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Advisors : Antonin Eddi, Stéphane Perrard
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Figure 1: Photography of ice floes taken in 2023 in Rimouski (Canada) by our team. The region
separating the water and the continuous ice, where we can see broken ice floes of different sizes, is
called the marginal ice zone.
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1 Introduction

1.1 Context

Due to global warming, sea ice properties have been rapidly changing in the last decades. Some
properties of scientific interest are the area covered by the ice floes, the dimensions of the ice floes, but
also the mechanical properties of the ice. Several phenomena are in play. Some important processes are
the melting of the ice floes or the solidification of water. But these are not the only processes : fracture
mechanisms of ice floes have to be considered as well. In 2006, an important work has been published
[TTN06], in which the distribution of sizes of sea ice floes has been measured on the field for a range
of about 4 decades of ice floe diameter sizes. This distribution has put in evidence the existence of two
distinct regimes : small ice floes (from about 1 meter to about 40 meters of diameter) seem to fracture
in a different way than big ice floes (from about 40 meters to about 1000 meters of diameter). Still
today, the origins of these two different behaviours are not well understood. The direction taken by
our experimental team is to investigate the coupling between ocean waves and the ice floes. To do so,
the team has already made field measurements in Canada (Fig.1), and has performed lab experiments
with other floating materials than ice. This internship is the first work in our team in which we study
real ice in the lab.

1.2 Hydroelastic waves

The study of the coupling between water waves and ice floes is a way to measure ice mechanical
properties. To study this coupling, one method, as we do in this report, is to model sea ice as a floating
elastic plate, and measure the dispersion relation of surface waves, i.e. the waves that propagate in a
thin elastic solid. In elastic plates, 3 types of waves are relevant for our problem. The first ones are
the shear-horizontal waves, characterized by displacements parallel to the surface and perpendicular
to the propagation. The second ones are the longitudinal waves : they compress and dilate locally the
solid. These ones are analogous to acoustic waves in gases for instance. The third ones are associated
to the vertical motion of the sea ice : they are called hydroelastic waves. We focus here on this last
type of waves, that correspond somehow to the coupling between gravity-capillary waves and the waves
associated to the vertical motion of a thin elastic plate.

1.3 Scientific Question

In a floating ice sheet at the lab scale, due to the difficulties to obtain a perfectly homogeneous surface,
it is not evident that hydroelastic waves can propagate in an ice sheet grown in the lab. Therefore, the
main question that we address in this report is : can we measure a dispersion relation in a heterogenous
ice sheet grown in the lab? To approach the problem, we first had to find an efficient way to grow an ice
sheet in the lab, and then to measure local displacements on it, with a method that is convenient and
accurate, not only in the lab, but also potentially on the field. To measure the propagation of waves
in the ice, one can use geophones, as it has been proposed in the nineties [SEP98], which is convenient
for field experiments, when the sea ice is thick enough. In the lab, if we want to observe phenomena
equivalent to the ones on the field, the ice sheet has to be from 100 to 1000 times smaller than sea ice
on the field. Therefore, the technique that we have used is rather based on optical acquisitions than
mechanical measurements. It can turn out to be useful even on the field, when the ice thickness is too
small to probe locally the mechanics of the material.

In this report, we will first present the theoretical framework, to explain how we model the ice
sheet. Then we will talk about the numerical tools, used to process our experimental data. Eventually
we will present some experiments, and the main experimental results that we have obtained.

2 Theoretical framework

2.1 Model

To understand the propagation of waves in an ice sheet covering the surface of water, we model the ice
sheet by an elastic plate. The thickness of the plate is noted h. Its density is written ρ. It has a Young
modulus E and a Poisson ratio ν. The water has a finite depth H below the plate. In this model, 3
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mechanisms govern the propagation of waves. The first one is the gravitational force applied to the
water : since each fluid particle is submitted to the acceleration of gravity g, Archimedes force plays
the role of restoring force that tends to bring the fluid back to its equilibrium position. The second
mechanism is tension : the corresponding restoring force is due to the longitudinal compression, or
dilatation of the elastic plate. The mechanical tension T , related to the mechanical stress σ with the
relation σ = T

h . The tension is related to capillary forces from the surface of water as well, because
modifying locally the surface of the sheet that is in contact with water requires an additional energetic
cost. The third mechanism is flexion : the corresponding restoring force is due to the application of
a curvature to the elastic plate. To this third mechanism, the associated parameter is the flexural
modulus D.

Ice : E, ρ, ν

Water

h

H

λ = 2π/k 

Flexion

Ԧ𝑔

Figure 2: Sketch of a thin elastic sheet covering the surface of water. It has a Young modulus E,
a Poisson ratio ν, and a density ρ. In this example, a sinusoidal wave with wavelength λ = 2π

k is
propagating along the horizontal axis

Under the hypotheses that :

• displacements are small so that we stay in the linear regime.

• We look for hydroelastic waves, that correspond to motion only along the vertical axis.

