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Summary

In recent years, the study of networked systems has been developed in various fields, from
control theory to robotics, computer networks, and biological systems. The ability of
individual agents to achieve synchronization is a fundamental property that ensures consensus,
i.e. coordinated behavior in systems composed of multiple entities. Such systems are prevalent
in many real-world applications, including power grids, robotic swarms and sensor networks.
Synchronization and consensus are crucial for the functionality of these networked systems,
where agents must work together to achieve common objectives despite operating under
different constraints and conditions. The challenge of synchronization becomes particularly
complex in multi-agent systems with nonlinear dynamics, where partial information, limited
communication, and decentralized control schemes are prevalent. These challenges are even
more difficult when the agents are heterogeneous or when the network topology varies over
time. In general, achieving synchronization requires robust control strategies that can still
satisfy consensus. This thesis explores new methodologies for achieving synchronization in
networks of nonlinear agents with dynamical interconnections, with a focus on observer-based
control laws. The primary objective is to extend existing theoretical frameworks to develop
generalized solutions for synchronization in networks with dynamic and potentially nonlinear
interconnections. The core is about the use of high-gain observers to estimate states and
design feedback control laws that ensure convergence to a common state.

The Synchronization Problem
In multi-agent systems, synchronization refers to the process of synchronizing the state or
output of all agents. This is critical in many applications, such as coordinated control of
drones and synchronization of oscillators in power grids. However, several challenges must be
addressed:

• Partial Information: Agents often have access to limited information about the state of
other agents due, for example, to privacy constraints or measurement noise. This neces-
sitates the design of distributed control laws that can operate with partial information.

• Decentralized Control: In large-scale networks, centralized control is impractical due
to scalability issues. Instead, agents must make decisions based on local information
and limited communication with neighboring agents, leading to decentralized and
distributed control schemes.

• Complexity and Scalability: The complexity of synchronization algorithms increases with
the number of agents and with the heterogeneity among them. Effective synchronization
methods must therefore be scalable and robust to variations in network size and agent
dynamics.



• Dynamic Topologies: Real-world networks are often characterized by time-varying
or switching topologies, which introduce additional challenges in the synchronization
problem. Methods must account for changes in communication links or in the topology
of the network.

Our goal in this thesis is to establish control laws that guarantee consensus among the agents
and to further investigate the concept of synchronization in nonlinear multi-agent systems.

Outline
In this thesis, we address the synchronization problem in a multi-agent system with the
presence of local observers, a critical issue in modern control theory and distributed systems,
with several practical applications. The study aims to develop and analyze new methods for
achieving synchronization in networks where agents are interconnected through dynamic links.
This research contributes to the broader understanding of observer-based synchronization
methods and their applications in complex, real-world scenarios.

The thesis is organized as follows:

• Chapter 1 provides an overview of the fundamental concepts of dynamical systems,
including both linear time-invariant (LTI) systems and non-linear systems. It introduces
key mathematical tools and theories, such as state-space representation and stability
analysis, which form the foundation for the subsequent chapters.

• Chapter 2 focuses on the design and application of high-gain observers, essential for
estimating the state of a system when not all states are directly measurable. This
chapter discusses the concepts of observability and detectability and extends the analysis
to nonlinear systems, highlighting the advantages of high-gain observer designs.

• Chapter 3 shifts to multi-agent systems, exploring how these systems can be repre-
sented and analyzed using graph theory. It discusses the control of networks of agents,
particularly through achieving consensus in homogeneous networks, setting the stage
for synchronization strategies discussed later.

• Chapter 4 presents the core contribution of this thesis: a novel method for synchro-
nization in networks of systems connected via dynamic links using high-gain observers.
The chapter details the problem setting, proposed solutions, and possible extensions,
such as single-input single-output (SISO) systems, reference tracking, and nonlinear
cases. A simulation example demonstrates the effectiveness of the proposed approach.

• Chapter 5 provides additional simulations to further validate the theoretical findings.
This chapter includes practical examples, such as the Van der Pol oscillator, showcasing
the versatility and robustness of the synchronization strategies developed in this thesis.

• Chapter 6 concludes the thesis by summarizing the key findings and contributions. It
also discusses potential directions for future research, such as extending the proposed
methods to more complex networks or exploring alternative synchronization techniques.

Through this structure, the thesis systematically builds on foundational concepts, in-
troduces advanced observer design techniques, and applies these methods to multi-agent
synchronization, thereby providing a comprehensive exploration of the topic.
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Chapter 1

Concepts about dynamical systems

The aim of this chapter is to highlights some features of dynamical systems. First of all,
we will analyze briefly the main characteristics of linear time invariant (LTI) systems and
afterwards we will address the main properties regarding a class of non linear systems.

1.1 Linear time invariant (LTI) systems

To describe this family of systems we can analyze the two features of them: linearity and
time invariance. These two properties are defined below.

Linearity
A linear system represented as y = f(x) is linear if it has the following properties:

f(αx) = αf(x) Scaling
f(x1 + x2) = f(x1) + f(x2) Superposition

(1.1)

where α is a constant. Linearity is a very important concept for LTI system theory because
it allows us to use various linear operations and transformations in our system so that we
can better understand it or manipulate it. Even if several real systems are not linear, we can
often linearize them around a certain point and work with this approximation.

Time invariance
Time invariance describes a function’s independence from the time, more precisely a time-
invariant system’s output will shift in time if its input shifts in time, but otherwise it will
remain exactly the same. In other words, a time-invariant function does not care what time
it is. The property of time invariance can be described as:

y(t) = f(t)

y(t− δ) = f(t− δ)
(1.2)

With δ being a number representing the time shift. Shift invariance is a crucial property of a
system because it allows us to assume that a system will respond in a predictable manner at
any time.
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1.1. Linear time invariant (LTI) systems

1.1.1 State space representation
Roughly speaking, a linear system can be described with a set of ODE (ordinary differential
equations). Although a system of ODE lends itself to describing some types of systems better,
sometimes it is still difficult to do any math on this system in its raw form. Therefore, a
formalized method for representing linear systems of differential equation has been developed,
called the state space formalization, which exploits matrix notation to represent linear sets of
ODE in a mathematically relevant way.

Example: LRC system

A LRC circuit can be described with the following set of differential equations:

ẋ1 = x2

ẋ2 =
1

LC
x1 +

R

L
x2 −

1

L
Vsrc

(1.3)

Where x1 is the charge inside the capacitor, x2 is the current flowing in to the inductor,
and Vsrc is the battery voltage (considered as an input). We can rewrite this system in
matrix form as:

ẋ =

[
ẋ1
ẋ2

]
=

[
0 1
1

LC
R
L

]
x+

[
0
− 1

L

]
Vsrc (1.4)

Supposing we want to measure the current circulating in the circuit we can write the
output equation as:

y = [0 1]

[
x1
x2

]
= x2 (1.5)

The approach can be formalized defining the system defined by:

ẋ = Ax+Bu

y = Cx+Du
(1.6)

In the previous example the matrices A,B,C,D are defined as:

A =

[
0 1
1

LC
R
L

]
, B =

[
0
− 1

L

]
, C =

[
0 1

]
, D =

[
0
]

(1.7)

Each of the matrices defined above has a specific name: A is called the space matrix, B the
input matrix, C the output matrix and D is the direct feed-through matrix. In many linear
systems the matrix D is zero (the output is not affected by the input).

1.1.2 Stability
In order to study the stability of a system, let’s start from a system represented in the state
space form:

ẋ = Ax+Bu (1.8)
Given an arbitrary system, (for instance, a second order system), the natural response of the
system is: [

ẋ1
ẋ2

]
= A

[
x1
x2

]
+B · 0 (1.9)
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CHAPTER 1. CONCEPTS ABOUT DYNAMICAL SYSTEMS

Reminding that for a differential equation the solution assume the form

x(t) = ert (1.10)

since the natural exponential function is the only function which is directly proportional to
its derivative. Putting (1.9) into (1.10) we end up with:

r

[
x1
x2

]
= A

[
x1
x2

]
(1.11)

i.e.
rx = Ax (1.12)

which has as solutions exactly the eigenvalues of the matrix A. The overall system response
will be a linear combination of all the possible solutions to the set of linear ODEs:

y(t) = a1e
λ1t + a2e

λ2t + · · ·+ ane
λnt (1.13)

where n is the number of states, λ1, ..., λn are the eigenvalues of the state matrix, and a1, ..., an
are constants which describes the relative weights of each possible solutions with respect to
the initial conditions of the system.
Since we proved that the eigenvalues correspond to the exponential constants which constitute
the system’s natural response, we may infer many of the properties of the system’s solutions.
Since we are dealing with only causal systems (i.e. t ≥ 0), the equation:

y(t) = eλt (1.14)

is stable only when the real component of the exponent is negative. In the end, we can
enclose the result in the following definition:

Definition 1. A system will have a stable natural response if and only if the real component
of all the eigenvalues of A have negative real part.

More precisely we can enunciate this theorem

Theorem 1. The point x = 0 of ẋ = Ax is stable if and only if all eigenvalues of A
satisfy Re λi ≤ 0 and for every eigenvalue with Re λi = 0 and algebraic multiplicity1 qi ≥ 2,
rank(A − λiI) = n − qi, where n is the dimension of x. The point x = 0 is asymptotically
stable if and only if all eigenvalues of A satisfy Re λi < 0.

Definition 2. When all eigenvalues of A satisfy Reλi < 0, A is called a Hurwitz matrix or a
stability matrix.

Referring to a second order system, based on the presence of the imaginary part in the
eigenvalues, we will have different responses:

• Over Damped: Over damped behavior occurs when both eigenvalues have only real
components, and do not have the same numerical value.

1The algebraic multiplicity of an eigenvalue is the number of times that it appears as a root of the
characteristic polynomial of A

10



1.1. Linear time invariant (LTI) systems

• Underdamped: Underdamped behavior occurs when eigenvalues have real and
imaginary components, producing an oscillatory response. This is because imaginary
components within the exponential translate int a sinusoidal response due to the Euler
relation eiθ = cos θ + i sin θ.

• Undamped: A special case of the underdamped responses type occurs when the
eigenvalues have no real component. Due to the Euler relation, there will be a
sinusoidal component to the system. Without a real component, however, is missing the
term related to the decaying exponential. Therefore, the system will oscillate without
any loss in overall energy to the system.

• Critically Damped: Last case is when the eigenvalues are real and numerically
equivalent. This is manifested as a slight modification in the solution of the system,
which becomes a second order critically damped system:

y(t) = a1e
λt + a2te

λt (1.15)

where λ is the eigenvalue of the system. The presence of the second term multiplied
by t allows the contributions of two states to be represented non-redundantly in the
solution.

Figure 1.1: Impulse responses for various state-space eigenstructures
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CHAPTER 1. CONCEPTS ABOUT DYNAMICAL SYSTEMS

1.2 Non linear systems
A general non linear system can be written in the following form:

ẋ1 = f1(x1, x2, ..., xn, u1, u2, ..., um)

ẋ2 = f2(x1, x2, ..., xn, u1, u2, ..., um)

...
ẋn = fn(x1, x2, ..., xn, u1, u2, ..., um)

Where x ∈ Rn and u ∈ Rm. We will consider autonomous systems, i.e. the case in which f
does not depend explicitly on t:

ẋ = f(x) (1.16)

When we deal with non linear systems, we could face particular phenomena. To make a
comparison, consider the linear system described by

ẋ = Ax+Bu (1.17)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m.
The solution is given by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (1.18)

The expression for x(t) is linear in the initial condition x(0) and in the control function u(·).
Non linear system are those that do not satisfy these nice properties.
Moreover, the superposition principle no longer holds, and analysis tools involve more
advanced mathematics. One technique that is used is to linearize the system about some
nominal operating point and analyze the resulting linear model. But, in general, linearization
is not sufficient, we must develop tools for the analysis for nonlinear systems. This is because
linearization is an approximation in the neighborhood of an operating point, it can only
predict the local behavior of the non linear system when we are sufficiently close to the point.
In addition, the dynamics of a non linear system is way more richer than the dynamics of a
linear system. There are some phenomena that take place only in non linear systems, hence
they can not be predicted by a linear system. These are examples of non linear phenomena:

• Finite escape time: The state of an unstable linear system can go to infinity as time
approaches infinity. A non linear system’s state, however, can go to infinity in finite
time.

• Multiple isolated equilibrium points: A linear system can have only one equilibrium
point, and thus only one steady-state operating point that attracts or repels the state
of the system irrespective of the initial state. A nonlinear system can have more than
one equilibrium point.

• Chaos: A nonlinear system can have a more complicated steady-state. behavior
that is not equilibrium or periodic oscillation. Some of these chaotic motions exhibit
randomness, despite the deterministic nature of the system.

12



1.2. Non linear systems

• Limit cycles: A linear system can have a stable oscillation if it has a pair of eigenvalues
on the imaginary axis. The amplitude of the oscillation will then depend on the initial
conditions. A nonlinear system can exhibit an oscillation of fixed amplitude and
frequency which appears independently of the initial conditions.

• Multiple modes of behavior: A nonlinear system may exhibit very different forms
of behaviour depending on external parameter values, or may jump from one form of
behaviour to another autonomously. These behaviours cannot be observed in linear
systems, where the complete system behaviour is characterized by the eigenvalues of
the system matrix A.

Example: typical nonlinearities

Most common nonlinearities are:
• Relay: relays appear when modelling mode changes.

• Saturation: saturations appear when modelling variables with hard limits, for
instance actuators.

• Dead Zone: dead zone appear in connection to actuator or sensor sensitivity.

• Quantization: quantization is used to model discrete valued variables, often
actuators.

a) Relay b) Saturation

c) Dead Zone d) Quantization

13



CHAPTER 1. CONCEPTS ABOUT DYNAMICAL SYSTEMS

An example of non linear system could be the a circuit in which is present a diode, like
in the following example:

Example: Diode circuit

Consider the circuit depicted in the below figure. The tunnel diode characteristic
ir = h(vr) is plotted aside the circuit in the below figure. Choosing x1 = vc and x2 = iL
and u = E, we obtian the following equations that describe the system:

ẋ1 =
1

C
(−h(x1) + x2)

ẋ2 =
1

L
(−x1 −Rx2 + E)

(1.19)

The equilibrium points of this systems are determined by setting ẋ1 = ẋ2 = 0, so we
obtain

0 =
1

C
(−h(x1) + x2)

0 =
1

L
(−x1 −Rx2 + E)

(1.20)

Therefore, we obtain for the equilibrium points:

h(x1) =
E − x1
R

(1.21)

for certain values of E and R, this equation has three isolated roots which correspond
to three isolated equilibrium points of the system. The number of equilibrium points
might change as the values of E and R change.

(a) Diode circuit (b) Diode characteristic curve

1.2.1 A particular case: Second order systems
Second order autonomous systems occupy a very important role in the analysis of nonlinear
systems, since their trajectories can be represented in the 2D-plane. This allows us to visualize
the behavior of the system. Main aspects of second order systems are:

• Behavior near equilibrium points

• Nonlinear oscillations

14



1.3. Ordinary Differential Equations

• Bifurcations

A second-order autonomous system is represented by two scalar differential equations:

ẋ1 = f1(x1, x2), x1(0) = x10

ẋ2 = f2(x2, x2), x2(0) = x20
(1.22)

The locus in the (x1, x2)-plane of the solution x(t) for all t ≥ 0 is a curve that passes through
the point x0. This plane is usually called phase plane. The vector f gives the tangent vector
to the curve x(·).

Definition 3. We obtain a vector field diagram by assigning the vector (f1(x), f2(x)) to every
point (x1, x2) in a grid covering the plane.

Definition 4. The family of all trajectories of a dynamical system is called the phase portrait.

To have an example, the following picture show the phase portrait of the circuit analyzed
in the previous example:

Figure 1.5: Diode phase portrait

1.3 Ordinary Differential Equations

1.3.1 Existence and Uniqueness
In this chapter some results about ordinary differential equations are presented, like existence
and uniqueness. These properties are crucial for the state equation ẋ = f(x, t) to be an
useful mathematical model of a physical system. For the mathematical model to predict the
future state of the system from its current state at t0, the initial-value problem

ẋ = f(t, x), x(t0) = x0 (1.23)

must have a unique solution. It can be shown that existence and uniqueness can be ensured
by imposing some constraints on the right-hand side function f(t, x).
With these settings, we can derive sufficient condition to ensure existence and uniqueness for
the initial-value problem (1.23). By a solution of (1.23) over an interval [t0, t1] we mean a
continuous function x : [t0, t1] → Rn such that ẋ is defined and ẋ = f(t, x(t)) for all t ∈ [t0, t1].
If f(t, x) is continuous in x and piecewise continuous in t we can state the solution will be
piecewise continuously differentiable.

15



CHAPTER 1. CONCEPTS ABOUT DYNAMICAL SYSTEMS

Generally speaking, we can notice that a differential equation with a given initial condition
might have several solutions. Consider, for example the following problem:

ẋ = x1/3, x(0) = 0 (1.24)

This problem has a solution x(t) = (2t/3)3/2. This solution is not unique, since x(t) ≡ 0
is another solution for all t. Notice that the right side of (1.24) is continuous in x, so this
condition is not enough to ensure the uniqueness of the solution.

