
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

A formal model of the capabilities for
channel protection security controls

Supervisor:
Prof. Cataldo Basile

Candidate:
Davide Colaiacomo

Academic Year 2023/2024
Torino

Abstract

In today’s rapidly evolving cybersecurity landscape, professionals are tasked with managing
numerous tools to safeguard systems against a growing array of threats. With diverse
implementations of open-source and vendor-specific security controls, each utilizing its
own configuration languages and ecosystems, selecting and disposing of the right solutions
becomes a complex and time-consuming challenge for network administrators. This results,
more often than desired, in human-based faults when security policies are enforced.

This thesis presents a formal model of security controls that abstracts security capabili-
ties from a theoretical standpoint. By leveraging software engineering design patterns and
best practices, this model enables the specification of security properties for information
systems without requiring prior knowledge of the underlying enforcement technologies.
A key feature of this approach has been the involvement of a software translator that
seamlessly converts these high-level security requirements into low-level configurations
specific to different technologies.

The research further explores the usage of this model to describe channel protection
security policies from a high-level perspective, offering a new viewpoint on how abstract
descriptions can drive practical security configurations. A significant part of this investiga-
tion is grounded in strongSwan, an IPsec solution widely used to secure remote network
communication, which has served as a practical validation of the model.

This thesis demonstrates the model’s capacity to produce reliable and robust security
configurations by testing the framework in real-world cybersecurity scenarios. Moreover,
its flexible architecture allows for future extensions, enabling support for a wide range
of security software beyond the initial scope and expanding the possibilities for more
adaptable cybersecurity solutions.

i

Acknowledgements

Now that this experience at Politecnico di Torino is coming to an end, I would like to
pause for a couple of minutes and reflect on the entire journey. I believe each goal in
life is better when shared, so I want to express my gratitude to all the people who have
supported and believed in me throughout the journey. First, I would like to dedicate a
thought to my family, particularly my parents and brothers, who have always pushed me
and encouraged me to follow my dreams and be ambitious no matter how hard it may
seem. It is important to know that those who have seen you grow up (or have grown
up with you) always have your back. Then, I want to thank all the friends that I have
gotten to know during these years and before for making everything and every day of this
long effort better. Without a doubt, this would not have been so pleasant and ended so
positively if you had not stood by my side, as you all have done. Finally, I want to thank
my academic supervisor, Prof. Cataldo Basile, for the opportunity to work with him, for
his continuous feedback, and for his availability to help me overcome all my difficulties in
the crowning work of this academic path. Thank you all for everything.

ii

Table of Contents

List of Figures vi

Acronyms vii

1 Introduction 1
1.1 Human errors in cybersecurity . 1
1.2 Vendor lock-in . 2
1.3 Abstraction as a solution . 4

2 Background 5
2.1 IPsec . 5

2.1.1 Internet Key Exchange . 6
2.1.2 IPsec protocols . 8

2.2 System modeling and data representation 13
2.2.1 UML . 13
2.2.2 XML . 17
2.2.3 XSD . 18
2.2.4 XMI . 19

2.3 strongSwan . 20
2.3.1 charon . 20
2.3.2 vici . 20
2.3.3 swanctl . 21
2.3.4 Configuration directories and files 21
2.3.5 strongswan directory . 22
2.3.6 strongswan.conf . 22
2.3.7 swanctl directory . 25
2.3.8 swanctl.conf . 26

iii

3 Related Works 30
3.1 Context of previous works . 30

3.1.1 Network Functions Virtualization 30
3.1.2 Software-Defined Networking . 31

3.2 Security Capability Manager . 31
3.2.1 Framework Overview . 32
3.2.2 The models . 32
3.2.3 The Artifacts . 33
3.2.4 The Java Tools . 37

4 Solution Design 38
4.1 Problem Statement . 38
4.2 Use Cases . 39
4.3 Requirements for the design phase . 40
4.4 Execution of the design phase . 41

4.4.1 Base Model Section . 41
4.4.2 Encapsulation Model Section . 42
4.4.3 Data Encryption Model Section . 43
4.4.4 Data Authentication Model Section 43
4.4.5 Peer Authentication Model Section 44
4.4.6 Authenticated Encryption Model Section 45
4.4.7 Static Key Exchange Model Section 46
4.4.8 Dynamic Key Exchange Model Section 47

5 Solution Implementation 48
5.1 strongSwan Integration . 49

5.1.1 Rekey Parameters Management . 50
5.1.2 Firewall Management . 52
5.1.3 Policies Management . 52
5.1.4 Traffic Marking Management . 53
5.1.5 Grouping problem . 54

5.2 Groups Management . 55
5.2.1 Model and Catalogue update . 56
5.2.2 Including the Dependency Tree . 57
5.2.3 Generation of Groups’ Details . 57
5.2.4 Including the Capability Processing Order 58
5.2.5 Merging Group Details and Capability Processing Order 59

5.3 POSET Processing for Rule Translation 61
5.3.1 Retrieve the correct POSET . 61
5.3.2 Filtering the POSET . 62

5.4 POSET Translation . 64

iv

6 Solution Validation 65
6.1 Design Phase Validation . 66
6.2 Base Capabilities Support Validation . 68
6.3 Insertion of Group Details Validation . 69
6.4 Manipulation of the POSET Validation . 70
6.5 Filtering of the POSET Validation . 70
6.6 Translation Through the POSET Validation 71

7 Conclusions and Future Works 73

A Appendix A 75
A.1 Authentication Rounds . 75
A.2 Keying Attempts . 75
A.3 Certification Authorities . 76
A.4 Public Key Certificates . 76
A.5 Certificates Validation . 77
A.6 Certificate Revocation Lists . 78
A.7 Responses to Certificates Revocations . 78
A.8 Certificates References . 79
A.9 Hardware Offload . 79
A.10 Hardware Modules . 80
A.11 Hardware Modules Slots . 80
A.12 Interface Identifiers . 81
A.13 Interface Names . 81
A.14 Security Labels . 82
A.15 Policy Priorities . 83
A.16 Inner-Outer IP Header Parameters . 83
A.17 Childless Security Associations . 84
A.18 One User - Multiple Connections . 85
A.19 Mediation Servers . 86
A.20 Post-Quantum Cryptography . 87

Bibliography 88

v

List of Figures

2.1 IKE_SA_INIT . 7
2.2 Certification-based Authentication . 8
2.3 CREATE_CHILD_SA . 8
2.4 IPsec modes . 9
2.5 AH in transport mode . 9
2.6 AH in tunnel mode . 10
2.7 ESP in transport mode . 10
2.8 ESP in tunnel mode . 11
2.9 AH + ESP in transport mode . 11
2.10 AH + ESP in tunnel mode . 12
2.11 UML Class example . 14
2.12 UML Relationships examples . 15

4.1 Base Model . 41
4.2 Encapsulation Model . 42
4.3 Data Encryption Model . 43
4.4 Data Authentication Model . 43
4.5 Peer Authentication Model . 44
4.6 Authenticated Encryption Model . 45
4.7 Static Key Exchange Model . 46
4.8 Dynamic Key Exchange Model . 47

5.1 Capability Group . 56

vi

Acronyms

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AH Authentication Header

API Application Programming Interface

CA Certificate Authority

CBC Cipher Block Chaining

CFB Cipher Feedback

CRL Certificate Revocation List

CTR Counter

DM Data Model

DSA Digital Signature Authentication

DSCP Differentiated Services Code Point

IM Information Model

DES Data Encryption Standard

DH Diffie-Hellman

EAP Extensible Authentication Protocol

ECDH Elliptic Curve Diffie-Hellman

ECN Explicit Congestion Notification

vii

ESP Encapsulating Security Payload

GCM Galois Counter Mode

GDPR General Data Protection Regulation

HMAC Hash-based Message Authentication Code

HSM Hardware Security Module

HTTP HyperText Transfer Protocol

ICV Integrity Check Value

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IP Internet Protocol

IPC Inter-Process Communication

IPsec Internet Protocol Security

I2NSF Interface to Network Security Functions

LDAP Lightweight Directory Access Protocol

MAC Message Authentication Code

MTU Maximum Transmission Unit

NAT Network Address Translation

NFV Network Function Virtualization

NSF Network Security Function

OCSP Online Certificate Status Protocol

OOB Out-Of-Band

OOP Object-Oriented Programming

PFS Perfect Forward Secrecy

PKCS Public-Key Cryptography Standards

PKI Public-Key Infrastructure

viii

POSET Partially Ordered Set

PPK Post-Quantum Pre-Shared Key

PSK Pre-Shared Key

QoS Quality of Service

RFC Request For Comment

RSA Rivest-Shamir-Adleman

SA Security Association

SDN Software Defined Networking

SHA Secure Hash Algorithm

SP Security Policy

SPD Security Policy Database

SPI Security Parameter Index

TCP Transmission Control Protocol

TPM Trusted Platform Module

TS Traffic Selector

TTL Time-To-Live

UML Unified Modeling Language

URI Uniform Resource Identifier

VICI Versatile IKE Control Interface

VPN Virtual Private Network

XMI XML Metadata Interchange

XML Extensible Markup Language

XSD XML Schema Definition

ix

Chapter 1

Introduction

In today’s rapidly evolving technological landscape, organizations must frequently integrate
and adapt to various solutions and platforms related to the cybersecurity domain. However,
as new technologies are integrated into existing environments, managing the complexities
of these systems becomes progressively more difficult; reliance on specific technologies has
increased over the years, incrementing the risk of being locked to particular vendors and
making it difficult for organizations to migrate to alternative solutions without significant
costs or disruptions. Simultaneously, the growing sophistication of cyber threats places
immense importance and pressure on security teams, enlarging the likelihood of human
errors during the configuration, maintenance, and management of cybersecurity tools.
These errors often result in severe security vulnerabilities, exposing systems to breaches,
data theft, and even complete operational failures. Human intervention in many complex
cybersecurity processes significantly amplifies the probability of mistakes.

The following sections will explore the consequences of human errors in cybersecurity
and the phenomenon of vendor lock-in, highlighting the need to explore ways to mitigate
these issues and improve overall security resilience.

1.1 Human errors in cybersecurity

Human errors in cybersecurity are significant for an organization’s overall security. Despite
advancements in technology and automation, human involvement remains critical in
managing and securing information systems, as mistakes made by professionals and
non-professionals can lead to severe vulnerabilities. Human errors often manifest in
misconfigurations or oversights during the management of security measures, particularly
for all those that require complex configuration steps. Moreover, employees might not fully
understand and comply with security policies, leading to the adoption of risky practices.

1

Introduction

Misconfiguring security tools or infrastructure usually means the person managing them
makes wrong decisions and does not adopt adequate strategies and algorithms. This leads
to systems inadvertently exposing data and leaving backdoors for attackers to use as they
desire. Going more into the details of this scenarios, some consequences can be:

• Financial loss: breaches often lead to direct financial loss due to costs associated
with remediation and user notification.

• Reputational damage: breaches can reduce customer and stakeholder trust, leading
to lost business opportunities and a long-term decline in market reputation.

• Regulatory consequences: data protection laws like the GDPR (General Data Pro-
tection Regulation) impose fines for breaches that are proven to be consequences of
negligence.

• Operational inefficiency: poor configuration of security tools might lead to false posi-
tives or excessive security alerts, overwhelming security teams and slowing response
times to real threats.

History proves that human errors in cybersecurity are unavoidable and might always
happen regardless of the professionals’ expertise; still, solutions must be adopted to mitigate
them as much as possible, for instance, through adherence to best practices and proper
training, as the consequences can be enormous.

1.2 Vendor lock-in

In a technological environment, vendor lock-in refers to an organization becoming excessively
dependent on a single vendor for products or services, making switching to an alternative
provider difficult. This phenomenon can have significant implications for flexibility and
innovation in practical scenarios, as transitioning from one vendor’s products or services
to another’s incurs high costs and operational challenges. From a generic point of view,
vendor lock-in can take several forms, such as:

• Proprietary technologies: many vendors use proprietary technologies that do not
integrate easily with other systems; this can prevent organizations from moving data
and processes to another platform.

• Custom configurations: some companies’ tools may require extensive customization to
align with the organization’s needs; these customizations can be complex to replicate
on new platforms, creating forms of dependency.

• Data formats and storage: many technological solutions often involve storing and
processing large amounts of data; if this data is stored in proprietary formats, moving
it to a new system without significant reformatting procedures can be challenging.

2

Introduction

• APIs and integration: many platforms usually require integration with other parts
of the organization’s infrastructure; vendor-specific API (Application Programming
Interface) can complicate migration to new platforms, as rebuilding an integration
with a new vendor’s APIs may be far from straightforward.

Diving deeper into the cybersecurity domain, vendor lock-in ’s effects can be problematic
due to the critical nature of security operations; the consequences can be multiple:

• Inflexibility in Response to Threats: if an organization is locked into a particular
vendor, it may be unable to move quickly to new or improved security tools in
response to emerging threats; for instance, if a new vulnerability affects a locked-in
vendor’s tool, the organization might fail to replace that tool with a better solution
from another provider without incurring significant costs or downtime.

• Reliance on a single vendor’s security posture: relying on a single vendor means that
any vulnerability in that vendor’s infrastructure could expose the organization; for
instance, if a sophisticated attack targets a vendor, a lock-in situation implies the
organization has fewer options to shift to another security provider to mitigate risk.

• Lack of innovation: vendors with locked-in customers might reduce their innovation
incentives; over time, this can lead to stagnation in security practices and the use
of outdated technologies, increasing an organization’s risk of staying behind in the
cybersecurity landscape.

• Economic consequences: moving away from a locked-in vendor typically involves time,
financial investment, and resource allocation; for instance, this might manifest with
new hardware and software purchases and staff retraining.

• Reduced contractual power : when organizations depend on a single vendor for critical
security infrastructure, they may lose bargaining power in contract negotiations; as
a consequence, the vendor may raise prices or reduce service quality, knowing the
organization is unlikely to switch.

• Lack of diversification: in cybersecurity, diversification of tools and techniques can
enhance defense mechanisms (this is known as defense-in-depth); relying on a single
vendor can weaken this strategy, leading to a single point of failure.

Several reasons contribute to vendor lock-in in cybersecurity, mainly because many
security tools are highly complex and specialized, leading to difficulties when organizations
try to switch vendors once their systems are integrated. Moreover, the technical expertise
required to operate specific security tools can be a barrier because, if the organization’s
cybersecurity team is accustomed to particular platforms, leading it on new tools can
require significant time and effort.

3

Introduction

1.3 Abstraction as a solution

From this general overview, it becomes clear that all these issues can be roughly linked
by a common weakness, which is the excessive dependence on specific technological
implementation; both the vendor lock-in and the human errors phenomena are caused by
systems having to depend too heavily on the particular technology that is currently in use,
causing difficulties in changing that same technology and to professionals becoming prone
to errors in case they try to take this path.

I2NSF (Interface to Network Security Functions) working group proposed a solution
to this problem by describing what different cybersecurity tools can perform regarding
security functionalities; this has been achieved by realizing a model of these security
functionalities following the principles of abstraction and vendor-independence. Previous
thesis works have followed this approach; in particular, this thesis strongly references the
work from Cirella ’s thesis [1], with much of his results serving as a starting point for what
has been achieved, and that will be thoroughly referenced in the following chapters.

In the context of this thesis, the principles mentioned above have been implemented
focusing on the branch of channel protection, definable as the set of all the security
elements and procedures that must be gathered and adequately utilized to guarantee
secure communication between two or more parties when the data they exchange travels
through possibly hostile mediums. The goal has been to leverage both modelling techniques
already explored by previous works and new ones to explore the abstraction process of
channel protection’s implications; consequentially, the technology-independent aspects of
this topic can be extracted, and professionals in real-world scenarios can be provided with
a way to describe security configurations formally, but with the proper level of abstraction.
The results consist of network administrators not being dependent on the actual channel
protection implementation beneath; consequently, they can define security configurations
without thinking about vendor’s technologies and rely on a common abstract language to
avoid human errors when switching from one low-level technology to another.

The structure of this thesis is defined as follows. Chapter 2 will be dedicated to the
theoretical background required to understand and carry out the work, focusing on the
languages used during the design and implementation phases and the tools used for the
validation phase. Chapter 3 will focus on the related works that have been considered
and studied for their approaches to the same topics. In Chapter 4, the modeling process
for channel protection will be discussed, with great attention to the path that has led
to the final and most suitable conception of a model usable in rigorous scenarios. Then,
in Chapter 5, the actual implementation of this model will be presented, analyzing how
it has been integrated into the already existing framework developed by I2NSF and
previous thesis works. Finally, Chapter 6 will describe the validation process for this
implementation, underlying how the strongSwan tool, an IPsec famous implementation,
has played a crucial role in this. Chapter 7 will discuss eventual conclusions and possible
future works that can start from these results.

4

Chapter 2

Background

This chapter will be dedicated to the theoretical background essential to understanding
the issues this thesis addresses; all the topics introduced have been fundamental in the
decision-making process for the design, implementation, and validation phases of the
overall workflow, as will be underlined through the various chapters. In particular, having
a generic but clear view of the IPsec protocol is helpful as an example of channel protection
implementation and its strong relation with strongSwan. This validation tool will play a
central role in later parts of this thesis, hence, it will be described thoroughly in this chapter.
Moreover, the basics of the languages utilized for modeling and data representation will be
recalled due to their extensive inclusion in all work steps.

2.1 IPsec

This section will present an overview of the IPsec standard to understand which problems
the strongSwan project addresses. Note that this is not intended as a comprehensive
analysis of IPsec but rather a summary of the most crucial aspects to grasp better the
concepts presented in the thesis work. For more details about the single components of
the standard, refer to the relative RFC (Request For Comment), starting from the most
recent about IPsec [2].

IP (Internet Protocol), which is the most widely known protocol for network layer
communication, does not inherently have any feature to guarantee the security of the data
involved; as a consequence, IPsec (Internet Protocol Security) was defined to face this
issue, and it is a framework used to protect IP traffic on the network layer by applying the
security properties required for a secure exchange of data, namely confidentiality, integrity,
authentication and anti-replay.

5

Background

Consider that, in many real cases, the integrity property is automatically provided by
performing the authentication of the data, so each time it is stated that authentication is
provided, it can be assumed that integrity is provided as well, even if not explicitly stated.
From the most general point of view, the idea is that two peers desire to communicate by
exchanging IP packets; to protect these packets, the two peers need first to build an IPsec
tunnel through which these packets can be securely exchanged, and this is obtained using
the IKE protocol.

2.1.1 Internet Key Exchange

The IKE (Internet Key Exchange) protocol establishes a secure channel between two
devices to transmit user data safely. Historically, there are two versions of IKE, which are
IKEv1 and IKEv2 ; the details about implementations for IKEv1 will be presented just for
completion purposes, as it has been deprecated for a few years now and is still supported
only for legacy applications.

Regardless of the version, from a high-level perspective, it consists of a sequence of
actions that aim at defining a set of security algorithms and parameters, known as SA
(Security Association), to protect the user IP data traveling from one device to another.
Substantially, a SA is a way to enforce some guidelines programmed into the specific IPsec
implementation, which go by the name of SP (Security Policy) and specify the possible
options to process IP traffic from a security point of view. The IKE process can be split
logically into two phases.

First phase

In the first phase of IKE, the peer who wishes to protect its traffic will initiate the protocol
and will play the role of the Initiator, while the other peer is the Responder ; the goal is to
establish a secure channel through which the details about how to protect the IP traffic can
be negotiated. Specifically, the items that get exchanged are a hash algorithm to provide
integrity, an authentication method to prove one’s identity, an encryption algorithm to
provide confidentiality, a DH (Diffie-Hellman) group to determine the strength of the key
used in the exchange process, and a lifetime to specify how long the tunnel will stand up.
Once this negotiation is achieved, the two peers have negotiated a specific SA for future
steps, known as IKE_SA, and the first tunnel is instantiated.

In IKEv1, the first phase is known as IKE Phase 1 and all these steps can be performed
through two different modes, which are Main mode and Aggressive mode; the former has
a total of six messages exchanged between the peers, so the process is slower but more
secure thanks to the identification data getting encrypted, while the latter has a total
of only three messages exchanged between the peers, leading to a faster but less secure
process as identification data are left in clear-text.