• inertia of the elastic sheet is negligible : that corresponds to an infinitely thin sheet (kh << 1)

• the fluid below is a perfect fluid : it has no viscosity

• the fluid is incompressible : the sound speed in water is much higher than all other phase velocities
that are in play in the problem.

The dispersion relation of hydroelastic waves in our system is given by the following equation [Dom18]:

ω2 = (gk +
T

ρ
k3 +

D

ρ
k5) · tanh(kH) (1)

Where ω = 2πf and f is the frequency, k = 2π
λ is the wavenumber.

The flexural modulus is expressed as the following (with E the Young modulus and ν the Poisson
ratio) :

D =
Eh3

12(1− ν2)
(2)
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In practice, we are interested in a regime in which the tension term is negligible. In that case, the
remaining terms are the gravity term (in which appears g) and the flexion term (in which appears
D). The ratio of these two terms defines a characteristic length. The characteristic wavelength, λD,
also called flexural wavelength, or gravito-elastic wavelength, is the wavelength at which there is a
transition between the gravity and flexural regime, and is defined as the following (using the fact that
λD = 2π

kD
) :

gkD ≡ D

ρ
k5D

kD =
(ρg
D

)1/4

⇒ λD = 2π ·
(
D

ρg

)1/4

(3)

Furthermore, it is useful to write the dispersion relation of purely flexural waves. This dispersion
relation becomes :

ω2 =
D

ρ
k5 · tanh(kH)

In the limit kH >> 1 (deep water) :

ω2 ≈ D

ρ
k5

In the limit kH << 1 (shallow water) :

ω2 ≈ DH

ρ
k6

(4)

We will see that in our experimental setup, we have to keep the term tanh(kH).

2.2 Characteristic wavelengths in the experiment

In our experiments, we used 2 different materials as elastic sheet. We are going to compute an order of
magnitude for the flexural wavelengths for both of them, in order to predict roughly which mechanisms
will dominate for the propagation of hydroelastic waves in our experimental setup.

The ice sheet is the material of main interest. In this case, a lower bound for the flexural modulus
D (Dlow) is given roughly by considering that the Young modulus E = 9 GPa and that the thickness
of the ice sheet is about 500 µm. An upper bound Dup is to consider the same Young modulus and a
thickness of about 3 mm. The Poisson ratio of the ice is about 0.4 and its density about 103 kg · m−3.

Dlow ≈ 0.1 Pa · m3

⇒ λlow
D ≈ 0.36 m = 36 cm

Dup ≈ 24 Pa · m3

⇒ λup
D ≈ 1.4m

(5)

The other material, commonly used in our experimental team, is a PDMS elastic film of 520 µm. Its
Young modulus has been measured previously by our experimental team : E = 1.6 · 106 Pa. However
it may have changed over time. We can compute, for this elastic film, the corresponding flexural
wavelength λD :

λD ≈ 4.0 cm

(Since we computed D ≈ 1.6 · 10−5Pa ·m3, ρ = 965kg ·m−3, and ν ≈ 0.5)
(6)

Looking at these characteristic wavelengths, we see that in the case of PDMS we might observe both
gravity and flexural waves. However, for the ice sheet, we expect to be always in the elastic regime,
because our experimental setup allows us to measure wavelengths of the order of 10 cm (maximum).
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Therefore, if we are able to measure hydroelastic waves with our setup, we will expect to see only
flexural waves. As the flexural regime is governed by the flexural modulus D, depending on ice
proporties such as its thickness and its Young modulus. Therefore, we are quite satisfied to see that
our experimental setup can, in principle allow us to measure such ice properties.

3 Numerical tools

Over the first weeks of this internship, we looked for an experimental technique to measure vertical
displacement within the ice which are the order of 10 µm. We first tried to use a method called
Synthetic Schlieren (method developped in 2009 [MRS09], that consists in placing a pattern below
the water tank, and using the refraction of the rays to reconstruct the elevation of the surface). This
method didn’t work since the surface of the ice was too rough. We also tried to measure the deflection
of a laser beam on the surface of ice. Eventually we found that the most reliable tehchnique was to
used Particle Image Velocimetry (PIV), to measure the vertical velocity field of the ice sheet. This
method is widely used usually to measure velocity fields in hydrodynamics, using tracer particles that
are assumed to not change the properties of the fluid. However, in our case, we are dealing with a
solid (the ice). Using the proper setup, the idea of the method we have developed is to track the local
roughness of the surface of the ice sheet.

3.1 PIV (particle image velocimetry)

3.1.1 Explaination using synthetic images

The method we are using, mostly used in hydrodynamics in order to track the velocity of fluid particles,
can be summarized using an example. The principle of this method is to cut images into small squares
(also called ”windows”, or ”boxes”). The algorithm measures the translation of the patterns inside
the window at two successive times, using digital image correlation.

Let us use a simple python code to explain the process.

• Let us take an image with a random pattern on it (c.f. Image a on Fig.3). To do so, we have
created a 2d array of shape 5 × 5 with random integer values for 0 to 3. We call it ”image a”,
and it corresponds to the image at time t0

• At time t0 +Dt we create an image that is the result of shifting up the image a by one pixel (c.f
the top-right image of Fig.3). To do that, we have deleted the first row and added at the last
row new random integer numbers, also distributed between 0 and 3.

