
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Exploring Brain-Inspired Multi-Sensor
Data Fusion Models for Improving

Performances in Navigation and Tracking
Applications

Advisors
Gianvito Urgese
Vittorio Fra

Candidate
Salvatore Tilocca

October 2024

Abstract

The computational resources necessary for training and utilizing traditional deep
learning (DL) models are becoming increasingly costly as time progresses. The
amount of computing power required has increased tenfold from 2012 to 2019,
leading to a significant rise in costs. Neuromorphic technologies and spiking neural
networks (SNNs) are inspired by how human brains work and offer an innovative
approach, significantly reducing the required resources.
The objective of this thesis is to evaluate the potential for the adoption of brain-
inspired solutions as a substitute for established techniques used to solve engineering
tasks. In particular, this thesis aims to assess the feasibility of employing SNN-
based models to enhance the performance of navigation and tracking tasks.
In the first part of the work, we investigate the use of a SNN for implementing a
dead reckoning task. We use the Neural Kalman Model [1], a deep learning-based
solution that combines synthetically generated GPS measurements and IMU data,
as a baseline. This model uses a Temporal Convolutional Network (TCN) to esti-
mate the parameters of an Extended Kalman Filter state. Our contribution is the
replacement of the TCN with a fully spiking variant of the Legendre Memory Unit
(LMU), a specialized recurrent cell that captures long-range dependencies using
orthogonal Legendre polynomials. The spiking-based solution achieves a signifi-
cant reduction in memory usage, improving efficiency by nearly 96%, and enhances
accuracy, reducing error by 53%.
In the second part of the thesis, we shift focus to a fully spiking model, without us-
ing the Extended Kalman Filter, and work with real sensor data from the University
of Michigan’s NCLT dataset [2]. This dataset contains data from a Segway robot
on campus, recorded using various sensors of differing quality. A comprehensive
analysis is conducted to evaluate how each type of sensor impacts the accuracy of
the model. Specifically, we assess the contribution of wheel encoders, IMUs, and gy-
roscopes to the model’s performance. The objective is to estimate the next position
from the initial position using multiple sensors, correcting GPS errors. Commercial
GPS systems are often prone to errors due to environmental interference, multipath
effects, or satellite synchronization issues. To address these limitations, our fully
SNN-based model integrates inputs from these various sensors, aiming to minimize
GPS-induced errors and provide accurate position prediction.

3

The proposed model determines the location of a moving object at each time step,
relying on GPS when signals are strong and considering the previous prediction of
the neuromorphic model when GPS is degraded. This allows continuous tracking
in challenging environments. Results are compared with ground truth data from
the NCLT dataset, obtained via a SLAM algorithm using LiDAR and high-quality
GPS. Our spiking model shows up to a 13% improvement in accuracy over GPS
alone, underscoring its effectiveness in difficult conditions.
In conclusion, the work presented in this thesis demonstrates that SNN models can
serve as a viable alternative to traditional deep learning models. It shows that
SNN can achieve results comparable to state-of-the-art methods while offering sig-
nificant advantages in terms of computational efficiency. This is because they can
be deployed on neuromorphic HW, which has shown order-of-magnitude efficiency
improvements when compared to standard architectures in terms of energy per
inference.

4

Contents

List of Figures 7

List of Tables 11

1 Introduction 13

2 Background 17
2.1 Sensors: Functional Analysis and Potential Applications 17

2.1.1 Global Positioning System (GPS) 18
2.1.2 Inertial Measurement Unit (IMU) 18
2.1.3 Wheel Encoder . 19
2.1.4 Light Detection and Ranging (LiDAR) 19

2.2 Dead Reckoning . 20
2.2.1 Why use Dead Reckoning? 21

2.3 GPS Refinement . 23
2.3.1 Why use GPS Refinement? 23

2.4 Kalman Filter . 24
2.4.1 Kalman Filter for Linear System 24
2.4.2 Kalman filter for non-Linear systems 26

2.5 Artificial Neural Networks . 28
2.5.1 Neural Network and Neuron Perceptron 29
2.5.2 Training Neural Network . 30
2.5.3 Convolutional Neural Network 32
2.5.4 Recurrent Neural Network 33

2.6 Neuromorphic Engineering . 36
2.7 Spiking Neural Network . 37

2.7.1 Biologically Neuron . 37
2.7.2 Neural Code . 39
2.7.3 Neuron Model . 40
2.7.4 Encoding/Decoding Spikes 41
2.7.5 How to train a Spiking Neural Network 43

2.8 Biological Neuron Models . 45

5

2.8.1 The Three Generations of Neural Network Models 45
2.8.2 Louis Lapique’s Intuition . 46
2.8.3 Integrate-and-Fire . 46
2.8.4 Leaky Integrate-and-Fire . 47
2.8.5 Izhikevich Model . 48

3 Materials and methods 51
3.1 Agrobot Benchmark . 51

3.1.1 Architecture . 51
3.1.2 Agrobot Dataset . 53

3.2 NCLT Dataset . 55
3.3 Legendre Memory Unit . 58

3.3.1 Memory Cell Dynamics . 58
3.3.2 Layer Design . 59
3.3.3 Comparison Legendre Memory Unit with SOTA methods . . 60

3.4 Neuromorphic Legendre Memory Unit (L2MU) 61
3.4.1 Data structure . 61
3.4.2 Encoding . 61
3.4.3 Architecture Design . 62

3.5 snnTorch . 64
3.6 Hyperparameter Tuning . 65

4 Results and discussion 67
4.1 Use Case 1: Agrobot Dataset . 68
4.2 Use Case 2: NCLT Dataset . 71

4.2.1 Train Model . 72
4.2.2 Model Performance on Full Dataset: Including Outliers . . . 76

5 Conclusion 89

Bibliography 93

6

List of Figures

1.1 Von Neuman architecture: memory and CPU are separated and con-
nected by a BUS. 14

1.2 Comparison between Neuromorphic architecture and von Neumann
architecture [3]. 15

1.3 In Neuromorphic hardware memory and CPU are not physically sep-
arated . 15

2.1 Optical Wheel Encoder taking inspiration from [20]. 20
2.2 Image of absolute positioning and dead reckoning[22] 21
2.3 Comprehensive diagram illustrating the operation of the Kalman

filter [33]. 26
2.4 Comprehensive diagram illustrating the operation of the Extended

Kalman Filter [33]. 28
2.5 Summary scheme of Reinforcment Learning [35]. 29
2.6 The interpretation of a perceptron as a oriented hyperplane [36]. . . 29
2.7 Deep neural network consisting of L layers, where gm represent the

neuron perceptron within each layer. 30
2.8 Landscape of loss function, taking inspiration from [37]. 31
2.9 Example of computational graph 31
2.10 Connection of Fully Connected Layers [39]. 32
2.11 Connection of Convolutional Layers [39]. 32
2.12 Example of convolutional operation [40]. 33
2.13 RNN computational graph [41] . 34
2.14 Vanilla RNN gradient flow [43]. 35
2.15 LSTM cell [44]. 35
2.16 Main fields of use of Spiking Neural Networks [45]. 38
2.17 Structure of Biological Neuron taking inspiration from [46]. 38
2.18 Synapse at the electronic microscope, taking inspiration from [47]. . 39
2.19 The figure shows real neurons stained with a fluorescent substance

communicating with each other [48]. 40
2.20 Spike Input in Spiking Neuron Model [45]. 41

7

2.21 Rate-coded input pixel. An input pixel of greater intensity corre-
sponds to a higher firing rate [45]. 42

2.22 Latency-coded input pixel. An input pixel of greater intensity cor-
responds to an earlier spike time [45]. 42

2.23 Example Strategies for Interpreting Input Spikes and Output Spikes
[45]. 43

2.24 In the context of surrogate gradients, the spike generation function
is approximated as a continuous function during the backward pass
[55]. 44

2.25 Capacitive membrane and resistive form an RC circuit.When the
membrane potential exceeds a threshold θ, a spike is generated [45]. 47

2.26 Integrate and Fire equivalent circuit. 47
2.27 Behavior of a IF Neuron with constant current input and current

spikes input . 48
2.28 Simulation depicting the membrane potential U(t) reaching the thresh-

old, arbitrarily set to θ = 0.5V , which generates output spikes [45]. 49

3.1 Data collection setup for the Agrobot dataset. Dotted red insets
show the robot, dotted yellow insets show the ground truth setup,
and the solid blue insets show the reference landmarks. (a) Phase 1
(b) Phase 2 (c) Phase 3 [60]. 54

3.2 Trajectories recorded on Michigan’s campus [2]. 55
3.3 The Segway robotic platform used for experimental data collection.

Outfitted with an RTK GPS (1), omni-directional camera (2), 3D
lidar (3), IMU (4), consumer-grade GPS (5), 1-axis FOG (6), 2D
lidars (7), and CPU (8) [2]. 56

3.4 Time-Unrolled Legendre Memory Unit [62] 60
3.5 Illustration of the neuromorphic model. Each axis channel of the

respective sensor has its own input channel. Connected to this input
channel is an encoding module composed of a fully connected layer,
which communicates with the L2MU cell through spikes 63

3.6 Raster plot showing the firing times of neurons at the input of a
layer, taking inspiration from plot of [45] 64

3.7 The image illustrates the process of hyperparameter optimization. In
particular, the diagram demonstrates how NNI effectively explores
various combinations of hyperparameters to enhance the model’s per-
formance. 65

4.1 In the figure, the architecture of the L2MU model for this use case is
illustrated. Notably. It differentiates from fig: 3.5 by the absence of
the encoding module. In this case, the model directly receives raw
data as input. 68

8

4.2 In the figure above, is presents the initial architecture, while the
one below shows our implementation. As can be seen, the archi-
tecture remains largely unchanged except for the model responsible
for predicting the state of the Extended Kalman Filter, indeed the
Temporal Convolutional Network is substituted by the L2MU model. 71

4.3 Illustration of L2MU model with IMU configuration. Each channel
of the respective sensor has its own input channel. Connected to this
input channel is an encoding module composed of a fully connected
layer, which communicates with the L2MU cell through spikes . . . 72

4.4 Illustration of L2MU model with IMU, Wheel Encoder config-
uration. Each channel of the respective sensor has its own input
channel. Connected to this input channel is an encoding module
composed of a fully connected layer, which communicates with the
L2MU cell through spikes . 73

4.5 Illustration of L2MU model with IMU, Wheel Encoder and Op-
tical Gyroscope configuration. Each axis channel of the respective
sensor has its own input channel. Connected to this input channel
is an encoding module composed of a fully connected layer, which
communicates with the L2MU cell through spikes 74

4.6 Box Plot speed of Segway Robot in test set 76
4.7 The figure illustrates the model architecture used for the testing

phase. The initial position for the model’s prediction can either be
sourced from the latest prediction of the L2MU model in the presence
of GPS outliers, in this case L2MU trained with initial position pro-
vided by ground truth is used, while if the initial position is provided
by GPS L2MU trained with GPS is used. 77

4.8 Comparison of trajectories on OpenStreetMap using Folium [69] li-
brary based on GPS data, Ground Truth (GT), and L2MU model
estimation. Test set from NCLT Dataset [2] log 2013-01-10. 83

4.9 Comparison of the error along the x-axis in the first photo, and y-
axis in the second, referred to the log 2013-01-10 of NCLT Dataset,
between L2MU using IMU, L2MU using IMU + WE + OG, L2MU
using IMU + WE, and GPS. 83

4.10 Overall comparison of trajectory and position error analysis for the
log of 2013-01-10 in the NCLT Dataset. 83

4.11 Comparison of trajectories on OpenStreetMap using Folium [69] li-
brary based on GPS data, Ground Truth (GT), and L2MU model
estimation. Test set from NCLT Dataset [2] log 2013-02-23. 84

4.12 Comparison of the error along the x-axis in the first photo, and y-
axis in the second, referred to the log 2013-02-23 of NCLT Dataset,
between L2MU using IMU, L2MU using IMU + WE + OG, L2MU
using IMU + WE, and GPS. 84

9

4.13 Overall comparison of trajectory and position error analysis for the
log of 2013-02-23 in the NCLT Dataset. 84

4.14 Comparison of trajectories on OpenStreetMap using Folium [69] li-
brary based on GPS data, Ground Truth (GT), and L2MU model
estimation. Test set from NCLT Dataset [2] log 2013-04-05. 85

4.15 Comparison of the error along the x-axis in the first photo, and y-
axis in the second, referred to the log 2013-04-05 of NCLT Dataset,
between L2MU using IMU, L2MU using IMU + WE + OG, L2MU
using IMU + WE , and GPS. 85

4.16 Overall comparison of trajectory and position error analysis for the
log of 2013-04-05 in the NCLT Dataset. 85

10

List of Tables

2.1 Comparison of state of the art methods for dead reckoning in context,
trained and tested on Agrobot Dataset by the authors of paper [1]. 23

3.1 Data collection sessions [2]. 57
3.2 Validation and test set results on the psMNIST dataset (data pro-

vided by [63]). 61

4.1 Comparison between implementation of Agrobot with Temporal Con-
volutional Network and Neuromorphic Model. Results of Agrobot
(TCN) are obtained from the model weights uploaded to the authors’
repository. 70

4.2 Comparison of RMSE across different sensor configurations and GPS,
calculated with respect to the ground truth provided by the NCLT
dataset, using the commercial GPS as the initial position. 75

4.3 Comparison of RMSE across different sensor configurations and GPS,
calculated with respect to the ground truth provided by the NCLT
dataset, using the ground truth as initial position. 75

4.4 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU sensors, operating at a frequency of 8 Hz. . . . 78

4.5 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU and Wheel Encoder sensors, operating at a
frequency of 8 Hz. 78

4.6 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU, Wheel Encoder and Optical Gyroscope
sensors, operating at a frequency of 8 Hz. 79

4.7 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU sensors, operating at a frequency of 1 Hz. . . . 79

4.8 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU and Wheel Encoder sensors, operating at a
frequency of 1 Hz. 80

11

4.9 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU, Wheel Encoder and Optical Gyroscope
sensors, operating at a frequency of 1 Hz. 80

4.10 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU sensors, operating at a frequency of 1 Hz, where
L2MU replace GPS in indoor context. 81

4.11 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU and Wheel Encoder sensors, operating at a
frequency of 1 Hz, where L2MU replace GPS in indoor context. 81

4.12 Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU, Wheel Encoder and Optical Gyroscope
sensors, operating at a frequency of 1 Hz, where L2MU replace
GPS in indoor context. 82

4.13 Comparison of models configuration for displacement prediction with
learnable parameters and model sizes. 86

4.14 Comparison of models configuration for GPS refinement with learn-
able parameters and model sizes. 86

12

Chapter 1

Introduction

Moore’s law is a descriptive model that has been employed to forecast the trajectory
of integrated circuit development for several decades. The model posits that the
number of transistors on a chip will double every two years, resulting in enhanced
performance. Recent research has indicated that a physical limit has been reached,
for this reason the size of transistor cannot be reduced anymore. Additionally Den-
nard scaling hypothesis, proposed that the miniaturization of transistor reduction
in terms of power consumption, nevertheless, this hypothesis has been refuted by
the observation that the contemporary generation of transistors, which are approxi-
mately 6 nm in size, are no longer capable of dissipating energy efficiently, resulting
in an increase in energy consumption. This suggests that a physical limit may have
been reached in this process.
Furthermore, the extensive utilization of neural networks in contemporary devices
represents an additional source of complications. Indeed, the rising complexity of
deep neural networks is intensifying the challenge of energy constraints in existing
devices. The aforementioned energy constraints are becoming increasingly signifi-
cant not only in the context of edge computing, but also in other contexts such as
autonomous systems and mobile devices.
The substantial transfer of data between memory and processor during training
and the utilization of deep neural networks presents a challenge to the efficacy of
the Von Neumann architecture, which separates the memory from the processor
(fig: 1.1). The continuous data exchange between memory and processor can be
considered a bottleneck, as it introduces limitations. One potential solution to the
aforementioned physical limits is the emerging field of neuromorphic comput-
ing. This approach represents a significant departure from the classic von Neumann
architecture.

The term "neuromorphic" was first used by Carver Mead in the 1980s to describe
brain-inspired computing systems. The components of neuromorphic hardware are
in fact named like the basic units of the nervous system: neurons and synapses.

This naming convention reflects the intention of these systems to mimic the

13

Introduction

Figure 1.1: Von Neuman architecture: memory and CPU are separated and con-
nected by a BUS.

functionality of biological neural networks.
In a biological context, neurons are the part of the nervous system, responsible

for processing and transmitting information through electrical and chemical sig-
nals. Similarly, in neuromorphic systems, artificial neurons serve as computational
units that process input signals and produce output spikes, thereby mimicking the
activity of biological neurons. The way these artificial neurons integrate and re-
spond to inputs is designed to replicate the behavior of their biological counterparts.
Neuromorphic computing is considered an unconventional technology, since, as
can be seen from the fig: 1.2, it is a novelty in many aspects. It departs from
traditional computing architectures by emulating the parallel and distributed pro-
cessing characteristics of the brain, opening new possibilities for efficient, adaptive,
and energy-efficient computing systems, and low power operation that can often
operate on orders of magnitude less power than traditional computing systems [3].

Neuromorphic hardware is still under development and available for research with
projects such as SpiNNaker [4], BrainScaleS [5], ODIN [6] and the Tianjic chip
[7] offering different capabilities from large-scale neuroscientific simulations to op-
timization of learning processes. Industry and academia are also involved, with
examples such as IBM’s TrueNorth [8] and Intel’s Loihi [9] , demonstrating the
importance of these innovative technologies today.
Intel’s Loihi architecture exemplifies the advancements in neuromorphic computing,
specifically designed for Spiking Neural Networks (SNNs). Loihi features 128 neu-
romorphic cores that enable real-time processing of information with significantly
reduced energy consumption. By integrating memory closely with processing units,
Loihi minimizes latency and maximizes energy efficiency, effectively addressing the

14

Introduction

Figure 1.2: Comparison between Neuromorphic architecture and von Neumann
architecture [3].

limitations posed by traditional architectures.
Neuromorphic hardware can be considered a form of non-Von Neumann hard-

ware. Indeed, in neuromorphic computers, the processor and memory are closely
integrated (fig: 1.3) and managed by neurons and synapses. Information is en-
coded in pulses (spikes) with a value of either 0 or 1, whose frequency or spike
timing represents numerical values.