6

Background

In IKEv2, the operative modes have been deprecated. The first phase, which is known
as IKE_SA_INIT, requires only two messages to be completed (unless the Respondent
desires to verify that it is not under a Denial of Service attack, in which case it will ask
for an additional message with a cookie from the Initiator). Using the Key Exchange (KE)
and the Nonces (N), the peers can derive a Shared Secret to encrypt all the following IKE
messages based on the IKE_SA negotiated via the SA1 payloads.

Figure 2.1: IKE_SA_INIT

Second phase

In the second phase of the IKE protocol, the peers rely on the tunnel derived from the
first phase to instantiate another one, commonly referred to as IPsec tunnel, that will be
used to protect the actual user data.

To achieve so, they need to negotiate an encryption algorithm for confidentiality, an
authentication algorithm for peer authentication, a lifetime to state how long the IPsec
tunnel will be valid, an optional DH exchange to guarantee a property known as PFS
(Perfect Forward Secrecy) (in brief, the communication keys are generated for each session
so that, if the current key gets compromised, the past exchanges remain secure), and finally
the IPsec protocol (AH or ESP) and encapsulation mode (transport or tunnel) that can be
used and which will be discussed later.

In IKEv1, these steps are performed through a single mode known as Quick mode,
which consists of a total of 3 messages; on the other hand, in IKEv2, the second phase is
explicitly known as CHILD_SA, there is not a specific operative mode, and all are carried
out in exchanges of two messages for each CHILD_SA that is defined or for rekey and
informational purposes. The first pair exchange is also known as IKE_AUTH because
its purpose is for the peers to prove their own identity to each other; the format of the two
messages for the IKE_AUTH exchange varies depending on the adopted authentication
method (some frequently used methods are certification-based authentication, as shown in
the image below, PSK-based authentication and EAP-based authentication).

7

Background

Figure 2.2: Certification-based Authentication

What is consistent among all the approaches is the fact that the Initiator proposes a
SA and a set of TS to be used for the first actual CHILD_SA, and the Responder provides
back a selected SA and a possibly narrowed set of TS so that all the necessary information
to protect the IP packets is decided and the IPsec tunnel is instantiated. Subsequent pair
exchanges, known as CREATE_CHILD_SA, can be executed to negotiate additional
CHILD_SAs or to perform the periodic rekeying of either the IKE_SA or a CHILD_SA.
In particular, the presence of the N notification leads to a CHILD_SA rekeying, while its
absence is to perform the rekeying of the IKE_SA.

Figure 2.3: CREATE_CHILD_SA

2.1.2 IPsec protocols

Once the IPsec tunnel is instantiated, the data traveling through it will be protected with
the algorithms negotiated during the IKE protocol; how this protection is concretely applied
still has to be analyzed. As anticipated in the previous paragraph, the communicating
peers, among other elements, negotiate the protocol through which the protection is
applied, which can be AH or ESP, and the mode with which it is applied, which can be
transport or tunnel.

Regarding the IPsec protocols, the AH (Authentication Header) protocol offers
authentication of the IP packet but not encryption. Generally, AH protects the IP packet
by calculating a hash value over the fields in the IP header, excluding those that can change
in transit (namely TTL (Time-To-Live) and header checksum), which would otherwise
fault the authenticity check at the destination. The ESP (Encapsulating Security
Payload), on the other hand, offers authentication and encryption of the IP payload but
not of the IP header; despite so, it is more widely adopted than AH.

8

Background

It should be considered that ESP was initially defined to provide only confidentiality of
the payload, while the possibility to provide authentication has been added later; still, the
algorithms used for authentication can be the same regardless of the protocol.

About the application modes for these protocols, adopting IPsec in transport mode
requires that, starting from the original IP packet, an additional IPsec header (which might
be AH or ESP) is inserted between the IP header and the payload, applying the requested
security properties to the packet. Conversely, adopting IPsec in tunnel mode requires
that, before using the additional header for security purposes, a tunnel is instantiated
by encapsulating the original IP packet in a new IP header. Then, the IPsec header is
inserted between the new IP header and the updated payload, which now also contains
the original IP header.

Figure 2.4: IPsec modes

It is to be noted that transport mode provides encryption (if supported by the protocol)
only to the payload of the packet and not to the header, which might be acceptable only
depending on the actual usage scenario; on the other hand, tunnel mode also secures the
original header of the packet. Moreover, given the nature of the packet transformation,
transport mode is mainly adopted to perform host-to-host secure communication. In
contrast, tunnel mode is suited to connect networks securely.

Authentication Header in transport mode

Figure 2.5: AH in transport mode

9

Background

AH, used in transport mode, requires an AH header to be inserted into the original
IP packet between the IP header and the payload. In this situation, the authentication
property is provided to the whole packet. It can be verified at the Receiver side employing
a procedure that requires a special value inserted in the AH header, known as ICV
(Integrity Check Value); if this procedure fails, the packet is usually discarded without
further analysis.

Authentication Header in tunnel mode

Figure 2.6: AH in tunnel mode

Adopting AH with tunnel mode, a new IP header is added to the original IP packet
before applying the protocol; the AH header is then inserted between the new IP header
and the new payload, which is the original IP packet. The authentication property is
guaranteed to the whole packet, including the new IP header, while the validation details
are the same of transport mode.

Encapsulating Security Payload in transport mode

Figure 2.7: ESP in transport mode

10

Background

The ESP protocol in transport mode requires that the original payload of the IP packet
gets delimited by an ESP header, inserted between the payload and the original IP header,
and an ESP trailer, appended after the payload, to guarantee the encryption of the original
payload; moreover an ESP auth component is optionally added to provide authentication
for the payload of the final packet.

Encapsulating Security Payload in tunnel mode

Figure 2.8: ESP in tunnel mode

Regarding ESP in tunnel mode, the original IP packet receives a new IP header and
becomes the payload of a new IP packet and is then delimited by the ESP header and
the ESP trailer and ESP auth components. The original IP header is also encrypted and
authenticated.

AH + ESP in transport mode

Figure 2.9: AH + ESP in transport mode

The two protocols can be combined in transport mode by taking the original IP packet
and inserting both an AH header and an ESP header between the IP header and the
payload while also adding the ESP trailer and ESP auth as required by ESP. Regarding
the security properties applied to the packet, the result is similar to ESP’s. However,
thanks to the AH header, authentication is provided to the entire packet.

11

Background

AH + ESP in tunnel mode

Figure 2.10: AH + ESP in tunnel mode

Combining the AH and ESP protocols in tunnel mode requires adding a new IP header
to the original IP packet. An AH header and an ESP header are inserted between the new
IP header and the original one, and the ESP trailer and ESP auth are appended to the
whole packet. The original IP header and payload are encrypted, and authentication is
provided to the final packet, including the new IP header.

12

Background

2.2 System modeling and data representation

As already anticipated, extensive modeling had to be performed to implement abstract
descriptions of channel protection. This step is crucial for understanding how this cyberse-
curity branch maintains a consistent and structured approach across different low-level
tools and protocols. Once the modeling operations are concluded, the final model must be
represented in a processable way by software applications relying on standard represen-
tation formats. This approach ensures that the abstract concepts are understandable to
human stakeholders and seamlessly integrated and utilized by automated systems. This
section will present an overview of the languages and formats used to model and represent
the final system in machine-readable form.

2.2.1 UML

The UML (Unified Modeling Language) is a standardized visual language used to
model and document software systems, architectures, and processes. It provides tools
that describe the structure and behavior of software systems, making it easier to visualize
and design complex applications. UML aims to provide a common language that can be
understood across different domains, and it is widely used during various stages of software
development, from requirements gathering and analysis to design and implementation;
moreover, since it is not a programming language, it has garnered popularity as a way to
convey descriptions of systems, which should eventually be implemented by programmers,
to non-computer experts.

UML comprises various diagram types broadly categorized into two main groups, namely
structural diagrams and behavioral diagrams. Structural diagrams represent the static
aspects of a system and describe the elements that make it up, such as classes, objects, and
packages, and the relationships between them. On the other hand, behavioral diagrams
represent a system’s dynamic aspects, which are how the system behaves during execution
and how it reacts in response to specific stimuli. For this thesis work and the related
ones that were previously developed, the most used type is the class diagram, which is a
specialization of structural diagrams [3].

Class diagram

Class diagrams are a type of UML that is possibly the most widely employed in software
development processes; it is used to document and perform design operations for object-
oriented systems and aims at representing their structures through classes and relationships.
These entities embody a visual approach suited for these systems; an overview of their
most important aspects follows.

13

Background

A class is a concept of OOP (Object-Oriented Programming) that represents the
template for creating an object. An object is an instance of a class, and each class defines a
group of attributes and operations that the object instantiated will possess; more precisely,
attributes represent the properties of the object, while operations specify which actions the
object can perform.

Figure 2.11: UML Class example

Going into the most ordinary details of the notation, each class has a name and,
optionally, a set of attributes and a set of operations, as stated above. Each attribute has
an attribute name and an attribute type, while each operation has an operation name and
a return type. Moreover, each operation can be provided with one or more parameters;
each parameter has a parameter name and a parameter type and is also provided with a
parameter directionality. This last characteristic clarifies the flow of information between
classes so that when an operation is invoked, it is understandable how data is passed; this
directionality can be specified as in if the parameter carries input data from the caller
to the called object, out if the parameter will eventually carry output data for the caller
provided by the called object, and inOut if the parameter can serve both these purposes.
Finally, each attribute and operation has a visibility notation, which indicates its access
level. In particular, if it is visible to all classes, it is defined as public through the + marker;
if it is visible only within the class, it is defined as private through the - marker; if it is
visible to sub-classes, it is defined as protected through the # marker; if it is visible to all
the classes, but in the same package, it is defined as default through the ∼ marker.

In OOP, traditional classes are also often related to abstract classes and interfaces.
These concepts help enforce design principles and organize code by defining common
behaviors across different classes while still allowing flexibility in implementation.

Abstract classes can combine both methods with concrete implementations and methods
without implementation, known as abstract methods. Classes that extend an abstract class
must provide concrete implementations for all of its abstract methods unless the extending
class is also abstract. It is important to note that abstract classes cannot be instantiated
directly; they require a subclass that provides implementations for the abstract methods.
One fundamental limitation is that a traditional class can extend only one abstract class,
adhering to the principle of single inheritance in many OOP languages like Java and C++.

14

Background

On the other hand, interfaces are purely a collection of method declarations. They
specify abstract methods but do not provide any concrete implementations for these methods.
Unlike abstract classes, interfaces cannot have any method implementations or non-static
fields. All fields defined in an interface are implicitly public static final, making them
constants. A traditional class that implements an interface must provide implementations
for all declared methods. However, an important distinction is that a class can implement
multiple interfaces, which allows for a more flexible and modular design, enabling a form
of multiple inheritance by combining behaviours from various interfaces.

In modern programming languages, such as Java 8 and later, interfaces have been
extended to include default methods, which allow methods to have concrete implementations
within the interface. This feature blurs the line between abstract classes and interfaces to
some extent, but interfaces still primarily focus on defining contracts rather than sharing
standard functionality, as abstract classes do.

Regarding relationships, in UML, they are used to describe how classes are connected
and interact with each other within a system. There are many types of relationships, some
of which are described in the following.

Figure 2.12: UML Relationships examples

The association is a bi-directional relationship that indicates a generic connection
between instances of the connected classes. This type of relationship does not state any
surrounding details; it is just used to assert that these entities are somehow related within
a system. For instance, a Book class and an Author class can be linked through an
association to indicate that a book is written by an author, without stating anything more.

The directed association is a relationship similar to the association. Still, it has a
direction stating that one class initiates the relationship with the other, which is said to
be targeted or affected by the relationship (the targeted class is the one pointed by the
arrow). For example, a Teacher class can have a directed association to a Course class to
indicate that a teacher initiates the relationship by teaching a specific course.

The aggregation is a relationship representing the whole-part concept; this means that
if two classes are linked through this relationship, one class contains the other (the container
class is the one with the empty diamond shape on its side). Note that the contained class
can exist independently of the container class. For example, a Reunion class can have an
aggregation relationship with a Person class to state that many people can participate in a
reunion; still, if the reunion ceases to be, the people can exist independently.

15

Background

The composition is a relationship similar to the aggregation, as it states that an
instance of a container class is composed of instances of another class (the container class
is the one with the filled diamond shape on its side). The critical difference is that the
composing class instances cannot exist if the container class instance ceases to exist; for
example, a Digital Book class can have a composition relationship with a Page class to
indicate that a digital book is composed of many pages; in this scenario, if the digital book
is deleted, its pages cease to exist as well.

The generalization, also known as inheritance, is a relationship that represents the
is-a concept, which means that one class, usually referred to as child or subclass, inherits
the properties and behavior of another class, usually referred to as parent or superclass (the
empty arrowhead points to the parent class). For example, in the context of a restaurant,
an Employee class can be linked through a generalization to many child classes, such as a
Waiter class, a Cook class, and a Dishwasher class to indicate that many people working in
a restaurant have some common characteristics that are inherited by the Employee class.
Still, each can also have peculiar ones stated in each subclass.

The implementation, also known as realization, is a relationship indicating that a
class realizes features and operations defined by an interface. In this sense, it should be
recalled that, in OOP, an interface is an abstract entity that provides signatures of particular
methods; consequently, if a class implements that interface, it must implement those
methods concretely (the empty arrowhead points to the interface that gets implemented).
For example, a Rectangle class can be linked to an Area interface, which is provided with a
calculateArea signature of a method, through an implementation relationship; this indicates
that the Rectangle class must provide a concrete implementation for calculateArea.

The dependency is a relationship indicating that a class depends on another class
through a connection that is generally looser than other types of relationships because
the class that depends on the other can still exist without it, and the class on which the
other depends on does not change its functionalities if this relationship ceases to exist (the
dashed arrow starts from the class needing the dependency and points to the class that
represents the dependence). For example, a Person class can be linked to an Book class
through a dependency relationship to state that a person needs a book to read its content,
provided the person has a readBook method; still, if the relationship ceases to exist, the
person continues to exist and the book maintains its characteristics.

The usage is a relationship indicating a class that utilizes another class to access
certain functionalities, making it more explicit that one class cannot perform specific
actions without the assistance of the other class; usually, the class that uses is called client,
while the one that is used is called supplier. The notation is identical to the dependency
one, but it is enriched with the use keyword to underline the client-supplier nature of
the relationship. For example, a Computer class can be linked to an Electrical Energy
class through a usage relationship to state that a computer depends on electrical energy to
function appropriately; if the relationship ceases to exist, the computer cannot provide its
functionalities anymore.

16

Background

2.2.2 XML

XML (Extensible Markup Language) is a versatile, platform-independent standard
for encoding documents in a human-readable and machine-readable format; unlike pro-
gramming languages, XML does not perform computations, as it is a markup language
that has been designed with a focus on how data is structured and stored. The main
characteristic of this language is that it wraps information in tags; each tag name is
enclosed between a < and a >, and the actual data must appear between an opening tag
such as <tagName> and a closing tag such as < /tagName>. It should be noted that these
tags are not necessarily predefined but are decided by the author of the XML document,
just as the structure of the comprehensive document is to be decided.

XML’s strength lies in its ability to formally represent complex data structures in a
simple text format using a hierarchical structure that allows for nested elements, making
it ideal for representing anything from small configuration files to complex datasets (this
characteristic is known as being well-formed). This flexibility makes XML a popular choice
for data interchange between systems, often as the foundation for custom markup languages
in specialized fields. Additionally, XML’s standardization and platform neutrality make it
a reliable tool for ensuring interoperability between diverse systems and applications [4].

In the context of the Security Capability Manager framework, XML has been adopted
for specific characteristics that made it suitable for the goal of the project; for instance,
its tags, which can be default tags or customized ones, provide explicit context for the
data they enclose, making it easier to understand and process the information. Moreover,
since XML documents are plain text files, they can be created, read, and processed across
different tools of the Security Capability Manager framework.

It follows an example snippet of how an XML file describing a library containing some
books might appear:

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <library >
3 <book id=" B001">
4 <title >XML for Beginners </ title >
5 <author >John Doe </ author >
6 <published >2022 -05 -10 </ published >
7 <price >29.99 </ price >
8 </book >
9 <book id=" B002">

10 <title > Advanced XML </ title >
11 <author >Jane Smith </ author >
12 <published >2021 -12 -01 </ published >
13 <price >35.50 </ price >
14 </book >
15 </library >

17

Background

As XML’s tags are custom, they can be defined to make the content self-explanatory,
which is useful mainly for human stakeholders. In this case, a library object is defined,
which contains two book objects; each book has an id attribute and some child elements,
namely a title, an author, a published date and a price. An issue here arises regarding
the logical consistency of this XML snippet. While it is well-formed thanks to the XML
grammar being respected if the data enclosed in the published tag is changed to a string
not representing a date, it would lose its logic while remaining well-formed. To face this
issue, XSD documents must be introduced.

2.2.3 XSD

XSD (XML Schema Definition) is a tool used to define and enforce the structure,
content, and semantics of XML documents. While XML provides a way to structure
data, it does not inherently guarantee that the data adheres to any specific logical rules
beyond basic syntactic correctness. An XML document may be well-formed if it follows
proper syntax but still contains inconsistencies or incorrect data concerning the specific
requirements of an application or system. XSD addresses this by providing a mechanism to
validate XML documents against a predefined schema, ensuring that they are syntactically
correct, logically valid, and consistent with the intended data model. In particular, XSD
defines the constraints for elements and attributes within an XML document, such as
which elements and attributes can appear in a document, the number and order of child
elements, data types for elements and attributes, and eventual default values.

XSD follows the same semantic rules of XML, so, other than using the same approach
regarding tags, it is easily extensible with new regulations and constraints regarding the
XML documents it refers to. Moreover, it can define simple data types, such as integers or
strings, and complex types with multiple nested elements and attributes. Consequently,
XSD can serve as the blueprint for XML documents, defining the rules that the XML data
must follow and ensuring that XML documents are not only well-formed but also valid
according to user’s logic [5].

In the context of the Security Capability Manager framework, XSD files are used
because of the support they provide for a wide range of built-in data types and for
creating custom data types to meet specific needs, regardless of their complexity; since the
framework requires non trivial data structures to represent the needed data and achieve its
functionalities, validating the XML files through XSD is a mandatory choice. Moreover,
given the mechanism to validate XML documents against the defined schema in the XSD
files, the data that will be described in XML files will be automatically checked without
the need for human intervention.

It follows an example snippet of how an XSD file setting rules and constraints for the
library described in the previous section might appear:

18

Background

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <xs: schema xmlns:xs=" http :// www.w3.org /2001/ XMLSchema ">
3 <xs: element name =" library ">
4 <xs: complexType >
5 <xs:sequence >
6 <xs: element name =" book" maxOccurs =" unbounded ">
7 <xs: complexType >
8 <xs:sequence >
9 <xs: element name =" title" type ="xs: string "/>

10 <xs: element name =" author " type ="xs: string "/>
11 <xs: element name =" published " type ="xs:date "/>
12 <xs: element name =" price" type ="xs: decimal "/>
13 </xs:sequence >
14 <xs: attribute name ="id" type ="xs: string " use =" required "/>
15 </xs: complexType >
16 </xs:element >
17 </xs:sequence >
18 </xs: complexType >
19 </xs:element >
20 </xs:schema >

The root element of the XML document is a library and is a complex type; each library
can have an unlimited number of book elements, as indicated by the unbounded option. The
book element is a complex type and contains a sequence of child elements and an attribute;
these are a title, a string type element; an author, a string type element; published, a date
type element; a price, a decimal type element. A book also has a string id attribute; the
required option specification makes this attribute mandatory for each book element.

2.2.4 XMI

XMI (XML Metadata Interchange) is a standardized format used for exchanging
metadata information via XML; it is primarily used in the context of model-driven
engineering, where it serves as a bridge between various modeling tools and environments.
XMI is particularly important in software development, where it is employed to exchange
models created using UML and other standards. In particular, XMI is used to serialize
mainly UML models in XML, allowing the saving and transfer of systems’ components and
related relationships between different modeling tools and improving interoperability across
various stages of software development. It can be assessed that XMI leverages XML’s
flexibility and extensibility to represent complex metadata, including software models, in a
machine-readable and platform-independent format [6].

In the context of the Security Capability Manager framework, XMI format is adopted
to enable the export of the system’s UML models and other metadata in a standardized
way so that it is possible for different tools of the framework to operate on them and
execute the functionalities that will be presented in later chapters of this thesis work.

