
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Design and implementation of a tool to
improve error reporting for eBPF code

Supervisors

Prof. Riccardo SISTO

Prof. Fulvio VALENZA

Candidate

Rosario RIZZA

October 2024

Summary

The eBPF technology is the uprising trend in the cloud computing world, allowing
programs to run directly into the kernel space. This leads to having much more con-
trol over the system the program is run upon, especially in security and performance
sensitive environments like the server operating system. For instance, it enables
efficient monitoring and observability by tracking system performance, system calls,
and recognising latency issues with minimal overhead, allowing easy implementation
of those security policies that need to be enforced in the kernel space. Additionally,
eBPF is highly effective in networking and packet filtering, facilitating the creation
of custom firewalls, load balancers, and traffic optimizations.

In order to load eBPF programs into the kernel space, they need to be severely
scrutinized by the eBPF verifier, a set of deep checks that prevent it from crashing
the kernel or, even worse, from escalating privileges and taking control of the
system. The main drawback of this process is that error messages that the verifier
produces are extremely difficult to read, and also detached from the language the
developer writes the code in. This is because the common language used for this
type of task is the C language (recently Rust is starting to be adopted), while
the verifier performs the check on the eBPF bytecode, which is the result of the
compilation process. Moreover, the checks are executed only during the loading of
the program into the kernel space, and not during the compilation of the C code.

The main goal of my thesis is to improve the developer’s experience by inserting
into the eBPF compilation pipeline a set readability improvements, creating a tool
that allows the developers to easily reach the line of C code that generated the
error and adding a simple explanation of what happened, with some suggestion to
fix it.

The most common eBPF compilation pipeline at the moment uses the libbpf
project and the Clang compiler, so this thesis aims to add the integrations using
the error output of the libbpf load command. The tool will parse the error, the
source and object files in order to inform the developer on the reason and the
location. The python regex library re will be used, coupled with some bash script
and the pipe command.

ii

Acknowledgements

ACKNOWLEDGMENTS

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms x

Introduction 1

1 Overview of eBPF 4
1.1 eBPF History . 4
1.2 Applications and Capabilities of eBPF 5

1.2.1 Performance Tracing . 5
1.2.2 High-Performance Networking 5
1.2.3 Security . 5
1.2.4 eBPF in Cloud-Native Environments 5

1.3 Linux Kernel . 6
1.3.1 User space and kernel space 6

2 eBPF programming 8
2.1 User space and kernel space program 8
2.2 Compilation process . 10
2.3 The eBPF verifier . 12

2.3.1 The verification process . 12
2.3.2 Register State . 13
2.3.3 Verification criteria . 14

3 Improving the eBPF verifier errors readability 18
3.1 Choosing the Context . 18

3.1.1 Kernel version . 18
3.1.2 Compiler . 20
3.1.3 Programming Language Support 21

v

3.2 Approaches . 21
3.2.1 Clang Static Analyzer . 21
3.2.2 Message Error Analysis . 24
3.2.3 Pro and Contra of the Two Approaches 27
3.2.4 Study of the eBPF Verifier 28

4 Pretty Verifier 30
4.1 Introduction . 30
4.2 Usage . 30
4.3 Tool Functionality . 32

4.3.1 Code Structure and Execution Flow 32
4.3.2 Error handling . 33
4.3.3 Output . 34
4.3.4 Added value . 35
4.3.5 C line number . 36

5 Pretty Verifier Tests 38
5.1 Structure of the Test Suite . 38

5.1.1 Test folder . 39
5.2 Test sources . 39
5.3 Testing Methodology . 39

5.3.1 Fuzz testing . 39
5.3.2 Limitations in Error Message Coverage 40

5.4 Test Results and Coverage . 40

6 Conclusions and Future Work 42
6.1 Future Works . 43

6.1.1 Improved Test Coverage . 43
6.1.2 Extending Compatibility to Newer Kernel Versions 43
6.1.3 Support for Additional Compilers 43
6.1.4 Handling Additional Programming Languages 44

A Verbose list and checks 45

Bibliography 93

vi

List of Tables

3.1 Comparison of Clang Static Analyzer and Message Error Analysis
Approaches . 29

vii

List of Figures

2.1 User Space/Kernel Space interaction. 10
2.2 The compiling pipeline. 10

3.1 The eBPF verifier log: the lines of the source C code starts with ’;’. 19
3.2 Clang Static Analyzer Approach . 22
3.3 A simple eBPF test program . 25
3.4 The llvm-objdump utility allow to see the disassembled code 25
3.5 Message Error Analysis Approach 26

4.1 The type_mismatch error not managed 36
4.2 The type_mismatch error managed 37
4.3 The pointer_operation_prohibited error managed 37
4.4 The gpl_declaration_missing error managed 37

viii

Acronyms

BPF
Berkeley Packet Filter

eBPF
Extended Berkeley Packet Filter

LLVM
Low Level Virtual Machine

BCC
BPF Compiler Collection

CVE
Common Vulnerabilities and Exposures

x

Introduction

eBPF, or extended Berkeley Packet Filter, is a powerful kernel technology that
allows developers to execute custom code within the kernel of the Linux operating
system. This capability enables elevated flexibility and performance for networking,
observability, and security tools, all while maintaining a high level of safety and
reliability. By running within the kernel, eBPF programs can monitor and modify
the behavior of system calls, network packets, and various other kernel-level events
without requiring modifications to the underlying applications.

The core enabler of this technology is the eBPF verifier, a static analyzer ap-
plied on the eBPF programs intended to run on the kernel with the purpose to
reject any program that could compromise the execution or the security of the
kernel. For instance, a program could accidentally deference a null pointer, leading
to a system failure, or even worse could access to unauthorized memory, leaking
kernel space resources. For this reason the usage of this application is crucial and
mandatory if we want to run eBPF programs on the kernel. In order to run the
eBPF program, the developer needs to first compile the eBPF program to a common
target assembler-like language, called eBPF bytecode, that then will be analyzed
by the eBPF verifier. In particular the verification process will be performed during
the loading process into the kernel space, through the bpf() system call. However
usually a C library, called libbpf, is used to perform this procedure inside an
external program, the user space program, that manages the life cycle of the eBPF
program (also called kernel space program), like also communicating information
to the user space. A command line tool of this library is also available, bpftool,
to allow loading the eBPF program if there is no need of communicating with the
user space. During the loading process, the bpf() system call, or the libbpf library,
outputs the eBPF verifier log, that communicate if the program analysis yielded a
correct result or an error was found. In this situations, the output shown is often
hard to understand, for example it refers to C enums defined in the kernel source
code, or most commonly it refers to the eBPF bytecode it used to perform the
analysis. Considering that the developer writes eBPF programs usually in C code,
and sometimes in Rust, this can be a limitation.

1

Introduction

The goal of this thesis is to improve readability of the eBPF verifier log and
enrich its connections with the C source code, which is the most used language
for this purpose, thus improving the developer experience. In order to achieve this
result, multiple path will be taken into consideration, initially considering to mimic
the eBPF verifier checks directly in the C language, through the usage of the Clang
static analyzer, a suite that allows to implement static analysis techniques on the
C code before compilation. This approach will then be discarded in favour of the
message error analysis, using directly the eBPF verifier log, with the help of the
debug mode of the Clang compilation, managing to deliver an error message referred
to the C source code and possibly similar to the other approach. For this reason a
full study of the eBPF verifier source code will be performed, in order to gather the
information to choose which error messages need to be managed and to then deliver
this information to the developers in the occurrence of an error message. Numerous
difficulties will be encountered, mainly the struggle into creating test cases for
most of the error that have been handled. However the tool functionalities for
the most common message errors will be tested, yielding a decently satisfying result.

In the chapter 1 there will be an overview of the eBPF technology, the history, the
main usage and some information about the Linux kernel and how it works.
In the chapter 2 there will be a deep dive in the the way the eBPF programs are
developed and executed, and a section reserved to explaining how the verifier works
and its criteria for accepting or rejecting a program. These first two chapters use
the information found in Rice [1], the Wikipedia pages on eBPF [2] and the Linux
Kernel [3], the eBPF docs [4], the Linux Kernel documentation [5], and the work
of Shung-Hsi Yu at SUSE Labs [6].
In the chapter 3, there will be the description of the work associated with the
thesis,the context that is taken into consideration and the approaches that where
identified and the considerations made upon their feasibility, pros and cons, and a
description of the study process of the eBPF verifier. This one in particular was
the most time consuming part of the work, due to the considering size of the eBPF
verifier.
In the chapter 4 there will be a presentation of the tool developed, the structure
and the execution flow, other then the framework that it created in order to deliver
the best message error, and some specific of the actual improvement on the error
messages.
In chapter 5 the testing of the tool is presented, talking about the test suite
developed, the testing methodologies, difficulties encountered and the conclusions.
In the chapter 6, the final, the conclusion of the thesis are made, and a list of
future work is presented, especially focusing on maintainability and testing. In the
Appendix A there is analysis performed on the eBPF verifier, exposing for each

2

Introduction

error message the type of error it represented, some notes and if it was managed
and tested.

3

Chapter 1

Overview of eBPF

1.1 eBPF History

The roots of eBPF trace back to the Berkeley Packet Filter (BPF), which was
first introduced in the early 1990s as a means to efficiently filter network packets
in Unix-based systems. BPF provided the possibility to execute simple filtering
programs written in a custom instruction set, designed to determine whether a
network packet should be accepted or rejected. Initially, BPF was employed in
packet capturing utilities like tcpdump, where it enabled high-performance packet
filtering directly within the kernel.

As the demand for more sophisticated networking and security tools grew, BPF
evolved. In 2012 seccomp-bpf was introduced in version 3.5 of the kernel, allowing
the control of system calls by BPF programs. By 2014, with the release of Linux
kernel version 3.18, BPF had been overhauled and extended, leading to the creation
of eBPF. This transformation involved several key developments, like re-engineering
of the original BTF instruction set to be more efficient on 64-bit machines, intro-
duction of eBPF maps, data structures that allow communication between eBPF
programs and user space applications, the introduction of the bpf() system call,
to allow user space applications to interact with eBPF programs in the kernel, new
helper functions, and most importantly the introduction of the eBPF verifier, a
component that checks for the correctness and safety of the code during loading
time of eBPF programs, in order to avoid adding vulnerabilities or instructions
that would lead to a system failure. In 2015, kprobes were introduced for tracing,
and later that year the eBPF compiler back end got merged into LLVM 3.7.0 release.

Since then the companies started to introduce this technology in their production
projects, starting from Netflix, Facebook, and then leading to the development of

4

Overview of eBPF

the tool used nowadays for the eBPF development, like libbpf, BCC, Cilium and
many others.

1.2 Applications and Capabilities of eBPF
eBPF’s flexibility and power have led to its adoption across a wide range of
applications, particularly in the areas of performance tracing, networking, and
security.

1.2.1 Performance Tracing
eBPF allows for granular, low-overhead performance tracing across virtually any
aspect of a Linux system. Developers can write eBPF programs to trace specific
system calls, monitor the execution time of functions, or observe the behavior of
applications at the kernel level. This capability is fundamental for diagnosing per-
formance bottlenecks, understanding system behavior, and optimizing application
performance.

1.2.2 High-Performance Networking
In the realm of networking, eBPF has revolutionized the way packet processing is
handled. By attaching eBPF programs to various points in the networking stack,
developers can implement custom routing, load balancing, and firewall solutions
with performance that rivals or even surpasses traditional methods. For example,
the XDP (eXpress Data Path)[7] feature leverages eBPF to perform high-speed
packet processing directly in the network driver, significantly reducing latency and
increasing throughput.

1.2.3 Security
Security is another area where eBPF is used. With eBPF, it is possible to monitor
and enforce security policies at the kernel level, providing deep visibility into system
behavior and the ability to prevent malicious activity. For instance, eBPF programs
can be used to detect and block suspicious system calls, monitor network traffic
for signs of compromise, or enforce container security policies in a Kubernetes
environment.

1.2.4 eBPF in Cloud-Native Environments
As cloud-native computing becomes increasingly prevalent, eBPF’s role in these
environments is expanding. In Kubernetes clusters, where multiple containers

5

Overview of eBPF

share the same kernel, eBPF provides a unique vantage point for monitoring and
securing workloads. Unlike traditional sidecar-based approaches, eBPF does not
require modifying the application’s deployment configuration. This makes it easier
to deploy and maintain, and ensures comprehensive visibility across all processes
and containers running on a given node.

eBPF’s ability to dynamically load and unload programs without restarting the
kernel or applications is particularly advantageous in cloud environments, where
availability and performance are critical. This flexibility, combined with eBPF’s
deep integration with the kernel, makes it an ideal solution for enhancing the
security, observability, and performance of cloud-native applications.

1.3 Linux Kernel
The Linux kernel is the core component of the Linux operating system, which
powers a vast range of devices from personal computers to supercomputers, mobile
devices, and embedded systems. Since its inception in the early 1990s, the Linux
kernel has become one of the most successful open-source software projects in
history, largely due to its robust architecture, flexibility, and the collaborative
nature of its development.

eBPF is a technology specifically created for the operative systems using the
linux kernel, even though recently Microsoft is developing the [8] project, aiming
to allow Windows machines to leverage the same benefits present in the Linux
machines.

1.3.1 User space and kernel space
The Linux kernel is the core software layer that interacts directly with hardware,
while applications operate in user space, an unprivileged area that can’t directly
access hardware. Instead, applications request the kernel to perform actions on
their behalf through system calls, such as file operations, network communication,
or memory access. The kernel also manages multiple concurrent processes, allowing
several applications to run simultaneously.

Developers usually don’t interact directly with system calls because program-
ming languages and libraries provide higher-level abstractions. This abstraction
often leads to a lack of awareness about the kernel’s role in running programs.
eBPF takes this further by allowing us to observe and analyze how applications
interact with the kernel by injecting instrumentation into the kernel itself.

6

Overview of eBPF

For example, eBPF can intercept the system call for opening files, providing
insight into which files an application accesses. Traditionally, adding such function-
ality would require modifying the Linux kernel, which is a complex and challenging
task. The kernel has around 30 million lines of code, and making changes requires
a deep understanding of its existing code base. Furthermore, contributing changes
to the official Linux kernel is difficult, as they must be accepted by the broader
community and meet the diverse needs of all Linux users. Even if a change is
accepted, it may take years to become widely available due to the long release
cycles of Linux distributions.

An alternative to modifying the kernel directly is writing kernel modules, which can
be loaded and unloaded on demand. However, kernel modules still involve complex
kernel programming, and there are significant risks involved. If a kernel module
crashes, it can bring down the entire system. Additionally, users must trust that
the module is secure and free from vulnerabilities, as it has access to all system data.

Linux distributions take considerable time to adopt new kernel releases to en-
sure that the kernel is stable and secure. In contrast, eBPF provides a safer
approach by including a eBPF verifier that checks if an eBPF program is safe
to run before it is loaded into the kernel. The verification process ensures that
the program won’t cause any error that may stop the kernel or introduce possible
vulnerabilities, offering a secure way to extend kernel functionality without the
risks associated with traditional kernel programming.

7

Chapter 2

eBPF programming

The creation of an eBPF program is performed with specific tools and libraries
that allow it to interact with the kernel, as during the loading, as during the
execution. Usage of eBPF maps, kernel and helper functions, global variables and
other abstractions are necessary for the accomplishment of more complex programs.

2.1 User space and kernel space program
When programming an eBPF program it’s necessary to make a distinction between
user space programs and kernel space programs.

The kernel space program is the one that we refer to as eBPF program, since
it is the one running in the kernel space. It is the one that the eBPF verifier checks,
so also the most delicate to work on. It is usually written in C, but Rust can be
used as well. The usage of a compiled language is fundamental to execute code
on the kernel. Programming in the eBPF kernel space is usually complex, since
the limits imposed by the eBPF verifier. For this reason the helper functions were
created, a list of functions [9] that allow the program to interact with maps, with
the kernel and to perform basic functions that would not be allowed in kernel space
(like loops and backwards jumps). Recently also kernel functions were introduced,
leveraging the usage of kernel code directly from the eBPF program. In many use
cases it can be used as a stand alone program, for example when it acts modify-
ing network packets (so it does not need any user interaction) or when logging
system call execution (the user can see the log visualizing the file where it is traced).