Figure 1.3: In Neuromorphic hardware memory and CPU are not physically sepa-
rated

SNNs are a fundamental part to work with neuromorphic computing, since

15

Introduction

they leverage the event-based nature of these systems, indeed SNN are able to pro-
cess asynchronous information only when data is available significantly improving
energy efficiency. A key feature of neuromorphic hardware is its capacity to per-
form operations in a parallel manner, as all neurons and synapses are capable of
functioning in this mode. Another crucial aspect of neuromorphic computing is
event-based processing, whereby these computers process information only when
data is available, thus enhancing efficiency. Computations are executed by neurons
and synapses only when they receive spikes, which are generally infrequent in the
overall operation of the network.

In essence, neuromorphic computing represents a radical breakthrough in the
field of computation, offering a potentially more efficient and scalable solution than
traditional systems. It could prove crucial to the future of computation, given
that existing technologies are reaching their limits. The research presented in this
thesis demonstrates that Spiking Neural Network offer a viable alternative for the
execution of complex Deep Learning tasks and are capable of achieving results com-
parable to the state of the art, offering at the same time an order of magnitude
greater energy efficiency and processing speed. In particular, our research has fo-
cused on tasks such as dead reckoning and the enhancement of GPS estimation.
This has resulted in an improvement of approximately 50% in accuracy and a sig-
nificant reduction in the required memory compared to the state of the art. This
has enabled us to overcome issues such as those pertaining to the interruption of the
Global Positioning System (GPS) signal or the presence of low-quality GPS signals.
Two case studies were conducted to address these tasks. The first employed a spik-
ing neural network in conjunction with an extended Kalman filter on a synthetic
dataset, while the second employed an SNN without the extended Kalman filter,
working with real-world measurements.
In conclusion, this research demonstrates the potential of SNNs and neuromor-
phic systems to not only match the performance of traditional architectures but to
exceed them in terms of efficiency and speed. The results position neuromorphic
networks as a promising technology for addressing future challenges in computation
and artificial intelligence.

16

Chapter 2

Background

2.1 Sensors: Functional Analysis and Potential
Applications

Nowadays, the usage of advanced sensors together with deep neural network has
led to important innovations in several fields, such as autonomous driving, local-
ization and medical task. Among the sensors most used especially in the context
of autonomous driving, but not only, is important to mention IMU (Inertial Mea-
surement Unit),Wheel Encoder, GPS (Global Position System) and LiDar (Light
Detection and Ranging). Moreover, to specific task such as Road Surface Classifi-
cation cameras are employed in the majority of state of the art methods. Such as
[10] that propose a deep analyses of road surface classification using multi sensors
data, composed of: accelerometer, gyroscope, magnetometer, temperature sensor
and camera. The authors of this paper propose an analysis of different methods for
road surface classification, which include an analysis starting from more classical
methods like SVM, KMC, KNN up to deep learning methods like CNN, LSTM and
CNN-LSTM. An interesting article is also [11] which propose a solution for the road
surface classification using camera-based image recognition, the peculiarity of this
paper is the use of a continual learning solution. Continual Learning is a concept
to learn a model for a large number of tasks, domain, class sequentially without
forgetting knowledge obtained from the preceding tasks, domain, class where the
data in the old tasks are not available anymore during training new ones. It has
been acknowledged that reliance on cameras can present challenges, such as higher
costs due to the necessity for high-quality image processing hardware and the as-
sociated computational power. Consequently, in this thesis, the decision was taken
not to utilise cameras for this reason. The objective of this chapter is to analyses
the functionalities and possible use cases of the sensors mentioned above, and how
they can be employed collaboratively to overcome each other’s limitations.

17

Background

2.1.1 Global Positioning System (GPS)
The Global Positioning System (GPS) is a space-based global navigation satellite
system (GNSS) that is able to provide provides reliable positioning. If the signals
of the GPS are provided by at least 4 satellites, it can be stated with reasonable
certainty that the quality of position results are reliable. Besides the accuracy in
providing the position of moving objects, the fact that it is light and cheap (about
5€) has made sure that in recent years there was an increase in its spread, making
it available in everyday devices, and offering the possibility of various use cases: In
navigation contexts such as Google Maps, it can be used to guide the user to their
destination using the best route [12], can be used in fitness contexts such as running
or cycling to provide useful data on the distance traveled [13], GPS is also utilized
by emergency services to facilitate rapid responses to incidents [14], ensuring the
precise localization of the event in question.

However, GPS positioning has many limitation such as signal outage. In urban
and mountainous areas, or in situation of indoor or underground, the GPS signal
can have interruptions [15]. Moreover in certain situation such as navigation for
cars sport or airplane, the low update frequency of GPS can be not acceptable, a
good solution for mitigate this issue can be the integration of multiple sensors like
Inertial sensors.

One of the objectives of this thesis is to address the limitations of GPS by in-
tegrating its data with other sensors, such as IMUs and wheel encoders, as demon-
strated in recent work, where sensor fusion techniques have been used to improve
state estimation [16].

2.1.2 Inertial Measurement Unit (IMU)
Among the most used sensors, there are Inertial Measurement Unit (IMU) sensors,
composed by accelerometer that measure the global linear acceleration, gyroscope
able to measure angular velocities and sometime is possible to find magnetometer
that measure the magnetic field. This sensors can be used in a wide range of use
case, such as Human Activity Recognition like [17] that explore solution for this
using neuromorphic approach, Augmented Reality (AR)/ Virtual Reality (VR) [18]
used in headsets to track head orientation, medical equipment IMUs are used in
surgical robotic systems to provide precise feedback on the position and movement
of surgical instruments [19], IMU can be used to provide time information about
the position, orientation, and motion of autonomous vehicles, this can be helpful
in absence of signal GPS, we focus our research in this topic.
The cost of IMU sensors depends on several factors, such as accuracy, application,
or technical specification. For low cost IMU, typical used in smartphone or game
application, price ranges from 10€ to 50€. Mid range IMU, typical used for ap-
plication such as autonomous guide and robotics context their price can vary from

18

2.1 – Sensors: Functional Analysis and Potential Applications

50€ to 500€. For high-end IMUs, designed for precision-critical applications like
aerospace, defense, and medical devices, prices range from €500 to over €5000. For
specific case such as missile guidance or advanced research the cost can be reach
€20000.

2.1.3 Wheel Encoder
Wheel Encoder sensors counts the number of rotation of robot/car wheels, therefore
allow to estimate the speed or distance traveled with reasonable accuracy. Some-
times wheel encoders are combined together with IMUs sensors, since in scenarios
where the axle is wet or slippery, the wheel encoder is not able to detect wheel, au-
thors of paper [16] proposes a system that integrates multiple sensors to overcome
these limitations. There are three main types of Wheel Encoders:

• Mechanical Type: Mechanical type wheel encoder has a variable resistor
that change its electrical resistance in proportion to the rotation of the angle.

• Optical Type: This method employs a light sensor to verify whether light
is traversing a slot in the radial direction of a rotating disc, designated a code
wheel, affixed to the motor shaft. When light pulse signal traverses the slit
there is a transformation, enabling the detection of the drive shaft’s rotational
velocity through pulse counting (see fig: 2.1).

• Magnetic type: This method employs the use of a magnetic sensor to quan-
tify alterations in the magnetic field distribution generated by a permanent
magnet affixed to the motor shaft. As the motor rotates, the magnetic field
distribution of the above-mentioned permanent magnet changes accordingly.
Therefore, by detecting the magnetic field distribution using a magnetic sen-
sor, the rotational position of the motor shaft can be accurately determined.

Their cost can range from €50 to over €2000.

2.1.4 Light Detection and Ranging (LiDAR)
Light Detection and Ranging (LiDAR) are special sensors that uses pulsed laser to
measure distance. At first, LiDAR was used to help make maps of small rivers and
streams. Subsequently in the 1980s, with the emergence of GPS, LiDAR became an
integral tool in collecting large-scale geospatial data and in creating topographical
maps. Nowadays LiDAR sensors are cheaper and available in more device, recent
iPhone have LiDAR scanner that can reach 4.5m of depth. LiDAR senors are used
in different use case, such as Self-Driving Cars that can be used to ensure that
follow the correct path and detect pedestrian or other object in the route, they can
be used also for geospatial mapping to create high resolution topographic map, can

19

Background

Figure 2.1: Optical Wheel Encoder taking inspiration from [20].

be used also for building construction infact it allow to build an extremely precise
3D model of object. The price of these sensors varies according to the context of
use, starting from €150 for phone use cases and can reach €100000 in self-driving
car contexts where extreme precision is required.

2.2 Dead Reckoning
Accurate positioning of vehicle is becoming an increasingly important task espe-
cially in the context of autonomous driving, Global Navigation Satellite System
such as GPS are a good way to obtain vehicle position. GPS with technique Real
Time Kinematic (RTK) uses a station located in a fixed and known point, which
calculates and transmits the corrections to the mobile point, are extremely precise
device and are used in contexts such as agriculture and autonomous driving, it
can position with sub-decimetre accuracy in open area environments, but in urban
areas environment this accuracy can be reduced due to the blockage or reflection of
the satellite signal by the tall buildings. In the area where is not possible to obtain
an accuracy in position, dead reckoning plays an important role. Dead Reckoning
is a technique that compute the position change using the vehicle motion, such as
acceleration, direction etc. This method does not rely on external signals, like those
from satellites but instead uses internal data provided by onboard sensors such as
accelerometers, gyroscopes, and magnetometer. The key concept is that, once the
initial position of the vehicle is known, dead reckoning can track the new position
by continuously calculating subsequent movements (fig: 2.2), as demonstrated in
the work of Brossard et al. (2020), a variant of the Kalman filter is used in com-
bination with a Convolutional Neural Network (CNN) to enhance the accuracy of
dead reckoning by correcting sensor drift and improving robustness in challenging
environments [21].

20

2.2 – Dead Reckoning

In recent autonomous driving systems, dead reckoning is performed using very ex-
pensive sensors such as fiber optic gyroscopes or LiDAR, these last provide excellent
precision but their cost is too high for use them in mass-market vehicles. Fiber optic
gyroscopes are extremely accurate in detecting the vehicle’s rotation and changes
in orientation, while LiDAR sensors use lasers to measure distances with great ac-
curacy, creating detailed maps of the surrounding environment. However, the cost
of these sensors can be prohibitive for mass production. One of the goals of our
research is to develop a dead reckoning system using low-cost IMU sensors that can
provide sufficiently accurate data for position calculations, and to demonstrate the
impact of different sensor types across various price ranges on result quality

Figure 2.2: Image of absolute positioning and dead reckoning[22]

2.2.1 Why use Dead Reckoning?
As I said before despite the continuous progress in this field, sometimes use only
the GPS still present limitations, here some use cases where dead reckoning could
be critical:

• Fill gaps due to interruptions GPS signals: A record that occurs in everyday
life is interruptions of GPS signals, this occur when signals of GPS are ob-
structed or can’t reach receiver, like for instance when we are drive in dense
urban area, or in a tunnel.

• Improve GPS signals quality: The same factors of interruption of GPS signals
can degrade the quality of the sensors, and sometimes even other sources of
RF interference (such as nearby cell towers or modems) can play a role.

21

Background

• Collecting Data: While this data is primarily collected to support position-
ing calculations when GNSS signals fail, it also offers the added benefit of
providing movement history that cannot be derived solely from GNSS signal
data. These insights can be utilized to monitor driving behavior, assess the
performance of autonomous vehicles (AV), and analyze similar trends.

• Improving Frequency of data: A further advantage of inertial sensors is their
ability to continuously acquire vehicle-specific data or the hardware to which
they are connected. While positioning history can be viewed from GNSS and
RTK data, dead computing solutions collect data about the unique movement
of the object they are connected to, including speed, direction, altitude, and
more. While this data is mainly captured for fuel positioning calculations
when GNSS fails, it provides the added benefit of showing the motion history
that cannot be derived from GNSS signal data alone. You can use this infor-
mation to monitor driving behavior, autonomous vehicle performance (AV)
and similar trends.

Despite ancient origins Dead Reckoning remains relevant even nowadays thanks to
its simplicity and efficiency. In spits of its limitations, like accumulation of errors
over time, dead reckoning continues to be a crucial task, especially when combined
with other navigation techniques to enhance overall accuracy.

Table 2.1 below presents comparison with state of the art methods, majority
of this approach include Deep Learning, Kalman Filter or its variants, or a com-
bination of both. IONet [23] use a Deep Learning model, based on LSTM, the
input is provided by IMU sensors with accelerometer and gyroscope, the ground-
truth labels are provided by visual motion tracking system (Vicon). IONet was
developed for pedestrian dead reckoning. L-IONet [24] is a variant of IONet that
replace LSTM with a Convolutional layer, to increase speed and reduce memory
required. AbolDeepIO [25] employ an LSTM model that takes in input from ac-
celerometer and gyroscope, the model was trained by the authors on Micro Aerial
Vehicle (MAV) dataset [26], and retrained on Agrobot dataset by authors of [1].
VeTorch [27] utilizes a Temporal Convolutional Network (TCN) taking input IMU
sensors from smartphone in a vehicle when GPS signal is not available. While
UKF-MINS+GPS [28] and EKF INS+GPS [29] propose variants of classic Kalman
Filter without employ deep learning model. Based on the results detailed in Table
2.1, we have made the decision to adopt the Neural Kalman Filter (Neural-KF) as
the baseline for our model. This choice reflects our assessment of its performance
and suitability in comparison to other potential approaches.

22

2.3 – GPS Refinement

Method RMSE (m) Model Size (MB) GPS
IONet 16.5 1.71 No

L-IONet 16.4 0.55 No
AbolDeepIO 15.7 12.5 No

VeTorch 14.8 29.6 No
Neural-KF 7.85 1.10 No

UKF-MINS+GPS 4.06 8.09 Yes
EKF INS+GPS 2.22 5.48 Yes

Neural-KF 1.07 2.17 Yes

Table 2.1: Comparison of state of the art methods for dead reckoning in context,
trained and tested on Agrobot Dataset by the authors of paper [1].

2.3 GPS Refinement

In the lasts years, precise positioning is becoming a crucial task in numerous ap-
plications, in particular in mobile devices such as smartphone and tablet that use
Global Navigation Satellite Systems (GNSS) systems to provide position estima-
tion. Although the progress technologies in this field, the precision of GPS mea-
surement available on commercial device is often limited, with error that can reach
10-15 meters in the majority of case [30] . It’s possible to obtain sub-meters posi-
tion precision using advanced technologies such as Differential Global Positioning
System (DGPS) and GPS RTK that uses a station in a fixed position to correct
measurement provided by signal of GPS, or Assisted GPS (AGPS) that use data
coming from mobile devices, Wi-Fi to improve the fix of GPS when the signal is
weak. Since the high cost their efforts are often limited. A possible solution to
these issues is proposed in the paper [31], where the authors explore the integra-
tion of IMU data with GPS to obtain reliable positioning even in contexts where
GPS signals are not precise, using a variant of Kalman Filter with IMU sensors,
moreover using accelerometer contained in IMU is revealed static position, when
static position is revealed mean of lasts GPS measurement is computed to reduce
drift error. One of the use cases of this thesis’s research regards GPS refinement.
As we will discuss in Chapter 4.2, a use case of GPS tracking is presented in which,
starting from the initial position provided by the GPS, the task is using a Spiking
Neural Network estimate the next position while reducing its error.

2.3.1 Why use GPS Refinement?

The usage of GPS refinement is principally related to reduce the GPS error and
improve the precision of GPS systems, here some use cases where GPS refinement
could be critical:

23

Background

• Autonomous Navigation: Vehicle, Drone and Robot need to have a precise po-
sition to navigate safely, GPS refinement reduce the error of GPS, improving
the capabilities to follow path.

• Mapping and Topography Reliefs: Obtain precise position information in the
ground it’s a fundamental task to design buildings, roads and infrastructure.

• Urban Application: GPS refinement can be useful to track traffic. Have a pre-
cise position allow to have estimate traffic in real time and predict congestion
in the roads.

2.4 Kalman Filter
Nowadays Kalman Filter is one of the most used algorithms of sensor fusion, it is
used to reduce the bias of the measurement and to make predictions of the next
state. Although it was discovered between 1958-1961 it is still present in many
states of the art models, one of the first practical uses dates to 1969 when Stanley
Schimdt researcher of Nasa use it to estimate trajectories of Apollo 11 [32].
The key idea behind Kalman Filter involves predicting the values of interest based
on current data, comparing this prediction with sensor measurements at the next
time step, and the performing a weighted average. The determination of this weight
is a crucial task and his known as Kalman Gain. Kalman Filter is capable to make
optimal predictions under the hypothesis of linear system and zero-mean Gaussian
error distribution.

2.4.1 Kalman Filter for Linear System
Kalman Filter use differential equations and initial conditions to make prediction
of the next state, for instance if we take in consideration a generic discrete linear
system described by the eq: 2.1:

xk+1 = Akxk + Bkuk + wk (2.1)

Where:
• xk : states vector containing measure of our interest at the time k, for instance

position and speed
• Ak :the matrix that connect the state of k-instant to the state of time k+1,
• Bk : matrix that connect the input at time k to the state of time k+1,
• uk : input of the system like for instance measurement of accelerometer,

gyroscope and magnetometer
• wk : is the process noise, which is assumed to be drawn from a zero mean

multivariate normal distribution,with covariance Qk: .