• the cross-correlation between the 2 images is computed, here using the function correlate2d
from the module scipy.signal (python) (c.f. the bottom color map on Fig.3). However the PIV
algorithm that we use is implemented on matlab, even though the principle is the same.

• the position of the maximum of the cross-correlation is extracted, taking the pixel of the cor-
relation with the maximal value. To improve the accuracy, the algorithm PIVlab (developed
by William Thielicke : see articles [TS14] and [TS21]) that we use to analyse our images per-
forms subpixelar detection by fitting the resulting correlation map with a Gaussian (in 2 dimen-
sions).Thanks to this method, displacements, typically of the order of 0.1 pixels can be detected.

3.1.2 PIV algorithm in practice

Now that we have explained the basic idea of digital image correlation, we can explain the essential
ideas of how the velocity fields are computed from a sequence of images by the PIVlab algorithm :

• First of all, we give, as an input parameter, the width W of the boxes, in pixels that are taken to
compute local cross-correlations. The correlations are computed between boxes (”sub” images)
separated by a time interval (in the unit of number of frames) Dt, which is the second input
parameter that we have to enter.
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Figure 3: Illustration of the PIV method using synthetic images : we generated with a python code an
image with 5 × 5 pixels using random numbers with 4 possible values (represented 4 different colors)
(left) and the same image ”shifted-up” by 1 pixel. The third figure (below) is the cross-correlation
between the two images. The maximal value of this correlation map is the yellow pixel. It shows
indeed a maximum of correlation for a vertical shift of one pixel

• At each time step, each box of size W ×W is compared with the box at the same position on
the image taken Dt frames before the current one. They are ”compared” by computing their
cross-correlation, as in the example given above (Fig.3).

• for each box position the (x,y) position of the maximum of correlation is extracted.

• converting Dt in seconds, and the pixels in meters, one can easily convert the maxima of corre-
lation into a set of local velocities (Vx(x, y, t), Vy(x, y, t)).

• In the end the resolution that we get is ”divided” by W
2 with respect to the image resolution,

because the space interval between boxes is W
2 pixels.

3.1.3 Conversion of coordinates and distances from pixels to windows units

It is useful to write down how we change scales from an image to a PIV field. The formula to relate
coordinates in pixels on the image to coordinates in PIV boxes (or ”windows”) is the following :

ypixels =
W

2
+

W

2
× yboxes (7)
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Indeed, the PIV windows are of size W and separated by a half-window (size W
2 ), and we simply

have to shift the origin when we change units so that the position of a PIV window is at the middle of
it. However, one should not be confused, because the distance are still converted with the relation :

dpixels =
W

2
× dboxes (8)

3.1.4 Maximization of the PIV efficiency

Some remarks can be made concerning this algorithm : in some cases, increasing Dt can increase the
accuracy significantly. For instance, when we excite the system with only a sinusoidal wave of one
frequency, using stroboscopy allows to choose an optimal value for Dt, that maximizes the measured
signal, which is useful in the case of our experimental setup, where the displacements of the ice are very
small (comparable to the pixel size, or even smaller). We illustrate this in the figure 4 with synthetic
data points.

0 1 2 3 4 5 6
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(t)

Dt=8

Figure 4: One period of a synthetic sinusoidal signal ζ(t), sampled with 100 (blue) points. For instance,
when we choose Dt = 8, the value of ζ is compared between the two red crosses. At the successive
time, ζ is compared between the two green crosses, etc. We show also 2 purple crosses, around a local
maximum of the signal. This shows that this choice of Dt is still reasonable enough to approximate at
linear order instantaneous velocities ζ̇(t). However, taking a higher value for Dt will give less accurate
values, but will increase the signal with respect to the noise, which can be interesting. We will see in
a further analysis that we chose Dt = 16 as a good compromise.

Furthermore, if the signal is very noisy, it is also useful to increase the value of the box size W ,
because in this way the cross-correlation averages out the fluctuations. Of course, one must be careful
that the value of W has to be small compared with the typical length of spatial variations of the
velocity field, to ensure that the displacement is homogeneous within one box. We will see that it is
indeed the case in our experiment with the ice sheet.

3.2 Fourier transforms

3.2.1 Continuous case

In the physics of waves, one useful tool is the Fourier transform, and, in practice, the algorithm of fast
Fourier transform (FFT). In general, if we are interested in a system with small perturbations with
respect to an equilibrium state, we can linearize it, and, since any potential can be approximated near
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a local minimum by a quadratic potential, the corresponding solutions are sinusoidal functions, which
are the Fourier modes.

