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Abstract

The use of neural networks in the hardware processing for Artificial Intelligence (AI)

has gained significant traction, particularly for solving complex, non-linear, and chaotic

problems. A primary objective of this research is to explore the optimal environment

for neuromorphic chips, enabling advancements such as increased neural connections,

self-healing capabilities, enhanced memory capacity, and energy efficiency. This study

focuses on the impact of two critical environmental factors—humidity and temper-

ature cycles—on the dynamic behaviour of Ag-PVP nanowire networks. Through

conductance measurements, this research seeks to demonstrate both potentiation and

relaxation correlations with external conditions in these networks. The experiments

were conducted in a controlled laboratory environment at the Polytechnic University

of Turin, utilizing the Keithley 4200-SCS Semiconductor Characterization System for

data collection and the Precision Humidity Control System (HCS-2M) for environmen-

tal regulation. The findings support the theoretical background and align with previous

research, offering generalized insights into the behaviour of these “alive” materials and

their potential applications in neuromorphic systems.

Keywords: recurrent neural networks, neuromorphic, environmental impact, relative

humidity, temperature cycles, NWs’ dynamics.
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Chapter 1

Introduction

The continuous improvement in computational technology has increasingly pushed the

boundaries of possibilities in fields such as artificial intelligence (AI), materials science,

and nanotechnology. Picked from advancing technologies, neuromorphic computing has

earned significant attention for its potential to reshape how we process information,

particularly by mimicking the brain’s neural architecture and function. Traditional von

Neumann architectures face limitations in handling the complex, non-linear tasks that

are occuring commonly in modern AI applications. Neuromorphic systems, inspired by

the highly interconnected and parallel processing capabilities of the human brain, offer

a promising solution.

This thesis work explores the integration of silver-polyvinylpyrrolidone (Ag-PVP)

nanowire networks into neuromorphic computing systems, emphasizing their potential

to enhance the efficiency and adaptability of these brain-inspired technologies. Ag-PVP

nanowires, known for their exceptional electrical conductivity, mechanical flexibility,

and stability, exhibit memristive behaviour, which is the key mechanism underlying

their neuromorphic properties. This memristive behaviour assists in the development of

neuromorphic systems that can potentially surpass the capabilities of biological neural

networks.

The major focus of this research is to understand the impact of environmental con-

ditions, particularly humidity and temperature, on the dynamic behaviour of Ag-PVP

nanowire networks. These environmental factors play a crucial role in determining

the performance and reliability of neuromorphic systems, particularly those based on
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nanowire networks. Through a series of experiments conducted in a controlled labo-

ratory environment, this study aims to uncover patterns behind the influence of these

environmental conditions on the electrical properties and overall functionality of Ag-

PVP NWNs.

Further investigation of the potential of these nanowires to build the foundation of

next-generation neuromorphic chips, which are expected to drive significant advance-

ments in AI hardware. The ability of Ag-PVP nanowires to undergo potentiation and

relaxation reminding signal processing by biological synapses, gives them the right to be

chosen as ideal candidates for neuromorphic systems that will require high adaptability

and energy efficiency.

The experiments presented in this work were designed with careful consideration

and executed at the Polytechnic University of Turin, employing pieces of equipment

such as the Keithley 4200-SCS Semiconductor Characterization System and the Preci-

sion Humidity Control System (HCS-2M). These tools enabled precise control over the

environmental conditions, ensuring the reliability and accuracy of the collected data.

The insights from this research contribute to the theoretical understanding of nanowire

dynamics under varying environmental conditions and also offer practical insights into

their application in neuromorphic computing. By integrating Ag-PVP nanowires into

neuromorphic systems, this thesis aims to put light on the development of more scal-

able, and tunable hardware in decided environments, ultimately contributing to the

wider application of neuromorphic engineering.

Thesis outline

This thesis is structured to explore the different roles of Ag-PVP nanowire networks

in neuromorphic computing, pointing out their potential to be used as brain-inspired

hardware.

Chapter 2 presents an in-depth review of Ag-PVP nanowires, exploring their cre-

ation, unique characteristics, and a range of practical uses. It also delves into the role of

Recurrent Neural Networks (RNNs) in neuromorphic computing, drawing connections

between the behaviour of biological neural networks and that of synthetic nanowire

networks.

In Chapter 3, the discussion shifts to the latest developments in nanowire technology,

particularly focusing on how ionic migration influences resistive switching, how envi-
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ronmental conditions affect memristive behaviour, and how Monte Carlo simulations

can br used for predictive modelling in this context.

Chapter 4 dives into the experimental design, outlining the synthesis of Ag-PVP

nanowire networks and the methods used to study their behaviour under varying en-

vironmental conditions. This chapter also discusses the experimental setup, including

the tools and techniques used for electrical characterization and environmental control.

In Chapter 5, the results of the experiments are presented, focusing on the effects

of temperature and humidity on the potentiation and relaxation dynamics of Ag-PVP

nanowires. The chapter offers a detailed analysis of the data, supported by graphs

and tables, to provide a comprehensive understanding of how these nanowires perform

under different conditions.

Chapter 6 provides the conclusions of the thesis work, summarizing the key findings

and stating final observations on the effects of humidity and temperature over nanowire

networks, given by results.

By going through these topics, the thesis aims to contribute to the broadening of

vision in the knowledge of neuromorphic computing.



Chapter 2

Theoretical Foundations of

Neuromorphic Systems

2.1 Ag-PVP Nanowires and Their Applications

Silver nanowires stabilized with polyvinylpyrrolidone (PVP), commonly referred to as

Ag-PVP nanowires, have become increasingly significant in various technological fields

due to their unique combination of properties. These nanowires are typically produced

through a chemical reduction process, where silver nitrate (AgNO3) is reduced in the

presence of PVP. The general reaction for this synthesis can be represented as:

2AgNO3+PVP+Reductant → 2Ag (nanowires)+2NO2+Oxidized Reductant (2.1)

PVP plays a dual role in this process: it acts as a stabilizer that prevents the silver

particles from aggregating and as a growth-directing agent that ensures the formation

of nanowires with a high aspect ratio. As the schematic view of the coating presented

in Figure 2.1e, the nanowires have a much greater length compared to their diameter,

which is usually between 20 and 100 nanometers, while their length can extend to

several micrometres Bao et al. (2019).

4
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Figure 2.1: a) optical b) SEM c) TEM image d) schematic of coating e) cross-sectional view f) mea-
surement setup of Ag NWs Diaz Alvarez et al. (2019c)

One of the most prominent applications of Ag-PVP nanowires is in the development

of transparent conductive films (TCFs). TCFs are critical components in a variety of

modern devices, including touch screens, flexible displays, and solar cells. The struc-

ture of Ag-PVP nanowires allows them to form networks that combine high electrical

conductivity with excellent optical transparency. The relationship between sheet resis-

tance (Rs), resistivity (ρ), and thickness (t) of the nanowire network is given by the

equation:

Rs =
ρ

t
(2.2)

Research has shown that these films can achieve sheet resistances as low as 10 ohms

per square while maintaining transparency levels above 90%, making them a competi-

tive alternative to the more commonly used indium tin oxide (ITO) films. ITO is known

for its brittleness and higher cost, which makes Ag-PVP nanowires an attractive option

for applications requiring both flexibility and transparency Kim et al. (2001).

The flexibility of Ag-PVP nanowires is particularly beneficial in the realm of wear-

able electronics. These nanowires can be embedded into flexible substrates to create

circuits that maintain their electrical conductivity even when subjected to mechanical

stress such as bending, stretching, or folding. This makes them ideal for use in de-

vices like bendable displays, wearable sensors, and electronic textiles. The ability of

Ag-PVP nanowires to endure repeated mechanical deformation without significant loss

in performance is due to their high aspect ratio and the strong adhesion between the

nanowires and the substrate material Hu et al. (2010).



6

In addition to their use in flexible electronics, Ag-PVP nanowires are also highly

effective in sensing applications. Their large surface area and excellent electrical prop-

erties make them highly sensitive to changes in their environment, such as the presence

of gases or biological molecules. For example, sensors made from Ag-PVP nanowires

can detect low concentrations of ammonia or hydrogen gas by measuring changes in the

nanowires’ electrical resistance when these gases are absorbed onto their surface. Sim-

ilarly, in biosensing applications, these nanowires can detect biomolecules like glucose

with high sensitivity, making them valuable for medical diagnostics and environmental

monitoring Bao et al. (2019).

Another important application of Ag-PVP nanowires is in antimicrobial treatments.

Silver has long been recognized for its antibacterial and antiviral properties, and these

effects are even more pronounced when silver is structured at the nanoscale. The large

surface area of Ag-PVP nanowires enhances their interaction with microbial cells, mak-

ing them more effective at killing bacteria and viruses. This makes Ag-PVP nanowires

suitable for use in medical devices, surgical instruments, and wound dressings, where

they can provide long-lasting antimicrobial protection without causing cytotoxic effects

to human cells Hu et al. (2010).

Ag-PVP NWs have emerged as a promising material for neuromorphic computing

due to their exceptional electrical conductivity and stability for creating dynamic and

adaptive neuromorphic circuits. The PVP coating on these nanowires not only sta-

bilizes the silver core but also provides a tunable interface that can be engineered to

interact with the surrounding environment in controlled ways, developing the network’s

adaptability.

In neuromorphic systems, Ag-PVP nanowires can serve as the fundamental building

blocks of synaptic connections, which are crucial for signal transmission and processing

within the network. Their ability allows them to effectively mimic the plasticity of

biological synapses. This plasticity is central to learning and memory functions in

neuromorphic systems, where the strength of connections between nodes (or neurons)

can be adjusted based on experience or training data.

The high aspect ratio of Ag-PVP nanowires ensures efficient electron transport, even

in densely packed networks, which is crucial for the high-speed processing required

in neuromorphic applications. While going further during this work there is a more

detailed review of neuromorphic applications that will be extensively deepened in the
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following sections.