19

Background

2.3 strongSwan

Once the generic structure of IPsec is understood, it is clear that the basis on which the
protection of a communication channel stands is the definition of this channel, which
can be thought of as an abstract concept to indicate the gathering of algorithms and
procedures that are applied on a particular data traffic so that it complies with specific
security properties; how this is achieved in real scenarios depends on the implementation.

strongSwan is an IPsec implementation with particular focus on the IKE protocol. Its
primary purpose is to offer an implementation of the IKEv2 protocol (IKEv1 is supported
but not recommended) to establish SAs between two communicating peers, as well as
negotiating SPs for them. It must be noted that strongSwan does not directly handle IPsec
traffic; it just installs the SAs and the SPs that have been negotiated into the operating
system’s kernel, which will take care of it along with the network itself.

Taking into account its components, the strongSwan application responsible for the
actual execution of the IKEv2 protocol is the charon daemon; this daemon can be configured
and controlled by a command line utility that is known as swanctl, through an interface
plugin called vici. A brief overview of these components will be presented to clarify their
logical links. Note that in legacy scenarios, the swanctl utility’s functions were performed
by the ipsec utility, which communicated with another daemon called starter, which in
turn configured the charon daemon; these two components will not be considered as they
are deprecated [7].

2.3.1 charon

To implement the IKEv2 protocol and establish secure connections among peers, strongSwan
relies on charon, which is a daemon built purposely for this goal. It has many components
that are used to manage the IKE_SAs and the related CHILD_SAs, as well as proper
methods to communicate with the device’s kernel and install all the IPsec associated
elements such as SAs, SPs, etc. If they implement a proper interface, these plugins can
register with the daemon at startup and insert themselves into its functionalities. The vici
plugin interface is among the supported plugins.

2.3.2 vici

To configure and control the charon daemon, strongSwan provides the vici plugin, which is
one of the many charon’s plugin and integrates the VICI (Versatile IKE Control Interface)
in the project. This interface is specifically suited for IPC (Inter-Process Communication)
and was designed to face the problem of providing different systems with the necessity to
automate the interaction with the IKE daemon; the advantage is that external tools can

20

Background

configure and control the charon daemon without the need for human intervention. VICI
can be seen as an application that implements the server side of this IPC protocol that solves
the issue above and uses a request/response system with event messages to communicate
with the external utilities reliably. In particular, external tools can send requests to
configure connections, load certificates and secrets, or retrieve status information. The
vici plugin responds to these requests and can send notifications or event messages to
indicate status changes or important events, such as connection state changes or certificate
expirations. This event-based communication is beneficial for real-time monitoring and
adjustments in dynamic IPsec environments. In this scenario, swanctl is the utility that
relies on this plugin to communicate with the charon daemon and configure its functions.

2.3.3 swanctl

As anticipated, swanctl is a command line utility that, through the vici plugin, can be used
to configure, control and monitor the charon daemon. This tool is integral to managing
IPsec-based VPN (Virtual Private Network) configurations, allowing administrators to
interact dynamically with the IKE daemon to manage secure connections. Many sub-
commands can be used to instruct the IKE daemon about how to manage connections or
to view current connection states, retrieve detailed logs, and obtain information about the
daemon’s overall status. Moreover, there are specific commands that have a --load- prefix
and which are used to read information, such as connections, secrets, and IP address pools,
from a particular file, namely the swanctl.conf file; this file represents the central point
for what concerns the definition of secure channels and it will be thoroughly described
later.

2.3.4 Configuration directories and files

To manage the settings provided by strongSwan, the user is offered a series of configuration
directories and files, which can be modified to control the details through which the
daemon eventually builds secure connections once executed. For this thesis’ purposes, the
strongswan.d directory and the strongswan.conf file will be presented, as these are used
for the general configuration of the whole tool and carry much of the syntactical approach
that is followed by all the others. Then, the swanctl.d directory will be described, as this
contains all the files and sub-directories required by the charon daemon to implement the
IKEv2 procedure; great focus will be given to the swanctl.conf file, which is the main
target of this thesis work validation and is the one responsible for defining the security
details of the IKE_SA and the consequent CHILD_SAs.

Information on the legacy ipsec.conf file and its related components will not be dispensed
as they follow a rigid and non-hierarchical syntax, for which reason they are considered
deprecated, and configuring strongSwan through them is not recommended anymore; still,
support for them is kept for legacy applications.

21

Background

2.3.5 strongswan directory

The content of the strongswan.d directory is located by default at /etc/strongswan.d
and gathers many configuration snippets that can be included in the strongswan.conf file
by employing instructions resembling include strongswan.d/file_to_include.conf.
It also contains a charon sub-directory that carries configuration snippets for enabled and
installed plugins; as an example, since the vici interface plugin is installed and enabled for
the correct usage of the swanctl command tool, it is possible to find a vici.conf file that
has the following template:

1 vici {
2

3 # Whether to load the plugin . Can also be an integer to increase the
4 # priority of this plugin .
5 load = yes
6

7 # Socket the vici plugin serves clients .
8 # socket = unix ://${ piddir }/ charon .vici
9 }

These configuration snippets for the charon daemon are also included by default in the
strongswan.conf file employing the instruction include strongswan.d/charon/*.conf
in the plugins subsection of the charon section.

2.3.6 strongswan.conf

Given the incremental nature of the strongSwan project, the syntax used, by instance,
in the legacy ipsec.conf file, due to its specific and hardly scalable format, is not the
appropriate choice to describe options for all the related components of strongSwan; the
strongswan.conf file has been introduced from version 5.1.2 as a solution to the necessity
of defining general configurations in a way that they can be accessible to extend and
readable by all the other strongSwan applications.

Basic structure

The strongswan.conf file consists of a series of hierarchical sections defined by a list of
key-value pairs. A section has a name and is followed by its body enclosed by ’{’ and ’}’;
the body can be recursively composed of sub-sections that follow the same semantic rule
and key-value pairs in the form of key = value (note that each key-value pair has to be
terminated by a newline character). A line can be interpreted as a comment if it starts
with a ’#’, and the indentation is not mandatory.

22

Background

An example of a file following the strongswan.conf file syntax can be:

1 key1 = value1
2 # Comment 1
3 section1 {
4 key2 = value2
5 subsection1 {
6 key3 = value3
7 }
8 key4 = value4
9 }

10 # Comment 2
11 section2 {
12 key5 = value5
13 }

An observation worth adding is that sections and key names are arbitrary and can
contain all possible printable characters except for the ones that might cause ambiguities
of parsing (’.’ ’,’ ’:’ ’{’ ’}’ ’=’ ’"’ ’#’ ’\n’ ’\t’ ’space’).

References

One feature introduced with version 5.7.0 is the possibility of referencing other settings and
sections to inherit all their key-value pairs with their absolute names; in case of necessity,
the value of keys can be overridden by assigning a new value in place, which is helpful
since the level of inclusion cannot be currently limited. It is possible to clear the value of
an included option by assigning an empty value so that its default value, if defined, will be
applied.

In general, a section can apply this inheritance by writing the name of the section, like
in the normal case, and then following with a ’:’ and a non-empty list of section names
that are consequentially inherited; multiple sections have to be separated by a ’,’. As an
example, writing newSection : refSection1, refSection2 {body_of_newSection}
indicates that newSection will inherit all key-value pairs and subsections of refSection1
and refSection2 in its body.

The referenced sections are searched starting from the most external scope of the
file, which means that if only a subsection should be inherited, it is possible to use
a recursive syntax by naming the chain of the sections from the most external to
the required one, splitting them with a ’.’ As an example, if a sub-sub-section
has to be inherited by a newSection, this can be obtained by writing newSection :
section.sub-section.sub-sub-section {body_of_newSection}. Consider that refer-
ences are resolved at runtime, so it is not an issue if a reference points to a section defined
later in the file.

23

Background

A generic example including all these cases is:

1 conn - defaults {
2 # conn - defaults body
3 }
4 eap - defaults {
5 # eap - defaults body
6 }
7 child - defaults {
8 # child - defaults body
9 }

10 connections {
11 conn -a : conn -defaults , eap - defaults {
12 # inherits everything from conn - defaults and eap - defaults
13 children {
14 child : child - defaults {
15 # inherits everything from child - defaults
16 }
17 }
18 }
19 conn -c : connections .conn -a {
20 # inherits everything from conn -a, which means everything
21 # from conn -defaults , eap - defaults and child -defaults ,
22 # since the subsections are also recursively inherited
23 }
24 }

Including files

Another helpful feature is the possibility to include external configuration files in the
strongswan.conf file; as a consequence, a file with the already discussed semantic can be
included in a specific place of the file, and all the settings will be incorporated; this is achiev-
able employing the instruction include path/of/the/file, in which path/of/the/file
can be a relative or an absolute path and might also include the standard shell wild-
cards. As an example, the name of the file could be referenced by writing include
path/of/the/*.conf.

The settings that get included are limited to the scope in which the include instruction
is placed, which can be a section at any level of nesting; the general rule is that the imported
sections are added if sections with the same name are not already present; otherwise, they
extend the homonym ones by recursively adding subsections and key-value pairs in the
original one. Note that if a key-value pair with a homonym key already exists at the same
level as the included settings, the current value is overwritten by the imported one.

An example of the inclusion of external files is reported, which, once the inclusions are
resolved, actually represents the same configuration file example reported in 2.3.6

24

Background

strongswan.conf

1 key1 = value1
2 # Comment 1
3 section1 {
4 key2 = beforeinclude
5 include include .conf
6 }
7 include another .conf

include.conf

1 # settings included from this file are added to section1
2 # the following replaces the previous value
3 key2 = value2
4 subsection {
5 key3 = beforeanother
6 }
7 key4 = value4

another.conf

1 # this extends section1 and subsection
2 section1 {
3 subsection {
4 # this replaces the previous value
5 key3 = value3
6 }
7 }
8 section2 {
9 key5 = value5

10 }

2.3.7 swanctl directory

The content of the swanctl directory is located by default at /etc/swanctl and contains
the swanctl.conf file, as well as many sub-directories gathering file-based credentials and
private keys used by the charon daemon to implement the IKEv2 protocol.

25

Background

2.3.8 swanctl.conf

With the introduction of the swanctl utility to manage the charon daemon, a new configu-
ration file has been introduced, namely the swanctl.conf, which substitutes the legacy
ipsec.conf file; this configuration file provides connections, secrets, and IP address pools
for swanctl to control the charon daemon. The default location of this file is /etc/swanctl,
it is defined as a series of key-value pairs and follows the same syntax rules that were
presented for the strongswan.conf file.

To define these settings and describe how channel protection between devices should
be achieved, the file can be edited by changing the values of the supported options, noting
that if an option is not explicitly assigned, it automatically gets the default value (provided
it has one). The swanctl.conf file is characterized by four main sections:

• connections: this is the most articulated section; it allows defining the actual IKE
connection configurations and precisely the details for the IKE_SA on which all the
CHILD_SAs will eventually rely on; each connection contained in the connections
section is described as a sub-section with a unique name and in which the supported
options can be defined. All the possible key-value pairs and their usage are described in
the official documentation at https://docs.strongswan.org/docs/5.9/swanctl/
swanctlConf.html#_connections.
In addition, to complete the definition of the IKE_SA and to instruct the application
about eventual CHILD_SAs, three sub-sections appear in this section:

– local: this sub-section allows adding specifications for a local authentication
round, which is how authentication is performed for the local peer; for more
advanced usage, if multiple rounds have to be instantiated, one round can
be defined as a section having the ’local’ keyword as prefix and a unique
suffix, which is not requested if only one authentication round is required.
All the possible key-value pairs and their usage are described in the of-
ficial documentation at https://docs.strongswan.org/docs/5.9/swanctl/
swanctlConf.html#_connections_conn_local.

– remote: this sub-section allows adding specifications for a remote authenti-
cation round, which is how external peers must authenticate to use this con-
nection; for more advanced usage, if multiple rounds have to be instantiated,
one round can be defined as a section having the ’remote’ keyword as prefix
and a unique suffix, which is not requested if only one authentication round is
required. All the possible key-value pairs and their usage are described in the
official documentation at https://docs.strongswan.org/docs/5.9/swanctl/
swanctlConf.html#_connections_conn_remote.

– children: this sub-section allows adding specifications for a CHILD_SA con-
figuration; since each IKE_SA may generate more than one CHILD_SA,
the general rule is that the children’s sub-section in each connection of the

26

https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_connections
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_connections
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_connections_conn_local
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_connections_conn_local
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_connections_conn_remote
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_connections_conn_remote

Background

connections section should have a unique name within the connection it-
self and the different child configurations can be independently modified.
All the possible key-value pairs and their usage are described in the of-
ficial documentation at https://docs.strongswan.org/docs/5.9/swanctl/
swanctlConf.html#_connections_conn_children.

An example of how a connections section would appear is presented:

1 connections {
2 connectionName1 {
3 local_addrs = value1
4 local {
5 auth = value2
6 id = value3
7 }
8 remote {
9 auth = value4

10 }
11 children {
12 childName1 {
13 local_ts = value5
14 updown = value6
15 esp_proposals = value7
16 }
17 }
18 version = value8
19 proposals = value9
20 }
21 connectionName2 {
22 local_addrs = value10
23 local {
24 auth = value11
25 certs = value12
26 id = value13
27 }
28 remote {
29 auth = value14
30 }
31 children {
32 childName2 {
33 local_ts = value15
34 updown = value16
35 esp_proposals = value17
36 }
37 }
38 version = value18
39 proposals = value19
40 }
41 }
42

27

https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_connections_conn_children
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_connections_conn_children

Background

In this example, connectionName1 and connectionName2 are arbitrary names and
must be unique in the scope of the connections section; also childName1 and child-
Name2 are arbitrary names for the sub-sections of the CHILD_SAs, and they should
be unique only in the scope of each single children section.

• authorities: this section allows defining additional attributes for the certification
authorities; each authority contained in the authorities section is described as a
sub-section in which the supported options can be defined. All the possible key-
value pairs and their usage are described in the official documentation at https:
//docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_authorities.

An example of how a authorities section would appear is presented:

1 authorities {
2 certificationAuthorityName {
3 cacert = value1
4 ocsp_uris = value2
5 }
6 }
7

In this example, certificationAuthorityName is an arbitrary unique name.

• secrets: this section allows defining secrets for authentication and private key
decryption; it is composed of different subsections having a specific prefix, which
represents the secret type and for which some options can be defined. All the possible
key-value pairs and their usage are described in the official documentation at https:
//docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_secrets:

An example of how a secrets section would appear is presented:

1 secrets {
2 eap1 {
3 id = value1
4 secret = value2
5 }
6 eap2 {
7 id = value3
8 secret = value4
9 }

10 }
11

In this example, eap1 and eap2 are names composed of a prefix (eap) and a suffix;
the suffixes are arbitrary and unique, while the prefixes are fixed keywords.

28

https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_authorities
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_authorities
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_secrets
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_secrets

Background

• pools: this section allows defining named pools that may be referenced by connections
with the pools option, and that can be used to assign virtual IPs and other configura-
tion attributes; similarly, in this case, the name of the pools should be unique. All the
possible key-value pairs and their usage are described in the official documentation at
https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_pools.
An example of how a pools section would appear is presented:

1 pools {
2 pool1 {
3 addrs = value1
4 }
5 pool2 {
6 addrs = value2
7 }
8 }
9

In this example, pool1 and pool2 are arbitrary unique names.

29

https://docs.strongswan.org/docs/5.9/swanctl/swanctlConf.html#_pools

Chapter 3

Related Works

This chapter is dedicated to how past works and results obtained from previous researchers
have influenced and guided this thesis. The first part will focus on the research documented
in scientific papers, mainly on the paradigms studied to address recent networking issues.
The second part will shift to presenting the framework on which this thesis has built
its foundations and eventually enhanced, with attention to its general workflow and
characteristics.

3.1 Context of previous works

As modern networks grow in size, complexity, and demand, traditional networking archi-
tectures have proven inflexible, costly, and challenging to scale. The increasing complexity
of security management and the rapid growth of sophisticated cyberattacks further com-
plicates the scenarios. To address these limitations, Network Function Virtualization and
Software Defined Networking paradigms have emerged.

3.1.1 Network Functions Virtualization

NFV (Network Function Virtualization) transforms how network services are deployed
and managed by decoupling network functions from the hardware on which they are
executed. Traditionally, security services were tied to specific hardware devices, requiring
significant capital investment, lengthy deployment times, and costly maintenance efforts.
NFV shifts these functions into software that can run on commodity hardware, allowing
network operators to deploy and update network services as needed without the constraints
of physical hardware.

30

Related Works

In recent years, the idea of exploring this approach through NFV has increased; for
instance, reliance on vendor-specific hardware is reduced as NFV enables general-purpose
servers to run network functions. Moreover, NFV makes it easier to scale services based
on network demand. Despite this, there is still the issue of standardization; many security
services provided in virtualized environments rely on proprietary solutions, which can lead
to vendor lock-in and interoperability issues. To solve this, the IETF (Internet Engineering
Task Force) has been working on developing standard interfaces for NFV-based security
services, referred to as NSF (Network Security Function)s [8].

NSF is a term used to underline a function that implements some of the most common
security properties; many different NSFs can be used to guarantee a customized range of
security properties and can be provided by various vendors for different technologies, so the
goal was to standardize the interface through which these NSFs can be configured in a way
that is agnostic of vendors and technologies. The goal is to create standardized interfaces
that allow third-party security vendors to integrate easily into virtualized environments.

3.1.2 Software-Defined Networking

SDN (Software Defined Networking) addresses the separation of the network’s control
plane from the data plane. In traditional network architectures, each network device has
its control plane, making it difficult to manage large-scale networks and apply consistent
policies across all devices. This leads to inefficient network management, slow service
deployment, and the inability to dynamically respond to changing traffic patterns [9].

SDN was one of the paradigms followed by Basile et al. [10] for a study that is part of
the primary foundation for this thesis work. This is because it introduces a centralized
control plane decoupled from the hardware, allowing network administrators to control the
network through a centralized controller. This controller has a global view of the network,
enabling the implementation of policies across all network devices from a single point of
control. Furthermore, SDN controls network behavior using software applications, enabling
faster service deployment and more dynamic traffic management. Finally, by abstracting
network control from the hardware, SDN allows networks to adapt to real-time traffic
conditions, security threats, or business needs.

3.2 Security Capability Manager

This thesis has started from an already existing framework, called Security Capability
Manager, that proposes a solution to the issue of deploying security functions in different
environments with peculiar low-level characteristics; the basic idea has been to develop an
environment in which network administrators could describe at a high level the security
details they wish to implement for a system, employing a common abstract language.

31

Related Works

Then, through proper automatic translation tools, the abstract language would be
autonomously translated into low-level specifications that depend on the underlying
technologies without requiring the administrators to be informed about them. Given the
scalable nature of this framework, vendors can add support for new security applications
so that high-level policies can be described and translated into low-level ones.

3.2.1 Framework Overview

The framework was realized using a methodology similar to the one adopted for the
current thesis work to implement the objectives described in the previous paragraph. The
Modelio tool was employed to model the architecture of the two main models describing
the framework, namely the Capability Information Model and the Capability Data Model.
Then, the processing of these models and the consequent translation of high-level policies
to low-level ones is carried out using three Java tools, namely the XMI to XSD Converter,
the Abstract Language Generator and the NSF Translator. The artifacts required by these
tools to properly function are the XMI Model, XSD Capability Data Model, the NSF
Catalogue, the XSD Grammar for a specific NSF, an XML Rule for a particular NSF,
and a Low-Level Policy with the translated policy. These main components will now be
described, as possessing explicit knowledge of their roles in the framework is crucial to
understanding the implementation of this thesis work.

3.2.2 The models

This section will present the models that comprise the framework’s design, underlining
their purpose theoretically and in this thesis’s context.

Capability Information Model

An Information Model typically focuses on concepts and their relationships, independent
of any specific implementation or technology, and defines the meaning and rules of the
data without worrying about how that data is stored or physically represented; technical
details are consequentially left for other models.

The CapIM is a model that describes the framework and its functionalities in a
general way. In the context of the Security Capability Manager, the CapIM describes NSFs
abstractly and their relations with Security Capabilities. In modeling these entities, the
focus is provided to how the different NSFs and the related Security Capabilities have
to be translated into low-level specifications, employing a class known as NSFCatalogue,
which is linked to classes called CapabilityTranslationDetails and NSFPolicyDetails; these
will play a significant role in the implementation of channel protection.