However, the user may need to interact with the program running in the ker-
nel space, in order to condition the execution of the kernel program, feeding data,
or also getting data in a more structured way. In these scenarios the execution of

8

eBPF programming

the eBPF program should be parallel to the execution of a program in the user
space. Those programs can be created besides their necessity, since they allow
the user to manage the loading, the unloading, the attachment in a single entry
point. The main example of this kind of programming is the usage of the BCC
framework. BCC is a python eBPF development framework that integrates the
eBPF kernel code as a block of text inside the python user space program. It is
used for simple applications and usually not in a production environment. For more
complex applications the libbpf C library is used to manage the life cycle of the
user space program. The two programs can then communicate through the usage
of eBPF maps, which are various types of data structures that the programmer can
implement simultaneously in the user space as in the kernel space to allow data
exchange.

eBPF maps

eBPF maps serve as data structures that allow communication between user space
and kernel space programs. These maps act as shared memory spaces where data
can be stored and retrieved concurrently by both user space and kernel space
programs. There are several types of eBPF maps, each suited for different data
handling needs, such as hash maps, arrays, and ring buffers.

In the typical workflow, maps can be used to communicate data metrics gathered
from the eBPF program to the user space or even to other eBPF programs. In this
scenario, the eBPF program can be limited to the gathering operations, letting it
being more performing, and the user space program can manage the data analysis
part. Maps are also useful to change the configuration state of an eBPF program
during runtime, setting configuration variables that allow the program to take
different execution paths that were previously designed. For instance, a user space
program might update a configuration map to adjust the behavior of an eBPF
packet filter changing the filtering policies.

eBPF maps use predefined data structures to organize and exchange data be-
tween user space and kernel space. These structures are defined and validated
through BTF, which encodes type information about these structures, allowing the
eBPF verifier to ensure that the data layout is consistent and safe to use. When
loading an eBPF program, BTF metadata is checked by the eBPF verifier and it is
rejected if inconsistencies are found.

In order to use maps they need to first be first created, and this can be done using
the bpf() system call, with the appropriate parameters. However, it is usually
performed automatically using the libbpf library in the user space program, that will

9

eBPF programming

automatically load the map before the verification step. At this point user space pro-
gram and kernel space program can use it, retrieving and writing data into it. The
kernel space program will use eBPF helper functions like bpf_map_lookup_elem(),
bpf_map_update_elem(), bpf_map_delete_elem(), which correct use is then
checked by the eBPF verifier. The user space program will use instead the bpf()
system call, with the BPF_MAP_LOOKUP_ELEM command, the BPF_MAP_UPDATE_ELEM
command, or the BPF_MAP_DELETE_ELEM command, but usually libraries like
libbpf and BCC are used in common applications.

Figure 2.1: User Space/Kernel Space interaction.

2.2 Compilation process
In order to understand where the verifier performs its tasks, we are going to
describe the compilation process of a simple eBPF program that has no user space
program, where the user manually performs the loading, attachment, detachment
and unloading steps using the libbpf command line tool called bpftool. Those can
also be performed in the user space using the libbpf library.

Figure 2.2: The compiling pipeline.

The eBPF program written in C is usually compiled with LLVM’s project Clang,
an open source compiler for the C language. The Clang compiler acts as a frontend

10

eBPF programming

for the LLVM compiler backend. In particular, Clang compiles the C code to an
Abstract sysntax tree, that describes the syntax of the source code, and then to
the LLVM intermediate representation, which is then transformed in the target
representation. LLVM is a language independent intermediate representation, used
as a first step of compilation by C, but also Rust compilers. It is a high level
assembly language, containing information about the C (or Rust) code, but still
resembling the low level machine instructions. It is then optimized by the compiler
and translated to the target machine, that, in case of the compilation of a classic
C or Rust file run in the user space, would be the architecture of the machine it
is performed on. In the case of eBPF kernel space programs, we add the option
“-target bpf”, that indicates the compiler to use as the target machine language
the eBPF bytecode.

The eBPF bytecode is an assembly language with the features of the most common
RISC instruction sets. It has 10 registers, as well as the load, store, jump and the
common ALU operations. The execution of the eBPF bytecode is then demanded
to the eBPF virtual machine. In the earlier version of the kernel where eBPF
was introduced, the eBPF virtual machine translated runtime the bytecode to the
native machine code, with relevant performance issues. Later, with the introduction
of JIT compilation, the program is translated to native machine code just once,
during loading time. Older architectures still cannot use the JIT compilation.

The eBPF bytecode is stored by the Clang compiler in the object output file
.o. It can be inspected through the usage of the llvm-dump tool. This file is the
one that is going to be loaded into the kernel. In order to load an eBPF program,
the kernel exposes a system call called bpf(), that is the user hook to manage the
eBPF program lifecycle. Usually the final user does not directly use the bpf()
system call, but instead uses the libbpf library, and if no user space is used, the
libbpf’s command line tool bpftool.

During the loading different steps are performed, but the main one is the ver-
ification and optimization of the code. In particular, not only the static analysis of
the eBPF bytecode is executed, but also the check of the BTF structures. BTF
allows eBPF programs to be portable across different kernel versions so that it’s
possible to compile a program on one machine and use it on another, which might
be using a different kernel version and so have different kernel data structures.
BTF also contains information about the structures introduced with maps and
kernel functions. The main task is however the static analysis performed by the
eBPF verifier, in order to see if the program may cause any system fault or security
issue. In the end of the loading process trhe program is JIT compiled to the local
machine code, in order to increase the eBPF program performances.

11

eBPF programming

When a program is loaded, it can be attached to an event that will trigger it.
The event is strictly related to the type of the program, and also determines the
type of the context structure passed in the main function. When a program is
attached to an event it can execute. To stop it, the program must be detached
from the event, and then, if needed, it can also be unloaded from the kernel.

2.3 The eBPF verifier
The eBPF verifier is the backbone upon which the technology managed to be widely
adopted in production applications. The checks made during the loading phase
allow the developers not to worry about the eBPF program possibly inserting error
that could stop the kernel, and so the entire operating system, or about security
issues in such a delicate part of the application, since the degree of privileges.

2.3.1 The verification process
The eBPF verifier is a static analysis tool, which means it can analyze the code
without the need to execute it. It’s important to remember that the code be-
ing analyzed is the eBPF bytecode. The choice to analyze bytecode rather than
source code stems from the fact that the source code can be compiled in different
ways. Additionally, bytecode is the form that is actually interpreted (not com-
piled) for execution, so it makes sense to analyze it, as it is what will ultimately run.

To perform the static analysis, the verifier processes the list of eBPF instruc-
tions provided in the object file through the bpf() system call and generates, based
on logical branches, all possible execution paths of the given code. For example, in
the case of an if statement, at least two possible execution paths are generated: one
where the condition holds true and one where it doesn’t. As a result, the number
of execution paths increases exponentially with the number of branches, and thus
with the size of the code. To handle this, the verifier is highly optimized for its
specific task, applying pruning techniques when equivalent execution paths are
identified, meaning these only need to be checked once.

Once all possible execution paths have been generated, the verifier checks, for
each path, how the eBPF registers (which roughly correspond to C code variables,
with the exception of spilled registers on the stack) interact with each other and
the nature of the data they contain. This interaction is tracked through a struc-
ture called bpf_reg_state, which holds information about the inferred type of
the register, necessary to ensure consistency in function calls or when performing
operations like dereferencing, and an estimation of the value it holds. Based on this

12

eBPF programming

information, the verifier then proceeds to scan through the instructions to identify
any cases where an instruction might cause a kernel crash, information leakage, or
other security issues.

2.3.2 Register State
Register Type

The verifier tracks the state of each register at a given instruction through the
bpf_reg_state structure. This structure contains essential information needed to
predict potential faults in the code, such as the type and nature of the data held
by the register. There are three fundamental types of registers:

• Uninitialized registers, which should not hold any information.

• Scalar registers, which hold a value that doen’t rapresent a pointer.

• Pointers, which refer to various data structures in the eBPF environment.
These include the context (the value passed as a parameter to the main
function), packets (in network applications), or pointers to map keys and
values, which are necessary to interact with those data structures.

These pointer types may also be marked as read-only or nullable, meaning the
verifier tracks whether a pointer can be null (and thus flag a potential dereference
error). Tracking the type of each register is necessary for validating all operations
performed on them, especially when passed to helper functions or kernel functions
that have specific signatures requiring particular data types, or when common
operations like dereferencing are executed.

Value Tracking

It is equally important to track the potential value of registers, as this helps pre-
dict whether a memory access is out-of-bounds. The verifier includes a dedicated
function, check_mem_access, which checks for every pointer type whether any
dereference falls within legal memory limits. This is done through two methodolo-
gies:

1. Tracking minimum and maximum values: This approach considers, for
each register, the minimum and maximum values it can hold. These values
are tracked for both 64-bit and 32-bit registers, as well as for signed and
unsigned operations, resulting in a total of eight fields that define the register’s
boundaries and how memory access should be handled.

13

eBPF programming

2. Variable offset with tristate numbers: To reduce cases where the verifier
wrongly rejects registers with valid values, an auxiliary structure called variable
offset, based on tristate numbers, was introduced. This abstraction of numbers,
implemented by default in the Linux kernel, tracks the possible values of each
bit in a register based on previous operations. For example, if an if statement
checks whether a register equals 2 or 3 (binary 10 or 11), the variable offset
for that register would mark the least significant bit (LSB) as unknown (since
it can be either 0 or 1) and the next most significant bit as 1 (since it’s
always 1 in both cases). This allows for more precise control over the registers,
enhancing both developer experience and eBPF program performance while
preserving correctness.

Both the minimum/maximum values and the variable offset are updated during
ALU operations, ensuring that the information is propagated as long as it is needed.
This approach improves the accuracy of register tracking and ensures that programs
can be verified more efficiently without rejecting valid code unnecessarily.

2.3.3 Verification criteria
Validating Helper Functions

In eBPF, direct calls to kernel functions are not allowed unless the function is
registered as a kfunc. Instead, eBPF programs can use a set of predefined helper
functions to interact with kernel data structures and retrieve information. These
helper functions are specific to different types of eBPF programs. If a helper
function is called from an incompatible eBPF program type, the verifier will raise
an error indicating that the function is "unknown" for that particular program type.

Helper Function Arguments

Each helper function in eBPF is defined with a specific function prototype structure,
which defines, for each argument, the register type that can be accepted. The
verifier uses this structure to ensure that the correct argument types are passed to
the helper function. So if the verifier detects a function call where the arguments
passed have a register type different from the one specified in the helper structure,
the verifier will raise an error.

License Verification

The eBPF verifier ensures that programs using GPL-licensed helper functions are
also licensed under GPL-compatible terms. If an eBPF program calls a helper
function that is restricted by GPL, and the program does not specify a compatible

14

eBPF programming

license, the verifier will produce an error. For instance, if a program uses the
bpf_probe_read_kernel() helper, which is GPL-restricted, the verifier will return
an error if the program lacks a proper license. To resolve this, the eBPF program
must include a license declaration in the format Dual BSD/GPL, which ensures
compliance with the required licensing conditions.

Invalid Memory Access

One of the most common errors encountered during eBPF program verification is
related to invalid memory access, particularly when interacting with maps or arrays.
The verifier tracks all memory accesses and ensures that indices remain within valid
bounds. For instance, when accessing an array of length 12, any attempt to use
an index equal to or greater than 12 will be flagged as an out-of-bounds memory
access.

For example an eBPF program attempted to access an array named message
using an index stored in register R1. The verifier traced the register’s potential
values and determined that the index could exceed the valid range (0–11), triggering
an "invalid memory access" error. This issue often happens when programmers
mistakenly use <= sizeof(message) instead of < sizeof(message). Since global
variables such as arrays are implemented as maps in eBPF, any incorrect access
will be caught by the verifier, preventing the program from being loaded into the
kernel.

Pointer Dereferencing and Null Checks

The verifier checks if the dereferencing of pointers can happen without causing any
fauls. In eBPF, pointers returned by helper functions or obtained from maps can
be null, and any attempt to dereference a null pointer without checking if not null
first will lead to a verifier error.

For example the function bpf_map_lookup_elem() returns a pointer to an
element in the map. If the element does not exist, the pointer will be null.
Dereferencing this null pointer without a prior check results in an error, such as
invalid memory access ’map_value_or_null’. The correct approach is to first verify
that the pointer is non-null before attempting to dereference it. In some cases,
helper functions like bpf_probe_read_kernel() can safely handle null pointers by
taking unsafe pointers as arguments and performing necessary checks internally.

Context and BPF Helper Functions

Each eBPF program is passed a specific context (e.g., xdp_md), though not all
fields within this context are accessible. For example, tracepoint programs can
only access fields specific to the tracepoint, and attempting to access other fields

15

eBPF programming

results in an "invalid context access" error. eBPF programs frequently interact
with the kernel through a set of helper functions, such as bpf_printk() and
bpf_map_lookup_elem(). These helpers facilitate communication between the
program and the kernel, while enforcing safety checks on memory access and
pointer validation.

Ensuring Program Termination

The verifier ensures that eBPF programs terminate properly. Infinite loops in eBPF
would cause the kernel to hang, so the verifier enforces a strict limit of one million
instructions per execution. Any program exceeding this limit fails verification.

Handling Loops in eBPF

Loop Restrictions Before Kernel 5.3 Prior to Linux kernel version 5.3,
backward jumps were prohibited, which made loops infeasible in eBPF. Developers
resorted to the #pragma unroll directive to instruct the compiler to manually
unroll loops, simulating repetitive logic without actual jumps.

Loops in Kernel 5.3 and Later From kernel version 5.3 onward, the verifier
began supporting certain types of loops, following both forward and backward
branches, provided the total number of instructions remains under the one-million
threshold. For example, a loop with a fixed and hard coded number of iterations is
allowed. In kernel version 5.17, a new helper function bpf_loop() was introduced,
in order to loops in eBPF programs. This helper takes a function and the number of
iterations to execute, allowing the verifier to validate the function’s instructions once
and reuse them for each iteration. Additionally, the bpf_for_each_map_elem()
helper enables more efficient and verifier-friendly iteration over map elements.

Uninitialized Return Values

A frequent issue that leads to verifier errors involves uninitialized return values.
Every eBPF program must return a valid code, stored in register R0. If R0 remains
uninitialized, the verifier rejects the program, producing errors like R0 !read_ok.
Adding a return statement or using a helper function like bpf_printk() (which
initializes R0) resolves the issue.

Invalid Bytecode Instructions

The verifier checks for invalid bytecode instructions that could lead to kernel
instability. Although modern compilers generally do not emit invalid instructions,

16

eBPF programming

manually writing eBPF bytecode or using newer atomic operations on an outdated
kernel can trigger such errors.

Unreachable Instructions

The verifier also rejects unreachable instructions, i.e., code that cannot be executed.
While unreachable code is often optimized out by the compiler, if it remains in the
program, it will be flagged as an error by the verifier.

Program Size Limit

The eBPF verifier enforces a strict limit on the size of the program, rejecting any
program that exceeds 1 million bytecode instructions. This constraint is in place to
prevent excessively large programs that could overwhelm system resources or lead
to performance issues. Most eBPF programs are under this limit, but complex or
improperly written programs that generate excessive instructions, either through
unrolled loops with excessive dimensions, can trigger this error. The eBPF verifier
counts every instruction during its analysis, and if the total number surpasses the
maximum allowed, the program is rejected.

17

Chapter 3

Improving the eBPF verifier
errors readability

During the loading of a program and its subsequent verification, various levels
of logging may be presented based on the selected option. If a potential flaw is
found in the code, the verifier produces a specific log, indicating the type of error
occurring and the eBPF bytecode instruction where it happens. If debug mode is
enabled during compilation with Clang using the “-g” option to generate the object
file containing the eBPF bytecode instructions, it is also possible to reference the
C code from which the corresponding instructions were generated. However, in
this context, the presented error is often complex to interpret, specifically referring
to eBPF bytecode and eBPF registers, rather than the variables of the original C
code, and does not indicate the location within the C source file where the line of
C code that is shown is located (Figure 3.1). The goal of this thesis is to improve
the developer experience by providing more solid references to the original source
code from which the error was generated and potentially making the error message
issued by the verifier for that specific case more understandable.

3.1 Choosing the Context

3.1.1 Kernel version
The development of the static analysis tool will be based on the Linux kernel
version 6.6, which was the Long Term Support (LTS) version at the time this thesis
work began. The choice of an LTS version is driven by the need for a stable and
long-term supported environment, which minimizes disruptions caused by frequent
kernel updates and provides a solid foundation for the tool’s functionality. As LTS
versions are maintained with security patches and bug fixes over several years, this

18

Improving the eBPF verifier errors readability

Figure 3.1: The eBPF verifier log: the lines of the source C code starts with ’;’.

ensures that the tool will remain compatible with widely-used systems during its
initial development phase.

However, since the kernel evolves rapidly, and with version 6.8 already being
adopted as the new LTS version by distributions such as Debian, future work
will need to consider porting the tool to newer kernels. It’s a given that the the
flexibility to adapt to newer kernel versions is an essential requirement for the
project’s long-term success.

