
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering - Embedded

Systems

Master’s Degree Thesis

Scalar Cryptography Extensions for
STxP5

Supervisors

Prof. Guido MASERA

Candidate

Marco CHIARLE

October 2024

Abstract

The fast evolution of digital technology has brought in an era where
security is not negligible, especially in the world of the embedded sys-
tems. As Cyber threats are always more sophisticated, the demand for
robust cryptography solutions is increasingly high and the implementa-
tion in software is not fast enough for the embedded systems world. In
this context, the RISC-V instruction set architecture (ISA), with its
open-source form and modular design, presents a fertile ground that it is
perfect for the future development. RISC-V has started in 2010, under
the leadership of Professor David Patterson. RISC-V ISA is completely
free and open-source, and It is based on the Reduced Instruction Set
Computer (RISC) principles. This thesis is focused on the integration
of cryptography extensions within the RISC-V ISA, with the dual
objectives of increasing the security capabilities of embedded systems
and also enhancing the perfomance compared to the simple software
implementations of the algorithms. The development and evaluation of
specialized cryptography extensions for the RISC-V ISA take center
stage, considering the crucial balance between power consumption, area,
and performance. Indeed the thesis presents a comprehensive analysis
of the design, implementation, and optimization of the cryptography
extensions for the RISC-V processor, with a focus on the extended
ISA. Utilizing tools provided by STMicroelectronics, the thesis goes
through the entire process from specification, code writing, analysis
and synthesis to testing, ensuring a comprehensive approach to the
development of cryptography extensions. The outcome of this research
goes over the academic theory, offering a contribution to the field of
embedded system security. The results underline the importance of
the extensions that bring an improvement on the execution speed of
5x for AES algorithm and 2x for SHA-256 and an improvement on
code size of 0.5x for both the algorithms. Thanks to these results, this
work is a base for future STMicroelectronics projects on RISC-V, de-
livering a complete development for secure, efficient, and cost-effective
cryptography implementations within the RISC-V ecosystem.

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 3
1.3 Organization . 4

2 Background 5
2.1 RISC-V . 5

2.1.1 Instruction Set Architecture 5
2.1.2 Instruction Format 7
2.1.3 RV32I Base Integer Instructions 8

2.2 Cryptography . 11
2.2.1 Importance of Cryptography Extensions 12

3 STxP5 Processor 15
3.1 STxP5 core . 16

3.1.1 Core Registers 17
3.1.2 Control and Status Registers 17
3.1.3 Pipeline . 18

4 Tools and Workflow 25
4.1 ASIP Tool . 25

4.1.1 nML and PDG 26

iv

4.2 Workflow . 30

5 Scalar Cryptography Extension 32
5.1 Specifications . 32

5.1.1 Zbkb - Cryptography Bitmanip instructions . . 33
5.1.2 Zbkx - Crossbar Permutation instructions . . . 34
5.1.3 Zknh - NIST Suite: Hash Function 35
5.1.4 Zkne - NIST Suite: AES Encryption 38
5.1.5 Zknd - NIST Suite: AES Decryption 40

5.2 Instruction Hardware Implementation 41
5.2.1 Brev8 . 41
5.2.2 Pack . 41
5.2.3 Packh . 42
5.2.4 Zip . 42
5.2.5 Unzip . 43
5.2.6 Xperm8 . 43
5.2.7 Xperm4 . 44
5.2.8 Sha256sig0 . 44
5.2.9 Sha256sig1 . 45
5.2.10 Sha256sum0 . 46
5.2.11 Sha256sum1 . 46
5.2.12 Sha256 . 47
5.2.13 Sha512sig0h . 48
5.2.14 Sha512sig0l . 49
5.2.15 Sha512sig1h . 50
5.2.16 Sha512sig1l . 51
5.2.17 Sha512sum0r 52
5.2.18 Sha512sum1r 53
5.2.19 Sha512 . 54
5.2.20 aes32esi . 55
5.2.21 aes32esmi . 57
5.2.22 aes32dsi . 60
5.2.23 aes32dsmi . 63
5.2.24 aes32 . 65

v

6 Other Processor Crypto Extension 67
6.1 Intel Processors . 67
6.2 Arm Processors . 69

7 Simulation and Formal Verification 72

8 Synthesis 78
8.1 Area Analysis . 79

9 Benchmarks 85
9.1 AES algorithm . 85
9.2 SHA-256 algorithm . 91

10 Conclusions and Future Works 96

A nML & pdg implementation 98

B S-Box 102

C SHA2 103

D AES 105

Bibliography 110

vi

List of Tables

2.1 RISC-V ISA First Version 6
2.2 RISC-V International Ratified Extensions 14

3.1 STxP5 Register File X 22
3.2 Control and Status Registers(CSRs) list 23

5.1 Boyar-Peralta algebraic gate counts Forward Sbox [24] 58
5.2 Boyar-Peralta algebraic gate counts Inverse Sbox [24] . 62

7.1 CAD Tools . 77

9.1 Comparison of SW and HW Implementations for AES-
128 . 89

9.2 Comparison of SW and HW Implementations for SHA-256 94

10.1 Results . 97

vii

List of Figures

2.1 RISC-V Instruction Formats 7

3.1 STxP5 processor . 15
3.2 Bytes ordering in memory 16
3.3 Simplified STxP5 Datapath 24

4.1 Flexibility and Performance Tradeoff 27
4.2 ASIP Designer Flow 28
4.3 STxP5 Organization Project 30
4.4 STxP5 Flow of Design 31

5.1 Scalar Cryptography Groups [23] 32
5.2 Brev8 Encoding [7] . 33
5.3 Pack Encoding [7] . 33
5.4 Packh Encoding [7] . 33
5.5 Zip Encoding [7] . 34
5.6 Unzip Encoding [7] . 34
5.7 Xperm8 Encoding [7] 34
5.8 Xperm4 Encoding [7] 34
5.9 Sha256sig0 Encoding [7] 35
5.10 Sha256sig1 Encoding [7] 35
5.11 Sha256sum0 Encoding [7] 36
5.12 Sha256sum1 Encoding [7] 36
5.13 Sha512sig0h Encoding [7] 37
5.14 Sha512sig0l Encoding [7] 37
5.15 Sha512sig1h Encoding [7] 38
5.16 Sha512sig1l Encoding [7] 38

viii

5.17 Sha512sum0r Encoding [7] 38
5.18 Sha512sum1r Encoding [7] 38
5.19 AES Encryption [24] 39
5.20 Aes32esi Encoding [7] 40
5.21 Aes32esmi Encoding [7] 40
5.22 Aes32dsi Encoding [7] 41
5.23 Aes32dsmi Encoding [7] 41
5.24 Brev8 implementation 41
5.25 Pack implementation 42
5.26 Packh implementation 42
5.27 Zip implementation . 42
5.28 Unzip implementation 43
5.29 Xperm8 implementation 43
5.30 Xperm4 implementation 44
5.31 Sha256sig0 implementation 45
5.32 Sha256sig1 implementation 45
5.33 Sha256sum0 implementation 46
5.34 Sha256sum1 implementation 47
5.35 Sha256 implementation 48
5.36 Sha512sig0h implementation 49
5.37 Sha512sig0l implementation 50
5.38 Sha512sig1h implementation 51
5.39 Sha512sig1l implementation 52
5.40 Sha512sum0r implementation 53
5.41 Sha512sum1r implementation 54
5.42 Sha512 implementation 55
5.43 aes32esi implementation 56
5.44 Forward AES Affine Transformation 57
5.45 aes32esmi implementation 58
5.46 Forward MixColumns Matrix Representation 59
5.47 Forward MixColumns Operations 60
5.48 aes32dsi implementation 61
5.49 Inverse AES Affine Transformation 62
5.50 aes32dsmi implementation 63
5.51 Inverse MixColumns Matrix Representation 64

ix

5.52 Inverse MixColumns Operations 65
5.53 aes32 implementation 66

7.1 Test Flow . 74
7.2 SimVision Debug Environment 74
7.3 ChessDE’s Graphical Debugger 75
7.4 Functional Coverage Analysis 76
7.5 RTL Coverage Analysis 76

8.1 Synthesis Flow . 79
8.2 Zbkb Area Analysis . 80
8.3 Zbkx Area Analysis . 81
8.4 Zknh Area Analysis . 82
8.5 Zkne+Zknd Area Analysis 83

9.1 Encryption Function 86
9.2 Decryption Function 87
9.3 Macros for AES algorithm 88
9.4 Assembly code of SW implementation 90
9.5 Assembly code of HW implementation 91
9.6 SHA-256 main function 92
9.7 Macros for SHA algorithm 93
9.8 Assembly of a function in SHA-256 Algorithm (HW) . 94
9.9 Assembly of a function in SHA-256 Algorithm (SW) . . 95

C.1 SHA-256 and SHA-512 structure [30] 104

D.1 Key Schedule for AES-128 106
D.2 Fwd Sbox - Precalculated SubByte [31] 106
D.3 Inv Sbox - Precalculated SubByte Inversion [31] 107
D.4 Precalculated T-Table 108

x

Chapter 1

Introduction

1.1 Context
The evolution of computer architecture has been characterized by dif-
ferent historical developments. Initially, the computing landscape was
dominated by the x86 architecture, developed by Intel, a complex in-
struction set computing (CISC) design. Another important CISC design
was the 68000 Motorola processor [1]. In any case the x86 architecture
dominated the market area for decades. Intel’s x86 architecture, char-
acterized by its variable-length instructions and multi-cycle operations,
was well-suited to the performance demands of desktops and servers.
Subsequently, a new chapter began with the ARM architecture that
follows the Reduced Instruction Set Computing (RISC) architectures,
characterized by a lighter design due to reduced, fixed instruction and
simplified, single instruction functionality, focusing on low-power de-
vices. Since 1980s a debate has begun between RISC and CISC, trying
to decide which of the two was the best. Despite the two architectures
are very different, with their main implementation focus, both the two
types are present in both the implementation areas[2]. However even if
ARM’s success in the market was incredible, boosted by the emergence
of cellphones in Europe in 1990s, its policy regarding licensing fees, pre-
sented adversities for external’s customization. The model of fees and
restriction on customization was advantageous for ARM but posed chal-
lenges for smaller entities and the academic research community, which

1

Introduction

found themselves constrained by the costs and limitations imposed
by proprietary architectures. During 1990 IBM introduced the IBM
POWER based on RISC architecture [3]. It was in this context, some
years later, that the RISC-V was born in the University of California,
Berkeley in 2010. RISC-V has an ISA based on the principles of the
Reduced Instruction Set Computer (RISC) and stands as a open-source
design. As a open source project, RISC-V, unlike the predecessors, gives
the free availability of the ISA, avoiding the payment of license fees.
The architecture’s simplicity, modularity and openness have not only
taken the attention of academic research but caught also the interest
of company leaders. The open source work is perfectly represented
with the RISC-V International, a collaborative community born in
2015. A big group of stakeholders that works on the RISC-V ISA for
processor design delivering a diverse suite of ratified instruction set
extensions enhancing the architecture’s capabilities and versatility[4][5].
Recognizing the potential of RISC-V, STMicroelectronics decided to
start a project regarding the implementation of an own RISC-V-based
processor aligning their main concepts to the RISC-V International
topics. As in the contemporary digital epoch every embedded systems
are targeted by cybersecurity attacks, and they are particularly vulner-
able to such threats, STMicroelectronics recognized the critical need
of robust cryptography solutions to be implemented. Starting from a
software implementation of the algorithms, STMicroelectronics passed
to dedicated IP integrated at SOC level due to the increasing speed
needed for real-time applications and for embedded systems. In the
context of the RISC-V processor, among all the extensions delivered
by the RISC-V International in their specifications[6], the cryptogra-
phy extensions have been delivered properly concerning the security of
the processor functionality and providing security services in terms of
confidentiality, data integrity, authenticity and non-repudiation. The
cryptography extensions for RISC-V, implementing both Scalar & En-
tropy Source[7] and Vector[8] operations, are developed to optimize
the performance of cryptography algorithms—fundamental to secure
communication, data protection, and digital authentication. The first
extension aims to improve the architecture’s efficiency in executing

2

Introduction

algorithms such as AES[9], SHA-256[10], SHA-512[10] from NIST, SM3
and SM4 from China, with support across 32-bit and 64-bit imple-
mentations. In a similar manner, also the second extension aims to
improve the design regarding AES and SM2 cryptography algorithms.
The integration of these extensions signifies an important advancement
to reach a certain security within the processor architecture, aligning
to the STMicroelectronics objectives that currently uses dedicated IP
integrated at SOC level to implement this type of algorithms. Indeed
my thesis is centered on the practical implementation of cryptogra-
phy extensions within the STMicroelectronics processor, especially on
Scalar Cryptography Extensions. Through this work, I will explore
the technical challenges and solutions involved in the integration of
the cryptography extensions, evaluate their impact on system perfor-
mance and security, and contribute to the body of knowledge that will
guide future developments in processor architecture and cryptography
computing for STMicroelectronics.

1.2 Objectives
The main objectives are listed below :

1. Get practical with STMicrolectronics tools: familiarizing with soft-
ware and hardware development environments, including compilers,
assemblers, simulators and synthesis tools.

2. Implementation of the RISC-V Scalar Cryptography Extensions[7],
more precisely:

(a) Bitmanip instructions for cryptography: Zbkb extension to
improve the performance of bitwise operations.

(b) Crossbar permutation instructions: Zbkx extension to support
complex bit-level permutations that are used in cryptography
algorithms.

(c) SHA-256 and SHA-512 instructions: Zknh extension developed
for hashing algorithms that improves the processor’s ability to
perform secure cryptography hashing operations efficiently.

3

Introduction

(d) AES instructions: Zknd and Zkne extensions implementing
the Advanced Encryption Standard (AES) to execute fast and
secure data encryption and decryption.

3. Area and Performance evaluation through:

(a) Synthesis Report: analyzing the impact of the extensions on
the hardware implementations regarding silicon area.

(b) Benchmarks: analyzing the speed and resource utilization dur-
ing the execution of a cryptography algorithm giving an effi-
ciency feedback.