32

Related Works

Capability Data Model

A Data Model is a more concrete and implementation-specific representation of how data
is stored, structured, and manipulated within a software system; it directly reflects the
underlying data structures, such as databases, file systems, or data formats, and includes
details about how data is managed. The CapDM is a model that describes the system
and its functionalities in a more specific way, which is suitable for developers who need to
get knowledge of technical details.

This artifact is much larger and more complex than the CapIM, as it provides specifica-
tions for all the actual Security Capabilities supported by the framework. Moreover, the
CapDM partitions the capabilities according to their logical structure; in particular, some
partitions are Condition Capabilities, in case they represent a condition to be checked
according to specific condition operators, and Action Capabilities, in case they represent a
security action to be performed.

3.2.3 The Artifacts

This section presents the artifacts that the Java tools must utilize to execute their
functionalities, specifying each artifact’s purpose and structure.

XMI Model

The XMI model contains the UML model developed for this thesis, alongside all model
components implemented in previous work. This file must be provided as the initial
element of the workflow so that the system’s design is available in a machine-readable
format. This allows the framework to process the design and initially derive the grammar
used to validate the NSF catalogue, followed by the grammar required for translating
specific NSF rules.

NSF Catalogue

The NSF catalogue contains all the information about the implemented NSFs within the
framework. Specifically, it provides detailed instructions for translating each NSF, as well
as descriptions of the security capabilities it supports, including how each capability should
be translated when encountered in the XML Rule file. Although examples are provided
here, complete documentation on all the elements and possibilities in this artifact can be
accessed in the framework’s implementation documentation.

For instance, details about a specific NSF can be defined as follows:

33

Related Works

1 <nSF id=" StrongSwan ">
2 <nsfPolicyDetails >
3 <ruleStart >ike -name - placeholder {\n\t</ ruleStart >
4 <ruleEnd >\n}\n</ ruleEnd >
5 <policyTrailer />
6 <policyEncoding />
7 <capabilityGroup >
8 <capabilityGroupName >local </ capabilityGroupName >
9 ...

10 <securityCapability ref =" SourceAuthActionCapability "/>
11 <securityCapability ref =" AaaIdentityConditionCapablity "/>
12 ...
13 </ capabilityGroup >
14 ...
15 </ nsfPolicyDetails >
16 <securityCapability ref =" AaaIdentityConditionCapability "/>
17 <securityCapability ref =" AETechniqueActionCapability "/>
18 ...
19 </nSF >

An NSF always includes an nsfPolicyDetails element, which contains ruleStart and
ruleEnd elements to specify strings that are appended at the beginning and end of each
rule, respectively. It also contains policyTrailer and policyEncoding elements, which
define a string to be appended at the end of the entire policy and specify the encoding
used when printing the translated policy.

Additionally, a variable and optional number of capabilityGroup elements are dis-
cussed in more detail in another chapter. The nSF element also contains multiple
securityCapability elements that list all security capabilities implemented by the NSF.

Each security capability must include details about how it should be translated for a
specific NSF, since multiple NSFs can support the same securityCapability but may
define it differently at the implementation level.

Here is an example of a capabilityTranslationDetails element:

1 <capabilityTranslationDetails >
2 <nSF ref =" StrongSwan "/>
3 <securityCapability ref =" AaaIdentityConditionCapability "/>
4 <commandName >
5 <realCommandName >aaa_id </ realCommandName >
6 </ commandName >
7 <internalClauseConcatenator >=</ internalClauseConcatenator > <

clauseConcatenator >\n\t</ clauseConcatenator >
8 </ capabilityTranslationDetails >

34

Related Works

In this case, the element contains an nSF to indicate which NSF the translation details
refer to, a securityCapability element to specify the name of the capability (which
must be included in the previously defined list), a commandName element to specify the
low-level command for the current NSF, and finally an internalClauseConcatenator
and a clauseConcatenator to indicate, respectively, a string that separates the command
name from the capability value, and a string appended at the end of the capability.

XSD Capability Data Model

The XSD Capability Data Model contains the grammar for validating the NSF
catalogue. The framework needs this artifact to ensure the logical correctness of the
catalogue, allowing it to generate the correct grammar for each NSF, which will be used
for translating the XML Rule.

XSD Grammar for an NSF

The XSD Grammar for an NSF is an artifact generated to validate a high-level rule
provided to the framework for translation. Before translation, the framework ensures the
provided rule complies with the logic described in this file. Below is an example of how
this type of grammar is structured, referencing the same capability used in the previous
example:

1 <xs: complexType name =" IdentityCapability ">
2 <xs: complexContent >
3 <xs: extension base =" ConditionCapability ">
4 <xs: choice maxOccurs =" unbounded " minOccurs ="0" >
5 <xs: element maxOccurs ="1" minOccurs ="0" name =" identity "

type ="xs: string "/>
6 </xs:choice >
7 </xs:extension >
8 </xs: complexContent >
9 </xs: complexType >

10 <xs: complexType name =" AaaIdentityCapability ">
11 <xs: complexContent >
12 <xs: extension base =" IdentityCapability "/>
13 </xs: complexContent >
14 </xs: complexType >
15 <xs: complexType name =" AaaIdentityConditionCapablity ">
16 <xs: complexContent >
17 <xs: extension base =" AaaIdentityCapability "/>
18 </xs: complexContent >
19 </xs: complexType >

35

Related Works

A complexType element is defined with the name AaaIdentityConditionCapability
to specify the security capability this grammar is concerned with. Within the element’s body,
it states that this type extends another capability using the extension element. Specifically,
it extends the AaaIdentityCapability, which, in turn, extends IdentityCapability,
indicating that AaaIdentityCapability is part of a broader group of condition capabilities.
The choice element further specifies that this capability can optionally occur at most
once and must contain a string value enclosed in identity tags.

XML Rule

The XML Rule contains the abstract rule to be translated by the framework according
to the constraints defined in the previous files. Below is an example of how an abstract
capability can be structured:

1 <rule id ="0" >
2 ...
3 <AaaIdentityConditionCapability >
4 <identity > someIdentity </ identity >
5 </ AaaIdentityConditionCapability >
6 ...
7 </rule >

In this case, the AaaIdentityConditionCapability is an abstract capability that
contains the attribute identity, as specified in the corresponding XSD. This attribute
contains the value someIdentity, which represents the name of the authentication server
used during authentication.

Low-Level Policy

The Low-Level Policy is the output of the framework’s workflow, representing the policy
translated into the specific NSF’s language. Based on all the examples provided above,
the following snippet illustrates how the final translation may appear:

1 ...
2 aaa_id = someIdentity
3 ...

In conclusion, the AaaIdentityConditionCapability has been translated into
strongSwan’s specific syntax, demonstrating how the framework transforms abstract rules
into a format compatible with the target NSF.

36

Related Works

3.2.4 The Java Tools

This section will present the Java tools that carry out the framework’s functionalities,
focusing on the execution flow linking each to the already discussed artifacts.

XMI to XSD Converter

When the system’s model is complete, it must be converted into the XMI format to make
it processable by the framework; in this sense, Modelio provides the possibility to export
models automatically into XMI. Once this artifact is obtained from Modelio, the Security
Capability Manager framework is capable of generating the related XSD file; this file
describes to which semantic and logical restrictions the NSF Catalogue, which is an XML
file, must comply. To obtain the XSD artifact from the XMI artifact, it is necessary to
execute the Converter Java class main method giving the XMI file as input; the output is
the XSD file.

Abstract Language Generator

Once the XSD file for the NSF Catalogue is obtained, it is necessary to generate the XSD
file that provides syntactic and semantic restrictions for Rule Instance artifacts of specific
NSFs; this means that since the final goal is to provide the framework with an XML file
containing a high-level rule and receive as output some NSF specific low-level rule, the
translation process will require a way to validate the rule mentioned above concerning the
technical details of the target NSF. As a consequence, the Security Capability Manager
framework provides a LanguageModelGenerator class with a main method; by providing
this tool with the NSF Catalogue file and its related XSD file, and specifying a target
NSF among those supported by the framework, this tool will generate as output the XSD
artifact for the desired NSF, so that translations towards that NSF can be executed by
the following Java tool.

NSF Translator

The Translator Java class is the last tool of this translation execution flow. Executing
the main method of this class and providing as inputs the XML file containing the Rule
instance, as well as the XSD for the target NSF and the NSF Catalogue, will result in
the generation of the low-level policy for the requested NSF. As previously anticipated,
this tool uses the XSD input file to check the syntax and the semantics of the Rule
Instance. In contrast, the NSF Catalogue provides all the necessary translation details for
the capabilities contained in the rule.

37

Chapter 4

Solution Design

Once the surrounding topics have been clarified, it is appropriate to shift focus to how
the primary goal of this thesis was approached. All modifications and contributions to
the existing framework were built upon previous work, particularly the results of Cirella’s
thesis, which provided a valuable starting point for building the solution for this work [1].
These contributions were carried out following the techniques and best practices discussed
earlier. The expected outcome of the design phase was to have a formal and rigorous model
describing what characterizes channel protection so that security properties, regardless
of the protocols and algorithms used by particular implementations, can be identified
and described in the most versatile way possible. The model has been realized through
UML and primarily using the functionalities provided by Modelio, the same modeling tool
adopted for previous work.

4.1 Problem Statement

Communication channels are among cybersecurity’s most critical security systems, as
malicious users can exploit them to target weaknesses and vulnerabilities. These channels
serve as the medium for data transmission between systems, making them prime targets
for attacks such as data interception, manipulation, and unauthorized access. However,
as discussed in previous sections, navigating the technologies that implement channel
protection protocols and procedures can be challenging, even for domain experts, due to
the growing complexity and variety of cyber threats and the sophistication of attackers.
The goal is to provide an abstraction layer for channel protection details, allowing a
high-level representation of security mechanisms and making it easier to describe the
security capabilities of NSFs for secure channel communication. Much focus will be on
expanding the abstract language to cover the necessary aspects of channel security and
enabling seamless interaction with all channel protection NSFs.

38

Solution Design

4.2 Use Cases

Exploring new ways to address vulnerabilities in communication channel security is
essential to protecting sensitive information from unauthorized access, interception, and
manipulation. Since attackers frequently exploit weaknesses that provide access to critical
data, insecure communication channels can expose systems to external threats and lead to
human-induced errors in their configuration, further increasing the likelihood of security
breaches.

Reducing human-induced errors in channel configurations can be beneficial in a wide
range of real-world scenarios. Vulnerabilities can manifest themselves in different ways,
depending on the nature of the communication channel and the type of data being
transmitted. Compromised communication channels can result in both financial and
reputational losses.

Outlined below are some scenarios where the solution provided by this framework could
mitigate related security risks:

• Data Interception: One of the most common communication channel threats occurs
when attackers overcome encryption techniques and eavesdrop on data transmis-
sions. Consequently, exploiting weak encryption or unsecured channels can steal
sensitive information such as login credentials, personal data, or proprietary business
information.

• Data Integrity: Ensuring data remains unchanged during transmission is one of the
most critical security properties in scenarios this thesis work addresses. Insecure
communication channels may allow attackers to alter messages in transit, potentially
leading to critical consequences.

• Authentication and Authorization: Secure communication channels must support
algorithms that ensure the entities involved are who they claim to be. Weak channel
security allows attackers to spoof their identities and gain unauthorized access to
sensitive systems.

• Malicious Software Propagation: Vulnerabilities in communication channels can
be exploited to make them mediums for distributing malicious software, such as
ransomware or spyware.

• Compliance with Regulations: Many industries are subject to national and interna-
tional data protection regulations, such as the already mentioned GDPR. Ensuring
secure communication channels is often a legal requirement, and failing to protect
data in transit can result in legal penalties and fees other than the consequent loss of
reputational value.

39

Solution Design

4.3 Requirements for the design phase

The realization of the model has undergone different realization and refinement steps, as
will be pointed out in later paragraphs; still, best efforts have been made in continuously
following these general requirements:

• Abstraction Layer : The model must introduce a transparent abstraction layer that
can generalize communication channel security properties, enabling a versatile de-
scription of channel security and allowing the integration of different technologies
while maintaining a consistent and unified representation of security mechanisms.

• Modularity and Extensibility: The model should be designed modularly to add or
update different security mechanisms without affecting the entire system. It should
support easy expansion for future developments or updates in channel protection
techniques.

• Separation of Concerns: Different aspects of communication channel security should
be separated within the model to ensure clarity and avoid conflicts in distinct security
principles. This approach should allow specific issues to be addressed independently,
simplifying maintenance and updates.

• Consistency with Previous Work: The model should build upon existing work, par-
ticularly the contributions of Cirella’s thesis, ensuring that any modifications or
extensions respect the architectural decisions and principles established in previous
efforts. It should integrate seamlessly with prior models, providing continuity in the
research.

• Security Capability Representation: The model must adequately represent the security
capabilities of NSFs related to secure communication channels. It should be able to
define how various NSFs handle encryption, authentication, data integrity, and other
security mechanisms involved in channel protection.

• Protocol and Implementation Agnostic: The design should abstract from specific
protocol implementations, allowing the model to describe security properties inde-
pendently of particular technologies. This approach would ensure the model remains
relevant even as protocols evolve or change, emphasizing security concepts rather
than technical specifics.

• Support for Real-world Use Cases: The model should be capable of describing use
cases that reflect real-world scenarios, such as preventing data interception, ensuring
message integrity, and protecting against unauthorized access. These use cases should
guide the design to ensure the model addresses practical concerns and vulnerabilities
found in communication channels.

40

Solution Design

4.4 Execution of the design phase

As previously mentioned, the model development required by the new framework’s function-
alities was carried out in the Modelio environment. It involved several iterations to achieve
the most suitable design for this thesis. The approach involved creating multiple drafts of a
model that could represent channel protection characteristics in an implementation-agnostic
manner, following the principles and objectives outlined earlier.

Each draft was followed by high-level validation, during which weaknesses were identified
and improvements made to better represent fundamental security properties. Different
modeling solutions were explored in these iterations to ensure the model could accommodate
diverse security scenarios. In the following paragraphs, the components of the final model
will be presented and described, highlighting the reasons behind the chosen solution and
how it satisfies the requirements of a formal channel protection model.

4.4.1 Base Model Section

Figure 4.1: Base Model

This first part of the model introduces the most generic elements required to secure a
communication channel. Regardless of the protocols implemented, a protected channel
consistently exhibits the following properties:

• An encapsulation technique, defining how data in transit is enveloped before
transmission.

• A data encryption technique, specifying how data in transit is protected to ensure
confidentiality.

41

Solution Design

• A data authentication technique, detailing how data in transit is protected to ensure
authentication and integrity, usually by calculating a MAC (Message Authentication
Code).

• A peer authentication technique, defining how the communicating parties authen-
ticate to each other as proof of identity.

• An authenticated encryption technique specifying how data in transit is protected
using algorithms and modes that provide confidentiality, data authentication, and
integrity together.

• A key material element, defining the algorithms and techniques through which the
communicating parties exchange the secrets and parameters for channel protection
as described in previous points. This exchange can be achieved through static or
dynamic methods.

This overview provides a clear understanding of the core components involved in securing
a communication channel. It should be noted that the KeyMaterialCapability element
generalizes two distinct approaches for exchanging the algorithms and parameters required
for security, which are the static and the dynamic approach. In the case of dynamic
key exchange, the DynamicKeyExchangeCapability element is directly connected to the
ChannelProtection element, as the exchange occurs over the same channel. In contrast,
static key exchange is not directly related to the ChannelProtection element as it often
takes place OOB (Out-Of-Band).

4.4.2 Encapsulation Model Section

Figure 4.2: Encapsulation Model

This part of the model addresses the type of encapsulation data packets undergo
before transmission through the network. Specifically, it distinguishes whether a packet
is encapsulated using tunnel mode or transport mode, depending on the communication
type it is desired to establish, as illustrated in the Background section. It is important to
note that both modes are considered implementations of the more general and abstract
EncapsulationTechniqueCapability element.

42

Solution Design

4.4.3 Data Encryption Model Section

Figure 4.3: Data Encryption Model

This part of the model focuses on how encryption is integrated into channel protection,
specifying that any generic encryption technique must include:

• an algorithm used for the actual encryption procedure, such as DES (Data Encryp-
tion Standard) or AES (Advanced Encryption Standard).

• an operational mode with which the algorithm is applied, such as CBC (Cipher
Block Chaining) or CFB (Cipher Feedback).

In this case, the generic EncryptionTechnique element is designed to be a composition.

4.4.4 Data Authentication Model Section

Figure 4.4: Data Authentication Model

43

Solution Design

This part of the model addresses the requirements for ensuring that data received
through the channel is intact and authentic. More specifically, a data authentication
algorithm requires a method that typically falls into one of two categories:

• Hash-based: This method requires a hash function, such as SHA256, and an
operational mode, typically HMAC (Hash-based Message Authentication Code).

• Cipher-based: This method requires a cryptographic algorithm, such as AES, and
an operational mode, such as CBC.

If necessary, the truncation length of the MAC can also be specified, depending on
the scenario (for instance, when using SHA384). These elements are implemented as
compositions, similar to the other security properties.

Additionally, it is essential to note that data security can be applied
to either the packet payload or the header. As a result, the generic
DataAuthenticationTechniqueCapability can be implemented by either the
PayloadAndNormalizedHeaderAuthCapability or the PayloadAuthCapability.

4.4.5 Peer Authentication Model Section

Figure 4.5: Peer Authentication Model

This part of the model outlines the methodologies used to verify the identity of parties
in secure communication. The primary approaches considered are:

44

Solution Design

• EAP-based authentication, which utilizes the EAP (Extensible Authentication
Protocol) framework’s functionalities to support various authentication methods
depending on the network’s needs.

• PKI-based authentication, which relies on techniques involving certificates
and PKI (Public-Key Infrastructure)s, which provides a higher level of secu-
rity by using public and private key pairs to authenticate identities. In
this case, the PKIAuthenticationCapability element is implemented by either
RSAAuthenticationCapability or DSAAuthenticationCapability, depending on
the specific requirements of the scenario.

4.4.6 Authenticated Encryption Model Section

Figure 4.6: Authenticated Encryption Model

This part of the model focuses on approaches based on the AE (Authenticated Encryp-
tion) procedure, which usually requires the following elements:

• An algorithm used to achieve these security properties, such as AES.

• An operational mode for the algorithm, such as GCM (Galois Counter Mode) or
CTR (Counter).

• An integrity check length, which specifies the length of the MAC (also referred to
as the authentication tag in the context of AE).

45

Solution Design

Combining these elements ensures that the data remains confidential during transmission
while also providing a mechanism to verify its authenticity and integrity. If required by the
usage scenario, AE techniques can be extended with additional data that is authenticated
but not encrypted, known as associated data. When this additional parameter is involved,
the process is referred to as AEAD (Authenticated Encryption with Associated Data).

All these elements represent the AE technique through the composition approach.
Furthermore, as AEAD is a specific case of AE, the AEADTechniqueCapability is imple-
mented as an extension of the AETechniqueCapability, ensuring that it inherits all the
base functionalities.

4.4.7 Static Key Exchange Model Section

Figure 4.7: Static Key Exchange Model

This part of the model examines exchanging key material through static approaches.
In this context, the exchange is said to occur OOB, meaning that the communication
channel is not used to exchange the necessary cryptographic parameters. Instead, these
parameters are distributed through alternative methods, including physical exchange or
separate communication channels. The parameters involved in this procedure include:

• A symmetric key, if the algorithms used during data exchange rely on symmetric
encryption approaches.

• An asymmetric key, if the algorithms that will be used during data exchange rely
on asymmetric cryptographic schemes.

46

Solution Design

• A generic static secret, used in methodologies where the cryptographic key is not
immediately involved. Instead, this secret might be used to derive the key or other
cryptographic material in a subsequent phase.

In the asymmetric static key case, the key is usually involved in performing algorithms
such as RSA (Rivest-Shamir-Adleman) or DSA (Digital Signature Authentication), which
rely on traditional mathematical principles or more advanced methods like elliptic curves.

From a modeling perspective, these elements are represented at various levels of
implementation, starting with the StaticKeyExchangeCapability element and going to
more specific use cases.