19

Improving the eBPF verifier errors readability

3.1.2 Compiler
For the compilation of eBPF programs, Clang with the -target bpf option will
be used, as it is currently the preferred and most widely-supported compiler for
generating eBPF bytecode. Clang has deep integration with the LLVM project,
providing significant advantages for eBPF development, such as the ability to
produce highly optimized bytecode and extensive debugging capabilities when
combined with the -g option. It is important that the compilation of eBPF
programs is performed using the highest optimization level available in the compiler,
particularly Clang. eBPF programs often need to be highly optimized due to their
constrained execution environment within the kernel, where performance and
efficiency are critical. This is why it is common to compile eBPF programs with
the -O3 optimization flag, which enables aggressive optimizations, such as loop
unrolling, inlining, and vectorization, to ensure the most efficient bytecode possible.
These optimizations are crucial because even small performance improvements can
have a significant impact on the overall performance of kernel-level programs.

Clang offers multiple levels of optimization [10], which range from -O0 (no
optimization) to -O3 (maximum optimization). The optimization levels are as
follows:

• -O0: No optimization. The compiler does not perform any optimization on
the code, which can make debugging easier but results in larger and slower
executables.

• -O1: Basic optimization. This level focuses on improving performance without
significantly increasing compile time or complexity. It performs optimizations
like eliminating unreachable code and simplifying expressions.

• -O2: Moderate optimization. This level balances between speed and compile
time, performing a broader range of optimizations such as more aggressive
inlining and code reordering.

• -O3: Maximum optimization. This level applies the most aggressive optimiza-
tions, including advanced techniques like loop unrolling and vectorization.
It aims to produce the fastest possible executable, though it may increase
compilation time and binary size.

Given the nature of eBPF programs, which often need to run as efficiently
as possible, the tool must be resilient to issues that arise from these aggressive
optimizations. It must ensure that the error messages and debugging information
remain clear and useful, even when the compiler has transformed the original source
code into highly optimized bytecode.

20

Improving the eBPF verifier errors readability

GCC

That being said, other compilers are also making strides in supporting eBPF.
Recently, GCC has started to include a BPF backend [11], allowing the generation
of eBPF bytecode directly from C source code. As of now, GCC’s support for
BPF is still evolving, and it might not yet match Clang in terms of tooling and
ecosystem integration. However, this could be a potential avenue for future work,
especially if demand for cross-compiler compatibility rises.

3.1.3 Programming Language Support
The initial implementation of the static analysis tool will focus on parsing C code,
as C is the predominant language used to write eBPF programs. However, future
iterations of the tool could expand to support additional programming languages
that are increasingly being used to generate eBPF bytecode. For example, Rust is
gaining traction as an alternative to C for systems programming, due to its strong
emphasis on memory safety and concurrency. The Linux kernel has already begun
integrating Rust for some subsystems, and the potential for Rust to be used in
eBPF programs is being actively explored. The Rust community has developed
numerous crates that allow developers to use Rust for their eBPF projects [12].
Supporting multiple programming languages would significantly broaden the tool’s
applicability, making it more versatile and future-proof as the eBPF ecosystem
continues to evolve.

3.2 Approaches
During the development of this thesis, two main approaches were identified to
address the problem of improving error feedback from the eBPF verifier.

3.2.1 Clang Static Analyzer
The first approach considered was the use of Clang’s static analyzer, a tool for
checking C source code for potential errors integrated in the Clang and LLVM
environment. The idea was to develop specific checks to partially replicate the
behavior of the eBPF verifier, but operating on the C source code before the
compilation into eBPF bytecode. This would enable the detection of errors typically
caught by the verifier without needing to load the actual eBPF code.

Development Pipeline

One of the main advantages of the Clang static analyzer approach is that it could
be integrated into the developer’s regular workflow, creating a development pipeline

21

Improving the eBPF verifier errors readability

that allows for early detection of potential issues. In this pipeline, the developer
would write the C code as usual, and before proceeding to compile it into eBPF
bytecode, they could run the static analyzer. The analyzer would check the C
code for errors or potential problems that might later be caught by the eBPF
verifier during runtime. This process would act as a first line of defense, offering the
developer the opportunity to identify potential issues before compiling and loading
the program into the kernel. The Clang static analyzer could catch errors at an
earlier stage in development, potentially saving time and effort in debugging and
re-compiling eBPF bytecode. However, this does not mean that the results of the
static analyzer would be considered definitive. Given the nature of static analysis,
there is a possibility of false negatives—i.e., the analyzer could miss some errors
that the eBPF verifier would eventually catch. Therefore, the developer would still
need to run the eBPF program through the verifier, as this final check ensures that
the bytecode is valid and safe for execution within the kernel. Additionally, static
analysis can also lead to false positives—situations where the analyzer incorrectly
flags an error that does not actually exist in the code. This can result in the
developer spending unnecessary time trying to fix a non-existent problem, thus
delaying the development process. In such cases, the program may appear to have
an issue, but the error could be a misinterpretation of the static analyzer, leading
to wasted debugging efforts. Therefore, while the static analyzer serves as a useful
tool, its findings must be taken with caution, and further verification by the eBPF
verifier remains crucial. In figure 3.2 is described the development pipeline.

Figure 3.2: Clang Static Analyzer Approach

False positive and false negatives

As illustrated earlier, the static analyzer approach would lead to the presence of
false positive, situations in which the static analyzer finds issues in the C source
code, but the eBPF verifier doesn’t, and false negatives, where the static analyzer
doesn’t identify error in the C source code, while the eBPF bytecode does. The
reasons behind this event lay on the nature of the pipeline: having multiple source
of truth (in this case the C static analyzer and the eBPF verifier) may lead to
discordance between the two, forcing the developer in a state of distrust of the tool

22

Improving the eBPF verifier errors readability

that should be developed. Moreover, due to the nature of the task, this cases may
happen frequently. There are different reasons behind this:

1. Compilation process: The main reason for false positives and false negatives
lies in the different domains of the two analyzers: the C static analyzer works on
C code, while the eBPF verifier operates on eBPF bytecode. Even though the
bytecode is generated from the C code, the compilation process adds additional
information about register usage, such as spilling1 or applies optimizations
that may render some checks performed by the static analyzer irrelevant, for
example, checks for division by zero or dead code, which are handled by the
compiler, are often resolved before the bytecode is analyzed by the eBPF
verifier.

2. Complexity of the Verifier: The eBPF verifier is a highly sophisticated
and optimized piece of software designed to meet the specific requirements
of verifying eBPF programs. It takes into account a wide range of factors,
tracking register types, possible values, and other key parameters. Attempting
to replicate many of the common checks performed by the verifier would
require developing extremely large and complex static analysis checks. Some
of these checks might even be impossible to implement with a static analyzer.
The eBPF verifier is a standalone program with full access to both the analysis
variables and its execution flow, whereas the Clang static analyzer is a static
analysis framework that can face limitations in recreating certain checks. As a
result, some checks may not be fully emulated by the static analyzer, leading
to potential false negatives.

3. Performance Issues: The process of static analysis is inherently exponential
with respect to the lines of code, as each decision in a line may lead to
numerous paths that need to be evaluated. Significant efforts have been made
to improve the performance of the eBPF verifier through techniques like state
pruning and the use of specific helper functions [5]. Attempting to emulate the
verifier using a framework not specifically designed for this task can lead to
severe performance issues that may be difficult to resolve, especially when the
Clang static analyzer lacks complete control over the analysis process. Similar
to the situation where the complexity of the check becomes too high, this can
result in the inability to emulate certain checks, potentially leading to false
negatives.

4. Extensiveness of the Verifier The eBPF verifier is a very large code base
accounting for a wide range of errors. In Appendix A there is a list of all the

1Spilling is the practice of moving register values to the stack (RAM memory) when there are
not enough registers to hold all the variables in use [13]

23

Improving the eBPF verifier errors readability

errors that the eBPF verifier emits, and most of them are not directly mapped
to the high level description of the checks it performes, since it goes deeper
into some aspect of the error, usually bounded to the eBPF bytecode syntax.
Emulating the eBPF verifier in such detail to account for all the errors it emits
would likely be extremely difficult, leading to potential false negatives.

3.2.2 Message Error Analysis
Given the challenges of static analysis, a different approach was taken—using the
error messages generated by the verifier itself during program loading. By analyzing
these messages and correlating them with the C source code, it was possible to
provide more meaningful error feedback to the developer.

Approach Details

In this approach, the focus is on intercepting and analyzing the stderr output
generated by the bpftool load command during program loading or the output
given by the equivalent load operation performed by libbpf in the C user space
program. Using the -g option during the compilation, the resulting .o eBPF
bytecode file retains the information about the C line responsible for the generation
of the bytecode lines. This information is then shown in the eBPF verifier log in
case an error is found (or if debug mode is active in the libbpf command) 3.1. It is
possible to retrieve the bytecode (and the relative C lines) using the llvm-objdump
-S utility. In the figure 3.3 a simple eBPF program is shown. Using the -g option
in the compilation process, we obtain a test.bpf.o file containing the C lines of
the source C file, commented with the ’;’, as shown in the figure 3.4.

Using this feature provided by the Clang compiler, it is possible to use the C
line information in order to give the developer an error message possibly similar to
the one that would have been give using the static analyzer approach. Through the
parsing of the output much information can be given to help the developer solve the
issue, like suggestions, improvement of readability, error and other enhancements
like adding the line number to the C line referenced in the error log, emulating the
result given by the Clang static analyzer. In figure 3.5 is showed the development
pipeline.

Error messages

In order to implement this approach, it is necessary a deep study of the eBPF
verifier code, looking for all the possible output it may give. The eBPF verifier
emits numerous error messages, logs, and warnings, which are all printed through
the verbose function and its wrappers. Other functions used to print messages in
the output of the eBPF verifier are the bpf_log function, used for logging purpose,

24

Improving the eBPF verifier errors readability

Figure 3.3: A simple eBPF test program

Figure 3.4: The llvm-objdump utility allow to see the disassembled code

and the WARN_ONCE function, used in context where just a warn message is needed.
These two functions however do not play a role in the log printing when an error
is found in the code, therefore they can be ignored. The total number of calls to
the verbose function for the eBPF verifier in the Linux kernel version 6.6 LTS
exceeds 500. However, this number is not indicative of the potential error messages
encountered by the verifier. Several cases have been identified where calls to the
function do not correspond to actual errors found in the code.

25

Improving the eBPF verifier errors readability

Figure 3.5: Message Error Analysis Approach

Logging with verbose The verbose function is used to log the verifier’s state.
Depending on the execution mode, which is selectable with the bpf() system call,
logs about the verifier’s progress may be produced. For instance, the function
print_verifier_state displays the verifier’s internal state at the time of the call.
This function is typically invoked in cases of internal errors, although a logging
level can be set to force its call for each instruction. These types of calls to the
verbose function are not relevant for understanding the type of faults found in
the code, as they do not represent error messages. A total of 54 log messages were
found using the verbose function.

Internal Errors The verbose function is also used to notify internal errors in
the verifier. During the verifier’s development, the developers inserted uncondi-
tional exits in situations that, at the time of design, were considered impossible.
These exits are usually accompanied by an error message starting with "verifier
internal error:" or "BUG" to flag faults in the verifier’s own code. However,
there are cases where this formatting is not respected. These errors are not relevant
for interpreting eBPF code errors, as their occurrence would indicate issues in
the eBPF verifier code itself or problems that require investigation by the kernel
developers. A total of 97 verifier error messages were found using the verbose
function

Errors not related to the C code

Among the remaining cases, which are caused by errors in the bytecode passed to
the verifier, there are two situations where the error is not directly caused by the
original C source code. Therefore, improving the message error readability with
respect to the C code would not significantly aid in resolving the issue.

Errors designed exclusively for eBPF code : Many error messages that
can be emitted by the verifier are exclusively triggered by writing incorrect eBPF
bytecode manually or when the compiler translates LLVM code from the original C

26

Improving the eBPF verifier errors readability

source into invalid eBPF bytecode. In these situations, explaining the error would
not significantly help the developer in resolving it. A total of 123 errors message of
this type were found.

Errors caused by BTF and system configurations BTF (BPF Type Format)
is an abstraction used by the framework to manage external data structures
and functions in eBPF code, ensuring security (for eBPF map structures) and
compatibility (for kernel structure references, which might not exist if hardcoded
and used on a machine with a different kernel version or configuration). These
types of errors are usually not resolvable by modifying the C source code, and
they are often not directly related to it. Similarly, errors related to missing kernel
privileges (CAP) have been left unhandled. A total of 78 BTF messages were found
using the verbose function

Rare Errors

Lastly, many errors are extremely rare, and limited documentation exists online.
A Google search often results in just a few references, most of which point to the
kernel pull request that introduced the message. These errors have been left for
future work due to the difficulty in testing the tool in scenarios where such errors
are triggered, especially given the complexity of generating C code that would
cause them. The total of message errors deriving this type summed to the ones
that are caused by configuration errors of the OS are 98.

3.2.3 Pro and Contra of the Two Approaches
The second approach addresses many of the issues encountered with the first one,
primarily by eliminating the risk of false positives and false negatives. This is
because the source of truth is reduced to just one — the eBPF verifier itself.
Additionally, the message parsing approach is less dependent on external tools like
the Clang static analyzer, making it more robust to changes in those tools and
potentially reusable for other programming languages, such as Rust.

However, this approach is not without its drawbacks. It is closely tied to changes
in the Linux kernel, although these changes tend to be relatively minor and man-
ageable. Another downside is that this method operates through the command
line, which makes it less user-friendly compared to other tool, that might have
been integrated directly into an IDE or editor. Moreover, while it offers reliable
error information, the amount of information provided is limited, and in certain
cases, the error message might be less detailed than desired, though generally still
sufficient for debugging. It’s also important to note an important upside present

27

Improving the eBPF verifier errors readability

in the Clang static analyzer approach that could not be emulated in the message
analysis approach, that is the possible use of this tool as a defense mechanism
towards code fragments exploiting eBPF verifier vulnerabilities and managing to
compromise the kernel security. Considering the high number of CVE reported, it
might be a relevant downside, since the message analysis approach fully relies on
the eBPF verifer functionalities, hence it cannot be used to prevent these scenarios.

To provide a clearer comparison, the table 3.1 summarizes the pros and cons
of each approach.

3.2.4 Study of the eBPF Verifier
The process of reviewing the eBPF verifier code is inherently complex but can
be quantified and predicted, making it the chosen approach. In Appendix A,
the results of this process are presented, listing all the possible errors the eBPF
verifier can produce, along with a label categorizing each type of error. The
analysis was carried out by examining where and why each error is triggered,
understanding the eBPF verifier code, and supplemented by a Google search to
determine whether the issue had been encountered by other developers in forums or
eBPF repositories.However, it was found that most of these errors are uncommon,
and only a few have been reported multiple times by the online community. This
follows a pattern describable by the Zipf’s law, where a small number of errors are
encountered most frequently, while the majority occur very rarely or are seldom
experienced. As a result, numerous error messages were left unhandled, even
though all those with evidence of occurrence and relevance to the C code have been
addressed, even if they could not be reproduced locally. The chapter 2 describes the
tool developed to interact with this output and the error management mechanisms
used to handle the eBPF verifier error log.

28

Improving the eBPF verifier errors readability

Approach Pros Cons
Clang Static Analyzer

• Offers the ability
to catch errors pre-
compilation

• Has a deeper control on
the source code when
the error occurs

• Not particularly af-
fected by small eBPF
verifier changes

• Can be used to inter-
cept code that exploits
newly discovered eBPF
verifier vulnerabilities

• Prone to false positives
and false negatives due
to differences between
C and eBPF bytecode

• Unable to fully match
the complexity and
depth of the eBPF ver-
ifier’s checks

• Performance overhead
due to trying to emu-
late the verifier’s com-
plex behavior

• Hard to manage all the
errors that the eBPF
verifier may find

Message Error Analysis

• Directly relies on actual
error messages from the
eBPF verifier, ensuring
accuracy

• Less dependent on ex-
ternal tools like Clang,
making it adaptable
and robust

• Could be extended for
use in other languages,
such as Rust

• Closely tied to kernel
changes, although usu-
ally minor

• Limited by command-
line interaction, mak-
ing it less user-friendly

• Provides less detailed
information in certain
edge cases

• Cannot add a security
layer to the eBPF pro-
gramming experience

Table 3.1: Comparison of Clang Static Analyzer and Message Error Analysis
Approaches

29

Chapter 4

Pretty Verifier

4.1 Introduction
To handle the eBPF verifier errors, a Python application was developed that uti-
lizes the output from the eBPF verifier to return enhanced error messages with
supplementary information. This tool serves to bridge the gap between the complex
verification output and developer understanding, making debugging eBPF programs
more accessible.

