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Abstract

Lithium-ion batteries, retired from their first life in automotive field, can still retain
70% - 80% of their original capacity. Consequently, they could be repurposed for
less demanding energy storage applications, delaying or eliminating the need for
new systems. However, identifying suitable second-life applications is challenging
and uncertain, as lithium-ion batteries passed through their first life, do not show
the same thermal behaviour and heat production of a new battery, posing safety
risks if not properly managed.

This thesis focuses on high-fidelity evaluation of the thermal performance of a
PHEV’s battery in second-life scenarios, using limited cell information and minimal
experimental data. The evaluation employs a coupled electrochemical-thermal
modeling approach. The first model, developed and optimized using PyBaMM
software, accurately represents cell behavior and, thanks to a lumped thermal sub-
model, can evaluate the heat generated under a wide range of operating conditions.
The second model, based on the battery’s CAD design and implemented in the
SimScale environment, assesses the thermal behaviour of the battery under various
boundary conditions. These models are interdependent, as the thermal model
requires heat production data estimated by the PyBaMM model, which in turn
depends on the battery temperature data provided by the thermal model. Once
validated by means of experimental data, the complete model is used to simulate
duty cycles and boundary conditions of second life scenarios, accurately selected
for the battery protagonist of this study. The implemented approach allows the
evaluation of battery’s suitability and safety under the new operating conditions.

The scope and execution of this thesis are exceptionally ambitious due to its
multidisciplinary nature and innovative approach. Moreover, it has proven to be
remarkably effective in addressing multiple facets of battery performance and safety.
The integrated models have demonstrated optimal fidelity with the experimental
tests, achieving exceptional average accuracy and enabling representative simulations
for the selected second-life applications. The final results have shown the suitability
and safety of the battery module in all the new operating scenarios.
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1 Introduction

1.1 Background

The employment of batteries in propulsion and automotive field is nothing new, but it
is possible to assert that it has been used since the very invention of automobiles. In
the second half of the 19th century, in fact, the French Gustave Trouvè realized what
is considered the first electric vehicle, based on electrochemical lead battery and
DC electric motor inventions [107]. Other vehicle were realized in the successive
years, with two examples are in Figures 2a and 2b.

Thanks to the increasing availability of the lead batteries, several improvements
were done in the following years, culminating in 1899, when Jamais Contente’s
electric vehicle reached the max speed world record with near 106 km/h [107].
This event confirms how, at the beginning of 20th century, the battery electric
vehicles (BEVs) performance and reliability levels were higher than ICE based
ones. However, the pros of the battery electric propulsion systems including higher
efficiency, no direct noxious emission, largely lower acoustic noise and higher quality
and regulation in the motor torque have not been enough to overcome the advantages
of internal combustion engine (ICE) based ones. In the road applications, without
a continuous connection to the electric grid, the poor specific energy and energy
density of the electrochemical batteries, plus very long recharge time (hours), made
the battery electric vehicles worse than the ICE based ones.

(a) Ayrton and Perrry electric motor based three-
wheeler (1882) [42] .

(b) The Camille Jenatzy speed record Jamais Contente
electric vehicle (1898) [45].

Figure 2: Early Historical Moments of Electric Vehicles.

In 20th century, several efforts were made to promote the diffusion of electric
vehicles: during the second world war due to oil shortage; in the seventies, with the
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Figure 3: Global CO2 emissions by sector in 2019 [127].

first predictions of the oil shortage and in the nineties, with the increasing pollution
problems in the big metropolitan areas (California Clean Air Act). However no real
mass market appreciable results were experienced [107].

Nowadays, as shown in the pie chart in Figure 3, the transportation sector emits
more than 190 billion Mt of CO2, representing 26.56% of the total emissions [127].
The increasing level of pollutants and green house effects, coupled with a dramatic
climate change that will lead to an increase of the atmospheric temperature of 2°C
by 2050, pushed both institutions and car manufacturers to finally make a real
effort to make truly the advent of electric vehicles. Indeed, all electric vehicles
produce zero direct emissions (tank-to-wheel), contributing to improve air quality
of the atmosphere. As a consequence, driven by the government and the market,
pure electric vehicles (EVs) and plug-in hybrid EVs (PHEVs) have been rapidly
developed and employed [64]. According to the global EV sales database, part of
which is reported in Figure 4, EVs and PHEVs reached over 6.4 million units in
2021 [69].

Among all the different types of available batteries on the market (e.g. nickel
metal hydride, nickel cadmium and lead acid), lithium-ion (Li-ion) batteries are the
most widespread typology for EV applications (as well evident in Figure 5, due to
their numerous advantages [94][99] [30]:

• relatively high energy density of typically 0.4-2.4 MJ/L;

• low maintenance;

• long life service;

• good cycling performance;
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Figure 4: Global EV sales [69].

Figure 5: Rechargeable battery market forecast [31].

• low self discharge;

• no memory effect;

• high operating voltage;

• fast charge capability;

As a consequence, an enormous number of lithium-ion batteries have been used
in the last years: 14 GWh or 102000 ton have been retired from EVs, a number
that will double every five years [100]. After serving in vehicles for a span of
eight to ten years in fact, these batteries are typically retired due to diminished
capacity and inadequate power to meet driving requirements [65]. Nonetheless,
these retired batteries still preserve 70%–80% of their original capacity [110], as
shown in Figure 6a. Therefore they are still capable of providing storage service in
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(a) State of health path [64].
(b) Utilization chain of EV batteries
throughout the life cycle [126].

Figure 6: Cycle life of batteries.

less-demanding applications, in which battery performance, volume and weight are
not critical requirements [89]. This approach could extend the operational life of
retired batteries, avoiding or deferring the manufacturing of new systems. Figure
6b shows a complete battery cycle life, characterized by direct recovery or second
usage.

Emilsson et al. [29] estimated the emission of more than 106 kg of CO2 per each
kWh of new lithium-ion battery manufactured. Consequently, the emission savings
due to the utilization of existing energy system would be enormous. Furthermore
it would alleviate the environmental footprint and material recovery pressures
associated with battery decommissioning, providing also cost benefits for EV
buyers. Additionally, the battery reusing could even provide an alternative revenue
stream for a sub-product that otherwise would be at disposal stage. This aspect is
increasingly getting the attention of important Original Equipment Manufactures
(OEMs) like Nissan-Renault, BMW, Tesla or Daimler [34].

1.2 Problem definition

In order to assess the field of future application of a battery after its first life in
the automotive field, a deep knowledge about characteristics, performance and
"managing how" of the constituting cells is crucial. However, it is a matter of
fact that the information about a cell provided by the manufacturers are always
particularly limited, with complete absence of details about the internal construction
and components properties, due to trade secret and know how maintenance.
Additionally, first automotive usage can drastically change the cell behaviour,
resulting not only in capacity fade, but also in the variation of other parameters,
moving them away from design conditions and altering the normal functioning of
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the battery.
Despite their advantages, lithium-ion batteries are highly thermal sensitive and

can become dangerous if not properly managed. Due to the high specific energy and
energy density, and chemical composition, they are subjected to heat generation,
which may induce overheating [90], thermal runaway [99] and even cause fire and
explosion [2]. Precisely because of this, heat generation and temperature control
in LIBs are the most important issues that should be addressed in the choice of a
second life application. Such decision is particularly challenging and must never be
taken for granted.

1.3 Objective

This thesis has the scope of solving this tangled situation, simulating a condition in
which, thermal performance and electrical characteristics of an HONDA CLARITY’s
battery (Figure 7), chosen for its ease obtainability, must be evaluated in order to
define its second life application. In particular, thermal performance evaluation will
be carried out by means of a double modelling approach, consisting of a battery
model and a thermal model, coupled together.

The target of this study is not common or predictable, but rather particularly
daring: the achievement of the highest possible accuracy of the modelling resorting
to very limited information about the battery. Indeed, it could be identified as
a "black box", with information mainly related to nominal characteristics and
completely missing construction/test data, and knowledge about the first life and
usage.

As it is evident from Figure 8, scope and realization of this thesis work are more
audacious than ever, due to its multidisciplinary nature. Several aspects will be
faced and touched, resulting in an innovative and, as ever, useful work. These
characteristics highlight the contribution that this study can bring to the literature:
no existing studies are in fact comparable, making it essential to fill this gap. This
aspect will be further and deeply discussed in the last part of the methodology, in
section 2.9.
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(a) Cell of Honda Clarity [50]. (b) Module of Honda Clarity [53]. (c) Honda Clarity PHEV [60].

Figure 7: HONDA CLARITY: Cell-Module-Car.

Figure 8: Faced fields in this thesis.

1.4 Approach

The study will be implemented methodologically in different steps, well schematized
in Figure 9. The starting point will be the realization of an accurate cell model,
based on literature, measured and optimized parameters. This model will be used to
estimate the heat produced by the cell during any kind of discharge/charge cycle.
This information will be used to model the cell as a heat power source that, coupled
with a CAD model of the module, will allow to implement a thermal simulation.
This model will be validated using temperature test on the real module. Thereafter,
known the characteristic of the module, different second usage scenarios will be
analyzed and chosen. By means of the thermal model it will be possible to simulate
the duty cycle (in terms of required power and current) and boundary condition (in
terms of cooling) of the chosen application, verifying the thermal performance of
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the module and, finally, assessing it for the second application life.

Battery modeling field. Thermal modeling field. Second life field.

Figure 9: Flow chart of the thesis.
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2 Literature Review

2.1 Introduction to lithium-ion cells and batteries

The objective of this first section of the literature review is to give a brief introduc-
tion about lithium-ion cell functioning and peculiarities, including also the critical
aspects related to this kind of energy storing system. Most of the information is
taken from [94], thus take it as a reference for a deeper understanding.

Figure 10: Lithium-ion battery essential parts [46].

