
Politecnico di Torino

Master’s Degree in Computer Engineering
A.y. 2023/2024

Graduation Session October 2024

GUI Representation Learning for
Downstream Real-World

Applications

Supervisors:

Luigi De Russis

Tommaso Calò

Candidate:

Francesca Russo

Abstract

Recent advancements in Artificial Intelligence (AI) have allowed the development of
tools that can assist professionals across various industries in completing different
tasks, such as realistic character design in gaming, news analysis and fact-checking
in journalism. Among the industries benefiting from AI advancements is User
Interface (UI) design, where AI-based tools are playing a key role in enhancing
efficiency and creativity.

Graphical User Interface (GUI) design is the process of designing the visual
layout of a software application, focusing on the appearance, functionality and
usability of the interface that users interact with. Nowadays, designers rely on
several products, such as Figma, that facilitate the creation, prototyping and testing
of GUIs. Figma, a real-time collaborative platform, has recently integrated novel
AI features, with many more to come.

Unfortunately, in many datasets, GUIs are represented in a verbose format that
may not be properly structured for achieving optimal performance for AI models.
Moreover, existing GUI datasets are not built for seamless integration of AI models
within Figma’s environment.

To address these issues, a learned approach is proposed to extract a meaningful
representation of GUI information, alongside the introduction of a new Figma-
compatible hierarchical dataset. The objective is to facilitate both the development
and the deployment of new AI models for downstream real-world applications in
GUI design.

Specifically, this work involves training a Vector Quantized Variational Autoen-
coder (VQ-VAE) to learn a codebook of latent quantized embeddings, updated
via Exponential Moving Average (EMA), capturing the relationships between GUI
elements. This learned vocabulary can subsequently be used to train models for
downstream real-world applications, such as GUI components generation. To
validate the approach, the VQ-VAE is first trained and tested for bounding box
reconstruction and category classification only, using both the well-known Rico
dataset and the newly proposed Figma Layout User Interface Dataset (FLUID),
which contains JSON files that can be directly imported in Figma. Next, GUI data
from FLUID, incorporating additional elements such as image embeddings, text
embeddings, and background colors, are integrated into the VQ-VAE to evaluate
its ability to encode these more complex features.

The results demonstrate the VQ-VAE’s capability to reconstruct and classify
GUI items when trained on a limited set of features, particularly when using Rico.
However, when more complex features are introduced using FLUID, the model

exhibits reduced performance, highlighting the need for further optimizations in
both its architecture and training procedure.

ii

Acknowledgements

This journey has been full of invaluable experiences that have enriched my personal
growth and academic knowledge. I would like to express my heartfelt gratitude to
everyone who has participated, providing guidance, support and encouragement.

I would like to thank my supervisors, Professor Luigi De Russis and Tommaso
Calò, for their invaluable guidance and insightful advice. Their expertise has been
fundamental in shaping this work, and I am deeply grateful for their mentorship
during this master thesis.

A special thank you is for my family. Words cannot fully express the gratitude
I feel for allowing me to pursue this goal and for the unwavering support they have
given me along the road.

To Claudio, my partner. Sharing this experience from nearly the first days to
the very last day has been an incredible rollercoaster. Your emotional support,
encouragement, and — above all — your belief in me have been the driving force
behind my determination to give my best.

To everyone who has crossed my path and enriched this journey, even in the
smallest way, thank you.

Completing this journey has been a challenging yet fulfilling adventure, and I
am now ready to begin the next chapter of my life.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Motivation and Objective . 2
1.2 Structure of the Thesis . 3

2 Background 4
2.1 Introduction to GUI Design . 4

2.1.1 Design Principles and Guidelines 5
2.1.2 The User Interface Design Process 6

2.2 Machine Learning for GUI Design 7
2.2.1 The Role of Machine Learning for GUI Design 7
2.2.2 GUI Representation Learning 8
2.2.3 Rico Dataset . 10

2.3 Autoencoders and their Variants . 11

3 FLUID Dataset 15
3.1 Related GUI Datasets . 15

3.1.1 Klarna Dataset . 15
3.1.2 WebColor Dataset . 16

3.2 Filling the Gaps in GUI Datasets with FLUID 17
3.3 Data Collection . 18
3.4 Data Analysis and Cleaning . 26
3.5 Conclusion . 34

4 Methodology 36
4.1 Bounding Box and Category Encoded Representation Learning . . . 36

4.1.1 Model Architecture . 37
4.1.2 Learning Procedure . 41

iv

4.1.3 Implementation Details . 42
4.2 Multimodal Encoded Representation Learning 45

4.2.1 Multimodal Input Representation 45
4.2.2 Multimodal Learning Procedure 47
4.2.3 Implementation Details . 48

5 Results 50
5.1 Bounding Box and Category Encoded Representation Learning . . . 50

5.1.1 Evaluation Metrics . 50
5.1.2 Results and Discussion . 52

5.2 Multimodal Encoded Representation Learning 61
5.2.1 Evaluation Metrics . 61
5.2.2 Results and Discussion . 62

6 Conclusion 74

Bibliography 76

v

List of Tables

3.1 Description of GUI elements’ attributes in FLUID JSON files 21
3.2 Description of GUI nodes’ categories in FLUID JSON files 22

5.1 VQ-VAE evaluation results for bounding box reconstruction and
category prediction on Rico and FLUID 52

5.2 VQ-VAE mIoU evaluation results for bounding box reconstruction
on Rico and FLUID, including the test without small GUI elements 60

5.3 VQ-VAE evaluation results on FLUID for multimodal representation
learning . 62

5.4 Examples of text correctly reconstructed by the VQ-VAE512 and
VQ-VAE768 . 73

5.5 Examples of text wrongly reconstructed by the VQ-VAE512 and
VQ-VAE768 . 73

vi

List of Figures

2.1 GUI of the Amazon Shopping mobile application 5
2.2 Top navigation bar in Trello . 6
2.3 Four GUIs randomly selected from the Rico dataset 11
2.4 Variational Autoencoder model architecture 12
2.5 Vector Quantized-Variational Autoencoder model architecture . . . 13

3.1 GUI samples from the WebColor training set 17
3.2 Visual aspect of a WebColor web page with and without the cookie

notification . 19
3.3 Figma plugin Builder.io-Figma to HTML, React and more interface 24
3.4 Visual comparison between two WebColor web pages and their

corresponding FLUID GUIs imported in Figma 25
3.5 Distribution of the total number of elements per file in FLUID . . . 26
3.6 Distribution of the number of images per file in FLUID 27
3.7 Distribution of the number of SVGs per file in FLUID 27
3.8 Distribution of the number of textual elements per file in FLUID . . 28
3.9 Distribution of the length of textual elements, in number of words,

in FLUID . 28
3.10 Distribution of the attributes x, y, width and height in FLUID . . . 29
3.11 Example of a FLUID GUI opened in Figma, where width is greater

than 375 . 30
3.12 Distribution of GUI elements’ attributes in FLUID dataset 31
3.13 Effect of removing the attributes topLeftRadius, topRightRadius,

bottomLeftRadius, and bottomRightRadius from FLUID GUIs . . . 32
3.14 Example of a grey box negatively impacting the visual layout of a

FLUID GUI opened in Figma . 33
3.15 Distribution of the total number of elements per file in FLUID after

data cleaning . 34
3.16 Operations performed on the WebColor dataset to build FLUID . . 35

4.1 Proposed VQ-VAE model architecture 37

vii

4.2 Proposed VQ-VAE encoder module architecture 38
4.3 Proposed VQ-VAE Vector Quantizer module 39
4.4 Proposed VQ-VAE decoder module architecture 40

5.1 Average area and position errors for Rico 54
5.2 Average area and position errors for FLUID 54
5.3 Example #1 of GUI from FLUID and its VQ-VAE reconstruction . 55
5.4 Example #2 of GUI from FLUID and its VQ-VAE reconstruction . 55
5.5 Example #3 of GUI from FLUID and its VQ-VAE reconstruction . 56
5.6 Example #4 of GUI from FLUID and its VQ-VAE reconstruction . 56
5.7 Example #1 of GUI from Rico and its VQ-VAE reconstruction . . . 57
5.8 Example #2 of GUI from Rico and its VQ-VAE reconstruction . . . 58
5.9 Example #3 of GUI from Rico and its VQ-VAE reconstruction . . . 58
5.10 Example #4 of GUI from Rico and its VQ-VAE reconstruction . . . 59
5.11 Distribution of the areas for FLUID and Rico bounding boxes of the

test set . 59
5.12 Distribution of the areas for FLUID and Rico bounding boxes of the

test set, on a restricted interval . 60
5.13 VQ-VAE512 average area and position errors for FLUID 63
5.14 VQ-VAE768 average area and position errors for FLUID 63
5.15 Example #1 of GUI from FLUID and its VQ-VAE512 reconstruction 64
5.16 Example #2 of GUI from FLUID and its VQ-VAE512 reconstruction 65
5.17 Example #3 of GUI from FLUID and its VQ-VAE512 reconstruction 65
5.18 Example #4 of GUI from FLUID and its VQ-VAE512 reconstruction 66
5.19 Example #1 of GUI from FLUID and its VQ-VAE768 reconstruction 67
5.20 Example #2 of GUI from FLUID and its VQ-VAE768 reconstruction 67
5.21 Example #3 of GUI from FLUID and its VQ-VAE768 reconstruction 68
5.22 Example #4 of GUI from FLUID and its VQ-VAE768 reconstruction 68
5.23 Examples of images correctly reconstructed by the VQ-VAE512 . . 69
5.24 Examples of images wrongly reconstructed by the VQ-VAE512 . . . 69
5.25 Examples of images correctly reconstructed by the VQ-VAE768 . . 70
5.26 Examples of images wrongly reconstructed by the VQ-VAE768 . . . 70
5.27 Examples of SVGs correctly reconstructed by the VQ-VAE512 . . . 71
5.28 Examples of SVGs wrongly reconstructed by the VQ-VAE512 . . . 71
5.29 Examples of SVGs correctly reconstructed by the VQ-VAE768 . . . 72
5.30 Examples of SVGs wrongly reconstructed by the VQ-VAE768 . . . 72

viii

Chapter 1

Introduction

In the last two decades, the digital landscape has been enriched by the continuous
release of applications designed to meet nearly every conceivable need in daily
life. From managing personal finances and staying connected with loved ones to
ordering food and navigating cities, there is an app for virtually everything. As
reliance on these applications grows, the design and functionality of their Graphical
User Interfaces (GUIs) have become critical factors in determining user satisfaction
and engagement, as these serve as the medium of interaction between users and
the application itself.

The creation of an effective GUI is a complex and frequently time-consuming
process that requires careful consideration of several factors. Designers must
balance aesthetics with functionality, ensuring that interfaces are not only visually
appealing but also intuitive and user-friendly. The design must be human-centered,
allowing all users, regardless of their abilities, to access the application, and it
should be tailored to accommodate the diverse needs and behaviors of its user base.

Moreover, the process of designing GUIs extends beyond just the visual aspect;
it involves understanding the psychological and cognitive aspects of how users
interact with digital environments. The role of designers is to anticipate user needs,
predict potential interactions, and create a seamless experience that smoothly
guides users through tasks. This requires a deep understanding of user experience
(UX) principles and often involves iterative testing and refinement to achieve the
desired outcomes. Given the importance of these aspects, it becomes clear that
the design of GUIs is not simply a creative process but a critical component of
application development that directly impacts user engagement and satisfaction.

As a consequence, designers often rely on several tools that facilitate the creation,
prototyping and testing of GUIs. The use of these tools significantly enhances the
efficiency and effectiveness of the GUI design process, ensuring that the resulting
interfaces are well-crafted and ready for implementation. Among these tools,
Figma [1] is one of the most widely used in the industry. It provides a real-time

1

Introduction

collaborative environment that supports both the aesthetic and functional aspects
of design. Therefore, Figma plays a crucial role in helping designers navigate the
complexities of modern GUI development, ultimately contributing to the creation
of applications that satisfy the users’ expectations.

Recent advancements in Artificial Intelligence (AI) have led to the development of
intelligent assistants that can help professionals across various industries, including
User Interface (UI) design. By automating repetitive tasks, providing design
recommendations, and even predicting user preferences through data analysis, AI
has the potential to considerably improve the efficiency and creativity of the GUI
design process. For example, AI-powered systems can be trained on extensive
datasets of user interactions to identify patterns and provide suggestions on how
to optimize the user interface according to common user behaviors. Figma, for
instance, has recently introduced new AI-powered features, with many more updates
expected to follow soon.

As AI continues to evolve, its role in GUI design is likely to expand, offering
even more sophisticated tools that can assist designers in producing interfaces
tailored to the needs and preferences of the users.

1.1 Motivation and Objective
Many datasets, such as the Klarna Product Page Dataset [2], present GUIs in an
HTML-like format that is often not structured in a way that optimizes performance
for a wide range of AI-driven real-world applications. Training AI models directly
on raw GUI data can result in suboptimal learning dynamics, where models struggle
to focus on relevant features due to the presence of redundant information or data
noise. This interferes with the models’ ability to effectively generalize and perform
across diverse tasks.

Moreover, these HTML-like data formats are not compatible with real design
frameworks, such as Figma. Consequently, AI models trained on these datasets are
not directly deployable in a real design environment.

Given these issues, the objective of this thesis is to facilitate both the development
and the deployment of new AI models to be used in real design frameworks, to
support and enhance the work of designers.

To achieve this, this work proposes:

• A learned encoded representation of GUIs that can be used for down-
stream tasks, including discrimination, palette and typography recommenda-
tion, and generation of new components. Starting from raw GUI data, a Deep
Learning (DL) model is used to extract the most important features, that can
later be exploited for training downstream AI models. In this way, these can
be efficiently trained on a meaningful and refined set of features. Moreover,

2

Introduction

the encoded representation is also suitable for GUI elements tokenization to
be used in a cross-modal learning framework, where a model is trained on
information from multiple modalities (e.g., text, images).

• A new Figma-compatible dataset composed of real-world GUIs derived
from the WebColor dataset [3]. The original data are manipulated by means
of a Figma plugin to produce an alternative hierarchical data representation of
GUI components suitable for a variety of AI-driven tasks. The compatibility
with Figma allows downstream applications, built upon this dataset, to be
seamlessly integrated in the Figma environment, ultimately assisting and
enhancing the design experience. In fact, designers are often not familiar
with HTML-based GUI representations and can greatly benefit from the
introduction of new tools in design frameworks they’re already accustomed to.

1.2 Structure of the Thesis
The thesis is organized as follows:

• Chapter 2 provides an introduction to the GUI design process and how Machine
Learning (ML) fits into this context.

• Chapter 3 describes the steps performed to obtain a new and well-curated
dataset of GUIs, specifically built for compatibility with Figma.

• Chapter 4 outlines the model architecture, the learning procedure and the
implementation details of the proposed AI models for representation learning.

• Chapter 5 reports the metrics used to evaluate the proposed AI models, and
the results of these models.

• Finally, Chapter 6 summarizes the findings of this research, highlighting the
potential strengths and limitations for AI-based representation learning.

3

Chapter 2

Background

This chapter provides the necessary background information to understand the
Graphical User Interface (GUI) Design process and how Machine Learning (ML) fits
into this context, also highlighting specific GUI datasets and model architectures
often leveraged for ML development in the GUI design scenario.

Specifically, Section 2.1 serves as an introduction to the traditional GUI design
process for those who may not be familiar with the topic.

Then, Section 2.2 first explains the role of machine learning for GUI design,
highlighting the benefits of this joint collaboration in light of the previous overview
of the traditional GUI design process. Subsequently, the most relevant works for
GUI representation learning are presented, along with an introduction to the Rico
[4] dataset, often used for the development of ML algorithms for GUI design.

Finally, Section 2.3 presents a general introduction to Autoencoders (AEs) and
their variants, which are particularly relevant for GUI representation learning.

2.1 Introduction to GUI Design

GUI design is a discipline that deals with the design and development of the
graphical interface of a software product.

GUI design focuses on maximizing the usability and the user experience, as the
GUI is the point of contact between the user and the underlying functionalities
of the software. Effective GUI design ensures that user interactions are intuitive,
efficient and aesthetically pleasing, thereby facilitating seamless navigation and
engagement between the users and the software.

4

Background

2.1.1 Design Principles and Guidelines
Over the years, several principles and guidelines have been proposed to help
designers produce GUIs that meet high quality design standards. The principles
are general concepts that guide the overall approach to GUI design, while the
guidelines are practical actionable recommendations, often derived from principles,
aimed at solving specific design problems.

