion ALU
were thoroughly tested.

3.3.3 Memory Execution
The memory execution includes stages analogous to those in integer execution,
specifically the stages of Register Read, Execute, and Complete. The effective
address of the memory operations is calculated in the Address Generation Unit
(AGU). The AGU is the initial stage of the Load Store Unit (LSU) in the Lagarto
Ox core.

The memory execution handles the fused instructions Indexed Load and Scaled
Load. These instructions are made of two parts: an arithmetic one responsible for
computing the effective address and a load operation that utilizes this address.
For Indexed Load instructions, the arithmetic component involves a straightforward
addition, where the effective address is computed by summing two source registers.
On the other hand, the arithmetic operations for Scaled Load instructions are the
same as those performed by the Load Effective Address instruction.

To support these new operations, the calculation of the effective address has been
relocated in two different units in the Execution stage. The MEM_SHIFT unit

49

Design and Implementation

is responsible for handling Scaled Load operations, executed by the module fu-
sion_sl_fu. Meanwhile, the standard address calculation is conducted in the MEM
unit, which now also accommodates the calculation of Indexed Load addresses.
This calculation is similar to the usual effective address computation, involving
an addition, but can also handle the addw operation. For this purpose, a distinct
module called fusion_il_fu is utilized. The memory execution’s block diagram is
reported in Figure 3.31.

Figure 3.31: Block diagram of Memory Execution

IL functional unit

The Fusion Indexed Load Unit executes the arithmetic component of the fused
instruction. The outcome of this operation is the effective address used by the load
in the Indexed Load fused operation.
The effective address is computed as the addition of the two source registers:

rs1 + rs2

This unit can be configured for 32-bit size operations only, or 64-bit operations,
with the support of both add and addw operations.
In the first case, only 32-bit operations are permitted, and there is no need to
extend the result. The code is reported in Figure 3.32.
In the second case, the operations are conducted on 64 bits. If the addition is an
addw operation performed on 32 bits, the result is sign-extended to 64 bits. The
code is reported in Figure 3.33

50

Design and Implementation

Figure 3.32: Effective address calculation in IL instruction, for 32-bits configura-
tion

Figure 3.33: Effective address calculation in IL instruction, for 64-bits configura-
tion

SL functional unit

The Fusion Scaled Index Unit is responsible for the arithmetic operations associ-
ated with the Scaled Load fused instruction. The outcome of this operation is the
effective address utilized by the load in the Scaled Load fused operation.

The effective address is computed as:

(rs1 << imm) + rs2

A parameter allows to configure the module to execute the operation in 0 or 1 cycles.
This feature was implemented to verify and ensure timing compliance when the
effective address calculation is not divided into separate stages. Performing both
the shift and the addition within the same cycle could potentially create a critical
path, especially since the result of this operation is required by the Translation
Lookaside Buffer (TLB) as the effective address within the same clock cycle.

• 0 cycle: the shift calculation and the load operation are completed within a
single cycle

• 1 cycle: the shift calculation is performed in the first cycle, followed by the
addition in the second cycle

As the previous module, this unit can be configured for either 32-bit size operations
only, Figure 3.34 , or for 64-bit size operations, Figure 3.35.

51

Design and Implementation

Figure 3.34: Effective address calculation in SL instruction, for 32-bits configura-
tion

Figure 3.35: Effective address calculation in SL instruction, for 64-bits configura-
tion

3.3.4 Memory Execution: testbench
The two modules underwent validation through testbenches, following a process
similar to the validation of the Fusion ALU.
For the fusion_il_fu module, 2 sets of tests were executed with the 32-bits and
64-bits configurations. For each configurations, multiple iterations of the test were
conducted using random input operations selected from the four operations that
belong to the IL idiom. Similarly, the fusion_sl_fu module was tested using the
same methodology, with additional tests for the two possible cycle configurations.

After the successful validation of these modules, a testbench at the memory execu-
tion level was conducted to verify successful integration. In this phase, the IL and
SL operations were incorporated into the range of input signals for the memory
execution testbench and then tested.

3.4 Exception handling
Among the instructions that compose the fusion candidates, the only one that can
generate an exception is the load instruction and it is always the last instruction in
the sequence that can be fused.
If the load instruction generates an exception, the preceding instructions in the
fused sequence should still be committed. This introduces a new scenario where an
instruction that generates an exception can also commit, which was not possible
before.