For a 1-dimensional signal ζ(t), each Fourier mode is characterized by a frequency f , so that we
can decompose ζ(t) in this basis, by summing the projections of ζ(t) on all these sinusoidal (Fourier)
modes. We define the Fourier transform as the following (with ω = 2πf):

F(ζ(t)) = ζ̂(ω) =

∫ ∞

−∞
e−iωtζ(t)dt (9)

And the inverse Fourier transform as :

F(ζ̂(ω)) = ζ(t) =
1

2π

∫ ∞

−∞
eiωtζ̂(ω)dω (10)

3.2.2 Discrete case

In practice, we look to discrete, and finite signals, with a sampling frequency (FS , but also called facq),
and size L. From the sampling frequency one can define the sampling time TS = 1

FS
, and therefore the

values of time (taking as first instant t0 = 0) will be a list with values : [0, 1, 2, . . . , L− 2, L− 1] ∗ TS

(containing L values of times). The Fourier transform in this case, is a sum, instead of an integral,
since we have a finite acquisition frequency.

The frequencies values at which can be evaluated the Fourier components are [−L
2 ,−

L
2 +1, . . . , L

2 −
2, L

2 −1]∗ FS

L . Therefore the possible ω values are [−L
2 ,−

L
2 +1, . . . , L

2 −2, L
2 −1]∗ 2πFS

L . The algorithm
commonly used to compute discrete Fourier transforms is the algorithm of ”Fast Fourier Transform”
(FFT).

One main issue of the discrete Fourier transform is that it may lack of accuracy. A trick that
is commonly used in order to artificially improve its resolution in frequency is the zero padding. It
consists in adding the same number of zeros ”at the left” and ”at the right” of the signal. It permits to
smooth the Fourier transform, which allows a better detection of peaks in the spectrum. We commonly
choose the numbers of zeros such that the total number of points (= L) is a power of 2, which optimizes
the efficiency of the FFT algorithm.

3.2.3 The use of Fourier transforms for wave dispersion relations

Here, we illustrate how useful are Fourier transforms to measure how waves propagate in a system.
The way waves propagate in a system is summarized in an expression called the dispersion relation.
This relation expresses the wavenumber (or analogously the wavelength) to the frequency of the wave.
Since the phase velocity of a sinusoidal wave of a given frequency is related to both the frequency and
the wavelength, this relation can also be seen as the speed of the wave as a function of the frequency
of the wave.

To illustrate how to use Fourier transforms (and in practice FFT) in order to get a dispersion
relation, we start by the following :

• We create a sinusoidal spatio-temporal signal ζ(x, t) of size LX × LT . We show this signal on a
spatio-temporal diagram (Fig.5), where the color scale gives the value of ζ.

• We show the magnitude of its 2-dimenstional Fourier transform, computed with the algorithm
FFT2 on Fig.6. We observe that each couple (k,f) will give a single point on the Fourier transform
in general.

In order to get a dispersion relation, we need to measure f vs k for many values of f . Therefore,
we introduce a common way to measure a dispersion relation using FFT in any system. We know
that every signal can be decomposed into a sum of Fourier modes with many frequencies. The signal
that contains an infinite amount of frequency and for which each Fourier components are equal is the
Dirac delta δ(t). In theory, it is therefore convenient to use such signal to excite a system, so that we
see in the best possible way which couples (k,f) are selected by the system, giving rise to a dispersion
relation. Since the Dirac delta has a vanishing width, it is not possible to impose such a function
experimentally to any system. To approach at least this idea, we apply a pulse of finite width, which
contains a continuum of frequencies in a relatively broad range. For instance, in the case of a softer
material than the ice, like a PDMS elastic membrane, as we used to test our experimental setup, we
managed to get a dispersion relation for frequencies ranging from 0 to 70 Hz.
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Figure 5: Spatio-temporal diagram of an artificial sinusoidal signal, with frequency f = 10 Hz and
wavelength λ = 2 cm.

400 200 0 200 400
k (m^-1)

40

20

0

20

40

f (
Hz

)

0

1000

2000

3000

4000

5000

Figure 6: Magnitude of the 2D-Fourier transform of the spatio-temporal signal from figure 5. We see
two peaks exactly at the frequency and the wavenumber at which we generate the artificial wave. The
fact that there are two peaks instead of one is explained by the fact that we can see the diagram
from Fig.5 as a wave propagating backward for increasing times, or as a wave propagating forward for
decreasing times.

3.3 A combination of stroboscopic measurements and Fourier analysis

3.3.1 Stroboscopy

In our experiments, due to technical limitations, the waves that we produce have wavelengths of the
order of the system size. If we want to measure accurately enough the wavelength for each frequency,
or equivalently the phase velocity, we need to impose pretty high frequencies to the ice surface (our
system size is of the order of 30 cm, and the waves that we have to apply to see enough spatial variation
in the velocity field must have frequencies of at least 30 Hz). Since the acquisition rate of the camera
is limited to about 200 Hz, it is convenient to use stroboscopy, so that we can make measurements at
higher frequencies. Here we are going to explain the principle of this method.