The complexity of eBPF programs often leads to complex interactions within
the kernel, resulting in various verification errors. Traditional error messages from
the eBPF verifier can be cryptic and difficult to interpret, making it challenging
for developers to pinpoint the exact cause of an error. The goal of this application
is to provide more meaningful and context-rich error messages, simplifying the
debugging process.

As illustrated in the chapter 3, the developement of this tool followed the ex-
tensive study of the eBPF verifier, that produced the Appendix A, containing all
the possible error messages from the eBPF verifier, and how they were classified, if
they were handled by the tool, a description of the error and how it was managed,
and whether it was possible to test it.

4.2 Usage
The Pretty Verifier tool was specifically developed to assist developers working
with eBPF programs in the Linux kernel, particularly targeting the error messages
generated by kernel version 6.6. This version was the Long Term Support (LTS) at
the beginning of the thesis; however, kernel version 6.8 later became the new LTS

30

Pretty Verifier

and was subsequently adopted by the Debian distribution.
The tool relies on the following components:

• Python3: The python 3.10 runtime used to run the Pretty Verifier scripts.

• Clang Compiler: Essential for compiling the eBPF programs. The use of
other compiler may be deepen in the future.

• libbpf Library: A C library that manages the life cycle of eBPF in user-space
applications.

• bpftool: A command-line utility that provides an interface using the libbpf
functionalities in bash

For the application to function correctly, it must be compiled with the -g
option, which enables the inclusion of original source line information. Testing has
demonstrated that using the highest optimization option in the Clang compiler
does not adversely affect the operation of the tool.

The application can be invoked from the command line using the pipe opera-
tor. This Bash utility directs the stdout or stderr of one application to another
application placed to its right. By appending this tool to the invocation of bpftool
load, developers can streamline their workflows. In this case the usage of the tool
would look like:

bpftool prog load your_bpf.o /sys/fs/bpf/your_bpf 2>&1 |
python3 path/to/pretty_verifier.py -c your_bpf.c

The 2 &1 operator is used to direct the stderr output of the bpftool to the stdout,
in order for the tool to capture it. This integration can also be used in user-space
functions that utilize the libbpf library for C when loading eBPF programs using
the same syntax (or removing the 2 &1 operator if the error is printed directly in the
stdout. In order to simplify this process, an alias can be created in the local Bash
configuration to substitute the python3 path/to/pretty_verifier.py with just
pretty_verifier, simplifying the command to:

bpftool prog load your_bpf.o /sys/fs/bpf/your_bpf 2>&1 |
pretty_verifier -c your_bpf.c

The accepted parameters by the tool are the C source code file path, after the
-c option, and the .o eBPF bytecode compiled object, after the -o option. Both
the commands are optional. If they are not passed, or their value has been changed
after the compilation is performed, some error messages will be limited. The usage
of the -c option is strongly suggested to benefit the tool functionalities.

31

Pretty Verifier

4.3 Tool Functionality
The application is designed to accept parameters, primarily the C source files of the
eBPF program. These parameters enable the tool to associate errors with specific
lines of code, making it easier for developers to understand the context of each
error. Additionally, the option to provide the original eBPF bytecode allows for
more comprehensive checks, especially in scenarios where the bytecode may not
correspond directly to the C source files due to optimizations or modifications.

4.3.1 Code Structure and Execution Flow
The structure of the tool is organized to facilitate ease of use and maintainability,
allowing to add and remove error managers and thus making it easily upgradable
to newer version of the eBPF verifier . These components include:

Main Module in /pretty_verifier.py. The entry point of the application, respon-
sible for handling command-line arguments and initiating the input processing.

Error Handler in /handler.py. This component processes the output from the
eBPF verifier, utilizing regular expressions to detect specific error patterns. Upon
identifying an error, it calls the appropriate error management functions to provide
detailed feedback to the developer.

Error Managers in /error_managers.py. Each manager corresponds to different
types of errors that the verifier may produce. These functions generate user-friendly
error messages, adding relevant context that aids developers in diagnosing the
issues.

Utilities in /utils.py. A set of helper functions that perform common tasks such
as adding line numbers to error messages and retrieving bytecode information from
eBPF files. These utilities streamline the processing of the verifier’s output.

Tests in /test.py. The test suite developed for the tool, but not containing the
test programs. More about this in chapter 5.

Execution Flow

The execution flow of the Pretty Verifier can be summarized in several steps:

1. Upon launching the application, the Pretty Verifier first parses the command-
line arguments to identify the source files and any bytecode files provided by

32

Pretty Verifier

the user. The files are crucial to improve the readability of the error, but they
can also be omitted, with the result of the limitation of the message output
given by the tool.

2. The tool reads the standard input in the main module, which contains the
output of the eBPF verifier, and begins scanning for error keywords that
indicate problems. It specifically look for the processed keyword, that implies,
under the condition specified in the tool usage, the detection by the eBPF
verifier of an error.

3. In the handler module the lines of the verifier’s output are processed in reverse,
and the tool searches for patterns that signify errors using regular expressions.
When an error is detected, it triggers the error handling mechanism. Before
the pattern matching, in case the user has passed the source C code to the
tool, the tool also associate the C lines presented in the output with the line
number, in order to be parsed and used by the error manager when creating
the output message.

4. The error manager is invoked and starts parsing the output with the knowledge
of what error is being thrown, since it is composed of various function for each
error. It performs different tasks, adding information from the verifier source
code, translating kernel enums into plain text, manipulating the strings in
order to get a more strait forward error message.

5. The tool formats and outputs the enhanced error message to the console, right
after the original output of the bpftool an the eBPF verifier.

4.3.2 Error handling
The core functionality of the application involves processing the output of the
eBPF verifier. The tool scans for keywords that indicate the presence of an error.
Regular expressions (regex) are employed to identify specific error types based on
the error messages generated by the verifier. This regex-based approach allows the
application to be flexible and extensible; new error types can be added by simply
defining additional regex patterns without significant changes to the underlying
code.

The regex used to detect the errors are the ones provided by the Python re
library. Since the parsing of error messages is based upon the verbose function
invocatiions in the eBPF verifier source code, it is possible to deduce the regex
from the C formatted string. The common C format specifier are used, like %d
for integers or %s for strings. Those can be captured using (\d+) for integers (or
the (-?\d+) for possibly negative integers) and the (.*?) wildcard for generic

33

Pretty Verifier

strings. Adjustments can be made based on the specific error, for example when the
verbose function can print just two or a restricted amount of values for a specific
format specifier, it can be intercepted using the (optionA|optionB) pattern. The
values read in the patterns are then passed to the error manager function and used
in the final error message.

Error not managed

If an error message does not match any known patterns, the tool outputs a default
message of “error not managed.” The study performed on the eBPF verifier code
makes this option unlikely, however the occurrence of this message is an option to
take into consideration, and should lead to an addition of a new error manager in
the tool. A case scenario in which this message can be shown is when a newer kernel
version is used, and then new error messages with new formatting are introduced,
or less likely when an older version of the kernel is used, and some deprecated
errors are removed in the newer versions. In the future developments of the tool
the deprecated errors will be marked, but kept in the code base for backward
compatibility.

4.3.3 Output
The enhanced error messages generated by the application follow a structured
format, comprising several key components:

• Additional error message: A new message, related to the C code, usually
providing high-level information about the type of error.

• Location: The line number and file name of the C source file where the error
occurred.

• Appendix: This section provides additional detail for certain error messages
that require more context.

• Suggestion: In some error messages, a suggestion is provided to help resolve
the issue.

For each error message an output was crafted using this framework aiming to
connect the error to the C source code counterpart and ease the debugging process.
A more detailed description of how the errors where managed is shown in the notes
of the OK and TESTED verbose messages in the Appendix A.

34

Pretty Verifier

4.3.4 Added value
The additional information provided in the output varies depending on the specific
error message encountered. The enhancements to the error logs can be structured
as follows:

• Translation of Terms: It is common to use functions that translate the usage
of specific terms by the eBPF verifier—typically C enumerations—into plain
text. This makes the information comprehensible even to those unfamiliar
with the kernel source code.

– get_type function: This function translates the type of a BPF register into
a human-readable description, as defined in the reg_type enumeration
located in the bpf.h file of the kernel source code.

• Error Explanations: Explanations regarding the presence of specific errors
can often be found in:

– Comments within the source code.
– Links to online forums that provide in-depth explanations about why

certain errors occur and how to resolve them.

• Specific Error Handling: Different error types are processed with specific
enhancements:

– type_mismatch: This error indicates that a register is used in a helper
function with a type that does not match the expected signature. Through
the use of the register number provied by the output and the original
C code, the tool manages to displays the specific C variable passed as a
parameter that caused the error.

– invalid_access_to_map_value: For errors related to mismatches in the
number of bytes, this tool parses the relevant numbers to calculate the
correct size required in that segment of the program.

• Additional Enhancements: Along with the improvements mentioned above,
the output also includes:

– The line number of the C source code where the error occurred.
– Suggestions for resolving the errors to guide developers towards effective

fixes.

35

Pretty Verifier

4.3.5 C line number
The debug mode of the Clang compilation manages to write as a comment in the
BPF bytecode object the C lines from which it was generated. However it doesn’t
give any information about the location in the code. Specifically in the context of
multiple file eBPF programs, when the eBPF verifier outputs these C lines, it might
not be clear which file they belonged to. Therefore it was crucial to implement
these feature directly in the tool.

Before the handler module starts parsing the error, a function found in the utilities
module, called add_line_number() is invoked, binding the C line number directly
to the C lines comments found in the eBPF verifier log. With multiple file support,
the function manages to add also the file name, already formatted to be then shown
in the output. In order to obtain a correct result, a double pointer approach is
employed, advancing in the source C file when a new line in the raw output is
found. Repeating line inside a file are tracked in a counter in both the file and the
output, which gets decremented as they are encountered, avoid ambiguity. Lastly,
this process is performed for each file, eventually choosing the one that has an
higher number of processed lines In common scenarios the correct file has all its
line processed, while the others has close to zero line processed. If two files have
the same number of processed lines, it means they are the same.

Figure 4.1: The type_mismatch error not managed

36

Pretty Verifier

Figure 4.2: The type_mismatch error managed

Figure 4.3: The pointer_operation_prohibited error managed

Figure 4.4: The gpl_declaration_missing error managed

37

Chapter 5

Pretty Verifier Tests

The primary objective of the tool developed is to provide more user-friendly
and structured output from the BPF verifier when it encounters errors in eBPF
programs. The tool associates error codes with specific line numbers in the source
code, suggests possible solutions, and provides more context around the issues
found. Given this scope, the testing phase focused entirely on scenarios where the
BPF verifier produces errors.

5.1 Structure of the Test Suite
The test suite follows a structured approach, where each test case is designed to
trigger a specific verifier error. Each test case is represented by a function name
and an expected output. The test process loads the corresponding eBPF program,
runs the verification tool, and compares the verifier’s output with the expected
error message. This structure allows for easy identification of mismatches and
ensures that the tool generates the correct diagnostic information for each error
type.

The test framework is divided into two main components:

• BPFTestCase: This class is responsible for defining each individual test case.
It includes the function name, the expected error output, and optionally the
filename if it differs from the function name.

• BPFTestSuite: This manages the overall collection of test cases. It adds
each test case to a list and runs them all sequentially. If a test case fails, the
suite stops and provides detailed feedback on the error.

The test process also involves cleaning up the verifier’s output before validation.
This is necessary due to the presence of ANSI escape codes in the output, which

38

Pretty Verifier Tests

can interfere with string comparisons. The cleaned output is then compared to the
expected result to determine whether the test passes or fails.

5.1.1 Test folder
All the tests are stored in specific folder that can be chosen in the testing process.
Specifically for the tests developed for this tool, they are stored in the eBPF
code base repository, in the not-working/generated folder, as well as a copy of the
tests present in the other folders of the repository, for a convenience. Those are
all compiled through a Makefile and then loaded through a bash script called
load.sh, even though

5.2 Test sources
The main sources of eBPF corrupted programs where the Github repository associ-
ated with the Liz Rice book Learning eBPF [14], and the blog post from Anteon
[15], that covered about half of test cases. The other test cases were gathered from
Stack Overflow and other online forums where the users were experience them, and
some were appositely crafted in order to trigger the eBPF verifier error log.the test
utility load them directly.

5.3 Testing Methodology
Testing required eBPF programs that intentionally cause verification failures.
Unfortunately, publicly available resources for such programs are limited. After
extensive research, a few relevant resources were found. As a result, the majority
of the test cases had been purposefully created by writing custom C code that
triggers the verifier’s errors. This was a time-intensive process, as a wide range of
common eBPF verification issues needed to be simulated.

5.3.1 Fuzz testing
One possible suggestion for improving the testing process was the use of fuzz testing.
However, due to the nature of the tool working on C source code (rather than
eBPF bytecode), implementing fuzz testing would have been significantly more
complex. Moreover, the fuzzing tools currently available are focused on generating
eBPF bytecode with the goal of making the eBPF verifier reach specific vulnerable
states [16] [17].

39

Pretty Verifier Tests

5.3.2 Limitations in Error Message Coverage
One of the significant challenges faced during the testing process was the inability
to generate C code that would trigger every possible error message from the BPF
verifier. While error messages that are designed to be raised only from bytecode-
level checks and thus couldn’t be triggered by C source code were not taken into
account during the development of the tool, there were also several messages that,
theoretically, should have been triggered by C code but were not.

The inability to generate all error messages was due to the complex interaction
between the eBPF verifier and the C language, which sometimes makes it difficult
to predict exactly what kind of code will trigger certain errors. Despite countless
efforts to craft specific test cases, certain error conditions remained elusive. As a
result, not all possible verifier error messages are covered in the current testing
suite. This limitation, while acknowledged, does not diminish the effectiveness of
the tool for the majority of common verification issues, since the error managers
not tested often have no documentation of people experiencing them on the online
forums and open eBPF projects. As a matter of fact, the error messages that could
not be tested are usually managed in the tool in order to address for isolated cases
finding this error in online forums, that otherwise would be considered as rare
errors.

5.4 Test Results and Coverage
In total the number of tested handler functions were 17, on a total of 79.

The test results for the tool show complete success in terms of passing all the tests
that were designed. Since the test suite was developed alongside the tool itself, the
pass rate of the tests is not the most significant metric. Rather, the focus should
be on the coverage achieved by the tests.

The key module under testing, error_managers.py, where most of the core func-
tions reside, achieved a code coverage of 36%, while approximately 20% of the total
functions in the module were explicitly tested. This suggests that the coverage
metric extends beyond the basic functionality tests, as auxiliary functions, such as
the get_type function (used for translating file types), are also being implicitly
tested as part of the overall process.

Additionally, a manual review of the code revealed that the test suite effectively
covers nearly all portions of the code for which tests were created, indicating a
well-constructed and comprehensive test design. Although there are some auxiliary

40

Pretty Verifier Tests

functions not directly tested, the overall coverage demonstrates that the majority
of the critical logic of the tool has been validated.

41

Chapter 6

Conclusions and Future
Work

This thesis aimed to address the challenges that developers face when debugging
eBPF programs due to the complexity and low readability of the error messages
generated by the eBPF verifier. The work focused on improving the readability
and interpretability of these messages, mapping them back to the original C code
and making the developer experience more user-friendly.

The solution involved two main approaches: an initial attempt to leverage
Clang’s static analyzer and the development of a message error analysis tool. While
the static analyzer approach proved insufficient due to the high number of false
positives and the complexity of mimicking the eBPF verifier’s operations on C code,
the second approach, which focused on enhancing the verifier’s error messages,
yielded more promising results.

The tool developed in this thesis operates by intercepting and parsing the error
messages generated by the eBPF verifier, linking them back to the original C
code, and improving the clarity of the messages. This was achieved through the
integration of utilities like bpftool, and by analyzing the most common error types
to provide meaningful suggestions to developers.

The tests conducted on the tool show that all the designed tests passed suc-
cessfully and the test cover achieved in the module error_managers.py, which
contains the core logic of the tool, indicates that the error manager functions that
were possible to be tested were covered. However, it is important to note that there
remains a significant gap in the overall test suite, particularly regarding untested
error cases. These untested cases, although included for completeness to account for
isolated cases of developer encountering them online, they couldn’t be reproduced
in the testing environment. As a result, the tool lacks comprehensive coverage for
all the error scenarios it is intended to handle. In the future, it will be essential to

42

Conclusions and Future Work

extend the test suite, aiming to cover the remaining error types and edge cases.
Completing the test coverage will enhance the tool’s reliability and ensure that it
can manage all the error types encountered during eBPF program verification.