4.4.8 Dynamic Key Exchange Model Section

Figure 4.8: Dynamic Key Exchange Model

This final part of the model outlines the process of exchanging the key material through
dynamic approaches. Unlike the previously described static scenario, the communication
channel is used initially to exchange the parameters required to secure the data before it
is transmitted. Two primary dynamic methods are considered for this purpose:

• RSA key exchange, where the RSA protocol is employed to generate asymmetric
keys for securing communication.

• Diffie-Hellman key exchange, where the DH technique is used to establish asym-
metric keys.

In the case of DH, either the traditional mathematical method or the more mod-
ern ECDH (Elliptic Curve Diffie-Hellman) approach can be used. From a modeling
perspective, these exchange techniques are presented as specific implementations of the
DynamicKeyExchangeCapability element.

47

Chapter 5

Solution Implementation

This chapter is dedicated to presenting how the solution designed in the previous chapter
has been concretely implemented in the framework. By leveraging the results of earlier
work and the outputs from the design phase, the implementation process can be broken
down into four main steps:

• strongSwan Integration: This section explains how support for strongSwan has
been incorporated into the framework, following the theoretical foundations presented
in the related section of the Background. Attention will also be given to the challenges
encountered during the integration process and the necessary steps to address these
issues for complete support.

• Groups Management: The need for managing groups of capabilities directly
resulted from strongSwan integration. This section will explore why this step became
mandatory and describe how group management was implemented.

• POSET Processing for Rule Translation: This section will explain how the
structure known as POSET (Partially Ordered Set) (further details to be provided
later) was processed to prepare it for the actual rule translation phase.

• POSET Translation: The final section focuses on how the refined POSET structure
from the previous step has been integrated into the main translation workflow,
resulting in the generation of low-level rules, which marks the completion of the
implementation phase.

Many of these implementation steps were carried out in parallel with the thesis work of
Marchitelli [11]. Specific elements of the implementation process relied on his contributions,
which will be referenced and discussed as necessary.

48

Solution Implementation

5.1 strongSwan Integration

With the new model for channel protection integrated into the main framework, it became
necessary to bring strongSwan into scope. To properly validate the framework in the final
stages of this thesis, support for a real-world NSF focused on channel communication was
essential, at least for the most common and relevant scenarios.

In the legacy framework, strongSwan already had partial functionality implemented,
with support for rule translation available. However, significant rework was required
to adapt the structure and security capabilities, primarily because the previous NSF
Catalogue provided translation details for the ipsec plugin of Background. As discussed
in the Background, this plugin required the configuration file to be structured differently
from the newer swanctl plugin, which is now recommended.

As an example, a basic IPsec setup can be assumed with the following requirements:

1. Local information: the local peer that initiates the communication channel has IP
address 192.168.1.1 and belongs to a network with IP range 192.168.1.0/24.

2. Remote information: the remote peer has IP address 192.168.2.1 and belongs to a
network with IP range 192.168.2.0/24.

3. Parameters dynamic exchange: performed using AES128, SHA256 and elliptic curve
x25519.

4. Peer authentication: performed by both peers using a PSK.

5. Data authentication and confidentiality: performed using AES128 in GCM128 mode
and elliptic curve x25519.

6. Additional Information: the connection must be initiated immediately without waiting
for related traffic to be detected; moreover, the IKEv2 protocol must be executed.

The ipsec.conf file generated from the framework would be as follows (assume that a
high-level rule file has been provided, with specific syntax that will be discussed later):

1 conn examplevpn
2 left =192.168.1.1
3 right =192.168.2.1
4 leftsubnet =192.168.1.0/24
5 rightsubnet =192.168.2.0/24
6 authby = secret
7 ike=aes128 -sha256 - x25519
8 esp= aes128gcm128 - x25519
9 keyexchange =ikev2

10 auto=start

49

Solution Implementation

In the context of the new plugin, the swanctl.conf file would carry a configuration
for the same setup as follows:

1 examplevpn {
2 version = 2
3 local_addrs = 192.168.1.1
4 remote_addrs = 192.168.2.1
5

6 local {
7 auth = psk
8 id = 192.168.1.1
9 }

10

11 remote {
12 auth = psk
13 id = 192.168.2.1
14 }
15

16 children {
17 net {
18 local_ts = 192.168.1.0/24
19 remote_ts = 192.168.2.0/24
20 esp_proposals = aes128gcm128 - x25519
21 }
22 }
23

24 proposals = aes128 -sha256 - x25519
25 }

It is evident that while many options maintain a direct correspondence, the overall
structure has undergone significant changes. Some pre-existing capabilities required only
minimal adjustments, while others needed more substantial revisions. The following
paragraphs will summarize the most relevant updates to establish a stable view of how
the catalogue now supports strongSwan’s capabilities in the new configuration version.
Specifically, the focus will be on the options that require significant changes and have also
been implemented in the framework. In contrast, the ones left for future works will be
referenced only in the related Appendix.

5.1.1 Rekey Parameters Management

In actual IPsec configurations, the secure channel is used, as described in the Background
section, to negotiate multiple CHILD_SAs. These connections are typically intended for
limited use, as keeping them alive for extended periods increases the risk of becoming
vulnerable to cyberattacks. Consequently, properly handling rekeying procedures for these
CHILD_SAs is essential.

50

Solution Implementation

In the legacy ipsec.conf file, several options were available to manage how long the SA
could remain active or how much data, in terms of bytes or packets, could be processed
before a rekey or expiration event occurred. Even if these functionalities have been carried
over to the new swanctl.conf format, some refinements have been implemented, meaning
there is not always a direct mapping between the legacy and new options. In the ipsec.conf
file, these parameters were organized as follows:

• Time: managed by the lifetime and margintime options. lifetime defined the
maximum duration an SA could remain active before expiration, while margintime
specified how far in advance the system should start renegotiating the SA parameters.

• Bytes: managed by the lifebytes and marginbytes options. lifebytes specified
the maximum number of bytes transmitted over an SA before expiration, and
marginbytes defined how far in advance the system should begin renegotiation.

• Packets: managed by the lifepackets and marginpackets options. lifepackets
defined the maximum number of packets transmitted over an SA before expiration,
and marginpackets specified how far in advance the renegotiation should begin.

Another option adopted to reduce predictability in the rekeying process is the rekeyfuzz
parameter. This parameter is a percentage value applied to the margin* options to intro-
duce variability, ensuring that renegotiation timings are not constant and less predictable.
In the swanctl.conf file, these options have been updated:

• Time: managed by the rekey_time, life_time, and rand_time options.
rekey_time defines the time threshold for renegotiation, and life_time functions like
the original lifetime. rand_time introduces a random component to subtract from
rekey_time to prevent simultaneous rekeys on both sides. To mirror the ipsec.conf be-
havior, these parameters should be configured as rekey_time=lifetime-margintime,
life_time=lifetime, and rand_time=margintime*rekeyfuzz.

• Bytes: managed by the rekey_bytes, life_bytes, and rand_bytes options.
rekey_bytes specifies the byte threshold for renegotiation, and life_bytes be-
haves like the original lifebytes. rand_bytes introduces variability by subtracting
a random number of bytes from rekey_bytes. To replicate the ipsec.conf behavior,
these parameters should be configured as rekey_bytes=lifebytes-marginbytes,
life_bytes=lifebytes, and rand_bytes=marginbytes*rekeyfuzz.

• Packets: managed by the rekey_packets, life_packets, and rand_packets
options. rekey_packets determines the packet threshold for renegotiation, while
life_packets matches the functionality of lifepackets. rand_packets introduces
a random variation by subtracting a random number of packets from rekey_packets.
To achieve similar behavior to ipsec.conf, these parameters should be configured as
rekey_packets=lifepackets-marginpackets, life_packets=lifepackets, and
rand_packets=marginpackets*rekeyfuzz.

51

Solution Implementation

5.1.2 Firewall Management

When configuring an IPsec VPN, it is essential to ensure that firewall rules are set up
correctly to allow VPN traffic to pass through the system’s security policies, as without
proper firewall configuration, VPN traffic may be blocked, rendering the VPN connection
unusable. strongSwan has provided proper options to handle such scenarios.

In the legacy ipsec.conf structure, the leftfirewall option was used to ensure that
basic firewall rules were automatically applied when a tunnel was established; this carried
a boolean value to invoke an _updown default script to set up basic firewall rules.

In the context of swanctl.conf, the approach has changed. The updown option is the
one responsible for the script invocation and is related to a specific plugin (updown) which
allows the invocation of a script when an IKEv2 CHILD_SA gets established or deleted.
More specifically, it is used to specify the path of the script to be executed under these
circumstances, with eventual parameters immediately following and space-separated.

By default, there is an _updown script located at /usr/libexec/ipsec/_updown, which
is designed to set up firewall rules using iptables to ensure VPN traffic is allowed through
the system’s security policies. To invoke this script, the updown option to the absolute
path of the default _updown script should be set, also passing the iptables argument to
ensure the script uses Netfilter to create rules; for instance, this might get achieved by
setting updown = /usr/libexec/ipsec/_updown iptables. Note that if a configuration
requires more complex or custom behavior, it is possible to realize a customized script and
invoke it employing the same options; moreover, the phase of CHILD_SA rekeying is not
considered as an establishment or removal of an association, meaning that the script will
not be invoked under this circumstance.

5.1.3 Policies Management

In the context of IPsec, policies determine how traffic should be processed, specifically
which traffic should be encrypted, decrypted, or bypassed. As anticipated in earlier sections,
IPsec policies are typically managed by the IKE daemon installed in the kernel’s SPD
(Security Policy Database).

In the swanctl.conf file, it is possible to define an option related to policy management,
which is called policies (this has been carried from the legacy ipsec.conf file, but the
option name was installpolicy); it is a boolean option used to control whether IPsec
policies have to be installed for a child connection; disabling it by setting policies =
false can be useful in scenarios where the policies are not supposed to be managed by
the IKE daemon but rather by an external entity. For instance, for Mobile IPv6, policy
decisions are handled separately, and there might be a need to avoid double handling or
conflicts with the IKE daemon decisions.

52

Solution Implementation

5.1.4 Traffic Marking Management

Traffic marking is a technique for tagging or classifying network packets for special handling.
Once packets are marked, the system can apply specific rules or policies based on these
marks.

strongSwan makes available a series of options to apply specific marks on incoming or
outgoing traffic; these are used to apply some form of control over traffic and can be set in
the swanctl.conf file. The options related to inbound traffic are mark_in, mark_in_sa
and set_mark_in, while the ones related to outbound traffic are mark_out and
set_mark_out.

It is to be specified that these options are related to Netfilter, which is a Linux framework
for packet filtering, NAT (Network Address Translation) and other packet manipulation
tasks; it is used for many firewall solutions on Linux. The details of each are described
here:

• mark_in: it is used to apply a Netfilter mark and mask for input traffic before it
gets processed by the inbound IPsec SA; this is done to differentiate and manage
incoming packets based on predefined rules to facilitate routing or policy application
before decryption.

• mark_in_sa: used to determine whether the mark_in should also be applied directly
to the inbound SA; this ensures that the mark_in persists post-decryption, allowing
for continued handling based on the mark after the packets have been decrypted (by
default, this is not applied).

• set_mark_in: used to apply a Netfilter mark to packets after the inbound IPsec
SA has processed them; it is used when necessary to enable specific post-processing
policies.

• mark_out: used to apply a Netfilter mark to outgoing traffic before the outbound
IPsec SA encrypts it; it can be used to manage outgoing packets according to
predefined rules before encryption.

• set_mark_out: used to apply a Netfilter mark to packets after the outbound IPsec
SA has encrypted them; used for handling of encrypted packets according to post-
encryption conditions.

In the legacy ipsec.conf, traffic marking was handled differently, with only essential
support for marking traffic before and after encryption using the mark option. There
was no distinction between pre-encryption and post-decryption marking, and no specific
options like mark_in_sa or set_mark_in/set_mark_out existed.

53

Solution Implementation

5.1.5 Grouping problem

While the general transition from legacy capabilities to newer ones for channel protection
has mainly been achievable using the existing structure and logic in the framework, a
significant issue emerged during the analysis of approaches related not only to more
recent channel protection implementations but also to other branches of cybersecurity, as
documented in Marchitelli’s work [11].

The core issue involves managing capabilities that always appear in groups, meaning
that certain capabilities are logically linked and must be processed together. To clarify the
situation, consider the following example:

1 ike {
2 ...
3 local_addrs =192.168.0.100
4 local {
5 auth=eap -tls
6 certs= CarolCert .pem
7 }
8 version =2
9 ...

10 }

In this snippet from a swanctl.conf file for strongSwan, the local_addrs and version
options are related to the general ike connection, whereas the auth and certs options
appear within the scope of a specific subsection. As explained in the Background, this
distinction is crucial for defining the logical structure of the configuration.

In the legacy approach of the translator, capabilities were processed as they appeared
in the abstract rule artifact. This approach was sufficient for previous cases where similar
issues had arisen in other NSFs, as the impact was minor and could be handled with slight
adjustments. However, this approach proves inadequate in the current scenario, as the new
requirements necessitate a more sophisticated solution that upholds the thesis’s guiding
principle of maintaining abstraction without involving low-level details.

Consequently, forcing a user to include capabilities in a specific order within the XML
Rule artifact to align with the configuration specifics of strongSwan would violate the
core principle of abstraction. The challenge, therefore, was to define a translation process
that allows the abstract rule to remain order-agnostic while implementing a refinement
procedure that respects the logical grouping of related capabilities.

The following sections analyze the steps taken and the structures adopted to address
this problem, offering detailed insights into the technical aspects and implementation
strategies used.

54

Solution Implementation

5.2 Groups Management

As mentioned in the previous section, one challenge was managing sets of capabilities
that share a common logical purpose. For example, in the context of strongSwan, some
capabilities are used to specify authentication details for the local peer, while others, with
the same technical name, serve the same purpose but are applied to remote peers. To
illustrate this issue, the following practical example is presented:

1 ike {
2 ...
3 local {
4 auth=eap -tls
5 certs= CarolCert .pem
6 }
7 remote {
8 auth=eap -tls
9 id="C=CH , O= strongSwan Project , CN=moon. strongswan .org"

10 }
11 ...
12 }

In this strongSwan configuration snippet, it is evident that some options are associated
with the local group, while others pertain to the remote group. Some of these options
even share the same key name (such as auth in this case). Initially, the framework did not
provide a method to process these capabilities in such cases because it lacked a mechanism
to inform the translator in advance that specific capabilities belong to distinct groups,
which should be handled differently.

While it is straightforward at a low level to construct the strongSwan configuration by
appropriately setting these options (as discussed in the Background section), it would be
inappropriate to expect users of the Security Capability Manager framework to consider
such divisions when writing high-level configuration files. This approach would compromise
the abstraction principle, as implementation-specific details would become exposed in high-
level files. Furthermore, enforcing a static and universally valid grouping of capabilities
within the framework is impractical, as different NSFs may implement the same capabilities
but follow different grouping logics.

A viable solution to this challenge lies in the NSFPolicyDetails element. As previously
discussed, these details provide specific information about how a generic rule for a single
NSF should be translated into the framework’s catalogue. It is, therefore, appropriate to
introduce the necessary modifications into this component to handle groups, allowing the
framework to manage grouping peculiarities of each NSF while maintaining an agnostic
approach for the user. This ensures that translations occur automatically, adapting to the
grouping logic of the target NSF.

55

Solution Implementation

5.2.1 Model and Catalogue update

The first step in introducing support for groups was updating the Capability Information
Model at the level of the NSFPolicyDetails class. Specifically, a new class was introduced
to describe the possible groupings of capabilities for each NSF:

Figure 5.1: Capability Group

This update allows the definition of a capability group with a name used in the translation
process, a start and end string to delimit the group, and a concatenator string to specify
how the capabilities within the group should be separated. In terms of relationships, the
GroupCapability class is linked to the SecurityCapability class through an aggregation
relationship, where GroupCapability serves as the container class, and the group is defined
as an aggregation of one or more security capabilities. Similarly, GroupCapability is
also linked to the NSFPolicyDetails class through another aggregation relationship, with
NSFPolicyDetails acting as the container class, allowing the policy details for an NSF to
be defined as an aggregation of one or more groups of capabilities.

Regarding the NSFCatalogue, one or more capabilityGroup tags can now be defined
within the nsfPolicyDetails element, following the model’s validation, containing details
about the groups. Below is an example of a group defined for strongSwan:

1 <nsfPolicyDetails >
2 ...
3 <capabilityGroup >
4 <capabilityGroupName >local </ capabilityGroupName >
5 <capabilityGroupStart >local {\n\t\t</ capabilityGroupStart >
6 <capabilityGroupEnd >}\n\t</ capabilityGroupEnd >
7 <capabilityGroupConcatenator >\t</ capabilityGroupConcatenator >
8 <securityCapability ref =" SourceAuthActionCapability "/>
9 <securityCapability ref =" SourceIdentityConditionCapability "/>

10 ...
11 </ capabilityGroup >
12 ...
13 </ nsfPolicyDetails >

As shown, aside from the name, start, end, and concatenator strings mentioned
above, the security capabilities that will be part of the group must be listed sequentially,
drawing from the complete list of capabilities in the corresponding NSF element of the
catalogue.

56

Solution Implementation

5.2.2 Including the Dependency Tree

Once the definition of the groups is provided in the catalogue, the following step was to
explore ways to include them in the translation process so that it could be enhanced and
support the new cases of grouped capabilities. To reach the goal, this thesis leaned on the
parallel work by Marchitelli, who implemented a structure called Dependency Tree at
the level of the details generation for each NSF [11].

The dependency tree has been added in the framework to solve a series of issues in
the legacy system regarding dependencies between different capabilities; in brief, some
already supported NSFs exhibit capabilities that, for a syntactically correct rule generation,
depend on other capabilities’ presence or values to deduce how they must be translated.
With this structure, Marchitelli introduced a dynamic approach to translating the rule
before the actual translation process partially [11].

This is done by generating a tree that starts with a particular list of all the possible
Command Names of the NSF’s capabilities; then, at each node, the dependencies of the
involved capabilities are processed to deduce how that list would change if they were
respected or not in an eventual real rule. The generation ends with leaf nodes containing a
list of Command Names for the NSF’s capabilities concerning their dependencies; the final
result is a binary tree that contains, at the level of the leaves, all the possible POSETs for
the NSF, according to each capabilities’ dependencies and if these are respected or not.
For a more specific view on how each POSET is generated and how the dependencies are
checked and used in the scope of the dependency tree, the relative work from Marchitelli
can be consulted [11].

For this thesis, the dependency tree has proven crucial as the POSETs represent a
temporary but faithful version of the rule that must come out at the end of the translation
process; consequently, letting the groups’ details into the generation flow of the tree
appeared as the best solution, so to make the POSETs in the leaf nodes already structured
according to the groups’ structures of the related NSF.

5.2.3 Generation of Groups’ Details

The most appropriate point to insert the reading of group details from the catalogue
was determined to be at the level of the root node of the dependency tree. Given the
nature of its commandName elements, a straightforward approach was to maintain the
structure of the existing class. Practically, the delimiters of the groups are visualized within
the dependency tree as Command Names, similar to those associated with traditional
capabilities but with unique properties. This ensures that when POSETs for the NSFs are
generated, the group delimiters will be automatically injected, constraining the capabilities
within the corresponding group.

57

Solution Implementation

A new class, GroupDetails, has been introduced to store the relevant information. In
addition to several string type attributes for saving group details (capabilityGroupName,
capabilityGroupStart, capabilityGroupEnd, and capabilityGroupConcatenator),
the class includes an attribute capabilityGroupMembers of type List<String> to store
the list of capability names contained in the group.

Below is an explanation of the functions introduced to extract group details and save
them as objects of the GroupDetails class for the tree generator (note that they are
gathered in the DependencyTreeManager.java file):

• createDetailsForEachNSFGroup: this function is invoked by the generateRootNode
function and iterates through the catalogue to retrieve the NSFPolicyDetails element
for the requested NSF. Once retrieved, it iterates over all capabilityGroup elements,
invoking the addDetailsForSpecificNSFGroup function to obtain the details for
each specific group. It concludes by returning the list of details for all groups.

• addDetailsForSpecificNSFGroup: this function is invoked by
createDetailsForEachNSFGroup and retrieves the delimiters for each group,
as well as the list of capabilities contained in it. It concludes by returning a
newly created GroupDetails object, which will be inserted in a variable of type
List<String> by the calling function.