After revising general applications it can be told that Ag-PVP nanowires are an

adaptable and promising nanomaterial within a wide range of applications. Their

unique combination of high conductivity, optical transparency, mechanical flexibility,

and antimicrobial properties makes them suitable for use in transparent conductive

films, flexible electronics, sensors, and biomedical devices. As research in this area con-

tinues to advance, Ag-PVP nanowires are likely to play a crucial role in the development

of next-generation technologies Kim et al. (2001).

2.2 Recurrent Neural Networks, Reservoir Computing and

NW applications

Recurrent Neural Networks (RNNs) are a specialized type of neural network that excels

at processing sequential data. Unlike traditional feedforward neural networks that

process inputs independently of each other, RNNs are designed to retain information

over time. This is achieved through the use of feedback loops that allow information

to persist within the network. This capability makes RNNs particularly effective for

tasks where the order of inputs is essential, such as language processing or time series

forecasting Hochreiter and Schmidhuber (1997) Elman (1990).

At the core of an RNN is the recurrent neuron. What sets this neuron apart is its

ability to take input not only from the current data point but also from the previous

time steps. This means the network can maintain a form of memory, which is vital for

understanding sequences over time. Mathematically, the hidden state ht at time step t

is calculated using the equation Heaton (2017) Cho et al. (2014b):

ht = f(Whht−1 +Wxxt + b) (2.3)

In this equation:

• Wh and Wx represent the weight matrices,

• xt is the current input,

• ht−1 is the hidden state from the previous time step,

• b is the bias term, and
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• f is an activation function like tanh or ReLU, which introduces non-linearity to

the model.

However, RNNs are not without their challenges. One of the most significant issues

is the vanishing gradient problem. This occurs when the gradients used in backpropa-

gation through time (BPTT) become very small, making it difficult for the network to

learn dependencies that span many time steps. This limitation is particularly problem-

atic for tasks that require long-term memory, as the network struggles to retain relevant

information from earlier in the sequence Bengio et al. (1994) Pascanu et al. (2012).

To overcome these limitations, more advanced versions of RNNs have been devel-

oped, such as Long Short-Term Memory (LSTM) networks. LSTMs incorporate a

sophisticated memory system that uses gates to control the flow of information. These

gates—input, forget, and output—decide which information should be kept, discarded,

or outputted at each time step. The LSTM architecture includes a cell state, denoted

as Ct, which acts like a conveyor belt, carrying relevant information across time steps

with minimal changes, thus enabling the network to remember important details over

long sequences Gers et al. (2000) Cho et al. (2014a).

Figure 2.2: Diagram of Recurrent Neural Networks Salmela et al. (2021)

Figure 2.2 provided earlier offers a visual representation of an RNN architecture that

includes an LSTM layer. How data flows through the network, starting from the input
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layer, passing through the LSTM layer, and then through dense layers before producing

output is successfully highlighted by diagrams. The LSTM layer is particularly note-

worthy because it uses its memory capabilities to retain crucial information over time,

which is then processed further in the dense layers to produce the final output.

Moreover, the graph also details the internal workings of an LSTM cell. Within each

LSTM cell, the data is carefully managed by various gates Gers et al. (2000):

• Input Gate (it): Determines how much of the new information will be added to

the cell state.

• Forget Gate (ft): Decides what portion of the existing cell state should be

forgotten or retained.

• Output Gate (ot): Controls what part of the cell state will be used to produce

the output.

This gating mechanism allows the LSTM to selectively retain or discard information,

ensuring that only the most relevant data influences the output. For example, in time

series prediction, an LSTM can remember important trends and patterns from earlier

in the sequence while ignoring irrelevant fluctuations.

Another variant of RNNs is the Gated Recurrent Unit (GRU), which simplifies the

LSTM by combining some of the gates into a single update gate, reducing the compu-

tational complexity while still addressing the vanishing gradient problem.

Despite these advancements, RNNs, particularly deep RNNs with multiple layers,

remain computationally intensive. As the network depth increases, so does its capac-

ity to model complex temporal dependencies. However, this also results in a higher

computational load and more challenging training processes. Researchers continue to

explore ways to optimize RNNs, balancing the depth and efficiency of the network while

mitigating issues like the vanishing gradient Sutskever et al. (2014).

Recurrent Neural Networks, especially with enhancements like LSTM and GRU

layers, are powerful tools for handling sequential data. The feedback loops and memory

mechanisms they employ allow them to excel in tasks requiring an understanding of

the temporal dynamics within data. As computational techniques and architectures

continue to evolve, the capabilities and applications of RNNs will undoubtedly expand,

offering even more sophisticated solutions for processing sequential data Graves (2013).
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2.2.1 Reservoir Computing

The reservoir computing (RC) method is built on transforming input signals into a

high-dimensional feature space by utilizing a reservoir, which is essentially a complex

network of interconnected nonlinear elements. The main advantage of RC lies in its

approach: only the readout layer responsible for interpreting the state of the reservoir

requires training. Schrauwen et al. (2007)

The main inspiration for building principles is taken from recurrent neural networks

(RNNs) but with a significant simplification. Unlike traditional RNNs, RC takes ad-

vantage of the intrinsic dynamics of a reservoir. This reservoir is a large, fixed network

of interconnected units that project input data into a high-dimensional space, making

the data linearly separable. By doing so simple linear methods can effectively classify

or predict outcomes with high precision.

Memristive nanowire networks are ideally suited for reservoir computing because

they naturally exhibit complex, nonlinear dynamics and memory capacity charac-

teristics important for processing temporal information. Ag NWNs which consist of

nanowires coated with materials such as PVP, function as memristive elements at their

junctions. When a voltage is applied, these junctions alter their resistance states, en-

abling the network to “remember” past inputs for tasks such as time series prediction.

Each junction between the nanowires with its resistance modifiable by an electric field,

allows the network to function as a physical reservoir within an RC system.

Characteristics of the nanowire network include fading memory properties, where

the impact of past inputs diminishes gradually over time. This behaviour is similar

to short-term memory in biological neural systems, dynamic change caused by applied

voltage to different junctions enables the network to map input signals into a complex,

high-dimensional feature space.

Time Series Prediction: One of the main applications of RC using memristive

nanowire networks is predicting chaotic time series, like the Mackey-Glass series. By

feeding the time series into the network, its complex dynamics allow for capturing un-

derlying patterns, which can then be predicted accurately using a straightforward linear

readout.Milano et al. (2022)

Pattern Recognition: Another significant application is recognizing spatio-temporal

patterns. For example, the memristive network can process inputs that represent var-

ious patterns, such as handwritten digits from the dataset. The reservoir maps these
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inputs into distinct states, which can be easily classified by a linear readout layer.

Appeltant et al. (2011)

The efficiency of RC stands out when managing multiple tasks simultaneously by

associating different readout layers with the same reservoir. This multitasking ability

is worth considering advantage over traditional computing methods, creating possible

applications for a broad range of areas from speech recognition to sensor data processing

in robotics.

2.2.2 Memory Capacity in Reservoir Computing Systems

Memory capacity (MC) is a vital aspect of reservoir computing (RC) systems, which

determines how effectively the system can store and retrieve previously input informa-

tion. In RC systems, input data is projected into a high-dimensional space using a

dynamic reservoir, usually consisting of a recurrent neural network or another form of

a nonlinear dynamic system. The MC of an RC system is crucial for its performance in

tasks like time-series prediction, pattern recognition, and other activities that require

access to past data.

In simpler linear RC models, MC is often linked to the characteristics of the reser-

voir network. However, when dealing with more intricate reservoir networks, such as

those structured with Directed Acyclic Networks (DANs), the conventional theoretical

predictions for MC become inadequate. Therefore, analyzing MC in these contexts

requires taking into account the unique structural features of the reservoir network.

Theoretical Analysis of Memory Capacity

In a standard reservoir computing system, MC can be conceptualized as the system’s

ability to recreate a delayed version of its input. For instance, consider an input at time

t denoted as x(t). If the reservoir is capable of reconstructing the delayed input x(t−τ)

for τ = 1, 2, . . . , S, then a readout matrix W
(τ)
out must exist, satisfying the equation:

x(t− τ) = W
(τ)
outR(t), τ = 1, . . . , S.

In this scenario, R(t) signifies the reservoir state at time t. The present input x(t)

can also be retrieved from the reservoir state:

x(t) = W
(0)
outR(t).
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Within this framework, if τ = P , the MC is theoretically capped at P − 1, where P

represents the longest path length within the reservoir’s DAN. Jaeger (2002)

This theoretical ceiling implies that the MC’s upper limit is determined by the

reservoir network’s structural properties, particularly its capacity to remember past

inputs over time without losing information.

This theoretical constraint on MC is mathematically expressed as:

MCmax = P − 1.

Experimental Validation and Influencing Factors of Memory Capacity

To verify the theoretical upper limit of MC, numerical experiments are carried out

using DANs with varying longest path lengths P Farka et al. (2016) .In these trials,

MC is assessed by examining the system’s ability to recall delayed inputs x(t − τ) for

τ = 1, . . . , 30. The results from these experiments demonstrate that the maximum MC

observed across 100 repeated tests does not surpass the theoretical limit of P − 1.

Moreover, the experiments Han et al. (2021) reveal that MC is influenced by factors

beyond the longest path length P . These factors include:

• Reservoir Network Size (N): The results indicate that MC achieves an optimal

level regardless of the network size when P is relatively small. However, for larger

P values, MC tends to grow with the network size.

• Network Scaling Hyperparameter (c): The experiments show that MC fluctuates

with changes in the network scaling parameter c. Initially, MC improves as c

increases, but it eventually declines as c continues to rise.

• Input Scaling Hyperparameter (ξ): Similar to network scaling, input scaling also

impacts MC. Larger input scaling values generally reduce MC, suggesting a trade-

off between input magnitude and the system’s memory retention capabilities.

• Reservoir Network Density (D): The density of the reservoir network, which is

defined by the proportion of active connections within the network, also affects

MC. Higher network density typically enhances MC, as a denser network is better

equipped to maintain information over time.
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2.3 Environmental Stability in Nanowire Networks

Nanowires, attributable to their elevated surface area-to-volume ratio and distinctive

electronic, optical, and mechanical characteristics, have been extensively examined un-

der a variety of environmental conditions to comprehend how elements such as temper-

ature and relative humidity influence their behavior and prospective applications. The

response of nanowires to these environmental parameters is paramount for their imple-

mentation in sensors, electronics, and other apparatus that function in heterogeneous

and occasionally extreme environments.