One notable example is Nielsen’s set of 10 usability heuristics [5], which
provides widely recognized principles for enhancing user interface design.

Figure 2.1: GUI of the Amazon Shopping mobile application [6]

Figure 2.1 shows the GUI of the Amazon Shopping mobile application. The
magnifying glass icon is universally recognized as the icon for a search functionality.
Nielsen’s fourth principle states:

“Users should not have to wonder whether different words, situations, or
actions mean the same thing. Follow platform and industry conventions.”

Therefore, it would not make sense to use a different icon for the search functionality,
as it would only force users to learn something new and make the overall experience
odd. The Amazon Shopping GUI adheres to the principle and, as a consequence,
is expected to deliver a positive user experience to customers.

GUI designers also exploit perception principles, called Gestalt principles [7],
that are based on how the human brain perceives and recognizes groups of elements.

5

Background

The goal is to create a hierarchical structure for GUI elements to guide the user to
understand where the information is located, what are the most important elements
in the application and how different elements of the user interface are related to
each other. This way, the users are able to create a mental map of the application
and can easily interact with the GUI to achieve their goals.

Figure 2.2: Top navigation bar in Trello [8]

The top navigation bar in Trello, shown in Figure 2.2, takes advantage of the
fact that objects that are spatially close appear linked to each other. The buttons’
placement in the bar creates a visual hierarchy that strengthens the user’s mental
map of the system: the buttons not only are similar in aspect, they are adjacent
too. This is a clear example of the Gestalt proximity principle.

Overall, the design of a GUI is a complex process that requires balancing
aesthetics and usability. The final output should be a user interface both practical
and visually appealing, with creativity that also plays an important role in finding
ways to captivate the user’s attention and keep him engaged.

2.1.2 The User Interface Design Process
The process of designing a GUI involves a structured user-centered approach that
integrates the previously mentioned principles and guidelines.

The whole GUI design process can be summarized in the following steps:

1. Collection of all the necessary requirements for the project. This
involves interacting with potential users to understand who they are, what
their needs are and what goals they want to achieve using the application
under development.

2. Identification of the “paths” expected to be taken by the users
within the interface. This requires to define all the high-level steps users
will go through to complete key tasks, ensuring the process is logical and
efficient.

3. Production of a simple, low-detail set of sketches of the interface
layout. These sketches, often referred to as wireframes, serve as a blueprint
for the interface’s structure, initially focusing on functionality rather than
visual design, and are often iteratively refined.

6

Background

4. Design of the visual aspect of the interface. This includes selecting
colors, typography, and designing buttons, icons, and other User Interface
(UI) elements to create a polished look. A mid-fidelity prototype is produced
and possibly tested with potential users to further refine it.

5. Development of an interactive version of the design to allow users to
experience the flow and the functionalities offered by the application.
In this context, usability testing with real users can be conducted to gather
feedback on how well the design works and identify issues, if any.

6. Application of the necessary adjustments to the design, to better
target user needs, based on the feedback from user testing.

Throughout these steps, designers often leverage specialized tools to streamline
the design process and enhance the quality of their work. These tools not only help
in visualizing the structure and flow of the interface but also facilitate collaboration
among team members. By integrating such tools into the design process, designers
can efficiently iterate on their prototypes and ensure that the final product aligns
with users’ expectations and project’s goals. One very famous and powerful tool is
Figma [1]. It allows designers to create, prototype, and also collaborate on user
interface designs in real-time.

Starting from the fifth step, the development phase, and in the successive
refinements, designers work closely with developers to ensure that the design is
implemented as intended. This collaboration involves providing detailed design
specifications and being available to answer questions and solve any issues that
may arise during development.

Once the application is built, it will be made available to the users. After the
official launch, the application is continuously monitored to understand how users
interact with it and to gather valuable data on its performance. These data are
used for future improvements.

2.2 Machine Learning for GUI Design

2.2.1 The Role of Machine Learning for GUI Design
Given the description of the GUI design process in Section 2.1.2, it is evident that
it is a complex and time-consuming task. Moreover, it requires proper
collaboration in a cross-functional team to achieve the desired outcome.

It is clear that Artificial Intelligence (AI) tools can be particularly useful to
streamline the different design phases, providing a certain level of assistance that
depends on the specific task these tools are meant to address.

7

Background

For instance, the second step of the GUI design process (i.e., identification
of the “paths” expected to be taken by the users within the interface) could be
partially automated by training user agents in a reinforcement learning framework
to complete some tasks in GUIs while mimicking human behavior [9]. The user
agent can be used to assist the designer, uncovering patterns that may have been
missed or producing a list of “paths” and related tasks the designer may decide to
start from, rather than starting from scratch.

For the fourth step of the GUI design process (i.e., design of the visual aspect
of the interface), one of the many possibilities is to develop an AI model able to
assign colors to UI elements [3]. This task is known as colorization, and the goal is
to provide a tool to assist designers in the transition from a low-detail sketch to a
mid-fidelity prototype.

At this stage, the prototype is complex enough to leverage its visual and
functional context, and provide a broad range of intelligent assistants. Figma [1],
for example, now offers new AI-powered features able to understand the content of
a static mock and automatically turn it into an interactive prototype, all with the
touch of a button.

As research in AI continues to grow, new, more accurate and sophisticated tools
are expected to improve the designer’s workflow, while also accounting for the user
needs and preferences.

2.2.2 GUI Representation Learning
In the past few years, significant advancements have been made also in the devel-
opment of learned representations of GUIs. These learned representations are able
to encode the essential visual characteristics of the interfaces and could prove to be
useful for a variety of downstream tasks such as GUI generation, recommendation
of designs and more. These AI models for representation learning can improve
the efficacy of model training, enabling better generalization across a variety of
GUI design tasks by simplifying complex interfaces into compact and meaningful
representations [4, 10, 11, 12].

Several approaches leverage Transformer [13] architectures to capture depen-
dencies within GUIs. Arroyo et al. [14] present a novel model that generates
realistic and diverse layouts by integrating Transformer Networks and Variational
Autoencoders (VAEs) [15]. The model learns a latent representation of GUI layouts
and captures dependencies between layout components in an unsupervised manner
by leveraging transformer-based attention mechanisms. This allows designers to
explore innovative layouts by sampling from the learned representation. Similarly,
Sobolevsky et al. [16] introduce GUILGET, a technique that transforms GUI
elements into discrete representations. A token is assigned to each GUI component
based on its semantic type and spatial information, such as its position and size

8

Background

within the layout. Subsequently, the transformer model processes these tokens,
which represent components and their relationships. The transformer ensures
that the generated layout complies with design constraints (e.g., alignment and
containment) by capturing dependencies between tokens. This is achieved by
employing attention mechanisms and minimizing losses that are responsible for
placing each component within its parent layout, preventing component overlap if
they are within the same parent, and enabling component alignment.

Yamaguchi et al. [17] introduce CanvasVAE, which learns a structured repre-
sentation of vector graphics leveraging on a variational autoencoder. The model
encodes vector graphic commands into latent representations, capturing the rela-
tionships between graphical elements like shapes, paths, and text.

Lee et al. [18] introduce a method for generating graphic layouts that is based on
user-specified constraints. This method employs Graph Neural Networks (GNNs)
[19] to encode the relationships between design components (e.g., images, text) as
nodes and edges in a graph.

Generative Adversarial Networks (GANs) [20] are used by Kikuchi et al. [21] for
constraint-based layout generation. In their work, they optimize the latent space
of a pre-trained GAN to ensure the layout meets the constraints without requiring
retraining. The system generates high-quality layouts that satisfy user-specified
rules by using latent space exploration and optimization.

Screen2Vec [10] generates semantic embeddings for GUI components and GUI
display screens. The text label and class embeddings for the element’s category are
encoded using Sentence-BERT [22]. Subsequently, the component-level embedding
is generated by combining these embeddings through a linear layer. The component
embeddings are combined at the screen level using a Recurrent Neural Network
(RNN) [23], which is then supplemented by layout embeddings using an autoen-
coder and app metadata embeddings using Sentence-BERT. A final linear layer is
employed to integrate all three embeddings to obtain the screen-level embedding.

Creating an encoded representation plays an essential role in UI retrieval tasks,
facilitating the extraction and representation of both visual and structural char-
acteristics of UIs [12, 11]. Wu et al. [12] introduce a method to parse GUIs from
screenshots using a Convolutional Neural Network (CNN) [24]. Their approach
extracts pixel-level features that are, subsequently, used to predict a structured
representation of the GUI, producing an encoding that captures both the visual
and structural relationships between UI components. This procedure efficiently
converts screenshots into a format that can be employed for subsequent tasks,
such as UI retrieval, similarity matching, or reverse engineering UI code. Similarly,
Huang et al. [11] use two convolutional sub-networks (i.e., one for sketches, one for
screenshots) based on the VGG-A [25] architecture, each of them outputting an
embedding. Each sub-network is trained with a triplet loss function to guarantee
that the embeddings of sketches and their respective UIs are similar. In this manner,

9

Background

the model learns a shared embedding space, which facilitates the retrieval of the
correspondent UI based on sketches.

Some approaches try to combine the textual content and the visual design
to enhance GUI representation [26, 27]. Li et al. [27] explore how to translate
natural language instructions into executable sequences of actions on mobile UIs.
It employs a transformer model to extract key action phrases from instructions and
map them to UI objects based on content and screen position. Pasupat et al. [26]
employ retrieval techniques combined with learned embeddings of web elements
and commands to perform spatial, relational, and functional reasoning, linking
commands to corresponding web elements effectively.

Semantic annotation of GUIs is addressed by Liu et al. [28], who create a
lexical database that contains a set of design semantics to automatically annotate
mobile GUIs. This approach has been demostrated to be capable of identifying the
category of a GUI component, the semantics of buttons, and the overall task flow
of screens. They employ an autoencoder to generate a low-dimensional learned
representation, which is then used to conduct a nearest neighbor search.

Finally, Jing et al. [29] propose LayoutVQ-VAE, a model capable of generating
layouts with internal and external constraints while relying on a discrete latent
representation for the layout.

2.2.3 Rico Dataset
One of the most used datasets in AI research applied to GUI design is the Rico [4]
dataset.

It has been widely used in various AI research areas, including UI design
automation and generation [30, 31, 18, 21, 32, 14, 16, 17], usability prediction [33],
GUI layout synthesis [34, 35], UIs retrieval [12, 11], and visual embedding learning
[10, 28], demonstrating its versatility in supporting the development of advanced
machine learning models. Some of these works have also been briefly introduced in
Section 2.2.2.

Specifically, Rico is a large dataset of mobile app UIs aimed at supporting
research in UI design and Human-Computer Interaction (HCI). Introduced in 2017,
it was created to capture a wide variety of design patterns and user flows from
Android applications. The dataset contains over 72,000 unique UI screens across
more than 9,700 mobile apps spanning 27 categories from the Google Play Store,
making it one of the most comprehensive resources for understanding mobile app
design.

Each entry in the Rico dataset includes not only the visual representation of
the UI screen, but also metadata about its structure, such as view hierarchies and
UI components. This rich combination of data representations allows researchers
to analyze the relationships between different UI elements and how they contribute

10

Background

to the overall user experience. For instance, elements like buttons, text fields, and
images are labeled, for a total number of GUI element categories of 25,
and their properties, including layout positions and attributes, are available. This
makes the dataset particularly valuable for machine learning tasks involving the
analysis of GUI layouts.

Some examples of GUIs extracted from the Rico dataset are shown in Figure
2.3.

Figure 2.3: Four GUIs randomly selected from the Rico dataset [4]

2.3 Autoencoders and their Variants
Autoencoders (AEs) are neural networks specifically designed for learning an
alternative representation of the input data in an unsupervised manner. Given
their relevancy and the frequent use of their variants (e.g., VAEs, VQ-VAEs) for
GUI representation learning in the works reported in Section 2.2.2, a general
introduction is provided below.

Autoencoders are composed of two parts:

• An encoder that compresses the input into a latent space representation.

• A decoder that reconstructs the original input starting from the previously
generated latent representation.

Traditional autoencoders learn deterministic mappings, which limits their ability
to generate new and diverse data samples.

Variational Autoencoders (VAEs) [15] were introduced to overcome this
limitation by employing a probabilistic method for encoding. Instead of mapping
inputs to fixed points in the latent space, VAEs learn a distribution and map the

11

Background

inputs as points into a probability distribution, typically a normal distribution.
The data distribution in the latent space is represented by its mean µ, the center
of the distribution in the latent space, and its variance σ, that controls the spread
of the distribution.

Figure 2.4 shows the architecture of the VAE, which consists of two components:
the probabilistic encoder and the probabilistic decoder.

Figure 2.4: Variational Autoencoder model architecture [36]

The encoder maps the input data x to the mean µ and the variance σ of the
data distribution. Sampling directly from the learned latent distribution would
break the ability to backpropagate, as the sampling introduces non-differentiable
randomness. Therefore the reparameterization trick is used. A random variable ϵ
is sampled from a standard normal distribution (i.e., µ = 0 and σ = 1) and is used
to compute a latent vector z defined as in Equation 2.1.

z = µ(x) + σ(x)ϵ (2.1)

By learning a distribution rather than a single point for each input, the model
gains flexibility. This allows the VAE to generate new, similar data points by
sampling from the learned distributions.

The decoder takes the sampled latent vector z and tries to reconstruct the
original input x.

Therefore, the objective of the VAE is to model the underlying data
distribution in a way that captures meaningful latent variables. To achieve
this, it is necessary to compute the posterior distribution p(z|x), which represents
the probability of the latent variable z given the observed data x.

The true posterior is intractable because it requires computing the exact like-
lihood of the data given the latent variable z. For this reason, VAEs aim to
approximate the intractable posterior p(z|x) with a simpler distribution qϕ(z|x) by
optimizing the Evidence Lower Bound (ELBO) as in Equation 2.2.

12

Background

L(θ, ϕ; x) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)) (2.2)

where:

• pθ(x|z) is the likelihood of the data given the latent variable.

• qϕ(z|x) is the approximate posterior.

• p(z) is the prior over the latent variable, usually a normal distribution.

• DKL is the Kullback-Leibler divergence measuring the difference between two
probability distributions.

The first term is the reconstruction loss, that measures how well the decoder
reconstructs the original input, while the second term is the divergence loss (DL)
that encourages the learned latent space to be smooth and continuous.

VAEs have been utilized across various domains due to their ability to model
complex data distributions and learn meaningful latent representations, such as
image generation [37, 38], semi-supervised learning [39, 40], anomaly detection [41],
data imputation [42, 43], 3D object modeling [44, 45], speech and audio processing
[46, 47].

While VAEs use continuous latent spaces, Vector Quantized-Variational
Autoencoders (VQ-VAEs) [48] replace the continuous latent variables with discrete
codebook embeddings, combining the representational power of VAEs with the
benefits of a discrete latent space.

Discrete latent spaces are more effective at capturing the categorical and symbolic
information inherent in data, leading to better clustering and more interpretable
latent spaces.

Figure 2.5 shows the overall VQ-VAE model architecture.

Figure 2.5: Vector Quantized-Variational Autoencoder model architecture

Starting from the input data x, the encoder outputs continuous vectors ze that
are mapped to the nearest vector in the codebook of embeddings ei, as reported in
Equation 2.3.

13

Background

zq = ek where k = arg min
i
||ze − ei|| (2.3)

The decoder then tries to build the reconstruction x̂ of the original input x
starting from the discrete vector zq.

The loss function for training a VQ-VAE is usually a combination of a recon-
struction term Lreconstruction and a commitment term Lcommitment, as pointed out
in Equation 2.4.

L = Lreconstruction + Lcommitment (2.4)

where:

• Lreconstruction, defined as ||x− x̂||22, encourages the decoder to produce accurate
reconstructions.

• Lcommitment is defined as ||ze − sg(ek)||22, where sg(.) is the stop gradient oper-
ator. This loss encourages the encoder to produce continuous representations
as close as possible to the vectors of the codebook.

VQ-VAEs are widely used to model complex data distributions by employing
discrete latent spaces, which better capture categorical information, making them
ideal for a variety of tasks such as high-quality image generation [49, 50], audio
synthesis and speech generation [51, 52], unsupervised learning [53], compressing
images and videos [54, 55].