Theorem 2. Let f(x, t) be piecewise continuous in t and satisfy the Lipschitz condition

||f(t, x)− f(t, y)|| ≤ L||x− y|| (1.25)

∀x, y ∈ B = {x ∈ Rn| ||x− x0|| ≤ r}, ∀t ∈ [t0, t1]. Then, there exists some δ > 0 such that
the state equation ẋ = f(t, x) with x(t0) = x0 has a unique solution over [t0, t0 + δ].

The key assumption in (2) is the Lipschitz condition. A function satisfying 1.25 is said to
be Lipschitz in x, and the positive constant L is called Lipschitz constant. We can make a
distinction between locally Lipschitz and globally Lipschitz based on the domain in which the
Lipschitz condition holds.

• Locally Lipschitz function: A function f(t, x) is said to be locally Lipschitz in
x on [a, b] × D ⊂ R ∈ Rn if each point x ∈ D has a neighborhood D0 such that f
satisfies (1.25) on [a, b]×D0 with some Lipschitz constant L0. We say that f(t, x) is
locally Lipschitz in x on [t0,∞) ∈ D if it is locally Lipschitz in x on [a, b]×D for every
compact interval [a, b] ⊂ [t0,∞). A function f(t, x) is Lipschitz in x on [a, b]×W if it
satisfies (1.25) for al t ∈ [a, b] and all points in W , with the same constant L.

• Lipschitz function: A function is said to be Lipschitz on a set W if it satisfies (1.25)
for all points W with the same Lipschitz constant L.

• Globally Lipschitz function: A function is said to be globally Lipschitz if it is
Lipschitz in Rn.

When f : R → R, the Lipschitz condition can be written as

|f(y)− f(x)|
|y − x|

≤ L (1.26)

which implies that on a plot of f(x) versus x, a straight line joining any two points of f(x)
cannot have a slope whose absolute value is greater than L. This definition is strictly related
to the derivative of a function, indeed if |f ′(x)| is bounded by a constant k over the interval
of interest, then f(x) is Lipschitz on the same interval with Lipschitz L = k.

Lemma 1. Let f : [a, b]×D → Rm be continuous for some domain D ⊂ Rn. Suppose that
[∂f/∂x] exists and is continuous on [a, b] ×D. If, for a convex subset W ⊂ D, there is a
constant L ≥ 0 such that ∣∣∣∣∣∣∣∣∂f∂x (t, x)

∣∣∣∣∣∣∣∣ ≤ L (1.27)

on [a, b]×W , then
||f(t, x)− f(t, y)|| ≤ L||x− y|| (1.28)

for all t ∈ [a, b], x ∈ W , and y ∈ W .
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1.3. Ordinary Differential Equations

We can now state a sufficient condition for a function to be globally Lipschitz:

Lemma 2. If f(t, x) and [∂f/∂x](t, x) are continuous on [a, b] × Rn, then f is globally
Lipschitz in x on [a, b]× Rn if and only if [∂f/∂x](t, x) is uniformly bounded on [a, b]× Rn.

Example 1

The function
f(x) =

[
−x1 + x1x2
x2 − x1x2

]
(1.29)

is continuously differentiable on R2. It is not globally Lipschitz since [∂f/∂x] is not
uniformly bounded on R2. On any compact subset of R2, however, is Lipschitz. Let’s
compute the Lipschitz constant over the convex setW = {x ∈ R2 | |x1| ≤ a1, |x2| ≤ a2}.
The Jacobian matrix is given by[

∂f

∂x

]
=

[
−1 + x2 x1
−x2 1− x1

]
(1.30)

Using ||.||∞ for vectors in R2 and the induced matrix norm for matrices, we have∣∣∣∣∣∣∣∣∂f∂x
∣∣∣∣∣∣∣∣

∞
= max{| − 1 + x2|+ |x1|, |x2|+ |1− x1|} (1.31)

All points in W satisfy

| − 1 + x2|+ |x1| ≤ 1 + a2 + a1 and |x2|+ |1− x1| ≤ a2 + 1 + a1 (1.32)

Hence, ∣∣∣∣∣∣∣∣∂f∂x
∣∣∣∣∣∣∣∣
∞

≤ 1 + a1 + a2 (1.33)

and a Lipschitz constant can be taken as L = 1 + a1 + a2.

Example 2

The function
f(x) =

[
x2

−sat(x1 + x2)

]
(1.34)

is not continuously differentiable on R2. Let us check its Lipschitz property examining
f(x) − f(y). Using ||.||2 for vectors in R2 and the fact that the saturation function
sat(·) satisfies

|sat(η)− sat(ξ)| ≤ |η − ξ| (1.35)

we obtain

||f(x)− f(y)||22 ≤ (x2 − y2)
2 + (x1 + x2 − y1 − y2)

2

= (x1 − y1)
2 + 2(x1 − y1)(x2 − y2) + 2(x2 − y2)

2 (1.36)
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CHAPTER 1. CONCEPTS ABOUT DYNAMICAL SYSTEMS

Example 2: cnt’d

Using the inequality

a2 + 2ab+ b2 ≤ 2a2 + 3b2a ≤ 3(a2 + b2) (1.37)

We end up with
||f(x)− f(y)||2 ≤

√
3||x− y||2 (1.38)

resulting in a Lipschitz constant L =
√
3.

aa2 + 2ab+ b2 ≤ 2a2 + 3b2 → (a2 + 2b2 − 2ab) = (a− b)2 + b2 ≥ 0

In this two examples we used both the ||.||∞ and ||.||2 norms. Due to equivalence of norms,
the choice does not affect the Lipschitz property, but only the value of Lipschitz constant.
Roughly speaking, theorem (2) is a local theorem since it ensures existence and uniqueness
only over an interval [t0, t0 + δ], where δ may be very small. One may pose the following
question: when is it granted that the solution can be extended indefinitely? One way to
answer this is to require additional conditions which ensure that the solution x(t) will always
be in a set where f(t, x) is uniformly Lipschitz in x. The following theorem establishes the
existence of a unique solution over [t0, t1], where t1 may be arbitrarily large.

Theorem 3. Suppose that f(t, x) is piecewise continuous in t and satisfies

||f(t, x)− f(t, y)|| ≤ L||x− y|| (1.39)

∀ x, y ∈ Rn, ∀t ∈ [t0, t1]. Then, the state equation ẋ = f(t, x) with x(t0) = x0, has a unique
solution over [t0, t1].

As the last thing in this chapter we will show by an example that the condition expressed in
theorem (3) is only a sufficient condition. Indeed, one can easily construct smooth meaningful
examples that do not have the global Lipschitz property, but do have unique global solutions,
which is an indication of the conservative nature of the theorem.

Example

Consider the system
ẋ = −x3 = f(x) (1.40)

The function f(x) does not satisfy a global Lipschitz condition since the Jacobian
∂f
∂x

= −3x2 is not globally bounded. Nevertheless, for any initial state x(t0) = x0, the
equation has the unique solution

x(t) = sign(x0)

√
x20

1 + 2x20(t− t0)
(1.41)

which is well defined for all t ≥ t0.

In view of the conservative nature of the global Lipschitz conditions, it would be useful to
have a global existence and uniqueness theorem that requires the function f only to be locally
Lipschitz. The following theorem achieves that at the expense of having to know more about
the solution of the system.
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1.4. Stability

Theorem 4. Let f(t, x) be piecewise continuous in t and locally Lipschitz in x for all t ≥ 0
and all x in a domain D ⊂ Rn. Let W be a compact set of D, x0 ∈ W , and suppose it is
known that every solution of

ẋ = f(t, x), x(t0) = x0 (1.42)

lies entirely in W . Then, there is a unique solution that is defined for all t ≥ t0.

Exploiting this theorem we can prove that the system considered in the last example
has a unique solution for all t ≥ 0. To prove that, notice that the function f(x) is locally
Lipschitz and at any instant of time in which x(t) is positive, the derivative ẋ will be negative.
Similarly, if x(t) is negative, ẋ will be positive. Therefore, starting from any initial condition
x(0) = a, the solution cannot leave the compact set W = {x ∈ R | |x| ≤ a}. Thus, without
calculating the solution, we can say that the equation has a unique solution for all t ≥ 0.

1.4 Stability
Stability is a crucial concept in systems theory and engineering. There are different kinds
of stability problems that arise in the study of dynamical systems. The aim of this chapter
is to present some results regarding stability of equilibrium points and ISS (input-to-state)
stability. Stability of equilibrium points is usually described in the sense of Lyapunov, a
Russian mathematician and engineer who laid the foundation of the theory, who now carries
his name. An equilibrium point is stable if all solutions starting at nearby points stay nearby;
otherwise it is unstable. It is asymptotically stable if all solutions starting at nearby points
not only stay nearby, but also tend to the equilibrium point as time approaches infinity.
Lyapunov stability theory theorems give sufficient conditions for stability, asymptotic stability,
and so on. They do not say whether the given conditions are also necessary. There are some
theorems which establish, at least conceptually, that for many of Lyapunov stability theorems,
the given conditions are indeed necessary. Such theorems are called converse theorems.

1.4.1 Autonomous Systems
Consider the autonomous system

ẋ = f(x) (1.43)
where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. Suppose x̄ ∈ D
is an equilibrium point of (1.43); that is f(x̄) = 0. Our goal is to characterize and study the
stability of x̄. There is no loss of generality in considering the equilibrium point to be at
the origin of Rn because any equilibrium point can be shifted to the origin via a change of
variables. Suppose x̄ 6= 0 and the change of variables y = x− x̄. The derivative of y is given
by

ẏ = ẋ = f(x) = f(y + x̄) = g(y), g(0) = 0 (1.44)
In the new variable y, the system has an equilibrium at the origin. Therefore, we will always
study the stability of the origin x = 0.

Definition 5. The equilibrium point x = 0 of (1.43) is

• stable if, for each ε > 0, there exists a δ = δ(ε) > 0 such that

||x(0)|| < δ =⇒ ||x(t)|| < ε, ∀ t ≥ 0 (1.45)
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CHAPTER 1. CONCEPTS ABOUT DYNAMICAL SYSTEMS

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)|| < δ =⇒ lim
t→∞

x(t) = 0 (1.46)

The ε − δ requirements say that to demonstrate that the origin is stable, we have to
prove that for any possible value of ε > 0 we can find a value of δ(ε) such that a trajectory
starting in a δ neighborhood of the origin will never leave the ε neighborhood.

Example: Pendulum

The pendulum can be described by the following equations:

ẋ1 = x2

ẋ2 = −a sinx1 − bx2
(1.47)

where a is a constant related to the length of the pendulum and b is the friction coefficient.
The equation (1.47) has two equilibrium points at (x̄11, x̄12) = (0, 0) and (x̄21, x̄22) =
(π, 0). Neglecting friction, by setting b = 0, the trajectories in the neighborhood of
the first equilibrium are closed orbits. Hence, by starting sufficiently close the the
equilibrium point, trajectories can be granted to stay within any specified ball centered
at the equilibrium point. The equilibrium point, however, is not asymptotically stable
since trajectories starting off the equilibrium point do not tend to it eventually
When friction is taken into account (b > 0), the equilibrium point at the origin becomes
a stable focus, trajectories starting close to the equilibrium tend to it as t tends to ∞.
The second equilibrium point is a saddle point and can be seen that this equilibrium
point is unstable. In the simulation below are shown the phase portrait of the pendulum
system considering the two different equilibrium points and different initial conditions
that are close to the equilibrium point under analysis, in order to see the different
behaviors.

a) xeq = (0, 0) without friction
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b)xeq = (0, 0) with friction
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Figure 1.7: xeq = (π, 0) with friction

Having defined stability and asymptotic stability of equilibrium points, our task now is to
find ways to determine stability. We could have reached the same conclusions using energy
concepts. Let us define the energy of the pendulum E(x) as the sum of its potential and
kinetic energies with the assumption that E(0) = 0; that is

E(x) =

∫ x1

0

a sin y dy + 1

2
x22 = a(1− cosx1) +

1

2
x22 (1.48)

If friction is neglected (b = 0) the system is conservative, indeed we have

dE(x)

dt
= aẋ1 sinx1 + x2ẋ2 = ax2 sinx1 − ax2 sinx1 = 0 (1.49)

Where we exploited expression (1.47) in the last passage. This fact means that no energy
is dissipated and we can arrive at the conclusion that x = 0 is a stable equilibrium point.
When friction is accounted, energy will dissipate during the motion, indeed we obtain

dE(x)

dt
= aẋ1 sinx1 + x2ẋ2 = −bx22 (1.50)

Since b > 0 we can infer that now energy is dissipated during the motion and this show that
the trajectory tends to x = 0 as t→ ∞. Thus, by examining the derivative of E(x) along the
trajectories of the system, it is possible to determine the stability of the equilibrium point.
Generally speaking, we can extend this result to any function that belongs to a certain class.

Theorem 5. Let x = 0 be an equilibrium point for (1.43) and D ⊂ Rn be a domain containing
x = 0. Let V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0} (1.51)

V̇ (x) ≤ 0 in D (1.52)

Then x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (1.53)

Then x = 0 is asymptotically stable.
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CHAPTER 1. CONCEPTS ABOUT DYNAMICAL SYSTEMS

A function that satisfies (1.51) and (1.52) is called Lyapunov function.

Remark 1. Let V : D → R be a continuously differentiable function defined in a domain
D ⊂ Rn that contains the origin. The derivative of V along the trajectories of (1.43), denoted
by V̇ (x), is given by

V̇ (x) =
n∑

i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi(x)

=

[
∂V

∂x1
,
∂V

∂x2
, · · · , ∂V

∂xn

]
f1(x)
f2(x)

...
fn(x)

 =
∂V

∂x
f(x)

(1.54)

A function that satisfies (1.51) is said to be positive definite. If it satisfies the weaker
condition V (x) ≥ 0 for x 6= 0, is said to be positive semidefinite. A function V (x) is said
to be negative definite or negative semidefinite if −V (x) is respectively positive definite or
positive semidefinite. if V (x) does not have a definite sign as per one of these four cases, it is
said to be indefinite. With this terminology we can reformulate theorem (5) to say that the
origin is stable if there is a continuously differentiable positive definite function V (x) such
that V̇ (x) is negative semidefinite, and it is asymptotically stable if V̇ (x) is negative definite.
A class of scalar function for which sign definiteness can be checked easily is the class of
functions of the quadratic form

V (x) = x>Px =
n∑

i=1

n∑
j=1

pijxixj (1.55)

Where P = P> � 0. In this particular case V (x) is positive definite (positive semidefinite) if
and only if all the eigenvalues of P are positive (nonnegative).

Example: Quadratic function

Consider the following function

V (x) = ax21 + 2x1x3 + ax22 + 4x2x3 + ax23

=
[
x1 x2 x3

] a 0 1
0 a 2
1 2 a

x1x2
x3

 = x>Px
(1.56)

Computing the eigenvalues of the matrix P we find that V (x) is positive definite if
and only if a >

√
5 and negative definite if and only if a < −

√
5. If a ∈ (−

√
5,
√
5), P

is indefinite.

Unfortunately, there is no systematic way for finding Lyapunov functions. In some cases we
can use our intuition and build a Lyapunov function based on the concept of energy of the
system under analysis, in other cases it is basically a matter of trial and error.
It’s important to remark that the conditions of Lyapunov’s theorem are only sufficient, i.e. a
failure of a Lyapunov function candidate to satisfy the conditions for stability or asymptotic
stability does not mean that the equilibrium point is not stable or asymptotically stable.

22



1.4. Stability

It only means that such stability property can not be established by using the Lyapunov
function candidate.
We can now state a result that gives sufficient condition for a equilibrium point to be globally
asymptotically stable.

Theorem 6. Let x = 0 be an equilibrium point for (1.43). Let V : Rn → R be a continuously
differentiable function such that

V (0) = 0 and V (x) > 0, ∀ x 6= 0 (1.57)

||x|| → ∞ =⇒ V (x) → ∞ (1.58)

V̇ (x) < 0, ∀ x 6= 0 (1.59)

then x = 0 is globally asymptotically stable.

If we take a step back and talk about linear systems described by ẋ = Ax, the asymptotic
stability of the system can be also studied by using Lyapunov method. Consider a quadratic
Lyapunov function candidate

V (x) = x>Px (1.60)

Where P is a real symmetric positive definite matrix. The derivative of V along the trajectories
of the system is given by

V̇ (x) = x>Pẋ+ ẋ>Px = x>(PA+ A>P )x = −x>Qx (1.61)

Where Q is a symmetric matrix defined by

PA+ A>P = −Q (1.62)

If Q is positive definite, we can conclude by (5) that the origin is asymptotically stable; that
is, Re λi < 0 for all eigenvalues of A.
The next theorem characterizes asymptotic stability of the origin in terms of the solution of
the Lyapunov equation.