In conclusion, this thesis provides a robust framework for improving the developer
experience when working with eBPF programs, through better error message
analysis and clearer references to the original source code.

6.1 Future Works

6.1.1 Improved Test Coverage

An important step to be taken is to compete the test coverage for all the errors
managed in the Pretty Verifier tool, since just about 20% of the function are
properly tested, finding difficult to reproduce locally some of the errors that the
tool manages. This would lead to a more complete and reliable work, allowing the
tool to be more robust and correct.

6.1.2 Extending Compatibility to Newer Kernel Versions

The thesis was developed using Linux kernel version 6.6, which was the Long Term
Support (LTS) release at the time. However, since the thesis began, Linux kernel
version 6.8 has become the new LTS, and is being rapidly adopted by distributions
like Debian. Expanding the tool to support future kernel versions would ensure
that it remains relevant in a fast-evolving environment. Kernel upgrades often
bring enhancements to the eBPF verifier and new error types, which would require
ongoing adjustments to the tool to maintain its effectiveness.

6.1.3 Support for Additional Compilers

Currently, the tool relies on Clang for compiling eBPF programs with the -target
bpf option, as Clang has been the most widely supported and integrated compiler
for eBPF development. However, recent developments in GCC have introduced
support for generating BPF bytecode [11]. A natural extension of this work would
involve adapting the tool to handle GCC-generated bytecode, ensuring compatibility
across different compilers. This would also involve addressing potential differences
in error reporting between Clang and GCC, as each compiler may introduce its
own nuances in terms of error handling and optimizations.

43

Conclusions and Future Work

6.1.4 Handling Additional Programming Languages
At present, the tool focuses on interpreting C code, the primary language used
for eBPF programs. However, there is potential to extend support to other
languages, such as Rust, which is gaining popularity in systems programming.
Rust provides safety guarantees that could reduce certain categories of errors
typically encountered with C. Adapting the tool to parse and interpret Rust code,
or other eBPF-compatible languages, could make it more versatile and beneficial
to a broader developer audience.

44

Appendix A

Verbose list and checks

The following table shows all the occurrences of the verifier function verbose,
used to display errors encountered by the verifier. The table lists the line number
alongside the error message (or the function invoked to deliver the message), the
status, and any relevant notes, such as links to forum threads discussing the error.

The status column, as discussed in Chapter 3, indicates the nature of the error:

• LOG: Message used for logging purposes.

• VERIFIER ERROR: Message used to signal an internal error of the verifier.

• CE: Message triggered by a compiler error, hence only triggerable via plain
BPF bytecode.

• NR: Non-reachable error due to machine configuration or the nature of the
code (It accounts also for rare errors).

• BTF: Error related to BTF (not directly related to the C code).

• OK: Managed error.

• TESTED: Managed and tested error.

Line Code Status Notes
369 __printf(2, 3) static void

verbose(...);
LOG

391 __printf(3, 4) static void
verbose_linfo(...);

LOG

45

Verbose list and checks

Line Code Status Notes
410 verbose_invalid_scalar(...) OK This is a function used in

other part of the verifier to
signal a register holding a
scalar that is out of bound
(considering the variable off-
set). It was handled commu-
nicating the location in the
C source code of the error
and the range and the cur-
rent value (is available) of
the register.

670 print_liveness(...) LOG
712 %s has to be at a constant

offset\n
NR

718 cannot pass in %s at an off-
set=%d\n

NR

724 cannot pass in %s at an off-
set=%d\n

NR

1028 verifier internal error: mis-
configured ref_obj_id\n

VERIFIER
ERROR

1069 cannot overwrite referenced
dynptr\n

NR

1356 print_verifier_state(...) LOG
1545 %c; LOG
1547 %d: LOG
2065 The sequence of %d jumps

is too complex.\n
VERIFIER
ERROR

2149 mark_reg_known_zero(regs,
%u)\n

LOG

2499 mark_reg_unknown(regs,
%u)\n

LOG

2519 mark_reg_not_init(regs,
%u)\n

LOG

2600 The sequence of %d jumps is
too complex for async cb.\n

VERIFIER
ERROR

2657 call to invalid destination\n NR
2664 too many subprograms\n NR
2765 too many different module

BTFs\n
BTF

46

Verbose list and checks

Line Code Status Notes
2770 kfunc offset > 0 without

fd_array is invalid\n
BTF

2781 invalid module BTF fd spec-
ified\n

BTF

2786 BTF fd for kfunc is not a
module BTF\n

BTF

2827 negative offset disallowed
for kernel module function
call\n

BTF

2854 calling kernel function is
not supported without CON-
FIG_DEBUG_INFO_BTF\n

BTF

2859 JIT is required for calling
kernel function\n

NR

2864 JIT does not support calling
kernel function\n

NR

2869 cannot call kernel function
from non-GPL compatible
program\n

TESTED This error occurs when
a program is missing the
GPL compatibility declara-
tion. It can be added
using the libbpf macro
SEC("license"). Suggest-
ing this addition is the way
it was handled, giving also a
predefined formulation with
the Dual BSD/GPL.

2897 failed to find BTF for kernel
function\n

BTF

2905 too many different kernel
function calls\n

OK This error indicates the us-
age of more kernel functions
than allowed. It is not di-
rectly linkable to the C code,
so the maximum number of
functions allowed was sug-
gested.

2912 kernel btf_id %u is not a
function\n

BTF

47

Verbose list and checks

Line Code Status Notes
2918 kernel function btf_id %u

does not have a valid
func_proto\n

BTF

2926 cannot find address for ker-
nel function %s\n

NR

2938 address of kernel function
%s is out of range\n

NR

3027 loading/calling other bpf
or kernel functions are al-
lowed for CAP_BPF and
CAP_SYS_ADMIN\n

NR

3047 func#%d @%d\n LOG
3081 jump out of range from insn

%d to %d\n
OK This error is common in the

presence of kernel functions
calls, and it is specifically
controlled in the cgf section.
It occurs whenever the
jump instruction is lower
than 0 or more than the
entire program length. It
was managed indicating
the two C lines (from and
to) that triggered the error,
and a suggestion to use
helper function is added
(since most of the online
threads indicated this)
https://stackoverflow.
com/questions/78373013/
failed-to-load-ebpf-program

48

https://stackoverflow.com/questions/78373013/failed-to-load-ebpf-program
https://stackoverflow.com/questions/78373013/failed-to-load-ebpf-program
https://stackoverflow.com/questions/78373013/failed-to-load-ebpf-program

Verbose list and checks

Line Code Status Notes
3093 last insn is not an exit or

jmp\n
OK This error occours during

the check of subprograms,
i.e. functions called by
the eBPF program defined
by the user. Each one of
these must terminate with
an exit instruction (exit,
jump,ecc). It is handled
giving back the C line where
the function is called, and
a suggestion based on the
online forum threads.https:
//stackoverflow.com/
questions/62936008/
attaching-ebpf-to-kprobe

3122 verifier BUG type %s
var_off %lld off %d\n

VERIFIER
ERROR

3346 R%d is invalid\n CE
3357 R%d !read_ok\n TESTED The occurrence of this er-

ror is common in scenarios
where there is a program
with an empty body. In this
case the error has "R0" as
register, and the tool sug-
gest that this is not allowed.
It can also occur when a
function uses an uninitial-
ized value. In this scenario
the C variable passed to the
parameter triggering the er-
ror is deduced, and an error
message suggesting that an
uninitialized variable is be-
ing used with the name of
the varible is shown, as well
as the C line where the error
occurs.

3372 frame pointer is read only\n CE

49

https://stackoverflow.com/questions/62936008/attaching-ebpf-to-kprobe
https://stackoverflow.com/questions/62936008/attaching-ebpf-to-kprobe
https://stackoverflow.com/questions/62936008/attaching-ebpf-to-kprobe
https://stackoverflow.com/questions/62936008/attaching-ebpf-to-kprobe

Verbose list and checks

Line Code Status Notes
3502 BUG subprog enter from

frame %d\n
VERIFIER
ERROR

3513 BUG subprog exit from
frame 0\n

VERIFIER
ERROR

3662 mark_precise: frame%d:
regs=%s

LOG

3664 stack=%s before LOG
3665 %d: LOG
3727 BUG spi %d\n VERIFIER

ERROR
3744 BUG spi %d\n VERIFIER

ERROR
3775 BUG regs %x\n VERIFIER

ERROR
3790 BUG regs %x\n VERIFIER

ERROR
3818 BUG regs %x\n VERIFIER

ERROR
3843 BUG regs %x\n VERIFIER

ERROR
3862 BUG regs %x\n VERIFIER

ERROR
3982 mark_precise: frame%d:

falling back to forcing all
scalars precise\n

LOG

4001 force_precise: frame%d:
forcing r%d to be precise\n

LOG

4013 force_precise: frame%d:
forcing fp%d to be precise\n

LOG

4263 mark_precise: frame%d:
last_idx %d first_idx %d
subseq_idx %d \n

LOG

4313 BUG backtracking func en-
try subprog %d reg_mask
%x stack_mask %llx\n

VERIFIER
ERROR

4349 BUG backtracking idx %d\n VERIFIER
ERROR

4408 mark_precise: frame%d:
parent state regs=%s

LOG

50

Verbose list and checks

Line Code Status Notes
4411 stack=%s: LOG
4564 attempt to corrupt spilled

pointer on stack\n
CE

4619 verbose_linfo(...) LOG
4620 invalid size of register spill\n TESTED This error occurs when the

spilling of a pointer into the
stack is attempted, but it’s
the size is different from
the size of an eBPF regis-
ter. It is handled showing
the C line where the error
occurred.

4624 cannot spill pointers to stack
into stack frame of the
caller\n

CE

4745 spilled ptr in range of var-
offset stack write; insn %d,
ptr off: %d

CE

4768 uninit stack in range of var-
offset write prohibited for
!root; insn %d, off: %d

CE

4866 verbose_linfo(...) LOG
4867 invalid size of register fill\n CE
4893 invalid read from stack off

%d+%d size %d\n
CE

4918 leaking pointer from stack
off %d\n

CE

4932 invalid read from stack off
%d+%d size %d\n

CE

5021 variable offset stack pointer
cannot be passed into
helper function; var_off=%s
off=%d size=%d\n

CE

5091 write into map forbidden,
value_size=%d off=%d
size=%d\n

NR

5097 read from map forbidden,
value_size=%d off=%d
size=%d\n

NR

51

Verbose list and checks

Line Code Status Notes
5119 invalid access to map

key, key_size=%d off=%d
size=%d\n

TESTED Managed in the er-
ror_manager.py since
it is consequent other errors.
See 5172, 5189, for details.

5123 invalid access to map value,
value_size=%d off=%d
size=%d\n

TESTED Managed in the er-
ror_manager.py since
it is consequent other errors.
See 5172, 5189, for details.

5129 invalid access to packet,
off=%d size=%d,
R%d(id=%d,off=%d,r=%d)\n

TESTED Managed in the er-
ror_manager.py since
it is consequent other errors.
See 5172, 5189, for details.

5134 invalid access to memory,
mem_size=%u off=%d
size=%d\n

TESTED Managed in the er-
ror_manager.py since
it is consequent other errors

5165 R%d min value is negative,
either use unsigned index or
do a if (index >=0) check.\n

OK This error occurs whenever
the fixed offset of the register
has a minimum value that is
negative during its usage. It
is handled giving the C line,
the suggestion is already in-
side the error message.

52

Verbose list and checks

Line Code Status Notes
5172 R%d min value is outside of

the allowed memory range\n
TESTED This error signals that the

minimum value, considering
variable and fixed offset, is
outside the allowed memory
range. It occurs because the
bound check in the C pro-
gram was not performed, so
the minimum value is not yet
acceptable from the eBPF
verifier to access memory. It
is followed by another mes-
sage, signaling the type of
pointer the user is trying to
access. These are the mes-
sages 5123, 5129, 5134. For
each one of those the error
is managed in order to sug-
gest the bound check to be
performed when this is de-
terminable from the informa-
tion. It is also displayed the
error in order to express the
types in descriptive represen-
tation, and the C line where
the error occurs is displayed.

5182 R%d unbounded memory ac-
cess, make sure to bounds
check any such access\n

CE

5189 R%d max value is outside of
the allowed memory range\n

TESTED Same as 5172, but this is
triggered for the maximum
value stored by the eBPF
verifier.

53

Verbose list and checks

Line Code Status Notes
5206 negative offset %s ptr R%d

off=%d disallowed\n
OK This error (and the next two)

is triggered in presence of a
modification of pointer that
should not be modified, like
context pointers. Each one
of these three error check for
different parameters tracked
by the verifier. Is is handled
returning the C line where
the error occurred, and sug-
gesting not to modify the
pointer in the line (as writ-
ten in the comment in the
eBPF verifier source code).

5212 dereference of modified %s
ptr R%d off=%d disal-
lowed\n

OK

5221 variable %s access
var_off=%s disallowed\n

OK

5298 invalid kptr access, R%d
type=%s%s

BTF

5299 expected=%s%s BTF
5302 or %s%s\n BTF
5304 \n BTF
5356 kptr in map can only be ac-

cessed using BPF_MEM in-
struction mode\n

CE

5364 store to referenced kptr dis-
allowed\n

CE

5386 BPF_ST imm must be 0
when storing to kptr at
off=%u\n

CE

5390 kptr in map can only
be accessed using
BPF_LDX/BPF_STX/BPF_ST\n

CE

5430 kptr cannot be accessed in-
directly by helper\n

CE

5434 kptr access cannot have vari-
able offset\n

CE

54

Verbose list and checks

Line Code Status Notes
5439 kptr access misaligned ex-

pected=%u off=%llu\n
CE

5443 kptr access size must be
BPF_DW\n

CE

5449 %s cannot be accessed di-
rectly by load/store\n

CE

5518 R%d min value is negative,
either use unsigned index or
do a if (index >=0) check.\n

OK see 5165

5526 R%d offset is outside of the
packet\n

TESTED Same as 5172, but this er-
ror is triggered specifically
for accessing to packet struc-
tures, where the bounds are
specified in the structure it-
self. It is managed similarly.

5576 invalid bpf_context access
off=%d size=%d\n

TESTED This error occurs when the
context structure provided
during the triggering of the
eBPF program is not per-
formed correctly, This can
happen when a program that
is not allowed to directly ac-
cess the context perform a
dereferencing on it. It is
managed by suggesting the
C line where the error oc-
curs.

55

Verbose list and checks

Line Code Status Notes
5586 invalid access to flow keys

off=%d size=%d\n
OK This error is caused by an

incorrect access to flow keys,
an abstraction to identify
a data flow in a network
It is usually caused by out
of bound access to pointer,
specifically because it was
not bound checked before.
Hence the error is managed
suggesting how to fix the er-
ror, with the bound check to
be added, and if needed the
maximum size is reported
(as the eBPF verifier also
chack for this). The C line
where the error is found is
also displayed.

5603 R%d min value is negative,
either use unsigned index or
do a if (index >=0) check.\n

OK see 5165

5632 R%d invalid %s access
off=%d size=%d\n

CE

5742 misaligned packet access off
%d+%s+%d+%d size %d\n

OK This error occurs when the
access to a packet is not
aligned, so it can be caused
by mixing 32 and 64 bit
types. It is managed suggest-
ing the line where it occurs.

5766 misaligned %saccess off
%s+%d+%d size %d\n

OK Like the error before, but for
generic types, it was handled
also translating the type for
the enum reg_type to the
descriptive representation.

56

Verbose list and checks

Line Code Status Notes
5866 tail_calls are not allowed

when call stack of previous
frames is %d bytes. Too
large\n

OK This error occurs when the
stack size of a subprogram is
too large for a tail program
to be called. It can be trig-
gered by an elevated number
of recursive calls to subpro-
grams. It is handled suggest-
ing the maximum number of
calls.

5875 combined stack size of %d
calls is %d. Too large\n

OK This error is similar to the
previous one, but takes into
account the sum of all the
stacks of all the subprogram
in the program. It suggests
the maximum number al-
lowed.

5899 verifier bug. subprog has
tail_call and async cb\n

VERIFIER
ERROR

5915 the call stack of %d frames
is too deep !\n

OK This error occurs when the
stack size of a subprogram is
too large. It can be triggered
by an elevated number of re-
cursive calls to tail functions.
It is handled suggesting the
maximum number of calls.

5983 R%d invalid %s buffer ac-
cess: off=%d, size=%d\n

OK It signals an invalid buffer
to a pointer of type buffer.
It is managed displaying the
C line where the error oc-
curs and suggesting that the
offset should be negative
(as the eBPF verifier code
checks).