2.3.1 Temperature Effects on Nanowires

Temperature constitutes a vital variable that affects the properties and efficacy of

nanowire materials. Investigations have indicated that fluctuations in temperature

can influence the electrical conductivity, mechanical resilience, and phase stability of

nanowires. Temperature has an undeniable effect on the memristive behaviour of de-

vices which are further explained since it’s one of the main points of the thesis work.

Electrical Conductivity

Analyses on metallic nanowires, such as silver (Ag) and gold (Au), have substanti-

ated that their electrical conductivity diminishes with increasing temperature due to

intensified electron-phonon scattering. For instance, silver nanowires manifest a de-

cline in conductivity as temperature ascends, which is a critical consideration for their

application in flexible electronics that may operate under varying thermal conditions

Tarasevich et al. (2022).

Phase Transitions

Semiconductor nanowires, such as those fabricated from zinc oxide (ZnO) and gal-

lium nitride (GaN), have been scrutinized for their phase stability under disparate

temperatures. ZnO nanowires, for example, preserve their wurtzite crystal structure

up to relatively elevated temperatures, yet phase transitions or morphological alter-

ations can transpire at extreme temperatures, influencing their electronic and optical

properties Awad et al. (2014). GaN nanowires also demonstrate significant thermal

stability, rendering them suitable for high-temperature applications such as high-power

electronics and optoelectronics.

Mechanical Properties
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The mechanical resilience and flexibility of nanowires may also exhibit temperature

dependence. Investigations on silicon (Si) nanowires have revealed that their fracture

toughness diminishes with increasing temperature, which could restrict their utilization

in high-temperature environments Wang et al. (2017). This is particularly significant

for nanowires employed in nanoelectromechanical systems (NEMS) and other devices

where mechanical integrity is imperative.

2.3.2 Relative Humidity Effects on Nanowires

Relative humidity (RH) represents an additional environmental variable that can sub-

stantially influence the characteristics of nanowire materials, particularly those em-

ployed in sensing applications. Similar to temperature change in relative humidity

causes a change in the memristive behaviour of devices which is further explained since

it’s the second main focus of this work.

Sensing Applications

Nanowires composed of substances such as tin oxide (SnO2) and indium oxide (In2O3)

have been extensively examined for their sensitivity to fluctuations in humidity. These

metal oxide nanowires are frequently utilized in humidity sensors due to their electrical

resistance alterations in response to water vapor adsorption on their surfaces. For

instance, SnO2 nanowires demonstrate an elevation in resistance as relative humidity

escalates, attributable to the generation of a water layer on their surface that obstructs

electron mobility Kuang et al. (2007). This attribute is harnessed in environmental

surveillance and intelligent home devices for precise humidity detection.

Surface Chemistry

The interplay between nanowires and water molecules is also pivotal for comprehend-

ing their efficacy under varying humidity circumstances. For example, investigations of

ZnO nanowires have revealed that surface hydroxylation (the generation of OH groups

on the surface) may transpire in high-humidity settings, modifying the surface charge

and potentially influencing the electronic and photonic characteristics of the nanowires.

This phenomenon is particularly pertinent in applications such as gas sensors and pho-

tocatalysis.Zhang et al. (2012)
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2.4 Theoretical Framework for Measurement Techniques

2.4.1 Physics Behind Focused Areas of This Work

The behaviour of Ag-PVP nanowires under varying environmental conditions is central

to this research, particularly in their application within neuromorphic computing sys-

tems. Neuromorphic computing seeks to emulate the functionality of the human brain,

where synaptic connections are represented by the conductance properties of nanowire

networks. To achieve this, it is crucial to understand how the conductance of Ag-PVP

nanowires responds to external stimuli such as voltage pulses, temperature variations,

and humidity.

Conductance (G), simply put measures a material’s conductance ability of elec-

tric current. It is mathematically defined as the inverse of resistance (R), given by the

relation G = 1
R . In the context of this research, the conductance of Ag-PVP nanowires

is monitored as a function of time, particularly under the influence of varying environ-

mental conditions.

A key parameter in analyzing these dynamics is the time constant (τ). The time

constant is a measure of the response speed of the nanowires to an external voltage pulse.

In capacitive systems, (τ) is the time required for the system, to reach approximately

2/3 of its maximum magnitude following a step change in voltage. The time constant

can be expressed as Septiningrum et al. (2019):

τ = RC

where R is the resistance and C is the capacitance of the system. In the context of

neuromorphic computing, a shorter time constant indicates a faster response, which is

crucial for applications requiring rapid signal processing and memory retention Diaz Al-

varez et al. (2019b).

Voltage pulse signals are used to characterize the conductance dynamics of nanowires.

By applying a controlled series of voltage pulses, the research investigates how the con-

ductance changes over time. The conductance response to these pulses provides insight

into the potentiation (increase in conductance) and relaxation (decrease in conductance)

behaviors of the nanowires Montano et al. (2022). This understanding is pivotal for

optimizing these materials for use in next-generation neuromorphic computing systems.
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2.4.2 Measurement of Dynamics: Potentiation and Relaxation

The dynamic processes of potentiation and relaxation are essential in understanding

the functionality of Ag-PVP nanowires within neuromorphic systems. These processes

mirror the synaptic strengthening and weakening observed in biological neurons.

Potentiation refers to the process by which the conductance of the nanowire in-

creases in response to the application of voltage. This increase in conductance can be

attributed to mechanisms such as ion migration within the nanowire or the formation of

conductive filaments, which enhance the connectivity between nanowires Septiningrum

et al. (2019). This behaviour is critical in neuromorphic systems, where synaptic con-

nections need to be strengthened in response to learning stimuli.

The mathematical representation of potentiation can be linked to the change in

conductance (∆G) over time, which can be modelled as:

∆G(t) = G0

(
1− e−

t
τ

)
where G0 is the initial conductance and τ is the time constant.

Relaxation, on the other hand, occurs when the external stimulus (voltage pulse) is

removed, leading to a decrease in conductance over time. This decrease is a result of the

dissipation of charge carriers, the reversion of ion migration, or the reconfiguration of

the nanowire network. Relaxation is critical for the reset functionality in neuromorphic

systems, allowing the system to return to its baseline state after processing a signal.

Also for the elaboration of temporal signals since the effect of a pulse at t+1 is dependent

on how much the network relaxed from the end of the previous pulse.

The relaxation process can be described by an exponential decay model:

G(t) = Gmaxe
− t

τ

where Gmax is the maximum conductance achieved during potentiation.

In Fig. 2.3.a 4 V input voltage pulse was applied, with conductance measured

and modeled accordingly. The potentiation phase lasted for 10 seconds, followed by

a 70-second relaxation at a reading voltage of 50 mV. Meanwhile part b. explains

spatio-temporal changes in conductance across the network are depicted, highlighting

the formation and eventual breakdown of conductive pathways. The red colour of the

edges corresponds to their conductance, blue represents the voltage at each node, arrows
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Figure 2.3: NW networks Synaptic plasticitys. (a) Potentiation followed by network relaxation (b)
Spatio-temporal conductance distribution Montano et al. (2022)

show the direction of current flow, and black nodes denote the input terminals. The

left electrode was subject to a bias, with the right electrode grounded. Montano et al.

(2022)

To measure these dynamics, a series of voltage pulses are applied to the nanowire

network, and the conductance is monitored in real time. The resulting conductance-time

curves provide valuable information about the speed, stability, and reversibility of the

potentiation and relaxation processes. These measurements are essential for evaluating

the suitability of Ag-PVP nanowire networks for use in neuromorphic applications,

where fast and reliable switching between different conductance states is required.



Chapter 3

Advances in Nanowire Technology

and Applications

3.1 Ionic Migration Mechanisms in Resistive Switching

Resistive switching memory is a foundational stone of non-volatile memory technology,

driven by the unique behaviours of nanoscale materials under electrical bias. These

mechanisms, particularly ionic migration and electrochemical metallization, are essen-

tial to understanding how memristive devices operate, especially in dynamic environ-

ments where factors like temperature and humidity can significantly alter device per-

formance. Resistive switching memory has been observed across various functional

materials, including phase-change memory, ferroelectric and ferromagnetic materials.

The resistance change in these materials can be attributed to nanoscale geometric con-

finement, which modifies the material’s band structure and associated tunnel barrier.

However, more commonly, the large surface-area-to-volume ratio in these nanoscale sys-

tems enhances bias-catalyzed redox reactions that couple electronic and ionic transport

Waser et al. (2009); Yang et al. (2013).

In electrolytic materials, which are electrically insulating and ionically conducting,

resistive switching is primarily driven by the formation and dissolution of conductive

filaments within a metal-insulator-metal (MIM) junction. This process mimics biolog-

ical synaptic dynamics, where neurotransmitter molecules regulate synaptic strength,

analogous to how ionic migration modulates the resistive state in memristors.

18
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Ionic dynamics play a crucial role in the formation and dissolution of conductive

filaments, which are responsible for the switching between high-resistance (HRS) and

low-resistance states (LRS) in memristive devices.

Ion Migration: Under an applied electric field, metal cations or oxygen vacancies

migrate through the active layer. For example, in metal-core nanowire systems, metal

cations like Ag migrate across the MIM junction, forming a metallic filament at the

cathode nanowire Song and Yang (2022). This process changes the device from HRS

to LRS as the filament provides a low-resistance path for electron flow.

Ion Diffusion: In addition to migration, ions can also diffuse due to concentration

gradients. This diffusion is slower but contributes to the long-term stability of the

resistive states by influencing the retention time of the memristor’s state once the

external field is removed.

Resistive switching memory devices can be categorized based on their working prin-

ciples into three primary types: Valence Change Memories (VCM), Thermochemical

Memories (TCM) and Electrochemical Metallization (ECM) memories. Each of these

types leverages distinct mechanisms to form and dissolve conductive pathways within

the memory material, which are crucial for data storage and retrieval.