In general, stroboscopic measurements turn out to be very efficient whenever the signal that we
want to analyse is periodic, and that we know this period. In the physics of waves, when we impose to
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a system a sinusoidal forcing at a frequency fexc, we expect from it to respond at the same frequency.
Therefore, in our case, where a wave maker is generating sinusoidal waves on the surface of ice, we
employ such measurements. The main interests of performing stroboscopic measurements is that we can
overcome technical issues due to a potential limited sampling rate. Furthermore, we will see that time
resolution is particularly important for our experiment, because, instead of measuring wavelengths, we
will measure phase velocities, which involves both time and space. Therefore, we explain in this part
how we have put in practice this method.

We proceeded as the following. Let us call Texc = 1
fexc

the period of excitation. If we want to

sample one period with 100 points, separated by a ∆tsample = Texc

100 , we need the acquisition period
Tacq to be equal to an integer number of periods plus ∆tsample :

Tacq = N × Texc +∆tsample (11)

Of course, since the signal is never perfectly periodic, the smallest is N , the better it is. Therefore,
in many cases, we will take N = 1, i.e. Tacq = Texc+∆tsample, but, since sometimes fexc is higher than
the highest possible frame rate fthr, we take a bigger value for N (2, 3...). To compute the acquisition
frame rate facq, we calculate facq = 1

Tacq
, choosing the smallest possible value of N and then checking

that facq < fthr. Applying this method, no matter how big is fexc, two consecutive frames will be

always separated by the same fraction of period
∆tsample

T .

3.3.2 How to extract quickly the component of the signal at a given frequency

Let us again consider our signal ζ(t), from which we want to extract the component at the frequency
fexc. As above, we start with the definition of the Fourier transform :

ζ̂(f) =

∫ ∞

−∞
e−2iπftζ(t) · dt (12)

The component of the field at the frequency fexc is the inverse Fourier transform of a Dirac delta
δ(f − fexc) multiplied by ζ̂(f) :

ζfexc
(t) =

1

2π

∫ ∞

−∞
e2iπftζ̂(f) · δ(f − fexc) · (2πdf)

= e2iπfexct

∫ ∞

−∞
e−2iπfexct

′
ζ(t′) · dt′

(13)

In practice, we use a discrete sum over the entire time series. Note that ζfexc(t) is a complex number
with an amplitude A equal to the modulus of the Fourier transform evaluated at the frequency fexc,

and a phase factor equal to
ζfexc (t)

A . In order to visualize the filtered signal as a function of time, one
can plot the real part of this complex number, R(ζfexc(t)). And we will see later that it is convenient
to plot the real part of the phase factor when we are only interested in the spatio-temporal variation
of the phase for instance.

In our analyses, we will have sequences (evolution in time) of PIV fields (matrices). Therefore,
the temporal evolution of some matrix element can be seen as a 1-dimensional signal (like ζ(t)). The
result of the operations given above give a matrix of complex numbers. We will call that matrix the
complex field.

3.3.3 Combination of the two methods

In both methods that we have just discussed, we are interested in how a physical system behaves,
excited at a given frequency fexc. To use stroboscopic measurements and Fourier analysis at the same
time, we proceed as the following :

• we choose the acquisition frequency facq such that we sample a full period of the signal with 100
points, and record our data in that way.

• if we recorded 1 period, our data set contains 100 data points. Therefore the list of time values
at which the signal ζ(t) is evaluated is : 1

facq
· [0, 1, 2, . . . , 99] = Tacq · [0, 1, 2, . . . , 99]. In the

following, the ith element of this list will be denoted ti.
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• we compute the sum :
∑99

i=0 e
−2iπfexctiζ(ti) ·∆tsample (discrete sum over the entire time series).

• we get eventually : ζfexc(ti) by multiplying this sum by e2iπfexcti , and we can visualize it in real
space by taking its real part.

Thanks to this protocol, we can isolate and visualize the propagation of the monochromatic wave
excited in the thin sheet.

4 Experiments

4.1 Experimental setup

The experimental setup is the following : we put a transparent water tank of dimensions 50 cm×60
cm in a refrigerator. We can pass the necessary electrical connections through a small hole on the
side of the refrigerator. The tank is filled with distilled water (to avoid mineral depositions) with a
depth of about 3 cm. The tank is not in contact with any metallic pieces, because their high thermal
conductivity induces strong heat flux in some precise zones, that we want to avoid. Indeed, we want
to make freeze the ice only by thermal transfers from the air of the fridge to the water surface to get
the most homogeneous ice possible. In order to isolate the system from other heat source than the air
in the fridge, polystyrene plates have been disposed on the sides of the tank. Four ventilators have
been placed in order to increase thermal exchanges between air and the water surface. A metallic rod
is screwed on the vibration exciter, and on the edge touching the water surface is added a circular
piece of tissue in order to maximize the coupling between the vibration exciter and the ice (the whole
tissue is stuck inside the ice when it has frozen), and prevent neighbouring ice to break too easily.
In order to capture the vertical component of the local motion of the ice sheet, a digital camera is
making acquisitions from outside of the fridge, with a quite small angle (between 10 and 15 degrees)
with respect to the water surface.