The term lithium-ion refers to an entire family of battery chemistry where the
negative electrode (anode) and positive electrode (cathode) serve as a host for
the lithium ions (Li+). Figure 10 shows essential components of this technology.
During discharging phases, the ions are extracted from the anode (deintercalation
mechanism), enter the liquid phase, migrate through the separator and reach the
metal oxide cathode (intercalation mechanism). During charging phase, the ions
leave the cathode (deintercalation mechanism), enter the liquid phase, migrate
through the separator and are inserted in the anode (intercalation mechanism). The
current moves out from the positive pole of the battery in discharge mode and
moves in the positive pole in charge mode [107]. Since lithium ions are intercalated
into host materials during charge or discharge, there is no free metal within a
lithium-ion cell. Figures 11 and 12 respectively show chemical reactions and
graphical representation of the charging/discharging processes.
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C6Li ↔ C6+Li
+ + e−

(a) Anode

Li1−xNiMnCoO2 + xLi+ + e− ↔ LiNiMnCoO2

(b) Cathode

Figure 11: Chemical reactions in a NMC lithium-ion cell.

(a) Discharging phase in a lithium-ion battery : deinter-
calation from the anode - intercalation into the cathode.

(b) Charging phase in a lithium-ion battery : dein-
tercalation from the cathode - intercalation into the
anode.

Figure 12: Charging and discharging mechanisms in lithium-ion battery [46].

Usually the cells are connected to form a module , which is used to facilitate
readily changed configurations and easy replacement. Modules can be further
connected in series and/or in parallel to form a full battery pack equipped with their
protection electronics. An illustration of this procedure can be seen in Figure 13.

By connecting cells (but also modules) in parallel and in series is increased
respectively capacity (Ah) and voltage (V) of the system. Cells and modules are
connected mostly of the time both in series and in parallel, with a configuration
depending on application type and desired performance. An example of this method
is shown in Figure 14.

Indeed, one of the main issues of the batteries cells is the practical impossibility
to design the cells to have at the same time:

• the highest specific power (to satisfy limited time requests). Typically more
inactive material for current /power transfer resulting in lower Whr/kg and
Whr/l;
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• the highest specific energy (to satisfy long duration requests). Typically more
active material for current/power transfer resulting in higher Whr/kg and Whr/l.

Figure 13: Packaging of a battery system[102].

(a) Cells series connected. (b) Cells parallel connected. (c) Cells parallel/series connected.

Figure 14: Different battery configurations [48].

In a lithium-ion cell, alternating layers of anode and cathode are separated by
a porous film called separator. An electrolyte provides the media for lithium ion
transport. A cell can be constructed by stacking alternating layers of electrodes
(as shown in Figure 15a) or by winding long strips of electrodes into "jelly roll"
configuration (as shown in Figure 15b). Electrode stacks or rolls can be inserted
into hard cases that are sealed with gaskets, laser-welded hard cases or enclosed in
foil pouches with heat-sealed seams.

Cell components, chemistry, electrode materials, particle sizes, particle size
distributions, coatings on individual particles, binder materials, cell construction
styles, etc., are typically chosen by a cell designer to optimize a range of cell
properties and performance criteria. As a result, there is no "standard" lithium-
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ion cell, and even seemingly identical cells can exhibit significantly different
performance and safety behaviours.

(a) Alternating layers of electrodes in a
prismatic cell [52].

(b) Jelly roll configuration in cylindrical
cell [54].

Figure 15: Electrodes arrangement in lithium-ion cells.

Currently, the market is dominated by lithium-ion cells with similar designs: a
negative electrode made from carbon/graphite coated onto a copper current collector,
a metal oxide positive electrode coated onto an aluminum current collector, a
polymeric separator, and an electrolyte composed of a lithium salt in an organic
solvent. In next sections each of these components is briefly described.

2.1.1 Negative Electrode (Anode)

The negative electrode (Figure 16c) consists of a thin layer of lithium intercalation
compound applied to a metal (copper) current collector. Typically, the used anode
material is carbon type, commonly graphite, in a powdered state, mixed with
a binder material. There have been attempts to produce and test anodes made
from silicon, germanium, and Titanate (Li4Ti5O12) materials. Achieving thin and
uniform coatings of active material is crucial in cells utilizing organic electrolytes.
Therefore, the process of mixing and coating the negative electrode material is often
proprietary, given that variations in processing parameters significantly impact the
resulting coating, influencing cell capacity, rate capability and aging behaviour.
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2.1.2 Positive Electrode (Cathode)

Various positive electrode materials are utilized in conventional lithium-ion cells,
they are in powder form, mixed with conductivity enhancers (such as carbon)
and binder (Figure 16a). Subsequently, they are coated in a thin layer onto
a metallic (Aluminum) current collector. Numerous cathode materials exist,
with the most prevalent being lithium cobalt dioxide. Nevertheless, alternative
materials include lithium iron phosphate (LiFePO4), spinels like lithium manganese
oxide (LiMn2O4), or mixed metal oxides incorporating cobalt (Co), nickel (Ni),
aluminum (Al), and manganese oxides, such as nickel cobalt aluminate (NCA)
material (LiNi0.8Co0.15Al0.05O2) or nickel manganese cobaltite (NMC) material
(LiNi1/3Mn1/3Co1/3O2). Similar to negative electrode materials, positive electrode
materials can exhibit significant variations based on factors like their source, purity,
particle characteristics, coatings on particles, use of dopants, mixture ratios of
various components, degree of compaction, crystallinity, and more.

2.1.3 Electrolyte

The electrolyte in a lithium-ion cell acts as a carrier for ion flow between the
electrodes and it typically consists of a blend of organic carbonates, like ethylene
carbonate or diethyl carbonate. The specific proportions in the mixture vary based
on the desired properties of the cell. These solvents contain lithium ions in a solvated
state, provided by lithium salts, with lithium hexafluorophosphate (LiPF6) being
the most commonly used. Cell manufacturers usually incorporate small amounts
of various additives to enhance performance characteristics such as resistance to
overcharging, cycle life, calendar life, and overall cell stability.

Under typical cell voltages, combinations of lithiated carbon (or lithium metal)
and organic electrolyte are not thermodynamically stable, leading to a reaction
between the two materials. This reaction, occurring near room temperature, results
in the formation of a protective layer on the carbon surface, commonly known as the
solid electrolyte interphase (SEI). During cell manufacturing and post-assembly,
the cell undergoes a gradual charging process referred to as "cell formation". This
process aims to create a consistent and stable SEI layer on the cell’s anode.

2.1.4 Separator

Lithium-ion cell separator (Figure 16b) is a porous membrane between the positive
and negative electrodes. The primary role of the separator is to prevent direct contact
between the anode and cathode, making pass, thanks to its porous nature, during
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(a) Cathode. (b) Separator. (c) Anode.

Figure 16: Cell components [107].

both charging and discharging phases, only positive ions. Commonly it is made
from porous materials like polyethylene, polypropylene, or a combination of both,
known as composite polyethylene / polypropylene films. Separator characteristics,
including thickness, porosity, permeability, toughness, and resistance to penetration,
can vary significantly based on the desired properties of the cell.

2.1.5 Current Collectors

Current collectors (one for each electrode) connect the cell to other cells and/or
electric sources/loads. Their role is to transfer current evenly throughout the cell
to the active material and to provide mechanical support for the active material.
The most common current collectors are thin foils of copper (used as a substrate
for anode active materials) and aluminum (used as a substrate for cathode active
materials).

2.1.6 Cell Enclosures

There are three kinds of battery cells commonly used in EVs and they can be broadly
categorized as:

• Cylindrical cells.

• Prismatic cells.

• Pouch cells.
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The primary distinction among cell formats is found in their structural design and the
spatial arrangement of the cathode, anode, and separator components. Prismatic and
cylindrical cells are encased in rigid housings, typically constructed from aluminum
or stainless steel, providing robust protection. Conversely, pouch cells are enclosed
in multilayer aluminum composite foils, offering a more flexible and lightweight
packaging solution.

Table 1: Cell enclosures characteristics [67].

Type Cylindrical Prismatic Pouch

Packaging material Metal can Metal can Foil

Electrodes Wound or Stacked Wound Stacked(or semi-wound)

Cell expansion None Mild, requires compres-
sion.

Moderate, requires com-
pression.

Thermal Tabs on opposite ends -
difficult interface for liq-
uid cooling.

Tabs on opposite side
where cold-plate typi-
cally interfaces.

Heat rejection through
aluminum heatsinks and
cold-plate.

Safety Small-format cells able to
contain failure events at
cell level.

Large-format cells more
difficult to pass single-
cell propagation.

Large-format cells more
difficult to pass single-
cell propagation, unpre-
dictable pressure release.

Terminals material Typically nickel plated
steel.

Aluminum (cathode) and
plated copper (anode).

Aluminum (cathode) and
plated copper (anode).

Advantages

• Efficient heat dissipa-
tion.

• High energy density.

• Robust structure.

• Space efficiency.

• Simplified packaging.

• Flexibility in design.

• Lightweight.

• Cost-effective produc-
tion.

Disadvantages

• Space inefficiency. • Heat dissipation.

• Lower energy density.

• Durability.

• Thermal management.
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In cylindrical cells, the electrode sheets are wound together with separators to
create a compact jelly roll structure. Prismatic cells, on the other hand, utilize either
flat jelly rolls or stacked electrodes, providing a more uniform shape conducive to
space-efficient design. Pouch cells exclusively adopt a stacked configuration, which
allows for a thinner and more adaptable cell profile [7].

In Table 1 are summarized the main characteristics of the cell enclosures, while
Figure 17 illustrates the three different cell configurations, highlighting the unique
design features and structural differences of each format.

Figure 17: Cell configurations [43] .

2.2 Heat generation in lithium-ion cells

As mentioned in "Problem definition " (section 1.2), thermal management plays a
crucial role when handling lithium-ion batteries. Performance, life and safety are in
fact all strongly effected by operation and storage temperatures [10], which should
be maintain in proper thresholds.

When the temperature is too low (e.g.<10°C), the diffusion rate of lithium-ions
in the electrolyte seriously decreases, resulting in significant increase of internal
resistance. Furthermore the number of ions participating in the reaction decreases,
affecting electricity storage and release, and leading to the attenuation of battery
capacity and power. Also the charging in such condition is problematic, with lithium
dendrites that may pierce the film, forming an internal short circuit and threatening
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the safety of use [131]. The only solution is a proper thermal management coupled
with effective heating strategies. In any case, the low temperature operations
remedies will not be the focus of this thesis, which, instead, will focus on high
temperatures operations (e.g. >50°C) and managing strategies. Consequently, it is
fundamental to understand the mechanisms of heat production within a cell.