Valence Change Memories (VCM): VCMs operate by altering the distribution of

oxygen vacancies or anions within a dielectric material. The resistance change is driven

by modulating the valence state of transition metal ions, which affects the material’s

conductivity. The creation and annihilation of oxygen vacancies within the dielectric

layer lead to the formation or dissolution of conductive paths, corresponding to the low

and high resistance states.

Thermochemical Memories (TCM): TCMs depend on localized heating to induce a

chemical reaction within the material, which changes its resistance. Typically, the heat

generated by an applied voltage triggers a redox reaction that alters the material’s phase

or composition, forming a conductive path. This change is reversible; as the material

cools, the reaction can reverse, returning the system to its high-resistance state.

Electrochemical Metallization (ECM): ECM is a process where metal cations from

an anode nanowire migrate across the junction and are reduced at the cathode, forming

a conductive filament. This process is reversible; applying a reverse bias dissolves the

filament as the metal atoms ionize and migrate back towards the anode, reinstating

the high-resistance state. The atomistic simulations depicted in Figure 3.1 show the
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formation and rupture of these filaments within a Cu-aSi cell, which is critical for

understanding the switching dynamics at a molecular level.

Figure 3.1: Molecular dynamics of Cu-aSi cell between High/low resistance states Onofrio et al. (2015)

Molecular dynamics simulations illustrate the metallization process during forming,

reset, and set cycles in a Cu-aSi cell, showing the transition between high resistance

(HR) and low resistance (LR) states. This figure emphasizes how the applied voltage

influences the switching process by driving the electrochemical reactions that create or

dissolve the conductive pathways Onofrio et al. (2015).

Resistive switching, a key principle in the operation of many non-volatile memory de-

vices, particularly memristors, is heavily influenced by the movement of ions within the

device’s active layer. This process, known as ionic migration, involves the drift and dif-

fusion of charged particles—usually oxygen vacancies, metal cations, or anions—under

the effect of an electric field. Ionic migration is crucial for the creation and breakdown

of conductive filaments or the adjustment of defect states, which are responsible for

switching the device between its high and low resistive states. Understanding how ionic

migration works is essential for optimizing these resistive switching devices, especially

for applications in data storage, neuromorphic computing, and reconfigurable logic sys-

tems. Tehese mechanisms are generally classified into unipolar and bipolar switching,

depending on the nature of the applied voltage and the material’s response. In our

further cases, we are interested in bipolar switching since voltage polarity is reversed.

Bipolar switching requires reversing the voltage polarity to switch between HRS
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and LRS. This type of switching is common in systems where ionic movement and

electrochemical reactions are highly dependent on the applied voltage’s polarity. For

instance, in Ag-based systems, a positive bias drives Ag+ ions towards the cathode,

forming a filament, while a negative bias dissolves the filament, returning the device to

HRS.

The transition from high-resistance state (HRS) to low-resistance state (LRS) is

typically associated with the formation of a conductive filament, often composed of

reduced metal ions or oxygen-deficient regions within a metal oxide. These oxygen

vacancies act as mobile charge carriers that respond to an applied electric field, forming

a conductive filament that connects the electrodes. This process changes the device from

a high-resistance state (HRS) to a low-resistance state (LRS) Waser and Aono (2007).

When the voltage polarity is reversed, the conductive filament dissolves as the oxygen

vacancies return to their original positions, reinstating the high-resistance state. This

continuous cycle of ion migration is at the heart of resistive switching, making the

non-volatile memory effect in memristive devices possible.

In addition to oxygen vacancy migration, metal ion migration plays a significant role

in resistive switching, especially in silver (Ag) or copper (Cu)-based resistive random-

access memory (ReRAM) devices. When a positive voltage is applied, these metal ions

are reduced and deposited in the dielectric, forming a metallic filament that lowers the

device’s resistance. When the filament dissolves through the reverse migration of metal

ions, the device returns to its high-resistance state Yang et al. (2013).

Fig.3.2 shows the resistive switching I-V characteristics for various metal-oxide-metal

systems. The I-V curves exhibit hysteresis loops that are indicative of the resistive

switching behaviour. The current in this graph is in logarithmic scale and the current

changes sign from set to reset. The LRS and HRS I–V properties are portrayed by

the blue and red curves, correspondingly. These loops provide insights into the en-

ergy required for switching and the stability of the memristive states under different

environmental conditions.
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Figure 3.2: Resistive switching I–V characteristics for (a) NiO, (b) Al2O3, (c) TiO2, (d) Nb2O5, (e)
MgO, and (f) CoO metal oxide junctions. Figure (f) illustrates the Reset (LRS to HRS) and Set (HRS
to LRS) processes Jongmin et al. (2016).

The speed and behaviour of ionic migration are affected by several factors, including

the strength of the electric field, temperature, and the material composition of the

device. For example, stronger electric fields tend to accelerate the migration of ions,

resulting in quicker switching times. Similarly, higher temperatures generally increase

the mobility of ions, speeding up their movement within the active layer Sawa (2008).

However, if the migration of ions is too rapid or extensive, due to high electric fields

or sustained elevated temperatures, it can lead to problems such as the permanent
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formation of conductive filaments or the breakdown of the dielectric layer, reducing the

device’s lifespan and endurance Liu et al. (2013).

Environmental factors such as temperature and humidity significantly influence the

ionic dynamics and resistive switching behavior of memristors. For instance, increased

temperature can enhance ionic mobility, thereby lowering the threshold voltage required

for switching. However, it can also lead to increased leakage currents and reduced

retention times due to accelerated diffusion and instability of the conductive filaments.

Humidity also plays a critical role, particularly in hygroscopic materials like PVP-

coated nanowires. The absorption of moisture can rewire ionic pathways, facilitating

or hindering filament formation. High humidity levels may lead to the hydrolysis of the

electrolyte, degrading the device’s performance over time.

The microscopic details of ionic migration are closely tied to the defect structures

within the materials used in the device. In oxide-based memristors, for example, the

concentration and distribution of oxygen vacancies heavily influence the switching be-

havior. Regions with a high concentration of defects can act as nucleation points for the

formation of conductive filaments, which can lower the voltage required for switching

Ge and Chaker (2017). Similarly, the way metal ions are distributed within the active

layer can affect the uniformity and reliability of the switching process, which are critical

for ensuring the performance of memory devices operating under stringent conditions.

3.2 Impact of Environmental Factors on Memristive Behavior

Memristors, short for memory resistors, are a type of two-terminal electrical compo-

nent that stands out because of their ability to remember past electrical states. This

unique characteristic has made them an essential part of neuromorphic computing and

next-generation memory devices. Chua (1971) Memristive devices have attracted signif-

icant attention for their potential in a wide range of applications, including non-volatile

memory, logic circuits, and even artificial synapses in neural networks (Fig. 3.3). How-

ever, one of the challenges with memristors is that their performance can be affected

by environmental conditions. Understanding how factors like temperature, humidity,

and atmospheric pressure influence their behaviour is crucial for improving their per-

formance and ensuring their reliability in practical applications.
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Figure 3.3: a) Structural similarity of memristor and neural connections b) crossbar array structure
Kuncic and Nakayama (2021)

Temperature is a key environmental factor that significantly affects memristive prop-

erties, especially in devices that rely on ionic motion, filamentary switching, or phase

changes. For instance, in metal-oxide memristors, temperature can influence the way

conductive filaments form and dissolve, which directly impacts the switching between

resistive states. Higher temperatures tend to speed up the movement of ions, which

can alter the switching speed and the voltage thresholds needed for the memristor to

switch states. However, prolonged exposure to high temperatures can cause material

degradation, leading to unstable resistive states and a shorter device lifespan. Studies

have shown that repeated exposure to heat, known as thermal cycling, can damage the

oxide layers in memristive devices, potentially causing them to fail. Xue et al. (2019a);

Zhang et al. (2012)

Humidity is another environmental factor that has a notable effect on memristive

behaviour, especially in organic and polymer-based memristors. When moisture from

the environment enters the device, it can be absorbed into the active layers, which

disrupts the ionic pathways and changes how the device switches between states. In

fact, high humidity has been shown to lower the voltages needed to switch states and

increase the likelihood of leakage currents in organic memristive devices because water-

associated ions become more mobile. Due to this sensitivity, it’s important to use proper

encapsulation methods to protect memristors from moisture, ensuring they perform

consistently in different environments.Zhang et al. (2021); Yang et al. (2024)

Apart from temperature and humidity, atmospheric pressure can also influence the
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behaviour of memristive devices. Pressure changes, especially in vacuum environments,

can impact the movement of oxygen vacancies in metal-oxide memristors, which play

a crucial role in the resistive switching process. Low pressure tends to enhance the

retention of these oxygen vacancies, leading to more stable resistive states. On the other

hand, higher pressure may introduce additional scattering centers that can degrade the

device’s performance over time.Fernandes et al. (2024)

Other environmental factors, such as exposure to electromagnetic radiation and me-

chanical stress, can also impact memristor performance. For instance, radiation can

create defects in the materials that make up the memristor, which can either improve

or impair its switching behaviour depending on the type and energy of the radiation.

Additionally, mechanical stress, especially in flexible or stretchable memristive devices,

can change the conductive pathways within the device, affecting its resistance states.

This is particularly important to consider for memristors used in wearable electronics,

where flexibility and durability are key factors. Pattnaik et al. (2023)

3.3 Predictive Modeling of Ion Dynamics in Memristive De-

vices with MCS

Monte Carlo simulations (MCS) represent a crucial computational approach for un-

derstanding and predicting the complex ion dynamics that underlie the operation of

memristive devices. These simulations excel in capturing the stochastic processes in-

volved in ion migration and filament formation, providing a detailed look at how these

phenomena impact the performance and reliability of nanowire-based systems.