5992 R%d invalid variable
buffer offset: off=%d,
var_off=%s\n

CE

6399 ’struct %s’ access is allowed
only to CAP_PERFMON
and CAP_SYS_ADMIN\n

BTF

57

Verbose list and checks

Line Code Status Notes
6405 Cannot access kernel ’struct

%s’ from non-GPL compati-
ble program\n

BTF

6411 R%d is ptr_%s invalid neg-
ative access: off=%d\n

BTF

6420 R%d is ptr_%s invalid
variable offset: off=%d,
var_off=%s\n

BTF

6427 R%d is ptr_%s access user
memory: off=%d\n

BTF

6434 R%d is ptr_%s access per-
cpu memory: off=%d\n

BTF

6440 verifier internal error: reg-
>btf must be kernel btf\n

VERIFIER
ERROR

6450 only read is supported\n BTF
6456 verifier internal error:

ref_obj_id for allocated
object must be non-zero\n

VERIFIER
ERROR

6548 map_ptr access not
supported without CON-
FIG_DEBUG_INFO_BTF\n

NR

6554 map_ptr access not sup-
ported for map type %d\n

NR

6564 ’struct %s’ access is allowed
only to CAP_PERFMON
and CAP_SYS_ADMIN\n

NR

6570 R%d is %s invalid negative
access: off=%d\n

BTF

6575 only read from %s is sup-
ported\n

BTF

6647 invalid unbounded variable-
offset%s stack R%d\n

CE

6666 invalid%s stack R%d
off=%d size=%d\n

CE

58

Verbose list and checks

Line Code Status Notes
6672 invalid variable-offset%s

stack R%d var_off=%s
size=%d\n

TESTED This error occurs when the
access to the stack is per-
formed using an offset that is
not within the allowed range.
It is managed communicat-
ing the C line where the er-
ror is found.

6708 write to change key R%d not
allowed\n

OK The error occurs when the
map key is overwritten. It
is handled displaying the C
line where the error occurs.

6723 R%d leaks addr into map\n OK It occurs when a pointer is
stored in a map, leaking a
reference. It is handled dis-
playing the C line where the
error occurs.

6763 R%d invalid mem access
’%s’\n

TESTED This error occurs when there
is an access to not specific
pointers that might be null.
It is handled by showing the
C line where the error oc-
curred and suggesting to add
a null check before.

6769 R%d cannot write into %s\n OK It occurs when writing in a
read only memory part. It
is handled displaying the C
line where the error occurs
and translating the type of
the pointer that is read only.

6775 R%d leaks addr into mem\n OK It occurs when a write opera-
tion has as a value a pointer,
leaking a reference. It is han-
dled displaying the C line
where the error occurs.

59

Verbose list and checks

Line Code Status Notes
6790 R%d leaks addr into ctx\n OK It occurs when a pointer

is stored in a context data
structure, leaking a refer-
ence. It is handled display-
ing the C line where the er-
ror occurs.

6801 verbose_linfo(...) LOG
6842 cannot write into packet\n OK It occurs when a write oper-

ation is performed on a read
only packet data structure.
It is handled displaying the
C line where the error oc-
curs.

6848 R%d leaks addr into
packet\n

OK It occurs when a pointer is
stored in a packet data struc-
ture, leaking a reference. It
is handled displaying the C
line where the error occurs.

6858 R%d leaks addr into flow
keys\n

OK It occurs when a pointer is
stored in a flow key data
structure, leaking a refer-
ence. It is handled display-
ing the C line where the er-
ror occurs.

6868 R%d cannot write into %s\n OK see 6769
6892 R%d cannot write into %s\n OK see 6769
6907 R%d invalid mem access

’%s’\n
TESTED see 6763

6940 BPF_ATOMIC uses invalid
atomic opcode %02x\n

CE

6945 invalid atomic operand
size\n

CE

6968 R%d leaks addr into mem\n OK see 6775
6974 R%d leaks addr into mem\n OK see 6775
6984 BPF_ATOMIC stores into

R%d %s is not allowed\n
NR

7052 invalid zero-sized read\n CE

60

Verbose list and checks

Line Code Status Notes
7085 R%d%s variable offset stack

access prohibited for !root,
var_off=%s\n

CE

7123 potential write to dynptr at
off=%d disallowed\n

CE

7138 verifier bug: allo-
cated_stack too small

VERIFIER
ERROR

7167 invalid%s read from stack
R%d off %d+%d size %d\n

CE

7173 invalid%s read from stack
R%d var_off %s+%d size
%d\n

CE

7207 R%d cannot write into %s\n OK see 6769
7223 R%d cannot write into %s\n OK see 6769
7234 R%d cannot write into %s\n OK see 6769
7279 R%d type=%s TESTED This error (that is completed

considering the following)
describes the situation in
which a parameter with a
wrong type is passed to an
helper function. It is han-
dled by deducing the pa-
rameter number and the C
variable that caused it, the
message suggest the C line
where it happened, the vari-
able that caused it and the
type of the variable found
and expected, in descriptive
representation.

7280 expected=%s\n TESTED

61

Verbose list and checks

Line Code Status Notes
7315 R%d min value is negative,

either use unsigned or ’var
&= const’\n

OK This error occurs whenever
the fixed offset of the
register has a minimum
value that is negative
during its usage. It is
handled giving the C line,
the suggestion is already
inside the error message.
https://github.com/
iovisor/bcc/issues/2391

7329 R%d unbounded memory ac-
cess, use ’var &= const’ or
’if (var <const)’\n

OK This error occurs whenever
the fixed offset of the
register has a maximum
value that exceeds 229

during its usage. It is
handled giving the C line,
the suggestion is already
inside the error message.
https://github.com/
iovisor/bcc/issues/3409

7436 R%d doesn’t have constant
offset. bpf_spin_lock has to
be at the constant offset\n

CE

7444 map ’%s’ has to have
BTF in order to use
bpf_spin_lock\n

OK This error, that can be
considered of type BTF, so
not directly depended by
the C code, was managed
because it occurred on the
online forums. It can hap-
pen if the libbpf definition
of a map is erroneus. It
was managed giving the
location and the name of the
map in the C code.https:
//github.com/cilium/
ebpf/issues/1524

7454 %s ’%s’ has no valid
bpf_spin_lock\n

BTF

62

https://github.com/iovisor/bcc/issues/2391
https://github.com/iovisor/bcc/issues/2391
https://github.com/iovisor/bcc/issues/3409
https://github.com/iovisor/bcc/issues/3409
https://github.com/cilium/ebpf/issues/1524
https://github.com/cilium/ebpf/issues/1524
https://github.com/cilium/ebpf/issues/1524

Verbose list and checks

Line Code Status Notes
7459 off %lld doesn’t point to

’struct bpf_spin_lock’ that
is at %d\n

NR

7465 Locking two bpf_spin_locks
are not allowed\n

NR

7482 bpf_spin_unlock without
taking a lock\n

NR

7487 bpf_spin_unlock of differ-
ent lock\n

CE

7510 R%d doesn’t have constant
offset. bpf_timer has to be
at the constant offset\n

BTF

7515 map ’%s’ has to have BTF
in order to use bpf_timer\n

BTF

7519 map ’%s’ has no valid
bpf_timer\n

BTF

7524 off %lld doesn’t point to
’struct bpf_timer’ that is at
%d\n

BTF

7528 verifier bug. Two map point-
ers in a timer helper\n

VERIFIER
ERROR

7547 R%d doesn’t have constant
offset. kptr has to be at the
constant offset\n

CE

7552 map ’%s’ has to have
BTF in order to use
bpf_kptr_xchg\n

BTF

7556 map ’%s’ has no valid kptr\n BTF https://stackoverflow.
com/questions/76035116/
cannot-use-ebpf-kptr-ref-feature

7564 off=%d doesn’t point to
kptr\n

BTF

7568 off=%d kptr isn’t referenced
kptr\n

CE

7610 verifier internal error: mis-
configured dynptr helper
type flags\n

VERIFIER
ERROR

63

https://stackoverflow.com/questions/76035116/cannot-use-ebpf-kptr-ref-feature
https://stackoverflow.com/questions/76035116/cannot-use-ebpf-kptr-ref-feature
https://stackoverflow.com/questions/76035116/cannot-use-ebpf-kptr-ref-feature

Verbose list and checks

Line Code Status Notes
7633 Dynptr has to be an unini-

tialized dynptr\n
OK It may occur in functions

accepting dynamic pointers,
that found it as uninitialized.
It is managed by displaying
the C line.

7649 cannot pass pointer to const
bpf_dynptr, the helper mu-
tates it\n

CE

7656 Expected an initialized
dynptr as arg #%d\n

OK It may occur in functions
accepting dynamic pointers,
that found it initialized. It is
managed by displaying the
C line and the arg number.

7664 Expected a dynptr of type
%s as arg #%d\n

OK It may occur in functions
accepting dynamic pointers,
that found it with the wrong
type. It is managed by dis-
playing the C line, the argu-
ment number and translat-
ing the type of the dynptr.

7727 expected uninitialized
iter_%s as arg #%d\n

OK It occurs when an uninitial-
ized iterator was expected.
It is handled displaying the
C line and the argument
number.

7745 expected an initialized
iter_%s as arg #%d\n

OK It occurs when an initialized
iterator was expected. It
is handled displaying the C
line and the argument num-
ber.

7941 verifier internal error: un-
expected iterator state %d
(%s)\n

VERIFIER
ERROR

7951 bug: bad parent state for
iter next call

VERIFIER
ERROR

8014 invalid map_ptr to access
map->type\n

NR

8024 invalid arg_type for
sockmap/sockhash\n

CE

64

Verbose list and checks

Line Code Status Notes
8167 verifier internal error: un-

supported arg type %d\n
VERIFIER
ERROR

8202 R%d type=%s expected=%s TESTED see 7279
8217 %s() may write into memory

pointed by R%d type=%s\n
CE

8239 Possibly NULL pointer
passed to helper arg%d\n

BTF

8245 verifier internal error: miss-
ing arg compatible BTF
ID\n

VERIFIER
ERROR

8256 verifier internal error: VERIFIER
ERROR

8258 R%d has non-overwritten
BPF_PTR_POISON
type\n

VERIFIER
ERROR

8267 R%d is of type %s but %s is
expected\n

BTF

8276 verifier internal error:
unimplemented handling of
MEM_ALLOC\n

VERIFIER
ERROR

8289 verifier internal error: in-
valid PTR_TO_BTF_ID
register for type match\n

VERIFIER
ERROR

8340 R%d must have zero offset
when passed to release func
or trusted arg to kfunc\n

CE

8392 verifier internal error: multi-
ple dynptr args\n

VERIFIER
ERROR

8399 verifier internal error: no
dynptr arg found\n

VERIFIER
ERROR

8441 verifier internal error: in-
valid spi when querying
dynptr type\n

VERIFIER
ERROR

8470 R%d leaks addr into helper
function\n

CE

65

Verbose list and checks

Line Code Status Notes
8478 helper access to the packet

is not allowed\n
OK This error occurs when an

access to a read only packet
is made by an helper func-
tion. It is handled by show-
ing the location in the C
source code of the helper
function.

8521 arg %d is an unacquired ref-
erence\n

CE

8525 cannot release unowned
const bpf_dynptr\n

CE

8530 R%d must be referenced
when passed to release func-
tion\n

NR

8534 verifier internal error: more
than one release argument\n

VERIFIER
ERROR

8544 verifier internal error:
more than one arg with
ref_obj_id R%d %u %u\n

VERIFIER
ERROR

8570 timer pointer in R1
map_uid=%d doesn’t
match map pointer in R2
map_uid=%d\n

NR

8588 invalid map_ptr to access
map->key\n

NR

8604 invalid map_ptr to access
map->value\n

NR

8614 Helper has invalid btf_id in
R%d\n

BTF

8622 can’t spin_{lock,unlock} in
rbtree cb\n

NR

8634 verifier internal error\n VERIFIER
ERROR

8671 R%d is not a known con-
stant’\n

CE

66

Verbose list and checks

Line Code Status Notes
8698 R%d does not point to a

readonly map’\n
OK This error occurs when a not

read only map is used by an
helper function that requires
one, in the case of argument
that need to be strings. For
this reason a suggestion
was added in the handling
of the error, as well as the
location of the C line.https:
//github.com/cilium/
ebpf/discussions/722

8703 R%d is not a constant ad-
dress’\n

CE

8708 no direct value access sup-
port for this map type\n

NR

8721 direct value access on string
failed\n

NR

8727 string is not zero-
terminated\n

NR

8776 cannot update sockmap in
this context\n

LOG

8924 tail_calls are not allowed
in non-JITed programs with
bpf-to-bpf calls\n

NR

9033 cannot pass map_type %d
into func %s#%d\n

OK It occurs when in the
context of a helper call, a
map is passed that has an
incompatible type. It is
handled displaying display-
ing the C line where the
function is called.https://
github.com/xdp-project/
xdp-tutorial/issues/65

9224 the call stack of %d frames
is too deep\n

OK see 5915

9230 verifier bug. Frame %d al-
ready allocated\n

VERIFIER
ERROR

67

https://github.com/cilium/ebpf/discussions/722
https://github.com/cilium/ebpf/discussions/722
https://github.com/cilium/ebpf/discussions/722
https://github.com/xdp-project/xdp-tutorial/issues/65
https://github.com/xdp-project/xdp-tutorial/issues/65
https://github.com/xdp-project/xdp-tutorial/issues/65

Verbose list and checks

Line Code Status Notes
9286 verifier bug: kfunc %s#%d

not marked as callback-
calling\n

VERIFIER
ERROR

9291 verifier bug: helper %s#%d
not marked as callback-
calling\n

VERIFIER
ERROR

9345 verifier bug. No program
starts at insn %d\n

VERIFIER
ERROR

9355 Caller passes invalid args
into func#%d\n

NR

9360 Func#%d is global and valid.
Skipping.\n

LOG

9384 caller:\n LOG
9386 callee:\n LOG
9444 tail_call abusing

map_ptr\n
CE

9451 callback function not al-
lowed for map\n

CE

9641 cannot return stack pointer
to the caller\n

CE

9651 R0 not a scalar value\n OK The R0 is the regster used to
return values, and it needs
to be a scalar. So if a value
that is not a scalar is re-
turned, this error is trig-
gered. It is handled with
this explanation and the C
line of the returned value

9662 verbose_invalid_scalar(...) OK see 410
9667 BUG: in callback at %d, call-

site %d !calls_callback\n
VERIFIER
ERROR

9698 returning from callee:\n LOG
9700 to caller at %d:\n LOG
9782 kernel subsystem misconfig-

ured verifier\n
VERIFIER
ERROR

68

Verbose list and checks

Line Code Status Notes
9795 write into map forbidden\n OK It prevents maps to be mod-

ified when read only using
helper functions. It is han-
dled displaying the C line
where the error occurs.

9821 kernel subsystem misconfig-
ured verifier\n

VERIFIER
ERROR

9858 Unreleased reference id=%d
alloc_insn=%d\n

TESTED This error occurs when a ref-
erence to some specific maps
is not released before the
termination of the program.
Specifically it occurs for ring
buffer, where to operate into
it, we need to reserve the
slot. It this is not released,
the error occurs. It is man-
aged by signaling where the
reference was first acquired.

9887 verifier bug\n VERIFIER
ERROR

9897 Invalid format string\n CE
9910 func %s#%d supported only

for fentry/fexit/fmod_ret
programs\n

NR

9919 func %s#%d not supported
for program type %d\n

NR

9975 invalid func %s#%d\n OK This error occurs when the
helper function has an id not
valid. It usually signals that
the helper function used is
deprecated. It is handled dis-
playing the C line of the han-
dler function and suggesting
to upgrade to the newer ver-
sion.

69

Verbose list and checks

Line Code Status Notes
9983 unknown func %s#%d\n OK This error occurs when the

helper function has an un-
known id. It usually signals
that the helper function
used is deprecated. It is
handled displaying the C
line of the handler function
and suggesting to up-
grade to the newer version.
https://stackoverflow.
com/questions/77225068/
why-is-using-the-bpf-trace-printk-function-causing-ebpf-program-not-to-load

9989 cannot call GPL-restricted
function from non-GPL com-
patible program\n

TESTED Similar to 2869, but for the
usage of kernel functions.