52

Design and Implementation

3.4.1 Fetch stage

In this stage the exceptions that the load instruction can generate are page fault
and access fault.
An instruction access fault occurs when the instruction’s memory address points
to a location that the processor is not allowed to access. This can happen if the
instruction tries to access memory outside the bounds of the allocated segment, a
read-only segment, or an invalid address.
An instruction page fault occurs when the instruction’s memory address is part of
a block of memory that has not been made available yet because the page is not
currently mapped to the physical memory.
If an exception is detected, the instructions must not be fused, so the input of the
fusion detector is invalidated.
Referring to the Fetch stage block diagram in Figure 3.6, instruction page faults
are detected in stage F1 of fetch, originating from the instruction cache, and they
invalidate the fusion detector in stage F2. Instruction access faults are detected in
stage F2.

3.4.2 Reorder Buffer

When a fused instruction generates an exception, it needs to be committed and
the exception handled. This is a new scenario, up until now an instruction that
generated an exception could not have been completed.
Every cycle up to commit-bandwidth instructions can committed if they have
completed the execution and the ROB head is advanced. The mechanism is shown
in Figure 3.36.

Upon completion of an instruction execution, a corresponding bit is set in the
completed_vector. This vector is addressed using the rob_id of the instructions.
The FIFO controller module manages all control signals of the Reorder Buffer,
which functions as a register file. The FIFO controller generates addresses to access
the completed_vector, with a size equal to the commit bandwidth starting from the
rob_head. Information regarding the completion of instructions within the commit
window is then saved in the rdy_vector. This signal is assigned to commit_rdy_o,
which is sent to the Load-Store Data Unit to enable the commitment of those
instructions. It also serves as the read enable signal for the ROB and the FIFO
controller. The former produces the physical registers of the committing instructions
needed for renaming, while the latter advances the ROB head and generates valid
commit signals sent to the rename stage.
If an instruction is not completed when the vector is read, the ROB head will

53

Design and Implementation

advance to that instruction and remain there until either the instruction is completed
or it is detected as an exception by the exception collector. The exception collector,
a dedicated module, compares the ROB head with the rob_id of the instruction
that generated the exception. Upon detecting a match, the exception handling
process is initiated.

Figure 3.36: Block scheme of Reorder Buffer

This mechanism needs modifications in the new scenario introduced by fused in-
structions. If a fused instruction generates an exception, it might never reach the
head of the ROB because it is also marked as completed and will thus be committed.
Consequently, the exception might never be handled.

To generalize, this scenario where an instruction can complete but also generate
an exception will be referred to as the ‘partially completed’ case. Detecting the
partially completed case, which can occur only with fused instructions, requires
meeting two conditions:

• The instruction in the commit window has an exception

• The instruction is marked as completed

Instead of using a vector to track whether an instruction is fused, which would
require an additional vector of the same size as the ROB, a detection method is
implemented.

The first step is to detect if an instruction within the commit window has encoun-
tered an exception. This involves identifying whether the rob_id of the instruction

54

Design and Implementation

that can generate an exception, provided by the exception collector, falls within
the commit window.

The commit window consists of consecutively increasing rob_ids, since instructions
need to be committed in order. The lower bound of the commit window is the
ROB head and the upper bound is determined by the ROB head plus the commit
bandwidth, which represents the number of instructions in the commit window.
As shown in Figure 3.37.

If the rob_id of the instruction that has encountered an exception is within the
commit window, the position of the instruction within the commit window is saved.
This index is then used to generate the necessary masks for commit and exception
handling.

Figure 3.37: Completed vector boundaries

Since the Reorder Buffer is a circular buffer, a corner case must be considered for
detection. This occurs when the commit window spans the end and beginning of
the queue, the situation is summarised in Figure 3.38. In such cases, the current
detection logic fails. Additional logic is required to handle this scenario and correctly
detect exceptions within the commit window.

Figure 3.38: Completed vector boundaries, corner case of circular buffer

Completed instructions must be committed only up to the partially completed one,
which will be the last instruction that can be committed within the current commit

55

Design and Implementation

bandwidth. The commit_valid_mask achieves this by disabling the commit of
instructions that come after the partially completed one in the commit window.
The final signal is commit_rdy_o.
This mask also serves as the read enable for the ROB to obtain the physical registers
needed for committing the instructions. Additionally, it enables the read operation
for commit_valid_o through fusion_xcptn_rob_rd_grants_generator, which uses
the same logic as the ROB controller for generating read grants but tailored for
the partially completed case.