Firstly the produced heat can be reversible or irreversible. Reversible heat is
generated at cathode and anode level. It is entropic heat originated from reversible
entropy change during the electrochemical reactions. This heat may be endothermic
or exothermic type, but in any case is due to insertion and de-insertion of lithium
ions in electrodes. The irreversible heat is generated at electrodes, electrolyte, and
current collector. It has major contribution of more than 70% of total heat and is
characterized by the Joule heating of the battery cell, which is C-rate dependant
[131]. Figure 18 summarizes the contributions of heat generation process within a
cell.

Figure 18: Illustration of categories and process of heat generation within LIBs [85].

Several theoretical studies have been conducted in order to formulate a mathe-
matical expression to describe the heat production within a cell.

Bernardi et al. [12] derived the expression of battery heat by applying the
first law of thermodynamics around the cell control volume (not including current
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collectors), obtaining the following expression for heat generation inside a battery:
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The first term on the right-hand-side is the electrical power produced by the
battery. The second term is the sum of producible reversible work and entropic
heating from the reaction and it is summed over all simultaneously occurring
reactions. The third term is heat produced from mixing. Since the reaction rates
are not uniform, concentration variations across the battery are developed as the
reaction proceeds. When the current is interrupted, the concentration gradients
developed inside the battery relax, causing heat to be released or absorbed.

Rao and Newman [106] presented two different methodologies for estimating
heat generation: a thermodynamic energy balance and a local heat generation model.
In the first approach, neglecting phase change and mixing effect, the arrived at the
following expression for the battery heat generation:

q = −
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The first term is the average enthalpy potential integrated where the reactions are
actually taking place across the thickness of the battery.

In the second approach, the local heat generation is the summation of all the
relevant local thermal effects occurring inside the battery, including heat generated
at the electrochemical interfaces and in the bulk material in different parts of the
cell. The resultant equation is:
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After integrating this expressions and applying the appropriate boundary conditions,
the above expression is equivalent to the energy balance method.
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In addition to electrochemical heat generation, Joule heating is produced from
bulk electron movement in the current collectors. With a two-dimensional (2D)
model, consisting of two electrode current collectors coupled via a temperature-
independent parametrized electrochemical model, Kim et al. [75] proposed the
following local heat generation rate:

q′′′ = i′′′
(
U − V − T

deltaU

δT

)
+
(
σ |∇ϕ|2

)
cc,pos

+
(
σ |∇ϕ|2

)
cc,neg

(4)

The first term is the electrochemical heat generation already present in the other
equations. The last two terms are resistive heating due to current movement in the
positive and negative metal current collectors, respectively [10].

As it is clear from the previous expressions, heat production mechanisms is at the
base of normal function of a lithium-ion cell. However, the heat must be properly
and accurately managed in each phase of cell operation, with the scope of avoiding
several dramatic consequences. Indeed, the untreated heat production within a
battery leads to an increase of temperature, stimulating degradation in each of the
cell components, as depicted in Figure 19:

• Degradation of the cathode is due to the development of surface film which
lowers the reaction rate for both lithium-ion intercalation and de-intercalation.
This will decrease the charge transfer rate and ultimately transport rate.

• Degradation in the graphite electrode is mainly due to evolution of SEI layer,
that, not being completely permeable for lithium-ion, decreases the charge
transfer rate. Solvent could co-intercalate into carbon and the expansion of
carbon particle forms ternary graphite intercalation compound, leading active
material loss and contributing to capacity loss.

• The electrolyte (LiPF6) breaks into Lithium fluoride (LiF ) and Phospho-
rous pentafluoride (PF5), which can originate corrosive and poisonous gases.
At higher temperatures (90-120°C), solid electrolyte interface layer decom-
poses, followed by electrolyte (above 200°C), which releases toxic gases (e.g
CO,C2H4, H2S,HF ).

• The separator starts melting above 140°C, slowing and even blocking the flow.

The degradation of cell components is not the only consequence of untreated heat
production and temperature raise: an excessive overheating can induce a dramatic
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Figure 19: Result of heat generation on Li-ion cell [13].

thermal runaway, with eventual smoke, emissions, fire and decomposition of
electrolyte and electrode material (Figure 20). The phenomena of thermal runaway
can be experienced above 300°C and is comparable to an internal combustion
engine, where can be observed an initial slow temperature increase, followed by a
really steep raise, due high reaction rates [131].

Figure 20: Thermal runaway process [92].

2.3 Cooling system types

As mentioned in the previous section, the untreated heat can induce dramatic and
dangerous temperature increase. Consequently, it is necessary a precise and deep
control of heat dissipation mechanisms within the battery. Such role is carried out
by the thermal management system, which, by means of an accurately designed
cooling system, must maintain the pack at an optimum average temperature and
with even temperature distribution, as identified by the vehicle manufacturer. Pack
thermal management system must be also compact, lightweight, low cost, easily
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(a) Passive system.

(b) Active system.

Figure 21: Air cooling systems [32].

packaged and absolutely reliable [103]. Several cooling strategies/methods have
been proposed for lithium ion batteries, but they can be summarized into three
typologies.

2.3.1 Air cooling

Air cooling is the most widely used heat dissipation method for battery packs,
by directly using natural convection or by generating forced airflow through a fan
operation. Natural convection (Figure 21a) has the obvious advantage of simplicity
and low cost, while it has the disadvantage of weak dissipation capacity, effective
for low C-rates (generally up to 0.5C in both charging and discharging [129]). With
the rise in C-rate, current increases quickly and correspondingly heat generation
within the battery cell, requiring forced convection by a fan (Figure 21b). This
method is more reliable and easier to maintain than the natural convection, which is
highly dependent on conditions of the surrounding air. In any case, both systems are
influenced by factors like cross-section area, temperature of the inlet air, direction
of the flow, position of the blower, structure, cell spacing discharge rate, etc [71]
[24]. However, a common problem for both systems is temperature non-uniformity
within the battery, with higher values for cells collocated in the interior of the pack
structure due to mutual heating [105].
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(a) Direct liquid cooling with radiator [63]. (b) Indirect liquid cooling with heat pump [131].

Figure 22: Liquid cooling systems.

2.3.2 Liquid cooling

Compared with air cooling, liquid cooling is more efficient due to higher heat
transfer coefficient of the coolant (which is commonly a blend of water and glycol).
Liquid cooling can be classified into direct and indirect cooling. The first type
(Figure 22a), commonly liquid immersion cooling, can cool the entire battery
surface, greatly contributing to temperature uniformity of LIBs. However, high
requirements on the waterproof performance of battery system, and the risk of
short circuit and electrochemical reactions makes the employment of this system
particularly challenging. Indirect liquid cooling (Figure 22b) has several different
declensions depending on design of the pack: tube cooling, cold plate cooling
with micro/macro channels, jacket cooling, ect. In any case, all of these systems
are easier implementable, safer and realized to be compact and light, even if they
present lower cooling capacity [131]. The cooling capacity in these techniques is
mainly influenced by channel height and width (less impacting factors), number
of channels, and flow rate and temperature of coolant through the channels (more
impacting factors) [25]. The temperature of the coolant can be regulated by means
of a classical radiator (which is able to maintain the coolant at ambient temperature)
or by means of a more advanced and effective heat pump (capable of decreasing
the coolant temperature also at lower temperatures for highly demanding thermal
conditions).

2.3.3 PCM (Phase change material) cooling

The PCM system (Figure 23 ) exploits the change of phase property to absorb excess
latent heat generated during battery operation, maintaining it at relatively constant
temperature within its operating range. During periods of low or no operation, when
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the battery is not generating much heat, the PCM changes phase again, releasing
the stored latent heat. The classification of PCM can be done in four categories
based on phase-change type: solid-solid, solid-liquid, solid-gas and liquid-gas
[25]. Surely this system offer the advantage of not requiring extra energy for its
functioning, however it presents limited heat absorption capacity (which could
result insufficient for high-demand situations or rapid temperature increase) and
high design complexity as well as additional weight and size of the system.

Figure 23: PCM cooling [21].

2.4 Aging phenomena

As mentioned in sections 1.2 and 1.3, the battery protagonist of this thesis study
will be a sort of "black box", with really limited information (mainly related to
nominal characteristic of the cell) and no knowledge about its first usage life.
This is certainly an aspect to not underestimate, since Lithium-ion batteries are
subjected to important aging phenomena, which can drastically change the cell
behaviour, resulting not only in capacity fade and power loss, but also in the
variation of other parameters, moving them away from design conditions and
altering the normal functioning of the battery. Consequently, it is fundamental
to have a clear vision on all the aging mechanisms acting on the cell during its first life.

2.4.1 Degradation modes

The deterioration of LIBs is often categorized into two modalities of analysis: loss
of active lithium inventory (LLI) and loss of positive and negative active materials
(LAMNE/LAMPE):
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• Loss of Lithium Inventory (LLI): This occurs when the amount of cyclable
lithium decreases due to SEI layer growth and lithium deposition reactions.
During battery formation, Li+ ions are consumed to form a dense SEI film,
which can grow over time and crack during lithium ion insertion and extraction,
leading to further loss of Li+ ions. Batteries with a low N/P ratio or those
subjected to extreme charging conditions are prone to lithium plating reactions,
where Li+ ions deposit as lithium metal, increasing cell polarization and
hindering the intercalation process.

• Loss of Active Material (LAM): This involves the mechanical destruction of
electrode particles and changes in their crystal structure. Solvent cointercalation
and gas evolution can cause graphite particle exfoliation and cracking, leading
to rapid electrode degradation. High C-rates and high states of charge can
create significant Li+ ion concentration gradients, causing mechanical strain
and fractures. Nickel-rich cathodes, like NMCs, are prone to instability, which
reduces battery life and thermal stability. High potentials and temperatures can
dissolve transition metal ions (Ni, Co, Mn), altering the electrode composition
and crystal structure, reducing the number of available host structures for Li+
ion intercalation and decreasing cathode capacity [28].

Both degradation modes primarily result from the regular cycles of charge and
discharge inherent to the cell’s operation, making them unavoidable. The literature
presents several models that aim to accurately predict aging phenomena and capacity
fade, such as those proposed by Ding et al.[28], Li et al. [79], and Lopetegi et al.
[82]. However, this area of research remains in its early stages due to the complex
interplay between utilization patterns and boundary conditions. Consequently,
for this thesis, and particularly for selecting second-life applications, the aging
phenomena associated with the normal functioning of the cell will not be considered.
Instead, the focus will shift to external factors influencing the aging.