5.2.4 Including the Capability Processing Order

With the groups’ details gathered into appropriate structures, the following requirement
was to inject them into the primary workflow of the framework. The first challenge was
understanding where and how to manipulate the flow to consider the groups’ details and
have them inserted into the POSETs of the dependency tree, as stated before.

After some trials, the best solution appeared to lie in another structure, called Capa-
bility Processing Order, introduced by Marchitelli, whose work can again be consulted
for more extensive explanations [11]. For this thesis, it should be considered that this
variable’s purpose is to contain a preliminary order with which the NSF’s capabilities
must be processed in the translation procedure. Specifically, it is intended as a string
representing a serialized list of lists, each specifying a subset of the NSF’s capabilities in
an order that must be respected when printed in the final rule; the capabilities in a single
list that must be printed in a particular order are comma-separated, while the different
lists, independent from each other, are semicolon-separated.

For instance, if capabilities cap1, cap2 and cap3 must be printed in this sequence,
while cap4 and cap5 must also be printed in sequence, but independently from the first
three, the CapabilityProcessingOrder variable will be cap1,cap2,cap3;cap4,cap5.

58

Solution Implementation

5.2.5 Merging Group Details and Capability Processing Order

Leveraging the CapabilityProcessingOrder element and its design, the natural progres-
sion of the group implementation was, as anticipated, to integrate group details into this
structure. This allows the capabilities of specific groups to be gathered when the string
containing the processing order is expanded with all capabilities and the group delimiters
to be seamlessly inserted where appropriate.

The general approach for this procedure involves taking the
CapabilityProcessingOrder from the catalogue, if available, and expanding the
sub-lists of the capabilities so that all eventual group delimiters are included. It is
important to note that, due to the structure of the NSFs supported by the framework, lists
of capabilities requiring a specific order that belongs to different groups are not supported
(an exception is thrown if this situation is detected). Finally, all the groups without a
predefined processing order are added to the end of the processing order, along with
capabilities that do not belong to any group. The result is a CapabilityProcessingOrder
that contains all the capabilities of the NSF, grouped according to delimiters while
maintaining the original processing order where specified.

For example, it can be supposed that the framework’s catalogue supports an NSF which
has the following details regarding groups:

• A group Group1, with start, end and concatenator strings equal to start1, end1 and
con1, and containing capabilities cap1 and cap2.

• A group Group2, with start, end and concatenator strings equal to start2, end2 and
con2, and containing capabilities cap3, cap4, and cap5.

• Capabilities cap6 and cap7 that are not part of any group.

If the CapabilityProcessingOrder is cap2,cap1;cap3,cap5, the final order is
start1,cap2,con1,cap1,end1;start2,cap3,con2,cap5,con2,cap4,end2;cap6;cap7.
This ensures that the partial group orderings are expanded and the missing capabilities
are appended at the end without imposing a specific order; furthermore, the processing
order has been expanded with all the delimiters for the specific groups.

Below is an overview of the new functions introduced to process the capability processing
order, with group management taken into account:

• expandCapabilityPrintOrder: this function is a wrapper for all the subse-
quent functions mentioned. It is invoked by generateRootNode and expands the
capabilityPrintOrder element to include all possible capabilities of the NSF while
maintaining the partial order provided initially. It concludes by returning the ca-
pability processing order as a string containing all the capabilities appended in the
correct order.

59

Solution Implementation

• initializeAllListOfCapabilitiesWithOrder: this function receives a series of
capabilities, provided as strings, that must maintain a particular order according
to the initial capabilityProcessingOrder. It transforms them into lists for easier
processing. It is invoked by expandCapabilityPrintOrder, and the individual lists
are assumed to contain capabilities from the same group, which will be assessed in a
later function.

• addAbsentGroupMembers: this function takes the lists of capabilities with predefined
ordering and expands them by appending the remaining capabilities of the same
group. It is invoked by expandCapabilityPrintOrder and returns the expanded
lists.

• addRemainingGroupMembers: invoked by addAbsentGroupMembers, this function
concatenates the remaining group capabilities of a specific group. It also verifies
that the capabilities in each partial ordering belong to the same group or no group
at all, throwing an exception if an unsupported configuration is encountered in the
processing order.

• addRemainingGroups: this function adds the capabilities of all the groups
absent in the original capabilityProcessingOrder. It is invoked by
expandCapabilityPrintOrder, and by its execution, the list contains complete
capabilities for all groups of the specific NSF.

• expandGroupWithConcatenators: this function takes the lists of group capabilities
produced by the previous functions and expands them by adding the group delimiters.
It is invoked by expandCapabilityPrintOrder, and upon completion, all lists of
group capabilities are finalized, including the respective delimiters.

• addCapabilitiesNotInAnyGroup: this function appends to the end of the capability
processing order element any capabilities that were not part of the original processing
order and do not belong to any group. It is invoked by expandCapabilityPrintOrder,
and by the end of its execution, it returns the final processing order as a string
containing all capabilities of the NSF.

Once this procedure is completed, the expandCapabilityPrintOrder function merges
the lists produced into a single finalCapabilityPrintOrder string, returning to the
initial format; this will be utilized by the processing logic of the dependency tree to define
the POSETs, as already described. As a result, each POSET in the leaf nodes of the tree,
for the requested NSF, will be constructed taking into account also the group structure
and will include the command names for all the delimiters, making it ready for direct use
in the translation process.

60

Solution Implementation

5.3 POSET Processing for Rule Translation

Once the POSETs for the target NSF have been generated and the group details injected
into them, the next step is to consider the actual rule provided to the translation framework.
Previously, the translator tool iterated over the rule’s capabilities based on its high-level
description. Now, the process has been modified. Since the POSET now contains the
capabilities’ command names as they should appear after translation, along with the
delimiters for any groups, it is appropriate for the POSET structure to be used as the
basis for iteration during the translation process instead of the abstract rule.

However, before this translation can occur, the POSET must undergo a filtering
procedure. In its initial form, the POSET contains the capabilities and group structure of
the entire NSF, based on respected dependencies, so removing all capabilities not present
in the specific rule is necessary.

With these considerations in mind, the main workflow is now updated concerning the
legacy system and is as follows:

1. Extract the correct POSET for the rule based on the NSF capabilities’ dependencies
and characteristics.

2. Filter the POSET to contain only the command names of the capabilities appearing
in the abstract rule.

By the end of these steps, the abstract rule is ready to be translated into a low-level
one, as in the previous framework version. However, thanks to the POSET structure, the
translation no longer relies on the high-level rule’s input file structure and incorporates
grouping information where applicable.

5.3.1 Retrieve the correct POSET

In his parallel work, the first step of the filtering procedure of the POSET has been achieved
by Marchitelli [11]. Specifically, in the TranslatorUtils.java file, the translateRule
function, which is called in the main flow of the translation process, invokes the
getMatchingPoset function; this function takes as inputs the capabilities of the rule
to be translated and the tree node representing the dependency tree, and retrieves the
appropriate POSET for that rule, according to a sequence of steps that involve checks on
the capabilities dependencies.

Again, Marchitelli’s work can be consulted for details about how this retrieval process
is carried out [11].

61

Solution Implementation

5.3.2 Filtering the POSET

As mentioned earlier, the correct POSET must now be processed to retain only the
capabilities required to translate the rule. Generally, the approach involves iterating over
the capabilities in the POSET and checking if each is present in the rule; if not, it is
removed. The management of the group segments, however, requires additional processing.
Once the absent capabilities are removed, the concatenator strings within the group
sections must be adjusted by removing any redundant concatenators. Additionally, if a
group section ends up with no capabilities, the start and end strings must also be removed
from the POSET.

For example, consider a situation similar to the one described in the
capabilityPrintOrder example. Assume the framework’s catalogue supports an NSF
with the following details:

• Group Group1, with start, end, and concatenator strings s1, e1, and c1, containing
capabilities cap1 and cap2, with the command names cm1 and cm2, respectively.

• Group Group2, with start, end, and concatenator strings s2, e2, and c2, containing
capabilities cap3, cap4, and cap5, with the command names cm3, cm4, and cm5,
respectively.

• Capabilities cap6 and cap7, not part of any group, with the command names cm6
and cm7, respectively.

After processing, starting from a capabilityProcessingOrder element, assume that
the POSET generated for a rule to be translated is [[[s1], [cm2], [c1], [cm1],
[e1]], [[s2], [cm3], [c2], [cm5], [c2], [cm4], [e2]], [[cm6]], [[cm7]]]. If
a rule provided to the framework includes the capabilities cap3, cap4, and cap6, the
resulting filtered POSET, ready for translation, will be [[[s2], [cm3], [c2], [cm4],
[e2]], [[cm6]]].

Below is an overview of the functions implemented in the translator that perform this
process (all of these functions are located in the TranslatorUtils.java file):

• cleanPosetAccordingToRule: This function is a wrapper for all the subsequent
functions. It is invoked by the translateRule function and cleans a POSET based
on a given rule and a list of capabilities. It extracts the command names from the
POSET, then iterates through the capabilities, removing those not present in the rule.
Group sections, identified if they start with a groupStarter element, are handled
separately. Invalid or redundant elements are removed during the process, and the
POSET is updated to include only the necessary capabilities. Finally, the function
removes all empty groups and returns the filtered POSET as a set.

62

Solution Implementation

• handleGroupSegmentOfPoset: This function processes a specific section of the
POSET that represents a group of capabilities starting with a groupStarter el-
ement. It is called by the cleanPosetAccordingToRule function and collects all
elements belonging to the group. It then processes the group to identify valid capa-
bilities by comparing them with the rule’s allowed capabilities. Any capability not
in the valid list is flagged for removal. After removing invalid entries, the function
cleans up redundant groupConcatenator elements and returns the cleaned group. If
no valid capabilities remain in the group, the group is discarded.

• addInGroupSectionAllPossibleCapabilities: This function is invoked by
handleGroupSegmentOfPoset and iterates through the remaining capabilities in
the POSET, adding them to a variable that stores all the capabilities of the group
that appear sequentially in the POSET until it encounters a groupEnder capability.
It ensures that all capabilities belonging to a group, as marked by group boundaries,
are included in the group section for further processing. This function effectively
delimits the group of capabilities within the POSET.

• identifyCapabilitiesInRule: This function is invoked by
handleGroupSegmentOfPoset and identifies and counts valid capabilities within a
group based on a predefined list extracted from the rule. It checks each capability
in the group against the list of valid capabilities. If a capability is not present in
the rule or is a group delimiter, it is marked for removal. The function returns the
number of valid capabilities found, which is used later to decide whether the group
should be retained or discarded.

• removeRedundantConcatenatorsInGroupSection: This function, invoked by
handleGroupSegmentOfPoset, cleans up redundant groupConcatenator elements
within a group section in the POSET. Since capabilities have been removed with-
out considering previous and following concatenators, this function eliminates any
consecutive concatenators left after capability removal, leaving only the necessary
ones.

• cleanPosetOfEmptyLists: This function, invoked by cleanPosetAccordingToRule,
iterates through the POSET and removes any empty lists of capabilities. Its primary
purpose is to finalize the filtering of the POSET after processing, ensuring no empty
groups remain.

At the end of this process, the POSET is ready for the translation procedure using an
approach that will be presented in the following section.

63

Solution Implementation

5.4 POSET Translation

With the POSET prepared and containing only the command names of the capabilities
from the abstract rule, the final step is to enhance the logic previously implemented at the
translator level. Specifically, two main changes were required:

• Iteration over POSET: In the earlier version of the translator, capabilities were
iterated based on their order in the abstract rule. It is necessary to iterate over the
capabilities as they appear in the POSET. This iteration ensures that the order of
processing aligns with the structure defined by the POSET, reflecting dependencies
and capabilities groupings are considered.

• Retrieval of the string details for the capability: Previously, all low-level strings for
each capability were directly retrieved from the NSF catalogue. In the updated
version, these strings are now retrieved from the commandName structures in the
POSET.

The first change has been implemented in the Translator.java file, specifically within
the translate function. After completing the preliminary setup, the original iteration
over the nodes collection (which represents the capabilities in the XML Rule artifact) has
been updated to iterate over the CommandName elements in the POSET. Consequently, the
capabilities are processed according to the sequence defined in the POSET. One critical
adjustment is that preliminary checks must be conducted to identify these elements since
the POSET also contains dummy CommandName elements for the group delimiters. These
elements are processed differently by directly retrieving the delimiter value and inserting it
into the partially translated rule.

The second change has been implemented in the ClausePreTranslator.java file,
specifically in the getSupportRuleAttributeString function. In the legacy version of the
translator, the low-level strings for each capability (such as its specific name for the target
NSF) were retrieved by accessing the NSF catalogue. In the new implementation, the
commandName elements introduced by Marchitelli in the framework are now directly used,
as they are also the elements present in the POSET [11]. These commandName elements
carry all the necessary details for translation, making it sufficient to query each capability’s
commandName for the required information.

Once these final adjustments have been completed, the implementation work has ended
to enhance the translation process with all the new functionalities presented in previous
sections. Specifically, the POSET structure has been injected into the process and used
for the translation procedure while integrating dependencies and groupings for the various
capabilities. The following chapter will provide validation examples for these changes
through strongSwan.

64

Chapter 6

Solution Validation

This chapter outlines the validation procedure used during the implementation phase.
As previously mentioned, strongSwan has been adopted as the primary tool, and several
configurations from the official documentation have been utilized as validation bench-
marks. Validation operations were conducted multiple times throughout the thesis work
in alignment with modern development methodologies. This iterative approach ensured
that the framework’s behavior was assessed at the end of each milestone that introduced
new features or changes. The following are the stages at which validation was performed:

1. Design Phase: This stage involved examining general configurations for channel
protection and mapping them onto the UML model constructed during this phase.

2. Base Capabilities Support: Validation was conducted after enhancing the legacy
capabilities already present in the framework for channel protection.

3. Insertion of Group Details: For this step, it was essential to verify that definitions
of groups for different NSFs were correctly established and that their subsequent
retrieval from the NSF Catalogue functioned as intended.

4. Manipulation of the POSET: At this stage, validation focused on enhancing the
capabilityProcessingOrder variable and ensuring its propagation into the POSET,
including the incorporation of group details.

5. Filtering of the POSET: During this step, validation ensured that irrelevant capabili-
ties were appropriately removed and that the remaining elements conformed to the
intended structure of the rule.

6. Translation Through the POSET: The final stage of the implementation phase required
validating the translated rule against real-world configurations to confirm its accuracy.

Each of these points will now be discussed in more detail.

65

Solution Validation

6.1 Design Phase Validation

After defining the UML model for channel protection, an initial validation process was
conducted, even if performed at a high level. This validation aimed to determine whether
the model could effectively represent all significant aspects of actual security configurations
while abstracting away low-level implementation details, which aligns with this thesis’s
objectives. To achieve this, strongSwan configurations were used, similar to the approach
adopted for the final validation. A simple notation was employed to verify that the
security properties of each configuration could be accurately mapped onto the UML model.
Specifically, this notation utilized an OOB-like dotted format to access and reference
different classes within the model.

Below is an example of the configurations used for this validation step. In particular,
it represents a straightforward strongSwan scenario involving two hosts establishing a
secure communication channel in tunnel mode. The setup utilizes public-key certificates for
mutual authentication, along with selecting appropriate algorithms for encryption, integrity,
and other security operations, with additional settings to customize the connection.

1 connections {
2 host -host1 {
3 local_addrs = 192.168.0.1
4 remote_addrs = 192.168.0.2
5 local {
6 auth = pubkey
7 certs = moonCert .pem
8 id = moon. strongswan .org
9 }

10 remote {
11 auth = pubkey
12 id = sun. strongswan .org
13 }
14 children {
15 host -host2 {
16 updown = /usr/local/ libexec /ipsec/ _updown iptables
17 rekey_time = 5400
18 rekey_bytes = 500000000
19 rekey_packets = 1000000
20 esp_proposals = aes128gcm128 - x25519
21 mode = transport
22 }
23 }
24 version = 2
25 mobike = no
26 reauth_time = 10800
27 proposals = aes128 -sha256 - x25519
28 }
29 }

66

Solution Validation

This configuration is then mapped to the UML model using the previously mentioned
notation to illustrate how each security property aligns with the model’s structure.

1 ChannelProtection : host -host2
2 . AETechniqueCapability :
3 . Algorithm : aes128
4 .Mode: gcm
5 . IntegrityCheckLength : 128
6 . TunnelEncapsulationCapability
7 . PeerLocal : 192.168.0.1
8 . PeerRemote : 192.168.0.2
9 . rekey_time : 5400

10 . rekey_bytes : 500000000
11 . rekey_packets : 1000000
12 . updown = /usr/local/ libexec /ipsec/ _updown iptables
13 . KeyMaterialCapability
14 . DynamicKeyExchangeCapability
15 . EllipticCurveDHExchangeCapability : x25519
16 . ChannelProtection : host -host1
17 . EncryptionTechniqueCapability :
18 . Algorithm : aes128
19 .Mode: cbc
20 . PayloadAuthCapability
21 .Hash - BasedAuthMethodCapability
22 . HashFunction : sha256
23 .Mode: hmac
24 . KeyMaterialCapability
25 . EllipticCurveDHExchangeCapability : x25519
26 . PeerLocal
27 . RSAAuthenticationCapability
28 . DNSName : moon. strongswan .org
29 .certs: moonCert .pem
30 . PeerRemote
31 . RSAAuthenticationCapability
32 . DNSName : sun. strongswan .org
33 . reauth_time : 10800
34 . version : 2
35 . mobike : no

Note that some specific capabilities, namely the rekey_* options, updown, reauth_time,
version, and mobike, do not have a direct equivalent in the model described in the chapter
on the design phase. This omission is intentional, as the primary goal was to model only the
most essential aspects of channel protection, as detailed earlier. Still, these capabilities were
incorporated during the implementation phase when their addition required a refactoring
or expansion of capabilities that the model already supported.

After numerous examples like the one previously presented were successfully mapped, it
was confirmed that the model effectively captured the essence of channel protection across
a wide range of scenarios.

67

Solution Validation

6.2 Base Capabilities Support Validation

Providing support for new or enhanced capabilities has been achieved by updating the
NSF Catalogue accordingly. These initial expansions were incorporated using the existing
functionalities provided by the framework, and validation was carried out by executing the
translation process as-is, ensuring that the generated options conformed to strongSwan’s
syntax and conventions.

Below is an example of a new capability added to the catalogue to support rekeying
procedures:

1 <capabilityTranslationDetails >
2 <nSF ref =" StrongSwan "/> <securityCapability ref ="

LifePacketsConditionCapability "/>
3 <commandName
4 <realCommandName > rekey_packets </ realCommandName >
5 </ commandName >
6 <internalClauseConcatenator >=</ internalClauseConcatenator >
7 <clauseConcatenator >\n\t</ clauseConcatenator >
8 </ capabilityTranslationDetails >

To validate this capability, the XML Rule artifact was used by adding the following
high-level requirement:

1 <lifePacketsConditionCapability >
2 <value >1000000 </ value >
3 </ lifePacketsConditionCapability >

After the translation process, the resulting output file contained the following option,
which adheres to strongSwan’s specific syntax:

1 rekey_packets =1000000

This output demonstrates that the framework successfully mapped the high-level
specification to the correct low-level configuration following strongSwan’s requirements.
All other changes made to the NSF Catalogue were validated similarly, confirming that
each capability was correctly implemented and mapped, consequently supporting an NSF
focused on channel protection. At this time of the implementation, capabilities were tested
only singularly, without merging them into a complete and valid rule (this was due to the
still missing support for groups).

68

Solution Validation

6.3 Insertion of Group Details Validation

Reading and saving the groups’ details into appropriate structures required valida-
tion, particularly at the level of the groupDetailsList variable. This variable is a
List<GroupDetails> structure designed to store the characteristics of each group after
the procedures described in the Implementation Phase have been completed. Direct testing
was conducted for strongSwan first to ensure that the NSF Catalogue could be appropriately
updated to include the group details. Subsequently, verifying that this information was
correctly retrieved and represented within the framework was necessary.