One our experiment has been set up, to prepare the acquisitions, we proceed as follows :

• We put a water in the tank (a depth of about 3 cm)

• We turn on the refrigerator and all the ventilators, and wait about 5 hours for the surface of
water to freeze

• The air inside the fridge reaches a temperature between -5°C and -2°C and there is a thickness
of ice between 0.5 and 3 mm.

• We perform acquisitions in order to extract the phase velocity for various frequencies

• We measure the thickness of ice, either using a caliper, or measuring the weight and the surface
of some part of the ice sheet that we have carefully removed from the surface of water.

Many experiments, and experimental configurations have been tested during this internship (camera
above, camera on the side, camera inside of the refrigerator, camera outside of the refrigerator, light
coming from below/above/side...). In this report we only discuss one configuration, where the camera
is recording images of the surface from the side, with an inclination angle between 10 and 15 degrees.
For the first data set we discuss, the inclination angle of the camera is 14° and the light comes from the
side. We show an image from one of the sequences taken in that configuration, where the ice surface
is excited with the frequency fexc = 100 Hz and the camera is taking acquisitions with the frame rate
facq = 99 Hz.
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Figure 7: Sketches of the experimental setup. On the left we sketched the wave propagation in the
plane of observation, and a digital camera making acquisitions. On the right we show the inclination
of the camera, making an angle α with respect to the ice surface

Figure 8: Photography of the experimental setup : view from outside of the refrigerator (left) and
view from above inside of the refrigerator (right)
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4.2 Testing the experimental setup with a known material

We tested the experimental setup, as described in Fig.8 with a material well known for its elastic
properties and that have been studied already in our experimental team previously [Dom18]. The
membrane of PDMS that we have used has a thickness of 520µm. Its Young modulus is E = 1.6 MPa.
Its density is ρ = 965 kg·m−3.

Figure 9: Picture of a floating elastic PDMS membrane, taken from the sequence of images in which
we apply a pulse to its surface. We voluntarily added droplets on the surface of the membrane to add
texture, for PIV analysis.

The goal of this experiment was to get the dispersion relation of hydroelastic waves in the PDMS
membrane, with the same experimental setup that we have used for the ice. In order to get the
dispersion relation of the membrane, a pulse has been applied on it, creating a radial wave packet
with a wide range of frequencies. Choosing a profile line on the images in order to get a space-time
signal (with one dimension for space, and one dimension for time) , and computing its 2D - Fourier
transform, we get the figure (10), by taking the modulus of each element of the resulting 2D array. On
this figure, the color code is the magnitude of the Fourier mode as function of k and f . The experiment
is reasonably in agreement with the theory. This validates our experimental setup, and therefore we
can use it for real ice.

To conclude about the experiment on the membrane, we are satisfied with the validation of our
experimental technique, that we will use to measure waves in the ice. However, in the case of the
membrane, the FFT method works well because the wavelengths are small enough. It will be a bigger
problem in ice, since in that case we expect that the wavelengths will be of the order of the system
size. So we will move to real space and look directly at the phase velocity. We will use the fact that,
for a monochomatic wave, the phase velocity is related to the wavelength, since vϕ = ω

k . Therefore,
with this method we will be able to measure the wavelengths indirectly, ”at the sub-wavelength scale”.

14



Figure 10: Dispersion relation in the PDMS membrane, computed by taking the modulus of each
metricial element of the 2D-FFT of the spatio-temporal signal. In other words, this figure is the
measure of the intensity of waves, as a function of the spatial periodicity (in m−1) and the temporal
periodicity (in Hz). The theory of hydroelastic waves in this specific case is plotted in two cases : for
E=1.6 Mpa, and E=2.45 MPa. The theory seems to fit more with the theory for E=2.45 MPa. We
remark some peaks of amplitude of the Fourier transform that do not correspond to the theory, for
instance around f = 38 Hz. These peaks are due to a global motion of the camera for some specific
frequencies, and are therefore disregarded.
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4.3 A first experiment to put in evidence ice heterogeneity

In this first experiment, we apply the procedure that we described in 4.1 to show that local information
can be extracted even when the ice contains heterogeneities. We use a technique, that is measuring
the phase velocity instead of the wavelength, to improve spatial resolution.

Figure 11: Picture of ice grown in the lab. We observe a very heterogeneous surface. In particular,
we see an important defect at the center of the image that might separate two regions with different
properties. The zone that will be of interest will be the central region, and in particular the horizontal
profile in the continuity of the wave maker that we can see on the left. This image comes from a data
set with fexc = 100 Hz and facq = 99 Hz

We can see on this image that the ice displays a lot of heterogeneities. Moreover, we see that a
considerable part of the ice surface is blur, and therefore the velocities measured by the PIV algorithm
might lack of accuracy in these regions. For this data set, we use for all frequencies : W = 32 and
Dt = 8. We remind that, increasing the value of Dt increases the signal that is measured, which is
good since the displacements are very small. We use these parameters to run the PIV algorithm, and
we extract the component of the vertical velocity field Vy (signal of interest). We show (Fig.12) the
phase of the component of the field at 100 Hz of the signal, at two different times (t0 and t0 +

T
2 ).