Theorem 7. A matrix A is Hurwitz if and only if for any given positive definite symmetric
matrix Q there exist a positive definite symmetric matrix P that satisfies the Lyapunov
equation (1.62). Moreover, if A is Hurwitz, then P is the unique solution of (1.62).

1.4.2 Comparison Functions
In order to introduce the concept of ISS (input-to-state stability) we need to define the so
called comparison functions, known as class K and class KL functions.

Definition 6. A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is
strictly increasing and α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r) → ∞ as
r → ∞.

Definition 7. A continuous function β : [0, a)× [0,∞) → [0,∞) is said to belong to class
KL if , for each fixed s, the mapping β(r, s) belong to class K with respect to r and, for each
fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as s→ ∞.
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Example: comparison functions

• α(r) = tan−1(r) is strictly increasing since α′(r) = 1/(1 + r2) > 0. It belongs to
class K, but not to class K∞ since limr→∞ α(r) = π/2 <∞.

• α(r) = rc , for any positive real number c, is strictly increasing. Moreover,
limr→∞ α(r) = ∞; thus, it belongs to class K∞.

• β(r, s) = r/(ksr + 1) for any positive real number k, is strictly increasing in r
since

∂β

∂r
=

1

(ksr + 1)2
> 0

and strictly decreasing in s since

∂β

∂s
=

−kr2

(ksr + 1)2
< 0

Moreover, β(r, s) → 0 as s→ ∞. Therefore, it belongs to class KL.

1.4.3 Input-to-State Stability
Consider the system

ẋ = f(t, x, u) (1.63)

where f : [0,∞)×Rn ×Rm → Rn is piecewise continuous in t and locally Lipschitz in x and
u. The input u(t) is a piecewise continuous, bounded function of t for all t ≥ 0. Suppose
that the unforced system

ẋ = f(t, x, 0) (1.64)

has a globally uniformly asymptotically stable equilibrium point at the origin at x = 0. What
can we say about the behavior of the system (1.63) in the presence of a bounded input u(t)?
For a LTI system

ẋ = Ax+Bu (1.65)

with a Hurwitz matrix A, we can write the solution as

x(t) = eA(t−t0)x(t0) +

∫ t

t0

e(t−τ)ABu(τ) dτ (1.66)

and use the bound ||e(t−t0)A|| ≤ ke−λ(t−t0) to estimate the solution by

||x(t)|| ≤ ke−λ(t−t0)||x(t0)||+
∫ t

t0

ke−λ(t−t0)||B||||u(τ)|| dτ

≤ ke−λ(t−t0)||x(t0)||+
k||B||
λ

sup
t0≤τ≤t

||u(τ)||
(1.67)

This estimate shows that the zero-input response (the computed response when u ≡ 0) decays
to zero exponentially fast, while the zero-state response (response when the initial condition
of the state are set to 0), is bounded for every bounded input. This estimate shows hat the
bound on the zero-state response is proportional to the bound on the input.
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1.4. Stability

For a general nonlinear system, these properties may not hold even if when the origin of the
unforced system is globally uniformly asymptotically stable. We can now state the definition
of input-to-state stability.

Definition 8. The system (1.63) is said to be input-to-state stable if there exist a class KL
function β and a class K function γ such that for any initial state x(t0) and any bounded
input u(t), the solution x(t) exists for all t ≥ 0 and satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0) + γ

(
sup

t0≤τ≤t
||u(τ)||

)
(1.68)

The inequality (1.68) guarantees that for any bounded input u(t), the state x(t) will be
bounded. Moreover, as t increases, the state x(t) will be ultimately bounded by a class K
function of supt≥t0 ||u(t)||. It can be proven that if u(t) converges to 0 as t → ∞, so does
x(t). Since, if u(t) ≡ 0, (1.68) reduces to

||x(t)|| ≤ β(||x(t0)||, t− t0) (1.69)

input-to-state stability implies that the origin of the unforced system (1.67) is globally
uniformly asymptotically stable. The notion of ISS stability is defined for the global case
where the initial state and the input can be arbitrarily large.

25



Chapter 2

Highlights On High Gain Observers

In the realm of control systems, the concept of observers plays an important role in enabling
accurate estimation of system states. Observers, also known as state estimators, are dynamic
systems designed to reconstruct the internal state of a system based on measurements of
its inputs and outputs. This reconstruction is essential when not all states are directly
measurable, a common scenario in real-world applications due to sensor limitations, cost
constraints, or inaccessibility. By leveraging a mathematical model of the system and
incorporating available measurements, observers provide an estimate of the full state vector,
which can then be used for various control strategies. This approach is particularly valuable
in scenarios where direct state feedback is desired but not feasible due to limited sensor
information. This chapter aims to present firstly the classic design approach for linear system,
and successively the concept and design of high-gain observers, where the main characteristic
is the high gain used to reduce the error and make the system converge very quickly.

2.1 Observability and Detectability
Consider the linear system described by

ẋ = Ax+Bu

y = Cx
(2.1)

In general, the dimension of the observed output, y, may be less than the dimension of the
state, x. However, one might assume that if one observed the output over time interval then
this might tell us something about the state. Roughly speaking we can say that observability
is concerned with the issue of what can be said about the state given measurements of the
plant output.

Definition 9. The state x0 6= 0 is said to be unobservable if given x(0) = x0, and u(t) =
0 ∀t > 0, then y(t) = 0, ∀t > 0. The system is said to be completely observable if there exists
no non-zero initial state that is unobservable.

It can be proven that the observability of a system is related to the study of a particular
matrix, Mo.
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2.1. Observability and Detectability

Theorem 8. Consider the system (2.1). We have
• The set of all unobservable states is equal to the null space of the observability matrix

Mo, defined by

Mo ,


C
CA

...
CAn−1

 (2.2)

• The system is completely observable if and only if Mo has rank n, where n is the order
of the system.

If the system is not completely observable we have the following result:
Lemma 3. If rank(Mo) = k < n, there exists a similarity transformation T such that
x̄ = T−1x, Ā = T−1AT, C̄ = CT , then C̄ and Ā take the form

Ā =

[
ĀO 0
Ā21 ĀNO

]
C̄ =

[
C̄O 0

]
(2.3)

where ĀO has dimension k and the pair (C̄O, ĀO) is completely observable.
Bearing in mind this lemma, we can decompose system (2.1) as:[

ẋO(t)
ẋNO(t)

]
=

[
ĀO 0
Ā21 ĀNO

] [
x̄O(t)
x̄NO(t)

]
+

[
B̄O

B̄NO

]
u(t) (2.4)

y(t) =
[
C̄O 0

] [ x̄O(t)
x̄NO(t)

]
(2.5)

This decomposition allow us to infer properties of the system analyzing the structure of the
matrices ĀO and ĀNO.
Definition 10. The observable subspace of a plant is composed of all states generated
through every possible linear combination of the states in x̄O. The stability of this subspace is
determined by the location of the eigenvalues of ĀO.
Definition 11. The unobservable subspace of a plant is composed of all states generated
through every possible linear combination of the states in x̄NO. The stability of this subspace
is determined by the location of the eigenvalues of ĀNO.

Figure 2.1: Observable–unobservable decomposition

Another important property of a system is detectability. This property deals with the
fact that a system might not be observable, but, on the other hand, the unobservable part
does not make the whole system to diverge.
Definition 12. A plant is said to be detectable if its unobservable subspace is stable.
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2.2 Observer Design
In the last section we introduced the main results about observers, observability and de-
tectability. The forthcoming part deals with the design of observer, firstly in the case of
linear systems and then we will extend the theory to nonlinear systems.

2.2.1 Linear Systems
Consider again the following state space model:

ẋ = Ax+Bu

y = Cx
(2.6)

A general linear observer takes the form

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)) (2.7)

where the matrix L is called the observer gain and x̂ is the state estimate. if L 6= 0 the term

e(t) = x̂(t)− x(t) (2.8)

represents the estimation error between the observation and the predicted model output.
Next,we compute the dynamics of the estimation error as

ė(t) = ẋ(t)− ˙̂x(t)

= Ax̂(t) +�
���Bu(t)− L(Cx̂(t)− Cx(t))− Ax(t)−�

���Bu(t)

= (A− LC)(x̂(t)− x(t))

= (A− LC)e(t)

(2.9)

This is a differential equation, whose solution is given by

e(t) = exp[(A− LC)t]e(0) (2.10)

From the above expression we can note that if the matrix (A− LC) is Hurwitz, we would
have e(t) → 0, when t → ∞. Bearing this result in mind, the problem has been shifted to
the design of the matrix L, in such a way the matrix (A− LC) is Hurwitz.

Figure 2.2: Block diagram of a system with observer
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Example: Design of a Linear Observer

Consider the linear system described by

ẋ =

[
0 1
−1 2

]
x(t) +

[
0
1

]
u(t) (2.11)

The matrix Mo can be constructed as

Mo =

[
0 1
−1 2

]
(2.12)

and it can be easily verified that the rank of this matrix is 2, i.e. the system is
observable. We will design the gain matrix L in such a way the matrix (A− LC) will
have λ1 = −10 and λ2 = −20 as eigenvalues. Since the order of the system is n = 2,
we can conclude that the matrix L will have the following shape:

L =

[
`1
`2

]
(2.13)

We compute the matrix (A− LC):[
0 1
−1 2

]
−
[
`1
`2

] [
0 1

]
=

[
0 1
−1 2

]
−
[
0 `1
0 `2

]
=

[
0 1− `1
−1 2− `2

] (2.14)

The characteristic polynomial of (A− LC) can be computed as

pA−LC(λ) = λ2 + (`2 − 2)λ+ 1− `1 (2.15)

and exploiting the polynomial identity principle we obtain

30 = −2 + `2

200 = −`1 + 1
(2.16)

and solving the equations we obtain

`1 = −199, `2 = 32 (2.17)

2.2.2 Nonlinear Systems : High Gain Observer
In this section, we consider the class of single-input single-output nonlinear systems that can
be modeled by equations of the form:

ẋ = f(x) + g(x)u

y = h(x)
(2.18)

in which x ∈ Rn and in which f : Rn → Rn and g : Rn → Rn are smooth maps and
h : Rn → R is a smooth function.
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We can now introduce the Lipschitz triangular form

ξ̇1 = ξ2 + Φ1(ũ, ξ1)

...
ξ̇i = ξi+1 + Φi(ũ, ξ1, ..., ξi)

...
ξ̇n = Φn(ũ, ξ)

y = ξ1

where ũ can be, for instance ũ = (u, u̇, ü, ...). This form is associated with the classical High
gain observer. For a system in which g(x) ≡ 0, the function Hn(x) defined by the output
and its n− 1 derivatives, namely

Hn(x) = (h(x), Lfh(x), ..., L
n−1
f h(x)) (2.19)

maps the system (2.19) into

ξ̇1 = ξ2 , ... , ξi = ξi+1 , ... , ξn = Ln
fh(x) , y = ξ1 (2.20)

where Lfh(x) is the Lie-derivative of h(x) with respect to the vector field f(·):

Lfh , ∇h · f, ∇h =
∂h

∂x
=

[
∂h

∂x1
, · · · , ∂h

∂xn

]
(2.21)

This is a Lipschitz phase-variable form if and only if there exists a function Φn Lipschitz on
Rn such that

∀x ∈ S , Ln
fh(x) = Φn(Hn(x)) (2.22)

In general, this is a nonlinear changes of coordinates, namely a transformation ξ = Hn(x), in
which Hn(·) is a map Rn → Rn. Such a map qualifies for a change of coordinates if:

• Hn(·) is a invertible, i.e. there exists a map H−1
n : Rn → Rn such that H−1

n (Hn(x)) = x
for all x ∈ Rn and Hn(H−1

n (ξ)) = ξ for all ξ ∈ Rn.

• Hn(·) and H−1
n are both smooth mappings, i.e., have continuous partial derivatives of

any order.

A transformation of this type is called a global diffeomorphism on Rn. If g(x) 6= 0, the
system (2.18) can be transformed into a Lipschitz triangular form (2.19) by a stationary
transformation. Before continuing, we need to state some technical definitions.

Definition 13. We can distinguish between two types of observability, namely:

• A system is said to be weakly differentially observable of order m on a subset S if the
function x 7→ Hn(x) is injective on S.

• A system is said to be strongly differentially observable of order m if the function
x 7→ Hn(x) is an injective immersion1 on S.

1Hn is injective and ∂Hn(x)
∂x has full-rank on S
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2.2. Observer Design

• A system is said to be uniformly instantaneously observable if it is instantaneously
distinguishable, i.e. the state can be uniquely deduced from the output of the system as
quickly as we want, on S, for any input u.

Definition 14. We call drift system of system (2.19) the dynamics with u ≡ 0, namely

ẋ = f(x), y = h(x) (2.23)

We can say that the drift system is weakly (strongly) observable of order m on S if the function

Hm(x) = (h(x), Lfh(x), ..., L
m−1
f h(x)) (2.24)

is injective (an injective immersion) on S.

Differential observability of the drift system is weaker than differential observability of the
system since it is only for u ≡ c, c ∈ R. In order to obtain a triangular form, it is necessary
to add an assumption of uniform observability:

Theorem 9. Assume that exists an open subset S of Rn such that

• System (2.19) is uniform instantaneously observable on S

• The drift system of system (2.19) is strongly differentially observable of order n on S.

Then, Hn defined by
Hn(x) = (h(x), Lfh(x), ..., L

n−1
f h(x)) (2.25)

which is a diffeomorphism on S by assumption, maps system (2.19) into a Lipschitz triangular
form of dimension n on S.

It is crucial that the order of strong differential observability of the drift system be n (the
dimension of the state) to ensure the Lipschitzness of the triangular form in order to use a
high gain observer. When this order is larger than n, triangularity is often preserved but the
Lipschitzness is lost.

We can now introduce the concept of high gain observer. In order to do so, we will start
from an example.

Example: High Gain Observer

Consider the second-order nonlinear system:

ẋ1 = x2

ẋ2 = φ(x, u)

y = x1

(2.26)

where x = [x1 x2]
>. Suppose u = γ(x) is a locally Lipschitz state feedback control law

that stabilizes the origin x = 0 of the closed-loop system

ẋ1 = x2

ẋ2 = φ(x, γ(x))
(2.27)
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Example: cnt’d

To implement this feedback control using only measurements of the input y, we use
the observer

˙̂x1 = x̂2 + h1(y − x̂1)

˙̂x2 = φ0(x̂, u) + h2(y − x̂1)
(2.28)

where φ0(x, u) is a nominal model of the nonlinear function φ(x, u). The estimation
error can be defined as

x̃ =

[
x̃1
x̃2

]
=

[
x1 − x̂1
x2 − x̂2

]
(2.29)

and it satisfies the equation:

˙̃x1 = −h1x̃1 + x̃2
˙̃x2 = −h2x̃1 + φ(x, γ(x))− φ0(x̂, γ(x̂))

(2.30)

The aim is to design the observer gain H = [h1 h2]
> such that limt→∞ x̃ = 0. In the

absence of the disturbance term, asymptotic error convergence is achieved designing H
such that the matrix

Ao =

[
−h1 1
−h2 0

]
(2.31)

is Hurwitz. In the presence of the uncertainty on φ, we need to design H with the
additional goal of rejecting his effects on x̃. This is ideally achieved if the transfer
function

Go(s) =
1

s2 + h1s+ h2

[
1

s+ h1

]
(2.32)

from ∆φ to x̃ is identically 0, where ∆φ(x, x̂) = φ(x, γ(x))− φ(x̂, γ(x̂)) . This is not
possible, but we can make supω∈RGo(jω) arbitrarily small by choosing h2 >> h1 >> 1.
In particular, we can take

h1 =
α1

ε
, h2 =

α2

ε2
(2.33)

for some positive constants α1, α2, and ε << 1. It can be shown that

Go(s) =
ε

(εs)2 + α1εs+ α2

[
ε

εs+ α1

]
(2.34)

Hence, limε→0Go(s) = 0.

If we define the scaled estimation errors (for a second order system), we have

η1 =
x̂1
ε
, η2 = x̂2 (2.35)

The newly defined variables satisfy the singularly perturbed equation

εη̇1 = −α1η1 + η2

εη̇2 = −α2η1 + ε∆φ(x, x̂)
(2.36)
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. This equation shows clearly that reducing ε diminishes the effect of ∆φ. Notice that η1(0)
will be O(1/ε) whenever x1(0) 6= x̂1(0). Consequently, the solution of the (2.36) will contain
a term of the form (1/ε)e−at/ε for some a > 0. While this exponential mode decays rapidly,
it exhibits an impulsive-like behavior where the transient peaks to O(1/ε) values before it
decays rapidly towards zero. In fact, the function (1/ε)e−at/ε approaches an impulse function
as ε tends to 0. This behavior is known as the peaking phenomenon. It is worth noticing
that smaller is the ε higher will be the peak that we can see during the transient.