24

2.4 – Kalman Filter

• Qk: Q is the process noise covariance matrix, this matrix represents the uncer-
tainty of the process; if Q is large, it implies there is significant uncertainty
in the process model, the filter will give more weight to the new measure-
ments than to the prediction based on the model. If Q is small, the model is
considered very accurate so the filter will rely more on the model predictions

The measurements predicted and the state variables are related by the eq: 2.2:

yk+1 = Hkxk + vk (2.2)

Considering:
• Hk :is the observation model, it maps the true state space into the metric

space.
• vk : is the observation noise, which is assumed to be zero mean Gaussian

white noise with covariance Rk.
• Rk: R is the measures noise covariance matrix, this matrix reflects the uncer-

tainty in the sensor measurements, for a large R we have noise measurement,
for a small R the measurement are accurate

In the most of case estimate the values of covariance matrix Q and R it’s hard, and
usually this values are chosen with a fine tuning phase.
At this point, we introduce the eq: 2.3:

x̂−
k = Akx̂k + Bkuk (2.3)

Where the minus sign indicates the a priori estimate obtained through the
knowledge of the model assuming zero error. With x̂ we instead mean the a pos-
teriori estimate, which is given by the linear combination between the a priori
estimate and the weighted difference between the current measurement and the
predicted measurement, namely:

x̂k = x̂−
k + Kk(zk −Hkx̂−) (2.4)

Where:
• zk : Observation (or measurement) a time k of the true state xk

• x̂k : Is the a posteriori estimate of the state at time step k, it represent the
final estimate.

• zk −Hkx̂− : Innovation or measurement pre-fit residual
• Kk : Kalman Gain, is a crucial component of the Kalman filter, the objective

of the Kalman Gain is to minimize covariance matrix P, that represents the
covariance matrix of the estimation error.

The error and covariance matrix a posterior of the process can be defined as with
eq: 2.5, 2.6:

ek = (xk − x̂) (2.5)
Pk = E[(xk − x̂)(xk − x̂)T] (2.6)

25

Background

Combining eq: 2.2 with eq: 2.4, we obtain eq 2.7:

x̂k = (I −KkH)x̂−
k + KkHxk + Kkvk (2.7)

At this stage, we can now refer to the posterior error eq: 2.5 and the covariance
matrix eq: 2.6 as:

ek = ((I −KkH)(xk − x̂−
k)−Kkvk) (2.8)

Pk = (I −KkH)P −
k (I −KkH)T + KkRkKT

k (2.9)
As mentioned earlier, the goal of the Kalman Gain is to minimize the error covari-
ance matrix P of our prediction. To achieve this, the derivative of the trace of P
with respect to K is computed, yielding the solution:

Kk = P −
k HT

k (HkP −
k HT

k + Rk)−1 (2.10)

Now, it is possible to update the posterior covariance matrix P using the calculated
gain:

Pk = (I −KkH)P −
k (2.11)

What has been written so far is summarized in the fig: 2.4, where x−
k and P −

k

are respectively the state vector containing the initial conditions and the error
covariance matrix for the initial conditions

Figure 2.3: Comprehensive diagram illustrating the operation of the Kalman filter
[33].

2.4.2 Kalman filter for non-Linear systems
As mentioned above Kalman Filter work under assumption of linear system, this
can be limitation since the most of the phenomena are highly non linear therefore,
for this reason it is imperative to offer a feasible alternative to address the issue of

26

2.4 – Kalman Filter

estimation within this class of systems, which is why it is important to know how
to use the Extended Kalman Filter.
Consider a non linear system described by the eq: 2.12

xk+1 = f(xk, uk, wk) (2.12)
zk = h(xk, vk) (2.13)

Where f and h are respectively the non linear function that connect the system
from step k to the system of the step k +1, and the non linear function that relates
the state at step k to the actual measurements at step k.
Extended Kalman Filter is based on the Kalman Filter algorithm, but incorporates
certain modifications, discussed below, that make it suitable for nonlinear systems.
As in the linear case, the objective of the filter is to provide an estimate of the state
that is as close as possible to the true state of the system. The first step to lead us
back to the theory already discussed for the KF is to define a linearization of the
system state with eq: 2.14, 2.15

x̂k+1 ≈ x̂−
k+1 + Ak(xk − x̂k) + Wkwk (2.14)

zk ≈ ẑ−
k+ + Ak(xk − x̂k) + Vkwk (2.15)

Where:
• Ak is the Jacobian Matrix of function f w.r.t x:

Ak = ∂f

∂x

⃓⃓⃓⃓
⃓
k

(2.16)

• Wk is the Jacobian Matrix of function f w.r.t w:

Wk = ∂f

∂w

⃓⃓⃓⃓
⃓
k

(2.17)

• Hk is the Jacobian Matrix of function h w.r.t x:

Hk = ∂h

∂x

⃓⃓⃓⃓
⃓
k

(2.18)

• Vk is the Jacobian Matrix of function h w.r.t v:

Vk = ∂h

∂v

⃓⃓⃓⃓
⃓
k

(2.19)

At this stage, the process operates in a manner similar to the Kalman filter. For
clarity and reference, a summary diagram is provided below, which delineates the
functioning of the Extended Kalman filter. This diagram is intended to offer a
comprehensive overview, highlighting the key steps and mechanisms involved in
the extended Kalman filter’s operation.

27

Background

Figure 2.4: Comprehensive diagram illustrating the operation of the Extended
Kalman Filter [33].

2.5 Artificial Neural Networks

Artificial Intelligence term was introduced for the first time in the 1950s, with the
aim of enabling computers to think in a human-like manner [34]. At a later time in
the 1980s was introduced machine learning concept, because it was understood
that the issue lay in the necessity of a machine learning mechanism for handling the
data, while before of machine learning era artificial intelligence was based on a set
of pre-fixed rules, this was a source of problems in the presence of complex data.
Around 2010, there was a significant surge in the adoption of Deep Learning.
It differs from the preceding approach, known as shallow learning, in that it
necessitates the transformation of input data into a mathematical representation,
such as vectors. All these concepts are subfields of artificial intelligence.
To define the concept of learning, three elements are required: experience, task, and
performance measures. Essentially, it is stated that an agent is learning when its
performance in a given task improves with experience. We talk about supervised
learning when for every data we use for the training of our model we have a label.
Instead we talk about unsupervised learning when the training data used for
thetraining process has not label, an example of task in this family is clustering,
it allows us to create cluster based on similarities on data. Finally reinforcement
learning (fig: 2.7), revolves around the concept of an agent interacting with an
environment by executing actions and receiving rewards based on the impact of
these actions.

28

2.5 – Artificial Neural Networks

Figure 2.5: Summary scheme of Reinforcment Learning [35].

2.5.1 Neural Network and Neuron Perceptron
The initial objective of Artificial Intelligence is to find a model able to simulate the
behaviour of the human neuron. The output of perceptron is +1 or -1 accordingly
to his weighted input, it’s behavious is like a linear classifier defined in eq: 2.20:

h(x) = sign(wT x) (2.20)

The goal of perceptron is to find the hyperplane in the input space that maximize
the margin between data point of different classes, ensuring that points from differ-
ent classes lie on opposite sides of this hyperplane (fig: 2.6). This involves in find
the weight vector w that separates the data points of different classes.

Figure 2.6: The interpretation of a perceptron as a oriented hyperplane [36].

Perceptron works under the assumption of linearly separable data, in presence
of non-linear separable data the algorithm not reach convergence. One solution to

29

Background

address this limitation is to combine multiple perceptrons to construct a more com-
plex function. An idea to improve performance of perceptron is to substitute step
function with sigmoid function, in this way the behavior it’s like logistic regression
algorithm: logistic regression is a classification algorithm that use sigmoid func-
tion to model the probability of an input belonging to a certain class. As previously
mentioned, the key idea to overcome problem of neuron perceptron, is to build a
chain of neuron perceptron, the final structure is called Neural Network fig: 2.7.

Figure 2.7: Deep neural network consisting of L layers, where gm represent the
neuron perceptron within each layer.

The objective is to have a model that is as universally applicable as possible while
still being easy to estimate its parameters to avoid overfitting: overfitting occurs
when a model learns to fit the training data too closely, capturing noise or random
fluctuations rather than generalizing well to unseen data. Since most phenomena
are nonlinear, the approach combines a linear function with a nonlinear one (activa-
tion function); the output of this process serves as the input to the next layer. This
composition is called multi layer perceptron or feed-forward neural network.

2.5.2 Training Neural Network
Training a neural network consists in finding the value of the weights θ that mini-
mize the loss function in eq: 2.21

ℓθ = 1
n

n∑︂
i=1

(yi − gθ(xi))2 (2.21)

Loss function measures the discrepancy between the predicted values and the ex-
pected values. Since generally is not convex, a possible solution is to minimize it
using Gradient Descent Alghorithm, the fundamental concept of this strategy
is to start from a given point in the loss landscape (fig: 2.8) and move towards the
direction that leads us to a local minimum, iteratively calculating the next point
as follows until a minimum is reached:

θ(t+1) = θ(t) − α∇ℓθ(t) (2.22)

30

2.5 – Artificial Neural Networks

The parameter α > 0 also called learning rate represent the length of the step
done in each iteration, it is an hyperparameter, and its choice is a crucial task,
indeed if it is too large there is a risk to overshooting, and if too small there is a
slow convergence. Such approach can encounter problems when dealing with large

Figure 2.8: Landscape of loss function, taking inspiration from [37].

datasets. To address this, the idea is to extract a small subset from the training set
and compute the gradient descent on this subset, called batch. Once all batches
are processed, an epoch is completed, this method is called Stochastic Gradient
Descent.

When we use feedforward neural networks, every neuron in the network in-
troduces a combination of different functions. In this situation, calculating the
gradient could constitute a bottleneck. Finding a method to automate this compu-
tation is therefore essential. To achieve this, the idea of a computational graph [38]
is presented as fig: 2.9. An acyclic graph that depicts the function f(x) that our
model computes is called a computational graph. The graph enables us to create a
structure that explains the decomposition of a complex function. In this way, we
can calculate the derivative of the complex function by combining the derivatives

Figure 2.9: Example of computational graph

31

Background

of the parts into which it has been decomposed. Therefore, the cost of comput-
ing the derivative will be equivalent to that of the decomposition. It is possible
to calculate the derivative not by starting from the input, but from the output
(backpropagation). This approach leads to the same results; however, since the
number of necessary operations is proportional to the dimensionality of the data,
starting from the output allows us to have a more efficient algorithm, indeed inputs
are usually multi-dimensional, whereas outputs are typically scalars (e.g the loss
value).

2.5.3 Convolutional Neural Network
To introduce certain constraints and enable the construction of a network capable
of handling specific data, it is necessary to incorporate priors. Generally, training a
neural network is highly complex due to the large number of parameters involved;
hence, the use of priors is essential. Each type of data has its own structure. For
instance, in images, there are repetitions of elements and patterns that can be
utilized as priors to simplify the complexity of the network. The goal is to reduce
the number of connections between input and output, which leads to what is known
as a convolutional layer. In this layer, each output is connected to a group of inputs
that share the same weights across the group. As can be seen from the fig: 2.11,

Figure 2.10: Connection of Fully
Connected Layers [39].

Figure 2.11: Connection of Convolu-
tional Layers [39].

we have groups of three inputs, and there are three weights that are shared among
all the groups. This set of weights is referred to as a kernel. In contrast, in a fully
connected layer, each input is connected to every output. Given two functions,
their convolution is a function whose output is the value of the product of the
two functions, shifting one of the functions at each step. Let f(t) and g(t) be two
functions. The convolution of f and g, denoted by (f ∗ g)(t), is defined as eq: 2.23

(f ∗ g)(t) =
∫︂ +π

−π
f(τ) g(t− τ) dτ (2.23)

Where:

• (f ∗ g)(t) is the feature map .

32

2.5 – Artificial Neural Networks

• g(t− τ) is the kernel.

In the case of images, the kernel is a matrix of weights that is convolved over the
image tensor, calculating the product with the image tensor’s data in that region
(see fig: 2.12).

Figure 2.12: Example of convolutional operation [40].

The same kernel is used throughout the entire image, as seen in fig: 2.12. By
using this method, fewer parameters are needed and it is guaranteed that the char-
acteristics picked up by the kernel will be identified regardless of where they are
in the picture. To add non-linearity after the convolution operation, an activation
function is usually used; the ReLu is most frequently utilized. To lower the di-
mensionality of the output, a pooling layer is placed after the activation function.
There are several different kinds of pooling algorithms; one of them is called max
pooling, which summarizes the most important characteristics of the tensors by
choosing the maximum value from a predetermined region of pixels.

2.5.4 Recurrent Neural Network
In some cases, we may want to model where the input of the previous step affects
the output. A particular kind of feed-forward neural network called a Recurrent
Neural Network (RNN) uses information from the past state to produce the
current state. This this translates into a special model that work with two inputs:
the input data and the previous state (fig: 2.13).
These networks are specifically used for learning language models (after reading,
predicting the next sentence) and event prediction in the context of textual data.
The basic RNN cell, also known vanilla RNN cell, processes inputs sequentially
while preserving a hidden state h that stores the data processed up to that point.t.
The hidden state is calculated using eq: 2.24 by applying a non-linear activation
function, which is typically tanh.

ht = tanh(Wxxt + Whht−1) (2.24)
Where:

• ht: hidden state at time t

33

Background

Figure 2.13: RNN computational graph [41]

• xt: input at time t

• Wx: weight matrix associated to the input xt

• Wh: weight matrix associated to the hidden state ht

The vanilla cell is not commonly used in practice, primarily due to issues that arise
in the flow of backpropagation [42] (see fig: 2.14):

• The exploding gradient problem occurs when gradients of the loss increase
untile it become very large during the backpropagation process. Indeed, if the
weight matrices W have values greater than 1, the product of these matrices
will cause the gradients to increase exponentially with the number of time
steps, leading to very large values. This cause loss divergence, with weights
of the network that varying in an unstable manner, causing instability during
training. The exploding gradient problem can be mitigated by using gradi-
ent clipping, which insert a limit on the value of the gradient norm during
backpropagation.

• The vanishing gradient occurs when the gradient of the loss function be-
comes very small. This is a consequence of the fact that at each step of
backpropagation, the gradient is multiplied by the weight matrix W . Indeed
if this matrix has values less than 1, the repeated products will cause the
exponentially decrease of the gradient, accordingly with the number of time
steps. In this situation the model will not able to learn and retain information
over long temporal sequences, the only way to solve this issue is to change
the architecture to utilize cells that support this type of problem, like LSTM
and GRU.

Long-Short Term Memory(LSTM) cell is an improvement of vanilla cell. It prevents
the vanish gradients introducing a gating mechanism, it obtain great success in
remembering information for long periods of time. The LSTM’s gating system
consists of four gates:

34

2.5 – Artificial Neural Networks

Figure 2.14: Vanilla RNN gradient flow [43].

• Forget Gate f : Whether to erase the cell

• Input Gate i: Whether to write the cell

• Output Gate o: How much to reveal cell

• Gate Gate g: How much to write to cell

Unlike the vanilla RNN, the cell is composed of two states: the hidden state h and
the cell state c. The different gates are described by the eq: 2.25-2.28

Figure 2.15: LSTM cell [44].

it = σ(Wi · [ht−1, xt]) (2.25)

ft = σ(Wf · [ht−1, xt]) (2.26)

ot = σ(Wo · [ht−1, xt]) (2.27)

gt = tanh(Wg · [ht−1, xt]) (2.28)

While the state of LSTM cell is described by the eq: 2.29, 2.30

ct = ft ∗ ct−1 + it ∗ gt (2.29)

ht = ot ∗ tanh(ct) (2.30)

35

Background

To compute the cell state ct−1 (eq: 2.29) at the timestep t , the process involves the
previous cell state ct−1 passing through the forget gate ft, which determines how
much of the previous state ct−1 we want to forget. Simultaneously, the input gate
it regulates how much of the new input information xt we want to add to the cell
state.
For the computation of the hidden state ht (eq: 2.30), the process use the cell state
that pass through the output gate ot, the output gate is delegated to determine
how much information to reveal externally.
The reason why the vanishing gradient does not occur in the LSTM cell is due
to the fact that during backpropagation from ct to ct−1 (red arrows fig: 2.15) is
computed only element wise multiplication by f, in this way the multiplication by
the weight matrix W that until now caused the gradient to vanish not happen
anymore. This change in architectural enables the LSTM to obtain good results
also with larger timesteps, allowing it to maintain and learn dependencies over
much longer sequences compared to traditional RNNs.

2.6 Neuromorphic Engineering
Neuromorphic computing, is a computational approach designed to emulate be-
havior and architecture of biological nervous systems found in our brain. In recent
years there has been an increase in the usage of ANN. Neuromorphic computing
is gaining more and more traction in the scientific community, as it offers a valid
and more efficient alternative to classical ANN models. Neuromorphic comput-
ing adopts an innovative approach based on asynchronous events. It differs from
traditional models which continuously process information sequentially, in that it
is inspired by biological sensors such as the retina or cochlea which only process
information when there is a variation in the signal, instead of having a continuous
sampling which would be more costly. Signals are only generated when a change
occurs, and the signal is referred to as a "spike" . The fundamental components
of this model are spiking neurons, which are interconnected to form a Spiking
Neural Network (SNN). Each neuron processes spikes independently and remains
inactive when no input is present. This alternative method of processing signals
is an innovation compared to the classic Artificial Neural Networks (ANNs) mod-
els which instead process input signals continuously. Furthermore, this method
emulating the functioning of the human brain, allow the user to enhancing effi-
ciency and potentially increasing computational power for specific tasks. However,
it is important to highlight some of the limitations associated with these models,
particularly during the implementation phase. These challenges introduce many
difficulties caused mainly by hardware constraints related to the use of neuromor-
phic hardware. These limitations should always be given due importance so that
the full benefits of neuromorphic technologies can be exploited.

36

2.7 – Spiking Neural Network

2.7 Spiking Neural Network
Over the past decade, deep neural networks have achieved significant success across
various domains. However, these networks are highly resource-intensive, demanding
substantial energy consumption, extensive data, and considerable computational
costs. The amount of energy consumption is increased during years, at rate of 10
x from 2012 to 2019, example of this can be GPT-3, with 175 billion learnable
parameters, with estimated energy consumption around 190 000kwH [45].
Our brain with lot of sensors in input utilizes 10/20 W to process information, if
our brains dissipated as much heat as state-of-the-art deep learning models, then
natural selection would have wiped humanity.

As mentioned earlier, neuromorphic engineering imitates the behavior of our
brain, to works with this branch some requirements are necessary:

• Neuromorphic sensors: Neuromorphic sensors capture only changes in signals
rather than recording data at consistent intervals, enabling more efficient and
targeted data collection.