The controller_rd_ens_mask is used to invalidate the read enable signal of the
ROB controller for the partially completed instruction and the subsequent instruc-
tions in the commit window. This is necessary to prevent the ROB head from
advancing past the partially completed instruction, as the ROB head must remain
at this instruction for the exception to be detected and handled. This mechanism
prevents unnecessary advancement of the ROB head and it is possible to implement
because the ROB allows separate read and write operations. The ROB needs to be
read to obtain the data necessary to commit the instruction, but the ROB head
should not advance past the partially completed instruction.
An extra port has been added to the module that handles the reset of the ‘com-
plete’ vector to reset the partially completed instruction when it is detected. The
‘complete’ signal is reset to ensure that the instruction is committed only once.
This reset occurs when the instruction is detected, allowing it to be committed,
and takes effect in the next cycle.
This reset is crucial because if the instruction is not at the ROB head when marked
as completed and generates an exception, it will reach the head in the next cycle.
If the complete signal is not reset, the instruction would be committed again.
The Reorder Buffer after the modification in shown in Figure 3.39.

In summary, the steps needed to handle the fused instruction exception are:
• detect if the instruction in the commit window has an exception and if it is

marked as completed

• generate two masks to handle the exception. commit_valid_mask ensures the
instruction is ready to be committed, by generating the commit_rdy_o signal
and the commit_valid_o signal that comes from the reading of the ROB with
a duplicated logic. The second mask is controller_rd_ens_mask, it prevents
advancing the ROB head unnecessarily, as the ROB allows separate read and
write operations. Since the ROB has to be read, in order to get the data
necessary to commit the instruction, the ROB head should not advance past
the fused instruction

• once the instruction that is both completed and generates an exception is

56

Design and Implementation

Figure 3.39: Modified block scheme of the Reorder Buffer

detected the instruction can be committed and the ROB head has to be moved
to point to that instruction so that the exception can be detected

• the ‘complete’ signal has to be reset to ensure that the instruction is committed
only once. This reset is given when the instruction is detected, so it can be
committed, and it will be effective the next cycle.

3.4.3 Program Counter
The last issue that remain to correctly implement the precise exception mechanism
regards the Program Counter.

When a sequence of instructions are fused, the PC of the resulting instruction
will be the one that belonged to the first instruction in the sequence. When an
instruction generates an exception, the PC information is needed to handle the
exception. In case of a fused instruction, the last operation in the sequence can
generate an exception, which is the load operation in the IL and SL fused instruc-
tions. However, the PC of the fused instruction is not the one that generated the
exception.
In the case of Indexed Load, the PC is the one referring to the slli instruction, but
load is the instruction that can produce the exception, so the rigth PC value is
the PC of the fused instruction incremented by two, since the instructions in the
sequence are compressed.
In case of Scaled Load, the load instruction is the third in the sequence, so the PC
must be updated as PC incremented by four, reported in Figure 3.40.

57

Design and Implementation

Figure 3.40: Program Counter update for Indexed Load and Scaled Load opera-
tions

This mechanism takes place only when the exception that has been detected as
valid and has to be taken care of by going from the datapath to the core system
level. If the exception is valid and the source is one of the related fused instructions,
the PC is updated accordingly.

3.5 Entire core
The presence of the key components related to instruction fusion can be observed
across different stages of the Lagarto OX core diagram, in Figure 3.41. The Fusion
Detector placed in the Fetch stage, the Fusion Decoders in the Decoder, the Ex-
ception Commit Fusion Handler in the Reorder Buffer, the Fusion ALUs and the
Fusion Calculation, responsible of the effective address calculation in the Functional
Units. Moreover, the Rename stage requires Multiple Rename Destination Support
to support load pairs fusion, complemented by the Load Pairs Write-Back Handler
within the Load/Store Unit. These components are highlighted in gray in the
current design schematic, indicating that they are yet to be implemented but are
planned for future development.

58

Design and Implementation

Figure 3.41: Lagarto Ox core diagram with instruction fusion support

59

Chapter 4

Verification and Performance

The verification and performance evaluation of the core are critical steps in validat-
ing the integration of instruction fusion. It is important to ensure that the core
adheres to the ISA standards, operates correctly, and achieves the desired efficiency
and effectiveness.
The initial step involved the verification of each new implementation to ensure its
correctness. This was accomplished through testbenching, conducted at the level
of each modification, utilizing the cocotb framework.
Then, the ISA tests and benchmarks are conducted. The aim is to carry out testing
to ensure that the new feature do not affect the normal functioning of the system
and the new operations are executed correctly.

4.1 ISA tests
Architectural testing is a nonfunctional testing technique employed to validate
whether a developed system conforms to the prescribed standards. In this context,
the golden reference is the RISC-V ISA standard. The tests are conducted using a
Test Virtual Machine (TVM) for RISC-V, an environment specifically designed to
facilitate the testing and verification of RISC-V cores, software, and systems. The
TVM provides a controlled and isolated environment in which developers can run
tests and simulations to validate the functionality, performance, and compliance of
RISC-V implementations.