Example: Peaking Phenomenon

To understand better the peaking phenomenon, let us simulate the system

ẋ1 = x2

ẋ2 = x32 + u

y = x1

(2.37)

Which can globally stabilized by the state feedback controller

u = −x32 − x1 − x2 (2.38)

The output feedback controller is taken as

u = −x̂32 − x̂1 − x̂2
˙̂x1 = x̂2 + (2/ε)(y − x̂1)

˙̂x2 = (1/ε2)(y − x̂1)

(2.39)

In the pictures below are shown the behavior of the states and of the input for different
values of ε, from ε = 0.005 to ε = 0.01. Since it can be noted that the peak is due to
the input u that influences the states, we can saturate the input, in order to avoid
huge peaking phenomena.
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Throughout this simulations the initial conditions are x1(0) = 0.1, x2(0) = x̂1(0) = x̂2(0) = 0.
The input value is constrained in such a way that u(t) ∈ [−10, 10].

A special case

As a particular case, consider the nonlinear system described by:

ẋ = Ax+Bφ(x) + u

y = Cx
(2.40)

Where A,B,C are in normal form and A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and φ(x) is a globally
Lipschitz function with Lipschitz constant L. Define the matrix Dd as

Dd =


1 0 · · · 0
... d · · · ...
... ... . . . ...
0 · · · · · · dn−1

 (2.41)

The observer dynamics can be written as

˙̂x = Ax̂+Bφ(x̂) +KαDd(y − Cx̂) (2.42)

Where Kα is defined as:

Kα =


α1

α2
...
αn

 (2.43)

Where the positive constants αi are chosen such that the roots of

sn + α1s
n−1 + ...+ αn−1s+ αn = 0 (2.44)

are in the open left-half plane.

Theorem 10. For all T > 0, for all ε > 0, and for all x(0), x̂(0) : |x̂(0)− x(0)| ≤ β there
exists d∗(ε) ≥ 1 such that for any d ≥ d∗(ε):

|x(t)− x̂(t)| ≤ ε, ∀t ≥ T (2.45)
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Proof. In order to prove the result we can make the following change of basis:

ei =
x̂i − xi
di−1

, i = 1, ..., N (2.46)

Where we can see ei as a scaled version of the observation error. Defining

e =

e1...
en

 , ∆φ = φ(x̂)− φ(x), e = D−1
d (x̂− x) (2.47)

we have, since φ(x) is Lipschitz

|∆φ(x)| = |φ(x+Dde)− φ(x)| ≤ Ldn−1|e| (2.48)

since Dde ≤ dn−1|e|. Computing the derivative of e we obtain:

ė = d(A−KC)e+
1

dn−1
B∆φ (2.49)

Since the matrix (A−KC) is Hurwitz, there exists P such that

P (A−KC) + (A−KC)>P = −I (2.50)

Consider now the Lyapunov function

V = e>Pe (2.51)

Computing the time derivative we have

V̇ = e>P ė+ ė>Pe = −d||e||2 + 2

dn−1
B∆φPe

≤ −d||e||2 + 2

���dn−1
||B||L���dn−1||P ||||e||2

(2.52)

And defining
c0 = L||B||||P || (2.53)

we end up with
V̇ ≤ −(d− 2c0)||e||2 (2.54)

2.3 Stabilization of a system with filtered output using
an High-Gain observer

2.3.1 Settings of the problem
The aim of this section is to show an implementation of high gain observers to stabilize a
system described by the cascade of:

ẋ = Fx+Gu
y = Hx

(2.55)
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with
ẇ = (A+Bϕ)w +By
z = Cw

(2.56)

where the control u must be designed only using the information provided by z, i.e. u = ψ(z).
With x ∈ Rn, u ∈ R, w ∈ Rr, y ∈ R, z ∈ R, ϕ ∈ R1×r is a Hurwitz polynomial, (A,B,C)r
matrices of appropriate dimensions in prime (or normal) form2.

Figure 2.5: Cascade of the two systems described in (2.55), (2.56)

We make the following assumptions.

Assumption 2.1. There exists a matrix K such that the matrix (F −GKH) is Hurwitz.

Assumption 2.2. The matrix (A+Bϕ) is Hurwitz.

The (2.1) requires that the system (2.55) is controllable3, while the assumption (2.2)
says that the system described by (2.56) is asymptotically stable. In view of the context
of application in power grids, system (2.56) can be viewed as a dynamical LC filter that
described the dynamics of the transmission line.

2.3.2 Proposed solution
The idea is to design a high gain estimator to estimate y and use it in the output feedback
law. In order to do this we build the following estimator:

˙̂w = (A+Bϕ)ŵ +Bσ +DgKr(Cw − Cŵ) (2.57a)
σ̇ = gr+1kr+1(Cw − Cŵ) (2.57b)
u = −Kσ (2.57c)

Where σ is an additional variable that we wants to converge to y, g ∈ R is a parameter to be
chosen, Dg = diag(g, . . . , gr), Kr = (k1, . . . , kr) with k1, . . . , kr to be chosen.

Theorem 11. Consider system (2.55), (2.56) and suppose Assumptions 2.1 and 2.2 hold.
Let (k1, . . . , kr+1) be chosen such that the following polynomial

λr+1 + k1λ
r + · · ·+ λkr + kr+1

2Namely A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 1
0 0 0 · · · 0

 ∈ Rr×r, B =


0
0
...
1

 ∈ Rr×1, C =
[
1 0 · · · 0

]
∈ R1×r

3Fixed (A+Bϕ) = Ā, the linear system is said to be controllable if the matrix

C = [B ĀB Ā2B . . . Ān−1B]

is full rank
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is Hurwitz. Then, there exists g∗ ≥ 1 such that, for any g > g∗, the closed-loop system
(2.55),(2.56) (2.57) is globally asymptotically stable.

Proof. The equations (2.57a) and (2.57b) can be written in matrix form in the following way:[
˙̂w
σ̇

]
=

(
A B
0 0

)[
ŵ
σ

]
+

(
Bϕ 0
0 0

)[
ŵ
σ

]
+ D̄gK̄(Cw − Cŵ) (2.58)

Where D̄g = diag(g, . . . , gr+1), K̄ = diag(k1, . . . , kr+1). Consider now a scaled version of the
error:

ei = gr+1−i(ŵi − wi), ∀i = 1, ..., r (2.59)

er+1 = σ − y (2.60)

Or in matrix form:
e = gr+1D̄g

−1

[
ŵ − w
σ − y

]
(2.61)

Computing the time derivative of e we have:

ė =gr+1D̄g
−1

{(
A B
0 0

)[
ŵ
σ

]
+

(
Bϕ 0
0 0

)[
ŵ
σ

]
− D̄gK̄C̄

1

gr+1
D̄ge

−
(
A B
0 0

)[
w
y

]
−
(
Bϕ 0
0 0

)[
w
y

]
−
[
0
1

]
H(Fx−GKσ)

}
= g(Ā− K̄C̄ +Ψϕ̄

1

gr+1
D̄g)e− B̄Hẋ

= g(Ā− K̄C̄ +Ψϕ̄
1

gr+1
D̄g)e− B̄H[(F −GKH)x−GKB̄T e]

(2.62)

Where (Ā, B̄, C̄)r+1 are in prime form, Ψ =

[
B
0

]
and ϕ̄ =

[
ϕ 0

]
. The closed loop (2.55),

(2.56) (2.57c), (2.62) can be written as:

ẋ = (F −GKH)x−GKB̄T e

ẇ = (A+Bϕ)w +BHx

ė = g

(
Ā− K̄C̄ +Ψϕ̄

1

gr+1
D̄g + B̄HGKB̄T

)
e− B̄H(F −GKH)x

(2.63)

Since the matrices (F−GKH), (A+Bϕ), (Ā−K̄C̄) are Hurwitz, there exists three symmetric
matrices P, S,Q � 0 such that the following hold:

• P (F −GKH) + (F −GKH)>P = −2I

• Q(A+Bϕ) + (A+Bϕ)TQ = −2I

• S(Ā− K̄C̄) + (Ā− K̄C̄)TS = −I

In order to prove stability of (2.63) we exploit the following quadratic Lyapunov function:

V (x,w, e) = axTPx+ bwTQw + eTSe, a, b > 0 (2.64)
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Computing its derivative along (2.63) we have:

V̇ = −2a|x|2 + 2axTPGKB̄T e− 2b|w|2 + 2bwTQBHx− g|e|2

+ 2eTSΨϕ̄
1

gr
D̄ge+ 2eTSB̄HGKB̄Te− 2eTSB̄H(F −GKH)x

≤ −g|e|2 + 2|SB̄H(F −GKH)||x||e| − 2a|x|2 + 2a|PGKB̄T ||x||e|

+ 2|SB̄HGKB̄T ||e|2 − 2b|w|2 + 2b|QBH||x||w|+ 2|SΨϕ̄ 1

gr
D̄g||e|2

(2.65)

Let us fix:
c0 = PGKB̄T , c1 = QBH, c2 = SΨϕ̄

1

gr
D̄g

c3 = SB̄HGKB̄T , c4 = SB̄H(F −GKH)

Using the Young inequality we can write:

2a|c0||x||e| ≤
a|x|2

2
+ 2a|c0|2|e|2

2b|c1||x||w| ≤
b|w|2

2
+ 2b|c1|2|x|2

2|c4||x||e| ≤
|x|2

2
+ 2|c4|2|e|2

(2.66)

The inequalities (2.66) turn (2.65) into:

V̇ ≤ −
(
3a

2
− 1

2
− 2b|c1|2

)
|x|2 −

(
g − 2|c2| − 2|c3| − 2a|c0|2 − 2|c4|2

)
|e|2 − 3

2
b|w|2 (2.67)

Since a, b, g > 0 can be arbitrarily chosen, we can set:

g > 2|c2|+ 2|c3|+ 2a|c0|2 + 2|c4|2, a >
1

3
+

4

3
b|c1|2

and stability of the system (2.63) is achieved.

2.3.3 Simulation example
For the simulation the following system is considered:

ẋ = Fx+Gu
y = Hx

In cascade with
ẇ = (A+Bϕ)w +By
z = Cw

Where

F =

−2 0 0
0 1 0
0 0 −1

 , G =

11
1


H = [1 2 0], ϕ = [−0.1 − 0.1], K = 10
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2.3. Stabilization of a system with filtered output using an High-Gain observer

With this values the closed loop (2.55),(2.56) is asymptotically stable with eigenvalues

λ1 = −1, λ2 = −30.06, λ3 = −0.93

For what regard the observer we chose

g = 10, K̄ = [30 275 750]T

Indeed the polynomial
q(λ̄) = λ̄3 + 30λ̄2 + 275λ̄+ 750

is Hurwitz with roots
λ̄1 = −15, λ̄2 = −10, λ̄3 = −5

With this choice of the parameters it can be seen in the simulation that without the observer
the filter is too slow and it’s impossible to the states to settle down. Changing the settings
and implementing the observer that estimates the input of the filter y(t), the system becomes
stable and the states of the system converge. Below are shown the results of MATLAB
simulations:
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(a) Evolution of states of (2.55) (with filtered
output feedback)
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Chapter 3

Highlights of multi-agent systems

The aim of this chapter is to introduce and highlight some characteristics of multi-agent
systems. An agent denotes a dynamical system which can be, for example, an aircraft, a
satellite, a sensor, and so forth. The objective of control in this environment translates
in achieving collective group behaviour via local interaction, that in most of the cases, is
the only possibility. Control of multi-agents systems consists of many research topics and
problems. One of this problems is called consensus, i.e. when a group of agents agree on a
common value by communicating with each other. In order to solve this problem, consensus
algorithms have been developed and can be divided in two groups, namely, consensus with
a leader and consensus without a leader. In the first case all the agents have to follow the
behaviour of the leader, in the latter there is no leader, so consensus is achieved when all the
agents agree on a certain common trajectory that depends by the network itself.

3.1 Basics of graph theory
A group of agents interacts with each other to achieve some collective objectives. It is useful
to model the information flow among the agents by directed and undirected graphs. A
directed graph G is a pair (V , E), where V = {v1, · · · , vn} is the node set and E ⊆ V × V is
the edge set of ordered pairs of nodes. Graphs can be weighted if there is a weight associated
with each edge of the graph. A subgraph Gs = (Vs, Es) of G is a graph such that both the
node set and the edge set are contained in the respective set of G, namely Vs ⊆ V and Es ⊆ E .
In the multi-agent context, an edge (vi, vj) indicates that the flow of information is from agent
i to agent j, namely agent j can receive information by agent i, but non necessarily viceversa
if the graph is directed. The set of neighbours of a generic node vi is denoted with Ni. A
directed graph is strongly connected if there is a directed path from every node to every
other node. For an undirected graph, a strong connectdness is simply called connectedness.
A directed tree is a directed graph in which every node has exactly one parent except for
one node, called the root, which has directed paths to all other nodes. A directed tree is
defined as spanning when it connects all the nodes in the graph. A graph contains a directed
spanning tree if a subset of the edges forms a directed spanning tree. For undirected graphs,
if there exists a directed spanning tree, that means that the graph is connected. A strongly
connected graph contains at least one directed spanning tree.
The adjacency matrix A = [aij] ∈ RN×N associated with the directed graph G is defined in a
way that aii = 0, aij > 0 if (vj, vi) ∈ E and aij = 0 otherwise. If the graph is undirected then
aij = aji, ∀i 6= j, i.e. the adjacency matrix is symmetric. The value aij can be viewed as the
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Figure 3.1: Different types of graphs: a) an undirected connected graph, b) a strongly
connected graph, c) a balanced and strongly connected graph, d) a directed spanning tree.

weight associated with the edge (vj, vi). If the weight is not important, set this value to 1 if
(vj, vi) ∈ E . The incidence matrix I ∈ RN×E with E = |E| is defined as

ιij = 1, if edge ej enters vertex vi
ιij = −1, if edge ej leaves vertex vi
iij = 0 otherwise

In case of undirected graphs, we can define the incidence matrix as iij = 1 if the edge ej is
incident on vertex vi and 0 otherwise. The Laplacian matrix L = [Lij] ∈ RN×N of the graph
G is defined as

Lii =
∑
j 6=i

aij

Lij = −aij, for i 6= j

In case of undirected graphs, the following property holds:

L = II>
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3.2 Control of a network of systems
In this section we will see two types of problems related to the control of a network of systems,
namely:

• Leader-follower Coordination Problem: This is the case in which there are N
linear systems with N large. The aim is to design a control law under which the output
of each system asymptotically tracks the output of a single autonomous system called
leader.

• Leader-less Coordination Problem: In this case a set of N agents is modeled, no
leader is specified, and a control law is sought in order to achieve consensus to a single
trajectory.

In the forthcoming analysis we will focus on the latter case. Suppose that the N systems can
be described by:

ẋi = Axi +Bui

yi = Cxi
i = 1, ..., N (3.1)

Since in this case the matrices A,B,C are the same among the agents, the system is called
homogeneous. In the leaderless coordination problem, we will consider the case in which the
information available for control purpose at the i-th agent has the form:

vi =
N∑
j=1

aij(yj − yi), i = 1, ..., N (3.2)

in which yi, for i = 1, ..., N , is a measurement taken from agent i. This can be equivalently
expressed as

vi =
∑
j∈Ni

aij(yj − yi), i = 1, ..., N (3.3)

Exploiting the definition of the Laplacian L of a graph we can write the expression (3.3) as

vi = −
N∑
j=1

`ijyj, i = 1, ..., N (3.4)

By definition, the diagonal entries of L are nonnegative, the off-diagonal elements are
nonpositive and, for each row, the sum of all elements on this row is zero. Letting 1N denote
the ”all-ones” N -vector

1N = col(1, 1, ..., 1) (3.5)

this latter property can be written as

L1N = 0 (3.6)

It is seen from the above that the matrix L is singular or, what is the same, that λ = 0 is
always an eigenvalue of L. Such eigenvalue is referred to as the trivial eigenvalue of L. Let
the other (possibly nonzero) N−1 eigenvalues of L be denoted as λ2(L), ..., λN(L). The real
parts of these eigenvalues play an important role with respect to the property of connectivity.
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Theorem 12. A graph is connected if and only if its Laplacian matrix L has only one trivial
eigenvalue λ1 = 0 and all other eigenvalues λ2(L), ..., λN(L) have positive real parts.