2.4.2 External factors

With the diversification of LIBs application and usage scenarios, the operating
conditions they encounter can vary significantly, profoundly affecting cell aging if
not properly managed. External factors are crucial when considering second-life
scenarios because they are the only aspects that, kept under control, can potentially
preserve battery life. Therefore, it is essential to identify and understand these
external factors that drive aging phenomena.

They can be categorized into four types:
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• Temperature: lithium-ion batteries are characterized by an ideal working
temperature range, operations below or beyond this range would hasten battery
aging. At low temperatures, the electrolyte and SEI conductivity decreases,
deteriorating the Li+ charge transfer kinetics and intercalation into graphical
layer, resulting in the formation of large Li+ concentration gradient in the solid
phase, which initiates lithium plating reactions. On the contrary, temperature
increase during cycling highly amplifies electrolyte decomposition and anodic
SEI film growth (beyond of the phenomena already explained in section 2.2).

• SOC operating interval: after prolonged cycling in a wide SOC range, numerous
microcracks were observed in the cathode particles, followed by crystal structure
transformation into a rock-salt-like structure, resulting in a increase in charge
transfer resistance [28]. Furthermore the cells can be over charged or discharged
(due to improper managing or manufacture inaccuracies), causing LAM and
copper current collector dissolution, respectively.

• Charge-Discharge rate: for extreme fast charging, lithium plating is the most
important battery degradation phenomena, followed by severe crystal structure
disruption and interfacial reactions. Furthermore, high current rates, not only
produce heat with the above mentioned consequences but cause also diffusion
stresses within the cell and drastic volume changes of the electrode particles,
raising internal impedance. In general, high charging currents effects battery
cycle life more than high discharge currents.

• Mechanical stress: under conditions of unconstrained expansion or excessively
low external pressure, battery components may delaminate, severely reducing
battery capacity. In contrast, excess pressure could cause the separator pores to
close and impede ion transport, resulting in high localized current densities
and accelerating the cell’s inhomogeneous degradation [28].

Figure 24 provide a graphical representation of all the aging mechanisms acting
on a battery cell. In the assessment and design of a second-life application for a
battery pack, it is essential to consider the aforementioned external factors. Among
these, temperature management is particularly crucial and forms the central focus of
this thesis. However, this study will specifically address the management of higher
temperatures, including cooling strategies, while the challenges associated with
charging and discharging at extremely low temperatures (and the necessary heating)
will remain areas for future investigation.
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Figure 24: Graphical representation of relationship LIBs degradation modes and external factors [28]. The
relationship between battery degradation modes, aging mechanisms, and external factors is illustrated. SEI
film growth and irreversible lithium plating would result in LLI; particle cracking and exfoliation of active
material, phase transition, gas generation, and transition metal dissolution would result in both positive and
negative LAM. External factors include temperature, operating SOC, C-rates, and mechanical stress.

The SOC control is a delicate issue since most second-life applications cannot
operate effectively within a limited discharge range. Imposing second-life scenarios
that work with narrow range of SOC would in fact be highly restrictive. A potential
solution could be the employment of an appropriate battery management system to
manage and prevent the battery from reaching its limits.

In contrast, the discharge rate can be effectively controlled with a careful redesign
of the new pack configuration in the second-life application. Limiting the maximum
discharge rate to 1C, as this project proposes, will help to preserve the battery’s
capacity by reducing degradation caused by high current. Additionally, it will
minimize heat production, which occurs at higher current rates.

Finally, mechanical integrity is strictly related to the configuration and arrange-
ment of the pack in the second-life application, as will be discussed in section
2.8.2. The closer the battery remains to its original design conditions, the greater
the likelihood of preserving the pack’s integrity. Ensuring the correct spatial
arrangement and mechanical stability of the pack in all operating conditions is
fundamental to the success of second-life applications.
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2.5 First life of the battery pack

The scope of this section is to give more details about the battery subject of this
thesis. In particular are included, not only numerical data and properties, but also
the first usage environment of the pack. As previously mentioned, the battery first
life is a crucial aspect to not underestimate for the evaluation of the performance of
the pack, in sight of a possible second usage scenario.

The used module was extracted from the battery pack of the HONDA CLARITY
PLUG-IN HYBRID 2018, a midsize sedan. All the following information are taken
from [125].

The powertrain of the vehicle (depicted in Figure 25) was constituted by drive
motor, generator, engine and PCU which were positioned in the front of the vehicle
while the IPU was positioned under the floor.

The presence of the electric powertrain allowed the vehicle to perform different
driving modes depending on the vehicle energy demand and SOC of the battery:

• EV Driving Mode, in which the motor is driven by battery power.

• HV Driving Mode, in which both engine-generated power and battery power
are used.

• Engine Driving Mode, in which both engine power (via the connection to the
clutch) and motor power are used.

(a) Powertrain layout. (b) Powertrain side view.

Figure 25: HONDA CLARITY PHEV [125].

In Figure 26 is represented a typical battery SOC profile for a PHEV. The vehicle
operates as an EV when there is a high SOC, resulting in charge-depleting (CD)
operation. When the SOC falls under a minimum threshold, the system switches to
charge-sustaining (CS) operation, in which the powertrain operates to maintain the
SOC in a certain window (especially by using the internal combustion engine).
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Figure 26: Typical battery SOC profile for a PHEV [125].

Figure 27a shows the position of the IPU in the vehicle. In order to offer
adequate leg room in front and rear seats, and allow for rear seat trunk access, the
battery modules were divided and positioned under the front and rear seats. Figure
27b shows the layout of the high-voltage wiring and components in the IPU. The
high-voltage wiring and communications wiring were concentrated in the centre of
the IPU between the battery modules, allowing for an integrated configuration.

(a) Layout of IPU components. (b) Layout of high-voltage wiring and components.

(c) IPU specifications.

Figure 27: IPU Technologies [125].

Figure 27c shows the pack IPU specifications: the battery pack was characterized
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Table 2: Cell specifications [125].

Item Unit Value

Type [-] Lithium-Ion
Format [-] Prismatic
Nominal capacity [Ah] 27
Nominal voltage [V] 3.7
Voltage limits [V] 2.5 / 4.2
Cathode material [-] NMC (Nickel Manganese Cobalt Oxide)
Anode material [-] Graphite
Arrangement [-] Flat wound cell
Packaging material [-] Metal can (aluminum)
Current [A] continuous 209 / peak 250
Current range [A] -465 discharge / 116 charge (-16C / 4C)
Energy [Wh] at C/10 103.8
Energy density (gravimetric) [Wh/kg] 144
Energy density (volumetric) [Wh/l] 282
Power [W] continuous 718 / peak 862
Power density (gravimetric) [kW/kg] 1.19
Power density (volumetric) [kW/l] 2.35
Temperature limits [°C] -20 / 60
Weight [g] 722.0
Dimension [mm] 148.5 x 90.9 x 27.2

by 14 modules and 168 cells (12 cells for each module) with a 84s-2p configuration
(84 in series and 2 in parallel). This arrangement allowed to obtain 17.0 kWh of
capacity and 310.8 V of rated voltage.

In Table 2 are reported the specifications of the battery cells [125] [51].
For this kind of vehicle the cooling system was selected taking into consideration

the amount of heat generated by the battery and the volume of the cooling system
itself. Being a PHEV, the effort required to the battery system was comparable to
a BEV, with a quite high heat generated by each cell. The bottom of the module
was coolant-cooled by means of a cooling plate, realizing 3.5 times higher cooling
performance than an air cooling system. Figure 28b shows changes in battery
temperature in a high-temperature environment. The adoption of the coolant-
cooling system helped to avoid limiting vehicle’s driving performance due to high
battery temperatures, even during high-load operation, like the US06 mode in a
high-temperature environment.
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(a) Components of IPU cooling circuit. (b) Battery temperature during high-load operation.

(c) Battery cooling performance.

Figure 28: IPU Cooling system [125].

2.6 Battery Models

In this study is imperative to evaluate thermal performance of cells encompassed
in a module originally designed and employed in PHEVs, in order to choose an
appropriate second life scenario. However, predicting the behavior of a battery
is a complex task, as evidenced by Alipour et al. [5] and Barcellona et al. [11],
which revealed substantial variability in Battery Energy Storage Systems (BESSs),
especially when repurposed for applications beyond their intended first-life use.

Manufacturer-provided nominal data, typically found in data sheets, often proves
insufficient and fails to accurately represent real-world battery behaviour, especially
post the first complete cycle life. Metrics like power density, energy density,
efficiency, and lifetime are influenced by diverse factors, including temperature,
current profile, SOC, and Depth of Discharge (DoD).

Attempting to experimentally map out battery performance in all conceivable
conditions is impractical due to the associated costs and time constraints. Given
these challenges, precise battery modelling becomes crucial for this thesis.

A model is simply an abstract representation of an object or system. For
batteries, these models usually take the form of mathematical equations, together
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with appropriate boundary conditions [17]. Battery modelling operates at different
technological levels:

1. Materials Level, investigating the individual electrodes/electrolyte structures
and materials.

2. Cell Level, describing the fundamental element of any BESS as observed at its
terminals.

3. Module Level, modeling the assembly of several cells along with the BMS as
the primary unit within the BESS.

4. System Level, modeling the complete stack of modules, including the battery
inverter [15].

For the purposes of this thesis, at least a system-level approach is deemed appropriate,
as only one module from the Honda Clarity is available (Figure 7b). The module
level approach is unsuitable due to the absence of the BMS and the need for a deep
understanding of the functioning and performance of individual cells before forming
the module.

The subsequent sections provide a concise literature review on battery modelling
approaches, from the cell to material level.

2.6.1 Data-driven model (DDM)

Data-driven model (DDM) (Figure 29a) utilizes computational intelligence to
approximate highly nonlinear battery characteristics, resulting in notably efficiency,
but heavily dependent on data quantity and training methods. Various data-driven
models describe batteries behaviour without prior knowledge of the internal structure:

• Artificial Neural Network (ANN): A powerful tool for modelling nonlinear
functions with proper data training, demanding large quantities of high-quality
data and ample training time for accuracy.