Test programs for RISC-V are written in a single assembly language file, processed
through the C preprocessor, allowing the use of standard assembly directives. The
architectural tests executed are the User-Level TVMs available at the provided
repository [23]. These tests are executed in environments with both physical and
virtual memory configurations, and different execution environment levels such as

60

Verification and Performance

machine, supervisor and user. The ISA tests are composed of MACROs that define
the testing framework. Variables are passed to these MACROs, which structure
the test into two potential outcomes: a failure branch and a success branch. Upon
completion of each test, the result is compared with the expected data, directing the
flow into one of these branches based on whether the result matches the expected
outcome.
The ‘test case’ MACRO serves as the foundational structure within each test’s
MACRO. The variables passed to this MACRO include the test number, the register
where the expected result is stored, the expected result itself, and the instructions
to be executed. The MACRO loads the expected result into the specified register,
executes the instruction provided as a parameter, and then compares the outcome
to the expected result passed as a parameter. This process ensures that each test
is systematically verified against its expected behavior.
For example, in the case of an ISA test for a load instruction, the test uses the
‘test case’ MACRO, providing parameters such as the test number, the specific
instruction (e.g., ld), the base address, the offset, and the expected result. The
instruction then loads the result from the address calculated as the base address
plus the offset and compares the loaded data with the expected result provided to
the MACRO. This structure ensures that each test is systematically executed and
evaluated for correctness.

Due to instruction fusion, which introduces new internal instructions, the standard
test set was extended. Specific ISA tests were added to evaluate new instruction
idioms such as LEA , IL, and SL. The test have been designed following the
ISA test structure, enabling the possibility to have the test executed with virtual
memory and the different execution environment levels. This extension ensures
comprehensive testing of the instruction set, validating both standard and newly
introduced instructions.
The Load Effective Address test MACRO takes as parameters the two source
values, the immediate, and the expected result. The test case MACRO performs
the shift and addition operations, subsequently comparing the computed result to
the expected value. This MACRO is then utilized with various data inputs and
differing operand widths for the addition operation, specifically add and addw.
The Indexed Load and Scaled Load tests are built upon the load instruction
MACRO, as they involve a load operation. The primary modification is the inclu-
sion of the necessary arithmetic instruction to calculate the effective address, as
specified by the fused instruction. This adjustment ensures that the tests accurately
reflect the behavior of the IL and SL operations within the architecture.

61

Verification and Performance

4.2 Benchmarks
Benchmarking a RISC-V core involves evaluating its performance across various
metrics and scenarios to understand its efficiency, speed, and resource usage.

The benchmarks used are axpy, bubblesort, common, coremark, dhrystone, fi-
bonacci, histogram, matmul_fp, matrix_mul, median, mem_copy, mem_flush,
memcpy, mm, mt-matmul, mt-memcpy, mt-vvadd, multiply, peak_flops,
peak_mips, peak_flops_mix, peak_flops_div, pmp, qsort, rsort, spmv, spmv_fp,
towers, vec-daxpy, vec-memcpy, vec-sgemm, vec-strcmp, vvadd.
The performance of the core without the support of instruction fusion is reported
in Figure 4.1, where the number of cycles and retired instructions are reported, as
well as the Instructions Per Cycle (IPC) parameter.

Figure 4.1: Performance results of the Lagarto OX core without Instruction
Fusion

The current compiler struggles to schedule instructions in a manner that enables
them to be fused effectively. The fusion technique implemented requires specific pat-
terns of instructions that are close to each other in the instruction stream. However,
compilers might not always generate these patterns due to optimization strategies

62

Verification and Performance

like instruction scheduling and register allocation, reducing the fusion opportunities.
As of the latest GCC versions, there is no built-in support for instruction fusion.
However, future developments are anticipated, with the RISE project planning to
introduce such support [24], as well as Ventana that is implementing support for
ten specific fusion idioms within GCC [25].
Without fusion-aware instruction scheduling, the potential performance improve-
ments from instruction fusion cannot be realized. This limitation is evident in the
benchmark results, where instruction fusion is observed in only four tests. This
outcome highlights the critical importance of compiler support for maximizing the
benefits of instruction fusion.
The reason why only four benchmarks show significant results is that the fusion
idioms implemented are not as prevalent as others, such as load pairs, which would
likely demonstrate more results, as analyzed in [5]. Another significant factor is the
lack of compiler support, which causes to miss even the limited fusion opportunities
that currently exist.