Figure 12: Real part of the phase factor R(e2πift+ϕ(x)) of the field at a time t0 (left) and a time t0+
T
2

(right), for the excitation frequency of 100 Hz, taken from the data set 20240523. On these 2 figures,
we see that the wave maker is producing circular propagative waves. Between the two images, the
wave front seems to have moved about the half of a wavelength.

The next step is to plot a space-time diagram in order to visualize the wave propagating along a
chosen profile. For this data set, we use the profile line along the 17th row (y = 16) of the component
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fexc of the signal.
First of all, we show (Fig.13) the raw PIV field Vy at vertical position y = 16. In this case, we see 2

Figure 13: Spatio-temporal diagram given by the raw PIV data, showing 2 periods. We can see the
wave propagating in the left part of this diagram, while the right part is very noisy

time periods, which was indeed expected because we recorded 200 frames and each period is sampled
with 100 points. One can see a wave propagating in the left part of this diagram, while the right part
is very noisy. Projecting on a single Fourier component, as on Fig.14 improves the resolution.

We proceed as the following : We show the space-time diagram, that we constructed by creating 3
periods of ”artificial times” by putting 256 points in one time-period and computing for each row (time
index i) of the matrix the profile at the corresponding time. We remark that we can show directly
the matrix which elements are the displacements (in pixels) computed during the PIV procedure. In
this way we can see in which regions the displacements are of higher amplitude. Then, if we want to
visualize better the propagation along the whole profile, we can plot the evolution of the real part of
the phase factor. Furthermore, since, for some frequencies, the data is too noisy, we smooth spatially
the 1-dimensional profile at each time step, using the function savgol filter from the module scipy.signal
in python (setting the window size to 21 and the order to 3). Here is an illustration of this step :

Figure 14: 3 space-time diagrams at vertical position y = 16, represented in 3 different ways. The first
one (left) shows the real part of the profile extracted at the frequency 100 Hz at different times. We
can see that, along its propagation, the signal decreases its amplitude. As we are interested in the local
velocity, we normalize the signal at each position by its modulus to obtain the second figure (middle).
This second figure is the real part of the phase factor as a function of space and time. Because of the
ice heterogeneity, noise appears in the second diagram. We smooth each row of the second matrix to
obtain the third diagram (right).

Next, we fit the detected wavefront (red line on the figure 14) with a linear function, once time and
space converted into physical units. The phase velocity is, by definition, the speed of this wavefront,
and therefore the slope given by the fit. To conclude about these measurements : when the ice is very
heterogeneous, we can think of a method that takes advantage of the spatial variations of the phase
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Figure 15: Linear fit of the position x of the wavefront (in meters) as a function of time (in seconds).
The slope depends on time, that indicates that the wave is faster in the left region (from 0 m to 0.06
m) than in the right region (from 0.06 m to 0.12 m). Therefore, the fit gives only an estimation of the
average phase velocity. To go further, and better probe locally the ice properties, the idea would be
to make two different linear fits, in the two distinct regions.

velocity in order to reconstruct a map of flexural moduli on an ice surface. Using our specific method
would be even more interesting, due to the fact that tracking the velocity of a wave front can be made
at the sub-wavelength scale. Therefore, the spatial resolution of the flexural modulus map, that we
can make on a surface with this method, is increased with respect to a method that would use spatial
FFT.
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4.4 A second data set on ice to measure a dispersion relation

This last data set that we discuss is the one with which we got the main result of the internship, i.e.
the dispersion relation of our ice sheet covering the surface of water. This data set contains several
sequences of images, each one corresponding to a frequency of excitation. In the following parts, we
explain in details how we obtain from one sequence of images, corresponding to one frequency, the
corresponding phase velocity. For each sequence we will get one data point. The final result, that is
the phase velocity as a function of the frequency will be given in the last part. Note that it has been
processed in a very similar way than the first data set.

4.4.1 Set up

We grow an ice sheet of (1.5±0.5) mm with our cooling method discussed in 4.1. PIV analyses require
good contrasts to detect well spatial shifts. In order to increase the contrasts on the ice, we add pepper,
that has been previously cooled down at the ice temperature, on the surface.

To illustrate, let us take an image from one of the sequences that we have recorded. Here for
instance we chose the excitation frequency fexc of 80 Hz, and the acquisition frequency facq is 79.2 Hz.

Figure 16: Picture of ice grown in the lab, with pepper on its surface to increase contrasts. We can
see the edge of the wave maker on the left. This image belongs to the data set for fexc = 80 Hz and
facq = 79.2 Hz

4.4.2 Measure of the horizontal aspect ratio as a function of the position on the image

Because of the inclination of the camera, we must measure how changes the conversion of horizontal
distances from pixels to meters as a function of the position on the images. To do so, we use the
software ImageJ : we measure the distance dpx in pixels corresponding to a distance dcm in cm. In
this way we can convert the vertical position of the profile line on which we want to see the wave
propagating.