• Adaptive Neuro-Fuzzy Inference Systems (ANFIS): Combining flexibility,
subjectivity, and learning capability, but its accuracy varies with the number
and quality of rules.

• Deep Neural Network (DNN) and Feed Forward Neural Network (FFNN):
Simple learning processes, non-intensive, and efficient computation, but they
are one-way models, not considering data history, requiring offline training.
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• Support Vector Machine (SVM): Computationally expensive and struggles
with large data, making it challenging for SOC and SOH estimation.

Several examples are present in literature, where the use of such kind of model is
really widespread.

Boujoundar et al. [14] proposed the SOC estimator system for Li-Ion batteries
using ANN trained off-line. The simulation results showed good accuracy to the
experimental data, for all different environmental conditions. Clearly the database
used in the design of this model needed to contain all the possible operation
scenarios. Khumprom et al. [74] presented the benchmark of data-driven model
using machine learning for battery prognostic data. The study claimed success
in aiding the benchmarking an real-time applicability, however interpretability
challenge and computational time drawbacks of deep learning algorithms were
not mentioned. Chemali et al. [22] used DNN for battery SOC estimation where
battery measurements are directly mapped to SOC. The result was an accurate
estimation, but obtained with large number of tests data, requiring huge economical
and temporal resources.

The cited papers and all the above-mentioned models share a common limitation:
wide data collection is crucial for model development, necessitating large amount
of training data. Unbalanced data would cause model overfitting and underfitting
in decision-making [83]. However, data collection is time-consuming and costly,
making it challenging to implement in research fields [2]. Hence, the adoption of
such battery modelling approaches in this thesis would be unpractical, considering
the time-consuming and costly processes that cannot be afforded.

2.6.2 Bucket model

The primary benefit of the bucket model (Figure 29b) lies in its straightforward
implementation. The SOC serves as an indicator of the energy state, with the control
input being the power for battery charging and discharging, rather than the battery
current. Consequently, the model associated with it is solely linked to the battery
power or Ampere-hour throughput. The parameters requiring identification include
the initial energy state and the coefficient corresponding to the equivalent operating
cycles.

Consequently, in terms of accuracy when compared to other models, the bucket
model exhibits the least favourable performance as expressed by Shuangqi et al. [79]
and Balogun et al. [9]: it severely ignores the dynamics, operating voltage limits,
and relaxation times of the battery. The lack of consideration for the voltage limits
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can significantly overestimate the power delivery capability of the battery, leading
to sub-optimal control trajectories, which can only be mitigated by expensively
over-sizing the battery system. As a consequence, the bucket model generally finds
application in offering a rudimentary assessment of the viability of secondary energy
storage applications [64].

Therefore, it is clear why this approach could not be used for BESS modeling in
this thesis.

(a) Data-Driven Model [83]. (b) Bucket Model [64].

(c) Equivalent circuit model (ECM) [2]. (d) Electrochemical model (EM) [64].

Figure 29: Battery modelling types

2.6.3 Equivalent circuit model (ECM)

The Equivalent Circuit Model (ECM) (Figure 29c) employs electrical components,
such as a voltage source, resistors, and capacitors, to characterize the internal
dynamics of a cell or battery. This model falls under the category of empirical
models, addressing the external characteristics of the cell and it is built by fitting
data of specific experiments [64].

The simplest ECM is the Rint model, conceptualizing the battery as a voltage
source with series resistance. While straightforward in implementation, this
model fails to accurately represent the characteristics of batteries used in EVs.
Consequently, one or more resistance-capacitance (RC) parallel networks are
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introduced to the Rint model, resulting in a Thevenin model.
Among the various ECM models found in the literature, RC network-based

models are widely acknowledged for online applications and aging modeling. Since
batteries exhibit nonlinear behavior, their dynamics vary under different operating
conditions, such as SOC, temperature, and charging and discharging rates. The
control inputs in this scenario are the battery charging and discharging currents.
Consequently, the parametrization of the model is viewed as an "identification
problem" or an "optimization problem" to align the model with measured data [2].

Liaw et al. [81] used a simple ECM to show that, with a sufficient amount of
data collected and a acceptable understanding of the battery degradation process,
it was possible to develop a highly reliable battery performance model to predict
either calendar or cycle life. Mroz et al. [97] focused on health monitoring for
predicting the lifetime of LIBs using a 2RC ECM. The model incorporated thermal
influences and aging functions derived from experimental measurements. However,
the determination of aging influence may lack accuracy for simulations outside
the standard range, raising concerns about validation reliability. Bruch et al. [18]
presented a fitting procedure for the identification of ECM parameters: it closely
matched the relaxation after a pulse, deviating only by around 0.08 mV. Despite its
advantages in aging studies, the model struggled to detect the high-frequency SEI
growth, a crucial aspect of a cell’s lifetime.

It is unquestionable that ECMs offer several advantages in battery modelling,
especially for ease of implementation and use in online applications, with a
corresponding high accuracy. However, since entirely based on phenomenological
and non physical aspects, they cannot ensure reliability in untrained and unexplored
working conditions, or be relied upon to predict long-term battery behaviour. [17].

2.6.4 Electrochemical model (EM)

In comparison to earlier models, the accuracy of electrochemical battery models
(Figure 29d) is notably superior, primarily attributed to their reliance on physics-
based modeling principles [64]. These models intricately characterize battery
behaviour by considering factors such as electrolyte concentration, electrode sizes
(both anode and cathode), transport phenomena, electrochemical kinetics, and
thermal/stress/mechanical effects, employing partial differential equations (PDEs).
Despite the EM delivering precise insights into battery performance, it demands
substantial computational power and time to determine a multitude of parameters.
Additionally, its implementation in real-time applications proves to be a challenging
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endeavor [2].

Table 3: Battery models summary.

Model Strengths Weaknesses

Data-driven model (DDM)

• High nonlinear prediction ca-
pability.

• Easy to implement.

• Suitable for online applica-
tions.

• High computational complex-
ity.

• Accuracy fully dependent on
quality of training data.

• Need high storage.

Bucket model

• Simplicity.

• Minimum parameters required.

• Minimum accuracy.

• Ignores dynamics and relax-
ation times.

Equivalent circuit model (ECM)

• Moderate accuracy and com-
plexity.

• Able to identify parameters on-
line.

• Lack in describing internal cell
phenomena.

• Reliability not ensured in
untested conditions.

Electrochemical model (EM)

• Highest accuracy.

• Clear physical interpretation.

• High nonlinearity and com-
plexity.

• Difficulty in parameter identi-
fication.

• Difficult to apply online.

2.6.5 Modelling approach

After this short review, in order to decide a modelling approach compliant with the
objectives of this thesis, it is fundamental to analyze which are requirements and
available resources. They are listed as follows:

1. Limited time and resources, with the possibility of testing the cell only at two
temperatures.
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2. Required understanding of the physical phenomena within the cell.

3. Required deep knowledge of the battery in all the operating conditions.

4. High accuracy/fidelity of the model.

5. Off-line implementation.

From the previous review and carefully looking at the requirements/characteristics
of the thesis, the chosen model is the electrochemical one. Indeed, Thiruvonasundari
et al. [118] have demonstrated that electrochemical is the correct model to use in
case a complete battery diagnosis is required.

Condition 1 clearly underlines the impossibility of using DDM in this thesis.
Even if this model leads to decent levels of accuracy, data collection is crucial for
model development, necessitating large amounts of training data obtained with
time-consuming and costly processes. Hence the adoption of such battery modelling
approaches is necessarily precluded.

As matter of fact EM is the only one capable of ensuring the satisfaction of
conditions 2 and 3.

For what concerns requirement 4, there are several examples in literature in
which the superiority of the EM is proven over both bucket model and ECM. Reniers
et al. [108] have compared their accuracy on a Kokam 16 Ah NMC cell. The result
was that the bucket model, only based on energy throughput and maximum power
level, did not represent correctly the battery behaviour due absence of temperature
dependency. The ECM, tested in limited boundary conditions, could not adequately
predict the battery conduct. This clearly illustrated that empirical correlations are
valid only for tested operating conditions. The predictions of electrochemical model,
based on SEI-growth model coupled with single particle model, were decent but
not fully accurate (this is the reason why in this thesis will be used a more complex
model, see section 2.7.6). However, the major trends were better predicted than the
other two models.

In a lithium-ion battery modelling overview, Meng et al. [91] demonstrated that,
after the optimization of parameters for each model, the most accurate model was
the EM, with better accuracy but also higher execution time. However, requirement
5 clearly elucidates the unnecessary on-line elaboration of the model, hence this is
not a crucial disadvantage.
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2.7 Overview of electrochemical models

The objective of this section is to give a brief overview of the existing electrochemical
models, with all their peculiarities, advantages and drawbacks. This part is crucial
for the choice of the proper approach to use for battery modelling. A very complete
explanation about the electrochemical modelling is presented by Brosa [17], of
which here is just reported a summary for the scope of this thesis study.

2.7.1 Single particle model (SPM)

The SPM represents the simplest among the electrochemical’s. It encompasses
three fundamental physical phenomena: transport of lithium within the particles,
thermodynamic relationship linking lithium concentration and electrode potential,
and overpotential necessary to drive lithium intercalation reactions. The terminal
voltage excludes any contributions from the electrolyte or Ohmic losses in the
electrodes, which are generally negligible when the cell operates at a low current.

When implemented numerically, the SPM’s complexity aligns with that of ECMs.
The simplicity of the SPM is evident not only in its numerical implementation but
also in the minimal number of parameters needed for the characterization. Apart
from the physical constants and the model inputs, only 17 parameters are required to
fully describe the model: 8 for each electrode and one for the battery temperature.
No electrolyte parameters are necessary.

Despite being a very useful and widely used model, SPM does not capture the
effects of the electrolyte which becomes crucial for increased C-rates. In order to
incorporate it, is necessary, at the very least, to consider the SPMe.