3.3.1 Understanding Monte Carlo Simulations in Ion Dynamics

Monte Carlo simulations are a versatile tool for modelling systems characterized by a

high degree of randomness or complexity. From the perspective of memristive devices,

these simulations are invaluable for exploring the dynamics of ion migration and filament

formation—processes that are inherently probabilistic in nature. The primary strength

of Monte Carlo methods lies in their ability to simulate the intricate movements of ions

within a nanowire network, influenced by factors such as electric fields, temperature

variations, and material imperfections.Reinaudi et al. (2020)
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The basic methodology of Monte Carlo simulations involves several key steps:

1. Initialization: The process begins by setting up the initial state of the sys-

tem, which includes defining the positions of ions within the nanowire network,

establishing the initial distribution of the electric field, and setting the system

temperature.

2. Random Sampling: The core of Monte Carlo simulations is the use of random

sampling to determine possible ion movements. These movements are driven by

probability distributions that reflect physical processes like diffusion, drift under an

electric field, and scattering. The likelihood of various ion movements is influenced

by local factors such as the electric field strength and thermal energy.

3. Energy Calculation: The energy associated with each possible state is calculated

using the Boltzmann distribution:

P (E) =
e−E/kBT

F

where E represents the energy of the state, kB is the Boltzmann constant, T is

the temperature, and F is the partition function, which accounts for all possible

states. This formula ensures that states with lower energy are more probable, in

line with thermodynamic principles.Pathria and Beale (2011)

4. Iteration and Convergence: The simulation iterate over many cycles, allowing

the system to evolve and eventually reach equilibrium. The outcome is a statis-

tically accurate representation of the ion distribution and the resulting filament

formation within the memristor.Wagner and Kliem (2011)

3.3.2 Modeling Ionic Dynamics and Filament Formation in Memristors

In memristive devices, ionic dynamics play a pivotal role in enabling resistive switching,

which is essential for the device’s operation. Monte Carlo simulations are employed to

model how ions migrate under an applied electric field and how these migrations lead

to the formation of conductive filaments that bridge the electrodes.Aldana et al. (2020)

In metal-oxide memristors, oxygen vacancies serve as mobile charge carriers. Under

the influence of an electric field, these vacancies migrate towards the anode, where they
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accumulate and form a conductive filament. This filament, in turn, switches the device

from a high-resistance state (HRS) to a low-resistance state (LRS). Shown in Figure

3.4 Monte Carlo simulations provide insights into the specific conditions—such as the

critical voltage and temperature—that facilitate this filament formation.Aldana et al.

(2018)

Figure 3.4: Development of quantum filament Xue et al. (2019a)

In stage (i), the filament is fully formed, providing a continuous conductive path

between the top and bottom electrodes. This configuration corresponds to the low-

resistance state (LRS) of the device, where the conductance is much greater than the

quantum of conductance G0. The filament consists of a dense arrangement of atoms,

ensuring efficient electron transport across the electrodes.Xue et al. (2019b)

As the reset process begins, the filament starts getting narrow, reducing the cross-

sectional area available for electron transport. This state (ii) still allows conduction,

but the conductance has decreased to approximately twice the quantum of conductance

(∼ 2G0). This stage represents a partial dissolution of the filament.

Further progression of the reset process leads to a significant narrowing of the fila-

ment, with conductance dropping to approximately the quantum of conductance (G0).

At this point (iii), the filament is almost dissolved, and only a thin connection remains

between the electrodes. This state represents the transition from LRS to HRS, where

the resistance is increasing, but a small conductive path still exists.

In the final stage (iv) the filament is fully dissolved, breaking the conductive path

between the top and bottom electrodes. The device is now in the high-resistance state

(HRS), where the conductance is much less than the quantum of conductance (< G0).

This state corresponds to the “off” state of the memristor, where the resistance is
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maximized, and the device effectively blocks current flow.

When the polarity of the applied voltage is reversed, the conductive filament begins

to dissolve, as the ions migrate back toward their initial positions. This dissolution

returns the device to its high-resistance state. Monte Carlo simulations are crucial in

modelling this process, as they help predict the reliability and stability of the device

over multiple switching cycles.Aldana et al. (2020, 2018)

3.3.3 Applying Monte Carlo Simulations to Silver Nanowires

Ag NWs integration within memristors would lead Ag+ ions within these nanowires

to migrate in response to an electric field, forming and dissolving conductive filaments

that enable the resistive switching behaviour essential for device operation. Monte

Carlo simulations of Ag nanowires possibly can focus on modelling the migration of

Ag+ ions, predicting how these ions will aggregate under an electric field to form a

filament, and how they will dissolve when the field is reversed. The simulations provide

critical insights into the conditions required for reliable filament formation, including

factors like threshold voltage, temperature, and the presence of impurities or structural

defects within the nanowiresReinaudi et al. (2020).

Ag NWs integrated into the memristive devices coatation of PVP will act as a

stabilizing agent by introducing additional barriers to ion migration. Monte Carlo

simulations can model the impact of these barriers, predicting how they influence the

filament formation process. At lower temperatures, the simulations might show that

these barriers slow down ion migration, resulting in more stable but slower switching

behaviour. At higher temperatures, however, the simulations might predict faster ion

migration, but with the potential risk of filament overgrowth, which could compromise

the device’s longevity.

The process of filament formation and dissolution in Ag nanowire-based memristors

can be directly related to the quantum filament formation, as the simulation progresses,

the stages of filament growth in Ag nanowires will reflect the quantum conductance

changes. With possible research with application of Monte Carlo methods on Ag NWs

may carry an important role in optimizing memristive devices for practical applications,

ensuring their efficiency and reliability in next-generation memory and computing tech-

nologies.
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3.4 ZnO nanowires characteristics under various impact of

environment

Zinc oxide (ZnO) nanowires (NWs) have garnered significant attention due to their

unique electrical, optical, and mechanical properties, making them promising candi-

dates for a wide range of applications, including field-effect transistors, sensors, photo-

voltaics, and, notably, memristive devices. The behaviour of ZnO NWs, particularly in

memristive applications, is highly sensitive to environmental factors, especially mois-

ture. The research explores the influence of environmental conditions on ZnO NW

characteristics, drawing on insights from two key studies that examine the impact of

moisture on resistive switching behavior and the structural properties of ZnO in various

forms. Milano et al. (2020b)

ZnO Nanowires in Memristive Devices

Memristive devices are a class of non-volatile memory that rely on resistive switch-

ing mechanisms, where the resistance of the device can be altered between high and

low states by the application of an external voltage. ZnO NWs, owing to their high

surface-to-volume ratio and crystalline structure, are particularly well-suited for such

applications. In memristive devices based on the electrochemical metallization mem-

ory (ECM) effect, the switching mechanism involves the dissolution of metal atoms

(such as silver) from an active electrode and their migration within the insulating ZnO

matrix to form a conductive filament. This filament is responsible for the change in

resistance.Milano et al. (2021)

Influence of Moisture on Resistive Switching

Moisture plays a dual role in influencing the resistive switching behaviour of ZnO

NWs. On one hand, moisture adsorbed onto the surface of ZnO NWs can decrease

electronic conductivity by creating a depleted region with upward band bending, which

increases the overall resistance of the NWs. On the other hand, moisture can facilitate

the migration of Ag+ ions by reducing the energy barriers for ion migration along the

NW surface. This dual nature of moisture’s influence was highlighted in a study where

water molecules were found to reduce the electroforming voltage needed to establish a

conductive path in ZnO NW-based memristive devices.Milano et al. (2021)

In ZnO NWs, the presence of moisture was observed to lower the forming and SET

voltages, essential parameters in memristive devices. The lower voltages are attributed
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to the water molecules adsorbed on the ZnO surface, which not only reduce the energy

barrier for Ag+ ion migration but also increase the mobility of these ions. This increased

mobility enhances the formation of a stable conductive filament, leading to more reliable

switching behaviour.Milano et al. (2020b); Patil et al. (2023)

Structural Dependence and Comparison with ZnO Thin Films

The influence of moisture on ZnO NWs can be compared with its effects on ZnO thin

films, which have also been widely studied for memristive applications. In ZnO thin

films, particularly those created by sputtering and chemical vapor deposition (CVD),

moisture impacts the resistive switching behavior in a manner similar to ZnO NWs.

However, the extent of this impact is highly dependent on the structural properties of

the ZnO film. Sputtered ZnO films, with their smaller grain sizes and larger number

of grain boundaries, show a more pronounced response to moisture. This is because

the increased number of grain boundaries in sputtered films provides more sites for

moisture adsorption, thereby facilitating more pathways for ion migration.Milano et al.

(2020b); Panisilvam et al. (2024)

In contrast, CVD-grown ZnO films, which have larger grain sizes and fewer grain

boundaries, exhibit a less significant response to moisture. This structural dependence

highlights the importance of grain size and boundary density in determining the sen-

sitivity of ZnO-based memristive devices to environmental conditions. For ZnO NWs,

which naturally have a high surface-to-volume ratio and few grain boundaries, the im-

pact of moisture is primarily governed by surface adsorption effects rather than grain

boundary interactions.

Mechanisms of Moisture Influence

The mechanisms by which moisture affects ZnO NWs and thin films are rooted in

basic electrochemical principles. In a memristive device, moisture can participate in

both anodic and cathodic reactions. For example, at the anode, moisture can facilitate

the dissolution of silver into Ag+ ions, which then migrate through the ZnO matrix. At

the cathode, moisture can participate in reduction reactions that maintain the overall

charge balance within the device. This dual participation not only lowers the energy

required for ion migration but also stabilizes the conductive filaments formed during

the SET process.Milano et al. (2020b, 2021)

Moreover, moisture’s ability to form a hydrogen-bond network along grain bound-

aries or on the surface of ZnO NWs further reduces the diffusion barriers for Ag+ ions.
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This results in more efficient ion transport and a more pronounced resistive switching

behaviour. The presence of moisture also influences the ON/OFF resistance ratio, with

higher moisture levels typically leading to a higher ratio due to the enhanced mobility

of Ag+ ions and the more effective formation and rupture of conductive filaments.