The primary validation approach involved including strongSwan’s groups. This was
followed by testing whether the updated details could be successfully processed. Below is a
snippet of the NSFPolicyDetails for strongSwan, updated to include the new information:

1 <nsfPolicyDetails >
2 ...
3 <capabilityGroup >
4 <capabilityGroupName >local </ capabilityGroupName >
5 <capabilityGroupStart >local {\n\t\t</ capabilityGroupStart >
6 <capabilityGroupEnd >}\n\t</ capabilityGroupEnd >
7 <capabilityGroupConcatenator >\t</ capabilityGroupConcatenator >
8 <securityCapability ref =" SourceAuthActionCapability "/>
9 <securityCapability ref =" SourceIdentityConditionCapability "/>

10 <securityCapability ref =" AaaIdentityConditionCapablity "/>
11 <securityCapability ref =" XAuth_identityConditionCapability "/>
12 <securityCapability ref =" SourceEapIdentityConditionCapability "/>
13 <securityCapability ref ="

SourceX509CertificateConditionCapability "/>
14 </ capabilityGroup >
15 ...
16 </ nsfPolicyDetails >

The result obtained during the workflow and stored into groupDetailsList is:

1 [{ capabilityGroupName =’local ’, capabilityGroupStart =’local {\n\t\t’,
capabilityGroupEnd =’}\n\t’, capabilityGroupConcatenator =’\t’,
capabilityGroupMembers [SourceAuthActionCapability ,
SourceIdentityConditionCapability , AaaIdentityConditionCapablity ,
XAuth_identityConditionCapability ,
SourceEapIdentityConditionCapability ,
SourceX509CertificateConditionCapability]}, ...]

It can be seen that the delimiters and the members of the local group have been correctly
retrieved, alongside all the other groups omitted here for space convenience.

69

Solution Validation

6.4 Manipulation of the POSET Validation

With the groups’ details adequately stored, the next major validation step occurred af-
ter the POSET was manipulated through the capabilityProcessingOrder. Custom
tests, including dummy capabilityProcessingOrder variables, were executed to eval-
uate potential corner cases and ensure robustness in handling different scenarios. In
the case of strongSwan, no particular processing order is required, which allows for test-
ing some aspects of its pre-processing separately. Nevertheless, the correctness of the
finalCapabilityProcessingOrder still needed to be verified.

After pre-processing the capability processing order, the
finalCapabilityProcessingOrder for strongSwan was generated, containing a
value representing all the groups with their respective capabilities and delimiters.
Additionally, any capabilities not belonging to a group were placed at the end of the
variable, consistent with the intended design and objectives outlined in the relatedsection.

Building upon this result, the subsequent generation of the dependency tree successfully
incorporated the updated processing order. As a result, all the POSETs reflected the
correct processing sequence, confirming that they were ready for enhancing the translation
process, as described in the Implementation Phase.

6.5 Filtering of the POSET Validation

After filtering according to the abstract rule, the subsequent validation phase focused
on the manipulated POSET. This phase involved providing various XML Rule artifacts
representing strongSwan configurations and verifying that the resulting POSET contained
all and only the Command Name elements of the abstract capabilities present in those
artifacts. This ensured the filtering process accurately reflected the intended high-level
rule, with no extraneous or missing elements.

The specific point for performing this validation was in the TranslatorUtils.java
file, where the posetReadyForRule variable was tracked. This variable, according to the
outcomes of the tests, effectively stores the output of the cleanPosetAccordingToRule
function, which removes irrelevant capabilities from the POSET and retains only those
that appear in the provided abstract rule.

It is important to note that, in this context, the practical applicability of the provided
abstract rule was still not considered. The focus was solely on the correctness of the
POSET filtering process, ensuring that the abstract capabilities were represented in the
resulting structure regardless of logical consistency between them; this will be addressed
in the last validation phase.

70

Solution Validation

6.6 Translation Through the POSET Validation

In this section, the final validations, considered the most significant in achieving this thesis’s
main goals, will be described. After modifying the translator tool, it was crucial to assess
realistic scenario rules and verify that by providing abstract rules as inputs, the framework
could correctly generate rigorous and functional low-level rules for strongSwan. These
final validations ensured that the abstract configurations, when representing complete and
usable configurations, could effectively be translated into precise implementations.

As mentioned at the beginning of this chapter, the configurations used for validation were
derived from the official strongSwan documentation and repository. Particular emphasis
was placed on scenarios involving different types of peer authentication, such as using PSK,
EAP, or public key certificates, as well as on building connections for both peer-to-peer
communication and VPN setups. Additionally, these tests incorporated customized details,
including rekeying procedures, firewall instantiations, and various security algorithms, to
evaluate the flexibility and accuracy of the framework.

For illustrative purposes, below is an example configuration from a scenario involving
a gateway with a specific IP address on its external interface toward the network. This
gateway performs authentication using a public key certificate and accepts connections
from remote peers that authenticate using public key certificates as well. The strongSwan
configuration reported is the final output of the translation process, which is identical to
the original one except for the order of the options inside the groups. This is normal due to
the nature of the POSET (a set is not inherently ordered) and is acceptable because only
groups must be respected, while single capabilities inside them can be in any disposition.

1 ike -name - placeholder {
2 remote {
3 auth= pubkey
4 }
5 local_addrs =192.168.0.1
6 proposals =aes128 -sha256 - x25519
7 local {
8 auth= pubkey
9 id=moon. strongswan .org

10 certs= moonCert .pem
11 }
12 children {
13 child -name - placeholder {
14 esp_proposals = aes128gcm128 - x25519
15 updown =/ usr/local/ libexec /ipsec/ _updown iptables
16 local_ts =10.1.0.0/16
17 }
18 }
19 version =2
20 }

71

Solution Validation

Here follows the abstract rule that was provided to the framework. With this validation
step at its end, it is proven that low-level configurations can also be replicated for valid
channel protection configurations through proper abstraction that never considers the
NSF’s details.

1 <rule id ="0" >
2 <ipSourceAddressConditionCapability operator =" exactMatch ">
3 <capabilityIpValue >
4 <exactMatch >192.168.0.1 </ exactMatch >
5 </ capabilityIpValue >
6 </ ipSourceAddressConditionCapability >
7 <sourceAuthActionCapability >
8 <method >pubkey </ method >
9 </ sourceAuthActionCapability >

10 <sourceX509CertificateConditionCapability >
11 <path > moonCert .pem </path >
12 </ sourceX509CertificateConditionCapability >
13 <sourceIdentityConditionCapability >
14 <identity >moon. strongswan .org </ identity >
15 </ sourceIdentityConditionCapability >
16 <destinationAuthActionCapability >
17 <method >pubkey </ method >
18 </ destinationAuthActionCapability >
19 <sourceSubnetConditionCapability operator =" rangeCIDR ">
20 <capabilityIpValue >
21 <rangeCIDR >
22 <address >10.1.0.0 </ address >
23 <maskCIDR >16 </ maskCIDR >
24 </rangeCIDR >
25 </ capabilityIpValue >
26 </ sourceSubnetConditionCapability >
27 <sourceFirewallActionCapability >
28 <choice >/ usr/local/ libexec /ipsec/_updown </ choice >
29 </ sourceFirewallActionCapability >
30 <channelProtectionConditionCapability >
31 <cipherSuite >
32 <algoEnc >aes128 </ algoEnc >
33 <mode >gcm128 </mode >
34 <dhgroup >x25519 </ dhgroup >
35 </ cipherSuite >
36 </ channelProtectionConditionCapability >
37 <exchangeVersionActionCapability >
38 <version >2</ version >
39 </ exchangeVersionActionCapability >
40 <keyMaterialConditionCapability >
41 <encAlgo >aes128 </ encAlgo >
42 <hashAlgo >sha256 </ hashAlgo >
43 <dhChoice >x25519 </ dhChoice >
44 </ keyMaterialConditionCapability >
45 </rule >

72

Chapter 7

Conclusions and Future Works

This thesis has built its foundation on prior work by researchers and students who explored
how abstracting security capabilities, provided by diverse NSFs, can embody a solution to
emerging issues in today’s cybersecurity landscape. The primary aim was to introduce
a novel approach to security configurations that allows high-level descriptions of secure
systems, which can be efficiently utilized by administrators managing these systems across
different technologies.

By leveraging the principles of NFV and SDN, as well as UML modeling and best
practices in software engineering, this work proposes an abstract model for channel
protection. The model extracts the most significant aspects of this cybersecurity domain
while ignoring the details specific to individual implementations. The overarching goal has
been to relieve users from the burden of understanding and adhering to low-level syntax
and conventions, which has repeatedly been shown to negatively impact the robustness
and reliability of the information systems they aim to secure.

The actual implementation phase shifted towards an existing framework, the Security
Capability Manager, which resulted from previous works and already supported NSFs
related and non-related to channel protection for the same abstraction purpose. Some
existing capabilities related to this domain have been updated, while new ones have been
developed from scratch to support the most common procedures for securing communication
channels under the framework. Although, within the scope of this thesis, translation details
have been provided only for strongSwan, these capabilities are designed to be referenced
by other NSFs, respecting the framework’s guiding principles and ensuring broad and
adaptable support for different implementations.

In response to the growing trend in many technologies to adopt scalable and flexible
solutions, which is to organize functionalities in hierarchical and grouped structures, this
work introduces a comprehensive implementation for grouping the capabilities of various
NSFs into specific logical or functional domains.

73

Conclusions and Future Works

The framework now supports defining multiple capability groups for a single NSF and
indicating how to delimit these groups using appropriate markers. These details can be
included in the NSF Catalogue and will be automatically processed and stored during the
generation of the abstract language.

Building upon the work from Marchitelli [11], a POSET structure was integrated into
the framework to manage dependencies between capabilities effectively. For this thesis, the
POSET was further expanded to incorporate support for capability groups. As a result,
the framework now leverages this enhanced structure to guide the translation process,
effectively handling practical channel protection NSFs, specifically strongSwan.

The results obtained from this work have successfully met the requirements proposed
for this thesis, establishing a formal model for channel protection capabilities and im-
plementing the essential functionalities within the existing framework to ensure proper
handling and translation of security configurations. The immediate benefit of this is for
professionals working in increasingly complex cybersecurity environments: they can now
adopt advanced methodologies and implement secure systems in an abstract and reusable
manner, mitigating errors that arise solely from the complexities of numerous technologies
and specific algorithmic implementations, which are becoming more and more numerous
and diverse in today’s technological landscape.

Building on these achievements, future work can further enhance the current framework
by expanding the support available for strongSwan and extending it to other NSFs that
focus on channel protection. As is, Security Capability Manager could receive further
refinement in broadening its coverage for this security branch to support even more
capabilities and manage more rarefied scenarios and configurations.

Finally, future research could start with how the formal model for secure communication
channels has been implemented and obtain valuable insights into modeling other security
systems. These systems could adhere to the same guiding philosophy demonstrated in this
thesis and reach similar results for different security domains, which has proven effective
through continuous validation phases conducted throughout the work.

74

Appendix A

Appendix A

This chapter gathers all the explanations about new functionalities from strongSwan that
are less common and interesting in daily scenarios and, consequently, have not been
implemented. Still, they have been documented for future work.

A.1 Authentication Rounds

The round option in the local and remote connection sections of the swanctl.conf file are
integer type options used to define the order in which authentication rounds are processed;
the sorting of the authentication rounds can be then set explicitly if multiple authentication
methods have been determined. If the round option is not specified by default, a value
of 0 is assigned, and the system will process the authentication rounds based on their
position in the configuration file.

Note that in the legacy ipsec.conf file, there was no direct correspondence of this option;
it was only possible to define an authentication method used locally or required from the
remote employing the leftauth and rightauth options, providing an alternative for a
second authentication round using the leftauth2 and rightauth2 options.

A.2 Keying Attempts

The keyingtries option in the swanctl.conf file is a signed integer setting in the connections
section that determines the number of attempts the system should make to establish an
IKE connection before giving up.

75

Appendix A

The general behavior is that, after setting keyingtries = N, the daemon will try
establishing the connection N + 1 times, as the first attempt is intrinsically not counted;
moreover, by default, the value of the option is set to 1, while setting it to 0 will prompt
the system to continue attempting to establish the connection indefinitely (actually, if a
fatal error occurs, the IKE daemon does not retry connection regardless of this option).

Note that in the legacy ipsec.conf file, a similar and homonym option was present,
even if some aspects were treated differently (for instance, the default value was 3 and the
unique value %forever was required to prompt the daemon to make an indefinite number
of attempts).

A.3 Certification Authorities

The ca_id option in the remote section of the swanctl.conf file is a string type option used
for controlling which CA certificates are accepted during the authentication process of a
connection; it specifies which Certificate Authority is considered valid for authenticating the
remote peer and can be either the subject name or one of the subjectAltName entries in
one of the CAs of the remote peer trustchain. This option has a similar effect to specifying
cacerts to force clients under a CA to specific connections and does not require the CA
certificate to be locally available, but it can accept the certificate provided by the remote
peer during the IKE exchange.

Note that in the legacy ipsec.conf file, there was a similar option to specify a CA in
the trust path to the root authority, which was rightca.

A.4 Public Key Certificates

The cacert, file, and handle options are string type parameters used for specifying how
the CA (Certificate Authority) certificate should be loaded into the system to trust it for
future certificates to be verified. The file and handle options appear in the authorities
section and both the local and the remote subsections for a connection, with the latter
having them for the cert and the cacert sub-subsections. The details are reported here:

• cacert: it specifies the path to the CA certificate that the daemon should use to
verify peer certificates; this path can be either absolute or relative, and, in the
latter case, it is assumed to be relative to the swanctl/x509ca directory, which is a
designated directory for storing CA certificates.

• file: it specifies an absolute path to the CA certificate; this is similar to the cacert
option, but is completely unrelated to the swanctl/x509ca directory.

76

Appendix A

• handle: it specifies the hex-encoded Cryptographic Key Architecture ID (which is
an attribute specified in the PKCS#11 standard to uniquely identify cryptographic
objects within a PKCS#11 token) of the CA certificate if stored in a cryptographic
token, or a handle of the same if stored on a Trusted Platform Module respectively.

Note that in the legacy ipsec.conf file, only the cacert option was present with the
same name and purpose, while file and handle had no direct correspondent.

A.5 Certificates Validation

OCSP (Online Certificate Status Protocol) is a protocol used to check the revocation
status of digital certificates in real time. In the context of the swanctl.conf file, the OCSP
settings are handled employing a ocsp key to control how OCSP is handled at a high
level, specifically whether OCSP information is included in IKEv2 payloads as part of
the certificate status request and response process, which is related to the OCSP Content
extension. The values of the key can be:

• never: it specifies that OCSP requests and responses are never sent nor processed
by the peer.

• request: the peer can send an OCSP status request in a CERTREQ (OCSP Request)
payload when certificate-based authentication is used, along with the other data
during the first messages exchange in the IKEv2 process (IKE_SA_INIT and
IKE_AUTH); by doing so, the peer identifies a variable number of OCSP Responders
that are trusted and from which the Recipient should demand an OCSP response to
validate its certificate when replying to the sender.

• reply: the peer replies with OCSP status response by putting it in a CERT payload
after having obtained it from one of the trusted OCSP Responders indicated by the
other peer in a previous request; more specifically, two separate payloads are sent: one
CERT (certificate) containing the certificate of the peer and the other CERT (OCSP
Response), received from the trusted OCSP Responder, validating that certificate
(note that this is the default setting).

• both: the peer sends OCSP status requests when certificate-based authentication
is used and replies with OCSP status responses when a previous request has been
received (this merges the request and reply options).

OCSP settings in the legacy ipsec.conf file were already adopted, but were managed
differently; there was no direct correspondent of the ocsp option and the most related
one available was ocspuri, with the associated ocsp1 and ocsp2, which was used just to
specify the URI (Uniform Resource Identifier) of an OCSP server.

77

Appendix A

These last options have been ported to the swanctl.conf context and have been merged
into a single one, renamed as ocsp_uris option for the authorities section; it is a comma-
separated list of OCSP URIs, which is left as an empty array in the default behavior.

A.6 Certificate Revocation Lists

The crl_uris option is a setting for the authorities section that can be instantiated as a
list of comma-separated strings, empty by default. It defines specific locations from where
the CRL (Certificate Revocation List)s can be downloaded; these data structures contain
a list of certificate serial numbers revoked before their scheduled expiry, along with the
revocation reason and the revocation date. These URIs can point to various protocols such
as LDAP (Lightweight Directory Access Protocol), when CRLs are managed via a directory
service, HTTP (HyperText Transfer Protocol), when CRLs are hosted on web servers, and
file URI when the CRLs are stored on the same system or a reachable network share.

Note that in the legacy ipsec.conf file, there were similar options used to specify a
single CRL distribution point instead of a list; these options were crluri, crluri1, and
crluri2.

A.7 Responses to Certificates Revocations

The revocation option in the remote section of the swanctl.conf file is a string type option
used to determine how the system handles certificate revocation checks during the peer
authentication process; three main possible values indicate the policy used:

• strict: it is the most secure and requires that revocation information, such as a
CRL or an OCSP response, must be available and verifiable, otherwise the certificate
is treated as if it might be revoked and the authentication attempt fails.

• ifuri: it requires revocation checking only if an OCSP URI is present in the certificate.
If a URI is provided but the revocation check fails, the authentication fails; if no URI
is provided, this lack of information does not cause the authentication to fail.

• relaxed: it is the default policy, and the authentication process will only fail if the
certificate is explicitly known to be revoked; if no revocation information is available,
or if the revocation check cannot be performed, the certificate will still be accepted.

Note that in the legacy ipsec.conf file, there was a similar option to specify this kind
of policy and had the same modes, even if named differently; the option available was
strictcrlpolicy and the correspondent values were yes for strict, no for relaxed
(which was also the default mode), while ifuri kept the same name.

78

Appendix A

A.8 Certificates References

The cert_uri_base option in the authorities section of the swanctl.conf file is part
of Hash and URL, an optimization feature supported by IKEv2. This method allows
for an efficient certificate exchange by sending just a URI that points to the certificate
rather than the complete certificate data, heavily reducing the amount of data trans-
mitted during the negotiation; the URI is constructed by appending the SHA1 hash
of the certificate’s details encoded form to the base URI specified in this option. For
instance, if the option is set as cert_uri_base = http://example.com/certs/ and the
hash of a certificate is abc123, the resulting URI sent during IKE negotiation would
be http://example.com/certs/abc123, which the receiver will use to fetch the actual
certificate directly using standard web protocols.

Note that in the legacy ipsec.conf file, there was a similar option, which was
certuribase and had the same purpose.

A.9 Hardware Offload

The hw_offload option in the swanctl.conf file is a string type option used to specify
whether IPsec offloading to hardware is enabled for a specific CHILD_SA; hardware
offloading can help improve the performance of IPsec operations by allowing specific
hardware to handle certain cryptographic tasks that would otherwise be performed via
software. The possible values that can be assigned to the hw_offload option are described
here:

• yes: it enables hardware offloading using the default method supported by the system,
either crypto or packet offloading; if no specific hardware offloading is supported,
the installation will fail.

• no: it disables hardware offloading, and all IPsec related processing will be handled
through software procedures; note that this is the default behavior if it is not specified
differently.

• auto: it instructs to attempt enabling full packet offloading or crypto offloading if
the hardware supports one of them; if neither is supported, the installation will not
fail but will revert to software processing.

• crypto: it specifies that only cryptographic operations should be offloaded to hard-
ware, so encryption and decryption tasks are handled by the hardware, but other
packet processing, such as encapsulation and decapsulation, is done via software. If
this offloading type is selected but not supported, the installation of the CHILD_SA
will fail.

79

Appendix A

• packet: it enables offloading entire packet processing to hardware, not just cryp-
tographic tasks but also other related IPsec operations. On Linux systems, this
setting also includes offloading of policies. If this offloading type is selected but not
supported, the installation of the CHILD_SA will fail.

Note that in the legacy ipsec.conf file, there was no support for similar options, as
hardware offload was not supported.

A.10 Hardware Modules

The module option in the swanctl.conf file is related to the integration of PKCS#11
modules, which is a standard that defines a platform-independent API to cryptographic
tokens such as HSM (Hardware Security Module)s; it specifies the name of the PKCS#11
module that the system should load to interact with cryptographic hardware. By default,
this option, which is a string type parameter, is left empty and, when specified, instructs
the system to load the corresponding PKCS#11 module with the provided name. This
option appears in the authorities section and in both the local and the remote subsections
for a connection, with the latter having them for the cert and for the cacert sub-subsections.