4. Implementation optimization following Area and Performance re-
sults: improving the design to reach the maximum performance
with minimum area and minimum power consumption possible.

1.3 Organization
The thesis is organized as follows:

1. Chapter 1: Introduction

2. Chapter 2: Background

3. Chapter 3: STxP5 Processor

4. Chapter 4: Tools and Workflow

5. Chapter 5: Scalar Cryptography Extension

6. Chapter 6: Other Processor Crypto Extension

7. Chapter 7: Simulation and Formal Verification

8. Chapter 8: Synthesis

9. Chapter 9: Benchmarks

10. Chapter 10: Conclusions and Future Works

4

Chapter 2

Background

2.1 RISC-V
This chapter gives an overview regarding RISC-V architecture, required
to comprehend the context in which this thesis is placed. It begins by
describing the RISC-V Instruction Set Architecture (ISA) with its base
extension and all the other available extensions, highlighting its core
design principles. Moreover, the instruction formats will be analyzed.
Through this chapter, readers will gain the background needed to have
a critical reference point for the subsequent chapters, which fall into
the implementation of cryptography extensions and their integration
into a RISC-V-based processor.

2.1.1 Instruction Set Architecture
The RISC-V processor has three different available versions: 32-bit
(RV32), 64-bit (RV64) and 128-bit (RV128), all are load-store archi-
tectures. It is specified mainly by 2 specifications : the unprivileged
specification [11] (that aims at describing the instructions - encoding
and what they do) and the priviledged specficication [12] (that aims at
describing the exceptions and other control feature). Differently from
previous processors, RISC-V is not defined by a fully specified ISA,
but it consists of a base integer ISA and optional extensions allowing
the modular extensibility of any implementation. The base integer ISA

5

Background

must be present in any implementation and it provides an essential
set of instructions sufficient to provide a minimal target for compilers,
assemblers, linkers, and operating systems[12]. So this base ISA is a
simple starting point ISA around which it is possible to add extensions
incrementing the complexity of the ISA. This extension mechanism
is very useful for developing general-purpose solutions and avoiding
the implementation of useless operations. The extensions defined by
RISC-V ISA in the first version are detailed in Table 2.1. Then, with

I Base Integer Extension
E Reduced Base Integer Extension
M Extension for Integer Multiplication and Division
A Extension for Atomic Instructions
F Extension for Single-Precision Floating-Point
D Extension for Double-Precision Floating-Point
C Extension for Compressed Instructions

Table 2.1: RISC-V ISA First Version

the birth of the RISC-V International, the development of the ISA
has rapidly progressed providing a huge variety of extensions. All the
new ratified extensions are listed in Table 2.2. Regarding privileged
instruction sets, the ISA can support three different privileged levels
modes [12]:

1. Machine mode (M-mode): the unique mandatory mode, used for
simple embedded systems.

2. User mode (U-mode): used with Machine mode to have a secure
embedded systems.

3. Supervisor mode (S-mode): added to M,U modes to have systems
running Unix-like operating systems.

In addition to the three modes, there is also a fourth mode: the
Debug mode (D-mode), used to support off-chip debugging and/or
manufacturing tests [12].

6

Background

2.1.2 Instruction Format
The RISC-V architecture uses an efficient instruction format, which
is crucial for the design and implementation of the processor [11].
It is important to underline the absence of status bits as Z (zero), N
(negative), C (carry) in the design of the architecture which It is unusual
but It has been a decision to keep the simplicity and flexiblity of the
architecture. Focusing on the RV32I, the instruction length is fixed
at 32 bits and based on this, there are different formats to describe
the base integer instruction set for the identification and execution of
instructions. These formats are:

• R-type: used for register-register operations.

• I-type: used for immediate operations and register loads.

• S-type: used for store operations.

• SB-type: used for conditional branch instructions.

• U-type: used for instructions that load a 20-bit immediate into the
upper 20 bits of a register.

• UJ-type: used for jump instructions.

Figure 2.1: RISC-V Instruction Formats

7

Background

As in figure 2.1, instruction format consists of several key points,
including the opcode, funct3, and funct7, which are fundamental for
identifying and decoding the instruction. Furthermore rs1, rs2, and
rd (5-bit each) represent the addresses of the source 1, source 2, and
destination registers, respectively. So the instruction in the processor
works with the values stored in rs1 and rs2 as data inputs and writes
the data output in register rd. Note that rs1, rs2 and rd are in the same
position, in all the formats, to optimize the chip circuitry and increase
efficiency. Furthermore, the imm field provides a binary value directly
embedded within the instruction, with variable length. Therefore it
provides a constant data for immediate operations for which the rs2
register is not needed and sometimes also the rs1 register is not needed
as well. Regarding binary values given directly in some instruction
format, the immediate can be also divided in more than one piece. These
variants offer flexibility and adaptability in addressing a diverse range
of computational requirements. Focusing on the registers previously
called, the RV32I has 32 general-purpose registers, denoted as x0
through x31. Each register can store a 32-bit value, aligned with the
32-bit architecture. The large number of available registers can improve
performance through less memory accesses. Another optimization is
the hardwired register x0 to 0 through which the instructions can be
simplified and also the number of needed immediate is reduced. Instead
the RV32E configuration has 16 registers for PPA (Power, Performance,
Area) optimizations.

2.1.3 RV32I Base Integer Instructions

Focusing on the base integer extension, precisely on the RV32I, a variety
of instructions are provided[11]. The available instructions can perform
arithmetic calculations, logical operations, and managing data flow
within a program. Understanding these instructions is necessary, as
they form the basis for more complex algorithms and extensions.

8

Background

Integer Computational Instructions

Integer computational instructions cover principally arithmetic instruc-
tions. These instructions operates on 32 bits integer values stored in
the integer register file. Integer instructions can have three different
formats:

• R-type: R-type instructions involve register-register operations,
where the operation is performed between two source registers (rs1
and rs2), and the result is stored into a destination register (rd).
Operations as ADD, SUB, SLT, SLTU, AND, OR, XOR, SLL, SRL
and SRA are part of this type. For example, the ADD instruction
adds the values in registers rs1 and rs2 and stores the result in
register rd. Similarly, the SUB instruction subtracts rs2 to rs1.
SLL,SRL,SRA perform logical left, logical right, and arithmetic
right shifts to the value of rs1 by an amount specified by the
lower 5 bits of the value in rs2. Moreover XOR,OR,AND apply
bitwise operations between rs1 and rs2. For comparison operations,
SLT(signed) and SLTU(unsigned) compares the content of rs1 with
rs2 and put 1 as result in rd if rs1 is less than rs2, otherwise a 0 is
stored. In these specific scenarios, the absence of the status bits is
significant, as the status bit is meant for that purpose.

• I-type: I-type instructions involve register-immediate operations,
where an immediate value (12-bit value) is sign-extended to be
used correctly with the other 32/bit value and then used as one of
the operands in the operation. Instructions as ADDI, SUBI, SLTI,
SLTIU, ANDI, ORI, XORI, SLLI, SRLI, SRAI are included in this
category. The operations performed by these instructions are the
same of the previous with the immediate value instead of the rs2
register.

• U-type: U-type instructions as LUI and AUIPC take part of this
type. LUI performs a load of a 20-bit immediate value into the
upper 20 bits of the destination register while the lower 12 bits are
filled by zeros. Instead AUIPC takes the 20-bit immediate value as
upper bits and filling the other 12 bits with zeros. Then It uses the

9

Background

value as an offset to be added to the program counter (PC) and
loads the result of the addition in rd.

Control Transfer Instructions

Control transfer function, to control the flow of the execution, is divided
in two parts: unconditional jumps and conditional branches. Uncon-
ditional jumps have the JAL instruction which follows the UJ-type.
This instruction performs a jump using a signed offset, taken from the
instruction, that is added to the program counter(PC) to form the
jump target address. In the meanwhile the instruction can store the
theoretical next address(PC+4) that is the return address in a specific
register rd (x1). There is also the J pseudo-instruction that is a JAL
without storing the return address, and so it in this case the rd is x0. In
addition, the JALR instruction, that follows the I-type format, performs
the jump calculating the target address by adding the 12-bit signed
immediate with the value of the register rs1 and the putting a zero in
the least significant bit of the result. As in JAL, the return address is
stored in a specific rd. Conditional branches use the SB-type format,
and compare the contents of the two register and if the condition is
positive, PC will be updated with the target address calculated by
adding the 12-bit signed immediate to the program counter. The BEQ
and BNE instructions update the PC if the registers are equal or not
equal. The BLT and BLTU instructions update the PC if the first
register is less than the second, using signed or unsigned comparison.
Similarly, BGE and BGEU update the PC if the first register is greater
than or equal to the second, using signed or unsigned comparison.

Load and Store Instructions

Load and store instructions can work on the memory and the register
file. These instructions are used to transfer values between registers
and memory and viceversa. The load instruction, that follows the
I-type format, declare LW[U](32-bit words), LH[U](16-bit half-words),
LB[U](8-bit bytes). These instructions perform a load from memory
to the rd register, in which the memory address is computed with

10

Background

the addition of the value of rs1. With a value of 16-bit or 8-bit, an
extension of zeros is done with -U declared, otherwise a sign-extension
is done. The store instruction, which follows the S-type format, includes
SW(32-bit words), SH(16-bit half-words), SB(8-bit bytes) perform a
store from a register to the memory with address the addition between
rs1 and the immediate. Instead the value stored is taken from the
register file with the address rs2.

2.2 Cryptography
The advent of computers, networks and the increased dependency on
digitized information in our society makes information more vulnerable
from cyber-attacks. For this reason, it is important to secure information
systems by protecting data and resources from malicious acts through
cryptography algorithms. Cryptography offers a robust solution for IT
security by providing security services in terms of confidentiality, data
integrity, authenticity and non-repudiation [13]:

• Confidentiality: Information cannot be accessed by unauthorized
parties. This is accomplished through public key and private-key
encryption.

• Data Integrity: Transmitted data within a given communication
cannot be altered during storage or transmission. This is done
through Hash Functions.

• Authenticity: Ensures that, within a given communication, the
source of information and the information itself are genuine though
digital signatures.

• Non-repudiation: Ensures that neither the sender nor the receiver
of a message can deny transmission. This is achieved via digital
signatures and third party notary services.

In this context cryptography algorithms such as AES (Advanced
Encryption Standard) and SHA-256/512 have an important role in
ensuring the characteristics specified before.

11

Background

2.2.1 Importance of Cryptography Extensions
Implementing cryptography algorithms in software is relatively easy,
but such algorithms are typically too slow for real-time applications,
such as storage device and embedded systems, due to increasing data
rates and complexity of security protocols. For this reason, it be-
comes necessary to implement cryptography algorithms in hardware.
Hardware-based cryptography significantly accelerates the execution
of cryptography algorithms by providing dedicated instructions into
the processor architecture, thus enhancing the overall system perfor-
mance while maintaining high levels of security [14] . In this context,
one notable example is the integration of the RISC-V cryptography
extensions, specifically the scalar cryptography extensions, which have
been designed to support efficient cryptography operations on 32-bit
and 64-bit RISC-V processors. These extensions include specialized
instructions for AES encryption and decryption, as well as SHA-256
and SHA-512 hashing, which are commonly used in securing communi-
cations and protecting sensitive data. There are advantages thanks to
hardware-based cryptography implementations [15]:

• Performance: The instructions can exploit all the capabilities of the
processor, significantly speeding up the cryptography operations.

• Attack surface: The hardware implementation can hide implemen-
tation details and reduce the attack surface.

• Memory: The algorithms in hardware can reduce the code size and
also the data-memory.

All these advantages of the hardware implementation make it a proper
solution to integrate these functions as ISA extensions and so implement
them in hardware. In the case of AES and SHA-256, comparing the
software implementation with the hardware implementation, there is
an improvement of 5x and 2x on speed and 0.5x on program memory,
respectively. Since the instructions are implemented directly in the
processor, there is a disadvantage in term of area, 1.1 kGates for AES
and 0.7 kGates for SHA-256/512 [16] [17] [18]. These are the expected

12

Background

results, all the instructions, that are part of the Scalar Cryptography
Extensions, and all the results will be explained in the next chapters.

13

Background

Zifencei Instruction-Fetch Fence
Zicsr Control and Status Register Instructions

Zicntr Counters
Zihintntl Non-Temporal Locality Hints

Zihintpause Pause Hint
Zimop May-Be-Operations
Zicond Integer Conditional Operations
Zmmul Multiply only
Zawrs Wait-on-Reservation-Set Instructions
Zacas Atomic Compare-and-Swap Instructions

RVWMO Memory Consistency Model
Ztso Total Store Ordering

CMO Base Cache Management Operation ISA
Q Quad-Precision Floating-Point

Zfh Half-Precision Floating-Point
Zfhmin Minimal Half-Precision Floating-Point

Zfa Additional Floating-Point Instructions
Zfinx-Zdinx-Zhinx-Zhinxmin Floating-Point in Integer Registers

Zc* Code Size Reduction
B Bit Manipulation
V Standard Extension for Vector Operations

Zbkb Bitmanip instructions for Cryptography
Zbkc Carry-less multiply instructions
Zbkx Crossbar permutation instructions

Zk Standard scalar cryptography extension
Zks ShangMi Algorithm Suite

Zvbb Vector Basic Bit-manipulation
Zvbc Vector Carryless Multiplication
Zvkg Vector GCM/GMAC

Zvkned NIST Suite: Vector AES Block Cipher
Zvknhb NIST Suite: Vector SHA-2 Secure Hash
Zvksed ShangMi Suite: SM4 Block Cipher
Zvksh ShangMi Suite: SM3 Secure Hash
Zvkt Vector Data-Independent Execution Latency

Table 2.2: RISC-V International Ratified Extensions
14

Chapter 3

STxP5 Processor
This chapter describes the main characteristics of the STxP5 processor,
recalling some information of the Chapter 2 and giving some other
information. STxP5 architecture is one implementation of the standard
RISC-V free open architecture. STxP5 architecture is shown in Figure
3.1. STxP5 processor is made of 5 main functional blocks :

Figure 3.1: STxP5 processor

• The STxP5 core. It is in charge of fetching STxP5 instructions and

15

STxP5 Processor

executing them.