In order to control this system we will use a static controller, in which the control ui is
given by:

ui = Kvi (3.7)

Where K is a matrix of feedback gains to be found. Bearing in mind the expression of vi,
the overall closed loop can be modeled by a set of equations of the form

ẋi = Axi −
N∑
j=1

`ijBKCxj (3.8)

Letting n the dimension of xi, letting x denote the Nn vector

x = col(x1, ..., xN) (3.9)

And exploiting the Kronecker product of matrices, we can write

ẋ = (IN ⊗ A)x− (L ⊗BKC)x (3.10)

In what follows, it is assumed that the communication graph is connected. If this is the case,
the Laplacian matrix L of the graph has one trivial eigenvalue λ1 = 0, for which 1N is an
eigenvector, while all other eigenvalues have positive real part, i.e., there exists a number
µ > 0 such that

Re[λi(L)] ≥ µ, ∀i = 2, .., N (3.11)

Consider the nonsingular matrix

T =

[
1 01×(N−1)

1N−1 IN−1

]
(3.12)

If we apply the similarity transformation T to L we end up with:

L̃ = T−1LT =

[
0 L̃12

0 L̃22

]
(3.13)

in which L̃12 is a 1×(N−1) row vector and L̃22 is a (N−1)×(N−1) matrix, whose eigenvalues
evidently coincide with the nontrivial eigenvalues λ2(L), ..., λN(L) of L. Consider now the
controlled system (3.10) and change of coordinates as x̃ = (T−1 ⊗ In)x. Then we have:

˙̃x = (T−1 ⊗ In)[(IN ⊗ A)− (L ⊗BKC)](T ⊗ In)x̃

= (T−1 ⊗ In)[(T ⊗ A)− (LT ⊗BKC)]x̃

= [(IN ⊗ A)− (L ⊗BKC)] x̃

(3.14)

Observe that, by definition of T , the vector x̃ has the form

x̃ =


x̃

x̃2 − x̃1
...

x̃N − x̃1

 (3.15)
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and hence can be split as

x̃ =

(
x̃1
xδ

)
(3.16)

in which

xδ =

 x̃2 − x̃1
...

x̃N − x̃1

 (3.17)

Then, it is easily checked that the system thus obtained has a block-triangular structure, of
the following form:

˙̃x1 = Ax̃1 − (L̃12 ⊗BKC)xδ

ẋδ =
[
(IN−1 ⊗ A)− (L̃22 ⊗BKC)

]
xδ

(3.18)

Lemma 4. Consider the controlled system (3.10) and suppose that all the eigenvalues of the
matrix

(IN−1 ⊗ A)− (L̃22 ⊗BKC) (3.19)
have negative real part. Then, for all i = 2, ..., N

lim
t→∞

[x̃k(t)− x̃1(t)] = 0 (3.20)

Thus, the states x̃i achieve consensus.

3.2.1 Consensus in a Homogeneous Network: Design
We consider the case in which the agents are described by (3.1) with the additional assumption
that A ∈ Rn×n, B ∈ Rn×n. In this case the matrix it can be proven that the stability is
related to the stability of the matrices

A− λi(L)KC, i = 2, ..., N (3.21)

We assume also that the pair (A,C) is observable. This being the case, let µ > 0 such that
λ2 ≤ µ, pick a > 0 and let P be the unique positive symmetric solution of the algebraic
Riccati equation

AP + PA> − 2µPC>CP + aI = 0 (3.22)
Set

K = PC> (3.23)
To determine whether the resulting matrix

Ai = A− λi(L)PC>C (3.24)

has all the eigenvalues with negative real part, it suffices to check that

x∗(PA∗
i + AiP )x < 0, ∀x 6= 0 (3.25)

in which the superscript ”*” denotes conjugate transpose. By construction we have

x∗(PA∗
i + AiP )x = x∗(PA> − λ∗i (L)PC>CP + AP − λi(L)PC>CP )x

= x∗(PA> + AP − 2Re[λi(L)]PC>CP )x

≤ x∗(PA> + AP − 2µPC>CP )x = −a||x||2
(3.26)

and hence it is concluded that the choice K = PC> solves the problem.
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Chapter 4

Synchronization in a network of
systems connected via dynamical links
using High-Gain observers

4.1 Settings of the problem
The goal of this chapter is to show a way to achieve consensus in a network composed by N
agents and M links using an observer in order to get rid of the effects due to presence of the
dynamical links (i.e. filters) between the agents.
An example is shown in the following picture where it can be seen an example of graph that
depict a possible configuration of the network.

Figure 4.1: Example of a system with 6 agents and 6 links

In the previous image the signs ’+’ and ’−’ denote respectively the positive and the negative
end of the link that is in between. The graph that represents the system can be described as a
triplet G = {V , E ,A} in which V represents the set of nodes, E ∈ V ×V is a set of edges that
describe the flow of information between the nodes and A ∈ RN×N is the adjacency matrix
of the graph describing the network of agents and links. A triplet of matrices (An, Bn, Cn) is
in prime form, that is An ∈ Rn×n is a shift matrix (all 1’s in the upper diagonal and zero
elsewhere), B>

n =
(
0 · · · 0 1

)
∈ Rn×1 and Cn =

(
1 0 · · · 0

)
∈ R1×n.

45
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We define the matrix Dn(g) as :

Dn(g) = diag(g, . . . , gn)

In this context the incidence matrix I ∈ RN×E with E = |E| is defined as:

ιij = 1, if node i is the positive link of link j
ιij = −1, if node i is the negative link of link j

Since the graph is undirected we can define the Laplacian matrix L simply as:

L = II>

The dynamics of the N agents can be described as:

ẋj = Anxj +Bnϕxxj + uj
yj = Cnxj

(4.1)

for j = 1, ..., N , where xj ∈ Rn, uj ∈ Rm, yj ∈ R, An, Bn, Cn matrices in prime form and
ϕx ∈ R1×n. In the following we consider the case n = m.
The M links are described by

ẇi = Alwi +Blϕwwi +Bl

∑N
j=1 ιjiyj

zi = Clwi
(4.2)

for i = 1, ...,M with wi ∈ Rl, zi ∈ R, (Al, Bl, Cl) matrices in prime form and ϕw ∈ R1×l. For
what regards the systems (4.1) and (4.2) we make the following assumptions:

Assumption 4.1. The agents described by (4.1) are neutrally stable, i.e. all the eigenvalues
of the matrix (An + Bnϕx) have real part less or equal to zero, and the ones that have real
part equal to zero are simple roots of the characteristic polynomial of the matrix A.

Assumption 4.2. The dynamics of the links (4.2) is asymptotically stable, i.e. all the
eigenvalues associated with the matrix (Al +Blϕw) have real part strictly less than 0.

Assumption (4.1) imply that we can deal also with non-trivial (oscillating) asymptotic
dynamics for what regards the agents, while assumption (4.2) is reasonable because we can
model the link as low pass filters (for example a L-C filter) that can be seen as a model the
transmission line.
Bearing in mind this scenario, each agent can only process the information coming from the
links to which it is connected to. For the generic agent j we define the available information
as:

σj =
M∑
i=1

ιjizi (4.3)

Our goal is to design N (one for each agent) local dynamic regulators of the form:

η̇j = f(ηj, σj)

uj = g(ηj)
(4.4)
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such that for all i, j = 1, ..., N consensus between the agents is achieved, i.e.

lim
t→∞

yi − yj = 0

It is well known from the literature that if each agent can access the output of his neighbors,
the input uj of the agent j can be constructed as:

u?j = K
N∑
i=1

`jiyi (4.5)

with `ji element of the Laplacian matrix L, an opportune design of the parameter K will
guarantee consensus of the agents.
A similar problem is presented in [5] where in the dynamics of the link is included a feedthrough
matrix D, representing direct relationship between the input u and the ouput y. In our
context, we do not have direct access to the outputs of the agents, but we can rely only in a
filtered version of them due to the presence of the dynamical links. The idea is similar to
what is presented in [5] but is actually an extension of it because in this case we proceed
finding a way to retrieve the information used in (4.5) through an observer and use it in the
design of the controller (4.4).

4.2 Proposed solution
Define the scalar variable ξi associated with the i-th link and his derivative as follows:

ξi = ϕwwi +
N∑
j=1

ιjiyj (4.6)

ξ̇i = Λwi + γ
N∑
j=1

ijiyj +
N∑
j=1

ijiẏj (4.7)

where Λ = ϕwAl +ϕwBlϕw ∈ R1×l and γ = ϕwBl ∈ R are obtained computing the derivative
of (4.6) and exploiting the expression (4.2).
Now we can compute the first l + 1 derivatives of σj obtaining:

σj =
M∑
i=1

ιjiwi1

σ̇j =
M∑
i=1

ιjiwi2

...

σ
(l)
j =

M∑
i=1

ιjiξi

σ
(l+1)
j =

M∑
i=1

ιjiξ̇i
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CHAPTER 4. SYNCHRONIZATION IN A NETWORK OF SYSTEMS
CONNECTED VIA DYNAMICAL LINKS USING HIGH-GAIN OBSERVERS

defining σ̇ji = σ
(i)
j we can express the previous derivatives as:

σ̇j1 = σj2
...

σ̇jl = σjl+1

σ̇l+1
j =

M∑
i=1

ιjiξ̇i

Expanding the expression of σ(l)
j we obtain:

σ
(l)
j =

M∑
i=1

ιjiξi

=
M∑
i=1

ιji

(
ϕwwi +

N∑
j=1

ιjiyj

)

=
M∑
i=1

ιjiϕwwi +
N∑
i=1

`jiyi (4.8)

Where in the last computation we exploited the fact that, since L = II>, we have for each
agent j = 1, ..., N :

M∑
i=1

ιji

N∑
k=1

ιki =
N∑
i=1

`ji

The blue part in (4.8) is exactly the information we want to retrieve in order to build our
controller. We can write:

σ
(l)
j −

M∑
i=1

ιjiϕwwi =
N∑
i=1

`jiyi (4.9)

That can be rewritten in a compact way:

σjl+1
− ϕwσj[1,l] =

N∑
i=1

`jiyi (4.10)

Where σj[1,l] = col(σj1, . . . , σjl). In order to write the dynamic of σj in a compact way, we
can expand the term σ

(l+1)
j obtaining:

σ
(l+1)
j =

M∑
i=1

ιji

[
Λwi + γ

N∑
j=1

ιjiyj +
N∑
j=1

ιjiẏj

]

=
M∑
i=1

ιji

[
Λwi + γ

N∑
j=1

ιjiyj +
N∑
j=1

ιjiCn(Anxj + uj)

]

48



4.2. Proposed solution

Where in the last passage we exploited the expression of the agent dynamics (4.1).
Defining σj = col(σj1 , . . . , σjl+1

) we can write:

σ̇j = (Al+1 + Λ̄)σj +Bl+1

[
N∑
i=1

`ji
(
γyi + Cn(Anxi + uj)

)]
yj = Cl+1σj

(4.11)

where Al+1, Bl+1, Cl+1 are in prime form and Λ̄ is defined as

Λ̄ =

[
0l×l 0
Λ 0

]
∈ R(l+1)×(l+1)

Hence we can define the control law (4.4) as an high-gain observer for the dynamic of σj,
namely:

˙̂σj = (Al+1 + Λ̄)σ̂j +Ko(σj − Cl+1σ̂j)

uj = Kcϕ̄wσ̂j
(4.12)

for j = 1, ..., N with

ϕ̄w =

(
ϕ>
w

−1

)>

∈ R1×(l+1) (4.13)

Ko = Dl+1(d)Ko
′ ∈ Rl+1, Dl+1(d) = diag(d, ..., dl+1), K ′

o = P−1
0 C>

l+1

Kc = Dn(g)K
′
c ∈ Rn Dn(g) = diag(g, ..., gn), K ′

c = PcC
>
n

(4.14)

with d ≥ 1 and g ≥ 1 to be chosen large enough, and P0, Pc solutions to following Riccati
equations (ARE):

P0Al+1 + A>
l+1P0 − 2C>

l+1Cl+1 = −a1I, a1 > 0 (4.15)

PcAn + A>
nPc − 2µC>

n Cn = −a2I, a2 > 0 (4.16)

where µ ≤ λ2(L).
Letting x = col(x1, ..., xN), σ̂ = col(σ̂1, ..., σ̂N), u = col(u1, ..., uN), w = col(w1, ..., wM),
σ = col(σ1, ..., σN), exploiting the properties of Kronecker products and the information we
obtained so far, we can write the equations that describe the whole network of agents, links
and local regulators as:

ẋ = [IN ⊗ (An +Bnϕx)]x+ u

˙̂σ =
[
IN ⊗ (Al+1 + Λ̄)

]
σ̂ + (IN ⊗KoCl+1)(σ − σ̂)

u = (IN ⊗Kcϕ̄w)σ̂

ẇ = [IM ⊗ (Al +Blϕw)]w + (I> ⊗BlCn)x

σ = (I ⊗ Cl)w

(4.17)

We can now enunciate the following theorem:

Theorem 13. Consider the system described by (4.17) fulfilling assumptions (4.1) and (4.2)
with control parameters Ko and Kc chosen according to (4.14). There exist a d? and a g?(d?)
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such that for all d > d? and g > g?, the set:

S = {(x,w, σ) ∈ RNn × RlM × R(l+1)N :

x1 = · · · = xN ,

w1 = · · · = wM = 0,

σ1 = · · · = σN = 0}

(4.18)

is globally exponentially stable.

Proof. Let’s define the observer error e as follows:

e = σ − σ̂ (4.19)

Computing the time derivative of e we obtain

ė =
[
IN ⊗ (Al+1 + Λ̄)

]
σ + [L ⊗Bl+1(γCn + CnAn)]x+ (L ⊗Bl+1Cn)u

−
[
IN ⊗ (Al+1 + Λ̄)

]
σ̂ − (IN ⊗KoCl+1)e

=
[
IN ⊗ (Al+1 + Λ̄−KoCl+1)

]
e+ [L ⊗Bl+1(γCn + CnAn)]x+ (L ⊗Bl+1Cn)u

(4.20)

Now consider the change of basis described by:

ε = (IN ⊗D−1
l+1(d))e =⇒ e = (IN ⊗Dl+1(d))ε (4.21)

with this change of coordinates we are rescaling the errors of a factor depending on D−1
l+1(d).

Computing its time derivative we have:

ε̇ = (IN ⊗D−1
l+1(d))ė

= (IN ⊗D−1
l+1(d))

{ [
IN ⊗ (Al+1 + Λ̄−KoCl+1)

]
e

+ [L ⊗Bl+1(γCn + CnAn)]x+ (L ⊗Bl+1Cn)u
}

Exploiting (4.21) and the shape of Bl+1 we obtain:

ε̇ = (IN ⊗D−1
l+1(d))

[
IN ⊗ (Al+1 + Λ̄−KoCl+1)

]
(IN ⊗D−1

l+1(d))ε+
1

dl+1
Ψ(x,u)

= d [IN ⊗ (Al+1 −K ′
oCl+1)] ε+

1

dl+1
Ψ(ε,x,u)

(4.22)

where the function Ψ(ε,x,u) is defined as:

Ψ(ε,x,u) = [L ⊗Bl+1(γCn + CnAn)]x+ (L ⊗Bl+1Cn)u+ (IN ⊗ Λ̄Dl+1(d))ε (4.23)

Since we have chosen Ko accordingly to (4.14) we know that the matrix

Ho = (Al+1 −K ′
oCl+1) (4.24)

is Hurwitz. In order to prove the observer convergence and the possibility to tune arbitrarily
the error e, consider the following quadratic Lyapunov function:

Vε = ε>(IN ⊗ Po)ε (4.25)
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Computing the time derivative of (4.25) along (4.22) we obtain:

V̇ε = 2ε>(IN ⊗ Po)ε̇ = 2ε>(IN ⊗ Po)

[
d(IN ⊗ Poε) +

1

dl+1
Ψ(ε, x, u)

]
= 2dε>(IN ⊗ PoHo)ε+

2ε>

dl+1
[c0x+ c1u+ c2ε]

(4.26)

With c0 = L ⊗ [PoBl+1 (γCn + CnAn)] , c1 = L ⊗ PoBl+1Cn and c2 = IN ⊗ PoΛ̄Dl+1(d).
Exploiting the properties of matrix norms we can write:

V̇ε ≤ −a1d|ε|2 +
2

dl+1

(
|c0||x||ε|+ |c1||u||ε|+ |c2||ε|2

)
Using the following results (Young inequalities):

|c0||x||ε| ≤
|c0||x|2

2
+

|c0||ε|2

2

|c1||u||ε| ≤
|c1||u|2

2
+

|c1||ε|2

2

we can write:

−
(
a1d−

1

dl+1
(|c0|+ |c1|+ |c2|)

)
|ε|2 + 1

dl+1

(
|c0||x|2 + |c1||u|2

)
(4.27)

Choosing

d > l+2

√
1

a1
(|c0|+ |c1|+ |c2|) := d?