14

Chapter 3

FLUID Dataset

Following the discussion in Section 1.1, this chapter presents FLUID, Figma Layout
User Interface Dataset, a well-curated collection of Graphical User Interfaces (GUIs),
derived from the WebColor [3] dataset and specifically adapted for compatibility
with Figma [1]. This chapter outlines the motivations and the steps taken to
collect and refine the dataset, transforming HTML-based GUI representations into
Figma-compatible JSON files.

Specifically, Section 3.1 introduces the main features of the Klarna Product
Page Dataset [2], from which the WebColor dataset [3] is derived from, and the
most relevant information about WebColor itself.

Then, Section 3.2 contextualizes the two datasets in a joint Artificial Intelligence
(AI)-GUI design framework, highlighting their current limitations and setting the
stage for the introduction of FLUID.

So, Section 3.3 reports the operations performed on the WebColor dataset to
create FLUID, along with descriptive information about the new proposed dataset.

After this, FLUID is analyzed and further refined as described in Section 3.4.
At the end, the overall procedure to create FLUID is summarized in Section 3.5

to provide a concise reference that can be easily consulted.

3.1 Related GUI Datasets

3.1.1 Klarna Dataset
The Klarna Product Page Dataset [2] includes publicly available shopping web
pages. It contains 51,701 product pages collected from 8,175 retailers in 8 distinct
countries (US, GB, SE, NL, FI, NO, DE, AT), between 2018 and 2019.

The dataset was originally created to facilitate the development of AI systems
for predicting web GUI elements.

15

FLUID Dataset

All Klarna web pages include only mobile-sized GUIs in portrait mode. Each
sample is available in three data formats:

• MIME HTML (MHTML) files: web archive files that capture the entire
HTML content along with embedded resources like images and scripts.

• WebTraversalLibrary (WTL) snapshots: structured data formats created
by the WebTraversalLibrary [56], a tool designed for scraping and analyzing
web content. WTL snapshots contain structured data about the web page’s
DOM (Document Object Model).

• Screenshots: image files that capture the visual rendering of the page.

These data formats could be used in different ways to build a new GUI dataset,
allowing for flexibility in choosing how to manipulate the source data to reach the
desired outcome. Therefore, the Klarna Dataset is an interesting candidate for
assembling the new dataset.

3.1.2 WebColor Dataset
WebColor [3] is a dataset obtained by filtering and polishing GUIs from the
Klarna Product Page Dataset. The applied modifications are intended to produce
a dataset suitable for the web page colorization task.

The operations performed on the Klarna Dataset to create WebColor are:

1. Filtering elements that do not appear on the screen, including alternative
elements that only appear on laptop sized screens and functional elements, such
as hidden input elements in submission forms, effectively reducing redundancy
in the HTML of mobile GUIs.

2. Addition of a progressive selector to HTML elements (e.g., #element-1).

3. Retrieval of color values computed by the browser and simplification of web
pages using both the Selenium WebDriver [57] and Google Chrome [58].

4. Removal of web pages that, even after simplification, still have more than 200
elements.

5. Exclusion of web pages that are encoded differently from UTF-8.

After these operations are carried out, the resulting WebColor dataset contains
44,048 product pages divided as:

• 27,630 training samples.

16

FLUID Dataset

• 3,190 validation samples.

• 13,228 test samples.

Some examples of GUIs extracted from the WebColor dataset are shown in
Figure 3.1.

Figure 3.1: GUI samples from the WebColor [3] training set

3.2 Filling the Gaps in GUI Datasets with FLUID
Despite the efforts made toward the creation of such large and refined datasets like
Klarna [2] and WebColor [3], they could be further enhanced to better accommodate
the needs of both designers and AI researchers. Specifically:

• If a dataset were to be compatible with Figma [1], meaning that the dataset’s
GUIs are in a format that can be opened and edited within the Figma
application, an entire world of new possibilities unfolds. This is because
the internal GUI representation used by Figma would then be available
for the development of new AI models that could be directly deployed, via
plugin, within the Figma environment. These AI models, trained on Figma-
compatible GUIs, could seamlessly integrate into the designer’s workflow by
suggesting new design elements, highlighting potential design pitfalls, and
offering optimizations, thereby enhancing productivity and creativity in the
design process.

• HTML web pages can sometimes be verbose and poorly organized, making
them less suitable for training AI models that want to address issues strictly

17

FLUID Dataset

related to GUI design. A simplified hierarchical data representation that
focuses on the most relevant aspects for GUI design, instead, would make the
dataset AI-ready, also removing unnecessary data that could be perceived as
“noise” by AI models.

To target these needs, a new dataset derived from WebColor is proposed, called
FLUID, Figma Layout User Interface Dataset. WebColor is selected as the source
dataset because it retains the advantages of Klarna by providing both MHTML
files and screenshots, allowing for flexibility in data management, while also offering
a more refined structure where unnecessary elements are removed.

Moreover, since the final objective of this work is to propose an AI model for
multimodal GUI representation learning to support the development of new AI
models for downstream tasks, the Rico [4] dataset introduced in Section 2.2.3 is
not considered. The dataset lacks individual images from each GUI and does not
provide sufficiently precise bounding boxes for cropping and storing images in
separate files. As the availability of images is essential in a multimodal context,
Rico is discarded.

3.3 Data Collection
To derive FLUID from WebColor, the MHTML format was selected because it is
the most comprehensive one, including HTML, CSS files and additional content
(e.g., images).

From visual inspection of the data, it was observed that cookie notifications
significantly impact the visibility of product information on web pages. Figure
3.2a shows a typical example of a web page where the product details are partially
obscured by cookie notifications. To address this issue, the <div> tag associated
with cookie notifications is removed from the HTML files, resulting in a
clearer display of the page content, as it can be seen in Figure 3.2b.

Next, to convert web pages to a format that is compatible with Figma [1], the
Figma plugin Builder.io-Figma to HTML, React and more [59] can be used.
It allows to:

• Generate a Figma-compatible JSON file for a GUI starting from the web page
files (i.e., HTML, CSS, images).

• Import the previously generated JSON file into Figma.

A local web server in the directory containing the plugin module and another in
the dataset subdirectory are manually initiated during the setup process. These
servers are configured to handle cross-origin requests on distinct ports.

18

FLUID Dataset

(a) (b)

Figure 3.2: Visual aspect of a WebColor [3] web page with and without the cookie
notification. (a) Web page with the cookie notification partially obscuring product
information. (b) Web page after removing the cookie notification, showing clear
product information

Then, using a JavaScript (JS) script, the viewport size of the browser page is
configured to simulate the screen dimensions of a smartphone, and the plugin
module is dynamically injected in the HTML page and executed.

The plugin execution results in a JSON file that is further manipulated
by the JS script.

Specifically, when importing a JSON file in Figma using the original plugin,
images are correctly visualized only if their source is a web URL. Since the dataset
images are saved locally and the plugin does not support the visualization of images
with local URLs in Figma, to ensure full compatibility images are converted,
using the JS script, to Base64 encoded strings. Consequently, the plugin
is modified to be able to render not only images retrieved from the
web, but also images encoded as Base64 strings. In this way, images can be
correctly imported in Figma.

19

FLUID Dataset

SVGs are modified by the JS script using the Cheerio [60] library to enhance
compatibility. The <use> tags have been replaced with their actual refer-
enced elements, directly in the <svg> tag, maintaining any necessary viewBox
attributes for proper scaling. This process results in a self-contained, updated
SVG string that is better suited for environments that may not support external
references, like Figma.

Finally, the resulting GUI representation is saved into a new JSON file. The
entire procedure is repeated for all the samples in the WebColor dataset.

Table 3.1 provides a description of the main GUI nodes’ attributes in the
resulting Figma-compatible JSON files, while Table 3.2 reports the description
of GUI nodes’ categories, which are the values that the type attribute, shown in
Table 3.1, can assume.

Attribute Description
type Indicates the type (category) of the Figma node

x Defines an x-axis coordinate in the user coordinate
system. The x is relative to the parent

y Defines a y-axis coordinate in the user coordinate
system. The y is relative to the parent

width Sets an element’s width
height Sets an element’s height

clipsContent

Automatically crops any content that goes beyond
the bounds of a component. This means that what-
ever is outside the component’s bounds won’t be
visible in the design

r, g, b, a Defines the intensity of the color, with a value
between 0 and 255, and opacity

opacity Sets the opacity of an element
url Contains the path of the image

scaleMode How the image is positioned and scaled within the
layer

intArr
Contains the Base64 image representation. This
is important since the Figma plugin cannot fetch
images from local resources

name

The name of the component. This is useful to
specify a data-layer attribute to make things more
debuggable when inspecting the sublayers of a wid-
get

characters Textual content
Continued on next page

20

FLUID Dataset

Table 3.1 – continued from previous page
Name Description

blendMode Determines how the color of this shadow blends
with the colors underneath it

textCase Overrides the case of the raw characters in the text
node

fontSize The size of the font
fontFamily The family of the font

textAlignHorizontal The horizontal alignment of the text with respect
to the Text node

unit Indicates the unit of measure of fontSize

strokeWeight Sets the width of the stroke used for points, lines,
and the outlines of shapes

radius The blur radius of the shadow
svg SVG elements

position

Set based on the element’s computed position
property, specifically if it is either absolute or fixed,
indicating that the element is positioned out of
the normal document flow and placed at a specific
location

heightType
widthType

Determined by whether the element’s height or
width are fixed or should shrink to fit content. The
types are also influenced by the element’s display
property (inline elements are set to “shrink”) and
parent alignment properties (e.g., textAlign, justi-
fyContent)

topLeftRadius
topRightRadius
bottomRightRadius
bottomLeftRadius

Used to make round corners

horizontal Defines how a layer behaves when resizing the frame
along the x axis

vertical Defines how a layer behaves when resizing the frame
along the y axis

Table 3.1: Description of GUI elements’ attributes in FLUID JSON files

21

FLUID Dataset

Category Description

FRAME Used to create structured containers for UI
elements

IMAGE Allows to insert images within designs
RECTANGLE Used to draw rectangular shapes
DROP_SHADOW Adds a shadow effect to objects
TEXT Enables adding and styling text
SOLID Used for creating solid color fills
SVG Incorporates SVG graphics into designs

Table 3.2: Description of GUI nodes’ categories in FLUID JSON files

The Code Block 3.1 shows an example of the FLUID hierarchical representation,
excerpted from a JSON file.

These JSON files can be directly imported in Figma [1] by using the Figma
Builder.io-Figma to HTML, React and more [59] plugin’s interface. Figure 3.3
shows the plugin interface. The red rectangle highlights the position of a clickable
link to import the previously generated JSON files.

Figure 3.4b shows the accurate reconstruction when importing a FLUID GUI in
Figma, mirroring the corresponding WebColor web page visible in Figure 3.4a. It’s
important to note, however, that while this instance was successful, variations in
GUI complexity might affect reconstruction fidelity since the process of transforming
HTML to a Figma-compatible format is a best-effort process. An example of a
sub-optimal reconstruction is shown in Figure 3.4d, for the WebColor web page
in Figure 3.4c. The overall structure of the GUI is preserved, but there are some
missing elements (e.g., missing cart) and slight misalignments in visual appearance
(e.g., the “-20%” discount text).

22

FLUID Dataset

{
" layers ": [

{
"type ": " FRAME ",
" width ": 375 ,
" height ": 829 ,
"x": 0,
"y": 0,
" children ": [

{
"type ": " FRAME ",
" clipsContent ": false ,
"x": 0,
"y": 0,
" width ": 375 ,
" height ": 44,
" backgrounds ": [],
" children ": [

{
"type ": " RECTANGLE ",
"x": 0,
"y": 0,
" width ": 375 ,
" height ": 44,
" fills ": [

{
"type ": " SOLID ",
" color ": {

"r": 0.9921568627450981 ,
"g": 0.8509803921568627 ,
"b": 0.3607843137254902

},
" opacity ": 1

}
],
" topLeftRadius ": 0,
" topRightRadius ": 0,
" bottomRightRadius ": 0,
" bottomLeftRadius ": 0,
" constraints ": {

" horizontal ": " SCALE ",
" vertical ": "MIN"

}
}

]
}

]
}

]
}

Code Block 3.1: Example of the FLUID hierarchical representation, excerpted
from a JSON file

23

FLUID Dataset

Figure 3.3: Figma plugin Builder.io-Figma to HTML, React and more [59]
interface. The red rectangle highlights the position of a clickable link to import a
JSON file

24

FLUID Dataset

(a) (b)

(c) (d)

Figure 3.4: Visual comparison between two WebColor web pages and their
corresponding FLUID GUIs imported in Figma. (a), (c) WebColor web pages. (b),
(d) FLUID GUIs imported in Figma

25

FLUID Dataset

3.4 Data Analysis and Cleaning

The JSON files compatible with Figma are now analyzed to further refine the
FLUID dataset.

Figure 3.5 illustrates the distribution of the total number of GUI elements per
file, which resembles a normal distribution with a peak around 40, suggesting that
most files contain approximately 40 elements.

Figure 3.5: Distribution of the total number of elements per file in FLUID

There are also some outliers, with files containing a high number of elements
and others containing as few as one element. These extremes may result from
earlier data cleaning steps, such as the removal of cookies elements.

Figure 3.6 shows the distribution of the number of images per file; in Figure
3.6b the number of images are grouped into aggregated intervals.

The distribution is concentrated on the left, meaning that most files contain a
small number of images, with the frequency decreasing as the number of images
per file increases.

Figure 3.7 shows the distribution of the number of SVGs per file.

26

FLUID Dataset

(a) (b)

Figure 3.6: Distribution of the number of images per file in FLUID. (a): distribu-
tion of the number of images per file. (b): distribution of the number of images
per file as aggregated intervals

(a) (b)

Figure 3.7: Distribution of the number of SVGs per file in FLUID. (a): distribution
of the number of SVGs per file. (b): distribution of the number of SVGs per file as
aggregated intervals

A significant number of files contains 0 SVGs and very few files contain more
than 7 SVGs, pointing out that files that contain a lot of SVGs are rare.

Figure 3.8 and Figure 3.9 offer a view of the distribution of text elements and
their length within the dataset.

The distribution of the number of text elements (see Figure 3.8) inside each file
is highly concentrated on the left with a peak around 10. There is a rapid decline
in frequency as the number of text elements per file increases, indicating that most
files contain relatively few text elements. Very few files contain more than 40
text elements, highlighting that text-heavy files are very rare. The distribution
of text lengths (Figure 3.9) displays a right-skewed distribution, with most texts
containing between 0 to 300 words, indicating that shorter texts are predominant

27

FLUID Dataset

(a) (b)

Figure 3.8: Distribution of the number of textual elements per file in FLUID. (a):
distribution of the number of textual elements per file. (b): distribution of the
number of textual elements per file as aggregated intervals

Figure 3.9: Distribution of the length of textual elements, in number of words, in
FLUID

in the dataset. Few texts extend up to 1,400 words, highlighting outliers and
suggesting a potential need for special handling of such values.

Further analysis has been conducted on the values of the attributes x, y, width,
height, whose results are shown in Figure 3.10. It’s important to note that the
x and y attributes in FLUID actually specify the position relative to the parent
element, while the distributions presented in Figures 3.10a and 3.10b are produced
by converting relative positions to absolute positions with respect to the overall
GUI layout.

28

FLUID Dataset

(a)

(b)

(c)

(d)

Figure 3.10: Distribution of the attributes x, y, width and height in FLUID.
(a) Distribution of the attribute x (absolute). (b) Distribution of the attribute y
(absolute). (c) Distribution of the attribute width. (d) Distribution of the attribute
height

29

FLUID Dataset

The FLUID interfaces have a size of 375 × 1,400 pixels. From Figure 3.10, it is
evident that x is often less than 0, while y is often greater than 1,400, suggesting
there are many UI elements that extend beyond the limits imposed by the FLUID
GUI size.

In fact, Figure 3.11 reports an example of a FRAME element whose width is
greater than 375. This makes the element overflow the GUI opened in Figma.

Figure 3.11: Example of a FLUID GUI opened in Figma [1], where width is
greater than 375

Despite extending beyond the GUI limits, these components are kept since it is
possible to compute the correct positions for the elements they contain.

Figure 3.12 illustrates the relative frequencies of the main attributes reported in
Table 3.1 and some other attributes that were not reported in the table.

30

FLUID Dataset

Figure 3.12: Distribution of GUI elements’ attributes in FLUID dataset

For the scope of this work, attention will be focused solely on static elements; con-
sequently, properties such as horizontal, vertical, heightType, widthType,
textAlignHorizontal and clipsContent, which are related to dynamic
behavior, are deleted.