• The memory controller (MMC). It is in charge of the arbitration
between the instruction fetch and data load/store requests which
are converted into the AHB-lite protocol.

• The interrupt controller (ITC). It provides the possibility of han-
dling interrupts.

• The on chip debug (OCD). It provides the necessary resources and
control for the software debug on the STxP5 HW target.

• The physical memory attributes (PMA). It holds attributes that
are checked by PMA_checker and that can raise exceptions when
violated.

In Figure 3.1, it is also shown the possible data types for the STxP5.
The STxP5 provides an efficient support for 8-bit, 16-bit, 32-bit signed
and unsigned data types. While all computational operations are
performed on 32-bit, the other smaller data types are promoted to
a 32-bit while they are loaded from memory. The 32-bit results are
down-cast when the result is stored into memory. In Figure 3.2 is shown
how the data types are ordered in memory.

Figure 3.2: Bytes ordering in memory

3.1 STxP5 core
As the objectives of the thesis is regarding the implementation of
different instructions, it could be important to focus on the STxP5 core.

16

STxP5 Processor

3.1.1 Core Registers
STxP5 general purpose register file X can be configured to implement
either 16 or 32 32-bit registers giving the possibility to implement either
RV32I or RV32E base ISA. The register file is a RISC-V standard and
It is described in Table 3.1. As said previously, also here, the register
X0 is hardwired to 0, meaning that it can not be overwritten. The
link register X1 holds the return address of a function call. The stack
pointer X2 must be set to the base address of the stack by software and
it is growing downward. Temporary registers are registers which do not
hold their value across function calls, they must be saved by the caller
before a call if they are later used. Instead the saved registers are saved
by the caller if they are used within the function, their value is thus
held across function calls. X10 and X11 can be used for dual purposes:
function arguments and/or to return function results. Registers X12
to X17 can be used only for function arguments. The register file
configuration interacts with the Application Binary Interface (ABI).
The ABI is a convention that tells how software shall use the registers
during function calls, return address handling and parameter passing
mechanism.

3.1.2 Control and Status Registers
STxP5 supports two privileged modes, so only a subset of the privileged
modes of RISC-V . It implements the Machine Mode (M-mode) that is
the highest privileged mode. This mode has complete authority over
CPU scheduling and configuration. Moreover, execution state of all
exceptions and interrupts is M-mode. The second mode is the User
Mode (U-mode) that is used for conventional usage. So the Supervisor
Mode (S-mode) is not supported. Table 3.2 lists the main Control
and Status registers (CSRs) implemented. The CSRs address space
is sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.
Conventionally, the upper 4 bits of the address (csr[11:8]) are used to
described the read and write accessibility according to the different
privilege levels. More precisely the top two bits (csr[11:10]) indicate
whether the register is read/write with 00, 01, or 10 or read-only with

17

STxP5 Processor

11. Then the other two bits (csr[9:8]) encode the lowest privilege level
that can access the CSR[12].

Therefore for each register, the possible access to the register is given:

• MRW: Machine Read Write.

– Read and Write accesses are supported in Machine Mode.

– Any access to the register in User mode will generate an illegal
instruction exception.

• MRO: Machine Read Only

– Read access is supported in Machine Mode.

– Any access to the register in User mode will generate an illegal
instruction exception.

– Write access to the register will generate an illegal instruction
exception

• RW: Read Write

– Read and Write accesses are supported in User Mode and
Machine Mode.

• RO: Read Only

– Read access is supported in User Mode and Machine Mode

– Write access to the register will generate an illegal instruction
exception

3.1.3 Pipeline
The STxP5 is a 4-stage pipeline implementation of RISC-V and so an
instruction can be executed in a maximum 4 pipelined cycles. The
4-stage instruction pipeline is as follows:

18

STxP5 Processor

• Stage1: Instruction Fetch (IF)
Instruction is predecoded. Predecoding is performed on either the
new 32-bit chunk of data read from memory or on the next 32-bit
chunk read from a 80-bit instruction prefetch buffer. If the 32-bit
correspond to a 32-bit instruction it is registered in the 32-bit
instruction register for the next ID pipeline stage. Otherwise the
16-bit opcode is zero extended before being registered into the
instruction register.

• Stage2: Decode, Operand Fetch (DOF):
The instruction is decoded. Instruction operands are read from
the register file. In case of a load or store instruction, the effective
address (EA) of the data to read or write is computed and registered.
Unconditional branches are providing the relative branch offset to
the control unit in this cycle too

• Stage3: Execute (EX):
The Result of instructions belonging to ALU, SHIFT, MUL instruc-
tion classes is computed and registered. Memory read or write is
performed. If branch condition is true, branch address is sent to
the control unit.

• Stage4: Write Back (WB):
The Result of instructions belonging to ALU, SHIFT, MUL, DIV
instruction classes is written back into the register file. The Result
of Pre and post modifying addressing modes is written back into
the register file. Memory read is completed and the data load from
memory is written back into the register file.

Control Unit

The Control Unit is in charge of managing the datapath throughout its
stages. Given an instruction from instruction register(IR), it generates
the corresponding control word that manages the various registers,
MUXes and other control signals in the datapath. Moreover, the CU

19

STxP5 Processor

interacts with the Hazard Unit (HU), which monitors the pipeline for
potential hazards that could break the flow of instructions. The HU
provides signals to the CU indicating when it is necessary to stall the
pipeline or insert bubbles (NOP operation) instructions to allow time
for data to become available or for previous instructions to complete.

Hazard

The Hazard Unit takes care of detecting data control and structural
hazards in the pipeline and successively dispatching the correct signals
to the CU to indicate where and for how many stages to stall for. If
no hazardous condition is found, the pipeline operates uninterrupted,
maintaining the flow of instruction execution. Three main cases are
covered by the HDU:

• Data hazards : pipeline stalls when an instruction depends on the
result of a previous instruction that has not yet finished, ensuring
correct program execution without data corruption.

• Structural hazards: pipeline has to stall when an instruction needs
an hw resource that is busy by the previous one.

• Control hazards: pipeline has to be flushed because with a jump
or a taken branch, the normal flow of execution is changed.

Forwarding

To mitigate the impact of hazards, for data hazards, techniques such
as forwarding (or bypassing) can be used to pass the result of a compu-
tation directly to a subsequent instruction without writing it to and
reading it from the register file. This is implemented in order to reduce
the need for stalls and keeps the pipeline moving. The Forwarding
Unit detects favourable conditions for source and destination registers
between stages of the pipeline and if they match it forwards operands
where they are needed, skipping the write-back stage. The forwarding
unit helps improving the pipeline performances, reducing the number
of stalls due to hazards in different situations. The situations in which

20

STxP5 Processor

the forwarding can be exploited are when an instruction has already
produced the result without writing that in the register file, and a
following instruction needs the data in the execute stage. The majority
of forwarding paths links write-back stage with the execute stage.

A simplified datapath of the pipeline processor is shown in Figure
3.3

21

STxP5 Processor

32-bit Register File X Alias name
X0: Zero (hardwired 0) zero

X1: Link register ra
X2: Stack pointer sp
X3: Global pointer gp
X4: Thread pointer tp

X5: Temp t0
X6: Temp t1
X7: Temp t2

X8: Saved register s0
X9: Saved register s1

X10: Fct arg/Ret val a0
X11: Fct arg/Ret val a1
X12: Fct argument a2
X13: Fct argument a3
X14: Fct argument a4
X15: Fct argument a5
X16: Fct argument a6
X17: Fct argument a7
X18: Saved register s2
X19: Saved register s3
X20: Saved register s4
X21: Saved register s5
X22: Saved register s6
X23: Saved register s7
X24: Saved register s8
X25: Saved register s9
X26: Saved register s10
X27: Saved register s11

X28: Temp t3
X29: Temp t4
X30: Temp t5
X31: Temp t6

Table 3.1: STxP5 Register File X

22

STxP5 Processor

CSR Address Hex Acc. Name
[11:10] [9:8] [7:6] [5:0]

00 11 00 000000 0x300 MRW Machine Status (mstatus)
00 11 00 000001 0x301 MRW Machine ISA and extension (misa)
00 11 00 000100 0x304 MRW Machine interrupt-enable (mie)
00 11 00 000110 0x306 MRW Machine counter enable (mcounteren)
00 11 00 000101 0x305 MRW Machine trap vector base-address (mtvec)
00 11 01 000001 0x341 MRW Machine exception program counter (mepc)
00 11 01 000010 0x342 MRW Machine trap cause (mcause)
00 11 01 000100 0x344 MRW Machine interrupt pending (mip)
11 11 00 010010 0xF12 MRO Machine architecture ID (marchid)

Table 3.2: Control and Status Registers(CSRs) list

23

STxP5 Processor

Figure 3.3: Simplified STxP5 Datapath

24

Chapter 4

Tools and Workflow

4.1 ASIP Tool
In the world of data processing, a crucial tradeoff exists between flexibil-
ity and efficiency. The Figure 4.1 shows the different possible solutions
[19]. In the leftmost position, there are general-purpose microproces-
sors that they are the most flexible solution but with the drawback of
low performance and low power efficiency. On the other hand, in the
rightmost solution, hardwired datapaths are the most efficient solution
but with a singular application possible without the possibility to be
adapted to different applications. In between these two, there is the
Application Specific Integrated Processor (ASIP) that offers a balance
between the two parameters. Synopsys’ ASIP Designer is a software
tool for the design and programming of Application Specific Integrated
Processors (ASIPs) [20]. This suite has been developed to support
any user-modeled processor architecture described in nML (notation
Machine Language). The nML language captures both the instruction-
set architecture (ISA) at a high-level and the microarchitecture of a
processor at a Register Transfer Level (RTL). It can be viewed as a
specialized hardware description language, but with additional func-
tions specifically designed to describe processor features for particular
application domain. This language facilitates the modeling and the
optimization of a processor’s architecture. The nML model is the funda-
mental input for ASIP Designer’s retargetable software development kit

25

Tools and Workflow

(SDK). This SDK is a powerful software, It includes an optimizing C
and C++ compiler that enforces the capabilities of the ISA,as defined
in nML, to its fullest potential, with also a linker and an assembler.
The compiler’s ability to exploit the full potential of the ISA is thanks
to the efficacy of ASIP Designer’s Compiler-in-the-Loop design method-
ology. Starting from a code written in C or C++, the behavior of the
processor model can be simulated. This simulation is executed through
a cycle-accurate instruction-set simulator (ISS) within the SDK, plus
a graphical debugger and profiler. The advantage of the of the cycle
accurate simulation, with the retargetable SDK, is the possibility of
tuning the ISA, changing the nML code, and validate it in a next
iteration cycle. Moreover, ASIP tool includes a RTL generator that It
is capable of translating the nML model into a Register Transfer Level
(RTL) model either Verilog or VHDL languages. The generated code is
optimized to achieve good timing performance and power dissipation.
The immediate generation of an RTL model from the nML description
is a cornestone of the Synthesis-in-the-Loop methodology. Indeed, to
perform a deeper analysis of the ASIP’s performance, the RTL can be
synthesized. Thanks to the synthesis, designers can study and evaluate
the power, performance and area (PPA) of the design. As last step,
there is the verification process. The model is tested with user-defined
algorithm written in C or C++ on three different levels: firstly the
model is tested on the host compiler, as a reference, after It is tested
with the ISS of the model and, as last level, It is tested with the RTL
Simulator. All the three results will be compared to underline possible
mismatches or full correctness. The full ASIP designer tool flow is given
in Figure 4.2.

4.1.1 nML and PDG
In the design process a processor’s architecture is defined through the
high-level nML language that can described both the instruction-set
architecture and the microarchitecture. The main characteristics are
listed below [21] :

• Primitive data types and primitive operations: They are the core of

26

Tools and Workflow

Figure 4.1: Flexibility and Performance Tradeoff

the model, they can be standard or user-defined. The primitive data
types are modeled using C++ classes. The primitive operations
are modeled using C++ functions and operators.

• Data storages: All of them must be declared globally with its data
type and address type.

– Static storages: They can store each of its values during several
machine cycles, until They are explicitly overwritten.

∗ Memories: They are storage elements that usually have the
possibility to store a large number of values at the same
time. Access operations can take relatively long compared
to normal machine operations. In load-store architectures,
memory may only be accessed by special load and store
instructions, not by arithmetic instructions.

27

Tools and Workflow

Figure 4.2: ASIP Designer Flow

∗ Registers: They are accessible in much less time than a
machine cycle. In load/store architectures, arithmetic op-
erations always take their operands from registers and put
their results in registers.

– Transitory storages: They represent buses or wires. They pass
a value from input to output without delay.
∗ Processor ports: The input and output ports of the processor

modeled by transitories. An input transitory can only be
read and may not be written , while an output transitory
can only be written and may not be read.

∗ Pipeline registers: Special transitories with delay of one
cycle. These transitories are used to describe multi-stage
actions.

• Functional units: They can optionally be declared. Functional

28

Tools and Workflow

units are just used to group operations that are physically executed
on the same hardware unit.

• Immediate and Hardwired Constants: Every immediate constant
must be declared instead an hardwired constant must not be de-
clared.

• Properties: They are used to specify the special purpose of some
storage elements.

• Instruction-set: It describes the instruction set and the execution
behavior of the processor. It is detailed through several rules with
specific grammar and attributes. Instructions are defined through:

– The ’action’ attribute, which details the concurrent register-
transfer operations for all instructions within the class, orga-
nized into stages of the processor’s pipeline.

– The ’syntax’ attribute, which outlines the assembly language
representation of the instructions.

– The ’image’ attribute, which specifies the binary encoding of
the instructions.