3.5 Challenges in Nanowire Fabrication and Application

Despite their potential, several challenges must be addressed to scale nanowire networks

for commercial use. These challenges, particularly related to environmental conditions,

significantly affect both the fabrication and application of nanowire-based devices. This

section explores the key challenges, emphasizing precision in fabrication, material se-

lection, environmental stability, scalability, and mechanical integrity.

1. Precision and Control in Nanowire Fabrication

Achieving precise control over the size, shape, and orientation of nanowires is one of

the foremost challenges in fabrication. Nanowires are typically on the order of tens of

nanometers in diameter and extend several micrometres in length. Maintaining unifor-

mity in these structural properties during fabrication is difficult, especially since varia-

tions in diameter, length, or crystallinity can lead to inconsistent device performance,

particularly in applications where precise electrical or thermal properties are essen-

tial Lee et al. (2000). Different methods, such as chemical vapour deposition (CVD),

solution-phase synthesis, and template-assisted growth, are used to produce nanowires,

but each method has its own limitations. For instance, CVD can yield high-quality

nanowires with good control over crystallinity, but it is challenging and expensive to

scale. On the other hand, solution-phase synthesis can be scaled more easily but often

produces nanowires with more defects, which can reduce device performance Arjmand

et al. (2022). Furthermore, aligning nanowires precisely during fabrication is challeng-

ing but necessary, particularly in electronics. Techniques like nanoimprint lithography

and dielectrophoresis have been developed to address alignment issues, but achieving

consistent, cost-effective alignment at scale remains problematic. Long et al. (2012)

2. Material Selection and Compatibility

Choosing the right materials for nanowire networks presents another significant chal-

lenge. Different materials offer varying levels of conductivity, flexibility, and chemical

stability. For example, silver (Ag) and copper (Cu) nanowires are highly conductive
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and commonly used in transparent electrodes and flexible electronics. However, these

metals are prone to oxidation, which degrades their electrical performance over time,

especially in harsh environmental conditions such as high humidity or exposure to

air. Kou et al. (2017) To address this, researchers have explored coating or alloying

nanowires with protective materials, like gold (Au) or aluminium oxide “(Al2O3)”, to

prevent oxidation. However, these protective measures can add complexity and cost to

the fabrication process also they may alter memristive dynamics.Additionally, selecting

materials compatible with flexible substrates that can maintain performance under me-

chanical stress is critical for applications like wearable electronics and flexible displays.

Xiang et al. (2022)

3. Environmental Sensitivity and Stability

Environmental conditions such as temperature, humidity, and chemical exposure can

significantly affect the performance and stability of nanowire networks. Due to their

high surface-area-to-volume ratio, nanowires are highly susceptible to surface interac-

tions with the environment. For instance, nanowires can undergo oxidation, corrosion,

or surface contamination, all of which degrade their electrical properties and limit their

long-term reliability. Erol et al. (2011) Humidity is a key environmental factor affect-

ing nanowire networks. The adsorption of water molecules onto nanowire surfaces can

alter electrical conductivity, particularly in materials like zinc oxide (ZnO) and silver,

where humidity enhances ionic conduction or causes oxidation, leading to increased

resistance and device failure. Ma et al. (2024) Ensuring the environmental stability of

nanowire networks requires the development of effective encapsulation or passivation

strategies to protect against moisture and contaminants. Temperature fluctuations

also pose challenges, especially in applications where nanowire networks are exposed to

varying thermal conditions. The small size of nanowires can lead to significant thermal

expansion or contraction, which may cause mechanical failure, such as cracking or de-

lamination in devices. Salhi (2020) Developing materials and device architectures that

can accommodate thermal expansion or exhibit thermal stability across a wide range

of temperatures is essential for the reliability of nanowire-based devices. These effects’

impact on NWNs is not fully clear yet, so further measurements by application of the

cycles can be designed to find the answer. This thesis’s aim is also to find a correlation

if any with a designed experiment that is explained in the next Chapter.

4. Scalability and Manufacturing
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Scaling up nanowire network fabrication for commercial applications remains one

of the most critical challenges. Although promising nanowire-based prototypes have

been demonstrated in the lab, transitioning to mass production is far more complex.

Achieving uniform nanowire production, ensuring consistent material properties, and

developing cost-effective large-scale fabrication methods are hurdles that must be over-

come Sheng-Yun et al. (2020). One major issue with scalability is producing large-area

nanowire networks with uniform coverage and consistent performance. Coating tech-

niques developed for depositing nanowires over large areas often may lead to random

orientation and uneven distribution of nanowires, resulting in non-uniform electrical

properties and suboptimal device performance, particularly in transparent conductive

films and large-area sensors, especially in not well-controlled environments. Kumar

et al. (2022) Moreover, integrating nanowire networks into existing manufacturing pro-

cesses for electronics, optoelectronics, and sensors is challenging. Ensuring compati-

bility with standard lithography, integrating with flexible substrates, and establishing

robust electrical contacts between nanowires and other components are critical consid-

erations for developing commercial nanowire-based devices.

5. Mechanical Integrity and Reliability

The mechanical integrity and reliability of nanowire networks are crucial, particu-

larly for applications in flexible electronics, wearable devices, and stretchable sensors.

Nanowire networks need to maintain their electrical and mechanical properties under

repeated bending, stretching, or compressing. However, nanowires are vulnerable to

mechanical failure under strain. They may fracture, detach from the substrate, or lose

contact with adjacent nanowires, leading to degraded performance over time. Grazioli

et al. (2024) Researchers are exploring various strategies to improve mechanical reliabil-

ity. These include embedding nanowires in flexible polymers, enhancing the mechanical

properties of the nanowire materials, and developing stretchable architectures that can

withstand mechanical deformation without breaking. Prameswati et al. (2022) These

approaches aim to ensure that nanowire networks can endure the mechanical demands

of flexible and wearable devices while maintaining their functionality.
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3.6 Future Directions in Neuromorphic Computing

The field of neuromorphic computing has seen significant advancements, particularly

with the development of memristor-based systems, phase-change materials and nanowire

networks. Memristors, in particular, have shown great promise due to their ability to

mimic synaptic behaviour by adjusting their resistance in response to electrical cur-

rents. This capability allows them to “remember” previous inputs, making them ideal

for tasks such as learning and memory retention Roy et al. (2019).

Phase-change memory (PCM) devices, which utilize reversible phase transitions in

chalcogenide materials, offer another avenue for neuromorphic computing. These de-

vices can simulate the analog behaviour of synaptic weights, making them suitable for

spiking neural networks (SNNs) that process information using time-dependent spikes,

much like biological neurons Raoux et al. (2008). Spintronic devices, which exploit the

spin of electrons in addition to their charge, provide yet another approach to neuromor-

phic computing. These devices are non-volatile, offering energy-efficient computation

with persistent memory, making them ideal for real-time processing and adaptable neu-

romorphic circuits Wolf et al. (2001).

Ag NWNs are gaining attention for being scalable and suitable for large-scale neu-

romorphic systems that require high-density synaptic connections, making them par-

ticularly well-suited for RNNs that mimic biological neural activity Diaz Alvarez et al.

(2019a).

Neuromorphic computing represents a significant leap forward in how computational

systems are designed, inspired by the architecture and functions of the human brain.

Traditional computing systems, based on the von Neumann architecture, separate mem-

ory and processing units, resulting in data transfer bottlenecks and higher energy con-

sumption. In contrast, neuromorphic systems integrate memory and processing more

closely, much like how biological neural networks function. This integration allows for

more efficient and adaptive processing, essential for tasks such as pattern recognition,

learning, and decision-making, which are critical in AI applications.

The concept of neuromorphic systems isn’t entirely new. It was first introduced by

Carver Mead in the 1980s, who envisioned circuits that could emulate biological infor-

mation processing using analog components rather than digital logic gates Mead (1990).

This marked the beginning of a new paradigm in computing hardware, where the fo-
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cus shifted towards mimicking the brain’s synaptic plasticity and parallel processing

capabilities. The development of Metal Oxide Semiconductor Field Effect Transistors

(MOSFETs) further advanced this field by enabling the creation of more sophisticated

neuromorphic circuits.

Today, neuromorphic computing encompasses various novel nanotechnologies, in-

cluding non-volatile memory devices and memristors, which can mimic synaptic be-

haviour Waser et al. (2019). These devices operate based on resistive switching mech-

anisms, where the resistance of the device changes in response to an applied voltage,

much like how synapses adjust their strength based on neural activity. The unconven-

tional “beyond von Neumann” architecture of these devices significantly reduces power

requirements, making them ideal for implementing Artificial Neural Network (ANN)

algorithms that replicate neuronal and synaptic connections in software Hu and Li

(2022).

Current neuromorphic systems, such as IBM’s TrueNorth and Intel’s Loihi chips, are

limited in their ability to fully replicate the complexity of biological neural networks.

These systems primarily focus on integrating processing and memory to reduce power

consumption but do not fully capture the emergent properties of neural networks, such

as learning and memory, which arise from the network’s complex structure Akopyan

et al. (2015). This limitation stems from the grid-like array structure of these systems,

which emphasizes individual synapse-like elements rather than the overall network ar-

chitecture. As a result, these systems lack the emergent dynamical properties that

are characteristic of biological neural networks, such as small-world architecture and

complex topologies Chialvo (2010).

To find the solution to these limitations, researchers have developed advanced neu-

romorphic systems composed of self-assembled nanowires that mimic the structure and

function of biological neural networks. These Atomic Switch-like Networks (ASNs) uti-

lize non-linear synaptic functions at the junctions between nanowires, similar to atomic

switches Terabe et al. (2005). Unlike conventional neuromorphic systems, ASNs empha-

size the emergent dynamical properties arising from their complex network topology,

enabling them to mimic the brain’s adaptability and learning capabilities.
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Experiment design

4.1 Ag-PVP Nanowire Networks synthesis and main charac-

teristics

4.1.1 Self organizing structure of Ag-PVP NWNs

Figure 4.1 provides a detailed look into how NW networks adapt and change through

two key processes known as “reweighting” and “rewiring.” These processes are funda-

mental to the structural plasticity of the network, which is the ability of the network

to change and adapt its structure in response to external electrical stimuli, much like

how a brain might adjust its connections between neurons based on experiences Milano

et al. (2022).