9994 helper call is not allowed in
probe\n

NR

9999 helper call might sleep in a
non-sleepable prog\n

NR

10007 kernel subsystem misconfig-
ured func %s#%d: r1 !=
ctx\n

NR

10017 kernel subsystem misconfig-
ured func %s#%d\n

NR

10024 sleepable helper %s#%d in
rcu_read_lock region\n

NR

10068 verifier internal error:
CONST_PTR_TO_DYNPTR
cannot be released\n

VERIFIER
ERROR

10082 func %s#%d reference has
not been acquired before\n

CE

10091 tail_call would lead to refer-
ence leak\n

CE

10100 get_local_storage() doesn’t
support non-zero flags\n

CE

10134 frame%d bpf_loop iteration
limit reached\n

LOG

70

https://stackoverflow.com/questions/77225068/why-is-using-the-bpf-trace-printk-function-causing-ebpf-program-not-to-load
https://stackoverflow.com/questions/77225068/why-is-using-the-bpf-trace-printk-function-causing-ebpf-program-not-to-load
https://stackoverflow.com/questions/77225068/why-is-using-the-bpf-trace-printk-function-causing-ebpf-program-not-to-load

Verbose list and checks

Line Code Status Notes
10140 Unsupported reg type %s

for bpf_dynptr_from_mem
data\n

NR

10151 BPF_LSM_CGROUP that
attach to void LSM hooks
can’t modify return value!\n

NR

10167 verifier internal error:
meta.dynptr_id already
set\n

VERIFIER
ERROR

10171 verifier internal error:
meta.ref_obj_id already
set\n

VERIFIER
ERROR

10177 verifier internal error: failed
to obtain dynptr id\n

VERIFIER
ERROR

10183 verifier internal error:
failed to obtain dynptr
ref_obj_id\n

VERIFIER
ERROR

10252 kernel subsystem misconfig-
ured verifier\n

VERIFIER
ERROR

10296 unable to resolve the size of
type ’%s’: %ld\n

BTF

10329 verifier internal error: VERIFIER
ERROR

10331 func %s has non-overwritten
BPF_PTR_POISON
return type\n

VERIFIER
ERROR

10340 invalid return type %u of
func %s#%d\n

BTF

10349 unknown return type %u of
func %s#%d\n

BTF

10358 verifier internal error: func
%s#%d sets ref_obj_id
more than once\n

VERIFIER
ERROR

10398 verbose(env, err_str,
func_id_name(func_id),
func_id);

NR

10653 max struct nesting depth ex-
ceeded\n

NR

71

Verbose list and checks

Line Code Status Notes
10824 kernel function %s args#%d

pointer type %s %s is not
supported\n

BTF

10847 arg#%d pointer type %s %s
must point to %sscalar, or
struct with scalar\n

BTF

10910 kernel function %s args#%d
expected pointer to %s %s
but R%d has a pointer to %s
%s\n

BTF

10922 verifier internal error:
ref_set_non_owning w/o
active lock\n

VERIFIER
ERROR

10927 verifier internal error:
NON_OWN_REF already
set\n

VERIFIER
ERROR

10948 verifier internal error:
ref_obj_id is zero for

VERIFIER
ERROR

10968 verifier internal error:
ref state missing for
ref_obj_id\n

VERIFIER
ERROR

11029 verifier internal error: un-
known reg type for lock
check\n

VERIFIER
ERROR

11038 held lock and object are not
in the same allocation\n

NR

11090 verifier internal error: unex-
pected graph root argument
type %s\n

VERIFIER
ERROR

11096 verifier internal error: %s
head arg for unknown
kfunc\n

VERIFIER
ERROR

11117 verifier internal error: unex-
pected graph node argument
type %s\n

VERIFIER
ERROR

11123 verifier internal error: %s
node arg for unknown
kfunc\n

VERIFIER
ERROR

72

Verbose list and checks

Line Code Status Notes
11140 verifier internal error: un-

expected btf mismatch in
kfunc call\n

VERIFIER
ERROR

11151 R%d doesn’t have constant
offset. %s has to be at the
constant offset\n

CE

11159 %s not found at off-
set=%u\n

CE

11166 bpf_spin_lock at off=%d
must be held for %s\n

NR

11171 verifier internal error: re-
peating %s arg\n

VERIFIER
ERROR

11208 verifier internal error: un-
expected btf mismatch in
kfunc call\n

VERIFIER
ERROR

11219 R%d doesn’t have constant
offset. %s has to be at the
constant offset\n

CE

11226 %s not found at off-
set=%u\n

CE

11242 operation on %s expects
arg#1 %s at offset=%d

CE

11252 arg#1 offset=%d, but ex-
pected %s at offset=%d in
struct %s\n

CE

11291 Function %s has %d > %d
args\n

OK This error occurs when the
number of argument for a
kernel function is more than
the maximum value. It is
handled by displaying the C
line where the kernel func-
tion is declared and the max-
imum number of arguments
allowed.

73

Verbose list and checks

Line Code Status Notes
11313 R%d is not a scalar\n OK This error occurs when a reg-

ister (so in C a variable) that
is not a scalar is passed to a
kernel function that accept
only a scalar in that spot. It
is handled by calculating the
argument number and show-
ing the C line where the ker-
nel function is found.

11319 verifier internal error: only
one constant argument per-
mitted\n

VERIFIER
ERROR

11323 R%d must be a known con-
stant\n

CE

11340 2 or more rdon-
ly/rdwr_buf_size pa-
rameters for kfunc

NR

11345 R%d is not a const\n CE
11358 Unrecognized arg#%d type

%s\n
BTF

11364 Possibly NULL pointer
passed to trusted arg%d\n

OK This error occurs when a reg-
ister (so in C a variable) that
might be null is passed to a
kernel function that accept
only "trusted" argument, so
valid and not obtained from
other pointers, in that spot.
It is handled by showing the
argument number and the C
line where the kernel func-
tion is found, and suggest-
ing to add a null check to
the pointer.

11372 verifier internal error:
more than one arg with
ref_obj_id R%d %u %u\n

VERIFIER
ERROR

11395 R%d must be referenced or
trusted\n

BTF

74

Verbose list and checks

Line Code Status Notes
11399 R%d must be a rcu

pointer\n
BTF

11435 arg#%d expected pointer to
ctx, but got %s\n

OK This error occors when in
kernel function a pointer to
context is expected, but a
different type of pointer is
obtained. It is handled by
showing the argument num-
ber and the C line where
the kernel function is found,
and translating the pointer
received to descriptive repre-
sentation.

11448 arg#%d expected pointer to
allocated object\n

BTF

11452 allocated object must be ref-
erenced\n

CE

11468 arg#%d expected pointer to
stack or dynptr_ptr\n

OK This error occors when in
kernel function a pointer to
stack or dynamic pointer
is expected, but a different
type of pointer is obtained.
It is handled by showing the
argument number and the C
line where the kernel func-
tion is found.

11487 verifier internal error: no
dynptr type for parent of
clone\n

VERIFIER
ERROR

11494 verifier internal error: miss-
ing ref obj id for parent of
clone\n

VERIFIER
ERROR

11507 verifier internal error: failed
to obtain dynptr id\n

VERIFIER
ERROR

11525 arg#%d expected pointer to
map value or allocated ob-
ject\n

BTF

11529 allocated object must be ref-
erenced\n

CE

75

Verbose list and checks

Line Code Status Notes
11539 arg#%d expected pointer to

map value or allocated ob-
ject\n

BTF

11543 allocated object must be ref-
erenced\n

CE

11552 arg#%d expected pointer to
allocated object\n

BTF

11556 allocated object must be ref-
erenced\n

CE

11566 rbtree_remove node input
must be non-owning ref\n

CE

11570 rbtree_remove not allowed
in rbtree cb\n

CE

11575 arg#%d expected pointer to
allocated object\n

BTF

11579 allocated object must be ref-
erenced\n

CE

11593 arg#%d is %s OK This message and the next
one signal that a kernel func-
tion expected a pointer to
a type or a socket but ob-
tained another one. It is han-
dled by showing the C line,
the argument number, and
the types expected and ob-
tained in representative de-
scription.

11596 expected %s or socket\n OK
11607 arg#%d reference type(’%s

%s’) size cannot be deter-
mined: %ld\n

BTF

11624 arg#%d arg#%d memory,
len pair leads to invalid
memory access\n

CE

11631 verifier internal error: only
one constant argument per-
mitted\n

VERIFIER
ERROR

11635 R%d must be a known con-
stant\n

CE

76

Verbose list and checks

Line Code Status Notes
11648 arg%d expected pointer to

func\n
OK This error occurs when a

pointer to a function is ex-
pected in a kernel function.
It is handled by showing the
argument where it occurs
and the C line of the kernel
function invocation.

11655 arg#%d is neither owning or
non-owning ref\n

NR

11663 verifier internal error:
Couldn’t find btf_record\n

VERIFIER
ERROR

11668 arg#%d doesn’t point to
a type with bpf_refcount
field\n

CE

11680 release kernel function
%s expects refcounted
PTR_TO_BTF_ID\n

BTF

11750 calling kernel function %s is
not allowed\n

NR

11759 destructive kfunc calls re-
quire CAP_SYS_BOOT ca-
pability\n

NR

11765 program must be sleepable
to call sleepable kfunc %s\n

NR

11779 kfunc %s#%d failed callback
verification\n

VERIFIER
ERROR

11792 Calling
bpf_rcu_read_{lock,unlock}
in unnecessary rbtree call-
back\n

NR

11797 nested rcu read lock (kernel
function %s)\n

NR

11808 kernel func %s is sleepable
within rcu_read_lock re-
gion\n

NR

11814 unmatched rcu read unlock
(kernel function %s)\n

NR

11825 kfunc %s#%d reference has
not been acquired before\n

CE

77

Verbose list and checks

Line Code Status Notes
11839 kfunc %s#%d conversion of

owning ref to non-owning
failed\n

CE

11846 kfunc %s#%d reference has
not been acquired before\n

CE

11862 acquire kernel func-
tion does not return
PTR_TO_BTF_ID\n

NR

11882 local type ID argument
must be in range [0,
U32_MAX]\n

NR

11891 bpf_obj_new requires prog
BTF\n

NR

11897 bpf_obj_new type ID argu-
ment must be of a struct\n

NR

11937 kfunc bpf_rdonly_cast type
ID argument must be of a
struct\n

NR

11952 verifier internal error:
bpf_dynptr_slice(_rdwr)
no constant size\n

VERIFIER
ERROR

11966 the prog does not allow
writes to packet data\n

CE

11972 verifier internal error: no
dynptr id\n

VERIFIER
ERROR

11983 kernel function %s unhan-
dled dynamic return type\n

CE

12002 kernel function %s returns
pointer type %s %s is not
supported\n

BTF

78

Verbose list and checks

Line Code Status Notes
12125 math between %s pointer

and %lld is not allowed\n
OK This error occurs when the

eBPF verifier detects a vari-
able offset out of bound
(229). This can be caused
by alu operations performed
between a pointer and scalar
(to access it, like when an ar-
ray is accessed by the [] op-
erator). So it is handled by
translating the type of the
pointer to a descriptive rep-
resentation, the C line where
the error occourred is shown,
and the offset used by the de-
veloper as well, comparing it
to the maximum value pos-
sible, also shown.

12131 %s pointer offset %d is not
allowed\n

OK This error is similar to the
one before and handled in
a similar manner, but the
fixed offset is the one exceed-
ing in this situation.

12137 math between %s pointer
and register with unbounded
min value is not allowed\n

CE

12143 value %lld makes %s pointer
be out of bounds\n

TESTED Error similar to the 12125,
but it detect the minimum
value of a register out of
bound. It is handled simi-
larly.

12375 R%d has unknown scalar
with mixed signed bounds,
%s\n

CE

12379 R%d has pointer with unsup-
ported alu operation, %s\n

CE

12383 R%d tried to %s from differ-
ent maps, paths or scalars,
%s\n

NR

79

Verbose list and checks

Line Code Status Notes
12387 R%d tried to %s beyond

pointer bounds, %s\n
NR

12391 R%d could not be pushed
for speculative verification,
%s\n

NR

12395 verifier internal error: un-
known reason (%d)\n

VERIFIER
ERROR

12423 R%d variable stack ac-
cess prohibited for !root,
var_off=%s off=%d\n

CE

12429 R%d stack pointer arith-
metic goes out of range,

CE

12457 R%d pointer arithmetic of
map value goes out of range,

NR

12511 R%d 32-bit pointer arith-
metic prohibited\n

OK This error occurs when an
alu operation between a
pointer and a 32 bit register
(so C variable) is performed.
It is handled by communi-
cating the location in the C
code of the error and explain-
ing the above description of
the error.

12517 R%d pointer arithmetic on
%s prohibited, null-check it
first\n

OK This error occurs when an
alu operation is performed
on a pointer that might be
null. It is handled by com-
municating the location in
the C code of the error and
translating the type to de-
scriptive representation.

80

Verbose list and checks

Line Code Status Notes
12537 R%d pointer arithmetic on

%s prohibited\n
OK This error occurs when an

alu operation is performed
on a pointer to network
packet bounds. It is han-
dled by communicating the
location in the C code of
the error and translating the
type to descriptive represen-
tation.

12618 R%d tried to subtract
pointer from scalar\n

TESTED This error occurs because a
pointer was subtracted from
a scalar, leading to an un-
known scalar. This is not
allowed, and it is signaled
as well as the location where
this error happened in the C
source code.

12627 R%d subtraction from stack
pointer prohibited\n

CE

12679 R%d bitwise operator %s on
pointer prohibited\n

TESTED This error is caused by bit-
wise operations on pointer,
that are not allowed. This is
handled by suggesting that
only addition and subtrac-
tion are allowed and the line
of C code that caused it.

12684 R%d pointer arithmetic
with %s operator prohib-
ited\n

OK This error occurs as a default
branch of a switch in the
eBPF verifier among the alu
operation. It can occur with
multiplications on pointers.
It is handled by showing the
operation the C line where
the error occurred and the
operation rejected.

81

Verbose list and checks

Line Code Status Notes
13468 R%d pointer %s pointer pro-

hibited\n
TESTED This error is caused because

two pointer have been used
in an alu operation that is
not subtraction. This is han-
dled by reminding that only
subtraction is allowed when
combining two pointers and
showing the location on the
C source code of this error.

13509 verifier internal error: unex-
pected ptr_reg\n

VERIFIER
ERROR

13514 verifier internal error: no
src_reg\n

VERIFIER
ERROR

13532 BPF_NEG uses reserved
fields\n

CE

13540 BPF_END uses reserved
fields\n

CE

13552 R%d pointer arithmetic pro-
hibited\n

OK

13565 BPF_MOV uses reserved
fields\n

CE

13571 BPF_MOV uses reserved
fields\n

CE

13577 BPF_MOV uses reserved
fields\n

CE

13588 BPF_MOV uses reserved
fields\n

CE

13623 R%d sign-extension part of
pointer\n

OK This error occurs when a
pointer with an alignment
inferior of 64 bit is sign ex-
tended. It is handled by sug-
gesting the C line where the
error occurs.

82

Verbose list and checks

Line Code Status Notes
13646 R%d partial copy of

pointer\n
OK This error occurs when the

pointer is partially copied
to a register (or C variable)
with a saller alignment. It is
handled with the displaying
of the C line where the error
occurred.

13700 invalid BPF_ALU opcode
%x\n

CE

13708 BPF_ALU uses reserved
fields\n

CE

13718 BPF_ALU uses reserved
fields\n

CE

13730 div by zero\n CE
13739 invalid shift %d\n CE
14498 invalid BPF_JMP/JMP32

opcode %x\n
NR

14510 BPF_JMP/JMP32 uses re-
served fields\n

CE

14523 R%d pointer comparison
prohibited\n

OK Pointer comparison is not
usually allowed in eBPF
programs, except for the
pointers to packet This
is an error that occurs
when a comparison between
pointers not to packets is
performed. It is handled
suggesting this information
and showing the C line
where it occurred.https:
//stackoverflow.com/
questions/71351495/
no-direct-packet-access-in-bpf-program-with-just-cap-bpf

14528 BPF_JMP/JMP32 uses re-
served fields\n

CE

14722 R%d pointer comparison
prohibited\n

OK see 14523

14740 invalid BPF_LD_IMM
insn\n

CE

83

https://stackoverflow.com/questions/71351495/no-direct-packet-access-in-bpf-program-with-just-cap-bpf
https://stackoverflow.com/questions/71351495/no-direct-packet-access-in-bpf-program-with-just-cap-bpf
https://stackoverflow.com/questions/71351495/no-direct-packet-access-in-bpf-program-with-just-cap-bpf
https://stackoverflow.com/questions/71351495/no-direct-packet-access-in-bpf-program-with-just-cap-bpf

Verbose list and checks

Line Code Status Notes
14744 BPF_LD_IMM64 uses re-

served fields\n
CE

14778 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

14790 missing btf func_info\n BTF
14794 callback function not

static\n
CE

14816 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

14858 BPF_LD_[ABS|IND] in-
structions not allowed for
this program type\n

CE

14863 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

14870 BPF_LD_[ABS|IND] uses
reserved fields\n

CE

14885 BPF_LD_[ABS|IND] can-
not be mixed with socket ref-
erences\n

NR

14890 BPF_LD_[ABS|IND]
cannot be used inside
bpf_spin_lock-ed region\n

NR

14895 BPF_LD_[ABS|IND]
cannot be used inside
bpf_rcu_read_lock-ed
region\n

NR

14901 at the time of
BPF_LD_ABS|IND
R6 != pointer to skb\n

CE

14971 R0 leaks addr as return
value\n

OK This error occurs when a
pointer is returned from the
eBPF program, leaking it.
It is handled by showing
the line where the return oc-
curred and suggesting not to
return a pointer variable.