While nML describes the structural framework of the processor,
the behavior of primitive functions is defined in the PDG (Primitives
Definition and Generation) language [22]. PDG is a hybrid language
combining C and HDL elements like Verilog, used for defining functional
primitives and control units. It utilizes the primitive data types from
nML and enhances them with additional features. The PDG language is
crucial as it avoids inconsistencies and duplication of effort by enabling
the generation of C++, VHDL, and Verilog implementations from a
single definition. It also describes other processor components, such as
the Processor Control Unit and I/O interfaces. In summary, the nML
and PDG languages within ASIP Designer provide a comprehensive
framework for defining a processor’s architecture, from its data types
and operations to its functional units and instruction set, ensuring con-
sistency and efficiency in the design and simulation of ASIPs. Appendix
A gives an example of PDG-nML code.

29

Tools and Workflow

4.2 Workflow
The STxP5 team carries out its IP development in a Linux environ-
ment. The projects managed with the Git version control tool and is
divided mainly into three repositories: architecture, design and ver-
ification. The architecture git repository contains the description of
the different processor blocks, scripts and compilation tools etc. The
design repository contains all scripts, constraint files and tools necessary
for synthesis and performance measurements (PPA) of the processor.
Finally, the verification git as its name suggests, contains the tools
and tests necessary for design verification. These different deposits
constitute a fairly vast environment and complex files. The STxP5
project organization is showed in Figure 4.3.

Figure 4.3: STxP5 Organization Project

The implementation of the designs is carried out from nML and
PDG. The files are compiled with Chess (C Compiler), another ASIP
tool. It is possible to do this directly at from command lines or through
internal software called Poker, tool developed by the team. Poker gives

30

Tools and Workflow

the possibility, under a single graphical interface, to configure and build
Processor model, prepare simulation and to run a regression. It is even
possible to consult ASIP documentation via the interface. Poker, by
throwing ChessDE, allows to compile the nML/PDG then generates the
Verilog. This Verilog output is then used in a standard CAD flow to run
simulation (Xcelium rtl simulator), to be synthesized using a targeted
standard cell library (40 nm), to run gate simulation to extract power
estimation. These tasks can be carried out via an online tool called
Jenkins which centralizes, automates and improves the presentation
of the results following the continuous integration strategy. To ensure
the quality of the design, verification work is generally carried out
by an engineer from the ST verification team in collaboration with
the designer. The test plan is to write dynamic and formal tests that
validate the implementation. Dynamic verification ensures that features
have been implemented correctly, while formal verification ensures that
the implementation agrees with the behaviors described by architecture
specifications or protocols. These two methods are complementary to
demonstrate the quality of the design. The STxP5 flow is showed in
Figure 4.4.

Figure 4.4: STxP5 Flow of Design

31

Chapter 5

Scalar Cryptography
Extension
This section explains the hardware architecture of the Scalar Cryptog-
raphy Extension. This extension is divided in more than one group
that They are showed in Figure 5.1. My thesis is focused on the imple-
mentation of the Zkn group except the Zbkc that It is not a priority for
STxP5 in this moment. The Zkn extension is built for Nist algorithhm.

Figure 5.1: Scalar Cryptography Groups [23]

5.1 Specifications
All instructions described herein use the general-purpose X registers, and
obey the 2-read-1-write register access constraint. These instructions

32

Scalar Cryptography Extension

are designed to be lightweight and suitable for 32-bit base architectures
[7].

5.1.1 Zbkb - Cryptography Bitmanip instructions
These instructions are a subset of the Bitmanipulation Extension Zbb
which are particularly useful for Cryptography. There are 5 instruc-
tions that are not present in the Zbb extension, so They have been
implemented and added to the others.

Reverse instruction

• brev8 rd, rs : Reverse bits in bytes, 5.2.

Figure 5.2: Brev8 Encoding [7]

Packing instructions

• pack rd, rs1, rs2 : Pack low halves of registers, 5.3.

Figure 5.3: Pack Encoding [7]

• packh rd, rs1, rs2 : Pack low bytes of registers, 5.4.

Figure 5.4: Packh Encoding [7]

33

Scalar Cryptography Extension

Generalized Shuffle instructions

• zip rd, rs : Zip the registers, 5.5.

Figure 5.5: Zip Encoding [7]

• unzip rd, rs : Unzip the registers, 5.6.

Figure 5.6: Unzip Encoding [7]

5.1.2 Zbkx - Crossbar Permutation instructions
These instructions are useful for implementing SBoxes (Appendix B)
in constant time, and potentially with DPA protections.

• xperm8 rd, rs1, rs2 : Bytes Crossbar Permutation, 5.7.

Figure 5.7: Xperm8 Encoding [7]

• xperm4 rd, rs1, rs2 : Nibbles Crossbar Permutation, 5.8.

Figure 5.8: Xperm4 Encoding [7]

34

Scalar Cryptography Extension

5.1.3 Zknh - NIST Suite: Hash Function
These instructions are implemented for accelerating SHA-2 family of
cryptography hash functions. It covers the SHA2-256 functions and
the SHA2-512 functions. Appendix C gives more details on SHA-2
hash family. Two logical functions (not specified) are shared between
SHA-256 and SHA-512 [10].

Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z) (5.1)

Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) (5.2)

SHA2-256 instructions

The SHA2-256 are hash functions that receive an input message with
length n (0 < n < 264) and generates a 256-bit output message digest.
The 32-bit hash logical functions are [10]:

Σ0 = ROTR(x, 2) ⊕ ROTR(x, 13) ⊕ ROTR(x, 22) (5.3)

Σ1 = ROTR(x, 6) ⊕ ROTR(x, 11) ⊕ ROTR(x, 25) (5.4)
σ0 = ROTR(x, 7) ⊕ ROTR(x, 18) ⊕ SHR(x, 3) (5.5)

σ1 = ROTR(x, 17) ⊕ ROTR(x, 19) ⊕ SHR(x, 10) (5.6)

• sha256sig0 rd, rs1 : SHA2-256 Sigma0 instruction, 5.9.

Figure 5.9: Sha256sig0 Encoding [7]

• sha256sig1 rd, rs1 : SHA2-256 Sigma1 instruction, 5.10.

Figure 5.10: Sha256sig1 Encoding [7]

35

Scalar Cryptography Extension

• sha256sum0 rd, rs1 : SHA2-256 Sum0 instruction, 5.11.

Figure 5.11: Sha256sum0 Encoding [7]

• sha256sum1 rd, rs1 : SHA2-256 Sum1 instruction, 5.12.

Figure 5.12: Sha256sum1 Encoding [7]

SHA2-512 instructions

The SHA2-512 are hash functions that receive an input message with
length n (0 < n < 2128) and generates a 512-bit output message digest.
The 64-bit hash logical functions are [10]:

Σ0 = ROTR(x, 28) ⊕ ROTR(x, 34) ⊕ ROTR(x, 39) (5.7)
Σ1 = ROTR(x, 14) ⊕ ROTR(x, 18) ⊕ ROTR(x, 41) (5.8)

σ0 = ROTR(x, 1) ⊕ ROTR(x, 8) ⊕ SHR(x, 7) (5.9)
σ1 = ROTR(x, 19) ⊕ ROTR(x, 61) ⊕ SHR(x, 6) (5.10)

Due to the 64-bit nature of the operations and the 32-bit architecture
of the processor, each function is divided into two parts, with each
part processing 32-bit inputs. In the case of Sigma0 function, the
instructions sha512sig0l and sha512sig0h are performed one after the
other. In the same way also the Sigma1 function is implemented with
sha512sig1l and sig512sig1h. The sequences are showed below:

Sigma0

sha512sig0l t0, a0, a1
sha512sig0h t1, a1, a0

36

Scalar Cryptography Extension

Sigma1

sha512sig1l t0, a0, a1
sha512sig1h t1, a1, a0

Similarly, the Sum0 function is performed by two iterations of the
sha512sum0r operation, while the Sum1 function is performed by two
iterations of the sha512sum1r operation. The iterations are showed
below:

Sum0

sha512sum0r t0, a0, a1
sha512sum0r t1, a1, a0

Sum1

sha512sum1r t0, a0, a1
sha512sum1r t1, a1, a0

• sha512sig0h rd, rs1, rs2 : SHA2-512 Sigma0 high instruction,
5.13.

Figure 5.13: Sha512sig0h Encoding [7]

• sha512sig0l rd, rs1, rs2 : SHA2-512 Sigma0 low instruction,
5.14.

Figure 5.14: Sha512sig0l Encoding [7]

37

Scalar Cryptography Extension

• sha512sig1h rd, rs1, rs2 : SHA2-512 Sigma1 high instruction,
5.15.

Figure 5.15: Sha512sig1h Encoding [7]

• sha512sig1l rd, rs1, rs2 : SHA2-512 Sigma1 low instruction,
5.16.

Figure 5.16: Sha512sig1l Encoding [7]

• sha512sum0r rd, rs1, rs2 : SHA2-512 Sum0 instruction, 5.17.

Figure 5.17: Sha512sum0r Encoding [7]

• sha512sum1r rd, rs1, rs2 : SHA2-512 Sum1 instruction, 5.18.

Figure 5.18: Sha512sum1r Encoding [7]

5.1.4 Zkne - NIST Suite: AES Encryption
The AES algorithmn works on 128-bit block size and three key sizes:
128, 192 and 256 bits. Depending on the key size, the number of
rounds are defined: 10 rounds for AES-128, 12 rounds for AES-192,

38

Scalar Cryptography Extension

and 14 rounds for AES-256. Each round, with the exception of the
first, consists of layers, each layer manipulates all 128 bits of the input
5.19 shows the flow of the encryption algorithm.

Figure 5.19: AES Encryption [24]

The layers are described below:

• SubBytes: performs non-linear transformation according to the
SBOX lookup table.

39

Scalar Cryptography Extension

• ShiftRows: performs permutation on the data on a byte level.

• MixColumns: performs a multiplication with a constant matrix
in Galois Field GF(28).

• AddRoundKey: performs the addition of the Round Key.

The instructions are implemented for accelerating the encryption
and key-schedule functions (Appendix D) of the AES block cipher.

• aes32esi rd, rs1, rs2, bs : AES final round encryption instruction,
5.20.

Figure 5.20: Aes32esi Encoding [7]

• aes32esmi rd, rs1, rs2, bs : AES middle round encryption
instruction, 5.21.

Figure 5.21: Aes32esmi Encoding [7]

5.1.5 Zknd - NIST Suite: AES Decryption
The decryption algorithm has the same structure as the encryption.
However, each layer is replaced by its inverse and so the Byte Substitu-
tion layer becomes the Inv Byte Substitution layer, the ShiftRows layer
becomes the Inv ShiftRows layer, and the MixColumn layer becomes Inv
MixColumn layer. Furthermore the order of the round keys is reversed.
These instructions are implemented for accelerating the decryption and
key-schedule functions of the AES block cipher.

40

Scalar Cryptography Extension

• aes32dsi rd, rs1, rs2, bs : AES final round decryption instruction,
5.22.

Figure 5.22: Aes32dsi Encoding [7]

• aes32dsmi rd, rs1, rs2, bs : AES middle round decryption
instruction, 5.23.

Figure 5.23: Aes32dsmi Encoding [7]

5.2 Instruction Hardware Implementation

5.2.1 Brev8
The brev8 instruction reverses the bits in each byte of rs source register
in rd destination register. The Figure shows 5.24 the implementation.

Figure 5.24: Brev8 implementation

5.2.2 Pack
The pack instruction packs the lower halves of rs1 and rs2 into rd, with
rs1 in the lower half and rs2 in the upper half. The implementation is
showed in Figure 5.25.

41

Scalar Cryptography Extension

Figure 5.25: Pack implementation

5.2.3 Packh
The packh instruction packs the least-significant bytes of rs1 and rs2
into the first and second least-significant bytes of rd, respectively. Zero
extending the rest of rd. The implementation is showed in Figure 5.26.

Figure 5.26: Packh implementation

5.2.4 Zip
This instruction places bits in the low half of the source register into
the even bit positions of the destination, and bits in the high half of
the source register into the odd bit positions of the destination. The
implementation is showed in Figure 5.27.

Figure 5.27: Zip implementation

42

Scalar Cryptography Extension

5.2.5 Unzip

This instruction is the inverse of the zip instruction. So It places the
even bits of the source register into the low half of the destination, and
the odd bits of the source into the high bits of the destination. The
implementation is showed in Figure 5.28.

Figure 5.28: Unzip implementation

5.2.6 Xperm8

This instruction performs the permutation of the bytes of rs1 following
the indexes taken from each byte of rs2. If the index is out of bound,
zeros are inserted. The instruction is implemented through multiple
multiplexers. For each of them, the selection signal is the i-th byte of
rs2 (i = 0 to 3) that chooses one of the bytes of rs1 or 8-bit zero and
saves it to the i-th byte of rd. The implementation is showed in Figure
5.29.

Figure 5.29: Xperm8 implementation

43

Scalar Cryptography Extension

5.2.7 Xperm4

This instruction performs the permutation of the nibbles of rs1 following
the indexes taken from each nibble of rs2. If the index is out of bound,
zeros are inserted. The instruction is implemented through multiple
multiplexers. For each of them, the selection signal is the i-th nibble
of rs2 (i = 0 to 7) that chooses one of the nibbles of rs1 or 4-bit zero
and saves it to the i-th nibble of rd. The implementation is showed in
Figure 5.30.

Figure 5.30: Xperm4 implementation

5.2.8 Sha256sig0

The Sha512sig0 implements the Sigma0 transformation function(5.5),
as used in the SHA2-256 hash function.

ROR(rs1, 7) ⊕ ROR(rs1, 18) ⊕ SRL(rs1, 3) (5.11)

The source register rs1 on 32 bits is taken, the proper rotations and
shift, on 32 bits, are applied and then the results are Xor-ed. The
implementation is showed in Figure 5.31.

44

Scalar Cryptography Extension

Figure 5.31: Sha256sig0 implementation

5.2.9 Sha256sig1
The Sha512sig1 implements the Sigma1 transformation function(5.6),
as used in the SHA2-256 hash function.

ROR(rs1, 17) ⊕ ROR(rs1, 19) ⊕ SRL(rs1, 10) (5.12)

The process involves taking the 32-bit source register rs1, applying
the necessary rotations and shifts, on 32 bits, and then combining the
results using the XOR operation. The implementation is the same as
the previous one, and It is showed in Figure 5.32.