We obtain
V̇ε ≤ −a1d|ε|2 +

1

dl+1

(
|c0||x|2 + |c1||u|2

)
(4.28)

Since the dynamics of ε,x,u are bounded, we conclude that we can make the error ε (then
e) arbitrarily small by properly tune the value of d.
Bearing in mind this result we can now prove that agents actually achieve consensus. We
can rewrite the input signal u as:

u = (IN ⊗Kcϕ̄w)σ̂ = (IN ⊗Kcϕ̄w)(σ − e) (4.29)

That, exploiting the definition of σ as in (4.17) can be written as:

u = (L ⊗KcCn)x− (IN ⊗Kcϕ̄wDl+1(d)) ε (4.30)

We can now get rid of the dependence on u from Ψ(x, ε, u) writing the x and the ε dynamics
as:

ẋ = [IN ⊗ (An +Bnϕx) + L ⊗KcCn]x− (IN ⊗Kcϕ̄wDl+1(d)) ε

ε̇ = d (IN ⊗Ho) ε+
1

dl+1
Ψ(x, ε)

(4.31)

With Ψ(x, ε) as follows:

Ψ(x, ε) = [L ⊗Bl+1(γCn + CnAn)]x+
(
L2 ⊗Bl+1CnKcCn

)
x

− (L ⊗Bl+1CnKcϕ̄wDl+1(d)) ε+
(
IN ⊗ Λ̄Dl+1(d)

)
ε
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Since the system is without leader, the consensus trajectory will depends only by the dynamics
of the agents and by the initial conditions. In order to study the stability of such a system
we have to split the whole dynamics in two parts: an independent one and an ”error” one.
To do this, let

T =

[
1 01×(N−1)

1(N−1)×1 IN−1

]
(4.32)

Applying the similarity transformation at the Laplacian matrix L we have:

L̃ = T−1LT =

[
0 L12

0 L22

]
(4.33)

With L12 ∈ R1×(N−1) and L22 ∈ R(N−1)×(N−1). Thanks to the structure of the matrix T we
have that the non-zero eigenvalues of L are the (N − 1) eigenvalues of the matrix L22. This
directly leads to the following change of coordinates:

x′ = (T−1 ⊗ In)x =⇒ x′ =


x1

x2 − x1
...

xN − x1



ζ = (T−1 ⊗ In)ε =⇒ ζ =


ε1

ε2 − ε1
...

εN − ε1


(4.34)

Computing the time derivatives of x′ and ζ we obtain:

ẋ′ = (T−1 ⊗ In)ẋ =
[
IN ⊗ (An +Bnϕx) + L̃ ⊗KcCn

]
x′ − (IN ⊗Kcϕ̄wDl+1(d)) ζ

ζ̇ = (T−1 ⊗ In)ε̇ = d(IN ⊗Ho)ζ +
1

dl+1
Ψ(x′, ζ)

(4.35)

Where

Ψ(x′, ζ) =
[
L̃ ⊗Bl+1(γCn + CnAn)

]
x′ + (L̃2 ⊗Bl+1CnKcCn)x

′

− (L̃ ⊗Bl+1CnKcϕ̄wDl+1(d))ζ + (IN ⊗ Λ̄Dl+1(d))ζ
(4.36)

Now we can partition the vectors x′ and ζ as:

x′ =

[
x′1
x′
2

]
, ζ =

[
ζ1
ζ2

]
(4.37)

Computing the time derivatives we have:

ẋ′1 = (An +Bnϕx)x
′
1 + (L12 ⊗KcCn)x

′
2 − (Kcϕ̄wDl+1(d))ζ1

ẋ′
2 = [IN−1 ⊗ (An +Bnϕx) + (L22 ⊗KcCn)]x

′
2 − (IN−1 ⊗Kcϕ̄wDl+1(d))ζ2

(4.38)

ζ̇1 = dHoζ1 +
1

dl+1

{
[L12 ⊗Bl+1(γCn + CnAn)]x

′
2 +

[
L2

12 ⊗ (Bl+1CnKcCn)
]
x′
2

− [L12 ⊗ (Bl+1CnKcϕ̄wDl+1(d))] ζ2 + (IN−1 ⊗ Λ̄Dl+1(d))ζ2
}

ζ̇2 = d(IN−1 ⊗H0)ζ2 +
1

dl+1
Ψ(ζ2,x

′
2)

(4.39)
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With

Ψ(ζ2,x
′
2) = [L22 ⊗Bl+1(γCn + CnAn)]x

′
2 +

[
L2

22 ⊗ (Bl+1CnKcCn)
]
x′
2

− [L22 ⊗ (Bl+1CnKcϕ̄wDl+1(d))] ζ2 + (IN−1 ⊗ Λ̄Dl+1(d))ζ2
(4.40)

We can see that after the partitioning we can conclude that if we prove the stability of x′
2

and ζ2 the stability of the whole system is achieved, since the remaining terms that are not
dependent by x′

2, ζ2 and are, by hypothesis, bounded. Before continue with the Lyapunov
analysis of the whole system, it is convenient to do a further change of basis, described by:

χ =
(
IN−1 ⊗D−1

n (g)
)
x′
2 (4.41)

Computing the time derivative of (4.41) we obtain:

χ̇ =
[
IN−1 ⊗D−1

n (g)(An +Bnϕx)Dn(g) + L22 ⊗D−1
n (g)KcCnDn(g)

]
x′
2

−
(
IN−1 ⊗D−1

n (g)Kcϕ̄wDl+1(d)
)
ζ2

= g [IN−1 ⊗ An + L22 ⊗K ′
cCn]χ+

1

gn
(IN−1 ⊗BnϕxDn(g))χ

−
(
IN−1 ⊗D−1

n (g)Kcϕ̄wDl+1(d)
)
ζ2

(4.42)

The dynamics of ζ2 becomes, exploiting (4.42):

ζ̇2 = d(IN−1 ⊗Ho)ζ2 +
1

dl+1
Ψ(ζ2,χ) (4.43)

With

Ψ(ζ2,χ) = [L22 ⊗Bl+1(γCn + CnAn)Dn(g)]χ+
[
L2

22 ⊗ (Bl+1CnKcCnDn(g))
]
χ

− [L22 ⊗ (Bl+1CnKcϕ̄wDl+1(d))] ζ2 + (IN−1 ⊗ Λ̄Dl+1(d))ζ2
(4.44)

For what regards the link dynamics, it’s possible to reformulate it as:

ẇ = [IM ⊗ (Al +Blϕw)]w + (I> ⊗BlCn)x

= [IM ⊗ (Al +Blϕw)]w + (I> ⊗BlCn)(T ⊗ In)x
′

= [IM ⊗ (Al +Blϕw)]w + (I>T ⊗BlCn)x
′

(4.45)

Due to the structure of T it turns out that:

I>T =
[
0 I2

]
(4.46)

i.e., the first column is always zero. Finally the w dynamics can be written as:

ẇ = [IM ⊗ (Al +Blϕw)]w + (I>
2 T ⊗BlCnDn(g))χ (4.47)

We can now prove the stability of the whole system studying the interconnection of (4.42),
(4.43), (4.47). Consider the following quadratic Lyapunov function:

VT =
1

2
χ>(IN−1 ⊗ Pc)χ+

1

2
bw>(IM ⊗Q)w +

1

2
ζ2

>(IN−1 ⊗ Po)ζ2, (4.48)

with some b > 0 to be selected and where Q = Q> � 0 is a matrix satisfying

(Al +Blϕw)
>Q+Q(Al +Blϕw) = −Im (4.49)
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Such a matrix exists since we made the assumption (4.2). Computing its time derivative
along (4.42), (4.43), (4.47), we have:

V̇T = χ>(IN−1 ⊗ Pc)χ̇+ bw>(IM ⊗Q)ẇ + ζ2
>(IN−1 ⊗ Po)ζ̇2

= −a2g|χ|2 +
1

gn
χ> (IN−1 ⊗ PcBnϕxDn(g))χ− χ> (IN−1 ⊗ PcD

−1
n (g)Kcϕ̄wDl+1(d)

)
ζ2

− b|w|2 +w>(I2 ⊗QBlCnDn(g))χ− a1d|ζ2|2 + ζ2
> [L22 ⊗ PoBl+1(γCn + CnAn)Dn(g)]χ

+ ζ2
> [L2

22 ⊗ PoBl+1CnKcCnDn(g)
]
χ− ζ2

> [L22 ⊗ (PoBl+1CnKcϕ̄wDl+1(d))] ζ2

+ ζ2
>(IN−1 ⊗ Λ̄Dl+1(d))ζ2

(4.50)

Setting:

k0 =
1

gn
PcBnϕxDn(g), k1 = PcD

−1
n (g)Kcϕ̄wDl+1(d)

k2 = I2 ⊗QBlCnDn(g), k3 = L22 ⊗ PoBl+1(γCn + CnAn)Dn(g)

k4 = L2
22 ⊗ PoBl+1CnKcCnDn(g), k5 = L22 ⊗ (PoBl+1CnKcϕ̄wDl+1(d))

k6 = Λ̄Dl+1(d)

(4.51)

Hence we can bound (4.50) as:

V̇T ≤ −a2g|χ|2 − b|w|2 − a1d|ζ2|2

+ |k0||χ|2 + |k1||χ||ζ2|+ |k2||w||χ|
+ |k3||ζ2||χ|+ |k4||ζ2||χ|+ (|k5|+ |k6|)|ζ2|2

(4.52)

The cross-terms can be bounded using Young inequalities:

|k1||χ||ζ2| ≤
|k1|2|ζ2|2

2
+

|χ|2

2

|k2||w||χ| ≤ |k2|2|w|2

2
+

|χ|2

2

|k3||χ||ζ2| ≤
|k3|2|ζ2|2

2
+

|χ|2

2

|k4||χ||ζ2| ≤
|k4|2|ζ2|2

2
+

|χ|2

2

(4.53)

Obtaining

V̇T ≤ − (a2g − |k0| − 2) |χ|2 −
(
b− |k2|2

2

)
|w|2

−
[
a1d− |k5| − |k6| −

1

2

(
|k1|2 + |k3|2 + |k4|2

)]
|ζ2|2

(4.54)

Thus, by setting

g >
|k0|+ 2

a2
, b >

|k2|2

2
, d >

1

a1

[
|k5|+ |k6|+

1

2

(
|k1|2 + |k3|2 + |k4|2

)]
(4.55)

54



4.3. Further extensions

(4.54) is negative definite, then the dynamics of (χ,w, ζ2) is asymptotically stable. To prove
that the closed loop defined by (4.17) is globally asymptotically stable we can notice that the
dynamics of ζ1 is asymptotically stable since it depends only on asymptotically stable terms.
This implies that also the dynamics of x′1 is stable. Finally, since χ and ζ are obtained by
linear transformations from x, ε, we can conclude that the whole system (4.17) is globally
asymptotically stable [11, pp. 31–36].

4.3 Further extensions

4.3.1 SISO case
As an extension of the previous problem, we can consider agents with the following dynamics:

ẋj = Axj +Buj
yj = Cxj

(4.56)

in which the matrices (A,B,C) are no more in prime form and they describe a SISO system,
i.e. A ∈ Rn×n, B ∈ Rn×1 and C ∈ Rn×1. Keeping the same settings of the former problem,
we want to reconstruct the quantity (4.5). It turns out that the closed loop equations now
become:

ẋ = (IN ⊗ A)x+ (IN ⊗B)u

˙̂σ =
[
IN ⊗ (Al+1 + Λ̄)

]
σ̂ + (IN ⊗KoCl+1)(σ − σ̂)

u = (IN ⊗Kcϕ̄w)σ̂

ẇ = [IM ⊗ (Al +Blϕw)]w + (I> ⊗BlC)x

σ = (I ⊗ Cl)w

(4.57)

where Ko is computed as before and Kc is obtained through the following set of equations
(passivity condition):

A>Pc + PcA− 2µC>RC = −I; a3 > 0; PcB = C>; Kc = R > 1 (4.58)

Proof. Following the same procedure as before we obtain:

ė =
[
IN ⊗ (Al+1 + Λ̄−KoCl+1)

]
e+ [L ⊗Bl+1(γC + CA)]x+ (L ⊗Bl+1CB)u

ε =
(
IN ⊗D−1

l+1(d)
)
e

ε̇ = d [IN ⊗ (Al+1 −K ′
oCl+1)] ε+

1

dl+1
Ψ(ε,x,u)

(4.59)

with Ψ(ε,x,u) defined as:

Ψ(ε,x,u) = [L ⊗Bl+1(γC + CA)]x+ (L ⊗Bl+1CB)u+
[
IN ⊗ Λ̄Dl+1(d)

]
ε

Now, defining:
u = (L ⊗BKcC)x− (IN ⊗Kcϕ̄wDl+1(d)) ε (4.60)

we can rewrite the agent dynamics and (4.59) as:

ẋ = (IN ⊗ A+ L ⊗BKcC)x− (IN ⊗BKcϕ̄wDl+1(d)) ε

ε̇ = d (IN ⊗Ho) ε+
1

dl+1
Ψ(ε,x)

(4.61)
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Where Ho = (Al+1 −K ′
oCl+1) is an Hurwitz matrix and:

Ψ(ε,x) = [L ⊗Bl+1(γC + CA)] +
(
L2 ⊗Bl+1CBKcC

)
x

− [L ⊗Bl+1CBKcϕ̄wDl+1(d)] ε+
(
IN ⊗ Λ̄Dl+1(d)

)
ε

Scaling the agent and the error dynamics through the matrix T , defined in (4.32) and defining
L̃ = T−1LT , we have:

χ = (T−1 ⊗ In)x =⇒ x = (T ⊗ In)χ

ζ = (T−1 ⊗ In)ε =⇒ ε = (T ⊗ In)ζ

Computing the derivative we get:

χ̇ =
(
IN ⊗ A+ L̃ ⊗BKcC

)
χ−

[
L̃ ⊗Bl+1CBKcϕ̄wDl+1(d) + IN ⊗ Λ̄Dl+1(d)

]
ζ

ζ̇ = d(IN ⊗Ho)ζ +
1

dl+1
Ψ(χ, ζ)

(4.62)

With Ψ(χ, ζ) as follows:

Ψ(χ, ζ) =
[
L̃ ⊗Bl+1(γC + CA)

]
+
(
L̃2 ⊗Bl+1CBKcC

)
x

−
[
L̃ ⊗Bl+1CBKcϕ̄wDl+1(d)

]
ε+

(
IN ⊗ Λ̄Dl+1(d)

)
ε

As before we can split the scaled dynamics of the agents and of the observer error in two
parts:

χ̇ =

[
χ̇1

χ̇2

]
ζ̇ =

[
ζ̇1
ζ̇2

]
(4.63)

Making the computation we obtain, for the agent dynamics:

χ̇1 = Aχ1 + (L12 ⊗BKcC)χ2 − (BKcϕ̄wDl+1(d)) ζ1

χ̇2 = [IN−1 ⊗ A+ (L22 ⊗BKcCn)]χ2 − (IN−1 ⊗BKcϕ̄wDl+1(d))ζ2

(4.64)

and for what regard the error dynamics:

ζ̇1 = dHoζ1 +
1

dl+1

{
[L12 ⊗Bl+1(γC + CA)]χ2 +

[
L2

12 ⊗ (Bl+1CBKcC)
]
χ2

− [L12 ⊗ (Bl+1CBKcϕ̄wDl+1(d))] ζ2 + (IN−1 ⊗ Λ̄Dl+1(d))ζ2

}
ζ̇2 = d(IN−1 ⊗H0)ζ2 +

1

dl+1
Ψ(ζ2,χ2)

(4.65)

With

Ψ(ζ2,χ2) = [L22 ⊗Bl+1(γC + CA)]χ2 +
[
L2

22 ⊗ (Bl+1CBKcC)
]
χ2

− [L22 ⊗ (Bl+1CBKcϕ̄wDl+1(d))] ζ2 + (IN−1 ⊗ Λ̄Dl+1(d))ζ2

As a next step consider the follow quadratic Lyapunov function:

VT =
1

2
αχ>

2 (IN−1 ⊗ Pc)χ2 +
1

2
βw>(IM ⊗Q)w +

1

2
ζ>
2 (IN−1 ⊗ Po)ζ2 α, β > 0 (4.66)
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Computing its time derivative we obtain:

V̇T =− α|χ2|2 + αχ>
2 (IN−1 ⊗ PcBKcϕ̄wDl+1(d)) ζ2 − β|w|2 + βw> (I2 ⊗QC)χ2−

a1d|ζ2|2 +
1

dl+1
ζ>
2 [L22 ⊗ PoBl+1(γC + CA)]χ2 +

1

dl+1
ζ>
2 (L22 ⊗ PoBl+1CBKcC)χ2−

1

dl+1
ζ>
2

(
L2

22 ⊗ PoBl+1CBKcϕ̄wDl+1(d)
)
ζ2 +

1

dl+1
ζ>
2

(
IN−1 ⊗ PoΛ̄Dl+1(d)

)
ζ2

(4.67)

Where Q and I2 are defined in (4.49) and (4.46). Grouping the similar terms and exploiting
the fact that |A||B| ≥ A ·B for any vector or matrix, we can obtain a bound for (4.67):

V̇T ≤− α|χ2|2 − β|w|2 − a1d|ζ2|2 + α|k0||χ2||ζ2|+
β|k1||w||χ2|+ (|k2|+ |k3|)|ζ2||χ2|+ (|k4|+ |k5|)|ζ2|2

(4.68)

Where:

k0 = PcBKcϕxDl+1(d), k1 = I2 ⊗QC

k2 =
1

dl+1
[L22 ⊗ PoBl+1(γC + CA)] , k3 =

1

dl+1
[L22 ⊗ PoBl+1CBKcC]

k4 = L2
22 ⊗ PoBl+1CBKcϕ̄wDl+1(d), k5 = PoΛ̄Dl+1(d)

(4.69)

Using Young inequalities we finally obtain:

V̇T ≤− α|χ2|2 +
α

2
|χ2|2 + |χ2|2 +

β

2
|k1|2|χ2|2 − β|w|2 + β

2
|w|2

− a1d|ζ2|2 +
α

2
|k0|2|ζ2|2 +

1

2

(
|k2|2 + |k3|2 + 2|k4|+ 2|k5|

)
|ζ2|2

=−
(
α

2
− β

2
|k1|2 − 1

)
|χ2|2 −

β

2
|w|2+

−
(
a1d−

α

2
|k0|2 −

1

2

(
|k2|2 + |k3|2

)
− |k4|2 − |k5|2

)
|ζ2|2

(4.70)

So as before we can achieve stability of the system by choosing:

α > 2 + β|k1|2, d >
1

a1

[
α

2
|k0|2 +

1

2

(
|k2|2 + |k3|2

)
+ |k4|2 + |k5|2

]

4.3.2 Adding a reference
As an extension of the previous problem, we can consider agents with the following dynamics:

ẋj = Anxj +Bnϕxxj + uj
yj = Cxj − r(t)

(4.71)

where r(t) is a reference.
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In this case we add the following assumption:

Assumption 4.3. The matrix (An + Bnϕx) is Hurwitz, i.e. all the eigenvalues have real
part strictly less than 0.