Certain attributes, such as a, radius, textCase, and strokeWeight, ex-
hibit low usage frequencies and, for this reason, are discarded.

Additionally, the attributes blendMode and name consistently assume the
same values over different GUI elements and are therefore eliminated.

imageHash is always None and, for this reason, it is removed.
The attributes topLeftRadius, topRightRadius, bottomRightRadius, bot-

tomLeftRadius and opacity do not significantly contribute to the aspect
of the user interface, so they are deleted. Figure 3.13 demonstrates the
effect of removing the topLeftRadius, topRightRadius, bottomRightRadius, and
bottomLeftRadius attributes. Initially, the carousel indicators are round, as shown
in Figure 3.13a, but after the removal of these attributes, they become squared, as
illustrated in Figure 3.13b.

31

FLUID Dataset

(a) (b)

Figure 3.13: Effect of removing the attributes topLeftRadius, topRightRadius,
bottomRightRadius, and bottomLeftRadius from FLUID GUIs. (a) The carousel
indicators are round when these attributes are present. (b) After the removal of
these attributes, the carousel indicators become squared

In many cases, the original WebColor HTML pages include <a> elements with a
dummy destination URL. An example is reported in Code Block 3.2. The conversion
to JSON transforms these elements to RECTANGLE nodes that, when opened in
Figma, appear as grey boxes that negatively impact the visual layout, as
shown in Figure 3.14. Therefore, such RECTANGLE nodes are removed from
FLUID JSON files to improve the Figma visualization.

Code Block 3.2: Example of an <a> HTML tag in WebColor dataset with a
dummy destination URL

32

FLUID Dataset

Figure 3.14: Example of a grey box negatively impacting the visual layout of a
FLUID GUI opened in Figma

All of the categories reported in Table 3.2 are strictly mandatory for Figma
to correctly render the GUIs, except for DROP_SHADOW, which is optional and only
adds style to objects. Therefore, DROP_SHADOW type nodes are deleted because
they don’t significantly influence the visual appearance.

RECTANGLE always contains a node of type TEXT or a node of type IMAGE, since
it is just a wrapper for these two categories. However, being a category mandatory
to render GUIs in Figma, it cannot be removed.

The final distribution of elements per file after these data cleaning steps is shown
in Figure 3.15.

33

FLUID Dataset

Figure 3.15: Distribution of the total number of elements per file in FLUID after
data cleaning

Compared to Figure 3.5, the reported data cleaning steps have effectively
reduced the presence of outliers. However, to further ensure a balanced dataset
and potentially better training dynamics, it has been decided that the JSON files
of GUIs that include less than 5 elements or more than 90 elements will
be deleted.

The final dataset now contains 41,337 samples divided as:

• 25,825 training samples.

• 2,972 validation samples.

• 12,540 test samples.

3.5 Conclusion
Finally, Figure 3.16 reports a visual representation for the operations performed
on the WebColor dataset to build FLUID. The operations can be summarized as
follows:

1. Removal of <div> tags associated with cookies notifications.

2. Figma plugin injection in HTML page.

3. Figma plugin execution to extract a JSON file.

4. Conversion of images to Base64 encoded strings and modification of Figma
plugin to be able to render these images encoded as Base64 strings.

34

FLUID Dataset

5. Resolved references of <use> tags for SVGs.

6. Removal, after data analysis, of some GUI elements’ attributes and categories.

7. Removal of grey RECTANGLE nodes caused by a dummy destination URL for
WebColor a elements.

8. Removed JSON files corresponding to GUIs with less than 5 or more than 90
elements.

Overall, FLUID appears to be both well-structured and with a good degree of
compatibility with Figma, laying the foundations for direct integration in Figma of
AI models trained on such dataset.

Figure 3.16: Operations performed on the WebColor dataset to build FLUID

35

Chapter 4

Methodology

A Graphical User Interface (GUI) contains a series of elements. The goal of this
work is to develop an Artificial Intelligence (AI) model to learn an alternative rep-
resentation for these elements that can be used for efficient training of downstream
AI models.

To this end, the chosen architecture is a Vector Quantized-Variational
Autoencoder (VQ-VAE) [48], a variant of the standard Variational Autoencoder
(VAE) [15] designed to learn discrete latent representations.

This chapter first outlines, in Section 4.1, the model architecture, the learning
procedure and the implementation details in the simple scenario of elements
characterized only by their categories and bounding box coordinates.

Then, Section 4.2 provides the same information but in a complex multimodal
framework that can serve a wide variety of downstream real-world applications.

4.1 Bounding Box and Category Encoded Rep-
resentation Learning

A GUI x ∈ X can be described by the list of the contained elements x =
[g1, g2, ..., gn] where gi is the ith element and n is the total number of elements
contained in each GUI. Each element gi is identified by its bounding box bi,
with bi ∈ B, specified by the x and y coordinates of the upper-left and lower-right
corners, and its category ci with ci ∈ C, therefore gi = [bx0

i , by0
i , bx1

i , by1
i , ci]. The

notation can be simplified as gi = [bi, ci].
Given this formulation, the objective is to develop, train and test an

AI model suitable for encoded representation learning in this simple
scenario, where GUI elements are characterized only by their categories
and bounding box coordinates.

36

Methodology

4.1.1 Model Architecture

The VQ-VAE [48] is used to learn a discrete latent representation for GUI
elements. This learned representation can be particularly useful for downstream
tasks where discrete latent variables are beneficial, such as discrimination, clustering
of similar patterns into discrete groups and generation of new components. Unlike
standard Variational Autoencoders (VAEs) [15], which operate over continuous
latent variables, VQ-VAEs map continuous latent vectors to a finite set of discrete
vectors, known as codebook. This results into latent representations that are more
interpretable and can also prevent issues such as posterior collapse, a common issue
in traditional VAEs.

The VQ-VAE model architecture includes three key modules:

• Encoder: transforms the input into a continuous latent space.

• Vector Quantizer: maps the continuous latent representation into a discrete
representation.

• Decoder: reconstructs the input from the discrete latent space.

The proposed VQ-VAE architecture includes transformer-based self-attention
mechanisms, which are particularly effective for capturing long-range dependencies
in sequential data, such as GUI components. This makes it well-suited for GUI
layouts, which exhibit spatial and structural relationships that need to be modeled
effectively. Figure 4.1 shows the proposed VQ-VAE model architecture.

Figure 4.1: Proposed VQ-VAE model architecture

In the following, the three modules (i.e., encoder, vector quantizer, decoder) will
be presented in detail.

Encoder

The architecture of the encoder module is represented in Figure 4.2.

37

Methodology

Figure 4.2: Proposed VQ-VAE encoder module architecture

The encoder qϕ(Ze|B, C) takes as input the sequence of elements x = [g1, g2, ...,
gn] of a GUI, where gi = [bi, ci], and uses a Multi-Layer Perceptron (MLP),
fenc(bi; ci; ϕ), to project the input into a d-dimensional space.

Given that the input contains a series of GUI components, it is essential to
include information regarding the position of each element within the sequence. The
MLP is followed by a Transformer [13]. However, transformers do not inherently
encode the order of elements; therefore, learnable positional embeddings, pi,
are added to each element’s hidden representation [61], as described in Equation
4.1.

hi = fenc(gi; ϕ) + pi (4.1)

where gi = [bx0
i , by0

i , bx1
i , by1

i , ci].
The modified hidden representation hi is then passed to a self-attention based

mechanism for further refinement, as shown in Equation 4.2.

li = Transformer(hi; ϕ) (4.2)

The choice of using a transformer is motivated by its ability to capture long-range
dependencies between elements in the sequence. In the context of GUI layouts, this
means understanding relationships such as the spatial organization of components,
as well as how elements might visually interact.

After processing through the transformer layers, the sequence is projected into
the latent space suitable for quantization using another MLP.

zi,e = fdec(li; ϕ) (4.3)

This projection ensures that the continuous latent representation is of the correct
dimensionality to be mapped into a discrete latent representation.

38

Methodology

Vector Quantizer

The conversion from a continuous latent space to a discrete one is performed using
a Vector Quantizer (VQ), illustrated in Figure 4.3.

Figure 4.3: Proposed VQ-VAE Vector Quantizer module

To discretize the output of the encoder, a codebook consisting of K learned
vectors ek ∈ RD for k = 1, ..., K is defined. For every latent vector zi,e of the
encoder output, the Euclidean distances di,k from every codebook vector ek are
computed following the Equation 4.4.

di,k = ||zi,e − ek||22 (4.4)
For every latent vector zi,e, the index ki of the closest discrete vector eki

of the
codebook is identified based on the Euclidean distances determined in the previous
step, following the procedure in Equation 4.5.

ki = arg min
k

di,k (4.5)

The latent vector zi,e is finally discretized by replacing it with the nearest discrete
vector from the codebook, eki

, as in Equation 4.6.

zi,q = eki
(4.6)

To maintain stability during training, the codebook vectors are updated us-
ing Exponential Moving Average (EMA) [62]. The update via EMA allows
the codebok to evolve gradually over time, avoiding abrupt changes that could
destabilize the learning process.

Two information are stored for the EMA procedure:

1. Embeddings ek for each k ∈ K.

2. Counts ck for each k ∈ K, measuring the number of continuous latent
representations that have ek as its nearest neighbor.

39

Methodology

The counts ck are updated over a mini-batch of size m, at training time only,
as described in Equation 4.7.

ck ← λck + (1− λ)
Ø
m

1[zi,q = ek] (4.7)

Then, the embeddings ek are consequently updated as in Equation 4.8.

ek ← λek + (1− λ)
Ø
m

1[zi,q = ek] zi,e

ck

(4.8)

In Equations 4.7 and 4.8, 1[.] is the indicator function and λ is a decay parameter.
Small values of λ allow faster updates for the codebook vectors, to better adapt
to recent data, while large values make the updates more conservative, which can
lead to smoother and more stable updates but might make the model slower to
adapt to new patterns in the data.

Decoder

The decoder pθ(B̂, Ĉ|Zq), whose architecture is shown in Figure 4.4, is responsible
for reconstructing the original input from the quantized latent representations.
The architecture of the decoder mirrors the encoder one.

Figure 4.4: Proposed VQ-VAE decoder module architecture

The quantized latent vectors zi,q ∈ RD first pass trough an MLP, fenc(zi,q; θ), to
project them into a d-dimensional space, ensuring the correct dimensionality for the
subsequent processing step. As done for the encoder, the hidden input is summed
up with learnable positional embeddings, pi, allowing to retain information about
the original order in the sequence. These two operations are described in Equation
4.9.

hi = fenc(zi,q; θ) + pi (4.9)

The sequence hi is then passed to a non-autoregressive transformer-based decoder,
as shown in Equation 4.10.

40

Methodology

li = Transformer(hi; θ) (4.10)

The transformer helps the VQ-VAE decoder to consider the relationships between
different parts of the latent sequence during reconstruction. Additionally, the
decoder is made non-autoregressive to generate all outputs in parallel,
effectively improving the efficiency of the decoding process.

After the transformer layers, the output li passes through a final MLP to
project it back into the original input space, ensuring that the output has the
same dimensionality and structure as the original input. The result of this op-
eration, reported in Equation 4.11, is the reconstructed sequence of elements
x̂ = [ĝ1, ĝ2, ..., ĝn] ∈ X̂, expressed in terms of its elements ĝi = [b̂x0

i , b̂y0
i , b̂x1

i , b̂y1
i , ĉi],

also written as ĝi = [b̂i, ĉi].

ĝi = fdec(li; θ) (4.11)

4.1.2 Learning Procedure
The total loss for training the proposed VQ-VAE model consists of two terms: the
reconstruction loss and the commitment loss.

In this work, the reconstruction loss Lreconstruction has two parts: a Mean
Squared Error (MSE) loss for reconstructing the bounding boxes and a categori-
cal Cross-Entropy loss for predicting the element categories. The reconstruction
loss is formulated as in Equation 4.12.

Lreconstruction = ||bi − b̂i||22 − α
nc−1Ø
j=0

ci,j log ĉi,j (4.12)

where ||bi− b̂i||22 represents the MSE loss computed on the bounding box coordinates,
and the second term −α

qnc−1
j=0 ci,j log ĉi,j represents the categorical cross-entropy

loss computed using the predicted categories, where nc is the total number of
categories for GUI elements and α is a scaling factor that balances the two loss
components.

Then, the commitment loss Lcommitment, formally defined in Equation 4.13, is
used to further encourage the encoder module to produce latent vectors that are
close to the codebook vectors.

Lcommitment = ||zi,e − sg(zi,q)||22 (4.13)

In Equation 4.13, sg(zi,q) stands for the stop-gradient operation, defined as in
Equation 4.14.

41

Methodology

sg(zi,q) =

zi,q forward pass
0 backward pass

(4.14)

This operator prevents gradients from flowing through zi,q during backpropagation,
ensuring that only the encoder is updated and not the codebook vectors.

Unfortunately, the operation described in Equation 4.5 is not differentiable
and does not allow gradients to flow through the quantization process during
backpropagation. Therefore, to allow the encoder to receive gradients from both
the reconstruction and commitment losses, the straight-through estimator [63]
technique is applied. This approach treats the quantization step as an identity
function during the backward pass, allowing gradients to flow directly through the
non-differentiable quantization process. Specifically, while the encoder’s output
is quantized by assigning it to the nearest codebook vector during the forward
pass, the gradients are directly passed from the quantized representation zi,q to the
continuous encoder output zi,e during the backward pass. This trick allows the
encoder to be optimized despite the non-differentiability of the quantization step.

So, the total loss is a weighted sum of the reconstruction and commitment losses,
as illustrated in Equation 4.15.

L = Lreconstruction + βLcommitment (4.15)
where β is a hyperparameter that controls the relative importance of the commit-
ment loss.

Finally, the optimization strategy can be summarized as follows:

• The decoder is optimized by minimizing the reconstruction loss, focusing on
reconstruction of bounding boxes and prediction of GUI elements categories.

• The encoder is optimized by minimizing both the reconstruction loss and the
commitment loss, ensuring that the vectors produced by the encoder remain
close to the codebook vectors.

• The embedding space (i.e., the codebook) is updated using Exponential
Moving Average [62], ensuring smooth updates of the discrete vectors over
time.

4.1.3 Implementation Details
The project is developed using Python 3.9 [64], with PyTorch 1.12.1 [65] and CUDA
11.6 [66].

Both model training and evaluation are executed on remote machines of the
Paperspace platform [67]. The specific CPU and GPU configurations are not
reported, as they vary based on machine availability at any given time.

42

Methodology

The proposed VQ-VAE model is trained and evaluated on both FLUID and
the Rico [4] dataset. The discussion in Section 3.2 highlighted the unsuitability
of the Rico dataset for multimodal GUI representation learning. Regardless, for
the simple scenario of bounding box reconstruction and category prediction it is
adequate and can actually serve as a reference for comparison with other works.

The following two sections report the specific implementation details for the two
datasets.

FLUID

When loading data from FLUID, the following preprocessing operations are per-
formed:

• GUI elements from the FRAME category are essentially wrappers for other GUI
components. Being mandatory to render GUIs in Figma [1], it is not possible
to permanently remove them from JSON files. However, for the purpose of
this work, GUI elements from this class are filtered out on-the-fly to simplify
the model training, while still retaining their subnodes in the GUI elements
tree. Ideally, the positions of these FRAME elements within the GUI elements
tree should be stored to reinsert them at a later stage, to ensure compatibility
with Figma. Alternatively, future work could preserve these elements and
evaluate the model in a scenario with these additional FRAME elements.

• The RECTANGLE category is just a wrapper for the TEXT and IMAGE categories,
but it is mandatory to render GUIs in Figma, so it cannot be permanently
removed from JSON files. However, for the purpose of this work, GUI elements
from the RECTANGLE class are filtered out on-the-fly to simplify the model
training, while still retaining their subnodes in the GUI elements tree. This
does not impact the compatibility with Figma, considering it is possible to
add these wrappers in the context of a post-processing operation.

• The number of GUI element categories is 4. The categories that are considered
are SVG, TEXT, SOLID, IMAGE, and they are one-hot encoded.

• As reported in Table 3.1, the x and y positions are relative to the parent
element. These values are converted to absolute positions and are min-max
normalized to the [0, 1] range according to the FLUID max GUI size (i.e., 375
× 1,400 pixels).