• Neuromorphic Algorithms: Algorithms that learn to make sense of spikes, the
are known as Spiking Neural Networks.

• Neuromorphic Hardware: Hardware that take inspiration by the human brain,
it’s designed to make task in brain-like manner. Neuromorphic model simu-
lated in this hardware require less energy and works faster compared to model
elaborated on conventional hardware

The main goal is to combine the optimal Artificial Neural Network (ANN), that
has already demonstrated good performance in lot of task, with Spiking Neural
Network (SNN), that allow us to achieve better performance in terms of energy
efficiency and speed.
In fig: 2.16 are reported some examples where energy efficiency and low inference
time is a crucial requirement.

2.7.1 Biologically Neuron
Biologically Neurons (or Spiking Neuron) are the essentials cells that are responsible
for the proper functioning of the nervous system. These component when are
electrically excited generate action potential called spikes. The human and animal
nervous system is composed of a set of connected neurons, which communicate
through spikes.

As can be seen from the figure 2.17, the neuron is composed mainly of 4 com-
ponents whose functioning can be summarized as follows:

• Dendrites: Are a fundamental part of the neuron, enabling it to receive
signals from other neurons, these structures are characterized by an intri-
cate branching, similar to the branches of a tree,they are collocated in the
extremities part of the neuron. Each neuron is composed by a lot of dendrites.

37

Background

Figure 2.16: Main fields of use of Spiking Neural Networks [45].

Figure 2.17: Structure of Biological Neuron taking inspiration from [46].

• Soma: Is a key component whose task is to receive signals from dendrites,
process them and generate a response. Soma (or body) is characterized by a
membrane potential, that can be heightened by excitatory inputs or dimin-
ished by inhibitory inputs originating from dendrites. Since the membrane
potential is not perfectly isolated there may be losses, which cause a decrease
in the membrane potential in the absence of input spikes up to a resting value.
When membrane potential reach a certain threshold it emit a spike, and the
membrane potential turn into the rest value. Choose the right value for this
threshold is a crucial task, indeed it ensures that the neuron fires an action
potential only when it receives a sufficiently strong signal.

• Axon: The primary role of the axon is to conduct electrical signals away
from the cell body to other neurons.

38

2.7 – Spiking Neural Network

• Axon Terminal: Terminal part of the axon, it connect it other neuron.

Figure 2.18: Synapse at the electronic microscope, taking inspiration from [47].

The action potential ranging from axons to dendrites manifests as current spikes,
in particular these spikes are connected by axons to dendrites through synapses,
synapses (fig: 2.18) are regions where an axon terminal communicates with a target
cell. Within these regions, the presynaptic cell transmits the signal, while the
postsynaptic cell receives it. When spike input passes through a synapse (fig:
2.19), the membrane potential of the post-synaptic neuron increases or decreases
(depending on whether it is excitatory or inhibitory). The learning process in the
brain involves the adaptation of synaptic weights so that neurons can respond more
effectively to received inputs, giving more weight to synaptic connections that are
more active and giving less weight to those less used. This process of adaptation
and change of synapses, called synaptic plasticity. For instance: say you want to
learn to play a musical instrument, at the beginning the synaptic connections that
concern tasks such as finger movement and the reading of staff notes have weights
that can vary. Other synapses may have low weights because they are not often
used, as we train, the synapse weights that allow us to have a regards (like playing
the right note at the right time) will increase, those that are not relevant to our
goal will be decreased.

2.7.2 Neural Code
By Neural Code we mean how the human brain represent the information. Despite
being the subject of many studies, understand fully Neural Code is even in our days
an open challenge. Common point among these theories are "the three S’s", where
means:

• Spikes: In the brain, the communication between neuron is done by broad-
casting trains of action potential (around 100 mV) called spikes. Neurons

39

Background

Figure 2.19: The figure shows real neurons stained with a fluorescent substance
communicating with each other [48].

communicate through the presence or absence of spikes rather than variations
in their intensity. In common artificial neuron, information is represented by
high precision numbers, so when performing operation like multiplication is
necessary converting them to integer, this introduce delay, in contrast Spik-
ing Neural Network simplifies this process, indeed information is represent by
spike, which is a binary information, in this way multiply a weight by a spike
reduce the amount of computation.

• Sparsity: Refers to the concept that neurons in the human brain spent ma-
jor of their time at rest, storing only non-zero elements significantly reduces
memory consumption, especially in large datasets or complex models. Var-
ious methods are used to represent sparse data, storing only the indices of
non-zero positions and their corresponding values.

• Static Suppression: In sensory systems like the visual and auditory systems,
neurons exhibit mechanisms that enhance their responsiveness to dynamic
and changing stimuli while suppressing responses to static stimuli

2.7.3 Neuron Model
ANN and SNN can model the same type of problem, but their neuron model is
different:

• ANN: In the ANN the neuron model take in input the weighted sum of inputs,
pass it to an activation function, that is a non linear function like ReLu, this
compute the output of the neuron.

40

2.7 – Spiking Neural Network

• SNN:In Spiking Neural Network, instead of passing the result through a sig-
moid or rectified linear unit (ReLU), the weighted sum contributes to the
membrane potential U(t) of the neuron. If the neuron is sufficiently excited
by this weighted sum and the membrane potential reaches a certain thresh-
old θ, the neuron will emit a spike to its subsequent connections, most of the
input are spikes that arrives in different time instant, fig: 2.20 illustrate the
behavior.

Figure 2.20: Spike Input in Spiking Neuron Model [45].

2.7.4 Encoding/Decoding Spikes
Inspired by the functioning of the brain, spikes were chosen for the input and
output of neurons in the spiking neural network. The fundamental question is: “If
all spikes are considered equal, how can they carry information?” To address this,
two cases must be distinguished (fig: 2.23) :

• Input Encoding: How can we convert input information into spikes?

• Output Decoding: How we can interpret the information of spikes?

Input Encoding

Input encoding is used not only for continuous and sequential data but it is possible
to use it in data such as images and treat them as DC signals, there are mainly 3
encoding mechanisms:

• Rate Coding:This method converts input intensity into a firing rate or spike
count. For instance, if we have an intense input we expect that the encoding
generate a higher number of spikes within a given time frame fig: 2.21.

41

Background

• Latency Coding:This method converts input intensity into a spike time. A
more intense input would cause the neuron to spike earlier compared to a less
intense input fig: 2.22.

• Delta Modulation: This method converts temporal changes in input in-
tensity into spikes and remains otherwise silent. In other words, spikes are
generated only when there is a change in input intensity, rather than in re-
sponse to the absolute intensity of the input itself

Figure 2.21: Rate-coded input pixel.
An input pixel of greater intensity
corresponds to a higher firing rate
[45].

Figure 2.22: Latency-coded input
pixel. An input pixel of greater in-
tensity corresponds to an earlier spike
time [45].

Previous techniques generally involve "converting" data into spikes. However, it
is more efficient to capture data directly in a "pre-encoded" spiking form. This is
possible with devices such as Dynamic Vision Sensor (DVS) [49] cameras and Sili-
con Cochleas [50] that uses delta modulation to record changes in visual or auditory
scenes. These devices are able detect variations in their environment and convert
them into spikes without the need of additional conversion steps. Dynamic Vision
Sensor is an imaging sensor that use the local changes in brightness, in this cam-
era each pixel functionally independently and asynchronously, they report changes
in brightness as the occur while remaining inactive otherwise, same operation in
Silicon Cochleas that mimic human ear, and use delta modulation when it record
changes in auditory sensor.
However, it’s important to note that encoding technique are still under development
and research. Even though methods such as Rate Coding, Latency Coding and
Delta Modulation has demonstrated promising results, there are many challenges
to be addressed and improvements to be implemented. The scientific community
is working on this topic, for instance the paper [51] presents a comprehensive com-
parison of various spike encoding techniques for converting time-varying signals
into spike trains, using a Spiking Convolutional Neural Network (sCNN) for clas-
sification tasks. Furthermore, it proposes a benchmarking pipeline that includes
preprocessing steps, feature extraction, and model compression, thereby providing
valuable insights for optimizing encoding methods in embedded machine learning
applications.

42

2.7 – Spiking Neural Network

Output Decoding

Regarding the output, we require techniques that enable us to interpret the output
spikes:

• Rate Coding: The predicted class is represent by the neuron with the high-
est firing rate.

• Latency Coding: Chose the neuron that fires first.

• Population Coding: The limitation of processing only two or three spikes
within a reaction time of 250 ms is due to the average firing rate of neurons,
which is approximately 10 Hz. This means a neuron fires an impulse every
100 ms. Consequently, in 250 ms, a neuron can emit about two or three
impulses. To overcome this limitation and achieve more effective and rapid
processing, population coding aggregate information from a larger number of
neurons.

Rate Codes is more tolerance to error, indeed if a neuron fails to fire there are
more spike to reduce this error, using more spikes we have a stronger signal for the
backpropagation; on the other hand, Latency Codes produce less spikes in output
this implies less dynamic power dissipation in tailored hardware.

Figure 2.23: Example Strategies for Interpreting Input Spikes and Output Spikes
[45].

2.7.5 How to train a Spiking Neural Network
As we saw earlier the output of a neuron has several interpretations, this implies
a variety of training methods, each of them must take into account the dead neu-
ron problem: being the Spike out function an Heaviside function centered in the

43

Background

threshold, we have that for point that are different from θ ∂S
∂U

= 0, but for S(t) = θ
we have ∂S

∂U
= ∞, this introduce a problem in the gradient step, to overcome this

problem over the years were introduce different methods which are:

• Shadow Training: Instead of training directly in a Spiking Neural Network,
what state of the art method propose is to training on a shadow ANN and
convert it into a Spiking Neural Network, in this way as well as overcome dead
neuron problem, is that conventional deep learning methods can be applied
to SNN. Shadow Training is used in task of computer vision, but the usage of
ANN during training implies the low training efficiency. Where training effi-
ciency is not important and input data are not time-varying shadow training
could be considered the optimal decision, example of Shadow Training can be
founded in paper [52].

• Backpropagation of Spikes in time: Another possible solution, to train
a Spiking Neural Network and avoid Dead Neuron Problem is to take the
derivative at spike times, unlike the spikes themselves, which are discontin-
uous events, spike timings exhibit continuity. This approach present some
limitations like for instance the fact that once the neurons become inactive
their weights become frozen, and applying solution to fix this can introduce
less precision, more example can be founded in paper [53].

• Surrogate Gradient: An alternative method to overcome dead neuron prob-
lem is the surrogate gradients, this method propose to replace the non differen-
tiable function during backward pass with a differentiable function, surrogate
gradient is used in lot of state of the art method such as [54]. As default
snnTorch use arcTan function.

Figure 2.24: In the context of surrogate gradients, the spike generation func-
tion is approximated as a continuous function during the backward pass [55].

44

2.8 – Biological Neuron Models

2.8 Biological Neuron Models
This chapter explores the evolution of neural network models, following their path
from the early binary models that were modeled after McCulloch-Pitts neurons
to the more contemporary spiking neuron models that more closely resemble bio-
logical neuron dynamics. To further explore how these ideas have influenced the
development of more complex computational units, such as the Integrate-and-Fire
(IF) and Leaky Integrate-and-Fire (LIF) neurons, we also look at the seminal work
of Louis Lapicque, who presented the first mathematical model for neuronal ex-
citability. Lastly, the Izhikevich model renowned for its adaptability in recreating
a broad spectrum of neuronal firing patterns is examined.

2.8.1 The Three Generations of Neural Network Models
Artificial neuron can be classified into three categories, according to their computa-
tional units. The first generation of artificial neurons is based on McCulloch-Pitts
neurons [56], which laid the foundation for the development of Artificial Neural Net-
works. These neurons use binary threshold activation functions, where the output
is either 0 or 1, depending on whether the input surpasses a certain threshold.
This model contributed significantly to the development of Multilayer Perceptrons,
Boltzmann Machines, and Hopfield Networks, marking a key step in the early ex-
ploration of neural computation.
Second Generation of artificial neurons introduce activation functions, which
are a key element, without it the output of the neuron would be just a linear
combination of input, using activation function we can describe also non-linear re-
lationship. An example of non linear activation function is sigmoid function defined
as: σ(x) = 1

1+e−x . Typical network of this generation are Feedforward Neural Net-
work, and Recurrent Neural Network. A notable characteristic of second-generation
neural networks is their support for learning algorithms based on gradient descent,
such as backpropagation. This allows the networks to adjust their weights itera-
tively to minimize error, leading to more accurate models over time. The second
generation of neural networks represents a significant advancement over the first,
introducing computational units that employ activation functions. Recent studies
have demonstrated that visual pattern analysis and classification can occur in just
100 milliseconds in humans and macaques, while the time required to encode in-
formation in artificial neuron of second generation is much greater [57].
This point of criticism prompted researcher to the discovery of the third gener-
ation [57]. Third generation neurons use spiking neuron as computation unit,
this model emulate how biologically neuron system encode information, through
the timing of spikes. This new way to model artificial neurons model promises not
only to increase our knowledge of the functioning of the human brain, but also to
develop more efficient and faster neural technologies.

45

Background

2.8.2 Louis Lapique’s Intuition

An important contributions to understanding the neural excitability was given by
Lous Lapicque. Lous Lapique, was a French physiologist active in the late 19th and
early 20th centuries. Before him, researcher like Luigi Galvani had demonstrated
that nerves could be excited electrically, but the stimuli were challenging to control
and quantify. A fundamental study was published by Lapique in 1907 [58], in which
he introduced a model able to explain the neuronal excitability. This model was
based on a simple electrical circuit with a capacitor. Through experiments on frog
nerves, Lapicque compared the responses of these nerves to electrical stimulation
with the predictions of his model. Lapique stimulated a nerve fiber in a frog’s leg
using an improvised current source, he observed how long it took for the leg to
contract according to the amplitude and duration of the applied current, Lapicque
concluded that a neuron generating pulses roughly resembles a low-pass filter circuit
in fig: 2.25 composed of a resistor RM and a capacitor CM , later referred to as
integrated-and-fire neuron (IF)

2.8.3 Integrate-and-Fire

Integrate and Fire neuron starts from the assumption that the capacitor represent-
ing the membrane potential behaves like an ideal capacitor, therefore is a perfectly
isolated capacitor. The Integrate and Fire neuron can be described by the circuit
in fig: 2.26, and by the following equation:

CM ·
dV

dt
= I(t) (2.31)

By rearranging this expression to determine the temporal evolution of the voltage,
we obtain equation:

V (t) = 1
CM

∫︂ t

t0
I(t) dt (2.32)

The temporal evolution of the membrane potential and the current output in
response to both constant current input and spike current input can be observed fig:
2.27 Analyzing the fig: 2.27, in present of constant current in input the membrane
voltage increase linearly, until it reach the threshold. Upon reaching it, the voltage
turn to rest value and spike in output is emitted. When the neuron is subjected to
spike current inputs, each time a spike arrives, the membrane voltage increases in
proportion to the synaptic weight associated with that particular spike Each time
the voltage of the capacitor exceed a threshold it emit a spike in output hence the
name "Integrate and Fire".

46

2.8 – Biological Neuron Models

Figure 2.25: Capacitive membrane and resistive form an RC circuit.When the
membrane potential exceeds a threshold θ, a spike is generated [45].

Figure 2.26: Integrate and Fire equivalent circuit.

2.8.4 Leaky Integrate-and-Fire

In the Integrate and Fire model, a very important assumption is made: that the
capacitor representing the membrane potential is ideal and lossless. However, in
reality, this is not possible. In reality when the capacitor does not receive input
stimuli for a defined time will end up being discharged. To model this behavior,
the Leaky Integrate-and-Fire (LIF) model incorporates a resistance in parallel with
the capacitor of the original Integrate-and-Fire (IF) circuit, as illustrated in the fig:
2.25.
LIF Model can be described by the following equation:

Cm
dVm(t)

dt
= I(t)− Vm(t)

Rm

(2.33)

47

Background

Figure 2.27: Behavior of a IF Neuron with constant current input and current
spikes input

The fig: 2.28 illustrates the behavior of the membrane potential and the output
based on the incoming inputs. As shown, in the absence of input, the membrane
potential decreases over time. The LIF neuron differs from the Leaky neuron bea-
cause, in the LIF model, once the membrane potential exceeds a certain threshold,
the neuron emits a spike, and the membrane potential is reset. While, in Leaky
neuron model, there is no reset of the membrane potential or emission of a spike.

2.8.5 Izhikevich Model
Izhikevich model [59] employs differential equations to describe the behavior of the
membrane potential and one recovery variable. Recovery variable is employed to
model the behavior of the current that allows the membrane potential to return to
rest after a spike. Izhikevich model is described by the eq: 2.34, 2.35

dv

dt
= 0.04v2 + 5v + 140− u + I (2.34)

48

2.8 – Biological Neuron Models

Figure 2.28: Simulation depicting the membrane potential U(t) reaching the thresh-
old, arbitrarily set to θ = 0.5V , which generates output spikes [45].

du

dt
= a(bv − u) (2.35)

Where:

• v potential membrane of Neuron.

• u recovery variable.

• I current in input.

• a, b, c e d parameter that describe neuron behavior.

When spike occurs, variable are upload following the behavior described in eq: 2.36

v ≥ θ , v ← c, u← u + d (2.36)
Where:

• c rest value of membrane potential.

• d variable used to update the recovery variable u after spike.

This type of model is becoming increasingly prevalent in the scientific community,
largely due to its capacity to accurately describe any firing pattern of neurons
present in the state of the art, provided that the aforementioned parameters are
correctly set.

49

50

Chapter 3

Materials and methods

3.1 Agrobot Benchmark
In the first phase of this thesis a pre-test step has been done, taking inspiration by
the agrobot model on [1]. Authors of this paper propose neural-inertial Extended
Kalman Filter able to track position of a robot using IMU and GNSS sensors in a
agriculture context, in addition they propose a neural inertial navigation dataset,
called agrobot dataset for precision agricultural tracking position, it contains 6.5
hour of recording data for a total distance of 4.5 Km outdoor and indoor.