14981 In async callback the regis-
ter R0 is not a known value
(%s)\n

OK see 15078, but for async call-
backs

84

Verbose list and checks

Line Code Status Notes
14986 async callback NR
14995 At subprogram exit the reg-

ister R0 is not a scalar value
(%s)\n

OK see 15078, but for subpro-
grams

15078 At program exit the regis-
ter R0 is not a known value
(%s)\n

OK This error signals that the
eBPF program return a
value that is not a scalar,
which is no allowed. This is
handled showing the C line
of the return and its type in
descriptive representation.

15083 verbose_invalid_scalar(...)
exit

OK see 410

15087 Note,
BPF_LSM_CGROUP
that attach to void LSM
hooks can’t modify return
value!\n

LOG

15189 verbose_linfo(...): LOG
15190 jump out of range from insn

%d to %d\n
CE

15211 verbose_linfo(...): LOG
15212 verbose_linfo(...): LOG
15213 back-edge from insn %d to

%d\n
OK This error occurs when a

back jump is performed
in the bytecode, that cor-
responds to a go to or a
loop in C. It is handled
by showing the lines from
where the jump started
to where if ended.https:
//stackoverflow.com/
questions/56872436/
bpf-verifier-rejecting-xdp-program-due-to-back-edge-even-though-pragma-unroll-is

15219 insn state internal bug\n VERIFIER
ERROR

15384 visit_insn internal bug\n VERIFIER
ERROR

85

https://stackoverflow.com/questions/56872436/bpf-verifier-rejecting-xdp-program-due-to-back-edge-even-though-pragma-unroll-is
https://stackoverflow.com/questions/56872436/bpf-verifier-rejecting-xdp-program-due-to-back-edge-even-though-pragma-unroll-is
https://stackoverflow.com/questions/56872436/bpf-verifier-rejecting-xdp-program-due-to-back-edge-even-though-pragma-unroll-is
https://stackoverflow.com/questions/56872436/bpf-verifier-rejecting-xdp-program-due-to-back-edge-even-though-pragma-unroll-is

Verbose list and checks

Line Code Status Notes
15392 pop stack internal bug\n VERIFIER

ERROR
15401 unreachable insn %d\n OK This error occurs when dead

code is found in the byte-
code. Technically the com-
piler should remove unreach-
able code, but it may not be
considered an error, so it is
managed. It shows the loca-
tion of the dead code in the
C file.

15407 jump into the middle of
ldimm64 insn %d\n

CE

15429 LD_ABS is not allowed in
subprogs without BTF\n

BTF

15433 tail_call is not allowed in
subprogs without BTF\n

BTF

15468 number of funcs in
func_info doesn’t match
number of subprogs\n

BTF

15476 invalid func info rec size
%u\n

CE

15497 nonzero tailing record in
func info

NR

15520 nonzero insn_off %u for the
first func info record

CE

15526 same or smaller insn offset
(%u) than previous func info
record (%u)

CE

15531 func_info BTF section
doesn’t match subprog
layout in BPF program\n

CE

15539 invalid type id %d in func
info

CE

15552 LD_ABS is only allowed in
functions that return ’int’.\n

NR

15556 tail_call is only allowed in
functions that return ’int’.\n

NR

86

Verbose list and checks

Line Code Status Notes
15634 nonzero tailing record in

line_info
NR

15663 Invalid
line_info[%u].insn_off:%u
(prev_offset:%u prog-
>len:%u)\n

NR

15671 Invalid insn code at
line_info[%u].insn_off\n

CR

15678 Invalid
line_info[%u].line_off
or .file_name_off\n

NR

15688 missing bpf_line_info for
func#%u\n

CE

15700 missing bpf_line_info for
%u funcs starting from
func#%u\n

CE

15757 nonzero tailing record in
core_relo

NR

15773 Invalid
core_relo[%u].insn_off:%u
prog->len:%u\n

CE

16438 frame %d: propagating r%d LOG
16440 ,r%d LOG
16457 frame %d: propagating

fp%d
LOG

16459 ,fp%d LOG
16465 \n LOG
16700 verbose_linfo(...) LOG
16701 infinite loop detected at insn

%d\n
TESTED This error is triggered by

the presence of an infinite
loop. This is possible since
from version 5.3 of the Linux
kernel, loops are allowed, if
bounded. This error is han-
dled by showing the location
of the loop and suggesting
the usage of loop unrolling
directives or the bpf_loop
function.

87

Verbose list and checks

Line Code Status Notes
16702 cur state: LOG
16704 old state: LOG
16977 same insn cannot be used

with different pointers\n
OK This error occurs when a

load and a store instruction
in a register have ponter
with mismatched typers. It
is handled with the sugges-
tion above and the C line
where it occurred.

17003 invalid insn idx %d insn_cnt
%d\n

CE

17013 BPF program is too large.
Processed %d insn\n

OK This error occurs when
programs with more than
1 million instructions are
found. This occurs usu-
ally when unrolling loops
with too many cycles.
It is handled showing
the location of the C
loop and suggesting the
above information.https:
//stackoverflow.com/
questions/78603028/
bpf-program-is-too-large-processed-1000001-insn

17030 \nfrom %d to %d%s: safe\n LOG
17032 %d: safe\n LOG
17054 \nfrom %d to %d%s: LOG
17069 ; LOG
17071 %d: LOG
17134 BPF_STX uses reserved

fields\n
CE

17164 BPF_ST uses reserved
fields\n

CE

17197 BPF_CALL uses reserved
fields\n

CE

17206 function calls are not al-
lowed while holding a lock\n

NR

17226 BPF_JA uses reserved
fields\n

CE

88

https://stackoverflow.com/questions/78603028/bpf-program-is-too-large-processed-1000001-insn
https://stackoverflow.com/questions/78603028/bpf-program-is-too-large-processed-1000001-insn
https://stackoverflow.com/questions/78603028/bpf-program-is-too-large-processed-1000001-insn
https://stackoverflow.com/questions/78603028/bpf-program-is-too-large-processed-1000001-insn

Verbose list and checks

Line Code Status Notes
17242 BPF_EXIT uses reserved

fields\n
CE

17248 bpf_spin_unlock is miss-
ing\n

NR

17254 bpf_rcu_read_unlock is
missing\n

NR

17314 invalid BPF_LD mode\n CE
17318 unknown insn class %d\n CE
17379 invalid module BTF object

FD specified.\n
BTF

17384 kernel is missing
BTF, make sure CON-
FIG_DEBUG_INFO_BTF=y
is specified in Kconfig.\n

BTF

17393 ldimm64 insn specifies in-
valid btf_id %d.\n

BTF

17399 pseudo btf_id %d in
ldimm64 isn’t KIND_VAR
or KIND_FUNC\n

BTF

17408 ldimm64 failed to find the
address for kernel symbol
’%s’.\n

BTF

17448 ldimm64 unable to resolve
the size of type ’%s’: %ld\n

CE

17518 tracing progs cannot use
bpf_{list_head,rb_root}
yet\n

NR

17525 socket filter progs cannot use
bpf_spin_lock yet\n

NR

17530 tracing progs cannot use
bpf_spin_lock yet\n

NR

17537 tracing progs cannot use
bpf_timer yet\n

NR

17544 offload device mismatch be-
tween prog and map\n

NR

17549 bpf_struct_ops map cannot
be used in prog\n

NR

89

Verbose list and checks

Line Code Status Notes
17572 Sleepable programs can only

use array, hash, ringbuf and
local storage maps\n

NR

17606 BPF_LDX uses reserved
fields\n

CE

17620 invalid bpf_ld_imm64
insn\n

CE

17655 unrecognized
bpf_ld_imm64 insn\n

CE

17663 fd_idx without fd_array is
invalid\n

NR

17679 fd %d is not pointing to valid
bpf_map\n

NR

17697 direct value offset of %u is
not allowed\n

NR

17703 no direct value access sup-
port for this map type\n

NR

17711 invalid access to map value
pointer, value_size=%u
off=%u\n

NR

17751 only one cgroup storage of
each type is allowed\n

NR

17765 unknown opcode %02x\n CE
17889 insn %d cannot be patched

due to 16-bit range\n
NR

18235 verifier bug. zext_dst is set,
but no reg is defined\n

VERIFIER
ERROR

18275 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

18281 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

18396 bpf verifier narrow ctx access
misconfigured\n

VERIFIER
ERROR

18415 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

18423 bpf verifier narrow ctx load
misconfigured\n

VERIFIER
ERROR

18616 JIT doesn’t support bpf-to-
bpf calls\n

NR

90

Verbose list and checks

Line Code Status Notes
18713 calling kernel functions are

not allowed in non-JITed
programs\n

NR

18720 tail_calls are not allowed
in non-JITed programs with
bpf-to-bpf calls\n

NR

18728 callbacks are not allowed in
non-JITed programs\n

NR

18802 invalid kernel function call
not eliminated in verifier
pass\n

NR

18815 verifier internal error: ker-
nel function descriptor not
found for func_id %u\n

VERIFIER
ERROR

18841 verifier internal error:
kptr_struct_meta expected
at insn_idx %d\n

VERIFIER
ERROR

18864 verifier internal error:
kptr_struct_meta expected
at insn_idx %d\n

VERIFIER
ERROR

18944 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

19072 adding tail call poke descrip-
tor failed\n

LOG

19090 tail_call abusing
map_ptr\n

NR

19191 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

19380 kernel subsystem misconfig-
ured func %s#%d\n

NR

19392 bpf verifier is misconfig-
ured\n

VERIFIER
ERROR

19398 tracking tail call prog
failed\n

VERIFIER
ERROR

19691 Func#%d is safe for any args
that match its prototype\n

LOG

19715 verification time %lld usec\n LOG
19716 stack depth LOG
19720 %d LOG

91

Verbose list and checks

Line Code Status Notes
19722 + LOG
19724 \n LOG
19730 processed %d insns (limit

%d) max_states_per_insn
%d

LOG

19743 struct ops programs must
have a GPL compatible li-
cense\n

BTF

19751 attach_btf_id %u is not a
supported struct\n

BTF

19759 attach to invalid member idx
%u of struct %s\n

BTF

19769 attach to invalid member
%s(@idx %u) of struct %s\n

BTF

19778 attach to unsupported mem-
ber %s of struct %s\n

BTF

20137 Syscall programs can only be
sleepable\n

BTF

20142 Only fentry/fexit/fmod_ret,
lsm, iter, uprobe, and
struct_ops programs can be
sleepable\n

BTF

20271 in-kernel BTF is mal-
formed\n

BTF

92

Bibliography

[1] Liz Rice. Learning EBPF: Programming the linux kernel for Enhanced Ob-
servability, networking, and security. Sebastopol, CA: O’Reilly Media, Inc,
2023 (cit. on p. 2).

[2] Wikipedia contributors. eBPF – Wikipedia, The Free Encyclopedia. Online;
accessed 1 September 2024. https://en.wikipedia.org/wiki/EBPF. 2023
(cit. on p. 2).

[3] Wikipedia contributors. Linux Kernel – Wikipedia, The Free Encyclopedia.
Online; accessed 1 September 2024. https://en.wikipedia.org/wiki/
Linux_kernel. 2023 (cit. on p. 2).

[4] eBPF Community. eBPF Documentation. Accessed: 2024-10-15. url: https:
//docs.ebpf.io/ (cit. on p. 2).

[5] Linux Kernel Documentation. The Linux Kernel documentation. Online;
accessed 1 September 2024. https://docs.kernel.org/. 2023 (cit. on pp. 2,
23).

[6] Shung-Hsi Yu. More than you want to know about BPF verifier. Online;
accessed 1 September 2024. Work at SUSE Labs, https://www.youtube.
com/watch?v=T4QAWIHb9ZU. 2021 (cit. on p. 2).

[7] Prototype Kernel Documentation. XDP - eXpress Data Path. https://pro
totype-kernel.readthedocs.io/en/latest/networking/XDP/. Accessed:
October 16, 2024. 2024 (cit. on p. 5).

[8] Microsoft. eBPF for Windows. https://github.com/microsoft/ebpf-for-
windows. Accessed: October 16, 2024. 2024 (cit. on p. 6).

[9] Linux Kernel Documetation. eBPF Helper Functions. https://man7.org/
linux/man-pages/man7/bpf-helpers.7.html. Accessed: October 16, 2024.
2024 (cit. on p. 8).

[10] LLVM Foundation. Clang User Manual. Accessed: 2024-10-08. 2024. url:
https://clang.llvm.org/docs/UsersManual.html (cit. on p. 20).

[11] GCC Team. GCC BPF Backend Documentation. Accessed: 2024-10-08. 2024.
url: https://gcc.gnu.org/wiki/BPFBackEnd (cit. on pp. 21, 43).

93

https://en.wikipedia.org/wiki/EBPF
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel
https://docs.ebpf.io/
https://docs.ebpf.io/
https://docs.kernel.org/
https://www.youtube.com/watch?v=T4QAWIHb9ZU
https://www.youtube.com/watch?v=T4QAWIHb9ZU
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://clang.llvm.org/docs/UsersManual.html
https://gcc.gnu.org/wiki/BPFBackEnd

BIBLIOGRAPHY

[12] Ayar-s. Ayar-s Documentation. Accessed: 2024-10-08. 2024. url: https :
//aya-rs.dev/ (cit. on p. 21).

[13] Wikipedia contributors. Register allocation. Accessed: 2024-10-08. 2024. url:
https://en.wikipedia.org/wiki/Register_allocation#:~:text=If%
20there%20are%20not%20enough,then%20considered%20as%20%22split%
22. (cit. on p. 23).

[14] Liz Rice. Learning eBPF. https://github.com/lizrice/learning-ebpf.
GitHub repository. 2023 (cit. on p. 39).

[15] Anteon Blog. Unveiling eBPF Verifier Errors. https://getanteon.com/
blog/unveiling- ebpf- verifier- errors/. Accessed: October 16, 2024.
2023 (cit. on p. 39).

[16] bpfverif Team. Agni: eBPF verifier testing framework. Accessed: 2024-10-08.
2024. url: https://github.com/bpfverif/agni (cit. on p. 39).

[17] Google Team. Buzzer: eBPF fuzzer. Accessed: 2024-10-08. 2024. url: https:
//github.com/google/buzzer (cit. on p. 39).

94

https://aya-rs.dev/
https://aya-rs.dev/
https://en.wikipedia.org/wiki/Register_allocation#:~:text=If%20there%20are%20not%20enough,then%20considered%20as%20%22split%22.
https://en.wikipedia.org/wiki/Register_allocation#:~:text=If%20there%20are%20not%20enough,then%20considered%20as%20%22split%22.
https://en.wikipedia.org/wiki/Register_allocation#:~:text=If%20there%20are%20not%20enough,then%20considered%20as%20%22split%22.
https://github.com/lizrice/learning-ebpf
https://getanteon.com/blog/unveiling-ebpf-verifier-errors/
https://getanteon.com/blog/unveiling-ebpf-verifier-errors/
https://github.com/bpfverif/agni
https://github.com/google/buzzer
https://github.com/google/buzzer

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Overview of eBPF
	eBPF History
	Applications and Capabilities of eBPF
	Performance Tracing
	High-Performance Networking
	Security
	eBPF in Cloud-Native Environments

	Linux Kernel
	User space and kernel space

	eBPF programming
	User space and kernel space program
	Compilation process
	The eBPF verifier
	The verification process
	Register State
	Verification criteria

	Improving the eBPF verifier errors readability
	Choosing the Context
	Kernel version
	Compiler
	Programming Language Support

	Approaches
	Clang Static Analyzer
	Message Error Analysis
	Pro and Contra of the Two Approaches
	Study of the eBPF Verifier

	Pretty Verifier
	Introduction
	Usage
	Tool Functionality
	Code Structure and Execution Flow
	Error handling
	Output
	Added value
	C line number

	Pretty Verifier Tests
	Structure of the Test Suite
	Test folder

	Test sources
	Testing Methodology
	Fuzz testing
	Limitations in Error Message Coverage

	Test Results and Coverage

	Conclusions and Future Work
	Future Works
	Improved Test Coverage
	Extending Compatibility to Newer Kernel Versions
	Support for Additional Compilers
	Handling Additional Programming Languages

	Verbose list and checks
	Bibliography