• Following the discussion below Figure 3.11, there are some GUI elements whose
bounding boxes extend beyond the GUI limits. However, for some subnodes
of these GUI elements the absolute position meets the constraints imposed
by the GUI size. Therefore, GUI elements for which at least a coordinate of

43

Methodology

the bounding box falls outside the GUI layout have been filtered out. This
operation is restricted to these nodes only, and not to their subnodes, which
are evaluated independently.

For the VQ-VAE model, the following configuration is used:

• The model is developed to work on sequences of a fixed size, set to 90 according
to the analysis below the Figure 3.15. For GUIs that have a lower number of
elements than 90, proper padding is added to reach this length and a masking
strategy is used to correctly compute the losses and the metrics.

• The encoder and decoder transformers share the same parameters. Specifically,
d, the number of expected features in the encoder/decoder inputs, is set to
512, the number of multi attention heads is set to 8, the dimension of the
feedforward model is set to 2,048, the number of layers is set to 12.

• For the codebook, K is set to 256, D is set to 64. The codebook vectors are
updated via EMA as described in Equations 4.7 and 4.8, with the λ parameter
set to 0.99 for smooth updates.

The training is conducted using the following parameters:

• The batch size for the training dataloader is 128.

• AdamW [68] is used as the optimizer, with the learning rate fixed to 10−5.

• The scaling factor α (see Equation 4.12) for the categorical Cross-Entropy loss
is set to 0.01.

• The scaling factor β (see Equation 4.15) for the commitment loss is set to
0.25.

• The validation step is set to 2. The batch size for the validation dataloader is
1.

• The validation metrics are monitored and the Early Stopping algorithm is used
to stop the training when no improvements are recorded for a given number
of validation steps, that is the patience, set to 30.

• The training is performed indefinitely, until it is stopped by the Early Stopping
algorithm.

44

Methodology

Rico Dataset

When loading data from Rico, the following preprocessing operations are performed:

• The x0, y0, x1 and y1 values for positions are already in absolute format,
differently from FLUID. These values are min-max normalized to the [0, 1]
range according to the Rico max GUI size (i.e., 1,440 × 2,560 pixels).

• The number of GUI element categories is 25, as reported in Section 2.2.3, and
they are one-hot encoded.

The VQ-VAE model configuration is unchanged from the one used for FLUID.
The only difference in training with respect to FLUID is the Early Stopping

patience, set to 25.

4.2 Multimodal Encoded Representation Learn-
ing

In addition to the bounding box coordinates and element categories used to train
the VQ-VAE [48] in the simple scenario described in Section 4.1, this work also
explores the inclusion of text, images and colors to enrich the representation of
GUI components. The objective is to go one step further and develop, train
and test an AI model for multimodal encoded representation learning
of GUIs, capturing a broader range of features that could be exploited
by downstream real-world applications. To address this task, the chosen
architecture for the AI model is a VQ-VAE, the same one described in Section 4.1.1
and with the minimal set of changes required to accommodate the needs of the
new, extended GUI representations.

4.2.1 Multimodal Input Representation
For the textual elements of GUIs, text embeddings are generated using
BERT (Bidirectional Encoder Representations from Transformers) [61], a pre-
trained language model that captures deep contextual information. BERT is
well-suited for generating embeddings that reflect the meaning and context of text,
which is crucial for understanding the role of textual elements like button labels,
headings, or menu items within a GUI.

For each GUI element that contains text, BERT generates a fixed-length embed-
ding ti ∈ R for the text, that is subsequently concatenated with the bounding box
and category information of the element. For elements without text, a zero-vector
is used as a placeholder. The extended representation for a GUI element can now
be formalized as in Equation 4.16.

45

Methodology

gi = [bx0
i , by0

i , bx1
i , by1

i , ci, ti] (4.16)

By leveraging BERT’s ability to generate semantically rich text embeddings,
the VQ-VAE model is better equipped to capture the role of text in GUI layouts,
enabling it to learn more effective representations for components where text plays
a significant role.

To represent images in GUIs, image embeddings are extracted using
CLIP (Contrastive Language–Image Pretraining) [69]. CLIP is a powerful model
that generates semantically meaningful embeddings for images based on their
visual content. This allows the VQ-VAE model to better capture the relationships
between visual elements within the GUI, potentially enhancing its ability to learn
representations that reflect the structure and content of graphical layouts.

For each image element in the dataset, CLIP is used to generate a fixed-length
embedding vi ∈ R. The image embedding is appended to the element representation
alongside the bounding box, category and text information. If a GUI element does
not contain an image, a zero-vector is used as a placeholder. The updated GUI
element representation is reported in Equation 4.17.

gi = [bx0
i , by0

i , bx1
i , by1

i , ci, ti, vi] (4.17)

Using CLIP, the VQ-VAE model can leverage the rich relationships between
images, improving its capacity to represent GUI components in a way that reflects
both their visual appearance and their functional context within the layout.

Color also plays an important role in the visual appearance of GUI components.
In this work, color information is represented by predefined color categories,
such as “red”, “blue”, or “green”. Each GUI element gi is assigned a category
coli ∈ Ccol, representing the color of the element. If a GUI element does not include
color information, a zero-vector is used as a placeholder. The final extended GUI
element representation is shown in Equation 4.18.

gi = [bx0
i , by0

i , bx1
i , by1

i , ci, ti, vi, coli] (4.18)

Following the introduction of these additional features, the final reconstruction
output ĝi of the VQ-VAE model will include bounding box coordinates, element
categories, text embeddings, image embeddings, and color categories. This ensures
that the model can accurately predict not only the bounding box coordinates and
element categories, but also the text embeddings, image embeddings, and color
categories, yielding a full reconstruction ĝi, defined in Equation 4.19, for the GUI
element gi.

ĝi = [b̂x0
i , b̂y0

i , b̂x1
i , b̂y1

i , ĉi, t̂i, v̂i, ĉoli] (4.19)

46

Methodology

This procedure allows for the reconstruction of both visual and semantic aspects
of each element.

4.2.2 Multimodal Learning Procedure
With the inclusion of the additional features reported in Section 4.2.1 (i.e., text
embeddings, image embeddings, and color categories), the learning procedure
requires some adjustments to account for these features. In the VQ-VAE model for
the simple scenario with only the bounding box coordinates and the GUI element
categories (see Section 4.1), the reconstruction loss is computed on this limited set
of features, as described in Section 4.1.2. For the multimodal VQ-VAE model, the
reconstructions of text embeddings, image embeddings and color categories need
to be incorporated too. This results in a modified reconstruction loss, whose
formulation is presented in Equation 4.20.

Lreconstruction = ||bi − b̂i||22 − α
nc−1Ø
j=0

ci,j log ĉi,j + γ||ti − t̂i||22

+ δ||vi − v̂i||22 − ϵ
ncol−1Ø
m=0

coli,m log ĉoli,m (4.20)

In this equation:

• nc is the total number of categories for GUI elements.

• ncol is the total number of categories for colors.

• ||bi − b̂i||22 is the MSE loss computed on the bounding box coordinates.

• −α
qnc−1

j=0 ci,j log ĉi,j is the categorical Cross-Entropy loss computed using the
predicted element categories.

• γ||ti − t̂i||22: is the MSE loss computed on the text embeddings.

• δ||vi − v̂i||22 is the MSE loss computed on the image embeddings.

• −ϵ
qncol−1

m=0 coli,m log ĉoli,m is the categorical Cross-Entropy loss computed using
the predicted color categories.

α, γ, δ, and ϵ are scaling factors that balance the contribution of each term to
the total reconstruction loss.

These additional loss terms encourage the model to learn representations that
are effective for reconstructing not only the spatial and categorical information of
GUI components but also their textual, visual, and color-related properties.

47

Methodology

The commitment loss is unchanged from the formulation presented in Equation
4.13, ensuring that the continuous latent vectors produced by the encoder remain
close to the discrete codebook vectors. This commitment loss applies to the entire
latent representation, which now includes the additional information from the text
embeddings, image embeddings, and color categories.

Therefore, the total loss function for the multimodal VQ-VAE model can be
formulated as in Equation 4.21.

L = Lreconstruction + βLcommitment (4.21)

where Lreconstruction now includes the loss terms for text, images, and colors, and β
controls the relative importance of the commitment loss.

4.2.3 Implementation Details
According to the discussion in Section 3.2, the proposed multimodal VQ-VAE
model for representation learning is trained and evaluated on FLUID only.

The implementation details for FLUID are the same reported in Section 4.1.3,
except for the changes or additions highlighted in the following.

The additional embeddings and color categories require some preprocessing
steps:

• For the color categories, the k-means algorithm from scikit-learn [70] is executed
on all the training set colors to group them into k = 22 clusters. From these
clusters, the centroids are extracted as the 22 color categories to use. Therefore,
the colors of GUI elements are remapped to the nearest centroid and the result
is one-hot encoded.

• As a consequence of the analysis in Figure 3.9, text elements with a length
greater than 350 are truncated to 350 characters before being passed to BERT.

The multimodal VQ-VAE model is trained and tested on FLUID in two experi-
ments. The first experiment uses the same configuration seen in Section 4.1.3. For
the second experiment, d is increased to 768, the number of multi attention heads
is increased to 12, the dimension of the feedforward model is increased to 3,072,
the number of layers is unchanged and is 12. The comparison is meant to assess
whether a more complex model is able to achieve better results.

For the training parameters of the multimodal VQ-VAE model:

• The batch size for the training dataloader is reduced to 16.

• The patience for the Early Stopping algorithm is reduced to 16.

48

Methodology

• The scaling factor γ (see Equation 4.19) for the MSE loss computed on the
text embeddings is set to 0.5.

• The scaling factor δ (see Equation 4.19) for the MSE loss computed on the
image embeddings is set to 0.5.

• The scaling factor ϵ (see Equation 4.19) for the categorical Cross-Entropy loss
computed on the color categories is set to 1 because of the increased number of
color categories (i.e., 22) compared to the number of GUI element categories
(i.e., 4), which may require further attention during optimization.

49

Chapter 5

Results

Following the methodology presented in Chapter 4, this Chapter reports the
results of the Vector Quantized-Variational Autoencoder (VQ-VAE) model for
representation learning of GUIs.

Specifically, Section 5.1 presents the evaluation metrics and the results of the
VQ-VAE model for bounding box and category encoded representation learning.

Subsequently, Section 5.2 focuses on the integration of text embeddings, image
embeddings and color categories to achieve multimodal representation learning,
presenting the relevant metrics and the final results.

5.1 Bounding Box and Category Encoded Rep-
resentation Learning

The evaluation details and the results of the VQ-VAE model for bounding box and
category encoded representation learning are presented below.

The architecture, learning procedure and implementation details of the VQ-
VAE model in this simple scenario are described in Sections 4.1.1, 4.1.2 and 4.1.3,
respectively.

5.1.1 Evaluation Metrics
To evaluate the performance of the VQ-VAE model for bounding box and category
encoded representation learning, two primary metrics are used: accuracy and
mean Intersection over Union (mIoU). These metrics are chosen to assess the
element category prediction and localization capabilities of the model.

Accuracy is a widely used metric to evaluate the proportion of correctly predicted
instances among the total number of predictions, as described in Equation 5.1.

50

Results

Accuracy = Number of Correct Predictions
Total Number of Predictions (5.1)

This metric is used to evaluate the capability of the model to correctly predict GUI
element categories.

On the other hand, the mIoU metric is used to evaluate the quality of the
reconstructed bounding boxes. It measures the overlap between the predicted
bounding boxes and the ground truth, calculating the intersection over union (IoU)
for each bounding box, and then averaging the results across all instances. The
IoU for a single bounding box can be determined following the Equation 5.2.

IoU = |Bp ∩Bgt|
|Bp ∪Bgt|

(5.2)

where Bp represents the predicted bounding box and Bgt represents the ground-
truth bounding box. |Bp∩Bgt| is the area of the intersection between the predicted
and ground-truth boxes, while |Bp ∪Bgt| is the area of their union. Consequently,
the mean IoU (mIoU) is the average of the IoUs across all bounding boxes, as
defined in Equation 5.3.

mIoU = 1
N

NØ
i=1

|Bi
p ∩Bi

gt|
|Bi

p ∪Bi
gt|

(5.3)

where N is the total number of bounding boxes.
The mIoU metric provides a comprehensive evaluation of both the position

and the area of predicted bounding boxes by measuring the overlap between the
predicted and ground-truth boxes. However, mIoU combines these aspects into a
single score, making it difficult to isolate specific errors related to the position or
size of the bounding box. To analyze the two aspects distinctly, two more metrics
are used for the evaluation: the position error and the area error, derived from
[71].

The position error, formally defined in Equation 5.4, measures the distance
between the predicted position of the GUI element and the corresponding ground-
truth position, normalized by the maximum possible distance the element could
move within the interface.

PosErr = ||(x̂, ŷ)− (x, y)||2ñ
(wUI − ŵ)2 + (hUI − ĥ)2

(5.4)

where:

• (x̂, ŷ) are the predicted top-left coordinates of the bounding box.

• (x, y) are the ground-truth top-left coordinates.

51

Results

• wUI and hUI are the dimensions of the interface.

• ŵ and ĥ are the width and height of the predicted bounding box.

The position error scope is limited to the top-left coordinates of predicted and
ground-truth bounding boxes. This prevents the position error from becoming
overly biased toward an area metric, which would occur if the entire context of the
bounding box, including the bottom-right coordinates, were considered in Equation
5.4.

Conversely, the area error measures the difference between the area of the
predicted and ground-truth bounding boxes, capturing the accuracy of the bounding
box in terms of size. It is computed as the difference between the predicted and
ground-truth area normalized by the maximum value between the two, as shown
in Equation 5.5.

AreaErr = |ŵ · ĥ− w · h|
max(ŵ · ĥ, w · h)

(5.5)

where:

• ŵ · ĥ is the area of the predicted bounding box.

• w · h is the area of the ground-truth bounding box.

5.1.2 Results and Discussion
The proposed VQ-VAE model is evaluated, considering all the metrics described in
5.1.1, on both the Rico [4] dataset and FLUID (see Chapter 3), to assess its overall
performance in bounding box reconstruction and category prediction.

Table 5.1 reports the mIoU, the accuracy, the position error and the area error
computed during the VQ-VAE model evaluation on the test set, on both the
aforementioned datasets.

Dataset mIoU ↑ Acc ↑ PosErr ↓ AreaErr ↓
Rico 0.59 ± 0.18 99.61± 2.21 0.03± 0.04 0.21 ± 0.11

FLUID 0.37± 0.10 99.88 ± 0.71 0.02 ± 0.01 0.31± 0.08

Table 5.1: VQ-VAE evaluation results for bounding box reconstruction and
category prediction on Rico and FLUID. Bold values indicate the overall best
results

The discussion in Section 3.2 explained the motivations behind the Rico dataset
unsuitability for multimodal GUI representation learning. Instead, in the simple

52

Results

scenario of bounding box reconstruction and category prediction, there are no
downsides to using it. Therefore, Table 5.1 reports the results of the proposed
VQ-VAE model also for Rico, in the simple scenario of bounding box reconstruction
and category prediction. Despite not being the focus of this work, as the objective is
to develop an AI model able to learn a meaningful representation for different kinds
of GUI elements, including images, these preliminary results on the Rico dataset
can prove to be a reliable benchmark for the VQ-VAE learning abilities against
both recent and future works. This is particularly relevant if we consider that most
of the works presented in Section 2.2.2 only provide results in terms of downstream
tasks performance and use representation learning as a means to achieve a specific
outcome, rather than evaluating the overall representation capabilities of the latent
space. Jing et al. [29] provide a benchmark for the representation learning scenario,
but the metrics are different from the ones used in this work. Specifically, the
authors in [29] used a max IoU metric, which most likely only gives overoptimistic
results compared to the mIoU defined in Equation 5.3, since it searches for the best
possible permutation of elements to compute the maximum average IoU. Moreover,
even considering it as an overoptimistic benchmark to compare with, [29] only
achieves a max IoU of 0.55, whereas the VQ-VAE model proposed in this
work achieves a mean IoU of 0.59, with possibly even higher IoU results on
some specific GUI layouts.