3.1.1 Architecture
Authors of papers [1] proposed a Neural-Kalman formulation to integrate GNSS
with IMU sensors. The approach is based on a neural networks to estimate Kalman
filter’s state, incorporating accelerator gyroscope and magnetometer data. GNSS
measurements are employed for Extended Kalman filter updates. This method
effectively combines the high-resolution odometry provided by neural networks with
the long-term accuracy of GPS.

Neural Network Model

The reference neural network utilizes inertial data from sensors such as accelerome-
ters, gyroscopes, and magnetometers to estimate position. This data is particularly
used for position estimation in the absence of GPS or when the signal quality is
bad. At each time step k the network use the predicted speed a along the two
axis x and y to estimate the 2D position. The network optimizes the parameters
θ by minimizing the Mean Squared Error (MSE) loss based on the velocity. The
authors of this model have chosen a specific type of convolutional neural network
designed for handling temporal data: Temporal Convolutional Networks (TCNs),
In particular, they opted for a network composed by 8 TCN layers with 32 filters,

51

Materials and methods

and kernel size 5, follow by a fully connected layer, and finally 2 fully connected
one for speed along axis x and the other for speed along y axis. The contribution in
this part of the thesis involves replacing the neural network described above, with
the neuromorphic model outlined in chapter 3.4, thereby introducing benefits in
terms of both efficiency and results.

Neural Kalman Model

The final model is implemented through a Kalman Filter introduced in section
2.4, where the state prediction is influenced by a neural network. Specifically, the
propagate and update steps are governed by the following equations:

x̂k+1|k = Ax̂k + g(uk+1) (3.1)

Pk+1|k = APkAT + Bk+1UkBT
k+1 (3.2)

Bk+1 = ∂g

∂u

⃓⃓⃓⃓
x̂k,uk+1

(3.3)

Kk+1 = Pk+1|kHT
k+1

(︂
Hk+1Pk+1|kHT

k+1 + Rk+1
)︂−1

(3.4)

x̂k+1|k+1 = x̂k+1|k + Kk+1
(︂
zk+1 − h(x̂k+1|k, vk)

)︂
(3.5)

Pk+1|k+1 = (I −Kk+1Hk+1) Pk+1|k (3.6)

Hk+1 = ∂h

∂x

⃓⃓⃓⃓
⃓
x̂k+1|k

(3.7)

Where x represents the state described by:

x =

⎡⎢⎢⎢⎢⎣
L̂x

L̂y

vx

vy

⎤⎥⎥⎥⎥⎦
u denotes the system input ,Lx and Ly are the predicted displacements along the
x and y axes, respectively, and vx and vy are the corresponding velocities, A is the
state transition matrix:

A =
(︄

I2×2 02×2
02×2 02×2

)︄
52

3.1 – Agrobot Benchmark

g is the nonlinear function that captures the complex non-linear relationships be-
tween the system’s input and its effect on the state, yθ is the function that represent
the predicted speed along the two axis of the neural network:

g(·) =
(︂

∆t · I2×2 I2×2
)︂
· yθ(·)

The covariance matrix P (eq: 3.2) is computed using B and U , where B represents
the Jacobian of g with respect to the input, and U is the matrix encapsulating the
uncertainties associated with the input.

Regarding the update phase, the Kalman gain is calculated using several key
components:

• The predicted covariance matrix P .

• The matrix H, which represents the Jacobian computed from the observation
function h with respect to the state x.

• The matrix R, which represents the measurement noise covariance.

The Kalman gain determines the extent to which the measurement influences
the update of the state estimate; it quantifies the weight that the measurement
should have in adjusting the predicted state estimate. The final state estimate (eq:
3.5) is obtained by correcting the predicted state with the measurement residual,
which is defined as the difference between the actual measurement and the pre-
dicted measurement. Here, h represents the linear function that map the predicted
measurement using the current state estimate, and z denotes the measurements
from the GPS. Following this correction, the process covariance matrix P reflects
the uncertainty associated with the newly updated state estimate.

3.1.2 Agrobot Dataset
The proposed dataset contains a total of 6.5 hours of IMU sensor recordings. Ad-
ditionally, there are 2 hours of GPS data. The remaining hours of GPS are syn-
thetically generated. The ground truth is provided with an accuracy of ±5 cm by a
video toolbox capable of identifying a bounding box of the agricultural robot, once
this is done, the ground truth position is given by the center of the bounding box.
The dataset is divided into three phases fig: 3.1, in each of which the IMU sensors
operate at 100 Hz and the GPS at 1 Hz:

• Phase 1: Authors mounted Sparkfun Razor IMU sensor on board of the
robot, which has been bound to travel in an indoor space of dimension 3m
x 2m, it covers around 2.5Km with 3h of dataset, the GPS is synthetically
generated.

53

Materials and methods

• Phase 2: In this phase they use Bosch BNO055 IMU, and GNSS module for
GPS data, this phase was recorded on a rooftop farm of dimension 3.7m x
2.5m. The distance traveled was 1.4 km 2 hours of data were acquired.

• Phase 3: In this phase the robot was used on a real farm of strawberry in
California, the data were logged for 1.5 hours and 0.6 Km.

As I’ve mentioned only phase 2 contains GPS data, other phase generates GPS
using the ground truth, for this reason we’ve used this dataset only for preliminary
test.

Figure 3.1: Data collection setup for the Agrobot dataset. Dotted red insets show
the robot, dotted yellow insets show the ground truth setup, and the solid blue
insets show the reference landmarks. (a) Phase 1 (b) Phase 2 (c) Phase 3 [60].

54

3.2 – NCLT Dataset

3.2 NCLT Dataset
In most cases, synthetically generated data do not accurately reflect the data ob-
tained from sensors in a real-world context. For this reason, we shifted the next
step of the thesis using a dataset that offered a wide range of sensors and data not
generated synthetically. University of Michigan North Campus Long-Term Vision
and Lidar Dataset [2] (NCLT dataset) is used, the dataset is recorded across various
seasons and in differnet weather conditions on a campus in Michigan fig:3.2. The
recordings were made using a Segway robot as can be see in fig: 3.3 equipped with
multiple sensors, including an IMU, camera, LiDAR, and GPS.

Figure 3.2: Trajectories recorded on Michigan’s campus [2].

NCLT Dataset was recorded with different sensors, it support different task
such as such as SLAM (Simultaneous Localization and Mapping), dead reckoning,
place recognition, and others. The sensors in this dataset are of different price
ranges and qualities, thereby providing comprehensive data for different research
and application needs. In particular, these latter devices can be summarized as
follows:

• Velodyne HDL-32E lidar: LiDAR sensor consisting of 32 lasers with a range
of up to 100 meters, operating at a frequency of 10 Hz, it is assembled to
operate along the vertical axis.

• Pointgrey Ladybug3 camera: Camera system comprised of six 2-Megapixel
cameras, operating at 5 Hz.

• Hokuyo UTM-30LX lidar: Lidar sensor that operates within a 270-degree field

55

Materials and methods

of view at 40Hz. It is horizontally mounted to detect objects and environments
parallel to the ground

• Microstrain 3DM-GX3-45 IMU: IMU sensors containing accelerometers, gy-
roscopes, and magnetometers across all three axes at a frequency of 50Hz.

• KVH DSP-3000 single-axis FOG: Fiber optic single axis gyroscope that pro-
vides highly accurate measurements of the vehicle’s rotations, operating at a
frequency of 100 Hz.

• Garmin 18x 5Hz: Low-quality commercial GPS operating at a frequency of 5
Hz.

• NovAtel DL-4 plus RTK GPS: GPS operating at high quality thanks to the
RTK (Real-Time Kinematic) correction system. An RTK base station has
been installed on campus to provide the necessary corrections. Outdoors, it
is used as ground truth. The system operates at 1 Hz.

Figure 3.3: The Segway robotic platform used for experimental data collection.
Outfitted with an RTK GPS (1), omni-directional camera (2), 3D lidar (3), IMU
(4), consumer-grade GPS (5), 1-axis FOG (6), 2D lidars (7), and CPU (8) [2].

56

3.2 – NCLT Dataset

In the dataset are presents elements of every day life. Such as bicycles, traffic
lights, pedestrians, and automobiles, each of them contributes to have a rich and
diverse scenarios in the dataset. Have elements of this type is fundamental to have
a robust representation of typical urban scenes and activities. Pre-processing step

Name Length (Km) Duration (min:sec) Foliage Snow

2012-01-08 6.4 92:16 No No
2012-01-15 7.5 110:46 No Yes
2012-01-22 6.1 86:11 No Yes
2012-02-02 6.2 96:39 No No
2012-02-04 5.5 78:31 No No
2012-02-05 6.5 94:17 No No
2012-02-12 5.8 85:38 No Yes
2012-02-18 6.2 88:19 No No
2012-02-19 6.2 88:19 No No
2012-03-17 5.8 81:51 No No
2012-03-25 5.8 81:51 No No
2012-03-31 6.0 81:51 No No
2012-04-29 3.1 81:51 Yes No
2012-05-11 6.0 83:36 Yes No
2012-05-26 6.3 97:00 Yes No
2012-06-15 4.1 55:10 Yes No
2012-08-04 5.5 79:27 Yes No
2012-08-20 6.0 88:44 Yes No
2012-09-28 5.6 78:01 Yes No
2012-10-28 5.6 86:06 No No
2012-11-04 4.8 80:34 No No
2012-11-16 4.8 81:57 No No
2012-11-17 4.8 89:41 No No
2012-12-01 5.0 76:47 No No
2013-01-10 1.1 17:01 No Yes
2013-02-23 5.2 80:10 No Yes
2013-04-05 4.5 69:30 No Yes

Table 3.1: Data collection sessions [2].

has been done in raw data before the usage of them. This step is crucial to ensure
the quality and reliability of the data to avoids anomaly behavior during training of
the model. In this phase, all data sequences identified as outliers will be discarded
to avoid inconsistencies in the analysis, a data is considered outlier on the basis of
parameter such as synchronization between sensors, pose fix of GPS, the distance
between the GPS measurement at time t and the ground truth at time t + 1. The

57

Materials and methods

outcome of this rigorous pre-processing will be a refined dataset, where each sample
is structured as follows:

• Initial position at instant tn .

• Window of 50 measurements obtained from various sensors, ranging from time
t to time t + 1.

• Final position given by the ground truth at instant tn+1, where the ground
truth is computed with a SLAM algorithm.

To have a more truthful error measurement we decided to convert the geodetic
coordinates in radians (given by the measurements contained in the GPS of the
NCLT dataset), into ECEF coordinates, using python library pymap3d [61]. ECEF
systems uses uses the Cartesian coordinates (X,Y,Z) to represent position relative
to the center of the reference ellipsoid (we assumed the ellipsoid standard WGS84,
reference ellipsoid for most GPS on the market), while geodetic coordinates uses
the coordinates (lat,lon,h) to represent position relative to a reference ellipsoid.
Given N the radius of curvature of the prime vertical section,r the ratio between the
semi-minor axis semi-major axis in WGS84 ellipsoid, and the geodetic coordinates
in radians the ECEF coordinates, (x,y,z) are determined by the following equations:

x = (N + alt) ∗ cos(lat) ∗ cos(lon) (3.8)

y = (N + alt) ∗ cos(lat) ∗ sin(lon) (3.9)

z = (N ∗ r2 + alt) ∗ sin(lat) (3.10)

3.3 Legendre Memory Unit
The LMU (Legendre Memory Unit) is a specialized type of recurrent cell designed
to address the challenges associated with LSTM, particularly the vanishing gradient
problem that occurs with long temporal sequences.

3.3.1 Memory Cell Dynamics
The input signal u(t) is intended to be represented orthogonally in the memory
of the LMU inside a window of length θ. A form based on Legendre polynomials
allows for this orthogonalization. Orthogonality, or the idea that each component of
the signal is independent of the others, is a characteristic of legendre polynomials.
Ordinary differential equations (ODEs) are mathematical equations that describe

58

3.3 – Legendre Memory Unit

how a system evolves over time. The Legendre Memory Unit (LMU) utilizes these
ODEs to model the memory cell, the cell is described by the eq: 3.11

θṁ(t) = Am(t) + Bu(t) (3.11)
Where m(t) is a state-vector with d dimensions, A and B represents the ideal
state-space matrices determined using the Padé approximants:

A = [aij] ∈ Rd×d, aij = (2i + 1)
⎧⎨⎩−1 if i < j

(−1)i−j+1 if i ≥ j
(3.12)

B = [bi] ∈ Rd×1, bi = (2i + 1)(−1)i, i, j ∈ [0, d− 1] (3.13)
The memory cell m(t) of the Legendre Memory Unit (LMU) must represent the
input signal u(t) over a window of length θ using Legendre (from here derive the
name of the cell) polynomials of degree d− 1. The signal u(t− θ0) is approximated
as a linear combination of the Legendre polynomials and the memory coefficients
mi, as we can see by the following equation:

u(t− θ0) ≈
d−1∑︂
i=0

Pi

(︄
θ0

θ

)︄
mi(t), 0 ≤ θ0 ≤ θ (3.14)

Pi(r) = (−1)i
i∑︂

j=0

(︄
i

j

)︄(︄
i + j

j

)︄
(−r)j (3.15)

Having the various coefficients mi in eq: 3.14 independent from each other give
us the possibility to have to an improved representation. Indeed in this way each
coefficient captures distinct aspects of the signal, thereby avoiding the overlap of
information.

3.3.2 Layer Design
The LMU cell takes in input xt at a given time t and computes the hidden state
ht at that moment. The hidden state is derived from the nonlinear combination of
the current input, the memory, and the hidden state from the previous time step;

ht = f (Wxxt + Whht−1 + Wmmt) (3.16)
Where:

• f is a non linear function like tanh.

• Wx, Wh, Wm are the learned kernels.
The input signal ut in Equation 3.11 is computed using the following equation:

ut = eT
x xt + eT

h ht−1 + eT
mmt−1 (3.17)

where ex, eh, and em are learned encoding vectors, responsible for projecting rele-
vant information from xt, ht−1, and mt−1, respectively.
The cell architecture can be summarized by the unrolled scheme in fig: 3.4

59

Materials and methods

Figure 3.4: Time-Unrolled Legendre Memory Unit [62]

3.3.3 Comparison Legendre Memory Unit with SOTA meth-
ods

MNIST dataset consists of images of handwritten digits, each image has a size of 28
× 28 pixels, representing digits from 0 to 9, so there are 10 labels. The comparision
with state of the art model is made with a variant of MNIST, permuted sequen-
tial MNIST (psMNIST). This variant is designed for Recurrent Neural Networks
(RNNs). In psMNIST, the images has a size of 784x1. The pixels are then provided
to the network one at a time the network must recognize the digits and reconstruct
the input, to find the correct digits.

The table 3.2 presents the validation and test set results on the psMNIST
dataset. The data is reported from the table in [62]. The number of parame-
ter for all models are approximately 165,000, except for LMU that has 102.000
parameters. The LMU has demonstrated itself as the superior model in terms of
both accuracy and efficiency, with 102,000 parameters compared to 165,000 in other
models. Additionally, it is capable of learning rapidly, requiring only 10 epochs as
opposed to the 100 epochs needed by other models.

60

3.4 – Neuromorphic Legendre Memory Unit (L2MU)

Model Validation Test
RNN-orth 88.70 89.26
RNN-id 85.98 86.13
LSTM 90.01 89.86
LSTM-chrono 88.10 88.43
GRU 92.16 92.39
JANET 92.50 91.94
SRU 92.79 92.49
GORU 86.90 87.00
NRU 95.46 95.38
Phased LSTM 88.76 89.61
LMU 96.97 97.15

Table 3.2: Validation and test set results on the psMNIST dataset (data provided
by [63]).

3.4 Neuromorphic Legendre Memory Unit (L2MU)
The final model employed is inspired by L2MU (LIF-based Legendre Memory Unit)
[64], which was initially designed for classification tasks such as Human Activity
Recognition. The model has been adapted for a regression task, specifically distance
traveled estimation taking in input multi sensors data.

3.4.1 Data structure
To handle the sequential data from the various sensors in the NCLT dataset, a
windowing phase was implemented with a window size of 1 second, corresponding
to 50 raw data of IMU and a stride of 100 milliseconds. The data used in the model
were extracted from the dataset taking in consideration two different contexts: one
in which the initial position is provided by the ground truth (GT), this require the
model to calculate the distance traveled, and another where the initial position is
provided by GPS, necessitating the model to estimate the traveled distance and
correct the GPS error. The dataset consists of 27 logs, of which 4 were used for
testing, 4 for validation, and the remaining logs for training.

3.4.2 Encoding
The first part of the model consists of an encoding phase. This encoding phase is
implemented using a fully connected structure composed by three layers (i.e the
output of each neuron is the input of the of all neurons in the next layer).

In the first layer, each input channel (i.e., the input from a specific sensor along
a particular axis) is assigned to a population of LIF neurons. Here there is a an

61

Materials and methods

increasing of dimension of data and it generates a series of spikes. The spikes from
the first layer are then passed as input to the second layer, which also contains
LIF neurons. These neurons take the input data from the previous layer’s output
and construct a more unified representation. Finally the last layer refines the
information, ensuring that it is more coherent and give him as a input of the next
step to the model. The decay factors and the threshold value for each LIF neuron
were determined through a process of hyper parameter optimization through the
framework NNI.

3.4.3 Architecture Design
The L2MU cell in fig:3.5 is developed to redesign the LMU architecture with a
neuromorphic approach, the authors of this paper has converted each element into
a population of neurons. In the L2MU , the various states of the LMU architec-
ture (hidden state, memory state, and input representation u) are substituted into
neuron populations named m, h, and u respectively. These neuron populations
are employed to translate the equations used among the LMU components into
neural activity, aiming to mimic human behavior through spike-based communica-
tion. The conversion of these interactions was accomplished using the leaky neuron
model. In the neuromorphic model of the LMU, equation 3.17 is converted using a
population of neurons resulting in eq: 3.18

ut,curr = eT
x · xt,spk + eT

y · ht−1,spk + eT
m ·mt−1,spk (3.18)

The output will be the input current of the neurons, ut,curr.
Similarly, equation 3.11 is rewritten in eq: 3.19

mt,curr = A ·mt−1,spk + B · ut,spk (3.19)

Where mspk and uspk represent the spiking activities of the memory and input,
respectively, determined by the following conditions: mt,mem > Θm and ut,mem >
Θu Subsequently, the hidden state is calculated by substituting the equation with
the following:

ht,curr = Wx · xt,spk + Wh · ht−1,spk + Wm ·mt,spk (3.20)

with the corresponding spiking activity ht,spk determined by following spiking con-
dition ht,mem > Θh. The spikes of the hidden state are fed into a fully connected
layer, whose output is provided to a population of Leaky neurons. The final output
will be determined by the membrane potential of these neurons.