To address this limitation, two sets of benchmarks have been developed for each
supported fusion idiom. The first set, called ‘Ideal’, consists of loop iterations
executed 10000 times with instructions scheduled precisely as required for fusion.
The second set, called ‘Loop’, mirrors the ideal case but includes the additional
step of storing the result within the loop, creating a scenario more reflective of real-
world applications. The necessity for these tests arises from the lack of significant
results in standard benchmarks, and they provide valuable insights into the upper
bounds of performance gains achievable through this optimization technique and
the selected sequences.
The compiler issue is further demonstrated by the fact that the benchmarks are
written in C, yet it is necessary to force assembly language using an asm statement.
This is required because the compiler is unable to schedule the instructions correctly
to create opportunities for fusion. This reliance on manually crafted assembly code
highlights the urgent need for compiler enhancements to support instruction fusion
effectively.

4.2.1 Performance
The performance is evaluated based on the number of cycles and the retired instruc-
tion count. Between the standard benchmarks, four present opportunities for the
supported instruction fusion. histogram benchmark presents a 12.4% reduction in
the retired instruction count, but there is no improvement in the number of cycles.
spmv fp benchmark, double-precision general matrix multiplication benchmark,
presents a 3.3% reduction in the retired instruction count and a 2.5% reduction
in the number of cycles. spmv benchmark, double-precision sparse matrix-vector

63

Verification and Performance

multiplication benchmark, presents a 2.2% reduction in the retired instruction
count and a 0.8% reduction in the number of cycles. rsort benchmark, that uses
quicksort to sort an array of integers, presents a 3.6% reduction in the retired
instruction count and no improvement in the number of cycles.

The comparison in the number of retired instruction is shown in Figure 4.2, while the
comparison of the number of cycles is shown, together with the ad hoc benchmarks,
in Figure 4.3.

Figure 4.2: Retired Instructions count for the four benchmarks

These benchmark results demonstrate that the 10 fusible instruction sequences
supported achieve the goal of reducing the retired instruction count, when they
are present in the code. The reduction in the number of cycles is low or not even
present because of the dependencies of the fused instruction with the following
instructions. This is the reason why it is necessary to look at the performance of
the ad hoc benchmarks to have a clear picture of the potential of the implemented
technique.

The Load effective address benchmark achieves more than 50% reduction in the
number of cycles in the ‘Ideal’ test. This is the upper bound: two instructions are
fused into one, there are no dependencies, and the number of cycles is reduced by
half. The ’Loop’ tests achieves 5.4% of reduction.

The Indexed Load benchmark shows around a 25% reduction for both the ‘Ideal’
and the ‘Loop’ test. Like in the previous case, two instructions are fused into one,
but the dependencies related to the load instruction do not allow a 50% reduction
to be reached.

64

Verification and Performance

Figure 4.3: Cycles count for the four benchmarks and the ad hoc benchemarks

The Scaled Load benchmark shows a 40% reduction in the ‘Ideal’ test, and a 32%
reduction in the ‘Loop’ test. This idiom fuses three instructions, the performance
is better than the Indexed Load benchmark, and it shows that a study of the
dependencies is important.
The performance result regarding the cycles count is reported in Figure 4.3.

65

Chapter 5

Physical design impact

This final stage of the work presents the results of the synthesis and their analysis.
For the RTL synthesis, the Genus Synthesis Solution tool was used. The simulation
was done with 7 nm technology from TSMC. The synthesis parameters analyzed
are the area [µm2] and the frequency [GHz].

5.1 Area
Fetch Stage synthesis

The result of the synthesis of the Fetch stage is summarized in Figure 5.1. The
area is 40085 µm2.

Figure 5.1: Area breakdown graph of Fetch Stage.

66

Physical design impact

The majority of the area within the Fetch stage is occupied by memory-demanding
structures. The largest modules in this stage are the Branch Predictor Buffer
and the Global Branch Predictor, followed by the inter-stage Buffer. The Branch
Predictor Buffer includes the Branch Target Buffer, which stores target program
counters in a 256-entry array used during branch prediction. The Global Branch
Predictor houses the pattern history table, a memory array of 256 entries that
records all pattern histories and recovery information for the global history. Finally,
the Instuction Buffer is a fully associative buffer that stores two cache lines of 256
elements.

The Fusion detector occupies an area of 176 µm2, its impact can be seen in Figure
5.2: the overhead in terms of area is 0.27%, thus it is not even shown in the area
breakdown graph because it is too small.

Figure 5.2: Fetch Stage area comparison

Decode stage synthesis

The area breakdown of the Decode stage is reported in Figure 5.3. The area of
the Fusion Decoder is 66.27 µm2, with an overhead of 9.16%, reported in Figure 5.4.