The aim of this part is to show that the system is able also to track a reference, in our
case the signal r(t). Following the same idea of the previous proof we can show that the
multi-agent system in which the agents are described by (4.71) can be seen as the system
described by (4.17) because during the analysis the term r(t) disappears, in particular when
we compute the σ and the w dynamics. In the end we can conclude that also this system is
globally asymptotically stable and that is able to track a reference described by the signal
r(t). Further analysis will be done in the following simulations.

4.3.3 Nonlinear case
In this section we want to develop the theory regarding the case in which the N agents can
be written as:

ẋj = Anxj +Bnφ(xj) + uj

yj = Cxj
∀j = 1, .., N (4.72)

Where xj ∈ Rn, uj ∈ Rn, yj ∈ R and the matrices (An, Bn, Cn) are in normal/prime form.

Assumption 4.4. The function φ(x) is globally Lipschitz, namely there exists a φ̄ > 0 such
that

||φ(x1)− φ(x2)|| ≤ φ̄||x1 − x2|| ∀x1, x2 ∈ Rn (4.73)

Remark 2. It can be noticed that the structure of (4.72) is equivalent to a requirement of
observability for a nonlinear system described by:

ẋ = a(x) + u

y = h(x)
(4.74)

Indeed, if the system is globally observable, there exists a mapping Ψ : Rn 7→ Rn, defined as:

Ψ(xk) =


h(xk)
Lfh(xk)

...
Ln−1
f h(xk)

 (4.75)

Where with Lfh(x) we are referring to the Lie derivative of h with respect to f . This map is
the link between (4.74) and (4.72).

The global Lipschitz assumption, that is a very strict assumption in some cases, is
motivated by the fact that the result we are aiming to obtain is a global result, i.e. we allow
any initial condition for the agents, without restrict them in a compact set. If the initial
state of the agents ranges in a fixed set we can weak the assumption and ask the function
Φ(x) to be only locally Lipschitz.
Furthermore, it is supposed that the system (4.72) is ISS (input-to-state stable) with respect
to the input uj relative to a compact set, as is stated in the next assumption.
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Assumption 4.5. There exists a compact set X ⊂ Rn such that the system

ẋj = Anxj +Bnφ(xj) + uj ∀j = 1, ..., N (4.76)

is ISS stable with respect to uj relative to X, namely there exist a class-KL function β(·, ·)
and a class-K function γ such that [12, pp 174–181]

||xj(t, x̄j)||X ≤ β(||xj||X , t) + γ( sup
τ∈[0,t]

||uj(τ)||) (4.77)

This condition can be equivalently written as:

||xj(t, x̄j)||X ≤ β̄(||xj||X , t) + γ̄( sup
τ∈[0,t]

||uj(τ)||) (4.78)

Where usually β̄(·, ·) 6= β(·, ·) and γ̄(·) 6= γ(·)

As in the previous cases, the M links are described by the SISO LTI dynamics:

ẇi = Alwi +Bl

(
ϕwwi +

N∑
j=1

ιjiyji

)
z = Clwi

(4.79)

for i = 1, ...,M with wi ∈ Rl, zi ∈ R, (Al, Bl, Cl) matrices in prime form and ϕw ∈ R1×l. We
make the assumptions (4.1) and (4.2) regarding the dynamics of the links.

Following the same steps of the proof of the linear case, we define the scalar variables ξi
and σj as:

ξi = ϕwwi +
N∑
j=1

ιjiyj

σj =
M∑
i=1

ιjizi

(4.80)

And computing the derivatives of σj we end up with the following equations:

σ̇j = (Al+1 + Λ̄)σj +Bl+1

[
N∑
i=1

`ji
(
γyi + Cn(Anxi + uj

)]
yj = Cl+1σj

(4.81)

where Al+1, Bl+1, Cl+1 are in prime form and Λ̄ and γ are defined in the same manner as in
(4.7) and (4.11).
We can define the observer-controller law as:

˙̂σj = (Al+1 + Λ̄)σ̂j +Ko(σj − Cl+1σ̂j)

uj = Kcϕ̄wσ̂j
(4.82)

for j = 1, ..., N with

ϕ̄w =

(
ϕ>
w

−1

)>

∈ R1×(l+1) (4.83)
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Ko = Dl+1(d)Ko
′ ∈ Rl+1, Dl+1(d) = diag(d, ..., dl+1), K ′

o = P−1
0 C>

l+1

Kc = Dn(g)K
′
c ∈ Rn, Dn(g) = diag(g, ..., gn), K ′

c = PcC
>
n

(4.84)

with d ≥ 1 and g ≥ 1 to be chosen large enough, and P0, Pc solutions to following Riccati
equations (ARE):

P0Al+1 + A>
l+1P0 − 2C>

l+1Cl+1 = −a1I, a1 > 0 (4.85)

PcAn + A>
nPc − 2µC>

n Cn = −a2I, a2 > 0 (4.86)
where µ ≤ λ2(L).
Stacking all the vectors can write x = col(x1, ..., xN), σ̂ = col(σ̂1, ..., σ̂N), u = col(u1, ..., uN),
w = col(w1, ..., wM), σ = col(σ1, ..., σN), Φ(x) = blkdiag({φ(xj)}nj=1). Exploiting the proper-
ties of Kronecker products and the information we obtained so far, we can write the equations
that describe the whole network of agents, links and local regulators as:

ẋ = (IN ⊗ An)x+ (IN ⊗B) Φ(x) + u

˙̂σ =
[
IN ⊗ (Al+1 + Λ̄)

]
σ̂ + (IN ⊗KoCl+1)(σ − σ̂)

u = (IN ⊗Kcϕ̄w)σ̂

ẇ = [IM ⊗ (Al +Blϕw)]w + (I> ⊗BlCn)x

σ = (I ⊗ Cl)w

(4.87)

We can now enunciate the following theorem:

Theorem 14. Consider the system described by (4.87) fulfilling assumptions (4.1) and (4.2)
with control parameters Ko and Kc chosen according to (4.84). There exist a d? and a g?(d?)
such that for all d > d? and g > g?, the set:

S = {(x,w, σ) ∈ RNn × RlM × R(l+1)N :

x1 = · · · = xN ,

w1 = · · · = wM = 0,

σ1 = · · · = σN = 0}

(4.88)

is globally exponentially stable.

Proof. The proof is divided in three subsections as follows:

1. First of all, we will show that the dynamics of the closed loop defined in 4.87 is bounded

2. Then, we will show that the observation error can be tuned choosing properly the
parameter d

3. Once the observation error is small, we can show that the system actually achieve
synchronization

1) Boundness of solutions:
Exploiting the assumption (4.5), there exist a class-K function γx(·) : RnN → R and a
class-KL βx(·, ·) : RnN → R such that:

||x(t,x0)||X ≤ max{βx(||x0||, t), γx( sup
τ∈[0,t]

||u(τ)||)}

≤ max{βx(||x0||, t), γx(M)}
(4.89)
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and there exists a t1 such that ∀t > t1 we can rewrite (4.89) as:

||x(t1,x0)||X ≤ γx(M) (4.90)

and this implies the boundness of x-dynamics. About the z-dynamics, we can say that it is
also bounded according to assumption (4.2), in fact we have:

||z(t, z0)||X ≤ max{βz(||z0||, t), γz( sup
τ∈[0,t]

||x||)}

≤ max{βz(||z0||, t), γz ◦ γx(M)}
(4.91)

This, in turn implies that σ is bounded, since for all j = 1, ...,m, σj is a linear combination
of wi. In the end, boundness of σ implies that also the observer state σ̂ is bounded.

2) Observer convergence:
As usual we start defining the observer error as:

e = σ̂ − σ (4.92)

Following the same reasoning of (4.20) and defining ε as in (4.21) we end up with:

ε̇ = (IN ⊗D−1
l+1(d))

[
IN ⊗ (Al+1 + Λ̄−KoCl+1)

]
(IN ⊗D−1

l+1(d))ε+
1

dl+1
Ψ(x,u)

= d [IN ⊗ (Al+1 −K ′
oCl+1)] ε+

1

dl+1
Ψ(ε,x,u)

(4.93)

where the function Ψ(ε,x,u) is defined as:

Ψ(ε,x,u) = [L ⊗Bl+1(γCn + CnAn)]x+ (L ⊗Bl+1Cn)u+ (IN ⊗ Λ̄Dl+1(d))ε (4.94)

Since this is exactly the same expression obtained in (4.22), we can follow the same procedure
of the linear case and conclude that we can make small the observer error tuning the parameter
d. We can say that with a d̄− ε argument:

Lemma 5. For all ε ∈ R>0 and for all Ts > ts, there exists a d̄ ≥ d such that for all d > d̄
we have

||(IN ⊗Dn(d))ε|| ≤ ε (4.95)

This lemma states that the convergence of the observer can be tuned arbitrarily. We can
now consider the system when the observation error has converged to an arbitrary small value.

3) Synchronization of the nonlinear agents:
Once the observation error is tuned to be small, we can rewrite the input u as:

u = (L ⊗KcCn)x− (IN ⊗Kcϕ̄wDl+1(d)) ε (4.96)

So we can rewrite the x and u dynamics exploiting the former definition of u becoming:

ẋ = [(IN ⊗ An) + (L ⊗KcCn)]x+ (IN ⊗Bn)Φ(x)− (IN ⊗Kcϕ̄wDl+1(d))ε (4.97)

ε̇ = d (IN ⊗Ho) ε+
1

dl+1
Ψ(x, ε) (4.98)
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With Ψ(x, ε) defined as follows:

Ψ(x, ε) = [L ⊗Bl+1(γCn + CnAn)]x+
(
L2 ⊗Bl+1CnKcCn

)
x

− (L ⊗Bl+1CnKcϕ̄wDl+1(d)) ε+
(
IN ⊗ Λ̄Dl+1(d)

)
ε

We can now exploit these new expressions to prove synchronization. In order to do so,
consider the transformation provided by the matrix T , defined as follows:

T =

[
1 01×(N−1)

1(N−1)×1 IN−1

]
(4.99)

Applying the similarity transformation at the Laplacian matrix L and to the vectors x and ε
we have:

L̃ = T−1LT =

[
0 L12

0 L22

]
(4.100)

x′ = (T−1 ⊗ In)x

ζ = (T−1 ⊗ In)ε
(4.101)

Computing the time derivative of x′ we have:

ẋ′ =
[
(IN ⊗ An) + (L̃ ⊗KcCn)

]
x′ + (IN ⊗Bn)∆Φ(x′)− (IN ⊗Kcϕ̄wDl+1(d))ζ (4.102)

Where it turns out that ∆Φ(x′) is a diagonal matrix:

∆Φ(x′) = (IN ⊗Bn)


φ(x′1) 0 · · · 0
0 φ(x′1 + x′2)− φ(x′1) · · · 0
... · · · . . . ...
0 · · · · · · φ(x′1 + x′N)− φ(x′1)

 (4.103)

Splitting the dynamics we obtain:

ẋ′1 = Anx
′
1 + (L12 ⊗KcCn)x

′
2 +BnΦ(x

′
1)− (Kcϕ̄wDl+1(d))ζ1

ẋ′
2 = [(IN−1 ⊗ An) + (L22 ⊗KcCn)]x

′
2 + (IN−1 ⊗Bn)∆Φ(x′1,x

′
2)

− (IN−1 ⊗Kcϕ̄wDl+1(d))ζ2

ζ̇1 = dHoζ1 +
1

dl+1

{
[L12 ⊗Bl+1(γCn + CnAn)]x

′
2 +

[
L2

12 ⊗ (Bl+1CnKcCn)
]
x′
2

− [L12 ⊗ (Bl+1CnKcϕ̄wDl+1(d))] ζ2 + (IN−1 ⊗ Λ̄Dl+1(d))ζ2
}

ζ̇2 = d(IN−1 ⊗H0)ζ2 +
1

dl+1
Ψ(ζ2,x

′
2)

(4.104)

With

Ψ(ζ2,x
′
2) = [L22 ⊗Bl+1(γCn + CnAn)]x

′
2 +

[
L2

22 ⊗ (Bl+1CnKcCn)
]
x′
2

− [L22 ⊗ (Bl+1CnKcϕ̄wDl+1(d))] ζ2 + (IN−1 ⊗ Λ̄Dl+1(d))ζ2
(4.105)

Where ∆Φ(x′1,x
′
2) is bounded due to assumption (4.4), namely there exists Φ̄ such that:

||∆Φ(x′1,x
′
2)|| ≤ Φ̄||x′

2|| ∀x′1 ∈ Rn, x′
2 ∈ R(N−1)n (4.106)
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To notice this, note that:

∆Φ(x′1, 0) =

Φ(x
′
1)− Φ(x′1)

...
Φ(x′1)− Φ(x′1)

 =

0...
0

 (4.107)

So we can rewrite the Lipschitz assumption as:

||∆Φ(x′1, x
′
2)−∆Φ(x′1, 0)|| ≤ Φ̄||x′

2|| (4.108)

And exploiting (4.107) we obtain (4.106). Furthermore, we rescale the x2
′ dynamics as:

χ = (IN−1 ⊗D−1
n (g))x′

2 (4.109)

Computing the time derivative of (4.109) and exploiting the fact that:

D−1
n (g) ·Bn =

 0
...
gn

 ∈ Rn (4.110)

we obtain:

χ̇ = g [(IN1 ⊗ An) + (L22 ⊗K ′
cCn)]χ+

1

gn
(IN−1 ⊗Bn)∆Φ(x′1,χ)

+ (IN ⊗D−1
n (g)Kcϕ̄wDl+1(d))ζ2

(4.111)

The dynamics of ζ2 becomes, exploiting (4.42):

ζ̇2 = d(IN−1 ⊗Ho)ζ2 +
1

dl+1
Ψ(ζ2,χ) (4.112)

With

Ψ(ζ2,χ) = [L22 ⊗Bl+1(γCn + CnAn)Dn(g)]χ+
[
L2

22 ⊗ (Bl+1CnKcCnDn(g))
]
χ

− [L22 ⊗ (Bl+1CnKcϕ̄wDl+1(d))] ζ2 + (IN−1 ⊗ Λ̄Dl+1(d))ζ2
(4.113)

For what regards the link dynamics, it’s possible to reformulate it as:

[IM ⊗ (Al +Blϕw)]w + (I>T ⊗BlCn)x
′ (4.114)

Due to the structure of T it turns out that:

I>T =
[
0 I2

]
(4.115)

i.e., the first column is always zero. Finally the w dynamics can be written as:

ẇ = [IM ⊗ (Al +Blϕw)]w + (I>
2 T ⊗BlCnDn(g))χ (4.116)

In order to prove the asymptotic stability of the system, let us define the following quadratic
Lyapunov function:

VT =
1

2
χ>(IN−1 ⊗ Pc)χ+

1

2
bw>(IM ⊗Q)w +

1

2
ζ>
2 (IN−1 ⊗ Po)ζ2, b > 0 (4.117)
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Where the matrix Q is defined as in (4.49). Computing the time derivative of VT along the
trajectories defined by (4.111), (4.112) and (4.116) we have:

V̇T = χ>(IN−1 ⊗ Pc)χ̇+ bw>(IM ⊗Q)ẇ + ζ>
2 (IN−1 ⊗ Po)ζ̇2

= −a2g|χ|2 − b|w|2 − a1d|ζ2|2 +
1

gn
χ>(IN−1 ⊗ PcBn)∆Φ(x′1,χ)

+ χ>(IN−1 ⊗ PcD
−1
n (g)Kcϕ̄wDl+1(d))ζ2 +w>(I2 ⊗QBlCnDn(g))χ

+ ζ>
2 [L22 ⊗ PoBl+1(γCn + CnAn)Dn(g)]χ+ ζ>

2

[
L2

22 ⊗ PoBl+1CnKcCnDn(g)
]
χ

− ζ>
2 [L22 ⊗ PoBl+1CnKcϕ̄wDl+1(d)] ζ2 + ζ>

2 (IN−1 ⊗ Λ̄Dl+1(d))ζ2

(4.118)