Figure 4.1a introduces the concept of “reweighting.” Consider two nanowires cross-

ing each other, with a thin layer of insulating material between them. When a voltage

is applied across these wires: silver ions start moving through this insulating layer,

forming a tiny bridge that connects the two wires. This connection alters the resistance

of the junction. This change in resistance is what we refer to as “reweighting,” and

it’s crucial because it allows the network to adjust its electrical properties based on the

signals it receives.

36
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Figure 4.1: Explanation of “reweighting” and “rewiring” of single Ag NW Milano et al. (2022)

Figure 4.1b shows us that different NW junctions don’t all start from the same point.

The initial resistance can vary widely from one junction to another. This variability

is due to the way the wires touch each other sometimes where strong or weaker con-

tacts may occur depending on the randomness of how the wires are positioned and the

presence of a thin coating around them. This randomness is similar to how not all con-

nections in the brain are equally strong, which adds to the complexity and adaptability

of the system.

Further in Figure 4.1c, we gain a deeper understanding by observing what happens

when a specific voltage is applied to a single NW junction. The resistance suddenly

drops, which means that a conductive path has formed between the wires. This be-

haviour is a clear example of “reweighting” in action, where the network’s response to

electrical input is fine-tuned.

Figure 4.1d shifts focus to the different concept that happens when a nanowire

experiences a high electrical current. This current can cause the wire to break, creating

a tiny gap known as a nanogap. They are not permanent damage since under the right

conditions, the network can “heal” itself by forming a new conductive path across the

gap. This ability to re-establish connections is what we refer to as “rewiring” Manning

et al. (2018).



38

To confirm this process visually, Figure 4.1e includes an image obtained through a

scanning electron microscope (SEM), showing the actual nanogap that forms after a

breakdown event. In the last part, the Figure 4.1f presents how this nanogap behaves

electrically. The current-voltage (I-V) graph displays a hysteresis loop, a signature of

memristive behaviour, meaning that the network remembers the electrical history of

the nanogap and can adjust its behaviour accordingly Milano et al. (2022).

All parts together give a brief explanation of how the NW network is dynamic

and capable of adapting to different conditions. The processes of reweighting and

rewiring enable the network to mimic the flexibility and learning capabilities of the

brain, making it a promising technology for creating advanced, brain-like computing

systems. Understanding these processes is essential because they highlight how the

physical structure of a network can directly influence its ability to process and store

information for neuromorphic computing.

4.1.2 Production of the Ag-PVP nanowires

For experiment, the memristive device made of silver nanowires (Ag NWs) thinly cov-

ered in an insulating polymer called polyvinylpyrrolidone (PVP) is used. This layer

of polymer is very thin, usually measuring just one or two nanometers. PVP is es-

sentially a leftover byproduct of the nanowire synthesis process. The insulating poly-

mer layer, although a residue, is essential to the device’s ability to display resistive

switching behaviour. The most important aspect of the apparatus is the creation of

a metal-insulator-metal (MIM) at the crossing points of the structure, which becomes

achievable only by this behaviour.

The development technique for these Silver-PVP nanowire networks (Ag-PVP NWNs),

as detailed in the group’s works, is dropping Silver nanowires suspended in an alcohol

solution, namely isopropyl alcohol (IPA), over a silicon dioxide SiO2 substrate material.

Areal mass density (AMD) of the coated nanowires that grow may be precisely moni-

tored by varying the mass ratio of the nanowires to the IPA in the suspension Milano

et al. (2020a). In simple terms, increasing the quantity of IPA correlates with a lowered

AMD, as seen in Figure 4.2.
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Figure 4.2: Samples with different nanowire densities Milano et al. (2020a)

To get a lower AMD, the nanowires are originally bought in an alcohol solution,

which is then diluted with IPA. In this work’s case Ag NWs’ areal density is shown

table below:

Sample AMD
(
mg
m2

)
N171 182.73
N172 136.62

Table 4.1: Areal mass density of used samples in this work

After the nanowires have been formed, gold pads are sputter-deposited around the

borders of the nanowire network to act as electrodes for network access. The pad re-

gions are properly defined using a shadow mask. These pad positions are not exactly

represented in the same way as the samples we used Figure 4.3 provides a thorough rep-

resentation of them. Notably, the entire fabrication process is simple and inexpensive,

as it does not demand cleanroom facilities or advanced lithographic processes.
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Figure 4.3: Diagram of gold deposition on corners

Below in Figure 4.4 a real image of the experiment’s device is shown. The probes

connected to the 3rd node from left and right, North and South accordingly. It is also

obvious that during our experiment water droplets were formed due to the condensation

on the surface of our measured device specifically during relative humidity cycles.

Figure 4.4: Reformed water droplets on nanowires due to condensation
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4.2 Experimental Setup

In this experiment, the conductance of silver nanowire networks (AgNWs) is studied

under controlled humidity and temperature conditions using a designed setup. The

Precision Humidity Control System (HCS-2M) ensures precise humidity regulation,

maintaining a range between 4-95% RH. This will create a controlled environment for

observing how environmental humidity influences the electrical properties of nanowires.

The chamber’s temperature is regulated using Peltier technology, which offers both

heating and cooling capabilities, covering a range from -40°C to 200°C.

Figure 4.5: Experimental Setup

For the electrical characterization, a Keithley 4200-SCS Semiconductor Characteri-

zation System has been used which allows application of voltage pulses and real-time

measurement of the nanowires’ electrical response. The continuous measurement data

capturing ability makes the system ideal for studying how the nanowires behave under

different humidity levels and temperature cycles.

4.2.1 Controlling Relative Humidity

The Precision Humidity Control System (HCS-2M) offers precise PID (Proportional

Integral Derivative) control and integrates a humidity sensor directly inside the mi-
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croprobe stations (MPS) chambers. It maintains a normal ramp speed of 10% RH

per minute and operates within a standard range of 4-95% RH, though this may vary

depending on the specific experimental and lab conditions MicroprobeSystems (2024b).

The Temperature controller provides accurate control, with Peltier models allowing

active cooling and special temperature profiles, while LN (Liquid Nitrogen) models

include an LN circulation pump for low-temperature cooling.

4.2.2 Piezo-driven probe chamber for various heat applications and humid

environments

This compact piezo-driven probe module offers high precision and control, suitable for

delicate manipulations and measurements, with a high holding force and fine resolution,

making it ideal for nanotechnology applications. The device also supports a wide range

of operating temperatures, accommodating various experimental conditions

Figure 4.6: Piezo-driven chamber for many applications MicroprobeSystems (2024a).

The device features a module speed of 5 mm/s, with a stroke range of 8 mm on the

X and Y axes and 3 mm on the Z-axis. The probe can exert a holding force of 250

to 300 gf, making it suitable for careful tasks. It operates with high precision, offering

a resolution of less than 1 µm. The system is capable of functioning across a wide

temperature range, including cryogenic and high-temperature conditions. For example,

the range of temperature application with the help of Peltier effect is -40 up to the 200

C.MicroprobeSystems (2024a)
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4.2.3 Electrical characterization measurements of the nanowires

Keithley 4200-SCS Semiconductor Characterization System integrated with the 4225-

RPM offered comprehensive data acquisition and analysis tools. It enabled us to record

the conductance of the nanowires with high precision and to analyze the data in real

time. The system’s range of measurement allowed us to perform a wide range of tests,

from basic maximum conductance and time measurements to more complex pulse-based

characterizations.Instruments (2018)

4.2.4 Experimental steps

1. Sample Preparation:

Ag-PVP NW networks are fabricated and then the ready device is carefully placed

inside the chamber.

2. Microprobe Contact:

Using the piezo motor-driven microprobe system, precise contacts are made with

the sputtered electrodes that contact random NWs. As shown previously in Figure

4.4 central (3rd) electrodes facing each other connected to probes. The position

and pressure of the probes are adjusted to ensure a stable and consistent electrical

connection.

3. Electrical Measurement:

The Keithley 4200-SCS is configured for I-V measurements. The Keithley 4225-

RPM unit applies electrical pulses and measures the resulting current through the

NW networks. Measurements are taken at different humidity levels and different

cycles of the temperature sweeps to observe what are their effect on the non-

linearity of the nanowires we produced.

4. Humidity and Temperature control:

Humidity is set using the Nextron HCS-2M system being connected to the cham-

ber. Temperature is controlled by Peltier connected to the surface under the

nanowire network chip. All these cycles automated by software provided Nox-

tron with predefined steps of their humidity and temperature controllers which

are mentioned above.
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5. Data Collection and Analysis:

The collected data is analyzed through a computer in Python programming lan-

guage to determine the relationship between humidity/temperature and the elec-

trical conductance of the Ag-PVP NWN by plotting them at parallel time. So

in case of any event where we can’t see the potentiation or relaxation, tuning of

the pulse voltage can be redone and we can convert our measurements only when

correlated with nanowire dynamic behaviour.

6. Safety and Precautions:

Handling the microprobes with extreme care to avoid damaging the nanowires. Us-

ing a shield to block light and matter interactions on the surface of the nanowires,

to expand their lifetime of performance.



Chapter 5

Results

5.1 Measurements with continuous V applied

Figure 5.1: Change of G0 during T,RH,V const

Figure 5.1 demonstrates G0, conductance change during time. In this measurement,

constant voltage V=1.8V was applied to nanowire networks to nodes as shown in Fig-

ure 4.4. As we can see first point of the time presents a pike in conductance due to

the application of voltage. The temperature was fixed at 30C, also relative humidity

was constant since the measurement was held on an isolated cryostat, there was no

significant change in the behaviour of conductance.

45
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Figure 5.2: Change of G0 during T cycle (10-40-10C)

Similar to the previous one, Figure 5.2 represents G0 conductance on the y-axis and

time on the x-axis, applied voltage was continuous as before but 0.5V. During mea-

surements of sample N171 relative humidity was kept constant at 60%. Temperature

continuously cycled from 10 to 40 C and back to 10 C. As we can deduct from the

graph when the temperature reaches the highest value (40 C) high temperature favours

a step in conductance.