In Figure 5.5, it is possible to see that the Decode stage represents a small portion
of the area with respect to the Fetch stage and the ROB. This explains why, even
if the increase in the area of the Decode stage is around 10%, it is still a negligible
overhead.

67

Physical design impact

Figure 5.3: Area breakdown graph of Decode Stage

Figure 5.4: Decode Stage area comparison

Integer execution synthesis

The integration of the Fusion ALU costs the Integer execution an increase of 13.63%
in area, reported in Figure 5.6.

68

Physical design impact

Figure 5.5: Area breakdown graph of Front-End

Figure 5.6: Integer execution area comparison

Memory execution synthesis

The Memory execution stage now calculates the effective address, moving the
complexity from the Address Generation Unit to the functional units (MEM_UNIT
and MEM_SHIFT_UNIT). The 91.15% increase in area, reported in Figure 5.7, is
explained by the fact that the Memory execution unit was an empty module before
the fusion support introduction.

69

Physical design impact

Figure 5.7: Memory execution area comparison

Core synthesis

Overall, there are no increases in the area of the Reorder Buffer. The final area of
the core with the support for instruction fusion has increased by 3.32%, reported
in Figure 5.8.

Figure 5.8: Overall area comparison

70

Physical design impact

5.2 Frequency
The tool is configured with a target frequency of 2 GHz. The introduction of the
instruction fusion support did not change the already existing critical paths. The
comparison is summarized in Figure 5.9.
The critical paths have increased by around 1%, the frequency reached in the best
case is 1.57 GHz. In the worst case 0.97 GHz.

Figure 5.9: Critical paths comparison

Overall, the impact of the support for instruction fusion is negligible in area and
frequency when compared with the potential performance improvement. There is
also to consider that the reduction in the retired instruction count, with the saved
bandwidth in the queues and modules, has an impact on energy consumption, that
was not evaluated due to the time constraints of this work, but it is a point to
consider for future development.

71

Chapter 6

Conclusions

This thesis aimed to investigate and develop instruction fusion techniques in a
RISC-V Out-of-Order core. Through a detailed analysis involving the study of
the state of the art and the architecture of the Lagarto Ox core, the following
conclusions were reached:

• deep understanding of the instruction fusion opportunities in a RISC-V core

• implementation of three instruction fusion sequences, Load Effective Address,
Indexed Load, Scaled Load, in the Out-of-Order core

• implementation of the precise exception for the fused instructions

• verification of the correct behavior of the fused instructions

• verification of the performance by running benchmarks. The potential gain
in the retired instruction count is up to 12% in the benchmarks. While the
reduction in the cycles count is shown to be 50% in the ideal case, that serves
as upperbound, and up to 2.5% reduction in the benchmarks

• verification of the area and frequency overhead. Both the area and frequency
overhead is negligible with the increase of total area by 3.32% and the increase
of the critical paths by 1%

The observed increase in performance is constrained by the specific characteristics of
the application, particularly due to the presence of the supported instruction fusion
sequences within the application code. Moreover, this performance enhancement is
further limited by the compiler’s ability to recognize and optimize these sequences.
For maximal performance gains, the compiler must not only identify and leverage
instruction fusion opportunities but also optimize register usage to effectively
accommodate the instruction fusion possibilities.

72

Conclusions

This work contributes to understanding that instruction fusion techniques represent
a compelling optimization strategy to improve processor performance, particularly
in RISC-V cores.

This conclusion is supported by the results, which demonstrate that the area
and frequency overhead incurred by implementing instruction fusion is negligible.
Moreover, even without the support from the compiler, the benchmark results
reveal that instruction fusion can significantly enhance performance, as evidenced
by reductions in both retired instruction counts and execution cycles, and also
contribute to energy savings.

6.1 Future work
Some of the potential future explorations are discussed in this section.

• Load Pairs support: the implementation of Load Pairs support in the
Back-End presents significant challenges. Unlike the Scaled Index family of
fusion, Load Pairs instructions require multiple destination registers rather
than a single one. This necessitates the management of multiple renamed
destinations, adding complexity to the renaming process. Furthermore, the
Load/Store Unit must be capable of handling multiple write-backs for a single
instruction that accesses contiguous parts of the cache line.

At this level, the Load/Store Disambiguation Unit demands the most effort.
This module plays a crucial role in ensuring that there is no conflict between
the load and store instructions. For example, if a load is scheduled before a
store but accesses the same address, there is a risk that the load could retrieve
incorrect data. The LSDU checks for dependencies between loads and stores
to prevent such scenarios.