62

3.4 – Neuromorphic Legendre Memory Unit (L2MU)

Figure 3.5: Illustration of the neuromorphic model. Each axis channel of the re-
spective sensor has its own input channel. Connected to this input channel is an
encoding module composed of a fully connected layer, which communicates with
the L2MU cell through spikes

63

Materials and methods

3.5 snnTorch
The python snnTorch [45] library is used to build Spiking Neural Network. The
library aims to integrate neuromorphic models into modern deep learning tech-
niques, offering pre-defined pattern that can be easily used within PyTorch [65]
a popular framework for deep learning. snnTorch offers a wide choice of neuron
models, ranging from the most used as Leaky and Synaptic (2nd order leaky in-
tegrate and fire neuron model accounting for synaptic conductance)but also less
traditional as alpha(variant of the leaky integrate and fire neuron where membrane
potential follows an alpha function), Lapique and others. Additionally, snnTorch
provides surrogate gradient functions to train spiking neural networks, which helps
to overcome the spike non-differentiability issue. The package also has utilities for
handling datasets and models, tools for arithmetic operations on spikes, data trans-
lation to SNN-compatible formats, and tools for spike visualization (fig: 3.6). With
these characteristics, snnTorch becomes a comprehensive and integrated PyTorch
solution for spiking neural network building and training.

Figure 3.6: Raster plot showing the firing times of neurons at the input of a layer,
taking inspiration from plot of [45]

64

3.6 – Hyperparameter Tuning

3.6 Hyperparameter Tuning
An hyperparameter is a parameter used during the training process, but it is not
determined by it; rather, it is the responsibility of the user to set it. The selection
of these hyperparameters is crucial, as they have a significant impact on the final
model’s performance. However, due to time constraints, it is not possible to per-
form a complete tuning. The hyperparameter tuning has been done minimizing the
validation RMSE loss. When we work with neuromorphic models, there are numer-
ous hyperparameters to consider, such as decay rate and threshold for the various
neuron populations. Additionally, the model also includes traditional hyperparam-
eters, such as learning rate and batch size. Since we have a very large searchspace
we employed the Neural Network Intelligence (NNI) toolkit [66]. NNI is a
toolkit developed by Microsoft for automating machine learning (AutoML), the
goal is to find the best hyperparameters for machine learning models in efficient
way. The way in which the search for hyperparameters is carried out is driven
by an algorithm called a "tuner", it decides the order in which the various sets
of hyperparameters are searched. Within NNI there are several tuners, we opted
for a tuner algorithm called annealing, at the beginning, the annealing algorithm
starts by sampling randomly the sets of hyperparameters from the search space, as
time goes on, the algorithm does not keep sampling randomly, it tends to sample
hyperparameters that are closer and closer to the best sets already observed.

Figure 3.7: The image illustrates the process of hyperparameter optimization. In
particular, the diagram demonstrates how NNI effectively explores various combi-
nations of hyperparameters to enhance the model’s performance.

65

66

Chapter 4

Results and discussion

The results can be considered as divided into two different but closely related use
cases.

In the first use case, the Agrobot model [1] is used as a benchmark. This
model contains a Temporal Convolutional Network (TCN) that takes as input IMU
sensor data for the estimation of the state of an Extended Kalman Filter, whose
measurements come from synthetically generated GPS. IMU and GPS data are
provided by the Agrobot Dataset [1]. The goal is to obtain a Spiking Neural
Network configuration by replacing the TCN model with the L2MU model. This
not only provides gains in terms of the number of parameters and, consequently,
the memory used, but also improves the overall results.

In the second use case, a fully Spiking Neural Network model without the use
of the Extended Kalman Filter was used, with the objective of reducing the com-
putational cost introduced by the Jacobians of the Extended Kalman Filter. For
this use case, we used the NCLT Dataset, in which there are other sensors, as well
as IMU, like Wheel Encoders and Optical Gyroscopes.

In the training phase of the second use case, several experiments are carried
out involving GPS refinement and displacement prediction. In the first case,
an SNN is trained to predict the displacement from the initial position provided
by the GPS while simultaneously correcting the GPS-induced error. An analysis is
performed considering only synchronized data, in which it is pointed out how each
sensor affects the model’s accuracy.

The experiment of displacement prediction is carried out, in which the model is
responsible for predicting the displacement from a clean position, i.e., the ground
truth. Also here, an analysis is made on data from several synchronized sensors.

Both these models are used in the final test, whose objective is to estimate
the position of a moving object from different sensors under real conditions, i.e.,
with bias, GPS interruptions, and data from different sensors not always being
synchronized. In particular, the L2MU model trained for displacement prediction
is used when the initial position from a GPS is not available; otherwise, we use the

67

Results and discussion

model trained for GPS refinement.
The training of both models was performed on the CINECA supercomputing

infrastructure [67], which provided the necessary computational power to handle
the dataset and optimize the Spiking Neural Network models.

4.1 Use Case 1: Agrobot Dataset
The first use case is focused on the replacement of TCN responsible for calcu-
lating the state of an Extended Kalman Filter, Agrobot [1] is used as a baseline
benchmark. Agrobot is a model able to predict position and speed along 2 axis,
in agricolture context, in particular this model employs a Temporal Convolutional
Network (TCN), which takes as input accelerometer, magnetometer, and gyroscope
data along the three axes. The network’s prediction is used as the propagation
model for an Extended Kalman Filter, where the state includes velocity and posi-
tion along the x and y axes, and the update measurement are provided by a GPS
measurements generated synthetically. Our contribution allow to have advantages
both in terms of accuracy, particularly,in terms of efficiency, reducing drastically
the memory required. This was made possible by replacing the Temporal Convo-
lutional Network in the initial Agrobot model, responsible for performing the state
propagation of the Extended Kalman Filter, with L2MU model as can bee see in
fig: 4.2, in particular, for this use case, the L2MU model without the encoding
module was specifically utilized, as can be seen in the fig: 4.1, where the model
receives the IMU data directly as input.

Figure 4.1: In the figure, the architecture of the L2MU model for this use case is
illustrated. Notably. It differentiates from fig: 3.5 by the absence of the encoding
module. In this case, the model directly receives raw data as input.

The following metrics are used to measure the error between prediction and ground-
truth, the ground-truth is computed by a video tool able to identify the bounding

68

4.1 – Use Case 1: Agrobot Dataset

box of the interested object, the center point of this bounding box is taken to
identify the coordinates:

• Absolute Trajectory Error (ATE): RMSE between ground truth and the
corresponding point, the error is defined as the distance between the predicted
point and the groundtruth point at the same time step i, eq: 4.1

Ei =
√︂

(x̂i − xi)2 + (yî − yi)2 (4.1)

• Relative Trajectory Error (RTE): RMSE between displacement over 60
seconds between model and groundtruth, the error is defined in the eq: 4.2

Ei =
√︂

(xî − x̂i+60)2 + (yî − ŷi+60)2 −
√︂

(xi − xi+60)2 + (yi − yi+60)2 (4.2)

• Distance Relative Trajectory Error (DRTE): RMSE between displace-
ment over td seconds between model and groundtruth, where td is defined as
the average time to travel 1 meter, the error is defined in the eq: 4.3

Ei =
√︂

(xî − x̂i+td)2 + (yî − ŷi+td)2 −
√︂

(xi − xi+td)2 + (yi − yi+td)2 (4.3)

While the Root Mean Square Error (RMSE) is defined in the eq: 4.4

RMSE =
⌜⃓⃓⎷ 1

n

n∑︂
i=1

E2
i (4.4)

The results of the comparison between Agrobot, which utilizes the Temporal Convo-
lutional Neural Network, and Agrobot, which employs the proposed neuromorphic
model, are summarized in Table 4.1.
The results show that the Agrobot (L2MU) performs better than the TCN model
on every metric that was assessed. In contrast to the 2.61 m recorded for the
TCN model, the neuromorphic model’s ATE is recorded at 1.14 m. This significant
improvement is a reflection of the improved trajectory following accuracy of the
neuromorphic model.
In addition, the neuromorphic approach’s benefits are further highlighted by the
RTE, which comes in at 0.71 m as opposed to 5.28 m for the TCN. This significant
distinction implies that, even after 60 seconds, the neuromorphic model continues
to follow a more accurate trajectory. The neuromorphic model performs better
than the TCN model, also DRTE metric, which records 1.94 m compared to 1.07
m for the neuromorphic model.
Not only does the neuromorphic model exhibit improved performance measures,
but it also utilizes resources far more efficiently. Compared to the 1.12 MB of the
TCN model, its code size is far less, at just 0.048 MB. Additionally, compared

69

Results and discussion

Metric Agrobot (TCN) Agrobot (L2MU)
ATE (m) 2.61 1.14
RTE (m) 5.28 0.71
DRTE (m) 1.94 1.07
Code Size (MB) 1.12 0.048
Number of Parameter 79.8 k 12.1 k

Table 4.1: Comparison between implementation of Agrobot with Temporal Convo-
lutional Network and Neuromorphic Model. Results of Agrobot (TCN) are obtained
from the model weights uploaded to the authors’ repository.

to the TCN model’s 79.8K parameters, the neuromorphic model has 12.1K less
parameters.

Since the measures of GPS proposed by the authors of this benchmark [1] are
generated in synthetically way, we move our focus on another type of dataset which
GPS measurement are provided by real sensors, in a way that model is able to reflect
situation of our everyday life.

70

4.2 – Use Case 2: NCLT Dataset

Agrobot model with Temporal Convolutional Network.

Agrobot model with L2MU model.

Figure 4.2: In the figure above, is presents the initial architecture, while the one
below shows our implementation. As can be seen, the architecture remains largely
unchanged except for the model responsible for predicting the state of the Extended
Kalman Filter, indeed the Temporal Convolutional Network is substituted by the
L2MU model.

4.2 Use Case 2: NCLT Dataset

For the second use case of the experiments for this thesis, the NCLT Dataset [2]
was used, in view of the fact that it offers a wide range of sensors across various
price ranges in everyday life contexts, specifically, GPS data, data provided by IMU
sensors, wheel encoders, and an optical gyroscope were utilized to train and test
the model.
Since Extended Kalman Filter need to compute Jacobean matrix, it introduce
computational additional cost, for this reason to improve energy efficiency we opted

71

Results and discussion

to remove it from the model, and assign the role of predicting the displacement
entirely to the neuromorphic model.

4.2.1 Train Model
The model was trained using three configurations: IMU, IMU + Wheel Encoder,
and IMU + Wheel Encoder + Optical Gyroscope, as can bee seen in fig: 4.3 - 4.5.
For the training phase, the data is structured as follows:

• GPS data at time t− 1s.

• Sensor measurements between t − 1s and t, since the frequency of sensor is
around 50Hz the window has 50 measurement.

• Ground truth at time t.

The developed spiking neural network is trained with the objective of predicting
the final position, starting from the initial position provided by the GPS and using
sensor measurements from the different configurations over a 1-second window. The
RMSE is used as the loss function. The ground truth is provided by the authors of
the referenced paper [2], and it is calculated using a SLAM algorithm that combines

Figure 4.3: Illustration of L2MU model with IMU configuration. Each channel of
the respective sensor has its own input channel. Connected to this input channel
is an encoding module composed of a fully connected layer, which communicates
with the L2MU cell through spikes

72

4.2 – Use Case 2: NCLT Dataset

Figure 4.4: Illustration of L2MU model with IMU, Wheel Encoder configura-
tion. Each channel of the respective sensor has its own input channel. Connected
to this input channel is an encoding module composed of a fully connected layer,
which communicates with the L2MU cell through spikes

high-quality GPS and LiDAR sensors to determine the position at each moment.
Prior to training, a bias removal phase is conducted on the dataset.
A data is considered biased if it meet one of the following requirements:

• The distance in meters between the ground truth at time t and the GPS at
time t-1 is greater than 20 meters, as 20 m/s is the maximum speed recorded
by the wheel encoder.

• The difference between the time step of the GPS and the first sensor mea-
surement must not exceed 10 ms.

• The difference between the time step of the GPS and the last sensor mea-
surement must not exceed 1.05 s.

• The difference between the time step of the first and last sensor measurements
must not exceed 10 ms.

The testing phase is conducted on three logs over three different days. As shown in
Table 4.2, the quality of the GPS influence significantly the model accuracy. Since
the spiking neural network, which takes inputs from IMU sensors, wheel encoders,
and optical gyroscopes, is not able to predict GPS errors arising from factors such
as:

73

Results and discussion

Figure 4.5: Illustration of L2MU model with IMU, Wheel Encoder and Optical
Gyroscope configuration. Each axis channel of the respective sensor has its own
input channel. Connected to this input channel is an encoding module composed
of a fully connected layer, which communicates with the L2MU cell through spikes

74

4.2 – Use Case 2: NCLT Dataset

• Signal Arrival C/A: The C/A signal is transmitted by GPS satellites and is
subject to delays that can introduce errors.

• Atmospheric Errors: Atmospheric conditions affect the speed of GPS signals
as they pass through the atmosphere, especially the ionosphere. Atmospheric
errors are minimal when the satellite is directly overhead and increase as
the satellite approaches the horizon, due to the longer path the signals must
travel.

• Multipath: This issue arises from the reflection of GPS signals off nearby
surfaces.

Configuration 2013-01-10 2013-02-23 2013-04-05
GPS Error 5.2 m 5.7 m 6.2 m

RMSE (IMU) 5.10 m 5.7 m 6.15 m
RMSE (IMU+WE+OG) 5.00 m 5.5 m 6.10 m

RMSE (IMU+WE) 5.00 m 5.5 m 6.10 m

Table 4.2: Comparison of RMSE across different sensor configurations and GPS,
calculated with respect to the ground truth provided by the NCLT dataset, using
the commercial GPS as the initial position.

As previously stated, using a GPS affected by bias as the initial position introduces
error into the model’s prediction. Therefore, to assess the model’s accuracy in
predicting movement, an additional training and testing phase is conducted (Table
4.3), replacing the initial position provided by the GPS with the initial position
from the ground truth. This approach eliminates GPS-induced errors, providing a
clearer understanding of the model’s true performance in predicting movement.

Configuration 2013-01-10 2013-02-23 2013-04-05
RMSE (IMU) 0.40 m 0.45 m 0.51 m

RMSE (IMU+WE) 0.11 m 0.15 m 0.18 m
RMSE (IMU+WE+OG) 0.14 m 0.18 m 0.16 m

Mean (IMU) 0.29 m 0.30 m 0.33 m
Mean (IMU+WE) 0.08 m 0.10 m 0.11 m

Mean (IMU+WE+OG) 0.12 m 0.12 m 0.10 m

Table 4.3: Comparison of RMSE across different sensor configurations and GPS,
calculated with respect to the ground truth provided by the NCLT dataset, using
the ground truth as initial position.

As can be seen from the fig: 4.6 the accuracy of the model in predicting position is
significantly affected by the speed of the Segway Robot, indeed, as the mean velocity

75

Results and discussion

within test sets rises, the model’s accuracy declines. When the speed increases, the
ability of the model to make accurate predictions may decrease. This is because at
high speeds, even small errors in measurements or accumulated estimates can be
amplified, leading to larger deviations from the actual position.

Figure 4.6: Box Plot speed of Segway Robot in test set

4.2.2 Model Performance on Full Dataset: Including Out-
liers

For the testing phase, data that were previously considered outliers are now also
taken into account. In particular, sensor data with synchronization errors, as well
as GPS data affected by interruptions and positioning errors, are considered. Dur-
ing the testing phase, while all GPS data are taken into account, only those not
originating from interruptions or classified as potential non-outliers are used to de-
termine the initial position. If, due to these issues, the GPS cannot provide the
initial position, it is instead derived from the most recent predictions of the spiking
neural network (fig:4.7). In more detail, if the initial position is provided by GPS,
the L2MU model trained with GPS as the initial position is employed. Otherwise,
the L2MU model trained using the ground truth (GT) as the initial position is
utilized.
A GPS data is considered outlier if it deviates by more than a certain threshold
set at 12m by last prediction of the model, additionally a multivariate time series
classification model was trained to detect GPS outlier, the model called MLSTM-
FCN [68] integrates a convolutional block with an LSTM block. The architecture
includes three convolutional layers designed to extract features from temporal data,
each followed by batch normalization and ReLU activation. A squeeze-and-excite
block is incorporated into the first two convolutional layers, adaptively recalibrat-
ing feature maps based on their relevance, thereby enhancing the model’s accuracy.
Following the convolutional block, an LSTM layer captures sequential dependencies
in the multivariate data. MLSTM-FCN model was trained with a window size of

76

4.2 – Use Case 2: NCLT Dataset

1000 GPS data, with the aim of detecting if the last GPS data of this window is
an outlier, and then tested with the same test set of position predictions, achieving
an accuracy of 88%.

Figure 4.7: The figure illustrates the model architecture used for the testing phase.
The initial position for the model’s prediction can either be sourced from the latest
prediction of the L2MU model in the presence of GPS outliers, in this case L2MU
trained with initial position provided by ground truth is used, while if the initial
position is provided by GPS L2MU trained with GPS is used.

In this section are presents experiments about how different sensors can estimate
the position of a moving object, and the importance of synchronization in multi
sensors context. The model was evaluated under three different configuration:

• IMU.

• IMU combined with Wheel Encoder (WE).

• IMU with both Wheel Encoder and Optical Gyroscope (OG) .