Since χ is simply a scaled version of x′
2 we can infer that ∆Φ(x′1,χ) is Lipschitz, namely

there exists a constant Φ̄′ such that:

||∆Φ(x′1,χ)|| ≤ Φ̄′||χ|| ∀x′1 ∈ Rn, χ ∈ R(N−1)n (4.119)

To provide a bound of the expression (4.118) we define the following variables:

k0 =
1

gn
PcBn, k1 = PcD

−1
n (g)Kcϕ̄wDl+1(d)

k2 = I2 ⊗QBlCnDn(g), k3 = L22 ⊗ PoBl+1(γCn + CnAn)Dn(g)

k4 = L2
22 ⊗ PoBl+1CnKcCnDn(g), k5 = L22 ⊗ (PoBl+1CnKcϕ̄wDl+1(d))

k6 = Λ̄Dl+1(d)

(4.120)

and we proceed using Young inequalities:

|k1||χ||ζ2| ≤
|k1|2|ζ2|2

2
+

|χ|2

2

|k2||w||χ| ≤ |k2|2|w|2

2
+

|χ|2

2

|k3||χ||ζ2| ≤
|k3|2|ζ2|2

2
+

|χ|2

2

|k4||χ||ζ2| ≤
|k4|2|ζ2|2

2
+

|χ|2

2

(4.121)

Therefore we can bound (4.118) as:

V̇T ≤ −
(
a2g − 2− |k0|Φ̄′) |χ|2 − (b− |k2|2

2
)|w|2

−
(
a1d−

1

2

(
|k1|2 + |k3|2 + |k4|2

)
− |k5| − |k6|

)
|ζ2|2

(4.122)

Choosing the parameters g, b, d as:

g >
1

a2

(
2 + |k0|Φ̄′) b >

|k2|2

2
d >

1

a1

[
1

2

(
|k1|2 + |k3|2 + |k4|2

)
+ |k5|+ |k6|

]
(4.123)
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(4.118) is negative definite, then the dynamics of (χ,w, ζ2) is asymptotically stable. To prove
that the closed loop defined by (4.87) is globally asymptotically stable we can notice that
the dynamics of ζ1 is asymptotically stable since it depends only on asymptotically stable
terms. This, along with the fact the function Φ(x) is globally Lipschitz, implies that also the
dynamics of x′1 is stable. Finally, since χ and ζ are obtained by linear transformations from
x, ε, we can conclude that the whole close loop (4.87) is globally asymptotically stable.
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4.4 Simulation example

4.4.1 System and controller settings
In this section a practical example will be considered. The simulation is based on the system
described by the graph shown in figure 4.1, therefore N = M = 6. The incidence matrix
I ∈ RN×E and the Laplacian matrix L ∈ RN×N are respectively:

I =


1 0 0 0 0 0
−1 1 0 0 0 −1
0 −1 1 1 0 0
0 0 −1 0 0 0
0 0 0 −1 1 1
0 0 0 0 −1 0



L =


1 −1 0 0 0 0
−1 3 −1 0 −1 0
0 −1 3 −1 −1 0
0 0 −1 1 0 0
0 −1 −1 0 3 −1
0 0 0 0 −1 1


The eigenvalues of the matrix L are

λ1 = 0, λ2 = 0.69, λ3 = 0.69

λ4 = 2, λ5 = 4.30, λ6 = 4.30

Each agent xj,∀j = 1, ..., 6 is described by:

ẋj1ẋj2
ẋj3

 =

A3︷ ︸︸ ︷0 1 0
0 0 1
0 0 0

xj1xj2
xj3

+

B3︷︸︸︷00
1

 ϕx︷ ︸︸ ︷[
0 −2 −3

] xj1xj2
xj3

+

uj1uj2
uj3


yj =

C3︷ ︸︸ ︷[
1 0 0

] xj1xj2
xj3


(4.124)

The dynamics of each link wi,∀i = 1, ..., 6 can be written as:

[
ẇi1

ẇi2

]
=

A2︷ ︸︸ ︷[
0 1
0 0

] [
wi1

wi2

]
+

B2︷︸︸︷[
0
1

] ϕw︷ ︸︸ ︷[
−1 −1

] [wi1

wi2

]
+

B2︷︸︸︷[
0
1

] 6∑
j=1

ιjiyj

zi =

C2︷ ︸︸ ︷[
1 0

] [wi1

wi2

]
The parameters d, l are chosen as d = 8 and l = 1.
Solving the two AREs (4.15) and (4.16), using as parameters: µ = 0.5, a1 = 10, a2 = 0.1 we
obtain the following values for Ko and Kc:

Ko =

 38.08
405.33
1619.08

 , Kc =

 0.74
0.08
−0.07


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4.4. Simulation example

4.4.2 Nominal setting
In the nominal context, i.e. without any uncertainty and without any noise, it can be seen
from the following pictures that the stability is influenced by the presence of the observers.
In particular, without the observers the stability can be achieved only if the filter dynamics
is sufficiently fast.
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(a) Evolution of the outputs of the agents
(4.124) (with local observers)
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(b) Evolution of states of (4.124) (without
observers)

In the picture below is shown the behavior of the agents input:
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Figure 4.3: Agents input

In some cases we would like to limit the input effort. In order to do so, we can saturate the
input between two values u ∈ [umin, umax]. In the following pictures it can be seen that, even
tough the inputs are saturated, the consensus is still achieved.
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Figure 4.4: Agents input with ui ∈ [−5, 5]

In the picture below is shown the output behavior when a saturated input is considered. It
can be noticed that the consensus is still achieved, even if it requires more time
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Figure 4.5: Output consensus with saturated input and sinusoidal reference

4.4.3 Robustness analysis
It’s worth noticing that the system is robust with respect to filter dynamics uncertainties. In
fact if we suppose an uncertain filter dynamics we can’t exactly know the dynamics of the
observer and this can result in an unstable system. In the following are shown the results for
the simulations done modifying the value of the parameter ϕw inside the observer dynamics.
Calling the modified parameter ϕ̃w, we tried with ϕ̃w = 2ϕw and ϕ̃w = 0.1ϕw. In both cases
it can be seen that consensus is achieved, despite some differences in the transient phase due
to the fact that the dynamics of the filter is not exactly known.
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(a) Evolution of the outputs of the agents with
ϕ̃w = 2ϕw
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(b) Evolution of the outputs of the agents with
ϕ̃w = 0.1ϕw

Another test that we can do is to simulate the system injecting a white noise in the dynamics
of each agent. With these settings the new equations for the agent dynamics become:

ẋj = Anxj +Bnϕxxj + uj + dj
yj = Cxj

(4.125)

When d(t) is the injected disturbance. It can be seen from the following pictures that the
consensus is still achieved after some seconds:
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(a) Evolution of the outputs of the agents in
presence of white noise (no reference)
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(b) Evolution of the outputs of the agents in
presence of white noise and a sinusoidal refer-
ence

In the previous simulation the disturbance is a white noise with a height of its power spectral
density (PSD)1 equal to 0.1.
We can also simulate the system dropping the assumption of asymptotic stability of the links,
by making the assumption of neutrally stable links. Again, the consensus is achieved, as can
be seen from the following plots:

1The power spectral density describes how power is distributed over the frequency content of the random
process
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(a) Evolution of the outputs of the agents in
presence of neutrally stable links (no reference)
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(b) Evolution of the outputs of the agents in
presence of neutrally stable links and a sinu-
soidal reference

Finally we can simulate the system when a sudden change of reference happens after a
certain amount of time. In the following example the amplitude of the sinusoidal reference
change after 25 s.
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Figure 4.9: Output consensus with variable reference

It can be seen that the consensus is maintained despite the sudden change in amplitude
of the reference signal.
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Chapter 5

Further Simulations

In this chapter we present some simulations results in the context of multi-agent systems.
First of all, we will simulate the previous control law when each agent is modeled as a Van
der Pol oscillator. In second place, we will consider a special type of oscillator in which each
agent dynamics is described by:

ẋi = Aixi − kx arctan (||x||2i −R2
i ) + ui, ∀i = 1, ..., N (5.1)

5.1 Simulation 1: Van der Pol oscillator
In this case each agent is modeled as a Van der Pol oscillator:

ẋi,1 = xi,2

ẋi,2 = µ(1− x2i,1)xi,2 − xi,1 + ui
∀i = 1, ..., N (5.2)

Where µ ∈ R is a parameter. The input ui is computed following the same procedure shown
in the previous chapters. In our simulations µ = 0.5.
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Figure 5.1: Van der Pol oscillators: state consensus
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Figure 5.2: Van der Pol oscillators: agents input

From the following picture it can be seen that the output consensus is also achieved:
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Figure 5.3: Van der Pol oscillators: output consensus

5.2 Simulation 2
In this section we consider agents described by:

ẋi = Sxi − kx arctan (||x||2i −R2) + ui

y = Cxi
∀i = 1, ..., N (5.3)

Where
S =

(
0 ω
−ω 0

)
ω =

2π

T
φ(x) = arctan (||x||2 −R2) (5.4)
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Regarding this system, the following properties holds:

1. The function f(x) = xφ(x) = x arctan (||x||2 −R2) is globally Lipschitz.

2. The unforced system admit a T-periodic orbit of radius R which is asymptotically
stable with domain of attraction R2 \ {0} and locally exponentially stable.

3. The system (5.1) is input-to-state stable with respect to the set {x ∈ R2 : ||x|| = R}.

Proof. 1. Exploiting the properties of the arctan function we have:

|f(e+ x)− f(x)| = |φ(e+ x)(e+ x)− φ(x)x|
≤ |φ(e+ x)x− φ(x)x|+ |φ(e+ x)e|

≤
∣∣∣∣∫ 1

0

∂φ

∂e
(x+ se)xds e

∣∣∣∣+ |φ(e+ x)||e|

≤
∣∣∣∣∫ 1

0

k(x+ se)>x

1 + ((x+ se)>(x+ se)−R2)2
ds

∣∣∣∣ |e|+ ∣∣k arctan (|e+ x|2 −R2
)∣∣ |e|

≤ k sup
s∈R

∣∣∣∣ s

1 + (s2 −R2)2

∣∣∣∣ |e|+ k sup
s∈R

∣∣arctan (s2 −R2
)∣∣ |e|

≤ k
(
1 +

π

2

)
|e|

(5.5)

Furthermore, we compute

∂f

∂x
(x) =

∂

∂x
(xφ(x)) = Iφ(x) + 2φ′(x)xx> (5.6)

2. Transform the system in polar coordinates{
x = r cos θ
y = r sin θ

{
r =

√
x2 + y2

θ = arctan
(
y
x

) (5.7)

Then, the unforced system is transformed into

θ̇ = 1 θ ∈ R (5.8)
ṙ = −rφ(r) r ∈ R≥0. (5.9)

In this coordinates, the two variables θ and r are independent. Concerning the r
coordinate, we have two equilibria which are r = 0 and r = R that implies φ(r) = 0.
The equilibrium r = 0 coincide with the origin x = 0. We are interested in showing
that the second equilibrium r = R is asymptotically stable. For this, consider the
Lyapunov function V = (r −R)2. On its domain of definition r ∈ [0,∞), we obtain

V̇ = −(r −R)rφ(r) = −kr(r −R) arctan
(
r2 −R2

)
< 0 ∀r ∈ [0, R) ∪ (R,∞)

where the latter is a consequence of the fact that

(r −R) arctan
(
r2 −R2

)
> 0 ∀r 6= R
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This shows asymptotic stability of the point r = R. Furthermore, the orbit r = R is also
locally exponentially stable. To see this, compute the linearization of the r-dynamics
around the equilibrium r = R :

∂

∂r
(−rφ(r))r=R = −φ(R)−R2φ′(R) = −kR2 < 0

which conclude the proof. Alternatively, we can establish exponential stability in the
original coordinates by computing the approximation of the Jacobian of the unforced
system around |x| = R. By using (5.6), we obtain

∂

∂x
[Sx− f(x)]|x|=R =

[
S − Iφ(x)− 2φ′(x)xx>

]
|x|=R

=
[
S − 2kRxx>

]
|x|=R

(5.10)

Since |x| = R, then x 6= 0. Therefore, for any x,
(
S, x>

)
is an observable pair. It turns

out that S − 2kRxx> is Hurwitz for any x 6= 0 and any k > 0. Hence local exponential
stability is proven.

3. First of all, consider the Lyapunov function V0 = x>x. Its derivative satisfies

V̇0 = 2x>(Sx− φ(x)x)

= −2x>xφ(x)

≤ −φ(x)V0

For |x| > R, we obtain φ(x) > ε. Therefore, the previous inequality can be bounded
as V̇0 ≤ −εV0 + |d|2 showing that trajectories remain ultimately bounded. In order to
obtain a suited ISS Lyapunov function that holds everywhere, let consider the Lyapunov
function

V (x) = x>Px

with P satisfying

Ṗ = −P
(
S + xx>

)
−
(
S + xx>

)>
P + 2φ(x)I − P 2, P (0) = P (0)> > 0 (5.11)

Therefore, there exists 0 < p < p̄ <∞ so that

p|x|2 ≤ V ≤ p̄|x|2

Its derivative along the unforced system satisfies

V̇ = 2x>P (Sx− φ(x)I) + x>Ṗ x

= 2x>P (Sx− φ(x)I) + x>
(
−P

(
S + xx>

)
−
(
S + xx>

)>
P + φ(x)I − P 2

)
x

= −2x>xx>Px− x>P 2x

≤ −2x>xV

When, |x| ≥ R, we obtain V̇ ≤ −2R2.
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Chapter 6

Conclusions and Perspectives

This thesis has explored the problem of achieving consensus (i.e. synchronization) in multi-
agent systems in the presence of dynamic interconnections, exploiting an observer-based
control strategy through the use of high-gain observers.
The methods proposed and analyzed demonstrate the potential for robust synchronization
in networks of nonlinear agents, even when subject to noise. The core of this thesis is the
extension of existing theoretical results to systems with dynamic interconnections, achieving
synchronization in a wide range of networks. An important application is related to power
grid systems, where maintaining synchronization is essential for stability and efficiency. In
modern power grids, especially decentralized systems that exploit renewable energy sources,
synchronization of inverters is crucial to ensure that all components operate at the same
frequency, typically 50Hz, to balance supply and demand.
As a perspective, the methodologies developed through this work could be useful in achieving
consensus in a context in which each inverter is seen as an agent. This approach ensures that
all inverters synchronize to the grid frequency while simultaneously responding to demand
fluctuations from agents such as houses, factories, and other loads. This work has significant
implications in the context of grid-forming inverters, which establish and maintain the voltage
and frequency of the grid. Indeed, the results obtained can be applied in this context,
ensuring consensus between the agents along the same trajectory, as is shown by simulations
throughout the thesis. Beyond power grids, there are several other important applications:

• Robotic Swarms [24], [4]: The synchronization techniques could be applied to
ensure coordination in robotic swarms, where multiple robots work together to achieve
a common objective. We can see them as agents in a dynamic environment, where
the aim is to achieve and maintain synchronization in their movements, even in the
presence of noise and some dynamics between them.

Figure 6.1: Example of Robotic Swarms
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• Autonomous Vehicle Networks [19], [26]: The synchronization of autonomous
vehicles, whether in drones, cars, or maritime vessels, is crucial for safe and efficient
operation in traffic systems. Applying observer-based synchronization methods could
help vehicles dynamically adjust their routes or speeds, ensuring coordinated and
collision-free operation.

Figure 6.2: Example of Autonomous Vehicle Networks

• Sensor Networks [1], [13]: In distributed sensor networks, ensuring that sensors
across a large area synchronize data collection is critical for applications like environ-
mental monitoring, surveillance, and smart cities. The techniques developed in this
thesis could be applied to maintain consistent communication and synchronization
between sensors, despite changes in network connectivity or environmental conditions.

Figure 6.3: Example of Sensor Networks

• Biological Systems [16], [17]: The observer-based synchronization methods could
also find applications in modeling and controlling biological systems, such as neuronal
networks or biochemical processes, where multiple agents interact dynamically. Ensur-
ing synchronization in such systems could help in understanding complex biological
phenomena or developing treatments for disorders related to synchronization failures.

Figure 6.4: Example of Biological Networks
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In future work, further investigation will be required to test these theoretical results in
large-scale practical implementations, particularly in power grids and other decentralized
systems. This research provides a strong foundation for developing control laws tailored to
the complexities of modern systems, such as handling noise, nonlinearities, and a transmission
line that involves particular dynamics.
In conclusion, the synchronization techniques presented in this thesis represent a crucial
step toward more robust and sustainable applications in the context of multi-agent systems.
By enabling better synchronization among agents in applications like power grids, robotic
swarms, and autonomous vehicles, these methods hold great promise for a wide range of
applications.
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