With the introduction of Load Pairs fusion, the LSDU will need to track
fused instructions as loads that access a larger memory size. This adjustment
requires careful modifications to the unit to ensure that it can handle the
increased complexity of managing larger memory operations while maintaining
data integrity and avoiding collisions between memory accesses.

• Normal-size instruction fusion support: in this work, all fusible sequences
are composed of compressed instructions. Extending the support of the Scaled
Index family to normal-sized instructions only requires modifications to the
detector, since the necessary infrastructure is already in place.

73

Conclusions

• Energy consumption evaluation: the next step is providing an energy
consumption evaluation, conducting a comprehensive power analysis of both
static and dynamic power estimation, to have a complete picture of the
performance and overhead of the instruction fusion implementation.

74

Bibliography

[1] ARM. Instruction Set Architecture (ISA). url: https://www.arm.com/
glossary/isa (cit. on p. 1).

[2] Andrew Waterman. «Design of the RISC-V Instruction Set Architecture».
In: 2016. url: https://api.semanticscholar.org/CorpusID:63861396
(cit. on p. 2).

[3] Denis Bakhvalov. Microbenchmarking fused instruction. url: https://easy
perf.net/blog/2018/02/04/Micro-ops-fusion (cit. on p. 3).

[4] Agner Fog. The microarchitecture of Intel, AMD, and VIA CPUs An opti-
mization guide for assembly programmers and compiler makers. url: https:
//www.agner.org/optimize/microarchitecture.pdf (cit. on pp. 3, 4).

[5] Sawan Singh, Arthur Perais, Alexandra Jimborean, and Alberto Ros. «Explor-
ing Instruction Fusion Opportunities in General Purpose Processors». In: 2022
55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
2022, pp. 199–212. doi: 10.1109/MICRO56248.2022.00026 (cit. on pp. 3, 10,
42, 63).

[6] Nathaniel Hoffman Ronny Ronen Alexander Peleg. «System and method for
fusing instructions». US Patent US6675376B2. Intel Corp. Dec. 2000 (cit. on
p. 3).

[7] Intel. «Intel® 64 and IA-32 Architectures Optimization Reference Manual». In:
chap. 3.4.2.2. url: https://www.intel.com/content/dam/doc/manual/64-
ia-32-architectures-optimization-manual.pdf (cit. on p. 3).

[8] Arm Cortex-A77 Core Software Optimization Guide. Arm. Nov. 2, 2020.
Chap. 4.13 (cit. on p. 4).

[9] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version
2.0. Tech. rep. UCB/EECS-2014-54. May 2014. url: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html (cit. on p. 4).

75

https://www.arm.com/glossary/isa
https://www.arm.com/glossary/isa
https://api.semanticscholar.org/CorpusID:63861396
https://easyperf.net/blog/2018/02/04/Micro-ops-fusion
https://easyperf.net/blog/2018/02/04/Micro-ops-fusion
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://doi.org/10.1109/MICRO56248.2022.00026
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

BIBLIOGRAPHY

[10] Christopher Celio, Palmer Dabbelt, David A. Patterson, and Krste Asanović.
The Renewed Case for the Reduced Instruction Set Computer: Avoiding ISA
Bloat with Macro-Op Fusion for RISC-V. 2016. arXiv: 1607.02318 [cs.AR].
url: https://arxiv.org/abs/1607.02318 (cit. on pp. 4, 6–10, 22, 23, 42).

[11] clamchowder. Hot Chips 2023: Ventana’s Unconventional Veyron V1. 2023.
url: https : / / chipsandcheese . com / 2023 / 09 / 01 / hot - chips - 2023 -
ventanas-unconventional-veyron-v1/ (cit. on p. 5).

[12] clamchowder. Hot Chips 2023: SiFive’s P870 Takes RISC-V Further. 2023.
url: https : / / chipsandcheese . com / 2023 / 09 / 03 / hot - chips - 2023 -
sifives-p870-takes-risc-v-further/ (cit. on p. 5).

[13] Andrew Waterman. «Improving Energy Efficiency and Reducing Code Size
with RISC-V Compressed». MA thesis. EECS Department, University of
California, Berkeley, May 2011. url: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2011/EECS-2011-63.html (cit. on p. 7).

[14] Krste Asanović et al. The Rocket Chip Generator. Tech. rep. UCB/EECS-2016-
17. Apr. 2016. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2016/EECS-2016-17.html (cit. on p. 8).