The primary object was to asses the model’s ability to predict position both in
contexts where initial position can be provided by GPS as well as in contexts where
GPS are not available or is affected by bias. Three test set are defined to explore
different context, starting from a context in which GPS interruptions or biases are
minor, leading up to a context where GPS conditions become critical.
The Table 4.4 shows the results obtained using only IMU sensors operating at 8
Hz. The L2MU model’s RMSE is slightly higher than GPS in the 2013-01-10 test
(13.71 m compared to 13.04 m). However, in subsequent tests, the L2MU model
significantly outperforms GPS, particularly in the 2013-04-05 test, where the RMSE
is 18.90 m compared to 636.03 m for GPS. This indicates that the L2MU model
delivers greater accuracy than GPS under more challenging conditions. Initial
position contribution represent the percentage of the time in which initial position
is provided my L2MU model, and not by GPS.

77

Results and discussion

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 13.71 m 25.65 m 18.90 m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 8.91 m 12.34 m 10.06 m
Initial Position Contribution (%) 17.67% 25.7% 23.51%

Table 4.4: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU sensors, operating at a frequency of 8 Hz.

The Table 4.5 presents the results obtained using both IMU and Wheel Encoder
sensors at 8Hz. Although the L2MU model initially shows improved RMSE com-
pared to the IMU-only setup, particularly in the 2013-01-10 log (with an RMSE
of 11.91 m), the addition of the Wheel Encoder appears to negatively impact the
model’s performance in more challenging environments, such as the 2013-02-23 and
2013-04-05 logs. In these cases, the RMSE increases to 57.93 m and 72.45 m, re-
spectively, suggesting that the inclusion of the Wheel Encoder can lead to reduced
accuracy when the model is used in harsher conditions

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 11.91 m 57.93 m 72.45 m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 8.01 m 21.39 m 27.11 m
Initial Position Contribution (%) 15.3% 16% 27%

Table 4.5: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU and Wheel Encoder sensors, operating at a frequency of 8
Hz.

The Table 4.6 includes results from using IMU, Wheel Encoder, and Optical Gy-
roscope sensors combined. This configuration produces the best results across all
sensor setups. The L2MU model’s RMSE is significantly reduced, with 11.24 m in
the 2013-01-10 log and 47.80 m in the 2013-04-05 log, well below the GPS error.
Mean values also show improvement, highlighting the system’s high precision.

78

4.2 – Use Case 2: NCLT Dataset

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 11.24 m 31.23 m 47.80 m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 7.13 m 15.74 m 20.78 m
Initial Position Contribution (%) 21.84% 25.46% 24.72%

Table 4.6: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU, Wheel Encoder and Optical Gyroscope sensors, operat-
ing at a frequency of 8 Hz.

It was decided that additional tests should be conducted at 1 Hz due to the
common limitations of commercial GPS units, such as those found in smartphones,
which often cannot operate at higher frequencies. These devices are typically con-
strained to lower frequencies in order to reduce the computational load and conserve
energy. The results of the current testing phase, which were collected at 1 Hz, are
presented in order to reflect these real-world conditions.
The Table 4.7 reveal a constant performance in the IMU-only configuration, with
RMSE values of 12.03 m, 25.65 m, and 22.80 m across the logs from 2013-01-10,
2013-02-23, and 2013-04-05. These figures are similar to the findings at 8 Hz, where
all logs have somewhat lower RMSE. For example, the findings for the more compli-
cated situations (2013-02-23 and 2013-04-05) indicate improved accuracy at 8 Hz,
although the RMSE for the 2013-01-10 log at 8 Hz is 13.71 m, a slight increase com-
pared to 12.03 m at 1 Hz. This implies that more frequent data points are provided
by higher sensor frequencies, which improve accuracy in critical conditions.

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 12.03 m 25.65 m 22.80 m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 8.02 m 12.3 m 11.79 m
Initial Position Contribution (%) 32.4% 25.7% 17.42%

Table 4.7: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU sensors, operating at a frequency of 1 Hz.

The L2MU model’s performance with both IMU and Wheel Encoder sensors
running at a frequency of 1 Hz is shown in the Table: 4.8. The RMSE figures
demonstrate that the L2MU model’s performance degrades at lower frequencies,
especially in more difficult situations like the logs for 2013-02-23 and 2013-04-05,
which have RMSE values of 57.10 m and 72.81 m, respectively. The RMSE figures
for 2013-01-10 (11.91 m), which indicate a less complicated environment, are much

79

Results and discussion

lower than these results. Interestingly, there are not much changes in the perfor-
mance at 1 Hz when comparing the findings with the similar 8 Hz arrangement.
For example, the 2013-01-10 RMSE for both frequencies stays at 11.91 m, however
the 2013-02-23 and 2013-04-05 logs barely slightly increase the frequency at 1 Hz
compared to 8Hz. This suggests that increasing the sampling frequency has little
impact on improving the results for this sensor configuration.

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 11.91 m 57.10 m 72.81 m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 8.01 m 21.39 m 27.62 m
Initial Position Contribution (%) 15.3% 16.44% 27.23%

Table 4.8: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU and Wheel Encoder sensors, operating at a frequency of 1
Hz.

Performance metrics for L2MU employing IMU, Wheel Encoder, and Optical
Gyroscope sensors at a frequency of 1 Hz are shown in Table 4.9. The RMSE for
L2MU for 2013-01-10 drops from 11.24 m at 8 Hz to 9.18 m at 1 Hz, suggesting
a marginal improvement in lower frequency performance. However, the RMSE for
L2MU indicates a considerable rise at 1 Hz (41.52 m and 51.90 m) compared to 8
Hz (31.23 m and 47.80 m) when the conditions grow more difficult on 2013-02-23
and 2013-04-05. This suggest that when operating at a lower frequency, the accu-
racy of the model decreases more noticeably under unfavorable circumstances.

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 9.18 m 41.52 m 51.90 m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 6.48 m 18.41 m 22.43 m
Initial Position Contribution (%) 24.41% 21.10% 20.43%

Table 4.9: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU, Wheel Encoder and Optical Gyroscope sensors, operat-
ing at a frequency of 1 Hz.

In the preceding tests, GPS data were considered both indoors and outdoors. Addi-
tionally, in Table 4.10 - 4.12 are reported experiments conducted to entirely replace
GPS measurements in indoor contexts with the neuromorphic model L2MU . The
objective of this approach is to eliminate the disturbances and biases commonly

80

4.2 – Use Case 2: NCLT Dataset

associated with indoor (see fig 4.8-4.14) environments while evaluating the perfor-
mance of L2MU as a reliable alternative to GPS for obtaining accurate information
and localizing objects. Based on the results, the model utilizing only IMU sensors
(Table: 4.10) demonstrates superior performance compared to those incorporating
Wheel Encoders and Optical Gyroscopes (Table: 4.11 and Table: 4.12), exhibiting
lower RMSE and mean errors. This underscores the effectiveness of the L2MU
model, particularly when used in conjunction with the IMU sensor, as it consis-
tently outperforms other sensor combinations, reinforcing its potential as a reliable
solution for indoor localization challenges.

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 6.13 m 10.56 m 21.09 m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 5.33 m 7.02 m 11.14 m
Initial Position Contribution (%) 18.36% 21.93% 24.29%

Table 4.10: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU sensors, operating at a frequency of 1 Hz, where L2MU re-
place GPS in indoor context.

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 22.23 m 53.83 m 77.96m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 10.82 m 21.75 m 29.58 m
Initial Position Contribution (%) 18.36% 21.93% 24.29%

Table 4.11: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU and Wheel Encoder sensors, operating at a frequency of 1
Hz, where L2MU replace GPS in indoor context.

81

Results and discussion

Metrics and Percentage 2013-01-10 2013-02-23 2013-04-05
RMSE GPS 13.04 m 435.10 m 636.03 m

RMSE L2MU 13.30 m 38.50 m 43.24 m
Mean GPS 8.15 m 49.52 m 192.22 m

Mean L2MU 7.92 m 16.72 m 18.55 m
Initial Position Contribution (%) 18.36% 21.93% 24.29%

Table 4.12: Performance metrics, including RMSE and Mean values for GPS and
L2MU , using IMU, Wheel Encoder and Optical Gyroscope sensors, operat-
ing at a frequency of 1 Hz, where L2MU replace GPS in indoor context.

The figures in 4.8-4.14 illustrate various trajectories of the L2MU model with
IMU and GPS. the ground truth trajectory is depicted in blue, the GPS trajectory is
represented in red, it reflect good performance when the object is outside. However,
as soon as the object enters an area with weak or disrupted GPS signals, such as
inside a building, the GPS loses accuracy and may fail entirely. This is typical in
situations where GPS signals are obstructed, not only indoors but also in scenarios
like tunnels, dense urban areas, or under overhangs.

In contrast, the L2MU model is depicted in yellow and consistently estimates the
position accurately. This enables the L2MU model to maintain a reliable estimate
of the object’s position even without GPS. In particular in fig: 4.10 it’s possible to
approximately after 600 seconds, the GPS error increases in the x and y axes, which
corresponds roughly to the moment when the Segway robot enters the building. At
approximately 1500 seconds, as illustrated in fig: 4.13 in particular in y-axes, it can
be observed that the model utilizing only the IMU experiences a gradual increment
in error. This occurs because, at this moment, the system is located inside the
building and cannot obtain an initial position from the GPS. Instead, it relies
on the last predicted position provided by the model, which leads to a gradual
accumulation of error over time. It’s possible to see a similar behavior in fig: 4.14
for x-axes at approximately instant 1500.

82

4.2 – Use Case 2: NCLT Dataset

Figure 4.8: Comparison of trajectories on OpenStreetMap using Folium [69] library
based on GPS data, Ground Truth (GT), and L2MU model estimation. Test set
from NCLT Dataset [2] log 2013-01-10.

Figure 4.9: Comparison of the error along the x-axis in the first photo, and y-axis in
the second, referred to the log 2013-01-10 of NCLT Dataset, between L2MU using
IMU, L2MU using IMU + WE + OG, L2MU using IMU + WE, and GPS.

Figure 4.10: Overall comparison of trajectory and position error analysis for the
log of 2013-01-10 in the NCLT Dataset.

83

Results and discussion

Figure 4.11: Comparison of trajectories on OpenStreetMap using Folium [69] li-
brary based on GPS data, Ground Truth (GT), and L2MU model estimation. Test
set from NCLT Dataset [2] log 2013-02-23.

Figure 4.12: Comparison of the error along the x-axis in the first photo, and y-axis
in the second, referred to the log 2013-02-23 of NCLT Dataset, between L2MU
using IMU, L2MU using IMU + WE + OG, L2MU using IMU + WE, and GPS.

Figure 4.13: Overall comparison of trajectory and position error analysis for the
log of 2013-02-23 in the NCLT Dataset.

84

4.2 – Use Case 2: NCLT Dataset

Figure 4.14: Comparison of trajectories on OpenStreetMap using Folium [69] li-
brary based on GPS data, Ground Truth (GT), and L2MU model estimation. Test
set from NCLT Dataset [2] log 2013-04-05.

Figure 4.15: Comparison of the error along the x-axis in the first photo, and y-axis
in the second, referred to the log 2013-04-05 of NCLT Dataset, between L2MU
using IMU, L2MU using IMU + WE + OG, L2MU using IMU + WE , and GPS.

Figure 4.16: Overall comparison of trajectory and position error analysis for the
log of 2013-04-05 in the NCLT Dataset.

85

Results and discussion

In Table 4.13, 4.14 below are number of parameters, and size in MB of the
respective configurations multi sensors of L2MU . In Table 4.13, the IMU-only
configuration has the highest number of learnable parameters (102000) and a size of
0.41 MB. Adding Wheel Encoder (IMU+WE) reduces parameters to 69600 and size
to 0.279 MB, while the full configuration with Optical Gyroscope (IMU+WE+OG)
further decreases them to 46700 and size to 0.187 MB. Table 4.14 shows that the
IMU configuration has the fewest learnable parameters (37200) and the smallest size
(0.183 MB). In contrast, the IMU+WE configuration increases parameters to 56600
and size to 0.227 MB, with the IMU with Wheel Encoder and Optical Gyroscope
configuration having the highest parameters (124000) and size (0.497 MB).

Configuration Learnable Parameters Model Size (MB)
IMU 102 k 0.41

IMU+WE 69.6 k 0.279
IMU+WE+OG 46.7 k 0.187

Table 4.13: Comparison of models configuration for displacement prediction with
learnable parameters and model sizes.

Configuration Learnable Parameters Model Size (MB)
IMU 37.2 k 0.183

IMU+WE 56.6 k 0.227
IMU+WE+OG 124 k 0.497

Table 4.14: Comparison of models configuration for GPS refinement with learnable
parameters and model sizes.

The outcomes yielded during the training and testing phases of the model under-
score a pivotal aspect pertaining to the efficacy of a system based on multi-sensor
data: the significance of data synchronization.
During the training phase, the model was trained with a filtered dataset, whereby
data that was not aligned were discarded. This approach enabled us to ensure the
quality of the data during the training phase, where all sensors provided coherent
information and were synchronized. In this scenario, the addition of more sensors
improved the model’s performance, since each synchronized sensor contributed to
provide precise and reliable data, allowing the model to learn coherent patterns
between the different input sources.
In a real-world context, it is a fundamental to note that not all data from all sensors
are always synchronized. As highlighted in paper [70], time synchronization plays
a crucial role in multi-sensor systems, as exemplified by the case of a camera and a
LiDAR sensor. If the measurements from these sensors are not aligned, it can lead
to inaccurate and ambiguous perceptions of the environment, potentially causing
catastrophic outcomes. Similarly, in circumstances where disparate sensors are si-
multaneously acquiring data, temporal inconsistency may arise due to the latency

86

4.2 – Use Case 2: NCLT Dataset

of the sensor, the variability of the sampling interval, or the presence of interference.
The lack of synchronization can have a significant impact on the performance of the
model. Ultimately, these experiments emphasized a crucial aspect of multi-sensor
models: the synchronization of data is essential to ensure the model’s functionality
and the accuracy of its forecasts, even in more complex contexts. In the absence of
proper synchronization, the performance of the model can deteriorate significantly,
irrespective of the quality of the training data.

87

88

Chapter 5

Conclusion

With the work done in this thesis, we aimed to demonstrate how Spiking Neural
Networks (SNNs) offer a valid alternative to conventional Deep Learning architec-
tures for classic engineering tasks. In particular, we focused our research on dead
reckoning and GPS refinement.

One of the main contributions of this thesis was the adaptation of an SNN
used in previous studies for classification problems to a regression problem. The
model in question was subsequently used for two use cases. In the first use case, it
involved the replacement of a Temporal Convolutional Network (TCN) responsible
for estimating the state of an Extended Kalman Filter with the SNN adapted to
regression problems. This change led to a performance increase of 50% in accuracy
and approximately 90% in memory usage compared to the state of the art.

In a second use case, I demonstrated the feasibility of improving GPS measure-
ments using an SNN with various configurations for multi-sensor integration. In
this scenario, one network was trained for displacement prediction, while the other
was trained for GPS refinement. In this case, the neuromorphic network intro-
duced advantages over the use of GPS alone, achieving improvements of up to 98%
in critical conditions and up to 50% in less critical contexts.

One interesting element that emerged from these experiments is the importance
of data synchronization. It was observed that in situations where the integration of
multiple sensors concerned only synchronized data, this led to an improvement in
position estimation of up to 80%, while the use of multiple sensors with misaligned
data tended to degrade performance.

Future work should focus on implementing these algorithms on dedicated archi-
tectures, using NIR systems [71] to deploying on multiple hardware architecture.
These systems would fully leverage the parallel computing capabilities and energy
efficiency offered by neuromorphic systems, making them even more practical for
real-world applications.

In conclusion, while we continue to push the limits of traditional computing
technologies, neuromorphic computing is strategically positioned to play a crucial

89

Conclusion

role in the future of AI and IoT. Indeed, it has the potential to offer solutions to
the physical limits that are being reached with traditional architectures.

90

Acknowledgements

Concludendo questo importante capitolo della mia vita, desidero ringraziare tutte
le persone che hanno contribuito alla realizzazione di questa tesi.
Desidero esprimere la mia sincera gratitudine ai miei relatori, Gianvito Urgese e
Vittorio Fra, per il loro supporto e i preziosi consigli forniti durante questo per-
corso.
Grazie a mia madre, sempre pronta a fare tutto per me, rinunciando anche a qual-
cosa di personale pur di assicurarmi il meglio. Non potrò mai ringraziarla abbas-
tanza per tutto ciò che ha fatto.
Grazie di cuore a mio padre, che mi ha insegnato il valore del sacrificio e l’importanza
della dedizione per raggiungere i propri obiettivi. I suoi insegnamenti mi hanno
guidato durante tutto il mio percorso e mi hanno mostrato cosa significa lavorare
duramente per qualcosa di importante nella vita. La sua saggezza mi ha sempre
spronato a dare il massimo.
Un ringraziamento speciale a mia sorella, che, anche se non ci sentiamo ogni giorno,
è sempre presente nei momenti più importanti. So di poter contare su di lei in qual-
siasi situazione.
Un ringraziamento ai miei zii, che hanno sempre avuto fiducia in me e mi hanno
sostenuto in ogni momento del mio percorso. Il loro incoraggiamento incondizion-
ato è stato fondamentale per il mio percorso.
Un ringraziamento speciale ai miei cugini, che sono sempre stati una spalla su cui
poter contare.
Voglio ringraziare i miei coinquilini e amici, che hanno reso questo percorso molto
più leggero. Hanno mostrato un supporto e un calore tali da far sentire la casa
come una seconda famiglia. Grazie a loro, le sfide sono state più facili da affrontare
e i momenti di gioia sono stati condivisi insieme.
Un ringraziamento speciale va alla mia ragazza Marica, che da quando è al mio
fianco è diventata un sostegno costante. Ha sempre avuto cura di ogni mio stato
d’animo, trovando le parole giuste per spronarmi e aiutarmi a dare il meglio di me.
La sua fiducia in me ha avuto un impatto profondo sulla mia vita.

91

Acknowledgements

We acknowledge a contribution from the Italian National Recovery and Re-
silience Plan (NRRP), M4C2, funded by the European Union – NextGenerationEU
(Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”).
We acknowledge the EuroHPC Joint Undertaking for awarding this project access
to the EuroHPC supercomputer LEONARDO, hosted by CINECA (Italy) and the
LEONARDO consortium through an EuroHPC.