Figure 5.3: Change of Gnorm during RH cycle (80-10-80%)

In Figure 5.3 conductance values are plotted with the application of constant Voltage
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(0.5V). This time temperature is fixed at 300K. Relative Humidity cycled from 80%

to 10% and back to 80%. It is present in the graph how low humidity produces more

spiky dynamics but it is reversible going up high relative humidity (80%).

5.2 Relative humidity effects on Ag-PVP potentiation

At the next step of the experiment sample N172T was used, for each point of the tem-

perature cycle, 7 V of voltage pulse for 10 seconds was applied, and each measurement

for each relative humidity level roughly took 10 minutes. The goal was to observe how

the maximum conductance (Gmax) of the sample evolved during the humidity cycle,

with humidity ranging from 80% to 30% and then back to 80%, while keeping the

temperature constant at 27°C.

5.2.1 Gmax vs Time

Figure 5.4: Gmax vs Time

From the graph Fig. 5.4, it’s evident that Gmax increased consistently over time,

there is a continuous long-term modification that is independent of the humidity given

by repeated voltage application. Each colour represents one cycle of RH (80-30-80%),

and it should be also kept in mind the last cycle of this measurement is done in the
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reverse cycle. But in the case of all three cycles, it’s not determined how humidity

directly affected the behaviour of Ag NWNs.

5.2.2 ∆G0 vs Time

Results reported in Fig. 5.5, the change in conductance ∆G0 over time was measured

under the same conditions of varying humidity, sample N172T displayed a gradual

increase in ∆G0 over time, specifically when its reached 3rd cycle of humidity, presenting

chaotic data. 1st cycle shows a sudden peak during 2nd half of the cycle while the

transition from 30 to 40% RH, 2nd cycle (blue) generally supports decreasing humidity

causing a decline in ∆G0 value.

Figure 5.5: ∆G0 vs Time

5.2.3 Gmax vs Relative Humidity

Figure 5.6 shows as the humidity was cycled the conductance values were recorded at

various points. The Gmax decreased with decreasing humidity and showed the lowest

values at lower humidity levels. But while cycling back to high humidity at some cycles

it shows less value, which can be related to reforming new paths through nanowire

networks with increasing humidity. The behaviour of sample N172T unfortunately

didn’t allow for clear observations of how humidity impacts the conductive properties

of the nanowires.
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Figure 5.6: Gmax vs Relative Humidity

5.2.4 ∆G0 vs Relative Humidity

Figure 5.7 illustrates the relationship between the humidity decrease, and the change in

conductance since mentioned in the previous Fig. 5.6 explanation sample N172T shows

fluctuations at different humidity levels which creates difficulty in building correlation.

Figure 5.7: ∆G0 vs Relative Humidity
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5.2.5 Average ∆G0 vs Relative Humidity

Fig. 5.8 presents the average ∆G0 against relative humidity while providing a broader

view of how relative humidity influences the conductance across different conditions.

The observed trend shows a consistent increase in average conductance as humidity in-

creases, despite all measurement results being compatible. But as can be seen dynamics

of the sample N172T show various fluctuations.

Figure 5.8: Average G0 vs Relative Humidity

The increase in conductance with higher humidity could have possible causes that are

mentioned in previous chapters in this work. Water molecules that are adsorbed by the

surface can create hydroxide ions (OH−). Ions initiate redox reactions on the surface of

the silver nanowires and the oxidation of silver (Ag) to silver ions (Ag+). This dynamic

redox activity enhances conductance by increasing the number of charge carriers within

the network. Another reason is an increase in ionic mobility because water molecules

lower the energy barrier for migration which correlates to higher conductance. Humidity

can alter the surface charge distribution and modify the local electric field around the

nanowires. This change can enhance the overall connectivity of the network or assist

in the formation of conductive filaments between nanowires.



51

5.3 Temperature effects on Ag-PVP potentiation

In this part of the experiments, since we measure temperature effects, RH is fixed at

60% and with the help of the Nextron temperature controller, values are assigned to

temperature with 5C steps. The temperature started from 10 C and reached 40 C max

for this experiment and cooled back to 10 C. Throughout the process, the humidity was

kept constant at 60%. It’s worth mentioning that I initially started with sample 172N

but had to switch to sample 171N because it exhibited better consistency and stability

of data. For each point of the temperature cycle, 0.5 V of voltage pulse for 10 seconds

was applied, and each measurement for each temperature roughly took 10 minutes.

5.3.1 Gmax vs Time across Cycles

Figure 5.9: Gmax vs Time

Figure 5.9 demonstrates how the temperature cycle was repeated 3 times. During

each cycle (Gmax increases noticeably during heating from 10C to 40C. However, during

the reverse cycle(cooling down) maximum conductance for several steps keeps increasing

reaches its maximum value and decreases while temperature decreases. This behaviour

indicates the possibility that the nanowire network was experiencing an initial surge

in conductance before possibly stabilizing or even degrading a bit over time. This

should be kept in mind that the network keeps potentiating in general, it is only the
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potentiation effect of each pulse that remains the same, which is the outcome of the

cycle transition in the given graph.

5.3.2 ∆G0 vs Time across Cycles

When looking at Figure 5.10, it is clear that ∆G0 increased initially in each cycle.

But as time went on while the temperature increased, it either stabilized or began to

decline. The first cycle(red) is the opposite in the case of Gmax relationship against

time. ∆G0 decreases while increasing temperature and returns to similar initial values

when temperature decreases. 2nd cycle tries to implement the same behaviour but

ends unsuccessfully since does not reach close to the initial values. During 3rd cycle

(green) difference in conductance maximum and minimum values is not affected between

the change of the initial and last steps of the cycle, but at the highest value of the

temperature is different than the first 2 cycles it represents its highest value instead of

the lowest.

Figure 5.10: ∆G0 vs Time

5.3.3 Gmax vs Temperature across Cycles

The 5.11 graph presented a variety of trends in Gmax across different temperatures and

cycles. Contrary to what one might expect, there wasn’t a clear trend of maximum

conductance increasing with temperature. Instead, Gmax seemed to either stabilize or



53

Figure 5.11: Gmax vs Temperature

even decrease at certain points, particularly after repeated cycling. But together with

Figure 5.9, it can be explained that the network is generally potentiating without any

kind of saturation.

5.3.4 ∆G0 vs Temperature across Cycles

Figure 5.12: ∆G0 vs Temperature

In Figure 5.12, ∆G0 decreased with each successive cycle, particularly at the lower
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temperatures. This pattern suggests that, with repeated exposure to these temperature

cycles, the nanowire network might be adapting in a way that leads to smaller changes

in conductance. It seemed like the network was becoming more stable, with established

conductive pathways, which reduced the impact of further temperature cycling.

5.3.5 Average ∆G0 vs Temperature

Figure 5.13: Average ∆G0 vs Temperature

As reported in Figure 5.13, it is observed that ∆G0 generally decreased as the

temperature increased from 10°C to 30°C. Interestingly, there was a slight uptick at

40°C which was the maximum value for temperature in this experiment. Based on

previous topics discussed in this work, there would be multiple explanations for seeing

a minimum at 30 C. The balance between Ag+ ions mobility and the thermal stability

of the PVP matrix might result in a network configuration that is less prone to forming

new conductive pathways. This stabilization could lead to the observed minimum in

∆G0. There could be effects against each other, while increasing temperature generally

increases ion mobility leading to more significant changes in conductance, the network

might also reach a point of stability at 30 C, where these effects balance out and could

cause observed minimum.
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5.4 Relative humidity effects on new sample with high G

Since sample 171N showed promising results with a small voltage pulse applied com-

pared to 172N, we also decided to see the Relative Humidity effects on this sample.

Instead of a 7V pulse voltage nanowire chip could show very good potentiation already

at 0.5V. At constant ideal room temperature, one cycle (80-20-80%) of relative humidity

was conducted. Since it is not several cycles we can not make any statistical outcome.

It is observable from Figure 5.14 that, the average value of the conductance reaches its

highest value when Relative humidity is also at max value for this experiment.

Figure 5.14: Average ∆G0 vs Relative Humidity

Going through these measurements, one can realise how crucial it is to consider

both the environmental conditions and the history of the material when interpreting

the behaviour of nanowire networks. The results reveal the complexities involved and

highlight the importance of maintaining consistency in experimental conditions to draw

meaningful conclusions.



Chapter 6

Conclusion

Promising results from the study of neural networks and reservoir computing, especially

with nanowires as hardware components for artificial intelligence, are increasingly being

recognized. The goal of this thesis was to explore under which ideal conditions the dy-

namics of these neural networks would perform optimally for specific tasks. Given that

the primary function of such reservoirs is their non-linear behaviour, the methods for

fine-tuning these systems are complex and present numerous limitations and challenges.

The focus of his thesis is divided on studying the performance of Ag-PVP NWNs

under two key environmental conditions: temperature and relative humidity.

Temperature, though it may seem a straightforward factor, has profound effects on

the ability of neural networks to respond to input signals. The results at 5.3 showed

that temperature variations lead to obvious changes in the conductance, higher temper-

atures were observed leading to a decrease in conductance. Results also highlights that

repeated exposure to this temperature cycles, the nanowire network might be adapting

in a way that leads to smaller changes in conductance.

The same questions were applied to relative humidity. In these conditions, the

behaviour of Ag-PVP nanowires was found to be even more unstable. This instability is

largely due to the significant role of electrochemical effects, which impact the nanowires’

performance under varying humidity levels. In section 5.2, the data demonstrated a

consistent increase in the average ∆G0 with rising humidity levels. This trend is a

possible result of enhanced redox activity and increased ionic mobility caused by the

presence of water molecules which could act as a medium for silver ion migration.

56
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This study validates the importance of environmental variables on the performance

of Ag-PVP nanowires and also highlights theoretical background and future nanowire

applications, particularly in reservoir computing and recurrent neural networks, which

are central to large language models and other trending challenges.

Future research on the same topic could be done with the help of new and more

precise experimental settings, incorporating computational simulations which could sig-

nificantly improve understanding performance of nanowire networks.
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