2.7.2 Single particle model with electrolyte (SPMe)

The SPM exhibits high performance at low C-rates, but its accuracy diminishes as
the C-rate increases. To enhance the accuracy, the model is refined by introducing
electrolyte dynamics, resulting in the creation of the SPMe. This model preserves
much of the simplicity of the SPM, maintaining its one-dimensional spatial nature,
while significantly improving performance (graphical model representation at Figure
30). The key concept involves solving PDEs for ion concentration in the electrolyte,
in addition to the particle equations from the SPM. The electrolyte concentration
enables the calculation of additional terms in the voltage expression, enhancing
accuracy.

The SPMe’s complexity is slightly higher than that of the SPM. Besides the PDEs
for each particle, an additional quasi-linear PDE for electrolyte ion concentration
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must be solved. However, the three spatially one-dimensional PDEs are decoupled,
allowing for efficient solutions. This model necessitates of 30 parameters: 9 for
each electrode, 11 for the electrolyte, and the battery temperature.

While SPMe models exhibit strong agreement with more complex models like
the Doyle-Fuller-Newman model across various operating conditions, they do not
capture the spatial distribution of lithium concentration across each electrode.
Spatial variations become significant for materials like LiFePO4, with flat open-
circuit potential curves. For materials like NMC, with a notable gradient in their
open-circuit potential curve, particles across the electrode maintain nearly identical
surface lithium-ion concentrations and discharge at nearly the same rate.

Several examples are present in literature that allow to demonstrate the absolute
validity of this model. For an advanced BMS, Pozzi et al. [104] presented a
comparison between an isothermal SPMe and standard identification profiles like
CC and multistep discharging approaches. Results demonstrated that SPMe with
optimal experimental design parameters identification methodology outperforms
standard approaches in convergence time and accuracy. Lopetegi et al. [82] proposed
a comparison between the P2D model and SPMe for battery aging prediction. The
results showed that SPMe could predict capacity fade very accurately compared to the
P2D model, but with a reduced computational cost. However, some internal variables
cannot be modeled as accurately as with the P2D model, due to the single particle
modeling. Guo et al. [35] conducted a constant current discharge experiment
in order to evaluate the effectiveness of a SPMe combined with many-particle
mesoscopic model. The root mean square errors (RMSE) between simulation and
test results were showcasing a way better accuracy compared to other models, with
the model meeting the accuracy requirements also across different discharging
frequencies.

An evident weakness of the SPMe model emerges when the current becomes
large enough to induce electrolyte depletion, leading to breakdowns in agreement
with the DFN model. To address such effects, particularly at high C-rates involving
electrolyte depletion or when incorporating degradation effects, the DFN model is
necessary.

2.7.3 Doyle–Fuller–Newman (DFN) model

The DFN model, when appropriately parameterized, is capable of encapsulating
essential features, making it applicable across a broad spectrum of operating
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Figure 30: Sketch of the geometry of the SPMe model. There is only a single representative particle at each
electrode, rather than infinitely many [17].

conditions and demonstrating remarkable accuracy in predicting experimental
outcomes. Even if higher in complexity compared to SPM and SPMe, DFN model
remains computationally feasible.

In contrast to the SPMe’s, the DFN model incorporates electrode particles across
the entire width of the electrodes, referring it as a P2D model. This inclusion enables
an accurate modeling of the spatial distribution of lithium across the electrodes,
a pivotal role in modeling non-homogeneous interfacial current density, leading
to non-uniform degradation of the electrodes (graphical model representation at
Figure 31). Despite sharing the same physics as the SPMe, the DFN model requires
an equivalent number of parameters.

This kind of model is particularly widespread in literature and research field
for its good balance between complexity and computational time. Castle et al.
[20] proposed a DFN model for nano-structured lithium iron phosphate (LFP)
cathodes, assuming fast transport within small particles. Numerical solutions
reveal localized (de)intercalation regions propagating in LFP electrodes, especially
compared to other cathode materials like NMC. Krachkovskiy et al. [77] proposed a
combined magnetic and nuclear methodology which enabled real time visualization
of lithiation/delithiation processes during operations, by means of DFN modeling
techniques. The results demonstrated that polarization of the thick graphite electrode
is correlated with appearance of energy barriers and resulting significant reduction
of the lithium chemical diffusion, which must be addressed in any attempt at the fast
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Figure 31: Sketch of the geometry of DFN model [17]. Electrodes and separator are one-dimensional domains, defined
to be x ∈ [0, Ln] for negative electrode, x ∈ [Ln, L−Lp]for the separator and x ∈ [L−Lp, L] for the positve electrode.
The microstructure is assumed to be composed of isolated spherical particles whit domains r ∈ [0, Rk] for k ∈ {n, p}.

charging of Li-ion batteries. Zulke et al. [133] showed that a carefully parametrised
DFN model is capable of accurately predicting the behaviour of a cell for both
galvanostatic and drive cycles in a wide variety of situations. The model was also
used to accurately compute the irreversible energy losses occurring within the cell,
for different discharge patterns, and infer their location.

In summary, the DFN model is highly popular and effective, but it confines its
consideration to a one-dimensional problem at the cell and particle scales. As
a result, it does not encompass effects associated with non-spherical particles or
the true three-dimensional geometry of the cell. To address these aspects, a more
comprehensive homogenized model is necessary.

2.7.4 Homogenised model

Homogenized models can be viewed as an extension of the DFN model, with the
employment of arbitrary and homogenized geometries for the porous electrodes,
potentially reaching up to 3 + 3D (i.e., three dimensions at both the cell and particle
levels). To simulate the homogenized model, apart from specifying parameters, the
geometry of the cell and a representative microstructure must be provided. This
geometry replaces certain model parameters, such as particle radius and electrode
thicknesses. The complexity of the homogenized model surpasses that of the DFN
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model due to the increased number of spatial dimensions and the intricate geometry
(graphical model representation at Figure 32).

Several challenges arise in the homogenized model. Firstly, the computation
of effective transport properties is a crucial issue: homogenized model must
be calculated from imaging data or idealized geometries, introducing additional
complexities. Another concern is the unclear separation of scales in a typical porous
electrode geometry: this separation is not always evident in real batteries, potentially
questioning the accuracy of estimated parameters. Furthermore, the homogenized
model introduces new states, such as non-symmetric lithium distribution within
particles, that cannot be directly observed, making the validation of many model
outputs challenging.

Hunt et al. [66] proposed a thermal-electrochemical homogenized modelling for
behaviour of porous electrodes. Using asymptotic homogenization and including
thermal and capacitance effects, the model allowed simulation of complex mi-
crostructures. Compared to the DFN model, it was more versatile with capability of
deriving mesoscopic parameters directly from microscopic properties , but clearly
with improved complexity.

While homogenized models allows for the inclusion of effects arising from the
complex geometry of a real cell that cannot be adequately addressed by the DFN
model, they fall short of fully resolving a real geometry. To address this limitation,
the consideration of a high-fidelity microscale model becomes imperative.

2.7.5 Microscale model

The high-fidelity microscale model represents the most intricate and realistic among
the models discussed in this overview. This model captures the diverse materials
and particles constituting the porous electrode, along with the spaces filled by the
electrolyte, enabling the modeling of spatial distributions, such as ion flow around
particles (graphical model representation at Figure 33).

Despite its realism, practical applications encounter two major challenges with
the high-fidelity microscale model. Firstly, it demands extensive computational
resources and presents the complex task of acquiring the complete microscale
geometry through tomography. Secondly, similar to the homogenized model,
many predictions regarding spatial distributions of quantities of interest cannot be
validated, given the current absence of methods to observe them in operando.

While the microscale model holds theoretical value, its practical utility hinges
on the reduction of solving times and the development of experimental techniques
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Figure 32: Sketch of the geometry of the homogenised model [17]. The macroscale domains (electrodes Ωn and Ωp,
and separator Ωs) are treated as continuous material. At each point in the electrodes, there is a representative microscale
domain (electrode particles Ωpart

n and Ωpart
p ). Ω is defined as Ω = ωn ∪ Ωs ∪ Ωp

enabling the monitoring of internal battery states during operation. This serves as
a reminder that complexity does not necessarily bring closer to the primary goal
of battery modeling: highly accurate agreement with experimental results can be
attained using less complex models.

Despite of that, there are some examples of its usage in literature, as done
by Less et al. [78], where a microscale model was developed to fully resolve
anode and cathode structures, while treating the separator as an effective electrolyte
property. The microscopic simulation proved valuable for studying the influence of
microstructure on cell performance. However, the model had limitations analogues
to the previously mentioned ones: reaction coefficient/proportionality factor was
assumed based on literature findings and electrode microstructure resolution would
have required an imaging method, increasing simulation complexity.

2.7.6 Model decision

After the review of all the characteristics of the electrochemical models, well
schematized in Table 4, it is possible to decide which is the proper model for the
scopes of this project.

For sure accuracy, modelling and physical representation are great points in favour
of the microscale and homogenised models, however the drawbacks are incompatible
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Figure 33: Sketch of the microscale model [17]. Each porous electrode (Ωmicro
n and Ωmicro

p ) is composed of a matrix
that includes both active and inactive materials. The voids in this porous structure Ωmicro

e are occupied by the electrolyte.
The boundary of each domain in spit into different subsets, therefore distinct boundary conditions can be imposed.

with the characteristics and needs of this thesis. The first problem is related to
the huge complexity of such models that, for sure guarantees high fidelity of the
cell, but is not worth for the purpose and would require enormous computational
effort that it is not actually sustainable by this project’s means. Furthermore the
examples in literature are quite marginal, mostly related to theoretical dissertation
not based on real cells. This is clearly due to the difficulties in identification of the
actual geometry of the electrodes (with a challenging validation related to imagines
analysis), the impossibility of validation of many characteristic parts of such models
(i.e. non-symmetric lithium distribution within particles that cannot be directly
observed) and several reaction coefficient/proportionality factors assumed based on
literature findings. For these reasons the microscale and homogenised models will
not be utilized for the modelling in this thesis.

At this point it is worth comparing the remaining feasible models: SPM, SPMe
and DFN model, given that they all share the same simplified geometry which
allows for direct comparison of their variables. Brosa [17] implemented the three
models in PyBaMM software for a NMC cell. The results showed that the SPMe
model closely captures all the spatially distributed effects of DFN, but the SPM
did not, given that it does not include electrolyte dynamics. This resulted in turn
in a poor prediction of the terminal voltage, especially at higher C-rates. This
represents the main difference (and limitation) of SPM with respect to SPMe/DFN.
As a consequence SPM cannot be taken as model for our purpose.
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Table 4: Electrochemical model summary.