92

Bibliography

[1] Yayun Du et al. «Neural-kalman gnss/ins navigation for precision agricul-
ture». In: 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2023, pp. 9622–9629.

[2] Nicholas Carlevaris-Bianco, Arash K Ushani, and Ryan M Eustice. «Univer-
sity of Michigan North Campus long-term vision and lidar dataset». In: The
International Journal of Robotics Research 35.9 (2016), pp. 1023–1035.

[3] Catherine D Schuman et al. «Opportunities for neuromorphic computing al-
gorithms and applications». In: Nature Computational Science 2.1 (2022),
pp. 10–19.

[4] Steve B Furber et al. «The spinnaker project». In: Proceedings of the IEEE
102.5 (2014), pp. 652–665.

[5] Johannes Schemmel et al. «A wafer-scale neuromorphic hardware system for
large-scale neural modeling». In: 2010 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE. 2010, pp. 1947–1950.

[6] Charlotte Frenkel et al. «A 0.086-mmΘ212.7-pJ/SOP 64k-synapse 256-neuron
online-learning digital spiking neuromorphic processor in 28-nm CMOS». In:
IEEE transactions on biomedical circuits and systems 13.1 (2018), pp. 145–
158.

[7] Jing Pei et al. «Towards artificial general intelligence with hybrid Tianjic chip
architecture». In: Nature 572.7767 (2019), pp. 106–111.

[8] Saber Moradi et al. «A scalable multicore architecture with heterogeneous
memory structures for dynamic neuromorphic asynchronous processors (DY-
NAPs)». In: IEEE transactions on biomedical circuits and systems 12.1 (2017),
pp. 106–122.

[9] Mike Davies et al. «Loihi: A neuromorphic manycore processor with on-chip
learning». In: Ieee Micro 38.1 (2018), pp. 82–99.

[10] Jeferson Menegazzo and Aldo Von Wangenheim. «Road surface type classi-
fication based on inertial sensors and machine learning: A comparison be-
tween classical and deep machine learning approaches for multi-contextual
real-world scenarios». In: Computing 103.10 (2021), pp. 2143–2170.

93

BIBLIOGRAPHY

[11] Paolo Cudrano et al. Continual Cross-Dataset Adaptation in Road Surface
Classification. 2023. arXiv: 2309.02210 [cs.CV]. url: https://arxiv.
org/abs/2309.02210.

[12] Prashant Beldar et al. «Traveler Guide using GPS». In: International Journal
of Computer Science and Mobile Computing 3.2 (2014), pp. 406–409.

[13] Maged N Kamel Boulos and Stephen P Yang. «Exergames for health and
fitness: the roles of GPS and geosocial apps». In: International journal of
health geographics 12 (2013), pp. 1–7.

[14] Stephen C Brown, Shannon Crum, and V Stuart Foote. «GIS and GPS emer-
gency response lessons learned from the space shuttle Columbia disaster». In:
The Journal of Extension 41.4 (2003), p. 17.

[15] Alex Souza Bastos and Hisashi Hasegawa. «Behavior of GPS signal inter-
ruption probability under tree canopies in different forest conditions». In:
European Journal of Remote Sensing 46.1 (2013), pp. 613–622.

[16] Wenhong Wu et al. «LIO-fusion: Reinforced LiDAR inertial odometry by
effective fusion with GNSS/relocalization and wheel odometry». In: IEEE
Robotics and Automation Letters 8.3 (2023), pp. 1571–1578.

[17] Vittorio Fra et al. «Human activity recognition: suitability of a neuromorphic
approach for on-edge AIoT applications». In: Neuromorphic Computing and
Engineering 2.1 (2022), p. 014006.

[18] Matthias Neges et al. «Combining visual natural markers and IMU for im-
proved AR based indoor navigation». In: Advanced Engineering Informatics
31 (2017), pp. 18–31.

[19] Hongliang Ren and Peter Kazanzides. «Investigation of attitude tracking us-
ing an integrated inertial and magnetic navigation system for hand-held surgi-
cal instruments». In: IEEE/ASME Transactions on Mechatronics 17.2 (2010),
pp. 210–217.

[20] rwr.ethz.ch. https : / / rwr . ethz . ch / slides / 7 _ Slides _ Control . pdf.
[Accessed 23-09-2024].

[21] Martin Brossard, Axel Barrau, and Silvère Bonnabel. «AI-IMU dead-reckoning».
In: IEEE Transactions on Intelligent Vehicles 5.4 (2020), pp. 585–595.

[22] Kojiro Takeyama et al. «Improvement of Dead Reckoning in Urban Areas
Through Integration of Low-Cost Multisensors». In: IEEE Transactions on
Intelligent Vehicles 2.4 (2017), pp. 278–287. doi: 10 . 1109 / TIV . 2017 .
2767825.

[23] Changhao Chen et al. «Ionet: Learning to cure the curse of drift in inertial
odometry». In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. 1. 2018.

94

https://arxiv.org/abs/2309.02210
https://arxiv.org/abs/2309.02210
https://arxiv.org/abs/2309.02210
https://rwr.ethz.ch/slides/7_Slides_Control.pdf
https://doi.org/10.1109/TIV.2017.2767825
https://doi.org/10.1109/TIV.2017.2767825

BIBLIOGRAPHY

[24] Changhao Chen et al. «Deep-learning-based pedestrian inertial navigation:
Methods, data set, and on-device inference». In: IEEE Internet of Things
Journal 7.5 (2020), pp. 4431–4441.

[25] Mahdi Abolfazli Esfahani et al. «AbolDeepIO: A novel deep inertial odome-
try network for autonomous vehicles». In: IEEE Transactions on Intelligent
Transportation Systems 21.5 (2019), pp. 1941–1950.

[26] Michael Burri et al. «The EuRoC micro aerial vehicle datasets». In: The
International Journal of Robotics Research 35.10 (2016), pp. 1157–1163.

[27] Ruipeng Gao et al. «Glow in the dark: Smartphone inertial odometry for
vehicle tracking in GPS blocked environments». In: IEEE Internet of Things
Journal 8.16 (2021), pp. 12955–12967.

[28] Martin Brossard, Silvere Bonnabel, and Jean-Philippe Condomines. «Un-
scented Kalman filtering on Lie groups». In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 2485–
2491.

[29] Honghui Qi and John B Moore. «Direct Kalman filtering approach for GP-
S/INS integration». In: IEEE Transactions on Aerospace and Electronic Sys-
tems 38.2 (2002), pp. 687–693.

[30] Nelson Acosta and Juan Toloza. «Techniques to improve the GPS precision».
In: International Journal of Advanced Computer Science and Applications 3.8
(2012).

[31] Evelina Forno et al. «Techniques for improving localization applications run-
ning on low-cost IoT devices». In: 2020 AEIT International Conference of
Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE).
2020, pp. 1–6. doi: 10.23919/AEITAUTOMOTIVE50086.2020.9307411.

[32] Leonard A McGee and Stanley F Schmidt. Discovery of the Kalman filter as
a practical tool for aerospace and industry. Tech. rep. 1985.

[33] Greg Welch, Gary Bishop, et al. «An introduction to the Kalman filter». In:
(1995).

[34] A. M. Turing. «Computing Machinery and Intelligence». English. In: Mind.
New Series 59.236 (1950), pp. 433–460. issn: 00264423. url: http://www.
jstor.org/stable/2251299.

[35] Martina De Castro, Umberto Zona, and Fabio Bocci. «"L’apprendimento mac-
chinico tra Skinner box e Deep Reinforcement Learning. Rischi e opportunità.
Machine Learning between Skinner box and Deep Reinforcement Learning.
Risks and opportunities", in "Dalle Teaching Machines al Machine Learning" a
cura di Graziano Cecchinato, Valentina Grion - PREPRINT». In: July 2020,
pp. 27–33. isbn: 978-88-6938-199-7.

95

https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307411
http://www.jstor.org/stable/2251299
http://www.jstor.org/stable/2251299

BIBLIOGRAPHY

[36] Yani Ioannou. «Structural Priors in Deep Neural Networks». PhD thesis.
Sept. 2017. doi: 10.17863/CAM.26357.

[37] Carlos R. Argüelles and Santiago Collazo. «Galaxy Rotation Curve Fitting
Using Machine Learning Tools». In: Universe 9.8 (2023). issn: 2218-1997.
doi: 10.3390/universe9080372. url: https://www.mdpi.com/2218-
1997/9/8/372.

[38] John Schulman et al. «Gradient estimation using stochastic computation
graphs». In: Advances in neural information processing systems 28 (2015).

[39] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[40] Marina MM Rocha, Gabriel Landini, and Joao B Florindo. «Medical image
classification using a combination of features from convolutional neural net-
works». In: Multimedia Tools and Applications 82.13 (2023), pp. 19299–19322.

[41] Morteza Zakeri Nasrabadi, Saeed Parsa, and Akram Kalaee. «Format-aware
learn&fuzz: deep test data generation for efficient fuzzing». en. In: Neural
Comput. Appl. 33.5 (Mar. 2021), pp. 1497–1513.

[42] Yong Yu et al. «A review of recurrent neural networks: LSTM cells and net-
work architectures». In: Neural computation 31.7 (2019), pp. 1235–1270.

[43] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. «Learning long-term
dependencies with gradient descent is difficult». In: IEEE transactions on
neural networks 5.2 (1994), pp. 157–166.

[44] Praveen Venkatesh, Rwik Rana, and Varun Jain. Memory Guided Road De-
tection. June 2021. doi: 10.48550/arXiv.2106.14184.

[45] Jason K. Eshraghian et al. «Training Spiking Neural Networks Using Lessons
From Deep Learning». In: Proceedings of the IEEE 111.9 (2023), pp. 1016–
1054. doi: 10.1109/JPROC.2023.3308088.

[46] Wikipedia contributors. Biological neuron model — Wikipedia, The Free En-
cyclopedia. [Online; accessed 6-July-2024]. 2024. url: https://en.wikipedia.
org/w/index.php?title=Biological_neuron_model&oldid=1232408002.

[47] Biosegnali del sistema visivo — hdl.handle.net. https://hdl.handle.net/
20.500.12608/32244. [Accessed 07-07-2024].

[48] Antoine Bourrier. «Graphene bioelectronics for long-term neuronal interfac-
ing in-vivo». In: 2017. url: https://api.semanticscholar.org/CorpusID:
139472009.

[49] Elias Mueggler et al. «Lifetime estimation of events from dynamic vision
sensors». In: 2015 IEEE international conference on Robotics and Automation
(ICRA). IEEE. 2015, pp. 4874–4881.

96

https://doi.org/10.17863/CAM.26357
https://doi.org/10.3390/universe9080372
https://www.mdpi.com/2218-1997/9/8/372
https://www.mdpi.com/2218-1997/9/8/372
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/arXiv.2106.14184
https://doi.org/10.1109/JPROC.2023.3308088
https://en.wikipedia.org/w/index.php?title=Biological_neuron_model&oldid=1232408002
https://en.wikipedia.org/w/index.php?title=Biological_neuron_model&oldid=1232408002
https://hdl.handle.net/20.500.12608/32244
https://hdl.handle.net/20.500.12608/32244
https://api.semanticscholar.org/CorpusID:139472009
https://api.semanticscholar.org/CorpusID:139472009

BIBLIOGRAPHY

[50] Lloyd Watts et al. «Improved implementation of the silicon cochlea». In:
IEEE Journal of Solid-state circuits 27.5 (1992), pp. 692–700.

[51] Evelina Forno et al. «Spike encoding techniques for IoT time-varying signals
benchmarked on a neuromorphic classification task». In: Frontiers in Neuro-
science 16 (2022), p. 999029.

[52] Michael Pfeiffer and Thomas Pfeil. «Deep learning with spiking neurons: op-
portunities and challenges». In: Frontiers in neuroscience 12 (2018), p. 409662.

[53] Sander M Bohte, Joost N Kok, and Johannes A La Poutré. «SpikeProp: back-
propagation for networks of spiking neurons.» In: ESANN. Vol. 48. Bruges.
2000, pp. 419–424.

[54] Sumit B Shrestha and Garrick Orchard. «Slayer: Spike layer error reassign-
ment in time». In: Advances in neural information processing systems 31
(2018).

[55] Friedemann Zenke and Tim P. Vogels. «The Remarkable Robustness of Sur-
rogate Gradient Learning for Instilling Complex Function in Spiking Neu-
ral Networks». In: Neural Computation 33.4 (Mar. 2021), pp. 899–925. issn:
0899-7667. doi: 10.1162/neco_a_01367. eprint: https://direct.mit.
edu/neco/article-pdf/33/4/899/1902294/neco_a_01367.pdf. url:
https://doi.org/10.1162/neco%5C_a%5C_01367.

[56] Michael Marsalli. «Mcculloch-pitts neurons». In: The 2008 Annual Meeting
of the consortium on cognitive science instruction (ccsi). Vol. 1161. 2006,
p. 1162.

[57] Wolfgang Maass. «Networks of spiking neurons: the third generation of neural
network models». In: Neural networks 10.9 (1997), pp. 1659–1671.

[58] Louis Édouard Lapicque. «Louis lapicque». In: J. physiol 9 (1907), pp. 620–
635.

[59] Roberto Vazquez. «Izhikevich neuron model and its application in pattern
recognition». In: Australian Journal of Intelligent Information Processing
Systems 11.1 (2010), pp. 35–40.

[60] Verena Brehm et al. «A proposal for leaky integrate-and-fire neurons by do-
main walls in antiferromagnetic insulators». In: Scientific Reports 13.1 (2023),
p. 13404.

[61] Michael Hirsch. «PyMap3D: 3-D coordinate conversions for terrestrial and
geospace environments». In: Journal of Open Source Software 3.23 (2018),
p. 580.

[62] Aaron Voelker, Ivana Kajić, and Chris Eliasmith. «Legendre memory units:
Continuous-time representation in recurrent neural networks». In: Advances
in neural information processing systems 32 (2019).

97

https://doi.org/10.1162/neco_a_01367
https://direct.mit.edu/neco/article-pdf/33/4/899/1902294/neco_a_01367.pdf
https://direct.mit.edu/neco/article-pdf/33/4/899/1902294/neco_a_01367.pdf
https://doi.org/10.1162/neco%5C_a%5C_01367

BIBLIOGRAPHY

[63] Sarath Chandar et al. Towards Non-saturating Recurrent Units for Modelling
Long-term Dependencies. 2019. arXiv: 1902.06704 [cs.NE]. url: https:
//arxiv.org/abs/1902.06704.

[64] Vittorio Fra et al. «Natively neuromorphic LMU architecture for encoding-
free SNN-based HAR on commercial edge devices». In: International Confer-
ence on Artificial Neural Networks. Springer. 2024, pp. 377–391.

[65] Adam Paszke et al. «Automatic differentiation in PyTorch». In: (2017).
[66] Microsoft. Neural Network Intelligence. Version 2.0. Jan. 2021. url: https:

//github.com/microsoft/nni.
[67] Matteo Turisini, Giorgio Amati, and Mirko Cestari. «Leonardo: A pan-European

pre-exascale supercomputer for HPC and AI applications». In: arXiv preprint
arXiv:2307.16885 (2023).

[68] Fazle Karim et al. «Multivariate LSTM-FCNs for Time Series Classification».
In: CoRR abs/1801.04503 (2018). arXiv: 1801.04503. url: http://arxiv.
org/abs/1801.04503.

[69] python-visualization. Folium. Version 0.11.0. Dec. 28, 2020. url: https://
python-visualization.github.io/folium/.

[70] Shaoshan Liu et al. «Brief Industry Paper: The Matter of Time — A General
and Efficient System for Precise Sensor Synchronization in Robotic Comput-
ing». In: 2021 IEEE 27th Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). 2021, pp. 413–416. doi: 10.1109/RTAS52030.
2021.00040.

[71] Jens E Pedersen et al. «Neuromorphic intermediate representation: a uni-
fied instruction set for interoperable brain-inspired computing». In: Nature
Communications 15.1 (2024), p. 8122.

98

https://arxiv.org/abs/1902.06704
https://arxiv.org/abs/1902.06704
https://arxiv.org/abs/1902.06704
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://arxiv.org/abs/1801.04503
http://arxiv.org/abs/1801.04503
http://arxiv.org/abs/1801.04503
https://python-visualization.github.io/folium/
https://python-visualization.github.io/folium/
https://doi.org/10.1109/RTAS52030.2021.00040
https://doi.org/10.1109/RTAS52030.2021.00040

	List of Figures
	List of Tables
	Introduction
	Background
	Sensors: Functional Analysis and Potential Applications
	Global Positioning System (GPS)
	Inertial Measurement Unit (IMU)
	Wheel Encoder
	Light Detection and Ranging (LiDAR)

	Dead Reckoning
	Why use Dead Reckoning?

	GPS Refinement
	Why use GPS Refinement?

	Kalman Filter
	Kalman Filter for Linear System
	Kalman filter for non-Linear systems

	Artificial Neural Networks
	Neural Network and Neuron Perceptron
	Training Neural Network
	Convolutional Neural Network
	Recurrent Neural Network

	Neuromorphic Engineering
	Spiking Neural Network
	Biologically Neuron
	Neural Code
	Neuron Model
	Encoding/Decoding Spikes
	How to train a Spiking Neural Network

	Biological Neuron Models
	The Three Generations of Neural Network Models
	Louis Lapique's Intuition
	Integrate-and-Fire
	Leaky Integrate-and-Fire
	Izhikevich Model

	Materials and methods
	Agrobot Benchmark
	Architecture
	Agrobot Dataset

	NCLT Dataset
	Legendre Memory Unit
	Memory Cell Dynamics
	Layer Design
	Comparison Legendre Memory Unit with SOTA methods

	Neuromorphic Legendre Memory Unit (L2MU)
	Data structure
	Encoding
	Architecture Design

	snnTorch
	Hyperparameter Tuning

	Results and discussion
	Use Case 1: Agrobot Dataset
	Use Case 2: NCLT Dataset
	Train Model
	Model Performance on Full Dataset: Including Outliers

	Conclusion
	Bibliography