Comparing the results on both datasets, the VQ-VAE achieves an accuracy
greater than 99% for GUI element prediction. The VQ-VAE is able to
operate more uniformly on FLUID than Rico, as it can be seen from the respective
standard deviations for accuracy, that are 0.71 and 2.21. This behavior can be
explained by the differences in the two datasets: while FLUID has only 4 categories
(i.e., IMAGE, TEXT, SOLID, SVG) for GUI elements, the 25 categories available in
Rico are making the training process more difficult. Instead, for bounding box
reconstruction, the mIoU computed for FLUID is significantly lower than the
one computed for Rico. These results can be further analyzed thanks to the
additional position error and area error metrics, defined in Equations 5.4 and 5.5,
respectively. Their inspection in Table 5.1 suggests that the VQ-VAE model
is able to place the top-left corners of the bounding boxes for both
datasets at approximately correct locations, given the low position error.
Conversely, the area error is moderately high, especially for FLUID, and
ultimately contributes to the reduction in mIoU experienced on such
dataset. Therefore, from these results it can be inferred that the position of
bounding boxes in reconstructed GUIs will most likely be approximately correct,
while their area will probably be less accurate.

Figures 5.1 and 5.2 offer a visualization for the average area and position errors
as functions of the number of existing elements within GUIs, for Rico and FLUID,
respectively.

53

Results

(a) (b)

Figure 5.1: Average area and position errors for Rico. (a): Average area error.
(b): Average position error

(a) (b)

Figure 5.2: Average area and position errors for FLUID. (a): Average area error.
(b): Average position error

The area errors shown in Figures 5.1a and 5.2a suggest a positive correlation, for
both datasets, with the number of elements within GUIs. The VQ-VAE model
better addresses the reconstruction of GUIs with few elements.

Figures 5.3, 5.4, 5.5 and 5.6 show some visual examples for the VQ-VAE bounding
box reconstructions and category predictions on FLUID.

54

Results

Figure 5.3: Example #1 of GUI from FLUID and its VQ-VAE reconstruction. Left:
original GUI. Center: original GUI bounding boxes. Right: VQ-VAE reconstructed
bounding boxes. Colors represent the GUI element categories

Figure 5.4: Example #2 of GUI from FLUID and its VQ-VAE reconstruction. Left:
original GUI. Center: original GUI bounding boxes. Right: VQ-VAE reconstructed
bounding boxes. Colors represent the GUI element categories

55

Results

Figure 5.5: Example #3 of GUI from FLUID and its VQ-VAE reconstruction. Left:
original GUI. Center: original GUI bounding boxes. Right: VQ-VAE reconstructed
bounding boxes. Colors represent the GUI element categories

Figure 5.6: Example #4 of GUI from FLUID and its VQ-VAE reconstruction. Left:
original GUI. Center: original GUI bounding boxes. Right: VQ-VAE reconstructed
bounding boxes. Colors represent the GUI element categories

56

Results

The categories are accurately predicted in all four examples. For the bounding
boxes, the reconstruction in Figure 5.5 is mostly correct, except for the GUI
elements on the bottom part that originally had a low height and now appear as
larger. The reconstructions in Figures 5.3, 5.4 and 5.5 show some errors, especially
for small GUI elements, that seem to be the most problematic ones. Specifically,
the reconstructions in Figures 5.3, 5.4 and 5.6 show that the squared elements
related to the carousel are slightly misplaced. However, given their reduced
size, even a slight misalignment can cause the intersection between the
original bounding box and the reconstructed bounding box to become
low, possibly even zero.

This may be the cause for the reduced mIoU on the FLUID dataset,
which may have a high number of small GUI elements whose impact on the results
may be non-negligible.

Similarly, Figures 5.7, 5.8, 5.9 and 5.10 show some visual examples for the
VQ-VAE bounding box reconstructions and category predictions on Rico.

Figure 5.7: Example #1 of GUI from Rico and its VQ-VAE reconstruction. Left:
original GUI. Center: original GUI bounding boxes. Right: VQ-VAE reconstructed
bounding boxes. Colors represent the GUI element categories

The categories are accurately predicted. For bounding boxes reconstruction, the
examples show good results, with an almost perfect reconstruction for the GUI
shown in Figure 5.9. Notably, there are some GUI elements that appear
small in Rico GUIs too. However, considering that the GUI size in Rico is
1,440 × 2,560 pixels, compared to 375 × 1,400 pixels in FLUID, their size is most
likely greater, in absolute terms, with respect to the small elements seen in FLUID

57

Results

Figure 5.8: Example #2 of GUI from Rico and its VQ-VAE reconstruction. Left:
original GUI. Center: original GUI bounding boxes. Right: VQ-VAE reconstructed
bounding boxes. Colors represent the GUI element categories

Figure 5.9: Example #3 of GUI from Rico and its VQ-VAE reconstruction. Left:
original GUI. Center: original GUI bounding boxes. Right: VQ-VAE reconstructed
bounding boxes. Colors represent the GUI element categories

GUIs. Therefore, their effect on the mIoU could be lower than for FLUID,
allowing to achieve better mIoU results.

The distribution of the areas for FLUID and Rico bounding boxes of the test

58

Results

Figure 5.10: Example #4 of GUI from Rico and its VQ-VAE reconstruction. Left:
original GUI. Center: original GUI bounding boxes. Right: VQ-VAE reconstructed
bounding boxes. Colors represent the GUI element categories

set is shown in Figure 5.11, to evaluate whether the increased presence of small
GUI elements in FLUID than Rico could indeed be influencing the results.

(a) (b)

Figure 5.11: Distribution of the areas for FLUID and Rico bounding boxes of
the test set. (a): FLUID. (b): Rico

The distribution for FLUID in Figure 5.11a shows a higher frequency for small
area values, compared with Rico. To better analyze these results, the analysis is
restricted to the [0, 10,000] interval for the x axis and the results are shown in
Figure 5.12.

59

Results

(a) (b)

Figure 5.12: Distribution of the areas for FLUID and Rico bounding boxes of
the test set, on a restricted interval. (a): FLUID. (b): Rico

The distributions confirm that for FLUID there is a higher number of
small GUI elements compared with Rico, for the test sets.

An additional evaluation is carried out on both FLUID and Rico to
empirically assess the results if small elements were to be ignored for
the computation of the mIoU. Specifically, an area threshold th is arbitrarily
chosen to ignore GUI elements whose area is lower than this value. Given the
distributions presented in Figure 5.12, for this evaluation th = 2,000. The results
are shown in Table 5.2.

Dataset mIoU ↑
Rico 0.59± 0.18

Rico (th = 2,000) 0.60 ± 0.18
FLUID 0.37± 0.10

FLUID (th = 2,000) 0.49 ± 0.12

Table 5.2: VQ-VAE mIoU evaluation results for bounding box reconstruction on
Rico and FLUID, including the test without small GUI elements. Bold values
indicate the overall best results

The results on FLUID are still not on par with the ones on Rico. However, the
mIoU improvement for FLUID is evidently more pronounced than the improvement
experienced for Rico, confirming that the lower mIoU of FLUID is partially
caused by the high presence of small GUI elements in the test set. The
small elements are naturally harder to target in reconstruction, and future work
may explore alternative strategies and training optimizations to more accurately
reconstruct them.

60

Results

5.2 Multimodal Encoded Representation Learn-
ing

The evaluation details and the results of the VQ-VAE for multimodal encoded
representation learning of GUIs, with the inclusion of text embeddings, image
embeddings and color categories, are presented below.

The architecture is the same one used for the VQ-VAE in the simple scenario
with only bounding boxes and element categories, described in Section 4.1.1. The
learning procedure is adjusted to incorporate additional terms in the reconstruction
loss, as presented in Section 4.2.2. The implementation details for the VQ-VAE in
this complex scenario are reported in Section 4.2.3.

The multimodal scenario only involves FLUID, for the reasons documented in
Section 3.2.

Despite the results in Section 5.1 pointing to low bounding box reconstruction
performance for small elements of GUIs, no adjustments are made to address this
issue. Specifically, small GUI elements are not removed from the training
set to provide the model with a comprehensive, representative of real-
world applications, set of GUIs. Similarly, they are not removed from the
test set, as this would provide overoptimistic results that do not consider a
realistic GUI layout may contain small elements.

So, the idea is to retain the bounding box reconstruction training and evaluation
procedures as the ones used for the simple scenario, effectively testing the model
under stressful conditions.

5.2.1 Evaluation Metrics
Cosine similarity has become the standard metric for evaluating the similarity
between two embeddings in vector space. Introduced initially in the context of
information retrieval [72], it has since been widely adopted in modern embedding-
based models [22, 73, 69] for its effectiveness in capturing semantic similarity
through the measurement of directional alignment rather than magnitude. In this
work, embeddings are designed to encode semantic properties, therefore cosine
similarity is well-suited as it provides a robust, magnitude-invariant measure of
similarity that highlights the alignment of the learned representations.

Given two embeddings, x and y, the cosine similarity is defined as in Equation
5.6.

Cosine Similarity = x · y
∥x∥∥y∥

(5.6)

The cosine similarity varies between -1 and 1, with 1 indicating perfect similarity.

61

Results

This metric is suitable for evaluating the similarity of both image and text
embeddings, which are introduced in the multimodal context.

For the color categories predictions, the accuracy, previously reported in
Equation 5.1, can be used in the same way as for GUI element categories.

5.2.2 Results and Discussion
As reported in Section 4.2.3, two different configurations of the VQ-VAE
are tested for the multimodal representation learning of GUIs. The
first one adheres with the VQ-VAE used for the simple scenario and is called
VQ-VAE512, reflecting the fact that d = 512. The second one employs a more
complex transformer and is called VQ-VAE768, since d = 768 in this configuration.

The two VQ-VAE configurations are evaluated on FLUID considering all the
metrics described in Section 5.1.1, with the addition of the metrics in Section 5.2.1,
specifically tailored to image and text embedding similarity, and color category
prediction accuracy.

Table 5.3 reports the result computed on FLUID during the VQ-VAE model
evaluation on the test set.

Model mIoU ↑ Acc ↑ PosErr ↓ AreaErr ↓ Acccol ↑ Costxt ↑ Cosimg ↑
VQ-VAE512 0.10± 0.05 98.63± 2.81 0.08± 0.03 0.51± 0.11 99.63 ± 2.61 0.84± 0.06 0.81± 0.09
VQ-VAE768 0.11 ± 0.05 98.90 ± 2.59 0.07 ± 0.03 0.51± 0.11 99.59± 2.26 0.84± 0.06 0.81± 0.09

Table 5.3: VQ-VAE evaluation results on FLUID for multimodal representation
learning. Bold values indicate the overall best results

The VQ-VAE768 achieves only marginally better results than the VQ-VAE512
configuration in terms of mIoU, accuracy for GUI element categories and position
error. Despite the higher mean for the accuracy of color category prediction
offered by the VQ-VAE512, the VQ-VAE768 configuration achieves similar results
with a reduced standard deviation, pointing to more uniform performance on this
task. Overall, for both models the accuracy for GUI element category
prediction and the one for color category prediction highlight that the
VQ-VAE excels in these tasks. The cosine similarity results underscore that
both models are able to reconstruct the text and image embeddings
with a good degree of fidelity. The mIoU and area error still indicate
low performance, even lower than the results in the simple scenario (see Section
5.1.2). This behavior may be attributed to:

• The mIoU issues with small GUI elements, highlighted in Section 5.1.2.

• The more complex training optimization procedure, which now involves not
only reconstructing bounding boxes and predicting GUI element categories,

62

Results

but also predicting color categories and learning a representation for text
and images. Moreover, the performance can also be highly dependent on the
chosen scaling factors α, β, γ, δ and ϵ (see Equations 4.19 and 4.21) for the
loss terms, that are hyperparameters.

Figures 5.13 and 5.14 show the average area and position errors on FLUID as
functions of the number of existing elements withing GUIs, for VQ-VAE512 and
VQ-VAE768, respectively, as previously done for the simple scenario (see Figure
5.2).

(a) (b)

Figure 5.13: VQ-VAE512 average area and position errors for FLUID. (a):
Average area error. (b): Average position error

(a) (b)

Figure 5.14: VQ-VAE768 average area and position errors for FLUID. (a):
Average area error. (b): Average position error

The results of the two configurations are very similar. Compared to the simple
scenario in Figure 5.2, they confirm the higher complexity of multimodal
representation learning. In fact, the area error now shows even worse perfor-
mance when the number of elements within GUIs increases. For the position error,

63

Results

which in the simple scenario (Figure 5.2b) did not exhibit this behavior, now there
is also a positive correlation with the number of GUI elements, indicating that
the multimodal VQ-VAEs struggle with the placement of GUI elements
when there are many of them.

Figures 5.15, 5.16, 5.17 and 5.18 show the visual results for the VQ-VAE512
bounding box reconstruction and category prediction on the same FLUID GUIs
presented in Figures 5.3, 5.4, 5.5 and 5.6.

The GUIs reconstructed using the VQ-VAE512 model appear more
confused, further underscoring the complexity of the bounding box reconstruction
task in the multimodal scenario. Although big elements are approximately correctly
reconstructed, the smaller ones continue to be misplaced and/or wrongly sized.

Figure 5.15: Example #1 of GUI from FLUID and its VQ-VAE512 reconstruction.
Left: original GUI. Center: original GUI bounding boxes. Right: VQ-VAE512
reconstructed bounding boxes. Colors represent the GUI element categories

64

Results

Figure 5.16: Example #2 of GUI from FLUID and its VQ-VAE512 reconstruction.
Left: original GUI. Center: original GUI bounding boxes. Right: VQ-VAE512
reconstructed bounding boxes. Colors represent the GUI element categories

Figure 5.17: Example #3 of GUI from FLUID and its VQ-VAE512 reconstruction.
Left: original GUI. Center: original GUI bounding boxes. Right: VQ-VAE512
reconstructed bounding boxes. Colors represent the GUI element categories

65

Results

Figure 5.18: Example #4 of GUI from FLUID and its VQ-VAE512 reconstruction.
Left: original GUI. Center: original GUI bounding boxes. Right: VQ-VAE512
reconstructed bounding boxes. Colors represent the GUI element categories

The same GUIs and their reconstructions are shown in Figures 5.19, 5.20, 5.21
and 5.22 for the VQ-VAE768 bounding box reconstruction and category prediction.
The visualization includes the VQ-VAE512 reconstruction to make the comparison
easier.

Overall, there are cases where the VQ-VAE768 seems to provide better GUI
element placement (see Figure 5.20), and others where the result is even less
accurate than the VQ-VAE512 reconstruction (see Figure 5.22). The more
powerful transformer used for the VQ-VAE768 does not provide the
expected benefits for the bounding box reconstruction task.

Figures 5.23 and 5.24 show the results for the image reconstruction task using
the VQ-VAE512. To extract the reconstructed images, the following steps are
performed:

1. First, images from the training set are passed to CLIP (Contrastive Language-
Image Pretraining) [69] to determine and store a mapping between training
images and their embeddings.

2. Then, the GUIs from the test set are passed to the VQ-VAE512, to obtain
their reconstructed versions. For GUIs that contain images, these include the
reconstructed image embeddings.

66

Results

Figure 5.19: Example #1 of GUI from FLUID and its VQ-VAE768 reconstruction.
Starting from the left: original GUI; original GUI bounding boxes; VQ-VAE512
reconstructed bounding boxes; VQ-VAE768 reconstructed bounding boxes. Colors
represent the GUI element categories

Figure 5.20: Example #2 of GUI from FLUID and its VQ-VAE768 reconstruction.
Starting from the left: original GUI; original GUI bounding boxes; VQ-VAE512
reconstructed bounding boxes; VQ-VAE768 reconstructed bounding boxes. Colors
represent the GUI element categories

3. The reconstructed image embeddings are compared with the training set
embeddings using the cosine similarity metric, to extract the top 3 training
images whose embeddings are most similar to the one reconstructed at test
time.