Model Strengths Weaknesses

SPM
• Highest simplicity.
• Minimum parameters required.
• Complexity aligned with ECM.

• Electrolyte dynamics not included.
• Good accuracy only for low C-rates.

SPMe
• Simplicity.
• Electrolyte dynamics included.
• Good accuracy at middle rates.

• Higher number of parameters required
compared to SPM.

• Spatial distribution of lithium-ion not in-
cluded.

• Decreased accuracy at high C-rate.

DFN
• Remarkable accuracy across a broad spec-

trum of operating conditions.
• Still computational feasible.
• Included spatial distribution of lithium-

ions across the electrodes.

• Higher computation cost compared to sim-
pler models.

• Effect related to not spherical nature of
electrodes not encompassed.

Homogenised
• High accuracy in all the operating condi-

tions.
• Three dimensional model.

• Required representative microstructure in
addition to parameters.

• High complexity.
• Challenging validation .

Microscale
• Highest theoretical accuracy.
• The most complete model.

• Highest complexity.
• High computational effort.
• Validation mainly done by means of liter-

ature.

The difference between the two remaining models is quite narrow (as previously
demonstrated), however it has been chosen the SPMe over DFN for two main
reasons: firstly because, since the performances are quite similar, it is preferred the
simplest. Secondly the spatial distribution of lithium across the electrodes is not of
interest, hence is not worth to include it in the model.

The choice is argued by Marquis et al. [86] study, where SPMe showed to
give good agreement with the DFN model whilst providing dramatic decreases in
computational complexity, with reduced memory requirements and computation
time, both highly desirable features for parameter estimation and optimization
procedures.
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2.7.7 SPMe Founding equations

In the literature, several models fit under the category of SPMe. The main differences
are in the methods and boundary/initial conditions used to calculate voltage and
other derived quantities, not in the differential equations used to determine the
concentrations in particles and electrolyte. In SPM-type models, the particles are
assumed to (de)lithiate uniformly and therefore a representative particle can be
solved for each electrode.

Table 5: Model variables.

ck Lithium concentration in the electrode particles mol m−3

ce Lithium concentration in the electrolyte mol m−3

Nk Molar flux of lithium in the electrode particles mol m−2 s−1

Ne Molar flux of ions in the electrolyte mol m−2 s−1

ik Current density in the electrodes A m−2

ie Current density in the electrolyte A m−2

jk Reaction current density A m −2

jk0 Exchange current density A m−2

ϕk Electrode potential V
ϕe Electrolyte potential V
T Temperature K
ηk Overpotential at the electrode-electrolyte interface V

Table 6: Model parameters and functions.

ak Product of particle radius and surface area density —
bk Particle surface area per unit of volume m−1

cmax
k Maximum particle concentration mol m−3

ce0 Initial/rest lithium ion concentration in the electrolyte mol m−3

ck0 Electrode initial concentration mol m−3

cp Specific heat capacity JK−1kg−1

Dk Lithium diffusivity in particle m2 s−1

De Lithium ion diffusivity in electrolyte m2 s−1

iapp Applied current density A m−2

Kk Normalized reaction rate mol m−2 s−1

Lk Electrode and separator thicknesses m
Rk Particle radius m
t+ Cation transference number —
Uk Open-circuit potential (OCP) V
Bk Transport efficiency/inverse MacMullin number —
ϵ Electrolyte volume fraction (porosity) —
σe Conductivity (electrolyte) S m−1

σk Conductivity (electrode) S m−1

γk Ratio of maximum lithium concentrations in solid —
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Table 7: Model constants.

F Faraday constant C mol−1

R Gas constant J K−1 mol−1

b Bruggeman coefficient —

Table 8: List of symbols used in SPMe equations.

e In electrolyte
n In negative electrode/particle (anode)
s In separator
p In positive electrode/particle (cathode)
k In domain k ∈ {n, s, p}
x Spatial coordinate

The governing equations for the representative particles are [17]:

∂ck
∂t

=
1

r2
∂

∂r

(
r2Dk(ck)

∂Ck

∂r

)
, in 0 < r < Rk, (5)

∂ck
∂r

= 0, at r = 0, (6)

−Dk(ck)
∂ck
∂r

=
jk
bkF

, at r = Rk, (7)

ck = ck0, at t = 0, (8)

for k ∈ {n, p} and where:

jn =
iapp(t)

Ln
, jp = −iapp(t)

Lp
. (9)

The SPMe also accounts for electrolyte effects, so the governing equation for lithium
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ions in the electrolyte are needed:

ϵ(x)
∂ce
∂t

=
∂

∂x

(
De(ce)B(x)

∂ce
∂x

− t+

F
ie

)
+

b(x)j(x, t)

F
, in 0 < x < L, (10)

∂ce
∂x

= 0, at x = 0, L, (11)

ce = ce0, at t = 0, (12)

where

ϵ(x) =


ϵn, in 0 ≤ x ≤ Ln,

ϵs, in Ln ≤ x ≤ L− Lp,

ϵp, in L− Lp ≤ x ≤ L,

(13)

B(x) =


Bn, in 0 ≤ x ≤ Ln,

Bs, in Ln ≤ x ≤ L− Lp,

Bp, in L− Lp ≤ x ≤ L,

(14)

b(x) =


bn, in 0 ≤ x ≤ Ln,

bs, in Ln ≤ x ≤ L− Lp,

bp, in L− Lp ≤ x ≤ L,

(15)

j(x, t) =


jn(t), in 0 ≤ x ≤ Ln,

0, in Ln ≤ x ≤ L− Lp,

jp(t), in L− Lp ≤ x ≤ L,

(16)

ie(x, t) =


iapp(t)

Ln
, in 0 ≤ x ≤ Ln,

iapp(t), in Ln ≤ x ≤ L− Lp,
iapp(t)

Lp
(L− x), in L− Lp ≤ x ≤ L.

(17)

The solution for ce(x,t) can then be used to compute the electrolyte potential ϕe a
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posteriori, by integrating the expression:

ie(x, t) = σe(ce)B(x)

(
−∂ϕe

∂x
+

2RT

F
(1− t+)

1

ce

∂ce
∂x

)
in 0 < x < L. (18)

Here it is assumed the electrolyte is ideal such that µe = RT log(c/ce0).

Multiple methods have been suggested in the literature to compute the terminal
voltage of the cell. In any case the terminal voltage V(t) can be written in the form:

V (t) = Ueq − ηr − ηc −∆ϕe −∆ϕs (19)

where Ueq is the open-circuit potential of the cell, ηr and ηc are the potential drops
due to the reaction and concentration overpotentials, respectively; and ∆ϕe and
∆ϕs are the Ohmic losses in the electrolyte and the electrodes, respectively. During
discharge (iapp> 0), as lithium ions flow from the negative to positive electrode, the
quantities ηr,ηc, ∆ϕe and ∆ϕs are all positive, and represent the reduction in the
open circuit cell potential resulting from these loss mechanisms. During charge
(iapp < 0) these quantities are all negative and therefore represent the extra potential,
above the open-circuit potential, required to overcome the internal resistances in the
cell.

The exchange current densities are defined as:

jk0(x, t) = FKk

√
ce(x, t)

ceo

ck(r, t)

cmax
k

(
1− ck(r, t)

cmax
k

)∣∣∣∣∣
r=Rk

for k ∈ {n, p}.

(20)

In turn, jk0(t) is defined as the exchange current density averaged over the corre-
sponding electrode.

2.8 Battery second life

As previously mentioned, the final target of this study is the identification and
thermal performance testing of second life scenarios for the HONDA CLARITY’s
battery pack. However, the decision and, successively, the design process, is not an
easy task and cannot be taken as granted. Indeed several stages and factors must be
considered in order to obtain the best possible result. The scope of this paragraph is
to give a brief and clear idea of the repurposing procedure that allows to achieve
such optimal results.
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2.8.1 Repurposing procedure

The repurposing procedure must be really well defined and schematized, with a
logical flow constituted of different steps:

1. Collection: PHEVs and EVs equipped with batteries are collected by authorized
treatment centers, battery manufacturers or third-party integrated management
companies [64].

2. Disassembly: After dismantling from the vehicle, the battery is visually
checked. Successively the pack can be further disassembled, with removal
of casing, electrical and mechanical connections between the cells, cooling
system, BMS and even of the cells themselves. Procedure and components to
be removed depends to the configuration in which the battery will be re-used:
stacking battery packs, refurbishing battery made from used modules and
refurbishing modules from used cells are the possible options, depending on
several factors. This choice is really delicate and crucial, for this reason is
further discussed in section 2.8.2.

3. Screening: In this step the battery is analyzed to detect damages of the
system and classified by several factors. After that, it is necessary evaluate
status and aging (SOH or RUL) of the retired batteries by means of direct
measurement or analysis: open-circuit voltage (OCV), internal resistance,
temperature performance, capacity tests, hybrid pulse power characterization
(HPPC), incremental capacity analysis, electrochemical spectroscopy, are just
some of the available possibilities that, however, require time [64] [113].
After further safety tests and performance evaluation (also combined with data
collected by BMS), batteries with similar first life-cycle profiles and health
statues can be clustered to achieve better consistency [64].

4. Technical viability of different solutions: This step is the core of the
repurposing procedure. Firstly is fundamental to analyze all the requirements
in second life application decision, including: capacity, max power, weight,
volume , BMS, EMS and thermal management. All this aspect are widely
discussed in section 2.8.4.

5. Economic evaluation: After the emergence of several eligible second life
scenarios, this step is based on the estimation of cost and potential revenues of
each solution [96].
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6. Reassembly and/or Remanufacturing: Depending on the chosen configu-
ration approach and second life scenario, the pack is reassembled in a way
that is somehow inverse to the disassembly procedure, with the electrical and
mechanical connection of the modules, followed by mounting of BMS, EMS
and TMS.

2.8.2 Potential configurations

The review of different configurations is an important part of the battery assessment
process. In this section, the possible configurations are analyzed, including the
advantages and disadvantages reported in Table 9.