Figure 5.32: Sha256sig1 implementation

45

Scalar Cryptography Extension

5.2.10 Sha256sum0

The Sha512sum0 implements the Sum0 transformation function(5.3),
as used in the SHA2-256 hash function.

ROR(rs1, 2) ⊕ ROR(rs1, 13) ⊕ ROR(rs1, 22) (5.13)

The process involves taking the 32-bit source register rs1, applying the
necessary rotations, on 32 bits, and then combining the results using
the XOR operation. The implementation is showed in Figure 5.33.

Figure 5.33: Sha256sum0 implementation

5.2.11 Sha256sum1

The Sha512sum0 implements the Sum1 transformation function as used
in the SHA2-256 hash logical function 5.4.

ROR(rs1, 6) ⊕ ROR(rs1, 11) ⊕ ROR(rs1, 25) (5.14)

The process involves taking the 32-bit source register rs1, applying the
necessary rotations, on 32 bits, and then combining the results using
the XOR operation. The implementation is showed in Figure 5.34.

46

Scalar Cryptography Extension

Figure 5.34: Sha256sum1 implementation

5.2.12 Sha256

All the Sha256 intructions have been implemented in a single path
to have an efficient hardware implementation. As all the instructions
are based on shifters, the main structure is always based on them.
To ensure the proper execution of rotations and shifts, two signals
have been introduced to guide each shifter in making the appropriate
operation. The signals are:

• cmd : This 1-bit signal is used to know if the instruction concerns
the sigma function or the sum function.

• n : This 1-bit signal is used to know if the function selected by the
cmd signal refers to the 0 function or the 1 function.

So the process always involves taking the 32-bit register rs1, applying
the 32-bit rotations or shifts, depending on cmd and n, and then
combining the results using the XOR operation. The implementation
is showed in Figure 5.35.

47

Scalar Cryptography Extension

Figure 5.35: Sha256 implementation

5.2.13 Sha512sig0h

The sha512sig0h instruction implements the high half of the Sigma0
transformation within the SHA-512 hash function, while the sha512sig0l
instruction complements this by executing the other part of the Sigma0
function. These instructions work together to implement the complete
Sigma0 function (5.9).

SRL(rs1, 1)⊕SRL(rs1, 7)⊕SRL(rs1, 8)⊕SLL(rs2, 31)⊕SLL(rs2, 24) (5.15)

As previously mentioned, since the instruction is designed for a 64-bit
operation within a 32-bit architecture, it requires the use of two 32-bit
registers. This function executes various shifts to obtain the accurate
result for the high half of the Sigma 0 function. Both registers are used
because the specified shifts may involve the movement of bits from the
low part of rs2 (a0) to the high part of rs1 (a1). The implementation is
showed in Figure 5.36.

48

Scalar Cryptography Extension

Figure 5.36: Sha512sig0h implementation

5.2.14 Sha512sig0l

The sha512sig0l instruction implements the low half of the Sigma0
transformation within the SHA2-512 hash function, and as said before,
it works with the sha512sig0h to perform the Sigma0 function (5.9).

SRL(rs1, 1) ⊕ SRL(rs1, 7) ⊕ SRL(rs1, 8) ⊕ SLL(rs2, 31) ⊕ SLL(rs2, 25) ⊕ SLL(rs2, 24) (5.16)

Also in this case, since the instruction is designed for a 64-bit operation
within a 32-bit architecture, two 32-bit registers are used. This function
executes various shifts to obtain the accurate result for the low half
of the Sigma0 function. Both registers are used because the specified
shifts may involve the movement of bits from the high part of rs2 (a1)
to the low part of rs1 (a0). The implementation is showed in Figure
5.37.

49

Scalar Cryptography Extension

Figure 5.37: Sha512sig0l implementation

5.2.15 Sha512sig1h
The sha512sig1h instruction implements the high half of the Sigma1
transformation within the SHA-512 hash function, while the sha512sig1l
instruction complements this by executing the other part of the Sigma1
function. These instructions work together to implement the complete
Sigma0 function (5.10).

SLL(rs1, 3)⊕SRL(rs1, 6)⊕SRL(rs1, 19)⊕SRL(rs2, 29)⊕SLL(rs2, 13) (5.17)

As previously mentioned, since the instruction is designed for a 64-bit
operation within a 32-bit architecture, it requires the use of two 32-bit

50

Scalar Cryptography Extension

registers. This function executes various shifts to obtain the accurate
result for the high half of the Sigma 1 function. Both registers are used
because the specified shifts may involve the movement of bits from the
low part of rs2 (a0) to the high part of rs1 (a1). The implementation is
showed in Figure 5.38.

Figure 5.38: Sha512sig1h implementation

5.2.16 Sha512sig1l
The sha512sig1l instruction implements the low half of the Sigma1
transformation within the SHA2-512 hash function, and as said before,
it works with the sha512sig1h to perform the Sigma1 function (5.10).

SLL(rs1, 3) ⊕ SRL(rs1, 6) ⊕ SRL(rs1, 19) ⊕ SRL(rs2, 29) ⊕ SLL(rs2, 26) ⊕ SLL(rs2, 13) (5.18)

Also in this case, since the instruction is designed for a 64-bit operation
within a 32-bit architecture, two 32-bit registers are used. This function
executes various shifts to obtain the accurate result for the low half

51

Scalar Cryptography Extension

of the Sigma1 function. Both registers are used because the specified
shifts may involve the movement of bits from the high part of rs2 (a1)
to the low part of rs1 (a0). The implementation is showed in Figure
5.39.

Figure 5.39: Sha512sig1l implementation

5.2.17 Sha512sum0r
The sha512sum0r instruction implements the Sum0 transformation
within the SHA2-512 hash function, and as said in the specifications, it
is repeated two times to implement the Sum0 function (5.7).

SLL(rs1, 25) ⊕ SLL(rs1, 30) ⊕ SRL(rs1, 28) ⊕ SRL(rs2, 7) ⊕ SRL(rs2, 2) ⊕ SLL(rs2, 4) (5.19)

Also in this case, since the instruction is designed for a 64-bit operation
within a 32-bit architecture, two 32-bit registers are used. This function
executes various shifts to obtain the accurate result considering that
the instruction is called two times. The two registers are inverted to

52

Scalar Cryptography Extension

imply a rotation by 32 bits. The implementation is showed in Figure
5.40.

Figure 5.40: Sha512sum0r implementation

5.2.18 Sha512sum1r
The sha512sum0r instruction implements the Sum1 transformation
within the SHA2-512 hash function, and as said in the specifications, it
is repeated two times to implement the Sum1 function (5.8).

SLL(rs1, 23) ⊕ SRL(rs1, 14) ⊕ SRL(rs1, 18) ⊕ SRL(rs2, 9) ⊕ SLL(rs2, 18) ⊕ SLL(rs2, 14) (5.20)

Also in this case, since the instruction is designed for a 64-bit operation
within a 32-bit architecture, two 32-bit registers are used. This function

53

Scalar Cryptography Extension

executes various shifts to obtain the accurate result considering that
the instruction is called two times. The two registers are inverted to
imply a rotation by 32 bits. The implementation is showed in Figure
5.41.

Figure 5.41: Sha512sum1r implementation

5.2.19 Sha512
All the Sha512 intructions have been implemented in a single path
to have an efficient hardware implementation. As all the instructions
are based on shifters, the main structure is always based on them. To
ensure the proper execution of shifts, three signals have been introduced
to guide each shifter in making the appropriate operation. The signals
are:

54

Scalar Cryptography Extension

• l : This 2-bit signal is used to know if the instruction concerns the
high half or the low half. It is also used to know if It is a sum.

• f : This 1-bit signal is used to know which function has to be
implemented. So if It is a Sigma o a Sum function.

• n : This 1-bit signal is used to know if the function selected by the
f signal refers to the 0 function or the 1 function.

To be even more efficient, a tree of XOR has been implemented to not
have a big XOR with 6 inputs and 1 output. So the process always
involves taking the 2 32-bit registers rs1 and rs2, applying the 32-bit
shifts, depending on f, l and n, and then combining the results using
the XOR tree. The implementation is showed in Figure 5.42.

Figure 5.42: Sha512 implementation

5.2.20 aes32esi
The aes32esi instruction selects one of the 4 bytes from the rs2 register
based on the 2-bit bs value. It then applies the forward AES SBOX
transformation (SubBytes) to the selected byte, saves the byte back to
its original position, and sets the remaining bits to zero (ShiftRows).
Subsequently, the outcome is rotated left by bs values and XORed

55

Scalar Cryptography Extension

with the contents of the rs1 register (AddRoundKey) and stored in the
destination register rd. The implementation is showed in Figure 5.43.

Figure 5.43: aes32esi implementation

Forward Sbox - SubBytes

The AES substitution permutation network architecture utilizes the
irreducible polynomial x8 + x4 + x3 + x + 1. This polynomial provides
non-linear permutations for the cipher, and the AES S-Box is based
on a non-linear boolean function that replaces an element of a finite
field with its modular multiplicative inverse, denoted as x → (x−1)
in GF(28). The S-Box in AES has two modes of operation: SubByte
and InvSubByte, making it invertible. The original AES specification
defines the S-Box as the multiplicative inverse in the field GF(28),
followed by an affine transformation showed in Figure 5.44.

56

Scalar Cryptography Extension

Figure 5.44: Forward AES Affine Transformation

The software approach often involves using a lookup table (Appendix
D), but in this case, the implementation follows the Boyar-Peralta
method [25]. Since AES operations are based on XOR and AND
operations, which are equivalent to addition and multiplication in GF(2),
circuits for cryptographic functions often use this basis. In GF(2),
negation corresponds to x + 1, but for accurate gate-count, XNOR
gates are used instead of negation. The circuits implemented by Boyar-
Peralta are divided into three components: top linear transformations,
shared non-linear component, and bottom linear transformations. The
S-Box expands an 8-bit input to 21 bits in a linear inner layer (top
layer), utilizes the shared nonlinear 21-to-18 bit mapping as a middle
layer, and compresses 18 bits back to 8 bits in the outer layer (bottom
layer). XOR and XNOR gates are considered "linear", while the shared
nonlinear layer consists of XOR and AND gates only [25][24]. The new
circuits have a depth of 16, with a size of 128 gates, and the shared
component between the forward and inverse directions is of size 63.
The Table 5.1 summarizes the algebraic gates count.

5.2.21 aes32esmi
The aes32esmi instruction operates by selecting one of the 4 bytes from
the rs2 register based on the 2-bit bs value. It then applies the forward
AES SBOX transformation. Additionally, the outcome is multiplied by

57

Scalar Cryptography Extension

Component In/Out XOR XNOR AND Total
Shared middle 21 → 18 30 - 34 64

Forward AES top 8 → 21 26 - - 26
Forward AES bottom 18 → 8 34 4 - 38

Table 5.1: Boyar-Peralta algebraic gate counts Forward Sbox [24]

a column of the forward AES MixColumns matrix (Partial MixColumn).
Finally, the bytes are rotated left according to bs, XORed with the
contents of the rs1 register, and stored in the destination register RD.
The implementation is showed in Figure 5.45.

Figure 5.45: aes32esmi implementation

58

Scalar Cryptography Extension

Forward Partial MixColumns

The MixColumn function is a linear algebra operation and serves as the
primary source of diffusion in AES. In this operation, each column of
bytes is treated as a four-term polynomial b(x) = b3x

3 + b2x
2 + b1x + b0,

where each byte represents an element in the Galois Field GF(28).
The coefficients are elements within the prime sub-field GF(2). Each
column is multiplied with the fixed polynomial a(x) = 3x3 + x2 + x + 2
modulo x4 + 1, the modulo operation is performed to ensuring that the
result stays within the field. The matrix representation is di = S × bi,
showed in Figure 5.46, where i is the column index for matrices d, b.
The matrix S is a fixed coefficient matrix specific to the MixColumns
operations.

Figure 5.46: Forward MixColumns Matrix Representation

The vector-matrix multiplication forms the MixColumns operations
as shown in Figure 5.47. It is important to note that each byte di and
bi is an 8-bit value representing an element from GF(28). The additions
in the vector–matrix multiplication are GF(28) additions, involving
simple bitwise XORs of the respective bytes. For the multiplication of
the constants, the multiplications with the constants 01, 02 and 03 are
explained below:

• Multiplying by 0x01 changes nothing, it is a multiplication by the
identity element.

• Multiplying by 0x02 is equivalent to shifting all the digits of the
byte by 1 position to the left (this is equivalent to multiplying the

59

Scalar Cryptography Extension

corresponding polynomial by 21). In this case, it is possible that
the result is out of the GF(28). To obtain a polynomial of degree
8, it is necessary to reduce by the characteristic polynomial of the
AES x8 + x4 + x3 + x + 1 which results in 9 bits represented as
0x11b in hexadecimal (0x1b as the values are on 8 bits).

• Multiplication by 0x03 corresponds to multiplication by 0x02, fol-
lowed by addition of the original value (XOR operation in GF(28).

Since the instruction works on a 8-bit input with a 32-bit output,
the implementation of the Partial MixColumns is focused on the first
column of the MixColumns operations shown in Figure 5.47. So the
Partial Mixcolumns performs the function on only the 8-bit b0 input.

Figure 5.47: Forward MixColumns Operations

5.2.22 aes32dsi

The aes32dsi instruction selects one of the 4 bytes from the rs2 reg-
ister based on the 2-bit bs value. It then applies the inverse AES
SBOX transformation (Inverse SubBytes) to the selected byte, saves
the byte back to its original position, and sets the remaining bits to
zero (ShiftRows). Subsequently, the outcome is rotated left by bs values
and XORed with the contents of the rs1 register (AddRoundKey) and
stored in the destination register rd. The implementation is showed in
Figure 5.48.

60

Scalar Cryptography Extension

Figure 5.48: aes32dsi implementation

Inverse Sbox - Inverse SubBytes

Since the AES S-Box is invertible, It is possible to construct an inverse
S-Box. So the inverse S-box is simply the Forward S-box reversed. It
is calculated by first calculating the inverse affine transformation, in
Figure 5.49, of the input value, followed by the multiplicative inverse.