[15] Fawang Zhang, Dan Tang, and Ye Cai. «Accelerate bit manipulation in Xi-
angShan processer using RISC-V B extension and instruction fusion». In:
International Conference on Cloud Computing, Internet of Things, and Com-
puter Applications (CICA 2022). Ed. by Warwick Powell and Amr Tolba.
Vol. 12303. Society of Photo-Optical Instrumentation Engineers (SPIE) Con-
ference Series. July 2022, 123032Q, 123032Q. doi: 10.1117/12.2642009
(cit. on p. 11).

[16] DRAC project. Lagarto Ka: The High Performance Core for Drac. 2021. url:
https://drac.bsc.es/en/bsc2 (cit. on pp. 12, 13).

[17] DRAC project. url: https://drac.bsc.es/en (cit. on p. 12).
[18] J.L. Hennessy, D.A. Patterson, and K. Asanović. Computer Architecture: A

Quantitative Approach. Computer Architecture: A Quantitative Approach.
Kaufmann, 2012. isbn: 9780123838728. url: https://books.google.it/
books?id=v3-1hVwHnHwC (cit. on p. 15).

[19] John Kubiatowicz. Graduate Computer Architecture Lecture 8, Explicit Re-
naming Precise Interrupts. Feb. 2010. url: https://people.eecs.berkeley.
edu/~kubitron/cs252/lectures/lec08-dynasched3.pdf (cit. on p. 17).

[20] The Rename Stage - RISCV-V BOOM documentation. url: https://docs.
boom-core.org/en/latest/sections/rename-stage.html (cit. on p. 17).

[21] cocotb - Python verification framework. url: https://www.cocotb.org/
(cit. on p. 20).

76

https://arxiv.org/abs/1607.02318
https://arxiv.org/abs/1607.02318
https://chipsandcheese.com/2023/09/01/hot-chips-2023-ventanas-unconventional-veyron-v1/
https://chipsandcheese.com/2023/09/01/hot-chips-2023-ventanas-unconventional-veyron-v1/
https://chipsandcheese.com/2023/09/03/hot-chips-2023-sifives-p870-takes-risc-v-further/
https://chipsandcheese.com/2023/09/03/hot-chips-2023-sifives-p870-takes-risc-v-further/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-63.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-63.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1117/12.2642009
https://drac.bsc.es/en/bsc2
https://drac.bsc.es/en
https://books.google.it/books?id=v3-1hVwHnHwC
https://books.google.it/books?id=v3-1hVwHnHwC
https://people.eecs.berkeley.edu/~kubitron/cs252/lectures/lec08-dynasched3.pdf
https://people.eecs.berkeley.edu/~kubitron/cs252/lectures/lec08-dynasched3.pdf
https://docs.boom-core.org/en/latest/sections/rename-stage.html
https://docs.boom-core.org/en/latest/sections/rename-stage.html
https://www.cocotb.org/

BIBLIOGRAPHY

[22] The RISC-V Instruction Set Manual, Volume I: User-Level ISA. Version 20191214-
draft, Editors Andrew Waterman and Krste Asanovi´c, RISC-V Foundation,
December 2019 (cit. on pp. 26–28).

[23] RISCV-software-src/RISCV-tests, GitHub. url: https : / / github . com /
riscv-software-src/riscv-tests (cit. on p. 60).

[24] Jeff Law. Fusion Support (GCC) - RISE project. url: https://lf-rise.
atlassian.net/wiki/x/dRSD (cit. on p. 63).

[25] Philipp Tomsich. RISC-V: Add instruction fusion (for ventana-vt1). url:
https://gcc.gnu.org/pipermail/gcc-patches/2021-November/584404.
html (cit. on p. 63).

77

https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://lf-rise.atlassian.net/wiki/x/dRSD
https://lf-rise.atlassian.net/wiki/x/dRSD
https://gcc.gnu.org/pipermail/gcc-patches/2021-November/584404.html
https://gcc.gnu.org/pipermail/gcc-patches/2021-November/584404.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Instruction Set Architecture
	Instruction Fusion

	Objectives

	Background
	State of the art
	Computer architecture
	Methodology

	Design and Implementation
	Instruction fusion
	Fusion candidates
	Fused instruction format

	Fusion support in the Front-End
	Fetch stage: Fusion Detector
	Fetch stage: testbench
	Decode stage: Fusion Decoder
	Decode stage: testbench
	Load pairs

	Fusion support in the Back-End
	Integer Execution: Fusion ALU
	Integer Execution: testbench
	Memory Execution
	Memory Execution: testbench

	Exception handling
	Fetch stage
	Reorder Buffer
	Program Counter

	Entire core

	Verification and Performance
	ISA tests
	Benchmarks
	Performance

	Physical design impact
	Area
	Frequency

	Conclusions
	Future work

	Bibliography