Figure 5.23 highlights that there are some images whose embeddings are most

67

Results

Figure 5.21: Example #3 of GUI from FLUID and its VQ-VAE768 reconstruction.
Starting from the left: original GUI; original GUI bounding boxes; VQ-VAE512
reconstructed bounding boxes; VQ-VAE768 reconstructed bounding boxes. Colors
represent the GUI element categories

Figure 5.22: Example #4 of GUI from FLUID and its VQ-VAE768 reconstruction.
Starting from the left: original GUI; original GUI bounding boxes; VQ-VAE512
reconstructed bounding boxes; VQ-VAE768 reconstructed bounding boxes. Colors
represent the GUI element categories

similar to the ones of training images representing the same object. Conversely,
Figure 5.24 shows some images whose embeddings are most similar to the ones of
training images representing completely different objects. Combined with the high
cosine similarity score in Table 5.3, the VQ-VAE512 generally appears to perform

68

Results

Figure 5.23: Examples of images correctly reconstructed by the VQ-VAE512.
Left: Original image. Right: Top 3 training set images whose embeddings are most
similar to the reconstructed image embedding

Figure 5.24: Examples of images wrongly reconstructed by the VQ-VAE512.
Left: Original image. Right: Top 3 training set images whose embeddings are most
similar to the reconstructed image embedding

well for the image reconstruction task, except for some edge cases where it fails.
The same visualization for the image reconstruction task using the VQ-VAE768

is shown in Figures 5.25 and 5.26.
This procedure can be applied to SVGs too. The results for the reconstruction

of SVGs using the VQ-VAE512 are shown in Figures 5.27 and 5.28.
The same is done for the VQ-VAE768, and the results for the reconstruction of

SVGs are shown in Figures 5.29 and 5.30.
These operations can be used to evaluate the results of the text reconstruction

task, with the only difference being that, instead of CLIP, BERT (Bidirectional

69

Results

Figure 5.25: Examples of images correctly reconstructed by the VQ-VAE768.
Left: Original image. Right: Top 3 training set images whose embeddings are most
similar to the reconstructed image embedding

Figure 5.26: Examples of images wrongly reconstructed by the VQ-VAE768.
Left: Original image. Right: Top 3 training set images whose embeddings are most
similar to the reconstructed image embedding

Encoder Representations from Transformers) [61] is used to obtain the embeddings
for the training texts. The results for both the VQ-VAE512 and VQ-VAE768
models are shown in Tables 5.4 and 5.5, limited to the top 1 most similar text.

The text samples that are correctly reconstructed are mostly related to GUI
elements that can be found more frequently within interfaces. Instead, the cases
where the VQ-VAEs fail are mostly texts that are related to specific products or
objects.

70

Results

Figure 5.27: Examples of SVGs correctly reconstructed by the VQ-VAE512. Left:
Original SVG. Right: Top 3 training set SVGs whose embeddings are most similar
to the reconstructed SVG embedding

Figure 5.28: Examples of SVGs wrongly reconstructed by the VQ-VAE512. Left:
Original SVG. Right: Top 3 training set SVGs whose embeddings are most similar
to the reconstructed SVG embedding

71

Results

Figure 5.29: Examples of SVGs correctly reconstructed by the VQ-VAE768. Left:
Original SVG. Right: Top 3 training set SVGs whose embeddings are most similar
to the reconstructed SVG embedding

Figure 5.30: Examples of SVGs wrongly reconstructed by the VQ-VAE768. Left:
Original SVG. Right: Top 3 training set SVGs whose embeddings are most similar
to the reconstructed SVG embedding

72

Results

Model Original text Reconstructed text

VQ-VAE512

Home Home
Shop Now SHOP NOW
2 reviews 3 Reviews

Size: Size:
Free US shipping over $40 + free returns. FREE SHIPPING ON ORDERS $50+. FREE RETURNS.

Favorite Favorite

VQ-VAE768

Menü Menu
In den Warenkorb In den Warenkorb

Artikel-Nr.: Artikel-Nr.:
Color Colour

Write a Review Write a Review
In Stock In Stock

Table 5.4: Examples of text correctly reconstructed by the VQ-VAE512 and
VQ-VAE768

Model Original text Reconstructed text

VQ-VAE512

Dorala Artwork Scarf Chain Detail Bag
ASOS DESIGN half moon marble clutch bag Ryedale Peony - Bonbon 24" Wheel Girls’ Bike

Soda Decor
Shades of purple seed bead bracelet Christmas Sequins Ball Decoration Santa Earrings - Gold

Coffee Supplies Car Charms

VQ-VAE768

Herschel Supply Co. Little America Black 25L Backpack Ice scratcher kit simple
Filing|shelving Coffee supllies

Toilets, Sinks, Faucets & Plumbing Supplies Vacuum Cleaners
Bottle – Measuring - 8 Ounce - Double Neck - Each DuoClean Cordless Upright Vacuum Cleaner with Powered Lift-Away IC160UK

Telescope Handsfree Nordic Ware Rolled Omelet

Table 5.5: Examples of text wrongly reconstructed by the VQ-VAE512 and
VQ-VAE768

73

Chapter 6

Conclusion

This research aimed to facilitate both the development and the deployment of new
Artificial Intelligence (AI) models for downstream real-world applications in GUI
design.

First, a literature review is presented, covering the traditional GUI design
process, how Machine Learning (ML) can fit into this context to enhance the
designers’ workflow, and finally presenting related works for GUI representation
learning.

Then, a new dataset is proposed, called FLUID, Figma Layout User Interface
Dataset. The dataset is built, starting from WebColor, through iterative analysis
and refinement. FLUID is built for compatibility with Figma, enabling its files
to be opened and edited directly within the Figma application. Therefore, using
FLUID, the internal GUI representation used by Figma is available for training
new AI models. The output of these models will remain fully compliant with the
Figma representation, ensuring they can be seamlessly deployed within a real-world,
widely-used GUI design framework.

To support the development of new AI models for downstream tasks, a Vector
Quantized-Variational Autoencoder (VQ-VAE) architecture is proposed to learn
a meaningful and refined representation of GUIs. The VQ-VAE is evaluated in
two scenarios: a simple task focused on bounding box reconstruction and GUI
element category prediction, and a more complex multimodal setting incorporating
additional image, text and color features. For the multimodal framework only, two
configurations of the VQ-VAE are proposed, one of which is more complex and
could theoretically offer enhanced learning capacity.

For the simple task of bounding box reconstruction and GUI element category
prediction, the smaller VQ-VAE is tested on both Rico and FLUID. On Rico, the
VQ-VAE offers excellent GUI element category prediction performance and good
results for bounding box reconstruction, with an accuracy that is greater than
99% and a mIoU of 0.59, respectively. On FLUID, the VQ-VAE achieves similar

74

Conclusion

results for GUI element prediction, with an accuracy higher than 99%. However,
on FLUID the model exhibits a reduced mIoU of 0.37, but the mIoU results are
proven to be influenced by the high presence of small GUI elements in FLUID, for
which even the slightest misalignment in position can result in a very low score for
the mIoU.

The VQ-VAE is then tested in the multimodal setting only on FLUID, with
its two different configurations. The results indicate that there are no substantial
differences in performance between the two configurations. Both VQ-VAEs excel at
GUI element category prediction and color category prediction, with an accuracy
higher than 98%, and are able to deliver good performance for representation of
images and text, with a cosine similarity of 0.81 and 0.84, respectively. Unfortu-
nately, the poor bounding box reconstruction capabilities of the VQ-VAE model
are confirmed also in the multimodal scenario, with a mIoU of 0.11.

As bounding box reconstruction is the only weak point of the proposed VQ-VAE
model for representation learning of GUIs, future works should better address this
task to improve the robustness of the learned representation, for example by tuning
the hyperparameters involved in the loss computation or by introducing a loss term
that is weighted depending on the size of the GUI elements. Finally, the approach
will need to be validated in the context of a downstream real-world application.

75

Bibliography

[1] Figma Inc. Figma: The Collaborative Interface Design Tool. Accessed: 2024-
08-09. url: https://www.figma.com/ (cit. on pp. 1, 7, 8, 15, 17, 18, 22, 30,
43).

[2] Alexandra Hotti, Riccardo Sven Risuleo, Stefan Magureanu, Aref Moradi, and
Jens Lagergren. The Klarna Product Page Dataset: Web Element Nomination
with Graph Neural Networks and Large Language Models. 2024. arXiv: 2111.
02168 [cs.LG]. url: https://arxiv.org/abs/2111.02168 (cit. on pp. 2,
15, 17).

[3] Kotaro Kikuchi, Naoto Inoue, Mayu Otani, Edgar Simo-Serra, and Kota
Yamaguchi. Generative Colorization of Structured Mobile Web Pages. 2023.
arXiv: 2212.11541 [cs.CV]. url: https://arxiv.org/abs/2212.11541
(cit. on pp. 3, 8, 15–17, 19).

[4] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. «Rico: A Mobile App Dataset
for Building Data-Driven Design Applications». In: Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology. UIST
’17. Québec City, QC, Canada: Association for Computing Machinery, 2017,
pp. 845–854. isbn: 9781450349819. doi: 10.1145/3126594.3126651. url:
https://doi.org/10.1145/3126594.3126651 (cit. on pp. 4, 8, 10, 11, 18,
43, 52).

[5] Jakob Nielsen. 10 Usability Heuristics for User Interface Design. Accessed:
2024-09-02. url: https://www.nngroup.com/articles/ten-usability-
heuristics/ (cit. on p. 5).

[6] Inc. Amazon.com. Amazon Mobile App. Accessed: 2024-10-09. url: https:
//www.amazon.com (cit. on p. 5).

[7] Interaction Design Foundation. The Gestalt Principles. Accessed: 2024-09-
02. url: https://www.interaction-design.org/literature/topics/
gestalt-principles (cit. on p. 5).

76

https://www.figma.com/
https://arxiv.org/abs/2111.02168
https://arxiv.org/abs/2111.02168
https://arxiv.org/abs/2111.02168
https://arxiv.org/abs/2212.11541
https://arxiv.org/abs/2212.11541
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.amazon.com
https://www.amazon.com
https://www.interaction-design.org/literature/topics/gestalt-principles
https://www.interaction-design.org/literature/topics/gestalt-principles

BIBLIOGRAPHY

[8] Atlassian. Trello App. Accessed: 2024-10-09. url: https://trello.com
(cit. on p. 6).

[9] Thomas Langerak, Sammy Christen, Mert Albaba, Christoph Gebhardt, and
Otmar Hilliges. MARLUI: Multi-Agent Reinforcement Learning for Adaptive
UIs. 2023. arXiv: 2209.12660 [cs.HC]. url: https://arxiv.org/abs/2209.
12660 (cit. on p. 8).

[10] Toby Jia-Jun Li, Lindsay Popowski, Tom M. Mitchell, and Brad A. Myers.
«Screen2Vec: Semantic Embedding of GUI Screens and GUI Components».
In: Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. Yokohama, Japan: ACM, 2021. doi: 10.1145/3411764.3445049
(cit. on pp. 8–10).

[11] Forrest Huang, John F. Canny, and Jefrey Nichols. «Swire: Sketch-based
User Interface Retrieval». In: Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI ’19). Glasgow, Scotland, UK: Association
for Computing Machinery, 2019, pp. 1–10. isbn: 978-1-4503-5970-2. doi:
10.1145/3290605.3300334 (cit. on pp. 8–10).

[12] Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P Bigham. «Screen Parsing:
Towards Reverse Engineering of UI Models from Screenshots». In: The 34th
Annual ACM Symposium on User Interface Software and Technology. ACM,
Oct. 2021. doi: 10.1145/3472749.3474763. url: http://dx.doi.org/10.
1145/3472749.3474763 (cit. on pp. 8–10).

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL]. url: https://arxiv.org/abs/
1706.03762 (cit. on pp. 8, 38).

[14] Emilio Arroyo, Jun Gao, Mohit Bansal, and Alexander G. Schwing. «Vari-
ational Transformer Networks for Layout Generation». In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2021, pp. 13632–13641. doi: 10.1109/CVPR46437.2021.01342.
url: https : / / openaccess . thecvf . com / content / CVPR2021 / papers /
Arroyo_Variational_Transformer_Networks_for_Layout_Generation_
CVPR_2021_paper.pdf (cit. on pp. 8, 10).

[15] Diederik P Kingma and Max Welling. «Auto-encoding variational Bayes». In:
arXiv preprint arXiv:1312.6114 (2013) (cit. on pp. 8, 11, 36, 37).

[16] Andrey Sobolevsky, Guillaume-Alexandre Bilodeau, Jinghui Cheng, and Jin
L. C. Guo. GUILGET: GUI Layout GEneration with Transformer. 2023.
arXiv: 2304.09012 [cs.CV]. url: https://arxiv.org/abs/2304.09012
(cit. on pp. 8, 10).

77

https://trello.com
https://arxiv.org/abs/2209.12660
https://arxiv.org/abs/2209.12660
https://arxiv.org/abs/2209.12660
https://doi.org/10.1145/3411764.3445049
https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1145/3472749.3474763
http://dx.doi.org/10.1145/3472749.3474763
http://dx.doi.org/10.1145/3472749.3474763
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/CVPR46437.2021.01342
https://openaccess.thecvf.com/content/CVPR2021/papers/Arroyo_Variational_Transformer_Networks_for_Layout_Generation_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Arroyo_Variational_Transformer_Networks_for_Layout_Generation_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Arroyo_Variational_Transformer_Networks_for_Layout_Generation_CVPR_2021_paper.pdf
https://arxiv.org/abs/2304.09012
https://arxiv.org/abs/2304.09012

BIBLIOGRAPHY

[17] Atsuhiro Yamaguchi, Yijun Li, Tsung-Yi Lin, Zhe Lu, and Wei-Lun Chao.
«CanvasVAE: Learning to Generate Vector Graphic Documents». In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV).
2021, pp. 8565–8574 (cit. on pp. 9, 10).

[18] Jihoon Lee, Minjung Kim, and Juho Kim. «Neural Design Network: Graphic
Layout Generation with Constraints». In: arXiv preprint arXiv:1912.09421
(2019) (cit. on pp. 9, 10).

[19] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. «The Graph Neural Network Model». In: IEEE Trans-
actions on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.
2005605 (cit. on p. 9).

[20] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Networks. 2014. arXiv: 1406.2661 [stat.ML]. url: https://arxiv.
org/abs/1406.2661 (cit. on p. 9).

[21] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. «Con-
strained Graphic Layout Generation via Latent Optimization». In: Proceedings
of the 29th ACM International Conference on Multimedia. ACM, Oct. 2021.
doi: 10.1145/3474085.3475497. url: http://dx.doi.org/10.1145/
3474085.3475497 (cit. on pp. 9, 10).

[22] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. 2019. arXiv: 1908.10084 [cs.CL]. url:
https://arxiv.org/abs/1908.10084 (cit. on pp. 9, 61).

[23] David E. Rumelhart and James L. McClelland. «Learning Internal Representa-
tions by Error Propagation». In: Parallel Distributed Processing: Explorations
in the Microstructure of Cognition: Foundations. 1987, pp. 318–362 (cit. on
p. 9).

[24] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural
Networks. 2015. arXiv: 1511.08458 [cs.NE]. url: https://arxiv.org/
abs/1511.08458 (cit. on p. 9).

[25] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV]. url:
https://arxiv.org/abs/1409.1556 (cit. on p. 9).

[26] Panupong Pasupat, Tian-Shun Jiang, Evan Zheran Liu, Kelvin Guu, and
Percy Liang. «Mapping Natural Language Commands to Web Elements». In:
arXiv preprint arXiv:1808.09132 (2018) (cit. on p. 10).

78

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1145/3474085.3475497
http://dx.doi.org/10.1145/3474085.3475497
http://dx.doi.org/10.1145/3474085.3475497
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

BIBLIOGRAPHY

[27] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. «Mapping
Natural Language Instructions to Mobile UI Action Sequences». In: arXiv
preprint arXiv:2005.03776 (2020) (cit. on p. 10).

[28] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and
Ranjitha Kumar. «Learning Design Semantics for Mobile Apps». In: Pro-
ceedings of the 31st Annual ACM Symposium on User Interface Software
and Technology (UIST). Berlin, Germany: ACM, 2018, pp. 569–579. doi:
10.1145/3242587.3242650 (cit. on p. 10).

[29] Qianzhi Jing, Tingting Zhou, Yixin Tsang, Liuqing Chen, Lingyun Sun,
Yankun Zhen, and Yichun Du. «Layout Generation for Various Scenarios in
Mobile Shopping Applications». In: Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. CHI ’23. Hamburg, Germany:
Association for Computing Machinery, 2023. isbn: 9781450394215. doi: 10.
1145 / 3544548 . 3581446. url: https : / / doi . org / 10 . 1145 / 3544548 .
3581446 (cit. on pp. 10, 53).

[30] Tianming Zhao, Chunyang Chen, Yuanning Liu, and Xiaodong Zhu. GUIGAN:
Learning to Generate GUI Designs Using Generative Adversarial Networks.
2021. arXiv: 2101.09978 [cs.HC]. url: https://arxiv.org/abs/2101.
09978 (cit. on p. 10).

[31] Mohammad Amin Mozaffari, Xinyuan Zhang, Jinghui Cheng, and Jin L.C.
Guo. «GANSpiration: Balancing Targeted and Serendipitous Inspiration in
User Interface Design with Style-Based Generative Adversarial Network». In:
CHI Conference on Human Factors in Computing Systems. CHI ’22. ACM,
Apr. 2022. doi: 10.1145/3491102.3517511. url: http://dx.doi.org/10.
1145/3491102.3517511 (cit. on p. 10).