61

Scalar Cryptography Extension

Figure 5.49: Inverse AES Affine Transformation

The software approach, as in the forward case, often involves using
a lookup table (Appendix D), but, also for the inverse Sbox, the
implementation follows the Boyar-Peralta method [25]. The circuits
implemented by Boyar-Peralta are divided into three components: top
linear transformations, shared non-linear component, and bottom linear
transformations. The S-Box expands an 8-bit input to 21 bits in a
linear inner layer (top layer), utilizes the shared nonlinear 21-to-18 bit
mapping as a middle layer, and compresses 18 bits back to 8 bits in
the outer layer (bottom layer). XOR and XNOR gates are considered
"linear", while the shared nonlinear layer consists of XOR and AND
gates only [25][24]. The new circuits have a depth of 16, with a size of
127 gates, and the shared component between the forward and inverse
directions is of size 63. The Table 5.2 summarizes the algebraic gates
count.

Component In/Out XOR XNOR AND Total
Shared middle 21 → 18 30 - 34 64

Inverse AES top 8 → 21 16 10 - 26
Inverse AES bottom 18 → 8 37 - - 37

Table 5.2: Boyar-Peralta algebraic gate counts Inverse Sbox [24]

62

Scalar Cryptography Extension

5.2.23 aes32dsmi

The aes32dsmi instruction operates by selecting one of the 4 bytes from
the rs2 register based on the 2-bit bs value. It then applies the inverse
AES SBOX transformation. Additionally, the outcome is multiplied by
a column of the inverse AES MixColumns matrix (Partial MixColumns).
Finally, the bytes are rotated left according to bs, XORed with the
contents of the rs1 register, and stored in the destination register RD.
The implementation is showed in Figure 5.50.

Figure 5.50: aes32dsmi implementation

63

Scalar Cryptography Extension

Inverse Partial MixColumns

The Inverse MixColumns is implemented reversing the Forward Mix-
Columns and following the same rules. In this case each column is
multiplied with the fixed polynomial a−1(x) = 11x3 + 13x2 + 9x + 14.
The matrix representation is bi = C ×di, showed in Figure 5.51, where i
is the column index for matrices d, b. The matrix C is a fixed coefficient
matrix specific to the MixColumn operations.

Figure 5.51: Inverse MixColumns Matrix Representation

The vector-matrix multiplication forms the MixColumns operations
as shown in Figure 5.52. The additions in the vector–matrix multi-
plication are GF(28) additions, involving simple bitwise XORs of the
respective bytes. For the multiplication of the constants, the multipli-
cations with the constants 14, 9, 13 and 11 are explained below. For
each multiplication (shift) performed, there is always a check to ensure
that the resulting polynomial does not exceed the maximum degree of
8.

• Multiplying by 14 (0x0E) is equivalent to shift the initial byte by
one position to the left, followed by a XOR with the initial byte
shifted by 2 positions. Then, this result has to be XOR-ed with
the initial byte shifted by 3 positions to the left.

• Multiplying by 9 (0x09) is equivalent to shift the initial byte by 3
position to the left, followed by a XOR with the initial byte.

• Multiplying by 13 (0x0D) is equivalent to shift the initial byte by 2
position to the left, followed by a XOR with the initial byte. Then,

64

Scalar Cryptography Extension

this result has to be XOR-ed with the initial byte shifted by 3
positions to the left.

• Multiplying by 11 (0x0B) is equivalent to shift the initial byte by
one position to the left, followed by a XOR with the initial byte.
Then, this result has to be XOR-ed with the initial byte shifted by
3 positions to the left.

As before since the instruction works on a 8-bit input with a 32-bit
output, the implementation of the Partial MixColumns is focused on
the first column of the MixColumns operations shown in Figure 5.52.
So the Partial Mixcolumns performs the function on only the 8-bit d0
input.

Figure 5.52: Inverse MixColumns Operations

5.2.24 aes32
All the SHA-512 instructions have been implemented into a single path
to achieve an efficient hardware implementation. Given the similarity
in structure among these instructions, this unified structure has been
maintained, with the addition of two signals to facilitate the execution
of the required instruction.

• box : This 1-bit signal is utilized to determine whether the instruc-
tion relates to an encryption or decryption process. So if the SBox
and Partial Mixcolumn are forward or inverse.

• mix : This 1-bit signal is used to determine whether the instruction
relates to a final or middle round. So if the Partial Mixcolumn
output has to be taken into account.

65

Scalar Cryptography Extension

The implementation is showed in Figure 5.53.

Figure 5.53: aes32 implementation

66

Chapter 6

Other Processor Crypto
Extension
This chapter will explore how the Advanced Encryption Standard (AES)
and Secure Hash Algorithm (SHA) are organized and implemented in
processors from industry-leading companies such as Intel and ARM.
Both Intel and ARM cryptographic ISAs utilize 128-bit SIMD registers,
which may not be available on lower-end CPUs. While both Intel and
ARM processors provide cryptographic instructions and features that
can be leveraged on 32-bit architectures, the use of 128-bit SIMD regis-
ters is a common practice in modern cryptographic implementations.
This practice aims to enhance performance, particularly for intricate
cryptographic algorithms such as AES (Advanced Encryption Stan-
dard), which can leverage the parallel processing capabilities offered by
wider registers. This overview is given to compare the RISC-V Crypto
Extension with other processor implementations.

6.1 Intel Processors

Intel processors are designed to deliver efficient encryption, decryp-
tion and hashing functionalities. The AES and SHA instructions are
supported into the Intel 64 and IA-32 instructions.

67

Other Processor Crypto Extension

AES-NI Instructions

Intel AES-NI provides six instructions designed to accelerate symmetric
block encryption/decryption using the Advanced Encryption Standard
(AES) [26] [16]. These instructions target different stages of the AES
encryption and decryption processes:

• AESENC and AESENCLAST: Target AES encryption rounds.

• AESDEC and AESDECLAST: Target AES decryption rounds
using the Equivalent Inverse Cipher.

• AESIMC: Targets the Inverse MixColumn transformation primi-
tive.

• AESKEYGEN: Targets the generation of round keys from the
cipher key for AES encryption/decryption rounds.

The cryptography processing involves the following functions and trans-
formations:

• MixColumns(): A byte-oriented 4x4 matrix transformation on the
matrix representation of a 128-bit AES state.

• RotWord(): Performs a byte-wise cyclic permutation (rotate right
in little-endian byte order) on a 32-bit AES word.

• ShiftRows(): A byte-oriented matrix transformation that cyclically
shifts the last three rows of the state by different offsets to the left.

• SubBytes(): Applies a non-linear substitution table (S-BOX) on
each byte of the 128-bit AES state.

• SubWord(): Produces an output AES word (four bytes) from the
input word using a non-linear substitution table (S-BOX).

• InvMixColumns(): The inverse transformation of MixColumns().

• InvShiftRows(): The inverse transformation of ShiftRows(), cycli-
cally shifting the last three rows of the state by different offsets to
the right.

68

Other Processor Crypto Extension

• InvSubBytes(): The inverse transformation of SubBytes().

SHA-NI Instructions

SHA extensions provide a set of instructions that target the acceleration
of the Secure Hash Algorithm (SHA), specifically the SHA-1 and SHA-
256 variants. The SHA-512 is not supported as stand alone instructions
[27].

• SHA1MSG1: Perform an intermediate calculation for the next
four SHA1 message dwords from the previous message dwords.

• SHA1MSG2: Perform the final calculation for the next four SHA1
message dwords from the intermediate message dwords.

• SHA1NEXTE: Calculate SHA1 state E after four rounds.

• SHA1RNDS4: Perform four rounds of SHA1 operations.

• SHA256MSG1: Perform an intermediate calculation for the next
four SHA256 message dwords.

• SHA256MSG2: Perform the final calculation for the next four
SHA256 message dwords.

• SHA256RNDS2: Perform two rounds of SHA256 operations.

6.2 Arm Processors
Armv8-A architecture extension provides the AES instructions to sup-
port AES encryption and decryption, SHA-1 and SHA-256 instructions.
The SHA-512 has been implemented in the Armv8.2.

AES Instructions

AES-128 is implemented through 2 instructions for the encryption and
2 instructions for the decryption [28] [16].

69

Other Processor Crypto Extension

• AESE : Perform a single round of the AddRoundKey(), SubBytes(),
and ShiftRows() transformations.

• AESMC : Perform a single round of the MixColumns() transfor-
mation.

• AESD : Perform a single round of the AddRoundKey(), InvSub-
Bytes(), and InvShiftRows() transformations.

• AESMC : Perform a single round of the InvMixColumns() trans-
formation.

SHA Instructions

The ARM crypto extension includes a set of specialized instructions for
accelerating SHA-1, SHA-256, and SHA-512 hashing operations [28].

• SHA1C: SHA1 hash update (choose).

• SHA1H: SHA1 fixed rotate.

• SHA1M: SHA1 hash update (majority).

• SHA1P: SHA1 hash update (parity).

• SHA1SU0: SHA1 schedule update 0.

• SHA1SU1: SHA1 schedule update 1

• SHA256H: SHA256 hash update (part 2).

• SHA256H2: SHA256 hash update (part 1).

• SHA256SU0: SHA256 schedule update 0.

• SHA256SU1: SHA256 schedule update 1.

• SHA512H: SHA512 Hash update part combines the sigma1 and
chi functions of two iterations of the SHA512 computation.

70

Other Processor Crypto Extension

• SHA512H2: SHA512 Hash update part 2 combines the sigma0 and
majority functions of two iterations of the SHA512 computation.

• SHA512SU0: SHA512 Schedule Update 0 combines the gamma0
functions of two iterations of the SHA512 schedule update that are
performed after the first 16 iterations within a block.

• SHA512SU1: SHA512 Schedule Update 1 combines the gamma1
functions of two iterations of the SHA512 schedule update that are
performed after the first 16 iterations within a block.

71

Chapter 7

Simulation and Formal
Verification
Dynamic verification involves testing the Scalar crypto extension
implementation by executing it with various inputs to observe its
behavior. This process aims to validate the functionality and correctness
of the design through simulation and hardware testing. Key aspects of
dynamic verification include:

• Test Bench: Developing comprehensive test benches to verify the
functionality and performance through simulation and emulation.

• Compliance Test Suite: Creating a test suite that ensures the design
complies with industry standards and specifications.

• Self-Checked Random Tests: Implementing self-checking mech-
anisms and random tests to validate the design under various
scenarios and inputs.

• Applications: Testing the design in real-world applications to assess
its practical usability and effectiveness.

• Certitude Qualification: Qualifying the design for certitude by
ensuring its reliability, security, and compliance with standards and
requirements.

72

Simulation and Formal Verification

The git repository of the verification team contains C tests called
“sanity” for dynamic verification and files in tcl or verilog format contain
assertions or conditions for formal proofs. Locally, you can launch a
set of sanity tests from the Poker, the verification cockpit, interface
and monitor failed or passed tests. Poker shows, in the case of a failed
test, the error message which makes debugging easier. You can then
launch the test with the ASIP commands and consult the Log files
which contain more detailed information about execution and errors.
The test is based on multiple executions:

• Native gcc Compilation and Simulation: Native execution with
GCC refers to compiling and running a program directly on the
host machine’s.

• Compilation with Chess:

– CAS Simulation: The cycle-accurate simulation (CAS) provides
a detailed view of the hardware design’s behavior at the cycle
level.

– RTL Simulation: The RTL simulator is used to simulate and
verify the functionality of a hardware design described at the
register-transfer level.

The traces given by the three different simulations are compared to
validate the processor’s behavior or to identify any discrepancies. The
organization of the execution of the test is showed in Figure 7.1.

73

Simulation and Formal Verification

Figure 7.1: Test Flow

For observing the signals of the simulation, the unified graphical
debugging environment for Cadence simulator Simvision, in Figure 7.2,
tool is able to point to the Verilog code and observe the microarchi-
tecture produced. To debug from the C code of the test, we can use
ChessDE (from Synopsis), in Figure 7.3, which allows to set break
points at each instruction, to observe the code Assembler produces, the
state of registers, memory and pipeline.

Figure 7.2: SimVision Debug Environment

74

Simulation and Formal Verification

Figure 7.3: ChessDE’s Graphical Debugger

Formal verification is part of the verification flow and It involves
mathematically proving the correctness of the Scalar crypto extension
design using formal methods and tools. This approach provides rigorous
verification by exhaustively analyzing the design’s behavior against
specified (expressed as SystemVerilog Assertion (SVA)) properties. Key
aspects of formal verification for the Scalar crypto extension include:

• Lint, RTL Static Signoff: Performing linting and static signoff
checks to identify and rectify design issues at the RTL level before
further verification.

• Standard Protocols: Verifying standard protocols to ensure inter-
operability and compliance.

75

Simulation and Formal Verification

• Properties: Defining formal properties and constraints to be veri-
fied using formal methods to ensure correctness and adherence to
specifications.

• Coverage Unreachability: Analyzing coverage to identify unreach-
able code and ensure that all parts of the design are exercised
during verification. The coverage is measured in two different ways:

– Functional Coverage: It is used to measure the completeness
of testing based on the functionality specified in the design
specification. The Figure 7.4 shows a possible result.

Figure 7.4: Functional Coverage Analysis

– RTL coverage: It focuses on verifying the coverage of the design
at the register transfer level to ensure that the RTL code has
been exhaustively exercised during simulation. The Figure 7.5
shows a possible result.

Figure 7.5: RTL Coverage Analysis

• X Propagation: Addressing X propagation issues to eliminate

76

Simulation and Formal Verification

unknown states in the design and ensure deterministic behavior
during operation.

The Jasper tool allows it to turn formal proofs and observe failed
properties. The CAD Tools used for Simulation&Fornal Verification
are summarised in Table 7.1.