In order to set, not only a scale on one profile line, but to quantify how much does change the ratio
dcm
dpx as function of the vertical position on the image, we measured the ratio dcm

dpx again with imageJ,

for 3 different vertical positions and fitted with a line (see Fig.17) in order to get the horizontal aspect
ratio for any point on the ice.
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Figure 17: Fit of the ratio dcm
dpx measured for 3 different positions on the y-axis, for the camera with

an inclination angle of 10.5°, as in the 2nd experiment
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4.4.3 PIV analysis, and filtering of the data

We processed the sequences of images with the PIV algorithm, with input parameters : W = 64
and Dt = 16.Then, from the PIV field, we extract the component of the vertical velocity field Vy.
Afterwords, we extract the component of the signal at the frequency fexc. We show, as an example,
the real part of the phase factor at 2 different times. One time, arbitrarily called t0, and a further
time t0 +

T
2 , where T = 1

fexc
.

Figure 18: Real part of the field Vy extracted at the frequency fexc = 80 Hz, at a time t0 and a time
t0 +

T
2 , for the excitation frequency of 100 Hz, taken from the data set 20250604. We see two wave

fronts that have moved on a distance of a half wavelength during a time T
2 . The only relevant domain

of these fields is for y ∈ [2,6], since it correspond to coordinates on the images where there is ice and
it is not blur.

Making the assumption that, in the domain y ∈ [2,6], the wave is a plane and propagating in the x-
direction we can compute its phase velocity by fitting a spatio-temporal diagram with a linear function,
having converted time and space in physical units (where distances are converted using Fig.17. In the
example of excitation frequency of 80 Hz, we show the spatio-temporal diagram of the profile at y=4.
We show the fit of one of the maxima on the spatio-temporal diagram, after having smoothed out the
profile at each time, using the Savitzky-Golay algorithm implemented in the module signal from the
library scipy in Python (as input parameters we used : window size = 21, and order = 3).

On all the datasets, the range on which we fit is for x ∈ [10,33] (positions in PIV windows units: c.f.
Fig.19). We remark how powerful is the PIV algorithm we are using, combined with our stroboscopic
method, since the displacements measured are of the order of 10−1 pixels/(16 frames) ≈ 6 · 10−3

px/frame. One can also get an order of magnitude for the amplitude of the elevation : 100
4 ×6 ·10−3 =

0.15 px. Converted in physical units : 2 · 10−2 × 0.15 · 10−2 = 3 · 10−5 m. We are able to measure
waves of amplitudes of about ten microns !
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Figure 19: Spatio-temporal diagram using directly the raw PIV field (top-left). This RAW field is
useful to compute the order of magnitudes of vertical displacements of the ice. The top-right diagram
is the smoothed spatio-temporal diagram of the phase R(e2πift+ϕ(x)). The red curve is a detected local
maximum. The bottom plot is the linear fit of the detected position (in meters) of the local maximum
as function time (in seconds). The slope of this fit is thephase velocity vϕ of the wave
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4.4.4 Resulting dispersion relation

After having processed all the sequences of images with the routine discussed in the previous part,
we are finally able to make a plot of the phase velocity measured experimentally as a function of the
excitation frequency.
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Figure 20: Dispersion relation of hydroelastic waves in the ice sheet, from the dataset 20240604. The
theory (in red) have been computed for E=9 GPa and h=1.5 mm. The dotted black lines correspond
to the theory for the same Young modulus and h=2mm for the upper line and h=1mm for the lower
line. All the theoretical curves have been computed with zero tension : T = 0. All points belong
to the same data set. The circles have all been got by processing the sequences of images exactly in
the same way than the sequence for fexc = 80 Hz. However, 2 data points were post processed in a
slighly different way, because there PIV field were too noisy on the profile line y = 4. For fexc = 60
Hz, we took the profile line y = 6. For fexc = 150 Hz, we took the profile line y = 5. We used the fit
(from Fig.17) to get the correct horizontal aspect ratio for each of them. The assumption that T = 0
seems to be in agreement with the experiment. All data points are situated in the flexural regime,
because the theory predicts a cutoff frequency between the gravity and the flexural regime of about
fcutoff = 0.3 Hz.
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5 Conclusion

During this internship, we built an analogous lab experiment to the sea ice such as in the Arctic
ocean. Growing a very thin ice sheet, of a thickness of about 1 mm, with few defects, has been very
difficult. Performing displacement measurements with an accuracy of about 10 µm was also particularly
challenging. In the end, we managed to get a dispersion relation of waves in an ice sheet grown in
the lab, that was in agreement with the theory of hydroelastic waves, and particularly in the flexural
regime. This first result is promising, and we are looking forward to continue experiments with real ice
in the lab, in particular to study the fracture mechanisms. We have put in evidence ice heterogeneity
for a particular ice sheet that we grew, by observing different phase velocities in two different regions.
To go further, we proposed the idea to measure local dispersion relations to draw a spatial flexural
modulus map of the ice.
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6 Appendix

6.1 Code for Fig.5
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