Note that in the legacy ipsec.conf file, there was the possibility to specify similarly
a PKCS#11 module to rely on. It was to be indicated in the leftcert and rightcert
options through a specific syntax.

A.11 Hardware Modules Slots

The slot option in the swanctl.conf file is related to the use of PKCS#11 cryptographic
tokens, like discussed for the module option. It is a signed integer type parameter used to
specify which slot of the cryptographic module should be accessed to retrieve the necessary
cryptographic information; each slot of the PKCS#11 module can contain one or more
tokens that are useful for cryptographic tasks; the slot option specifies which of these slots
should be used to access the necessary cryptographic tokens. It appears in the authorities
section and in both the local and the remote subsections for a connection, with the latter
having them both for the cert and the cacert sub-subsections.

Note that in the legacy ipsec.conf file, there was the possibility to specify similarly
a PKCS#11 module’s slot to retrieve cryptographic information, and, similarly to the
module option, it was to be indicated in the leftcert and rightcert options through a
specific syntax.

80

Appendix A

A.12 Interface Identifiers

In the context of the new swanctl.conf file, the if_id_in and if_id_out options have been
introduced and their purpose is to configure XFRM Interface Identifiers for respectively
inbound and outbound IPsec traffic through IPsec tunnels.

• if_id_in: it specifies the Interface Identifier expected for the incoming IPsec packets
of a specific inbound SA.

• if_id_out: it specifies the Interface Identifier to be used for the outgoing IPsec
packets of a specific outbound SA.

Both these options can appear at connection level or child level; in the former, the
Interface Identifier is set for the IKE_SA and gets inherited by the CHILD_SAs unless
overridden in its scope. Conversely, in the latter, the Interface Identifier is explicitly set
for the CHILD_SA.

By default, the Interface Identifiers are set to 0, meaning identifying an interface is not
required. Moreover, if it is desired to set a single interface for inbound and outbound traffic,
other than assigning the same ID to both options, the value %unique can be assigned to
generate a unique Interface Identifier for each CHILD_SA, valid for both directions; on
the other hand, if it is desired to use separate interfaces for inbound and outbound traffic,
other than assigning different IDs to the 2 options, the value %uniquedir can be assigned
to generate a unique Interface Identifier for each CHILD_SA and direction.

It is to be noted that, in the legacy ipsec.conf configuration, there was no direct
equivalent to if_id_in and if_id_out, as the general approach was to rely on the
combination of IP addresses, subnets, and SPI (Security Parameter Index)s to match and
manage IPsec tunnels.

A.13 Interface Names

The interface option in the swanctl.conf file is a string parameter that belongs to the
children section and which defines an optional interface name for outbound IPsec policies.
By default, this option is set as null, meaning that outbound packets are processed on
potentially any interface; as a consequence, the use of the interface option for a CHILD_SA
is to restrict a policy to a single interface for specific use cases.

From the official strongSwan documentation, an example of the usage for
this option can be found at https://strongswan.org/testing/testresults/ikev2/
shunt-manual-prio/moon.swanctl.conf, in which a default drop policy is installed on
the external interface eth0.

81

https://strongswan.org/testing/testresults/ikev2/shunt-manual-prio/moon.swanctl.conf
https://strongswan.org/testing/testresults/ikev2/shunt-manual-prio/moon.swanctl.conf

Appendix A

A.14 Security Labels

The label and the set_label options have been introduced in the swanctl.conf file to
manage security labels for IKEv2 connections; a security label can be seen as a tag that
the operating system uses to apply specific security policies to the packets tagged with that
label, allowing the integration of security systems to enforce connections, like SELinux
(a security architecture for Linux systems that allows firm control over who can access
system resources, more details can be found at https://www.redhat.com/en/topics/
linux/what-is-selinux). The details of these options are presented here:

• label: it is used to specify a security label, such as an SELinux context; it is a
string type option that might look like system_u:object_r:ipsec_spd_t:s0 if, for
instance, the selinux plugin has been enabled.

• label_mode: it is used to define how the security label configured in the label option
is used by strongSwan. It can be set with 3 possible modes:

– simple: the label is used strictly as provided in the label option, functioning as
an additional identifier during the negotiation of CHILD_SAs and the selection of
configuration profiles; labels applied through this mode are not involved in kernel-
level operations, meaning that they are not used to influence packet handling
by the operating system itself, and labels received from a peer with which a
connection is being established have to match precisely the ones configured
locally for the connection to be successful.

– selinux: it is used to indicate a generic SELinux context as a label and is
selectable only if SELinux is available and enabled on the system. In this case,
the label is installed in the trap policies (meaning that the option start_action
= trap is usually associated with this one), which are used to capture packets
that do not yet have a matching SA and require one to be negotiated to employ
an acquire event that is triggered; if a connection is initiated directly, without
an acquire event, a childless IKE_SA is established. Trap policies are installed
at both ends of the connection to ensure that the necessary CHILD_SAs are
established when required. One difference between this mode and the simple
mode is that labels received from peers are accepted if they match the locally
configured label based on association:polmatch. This mechanism evaluates
whether two SELinux labels are compatible.

– system: it is a default value that automatically selects selinux if supported or
simple otherwise.

Note that in the legacy ipsec.conf file, there was no support for similar options, as
security label management was not supported.

82

https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.redhat.com/en/topics/linux/what-is-selinux

Appendix A

A.15 Policy Priorities

The priority option in the swanctl.conf file helps manage IPsec policies; it is a children
section option that can assume an unsigned integer value, and that allows to set a fixed
priority for IPsec policies. IPsec policies determine the handling of traffic based on criteria
such as source and destination IP addresses and ports, and the priority of a policy is used
to determine which one should be applied when multiple policies match the same traffic
pattern.

By default, the priority value of a policy is set to 0 so that the priority of a policy is
dynamically calculated based on the specificity of the traffic selectors; for instance, a policy
that specifies a single IP address as a selector is given a higher priority (due to being more
specific) compared to a policy that defines an entire subnet; as a consequence, setting a
fixed priority overrides this dynamic calculation, allowing a policy to be treated as more
or less important regardless of its selectors’ characteristics. This option is beneficial for
defining security policies that should always take precedence, such as dropping potentially
harmful traffic before it can reach sensitive parts of a network. When multiple policies
might match the same traffic, administrators can use fixed priorities to ensure that the
intended policy always takes precedence.

The legacy ipsec.conf file had no direct equivalent of this priority option to allow
fixed priorities; it relied substantially on automatically calculated priorities based on
the specificity of the traffic selectors, which is a similar behavior to the default one in
swanctl.conf.

A.16 Inner-Outer IP Header Parameters

In the swanctl.conf file, three options have been introduced to indicate whether to copy
some specific information from the original/inner IP header to the new/outer IP header
when operating in IPsec tunnel mode. These options are copy_df, copy_ecn and
copy_dscp, and the details are here described:

• copy_df: a boolean type option that is used to control whether the Don’t Fragment
bit of the inner IP header should be copied to the outer IP header in tunnel mode.
The Don’t Fragment bit, when set, instructs routers not to fragment the packet, so if
it is set and the packet is larger than the MTU (Maximum Transmission Unit) of any
segment along the path, it will be dropped instead of fragmented. By default, this
option is set to true. It is useful for disabling Path MTU Discovery, a mechanism
to determine the maximum packet size that can travel safely through the network
without needing fragmentation; if the Don’t Fragment bit is set, copying it to the
outer header maintains the original packet’s intent of not being fragmented during
the path.

83

Appendix A

• copy_ecn: a boolean type option that is used to allow the ECN (Explicit Congestion
Notification) bits from the inner IP header to be copied to the outer IP header.
ECN is a feature available in modern networks to reduce network congestion without
dropping packets, as the basic idea is that routers supporting it can mark packets
instead of dropping them, signaling to endpoints to reduce their transmission rate;
by default, this option is set to true and is useful to maintain the original packet’s
intent of signaling congestion through this mechanism.

• copy_dscp: a string type option that is used to control whether the DSCP (Differen-
tiated Services Code Point) field, which is used for QoS (Quality of Service) tagging
in IP packets, is copied from the inner IP header to the outer IP header or vice versa.
This option can be set to:

– out: the DSCP value is copied from the inner IP header to the outer IP header
when encapsulating the packet and guarantees that the priority assigned to the
original traffic is maintained as the packet travels through the tunnel.

– in: the DSCP value is copied from the outer IP header to the inner IP header
when decapsulating the packet and leads to the network’s influence on the QoS
for the traffic to be maintained once it exits the tunnel.

– yes: the DSCP values are copied in both directions, when encapsulating and
decapsulating, ensuring that QoS settings are preserved throughout the entire
path of the packet.

– no: the copy of the DSCP field is disabled both during encapsulation and
decapsulation, ensuring that no QoS settings from the inner packets to the outer
packet or vice versa are carried.

The default setting for this option is out because adopting yes or no could allow an
attacker to affect the traffic at the receiver site.

Note that these behaviors are not supported by all kernel interfaces and there were no
similar options in the legacy ipsec.conf file.

A.17 Childless Security Associations

During the normal execution of the first exchanges in the IKEv2 protocol, after the
initialization of the connection and the authentication of the parties, the first CHILD_SA
is created, attaching its details in the IKE_AUTH request/response messages.

The childless capability in strongSwan is a string type parameter in the connections
section used to manage how IKEv2 connections handle the initiation of the first CHILD_SA,
allowing for a more flexible initiation process by potentially delaying its creation until after
the IKE_SA has been established, through a separate CREATE_CHILD_SA exchange;
there are four possible settings:

84

Appendix A

• allow: as a Responder, the device will accept childless IKE_SAs (indicated by a
special notification in the IKE_SA_INIT response). As an Initiator, the device
will continue to initiate IKE_SAs with the first CHILD_SA included during the
IKE_AUTH exchange, unless it is explicitly requested to perform the initiation
without any children; if instructed to do so, the process will fail if the Responder does
not support or has disabled childless initiations (note that this is the default option).

• prefer: as a Responder, the behavior is the same of the allow option, while, as
an Initiator, if the Responder supports childless IKE_SAs, the device will prefer to
initiate an IKE_SA without any CHILD_SA during the initial exchange.

• force: forces the device to only accept or initiate childless connections, regardless of
whether it is an Initiator or a Responder ; this setting mandates that no CHILD_SA
is created during the initial IKE_AUTH phase, ensuring that all CHILD_SAs are
initiated separately via a CREATE_CHILD_SA exchange.

• never: disables support for childless IKE_SAs completely, both as an Initiator and
as a Responder ; this setting ensures that any attempt to initiate an IKE_SA without
a CHILD_SA will be rejected.

This feature does not correspond directly in the legacy ipsec.conf file, as all connections
inherently assumed the negotiation of at least one CHILD_SA.

A.18 One User - Multiple Connections

The unique option in the swanctl.conf file is a string setting in the connections section
that is used to control the behavior of handling multiple concurrent connections from the
same user or identity, specifying how uniqueness should be handled.

The system determines connections’ uniqueness relying on the remote IKE identity
during the IKE negotiation, unless EAP or XAuth is involved, in which case the EAP-
Identity or XAuth username replaces the IKE identity for this purpose. For the initiating
party, this setting influences whether an INITIAL_CONTACT notification is sent during
the IKE_AUTH phase if no existing connection with the remote peer’s identity is found;
sending this notification can inform the remote peer to replace or remove any existing
connections under their uniqueness policy. The possible values for this option are never,
no, keep and replace, and the details of each are here described:

• never: it is the most permissive value, used to specify that no uniqueness policy is
enforced; as a consequence, multiple connections from the same identity are allowed,
regardless of whether the INITIAL_CONTACT notification is included by the other
peer. From an initiator’s point of view, this is the only option that prevents sending
the INITIAL_CONTACT notification during the IKE_AUTH phase.

85

Appendix A

• no: it is the default setting, used to specify that existing connections for the same
identity are replaced if a new one includes an INITIAL_CONTACT notification;
from an initiator’s point of view, an INITIAL_CONTACT notification is sent during
the IKE_AUTH phase.

• keep: it is used to reject new connection attempts if there is already an active
connection from the same identity, keeping active only the original one for a specific
user; from an initiator’s point of view, an INITIAL_CONTACT notification is sent
during the IKE_AUTH phase.

• replace: it is used so that any existing connection from the same identity is deleted
when a new connection is established, keeping active only the most recent one for a
specific user; from an initiator’s point of view, an INITIAL_CONTACT notification
is sent during the IKE_AUTH phase.

Note that in the legacy ipsec.conf file, a similar option with homonym values was
present and was defined as uniqueids; the significant difference concerning the new context
is that replace was the default value instead of no.

A.19 Mediation Servers

The mediation capabilities provided by strongSwan are part of its support for the IKEv2
Mediation Extension, which facilitates the setup of IKEv2 connections through a mediation
server; this can be useful in scenarios where direct connections between peers are not
possible due to NAT (Network Address Translation) traversal issues or firewall restrictions.
The capabilities introduced as part of the new swanctl.conf context are:

• mediation: it specifies whether a connection acts as a mediation connection for others;
if this is set to yes, the connection’s primary role is to facilitate the establishment of
other connections, rather than to secure data itself; this is why no CHILD_SA is
created (note that, by default, this option is set to no).

• mediation_by: it is a string specifying another connection that should be used as
mediator to establish the current one; it is to be noted that the referred connection
should have the mediation option set to yes for this procedure to work.

• mediation_peer: it is the IKE identity the other end of this connection uses as its
local identity on its connection to the mediation server; more specifically, a peer
P1 with a defined mediation connection with a mediation server MED, for instance,
P1toMED, and a connection with another peer P2, for example P1toP2, can set this
option in the P1toP2 connection to specify the identity that P2 uses for its connection
with MED, for instance P2toMED. This option is relevant only on connections that
set the mediated_by option, and if not specified, the default identity used is the one
from the first authentication round.

86

Appendix A

In the legacy ipsec.conf file, these functionalities were already present with similar
names and functionalities (mediation, mediation_by, me_peerid).

A.20 Post-Quantum Cryptography

The options ppk_id and ppk_required, which relate to PPK (Post-Quantum Pre-
Shared Key)s, are new options introduced with the swanctl.conf file and do not have direct
correspondents in the legacy ipsec.conf context.

PPKs are part of an effort to enhance the security of IKEv2 ; RFC 8784 addresses
the potential threat posed by quantum computers to current cryptographic algorithms,
particularly those used in IKEv2 ; traditional pre-shared keys can be vulnerable to quantum
computer attacks and, to mitigate this, a method has been introduced to strengthen PSKs
with an additional layer of security, which are the PPKs.

A PPK is not intended to replace the original PSK but rather to enhance it, and the
basic idea is to apply a secret transformation to the original PSK before it is used in the
IKEv2 key exchange process; this transformation makes the derived keys more resistant to
decryption by quantum computers.

Here are presented the details about the new options:

• ppk_id: it is a string identifier for the PPK; when a connection is initiated and a
PPK is required, it indicates to the device which one to use; it is necessary if there are
multiple PPKs configured on a server, each potentially used for different connections
(note that, by default, this option is null).

• ppk_required: this boolean setting specifies whether the use of a PPK is mandatory
for establishing the connection; if set to yes, the connection will only be established
if both sides support a PPK while, if set to no (which is the default setting), the
connection proceeds under a regular PSK.

Note that the details about the PPKs, in the swanctl.conf file, are defined in a specific
secrets section (secrets.ppk<suffix>).

87

Bibliography

[1] Aurelio Cirella. An abstract model of NSF capabilities for the automated security
management in Software Networks. 2021.

[2] Sheila Frankel and Suresh Krishnan. IP Security (IPsec) and Internet Key Exchange
(IKE) Document Roadmap. RFC 6071. Feb. 2011. doi: 10.17487/RFC6071. url:
https://www.rfc-editor.org/info/rfc8329.

[3] GeeksforGeeks. Unified Modeling Language (UML) | An Introduction. 2019. url:
https://www.geeksforgeeks.org/unified-modeling-language-uml-introduc
tion.

[4] World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Fifth Edi-
tion). 2013. url: https://www.w3.org/TR/xml/.

[5] World Wide Web Consortium. W3C XML Schema Definition Language (XSD) 1.1.
2012. url: https://www.w3.org/TR/xmlschema11-1/.

[6] Object Management Group. XML Metadata Interchange (XMI) Specification. 2015.
url: https://www.omg.org/spec/XMI/2.5.1/PDF.

[7] The strongSwan Team and individual contributors. strongSwan. 2023. url: https:
//docs.strongswan.org/docs/5.9/howtos/introduction.html.

[8] Diego Lopez, Edward Lopez, Linda Dunbar, John Strassner, and Rakesh Kumar.
Framework for Interface to Network Security Functions. RFC 8329. Feb. 2018. doi:
10.17487/RFC8329. url: https://www.rfc-editor.org/info/rfc8329.

[9] E. Haleplidis, K. Pentikousis, S. Denazis, J. Hadi Salim, D. Meyer, and O.
Koufopavlou. Software-Defined Networking (SDN): Layers and Architecture Ter-
minology. RFC 7426. Jan. 2015. doi: 10.17487/RFC7426. url: https://www.rfc-
editor.org/info/rfc7426.

[10] Cataldo Basile, Daniele Canavese, Leonardo Regano, Ignazio Pedone, and Antonio
Lioy. «A model of capabilities of Network Security Functions». In: 2022 IEEE 8th
International Conference on Network Softwarization (NetSoft) (Aug. 2022).

[11] Dario Marchitelli. An abstract model of NSF capabilities for the automated security
management in Software Networks. 2024.

88

https://doi.org/10.17487/RFC6071
https://www.rfc-editor.org/info/rfc8329
https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction
https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xmlschema11-1/
https://www.omg.org/spec/XMI/2.5.1/PDF
https://docs.strongswan.org/docs/5.9/howtos/introduction.html
https://docs.strongswan.org/docs/5.9/howtos/introduction.html
https://doi.org/10.17487/RFC8329
https://www.rfc-editor.org/info/rfc8329
https://doi.org/10.17487/RFC7426
https://www.rfc-editor.org/info/rfc7426
https://www.rfc-editor.org/info/rfc7426

	List of Figures
	Acronyms
	Introduction
	Human errors in cybersecurity
	Vendor lock-in
	Abstraction as a solution

	Background
	IPsec
	Internet Key Exchange
	IPsec protocols

	System modeling and data representation
	UML
	XML
	XSD
	XMI

	strongSwan
	charon
	vici
	swanctl
	Configuration directories and files
	strongswan directory
	strongswan.conf
	swanctl directory
	swanctl.conf

	Related Works
	Context of previous works
	Network Functions Virtualization
	Software-Defined Networking

	Security Capability Manager
	Framework Overview
	The models
	The Artifacts
	The Java Tools

	Solution Design
	Problem Statement
	Use Cases
	Requirements for the design phase
	Execution of the design phase
	Base Model Section
	Encapsulation Model Section
	Data Encryption Model Section
	Data Authentication Model Section
	Peer Authentication Model Section
	Authenticated Encryption Model Section
	Static Key Exchange Model Section
	Dynamic Key Exchange Model Section

	Solution Implementation
	strongSwan Integration
	Rekey Parameters Management
	Firewall Management
	Policies Management
	Traffic Marking Management
	Grouping problem

	Groups Management
	Model and Catalogue update
	Including the Dependency Tree
	Generation of Groups' Details
	Including the Capability Processing Order
	Merging Group Details and Capability Processing Order

	POSET Processing for Rule Translation
	Retrieve the correct POSET
	Filtering the POSET

	POSET Translation

	Solution Validation
	Design Phase Validation
	Base Capabilities Support Validation
	Insertion of Group Details Validation
	Manipulation of the POSET Validation
	Filtering of the POSET Validation
	Translation Through the POSET Validation

	Conclusions and Future Works
	Appendix A
	Authentication Rounds
	Keying Attempts
	Certification Authorities
	Public Key Certificates
	Certificates Validation
	Certificate Revocation Lists
	Responses to Certificates Revocations
	Certificates References
	Hardware Offload
	Hardware Modules
	Hardware Modules Slots
	Interface Identifiers
	Interface Names
	Security Labels
	Policy Priorities
	Inner-Outer IP Header Parameters
	Childless Security Associations
	One User - Multiple Connections
	Mediation Servers
	Post-Quantum Cryptography

	Bibliography