Synopsys Cadence

ASIP Designer (ChessDE) Xcelium Logic Simulator
Design Compiler SimVision Debug Environment
RTLArchitect Jasper

Table 7.1: CAD Tools

77

Chapter 8

Synthesis

The synthesis is run through Fekit that means FrontEnd Kit, and this
is a set of tools (linter, synthesis, DFT insertion, ATPG generation,...)
that has been developed by ST to have a consistent way to use ST
Libraries. Among those different tools, the synthesis tool rely on
Synopsys Synthesis tool (dc_shell) to convert RTL code into optimized
gate level representation (netlist) using a 40 nm technology given
a standard cell library (ST library CMOS40LP) and certain design
constraints (Frequency at 100 MHz). The synthesis flow is showed in
Figure 8.1.

78

Synthesis

Figure 8.1: Synthesis Flow

8.1 Area Analysis
The main focus on the synthesis outputs is the area report, which lists
the units of the processor in terms of area. The area is provided in
micrometers (µm) but more importantly in the number of gates. The
number of gates is a metric that consists in expressing the area of the
processor in the amount of the selected reference gate. The reference
gate chosen is the NAND2X2 gate with area 0.6804 µm2. The area of the
Arithmetic Logic Unit (ALU) is the main focus to analyze the impact
of the extensions since all the instructions are directly implemented
there. The baseline area, representing the ALU without the extensions,
is set at 3.1 kilogates (kGates). By analyzing the area reports and
specifically focusing on the ALU area to make comparison, the impact
of the extensions on the overall design complexity and gate count can
be evaluated.

79

Synthesis

Zbkb

The Zbkb extension has a minor impact on the ALU area, resulting
in an increase of 0.1 kGates. Due to the small increase, no significant
optimizations are necessary.

1 2 3

3

3.1

3.2

3.3

3.4

Baseline

(2, 3.2)

Version

A
LU

kG
at

es

Figure 8.2: Zbkb Area Analysis

Zbkx

The Zbkx extension impacts with an increase in area of 0.5 kGates. In
this scenario, different implementations have been tried, following three
different principles:

• Shift : Using shift operator, the correct byte or nibble of rs1 was
taken and put in the correct position of rd.

• One function : Trying to implement the two instructions in one
function, always using shift operator.

• Hardwired: Directly by hand the two registers have been divided

80

Synthesis

in bytes or nibbles and with a switch-case on rs2, the correct byte
or nibble of rs1 is put in the correct position of rd.

The Hardwired principle is the most optimized approach and therefore,
it is the one selected as seen in Figure 5.29 and in Figure 5.30.

1 2 3 4 5 6 73
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3

(5, 3.6)

Baseline

Version

A
LU

kG
at

es

Figure 8.3: Zbkx Area Analysis

Zknh

The Zknh extension results in an increase in area of 1.0 kGates. In the
first versions were based on one function for each instruction, leading
to a significant increase in area. Subsequently, two functions were
created for sha256 and sha512, respectively. Initially, the functions
were written by shifting the operator and XORing with the previous
one, using also operations already used in other instructions. Then, in
the chosen implementation, all operators are prepared first, followed by
the XOR-tree operation. This approach has been adopted to optimize

81

Synthesis

the area efficiently as it is shown in Figure 5.35 and in Figure 5.42. It is
important to note that all shifts are constant shifts, avoiding the need
for a barrel shifter and using simple XORs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 163
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5

(14, 4.1)

Baseline

Version

A
LU

kG
at

es

Figure 8.4: Zknh Area Analysis

Zkne+Zknd

The Zkne extension and the Zknd extension were implemented initially
with one function for each instruction resulting, as before, in a significant
increase of area. Then, a single main function has been implemented
to perform all the different steps as shown in Figure 5.53. To make a
comparison also a hardware implementation of the look-up table was
also done, resulting in the maximum observed increase in area. The
two extensions can be also implemented alone if needed. In this case

82

Synthesis

the impact is equal to +0.7 kGates for each extension.

1 2 3 4 5 6 7 8 9 10 11 123
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5

(11, 4.2)

Baseline

Version

A
LU

kG
at

es

Figure 8.5: Zkne+Zknd Area Analysis

A key consideration was the handling of the immediate value bs for
the ALU. Two approaches were considered:

• DOF stage approach: the value bs is taken in DOF and driven in
EXE stage through a register. This approach may offer a timing
advantage but could potentially lead to increased area usage.

• EXE stage approach: the value bs is taken directly in EXE since
the encoding of the instruction is pipelined. While this approach
may have a timing disadvantage, it could offer benefits in terms of
area efficiency.

83

Synthesis

Given that the addition of a 2-bit register has minimal impact on
the processor’s area, the solution of taking bs in the DOF stage has
been chosen.

84

Chapter 9

Benchmarks

In this chapter, the performance evaluation of two algorithms will be
presented. The analysis will cover both software and hardware im-
plementations. The software implementation utilizes only the base
instruction set, while the hardware implementation uses the base in-
struction set and also a subset of cryptography instructions. The
algorithms are the AES algorithm and the SHA-256 algorithm.

9.1 AES algorithm

The AES-128 algorithm has been run starting form a specific benchmark
taken from Embech open source benchmark suite [29]. The code is
based on 3 main parts:

• 2 main functions:

– _nettle_aes_encrypt : Function to perform the Encryption.
It is composed of a main loop that performs all the middle
rounds and the final round. In addition there is key management
and the results is stored. Figure 9.1 shows how it works.

85

Benchmarks

Figure 9.1: Encryption Function

– _nettle_aes_decrypt : Function to perform the Decryption.
It is based on the same structure of the encrypt function and
so main loop (middle rounds) plus a final round. As before,
there is key management and the results is stored Figure 9.2
shows how it works.

86

Benchmarks

Figure 9.2: Decryption Function

• Macros : They have been instantiated to perform the algorithm
through SW implementation (RV32E) or HW implementation
(RV32E+zknd+zkne). The Figure 9.3 shows how the macros has
been implemented.

– SW implementation: performs the layers of a round directly
through precomputed look-up tables (T-Tables) with 256 en-
tries of 32 bits (Appendix D) for the middle rounds and one
precomputed table with 256 entries of 8 bits for the final round
(Sbox of Appendix D).

87

Benchmarks

– HW implementation: uses the zknd and zkne instructions,
specified in chapter 6. The correct instruction is run 4 times for
each call of the macro. So to run a full round, the instruction
is performed 16 times.

Figure 9.3: Macros for AES algorithm

• ACCEL flag: This flag is used, as the Figure 9.3 shows, to choose
between the SW implementation or the HW implementation.

Results

The code has been organized to be compiled by the STxP5 Compiler,
enabling it to run directly on the processor. Subsequently, the code
was executed twice: first with the software (SW) and then with the
hardware (HW) implementation. The assembly code regarding the
loop of the middle rounds and the final round, without the assembly
of full function, are shown in Figure 9.4 and in Figure 9.5 to make
comparisons. The results obtained are shown in Table 9.1.

88

Benchmarks

Software

• T-Tables: ∼8 kBytes of memory to be stored

• RV32E instructions

Hardware

• Reduced code size (0.5x than T-tables)

• No T-Tables: 0.0x Data Memory

• 4x faster than T-tables in full function

• 5x faster than T-tables in middle and final
rounds

• +1.1 kGates in ALU Area

Table 9.1: Comparison of SW and HW Implementations for AES-128

89

Benchmarks

Figure 9.4: Assembly code of SW implementation

90

Benchmarks

Figure 9.5: Assembly code of HW implementation

9.2 SHA-256 algorithm
As for the AES-128, the SHA-256 algorithm has been run starting form
a specific benchmark taken from Embech open source benchmark suite
[29]. The code is based on 3 main parts:

• 1 main function:

– _nettle_sha256_compress: Function that performs the calcu-
lations of the algorithm shown in Appendix C. Figure 9.6 shows
how it works.

91

Benchmarks

Figure 9.6: SHA-256 main function

• Macros : They have been instantiated to perform the algorithm
through SW implementation (RV32E) or HW implementation
(RV32E+zknh). The Figure 9.7 shows how the macros has been
implemented.

– SW implementation: performs the Sigma0, Sigma1, Sum0 and

92

Benchmarks

Sum1 functions directly with the formulas written in the speci-
fications of the algorithm [10].

– HW implementation: performs the Sigma0, Sigma1, Sum0 and
Sum1 functions through the instructions of zknh extension
specified in chapter 6.

Figure 9.7: Macros for SHA algorithm

• ACCEL flag: This flag is used, as the Figure 9.7 shows, to choose
between the SW implementation or the HW implementation.

Results

The code has been organized to be compiled by the STxP5 Compiler,
enabling it to run directly on the processor. Subsequently, the code
was executed twice: first with the software (SW) implementation, the

93

Benchmarks

assembly code of a function is shown in Figure 9.9, and then with the
hardware (HW) implementation, the assembly code of a function is
shown in Figure 9.8, to makes some comparisons. The results obtained
are shown in Table 9.2.

Software

• RV32E: the formulas have to be performed
with simple instructions.

Hardware

• Reduced code size (0.5x than SW)

• 2x faster than T-tables

• +1.0 kGates in ALU Area

Table 9.2: Comparison of SW and HW Implementations for SHA-256

Figure 9.8: Assembly of a function in SHA-256 Algorithm (HW)

94

Benchmarks

Figure 9.9: Assembly of a function in SHA-256 Algorithm (SW)

95

Chapter 10

Conclusions and Future
Works

To sum up the thesis work, the Scalar Cryptography Extension has
been implemented to bring some improvements to specific algorithms
while minimizing the impact of the extensions on the processor’s area.
Table 10.1 summarizes the results obtained. The results are consistent
with the expected outcomes specified in the Background chapter 2.2.
Overall, with all the extensions implemented, there is an increase of
+2.4 kG in the ALU area. The decoder and controller are not considered
because there is not an important impact on them. So since the full
implementation of the processors is 38.7 kG, the total increase of area
due to the extensions is equal to the 6% respect to the total area. In
this scenario, several future works that can be undertaken. Firstly,
benchmarking on SHA-512 to evaluate the performance of the remaining
part of the extension zknh that has not been performed. Secondly,
each extension could be run with a benchmark to evaluate the type
of improvement It can bring to the processor. Thirdly, there could be
other optimizations to be done both on the instructions side and on
the compiler side.

96

Conclusions and Future Works

Extension Instructions Alu Area Benchmark
Baseline RV32E 3.1 kGates

• RV32E instructions

• T-Tables for AES-128
algorithm

Zbkb +5 +0.1 kG
Zbkx +2 +0.5 kG
Zknh +10 +1.0 kG For SHA-256:

• 0.5x code size

• 2x faster

Zknd +2 +0.7 kG
Zkne +2 +0.7 kG
Zknd+Zkne +4 +1.1 kG For AES-128:

• 0.5x code size

• 4x faster

• 5x faster than T-tables
in middle and final
rounds

• 0.0x Data Memory

All Crypto +21 +2.4 kG

Table 10.1: Results

97

Appendix A

nML & pdg
implementation
An example of how instructions are implemented with nML and pdg is
shown below:

nML

1 enum funct10_rrr_zbkx{
2 xperm8 = 0b0010100100 ,
3 xperm4 = 0b0010100010
4 } ;
5

6 opn zbkx_rrr_instr (op : funct10_rrr_zbkx , rd : eX , r s1 : eX ,
r s2 : eX)

7 {
8 LLVM(i s a = base ; c l a s s = compute ;)
9 ac t i on {

10 s tage DOF:
11 ill_opc_DOF = 0 ;
12 pEX_op1_q = DOF_op1 = r1 = X[r s1] ;
13 pEX_op2_q = DOF_op2 = r2 = X[r s2] ;
14

15 OCD_DOF(i s a32)
16 s tage EX:

98

nML & pdg implementation

17 aluA = EX_dp_in1 = pEX_op1_q ;
18 aluB = EX_dp_in2 = pEX_op2_q ;
19

20 switch (op) {
21 #i f de f ined (__programmers_view__)
22 #e l s e
23 #e nd i f
24

25 case xperm8 : aluR = xperm8 (aluA , aluB) @alu ;
26 case xperm4 : aluR = xperm4 (aluA , aluB) @alu ;
27 }
28 pWB_op1_q = EX_op1 = byp_EX = aluR ;
29

30 OCD_EX(EX_dp_in1 , EX_dp_in2)
31

32 s tage WB:
33

34 i f (rd : x0) aluR_dead = pWB_op1_q;
35 e l s e X[rd] = w1 = pWB_op1_q;
36

37 OCD_WB()
38

39 }
40 syntax : op PADMNM " " rd " , " PADOP1 rs1 " , " PADOP2

rs2 ;
41

42 image : op [9 . . 3] : : RVIE(r s2) : : RVIE(r s1) : : op [2 . . 0] : : RVIE(
rd) ;

43 }

pdg

1 c l a s s ubyte property (vec to r uint8_t [4]) ;
2 c l a s s vbyte property (vec to r uint4_t [8]) ;
3

4 w32 xperm8 (w32 a , w32 b) {
5 uint32_t r = 0 ;
6 ubyte temp1 ;
7 ubyte temp2 ;

99

nML & pdg implementation

8 temp1 [0] = a [7 : 0] ;
9 temp1 [1] = a [1 5 : 8] ;

10 temp1 [2] = a [2 3 : 1 6] ;
11 temp1 [3] = a [3 1 : 2 4] ;
12

13 temp2 [0] = b [7 : 0] ;
14 temp2 [1] = b [1 5 : 8] ;
15 temp2 [2] = b [2 3 : 1 6] ;
16 temp2 [3] = b [3 1 : 2 4] ;
17

18 uint8_t s i = 0 ;
19

20 f o r (i n t i = 0 ; i <4; i++){
21 switch (temp2 [i]) {
22 case 0 : s i = temp1 [0] ; break ;
23 case 1 : s i = temp1 [1] ; break ;
24 case 2 : s i = temp1 [2] ; break ;
25 case 3 : s i = temp1 [3] ; break ;
26 d e f a u l t : s i = 0 ; break ;
27 }
28 r |= (uint32_t) s i << (i << 3) ;
29 }
30 r e turn r ;
31 }
32