[32] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota
Yamaguchi. LayoutDM: Discrete Diffusion Model for Controllable Layout
Generation. 2023. arXiv: 2303.08137 [cs.CV]. url: https://arxiv.org/
abs/2303.08137 (cit. on p. 10).

[33] Eldon Schoop, Xin Zhou, Gang Li, Zhourong Chen, Björn Hartmann, and
Yang Li. Predicting and Explaining Mobile UI Tappability with Vision Modeling
and Saliency Analysis. 2022. arXiv: 2204.02448 [cs.HC]. url: https://
arxiv.org/abs/2204.02448 (cit. on p. 10).

[34] Tony Beltramelli. pix2code: Generating Code from a Graphical User Interface
Screenshot. 2017. arXiv: 1705.07962 [cs.LG]. url: https://arxiv.org/
abs/1705.07962 (cit. on p. 10).

[35] Alex Robinson. Sketch2code: Generating a website from a paper mockup. 2019.
arXiv: 1905.13750 [cs.CV]. url: https://arxiv.org/abs/1905.13750
(cit. on p. 10).

79

https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3544548.3581446
https://doi.org/10.1145/3544548.3581446
https://doi.org/10.1145/3544548.3581446
https://doi.org/10.1145/3544548.3581446
https://arxiv.org/abs/2101.09978
https://arxiv.org/abs/2101.09978
https://arxiv.org/abs/2101.09978
https://doi.org/10.1145/3491102.3517511
http://dx.doi.org/10.1145/3491102.3517511
http://dx.doi.org/10.1145/3491102.3517511
https://arxiv.org/abs/2303.08137
https://arxiv.org/abs/2303.08137
https://arxiv.org/abs/2303.08137
https://arxiv.org/abs/2204.02448
https://arxiv.org/abs/2204.02448
https://arxiv.org/abs/2204.02448
https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/1905.13750
https://arxiv.org/abs/1905.13750

BIBLIOGRAPHY

[36] Erfan Eshratifar. Variational Auto Encoder (VAE) for the Numerai Dataset.
Accessed: 2024-09-24. url: https://amirerfan.medium.com/variational-
auto-encoders-vae-for-the-numerai-dataset-2709dcc7e449 (cit. on
p. 12).

[37] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2Image:
Conditional Image Generation from Visual Attributes. 2016. arXiv: 1512.
00570 [cs.LG]. url: https://arxiv.org/abs/1512.00570 (cit. on p. 13).

[38] William Harvey, Saeid Naderiparizi, and Frank Wood. Conditional Image
Generation by Conditioning Variational Auto-Encoders. 2022. arXiv: 2102.
12037 [cs.CV]. url: https://arxiv.org/abs/2102.12037 (cit. on p. 13).

[39] Yang Li, Quan Pan, Suhang Wang, Haiyun Peng, Tao Yang, and Erik Cambria.
Disentangled Variational Auto-Encoder for Semi-supervised Learning. 2018.
arXiv: 1709.05047 [cs.LG]. url: https://arxiv.org/abs/1709.05047
(cit. on p. 13).

[40] Tom Joy, Sebastian M Schmon, Philip Hilaire Torr, Siddharth Narayanaswamy,
and Tom Rainforth. «Rethinking Semi-Supervised Learning in VAEs». In:
arXiv preprint arXiv:2006.10102 (2020) (cit. on p. 13).

[41] Yu Zhou, Xiaomin Liang, Wei Zhang, Linrang Zhang, and Xing Song. «VAE-
based Deep SVDD for anomaly detection». In: Neurocomputing 453 (2021),
pp. 131–140. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2021.04.089. url: https://www.sciencedirect.com/science/article/
pii/S0925231221006470 (cit. on p. 13).

[42] Syed Sarmad Ali, Jian Ren, and Ji Wu. «Framework to improve software
effort estimation accuracy using novel ensemble rule». In: Journal of King
Saud University - Computer and Information Sciences (2024), p. 102189. issn:
1319-1578. doi: https://doi.org/10.1016/j.jksuci.2024.102189. url:
https://www.sciencedirect.com/science/article/pii/S131915782400
2787 (cit. on p. 13).

[43] Yunsheng Wang, Xinghan Xu, Lei Hu, Jianwei Liu, Xiaohui Yan, and Weijie
Ren. «Continuous imputation of missing values in time series via Wasserstein
generative adversarial imputation networks and variational auto-encoders
model». In: Physica A: Statistical Mechanics and its Applications 647 (2024),
p. 129914. issn: 0378-4371. doi: https://doi.org/10.1016/j.physa.2024.
129914. url: https://www.sciencedirect.com/science/article/pii/
S0378437124004230 (cit. on p. 13).

80

https://amirerfan.medium.com/variational-auto-encoders-vae-for-the-numerai-dataset-2709dcc7e449
https://amirerfan.medium.com/variational-auto-encoders-vae-for-the-numerai-dataset-2709dcc7e449
https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/2102.12037
https://arxiv.org/abs/2102.12037
https://arxiv.org/abs/2102.12037
https://arxiv.org/abs/1709.05047
https://arxiv.org/abs/1709.05047
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.089
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.089
https://www.sciencedirect.com/science/article/pii/S0925231221006470
https://www.sciencedirect.com/science/article/pii/S0925231221006470
https://doi.org/https://doi.org/10.1016/j.jksuci.2024.102189
https://www.sciencedirect.com/science/article/pii/S1319157824002787
https://www.sciencedirect.com/science/article/pii/S1319157824002787
https://doi.org/https://doi.org/10.1016/j.physa.2024.129914
https://doi.org/https://doi.org/10.1016/j.physa.2024.129914
https://www.sciencedirect.com/science/article/pii/S0378437124004230
https://www.sciencedirect.com/science/article/pii/S0378437124004230

BIBLIOGRAPHY

[44] Md Tahmeed Abdullah, Sejuti Rahman, Shafin Rahman, and Md Fokhrul
Islam. «VAE-GAN3D: Leveraging image-based semantics for 3D zero-shot
recognition». In: Image and Vision Computing 147 (2024), p. 105049. issn:
0262-8856. doi: https://doi.org/10.1016/j.imavis.2024.105049. url:
https://www.sciencedirect.com/science/article/pii/S026288562400
1537 (cit. on p. 13).

[45] Ruowei Wang, Yu Liu, Pei Su, Jianwei Zhang, and Qijun Zhao. 3D Semantic
Subspace Traverser: Empowering 3D Generative Model with Shape Editing
Capability. 2023. arXiv: 2307.14051 [cs.CV]. url: https://arxiv.org/
abs/2307.14051 (cit. on p. 13).

[46] Xu Tan et al. «NaturalSpeech: End-to-End Text-to-Speech Synthesis With
Human-Level Quality». In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 46.6 (2024), pp. 4234–4245. doi: 10.1109/TPAMI.2024.
3356232 (cit. on p. 13).

[47] Ninon Devis, Nils Demerlé, Sarah Nabi, David Genova, and Philippe Esling.
«Continuous Descriptor-Based Control for Deep Audio Synthesis». In: ICASSP
2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.
10096670 (cit. on p. 13).

[48] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete
Representation Learning. 2018. arXiv: 1711.00937 [cs.LG]. url: https:
//arxiv.org/abs/1711.00937 (cit. on pp. 13, 36, 37, 45).

[49] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating Diverse
High-Fidelity Images with VQ-VAE-2. 2019. arXiv: 1906.00446 [cs.LG].
url: https://arxiv.org/abs/1906.00446 (cit. on p. 14).

[50] Shiyue Cao, Yueqin Yin, Lianghua Huang, Yu Liu, Xin Zhao, Deli Zhao, and
Kaigi Huang. «Efficient-VQGAN: Towards High-Resolution Image Genera-
tion with Efficient Vision Transformers». In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). 2023, pp. 7368–7377
(cit. on p. 14).

[51] Xueyuan Chen, Xi Wang, Shaofei Zhang, Lei He, Zhiyong Wu, Xixin Wu, and
Helen Meng. «Stylespeech: Self-Supervised Style Enhancing with VQ-VAE-
Based Pre-Training for Expressive Audiobook Speech Synthesis». In: ICASSP
2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2024, pp. 12316–12320. doi: 10.1109/ICASSP48485.
2024.10446352 (cit. on p. 14).

81

https://doi.org/https://doi.org/10.1016/j.imavis.2024.105049
https://www.sciencedirect.com/science/article/pii/S0262885624001537
https://www.sciencedirect.com/science/article/pii/S0262885624001537
https://arxiv.org/abs/2307.14051
https://arxiv.org/abs/2307.14051
https://arxiv.org/abs/2307.14051
https://doi.org/10.1109/TPAMI.2024.3356232
https://doi.org/10.1109/TPAMI.2024.3356232
https://doi.org/10.1109/ICASSP49357.2023.10096670
https://doi.org/10.1109/ICASSP49357.2023.10096670
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1906.00446
https://doi.org/10.1109/ICASSP48485.2024.10446352
https://doi.org/10.1109/ICASSP48485.2024.10446352

BIBLIOGRAPHY

[52] Sichun Wu, Kazi Injamamul Haque, and Zerrin Yumak. ProbTalk3D: Non-
Deterministic Emotion Controllable Speech-Driven 3D Facial Animation
Synthesis Using VQ-VAE. 2024. arXiv: 2409.07966 [cs.CV]. url: https:
//arxiv.org/abs/2409.07966 (cit. on p. 14).

[53] Hao Liu, Wilson Yan, and Pieter Abbeel. «Language Quantized AutoEn-
coders: Towards Unsupervised Text-Image Alignment». In: Advances in Neural
Information Processing Systems. Ed. by A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine. Vol. 36. Curran Associates, Inc.,
2023, pp. 4382–4395. url: https://proceedings.neurips.cc/paper_
files/paper/2023/file/0df1738319f8c6e15b58cb16ea3cfa57- Paper-
Conference.pdf (cit. on p. 14).

[54] Zhihao Duan, Ming Lu, Zhan Ma, and Fengqing Zhu. «Lossy Image Com-
pression with Quantized Hierarchical VAEs». In: 2023 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV). Vol. 33. IEEE,
Jan. 2023, pp. 198–207. doi: 10.1109/wacv56688.2023.00028. url: http:
//dx.doi.org/10.1109/WACV56688.2023.00028 (cit. on p. 14).

[55] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. VideoGPT:
Video Generation using VQ-VAE and Transformers. 2021. arXiv: 2104.10157
[cs.CV]. url: https://arxiv.org/abs/2104.10157 (cit. on p. 14).

[56] Klarna Incubator. WebTraversalLibrary. Accessed: 2024-09-05. 2024. url:
https://github.com/klarna-incubator/webtraversallibrary (cit. on
p. 16).

[57] Selenium. WebDriver — Selenium. Accessed: 2024-10-09. url: https://www.
selenium.dev/documentation/webdriver/ (cit. on p. 16).

[58] Google. Google Chrome. Accessed: 2024-10-09. url: https://www.google.
com/chrome/ (cit. on p. 16).

[59] Builder.io. Figma to HTML Plugin. Accessed: 2024-09-05. 2024. url: https:
//github.com/BuilderIO/figma-html (cit. on pp. 18, 22, 24).

[60] Cheerio. Cheerio - The fast, flexible & elegant library for parsing and manip-
ulating HTML and XML. Accessed: 2024-10-10. url: https://cheerio.js.
org/ (cit. on p. 20).

[61] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. «BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding».
In: arXiv preprint arXiv:1810.04805 (2019). url: https://arxiv.org/abs/
1810.04805 (cit. on pp. 38, 45, 70).

82

https://arxiv.org/abs/2409.07966
https://arxiv.org/abs/2409.07966
https://arxiv.org/abs/2409.07966
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df1738319f8c6e15b58cb16ea3cfa57-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df1738319f8c6e15b58cb16ea3cfa57-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df1738319f8c6e15b58cb16ea3cfa57-Paper-Conference.pdf
https://doi.org/10.1109/wacv56688.2023.00028
http://dx.doi.org/10.1109/WACV56688.2023.00028
http://dx.doi.org/10.1109/WACV56688.2023.00028
https://arxiv.org/abs/2104.10157
https://arxiv.org/abs/2104.10157
https://arxiv.org/abs/2104.10157
https://github.com/klarna-incubator/webtraversallibrary
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://github.com/BuilderIO/figma-html
https://github.com/BuilderIO/figma-html
https://cheerio.js.org/
https://cheerio.js.org/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

BIBLIOGRAPHY

[62] Łukasz Kaiser, Aurko Roy, Ashish Vaswani, Niki Parmar, Samy Bengio,
Jakob Uszkoreit, and Noam Shazeer. Fast Decoding in Sequence Models using
Discrete Latent Variables. 2018. arXiv: 1803.03382 [cs.LG]. url: https:
//arxiv.org/abs/1803.03382 (cit. on pp. 39, 42).

[63] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propa-
gating Gradients Through Stochastic Neurons for Conditional Computation.
2013. arXiv: 1308.3432 [cs.LG]. url: https://arxiv.org/abs/1308.3432
(cit. on p. 42).

[64] Python Software Foundation. Python. Accessed: 2024-10-09. url: https:
//www.python.org/ (cit. on p. 42).

[65] The Linux Foundation. PyTorch. Accessed: 2024-10-09. url: https://pytor
ch.org/ (cit. on p. 42).

[66] NVIDIA Corporation. CUDA Toolkit. Accessed: 2024-10-10. url: https:
//developer.nvidia.com/cuda-toolkit (cit. on p. 42).

[67] DigitalOcean. Paperspace. Accessed: 2024-10-10. url: https://www.papers
pace.com/ (cit. on p. 42).

[68] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization.
2019. arXiv: 1711.05101 [cs.LG]. url: https://arxiv.org/abs/1711.
05101 (cit. on p. 44).

[69] Alec Radford et al. «Learning Transferable Visual Models From Natural
Language Supervision». In: arXiv preprint arXiv:2103.00020 (2021). url:
https://arxiv.org/abs/2103.00020 (cit. on pp. 46, 61, 66).

[70] Scikit-learn Developers. sklearn.cluster.KMeans. Accessed: 2024-10-13. url:
https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.
KMeans.html (cit. on p. 48).

[71] Yue Jiang, Changkong Zhou, Vikas Garg, and Antti Oulasvirta. «Graph4GUI:
Graph Neural Networks for Representing Graphical User Interfaces». In:
Proceedings of the CHI Conference on Human Factors in Computing Systems
(CHI ’24). ACM. Honolulu, HI, USA, 2024, pp. 1–18. doi: 10.1145/3613904.
3642822 (cit. on p. 51).

[72] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. USA: McGraw-Hill, Inc., 1986. isbn: 0070544840 (cit. on p. 61).

[73] Daniel Cer et al. «Universal Sentence Encoder». In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. 2018, pp. 169–174 (cit. on p. 61).

83

https://arxiv.org/abs/1803.03382
https://arxiv.org/abs/1803.03382
https://arxiv.org/abs/1803.03382
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://www.python.org/
https://www.python.org/
https://pytorch.org/
https://pytorch.org/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.paperspace.com/
https://www.paperspace.com/
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2103.00020
https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html
https://doi.org/10.1145/3613904.3642822
https://doi.org/10.1145/3613904.3642822

	List of Tables
	List of Figures
	Introduction
	Motivation and Objective
	Structure of the Thesis

	Background
	Introduction to GUI Design
	Design Principles and Guidelines
	The User Interface Design Process

	Machine Learning for GUI Design
	The Role of Machine Learning for GUI Design
	GUI Representation Learning
	Rico Dataset

	Autoencoders and their Variants

	FLUID Dataset
	Related GUI Datasets
	Klarna Dataset
	WebColor Dataset

	Filling the Gaps in GUI Datasets with FLUID
	Data Collection
	Data Analysis and Cleaning
	Conclusion

	Methodology
	Bounding Box and Category Encoded Representation Learning
	Model Architecture
	Learning Procedure
	Implementation Details

	Multimodal Encoded Representation Learning
	Multimodal Input Representation
	Multimodal Learning Procedure
	Implementation Details

	Results
	Bounding Box and Category Encoded Representation Learning
	Evaluation Metrics
	Results and Discussion

	Multimodal Encoded Representation Learning
	Evaluation Metrics
	Results and Discussion

	Conclusion
	Bibliography