33 w32 xperm4 (w32 a , w32 b) {
34 uint32_t r = 0 ;
35 vbyte temp1 ;
36 vbyte temp2 ;
37 temp1 [0] = a [3 : 0] ;
38 temp1 [1] = a [7 : 4] ;
39 temp1 [2] = a [1 1 : 8] ;
40 temp1 [3] = a [1 5 : 1 2] ;
41 temp1 [4] = a [1 9 : 1 6] ;
42 temp1 [5] = a [2 3 : 2 0] ;
43 temp1 [6] = a [2 7 : 2 4] ;
44 temp1 [7] = a [3 1 : 2 8] ;
45

46 temp2 [0] = b [3 : 0] ;
47 temp2 [1] = b [7 : 4] ;
48 temp2 [2] = b [1 1 : 8] ;
49 temp2 [3] = b [1 5 : 1 2] ;

100

nML & pdg implementation

50 temp2 [4] = b [1 9 : 1 6] ;
51 temp2 [5] = b [2 3 : 2 0] ;
52 temp2 [6] = b [2 7 : 2 4] ;
53 temp2 [7] = b [3 1 : 2 8] ;
54

55 uint4_t s i = 0 ;
56

57 f o r (i n t i = 0 ; i <8; i++){
58 switch (temp2 [i]) {
59 case 0 : s i = temp1 [0] ; break ;
60 case 1 : s i = temp1 [1] ; break ;
61 case 2 : s i = temp1 [2] ; break ;
62 case 3 : s i = temp1 [3] ; break ;
63 case 4 : s i = temp1 [4] ; break ;
64 case 5 : s i = temp1 [5] ; break ;
65 case 6 : s i = temp1 [6] ; break ;
66 case 7 : s i = temp1 [7] ; break ;
67 d e f a u l t : s i = 0 ; break ;
68 }
69 r |= (uint32_t) s i << (i << 2) ;
70 }
71 r e turn r ;
72 }

101

Appendix B

S-Box
The Substitution Box (S-Box) is one of the main components, designed
to perform substitution operations, of symmetric key algorithms as
for example AES algorithm. In the case of block ciphers, S-Boxes are
used to obscure the relationship between the encryption key and the
resulting ciphertext, ensuring confusion. S-Box function is a non-linear
transformation, It can be implemented trough a m×n S-Box as a lookup
table with 2m words, each containing n bits. So It replaces an m-bit
input with a specific n-bit output based on a predefined substitution
table. The sizes of the input (m) and output (n) can be different. In
the case of Zbkx, the Crossbar Permutation involves rearranging or
shuffling the bits of data in a key-dependent manner. This permutation
technique is crucial for introducing confusion and non-linearity into
S-Boxes.

102

Appendix C

SHA2

Algorithm

The SHA-256 and SHA-512 algorithms divide the input message into
512-bit and 1024-bit input blocks, respectively. Then, they apply the
round function, shown in Figure C.1, to each block. The SHA-256 and
SHA-512 algorithms use 64 and 80 rounds, respectively. The SHA-512
hash function computation is identical to that of the SHA-256 hash
function, with the following differences:

• The size of the operands: 64 bits for SHA-512 instead of 32 bits
for SHA-256.

• The size of the Digest Message: 512 bits for SHA-512, 256 bits for
the SHA-256.

• The Σ, σ functions.

• The values Wt and Kt: 64 bits for SHA-512 instead of 32 bits for
SHA-256.

103

SHA2

Figure C.1: SHA-256 and SHA-512 structure [30]

104

Appendix D

AES

Key Schedule

The AES key schedule takes the primary key and, for each round of
AES, generates round key (k). The number of round subkeys is equal
to the number of rounds plus one. Therefore, for a key length of 128
bits, the number of rounds is nr = 10, resulting in 11 subkeys, each
of 128 bits. For AES with a 192-bit key and so 12 rounds, it requires
13 subkeys of length 128 bits, and AES with a 256-bit key (14 rounds)
requires 15 subkeys. Each round key has the same size as the primary
key. The function G uses an 8-bit round constant (rc) for each round.
The key schedule for AES-128, along with the g function, is illustrated
in Figure D.1. The subkeys are stored in a key expansion array with
elements W[0],...,W[43]. The elements K0,...,K15 represent the bytes
of the original AES key. The first subkey word is computed using the
G function, while the other three words are calculated recursively. The
function G function is a nonlinear function with a four-byte input and
output in which the four input bytes are rotated, a byte-wise S-Box
substitution is performed, and then a round coefficient RC is added to
them. The round coefficients differ from round to round [24].

105

AES

Figure D.1: Key Schedule for AES-128

Forward Sbox - SubBytes

Figure D.2: Fwd Sbox - Precalculated SubByte [31]

106

AES

Inverse SBox - SubBytes

Figure D.3: Inv Sbox - Precalculated SubByte Inversion [31]

T-tables middle round

There are 8 different T-tables used in the code (4 for Encryption and 4
for Decryption), Figure D.4 shows an example.

107

AES

Figure D.4: Precalculated T-Table

108

AES

109

Bibliography
[1] IEEE Spectrum. Chip Hall of Fame: Motorola MC68000 Micro-

processor. url: https://spectrum.ieee.org/chip-hall-of-
fame-motorola-mc68000-microprocessor (cit. on p. 1).

[2] Jaikrishnan Menon Emily Blem and Karthikeyan Sankaralingam.
«Power Struggles: Revisiting the RISC vs. CISC Debate on Contem-
porary ARM and x86 Architectures». In: 19th IEEE International
Symposium on High Performance Computer Architecture (HPCA
2013). University of Wisconsin - Madison, 2013 (cit. on p. 1).

[3] IBM. Reduced instruction set computer (RISC) architecture. url:
https://www.ibm.com/history/risc (cit. on p. 2).

[4] Shreyas Sharma. RISC-V vs ARM: A Comprehensive Comparison
of Processor Architectures. Aug. 2023. url: https://www.wevolv
er.com/article/risc-v-vs-arm (cit. on p. 2).

[5] History of RISC-V. url: https://riscv.org/about/history/
(cit. on p. 2).

[6] RISC-V Specifications. url: https://github.com/riscv?q=
&type=all&language=&sort= (cit. on p. 2).

[7] RISC-V International. «RISC-V Cryptography Extensions Volume
I: Scalar & Entropy Source Instructions». In: Feb. 2022 (cit. on
pp. 2, 3, 33–38, 40, 41).

[8] RISC-V International. «RISC-V Cryptography Extensions Volume
II: Vector Instructions». In: Oct. 2023 (cit. on p. 2).

[9] National Institute of Standards and Technology. «ADVANCED
ENCRYPTION STANDARD (AES)». In: Nov. 2001 (cit. on p. 3).

110

https://spectrum.ieee.org/chip-hall-of-fame-motorola-mc68000-microprocessor
https://spectrum.ieee.org/chip-hall-of-fame-motorola-mc68000-microprocessor
https://www.ibm.com/history/risc
https://www.wevolver.com/article/risc-v-vs-arm
https://www.wevolver.com/article/risc-v-vs-arm
https://riscv.org/about/history/
https://github.com/riscv?q=&type=all&language=&sort=
https://github.com/riscv?q=&type=all&language=&sort=

BIBLIOGRAPHY

[10] National Institute of Standards and Technology. «SECURE HASH
STANDARD». In: Aug. 2015 (cit. on pp. 3, 35, 36, 93).

[11] David Patterson Andrew Waterman Yunsup Lee and Krste Asanovi´.
«The RISC-V Instruction Set Manual Volume I: User-Level ISA».
In: CS Division, EECS Department, University of California,
Berkeley, May 2014 (cit. on pp. 5, 7, 8).

[12] Krste Asanovi´ Andrew Waterman. «The RISC-V Instruction
Set Manual Volume II: Privileged Architecture». In: CS Division,
EECS Department, University of California, Berkeley, May 2017
(cit. on pp. 5, 6, 18).

[13] Christof Paar Adam J. Elbirt. «An Instruction-Level Distributed
Processor for Symmetric-Key Cryptography». In: 2005 (cit. on
p. 11).

[14] Arul Paniandi Mohamed Khalil Hani Hau Yuan Wen. «DESIGN
AND IMPLEMENTATION OF A PRIVATE AND PUBLIC KEY
CRYPTO PROCESSOR FOR NEXT-GENERATION IT SECU-
RITY APPLICATIONS». In: 2006 (cit. on p. 12).

[15] TAO LU. «A Survey on RISC-V Security: Hardware and Archi-
tecture». In: 9 Jul 2021 (cit. on p. 12).

[16] Ben Marshall G. Richard Newell Dan Page Markku-Juhani O. Saari-
nen Claire Wolf. «The design of scalar AES Instruction Set Ex-
tensions for RISC-V». In: 2020 (cit. on pp. 12, 68, 69).

[17] Improvement SHA-256 instructions. url: https://github.com/
mjosaarinen / lwsha _ isa / blob / master / README . md (cit. on
p. 12).

[18] Area of AES and SHA. url: https://github.com/riscv/riscv-
crypto/blob/main/rtl/README.md (cit. on p. 12).

[19] Synopsis. ASIP Designer: Application-Specific Processor Design
Made Easy. url: https://www.synopsys.com/dw/doc.php/ds/
cc/asip-brochure.pdf (cit. on p. 25).

111

https://github.com/mjosaarinen/lwsha_isa/blob/master/README.md
https://github.com/mjosaarinen/lwsha_isa/blob/master/README.md
https://github.com/riscv/riscv-crypto/blob/main/rtl/README.md
https://github.com/riscv/riscv-crypto/blob/main/rtl/README.md
https://www.synopsys.com/dw/doc.php/ds/cc/asip-brochure.pdf
https://www.synopsys.com/dw/doc.php/ds/cc/asip-brochure.pdf

BIBLIOGRAPHY

[20] Gert Goossens. Under the Hood of ASIP Designer - Application-
Specific Processor Design Made Possible by Tool Automation. url:
https://www.synopsys.com/designware-ip/technical-bull
etin/under-the-hood-asip-designer.html (cit. on p. 25).

[21] Synopsys. «ASIP Designer nML Manual: The nML Processor
Description Language». In: Dec. 2023 (cit. on p. 26).

[22] Synopsys. «ASIP Designer PDG Manual: Primitives Definition
and Generation». In: Dec. 2023 (cit. on p. 29).

[23] Richard Newell. Scalar Cryptography Instruction Set Extension
Group Names Diagram. June 2021. url: https://wiki.riscv.
org/display/HOME/Scalar+Cryptography+Instruction+Set+
Extension+Group+Names+Diagram (cit. on p. 32).

[24] Jan Pelzl Christof Paar. «Understanding Cryptography». In: 2010
(cit. on pp. 39, 57, 58, 62, 105).

[25] Renè Peralta Joan Boyar. «A Small Depth-16 Circuit for the AES
S-Box». In: 2011 (cit. on pp. 57, 62).

[26] Shay Gueron. «Intel Advanced Encryption Standard (AES) New
Instrucitons Set». In: Jan. 2010 (cit. on p. 68).

[27] Sean Gulley Vinodh Gopal Kirk Yap Wajdi Feghali Jim Guilford
Gil Wolrich. «Intel SHA Extensions». In: 2013 (cit. on p. 69).

[28] Arm. «Arm Architecture Reference Manual». In: 2013-2024 (cit.
on pp. 69, 70).

[29] Embech open source benchmark suite. url: https://github.com/
embench/embench-iot (cit. on pp. 85, 91).

[30] Medien Zeghid Belgacem Bouallegue Mohsen Machhout Adel
Baganne Rached Tourki. «Architectural design features of a pro-
grammable high throughput reconfigurable SHA-2 Processor». In:
2007 (cit. on p. 104).

[31] Gregory Durgin Brian Degnan. «A reference implementation of
the AES S-Box». In: 2020 (cit. on pp. 106, 107).

112

https://www.synopsys.com/designware-ip/technical-bulletin/under-the-hood-asip-designer.html
https://www.synopsys.com/designware-ip/technical-bulletin/under-the-hood-asip-designer.html
https://wiki.riscv.org/display/HOME/Scalar+Cryptography+Instruction+Set+Extension+Group+Names+Diagram
https://wiki.riscv.org/display/HOME/Scalar+Cryptography+Instruction+Set+Extension+Group+Names+Diagram
https://wiki.riscv.org/display/HOME/Scalar+Cryptography+Instruction+Set+Extension+Group+Names+Diagram
https://github.com/embench/embench-iot
https://github.com/embench/embench-iot

	List of Tables
	List of Figures
	Introduction
	Context
	Objectives
	Organization

	Background
	RISC-V
	Instruction Set Architecture
	Instruction Format
	RV32I Base Integer Instructions

	Cryptography
	Importance of Cryptography Extensions

	STxP5 Processor
	STxP5 core
	Core Registers
	Control and Status Registers
	Pipeline

	Tools and Workflow
	ASIP Tool
	nML and PDG

	Workflow

	Scalar Cryptography Extension
	Specifications
	Zbkb - Cryptography Bitmanip instructions
	Zbkx - Crossbar Permutation instructions
	Zknh - NIST Suite: Hash Function
	Zkne - NIST Suite: AES Encryption
	Zknd - NIST Suite: AES Decryption

	Instruction Hardware Implementation
	Brev8
	Pack
	Packh
	Zip
	Unzip
	Xperm8
	Xperm4
	Sha256sig0
	Sha256sig1
	Sha256sum0
	Sha256sum1
	Sha256
	Sha512sig0h
	Sha512sig0l
	Sha512sig1h
	Sha512sig1l
	Sha512sum0r
	Sha512sum1r
	Sha512
	aes32esi
	aes32esmi
	aes32dsi
	aes32dsmi
	aes32

	Other Processor Crypto Extension
	Intel Processors
	Arm Processors

	Simulation and Formal Verification
	Synthesis
	Area Analysis

	Benchmarks
	AES algorithm
	SHA-256 algorithm

	Conclusions and Future Works
	nML & pdg implementation
	S-Box
	SHA2
	AES
	Bibliography