• Stacking used EV battery packs: in this configuration multiple battery
packs are connected with the least possible modifications. The connection
can be done in parallel (more common considered the high voltages of the
EV battery packs), allowing disconnection of one battery pack in case of
failure, while maintaining system operation (but with reduced capacity and
power capabilities). Also connection in series can be employed, with critical
issues related to potential unexpected currents flows that may develop between
batteries with different voltages. For this reason EV battery packs with similar
characteristics facilitate the implementation of this type of configuration.

• Refurbished battery made from used modules: this configuration requires
disassembly of the battery pack to the module level, in order to form a
new battery pack that fits the new application (commonly characterized by
high energy demand). Modules with similar characteristics that are able to
communicate with a superior BMS should be used in this type of configuration.

• Refurbished modules made from used cells: in this configurations battery
pack is disassembled to the cell level. The cells are then packed into new
modules and new battery systems. This is particularly valuable when pack or
module dimensions are not suitable for the application.

2.8.3 Configuration decision

Discussing the configuration for this thesis work, the choice is inevitably dictated by
the characteristics of HONDA CLARITY’s battery pack. Being a PHEV subjected
to more room requirements, the 14 modules are not huddled-up in an unique battery
pack (like a classical EV where modules are collocated under the floor in an unique
battery pack), but rather they are allocated partially under front seats and partially
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Table 9: Summary of main advantages and drawbacks of the second life application configuration [96].

Second life configuration Advantaged Disadvantages

Stacking battery packs

• Thermal control can use the internal
heating and cooling of the battery
packs.

• Lower cost and complexity since dis-
assembly steps are removed and in-
ternal components of the pack are
used.

• Reduced waste generated by new bat-
tery that would otherwise be used in
this application.

• Less manipulation, implying re-
duced risk of failure since original
BMS from the OEM could be lever-
aged.

• Performance affected by worst per-
forming modules/cells.

• Shape of the pack cannot be modified
without additional costs.

• Required modification of thermal
management system if it was based
on vehicle radiators.

• Limited flexibility in sourcing com-
ponents for repair and periodic main-
tenance.

• If parallel connected, unexpected
current flows may develop between
the packs.

Refurbished battery
made from used modules • Best module(s) of the pack can be

selected and the worst discarded.

• Greater dimension flexibility with
respect ot stacking full packs.

• BMS is designed for the new appli-
cation, with direct communication
with power converter.

• Simpler to repair, if one modules
fails, it can be replaced.

• Performance affected by worst per-
forming cells.

• Modification or even re-design of
thermal management system is re-
quired.

• Not feasible if the architecture is cell
to pack typology.

• Higher cost and complexity due to
scraps/recycled components of the
EV battery pack and employment of
new components.

Refurbished modules
made from used cells • Best cell(s) of the pack can be se-

lected and worst discarded.

• Highest flexibility in designing size
and shape of the remanufactured sys-
tem.

• Higher cost to disassemble the pack
at cell level.

• More challenging disassemble due
to potential damage of the cells.

• Highest waste of components that
are unable to be re-used.

• Highest cost for provision of new
housing, busbars, sensors, BMS and
re-assembly process.50



under rear seats (look at Figure 25b). Designing and realizing a battery with such
shape is impractical. For this reason the "stacking battery packs" configuration must
be discarded.

The choice between the last two configurations is forced by the inherent charac-
teristics of the prismatic cells, constituting the reference module. Indeed, Table 1
highlights the requirement of compression to avoid electrodes delamination. This
compression is provided by structural cases and plate well visible in Figure 7b.
If this pressure failed during dismantling procedure, the consequences would be
really severe, with an abnormal expansion of the cell (visible in Figure 38) and a
corresponding loss of capacity (as expressed in section 2.4.2). Consequently, the
"refurbished modules made from used cells" configuration cannot be taken into
account for this study.

Therefore, the choice falls on the "refurbished battery made from used modules"
configuration, which represents a really good compromise between modularity
(in terms of shape and performance ), disassemble procedures and additional
components. For this kind of approach, in fact, it would be necessary to implement
a completely new BMS, EMS and TMS. However, as previously mentioned, the
focus of this thesis will be only on the implementation of the last system for the
different secondary life applications.

2.8.4 Second usage requirements

Lithium-ion batteries can be re-used in a broad number of applications which clearly
require different characteristics. This is the reason why, for each specific case, the
following requirements are usually analyzed:

• Capacity: the maximum energy storage capacity to be installed in each
application is determined by several factors such as the available capital,
energy or/and power demand, weight and volume requirements, future forecast
degradation.

• Max power: this depends on the maximum C-rate the battery can deliver. For
lithium-ion batteries, it typically varies from 0.1C up to few C, with higher rates
that can be delivered in small pulses (few seconds). Despite that, discussing
about a second life application, C-rate may be limited to values around 1.
Because of the battery design, the power requirements is often interrelated with
choosing the most suitable capacity.

• Weight: to obtain the same capacity with second life cells (SOH<80%) as with
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first life cells, 25% more cells/modules/batteries are needed, consequently 25%
more net weight of cells will be installed. Depending on the application this
aspect can be prohibitive, restrictive or irrelevant.

• Volume: the same discussion done for the weight is valid also for the volume,
with importance highly dependent on the considered application.

• Battery management system (BMS): it ensures safe battery operation in all
the charge and discharge phase. Depending on the new second life application,
a new BMS, has to be implemented.

• Energy Management system (EMS): the EMS is in charge of controlling the
flow of energy in the installations between different components. Depending
on the new second life application, a new EMS, coupled with the battery
components, has to be implemented.

• Thermal management: its role has been widely discussed in section 2.2
and 2.3. Depending on the ambient temperature and working conditions, the
decision of the second life application must consider a proper TMS that can
maintain temperatures in optimal range avoiding further aging of the battery
[96].

• Economic feasibility

In Table 10 are summarized the requirements that, in this thesis, will be observed
in the decision and design of the second life scenarios for the HONDA CLARITY’s
battery.

Table 10: Requirements observed in this thesis for second life application decision and design.

Capacity Max power Weight Volume BMS EMS Thermal management Economic feasibility

✓ ✓ +/− +/− × × ✓ ×

2.8.5 Second life scenarios

Potential second-life applications are those where capacity and density are not
critical and fast and continuous charging/discharging are not expected. A significant
number of potential second-life applications were found and, for simplicity’s sake,
they have been categorized into three main groups, according to their degree of
mobility: mobile, semi-stationary or stationary [93].
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The first major category is “mobile applications”,i.e., applications where the
battery is expected to move during usage. The possibility in this field are several
since the EOFL is commonly experienced when the battery reaches 70–80% capacity
retention. Consequently, the energy provided by the battery is sufficient to satisfy
most of the daily trip of a short-range EV. Similarly, SLBs can be installed in
hybrid trucks operating in urban areas to provide power at low speeds before
the internal combustion engine (ICE) starts up. Another possibility is to use the
batteries for the propulsion of micro-mobility vehicles (e.g., e-bikes, e-scooters,
electric wheelchairs), lightweight vehicles (e.g., golf carts, three-wheel vehicles)
and industrial vehicles (e.g., forklifts, pallet trucks, tractors) or for the internal
energy management of some vehicles (e.g., food trucks) [4]. Other examples of
mobile second-life applications include the use of SLBs as buffer storage in fuel
cell (FC) vehicles or different types of transportation technologies, including rail or
marine applications. The higher energy density and consequently the better weight
and volume characteristic, results in LIBs being more appealing than conventional
lead–acid batteries not only in all the above-mentioned applications, but also in
such applications were lead-acid batteries are dominant (e.g, in automotive starting,
lighting and ignition). The main obstacle in using LIBs rather than lead–acid
batteries is the difference in cost, which makes the use of lead–acid batteries more
widespread than LIBs for certain types of applications. However, when considering
the case of SLBs, the price difference flattens out, leaving room for the emergence of
new second-life applications linked to the replacement of lead–acid batteries [37].

In the second category defined as "semi-stationary", the batteries are not intended
to operate while moving but are expected to be relocated frequently. Relevant
examples are represented by power-stations for construction site, major events,
outdoor camping and emergency. Furthermore SLBs can serve as really valid option
for automotive charging stations [101] [87].

The last major category of second-life applications includes stationary use cases,
i.e., the battery is not expected to move during its operational cycle. Consequently,
less stringent weight and volume requirements are needed to be taken into account.
Moreover, batteries have a reduced possibility of being mechanically abused, which
could allow for less stringent safety requirements than those applied in the case of
mobile applications. In this scenario, the employment of SLBs as energy storage
system (ESSs) is dominant. ESSs are branched depending on the consumer types.

The first type of consumer is at the residential level and therefore concerns
individual households. This scenario is particularly suitable for former EV/PHEV’s
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batteries since they can count on optimal performance to satisfy power and capacity
requirements. In any case it must be mentioned that, in this case, SLB undergoes
wider DOD and larger SOC swing window if compared to other applications of
the same category [88]. Residential ESSs can store energy when consumption is
low and release energy in the opposite case, resulting in smoothing the load and
participating in the energy arbitrage business. This not only provides economic
benefit but also a more environmentally sustainable solution, reducing the strain
on the electric grid. Furthermore, SLBESSs can be used in combination with
photovoltaics (PV), encouraging RES usage and promoting the decentralisation of
the electricity production system. The SLBESSs can also act as an energy backup in
the event of a power failure or blackout. The use of SLBs also tackles the problem of
the high costs of using new batteries, which is the main limitation for the installation
of domestic ESSs [73].

The repurposed energy storage systems represents an efficient and advantageous
solution also in commercial and industrial field. Demand charges are additional
fees that utilities charge commercial or industrial customers for the highest power
demand recorded by the meters. SLBESSs can be employed to reduce demand
charges and energy consumption by shifting energy usage from high to low cost and
maintaining a constant supply of electricity. Especially if connected to renewable
sources, economic benefits can be maximized [64].

Another important field of application of SLBEEs is in renewable energy, such
as wind and solar energy, which has increased significantly in the past decade [27].
However, these systems are not stable, due to their functioning principle based on
unstable natural phenomena. Consequently, the need ESSs capable of regularizing
and smoothing the output power of a plant has become compelling. SLBESSs
represent a promising solution due their scalability, flexibility, fast dynamics, and,
more importantly, low cost. In these kind of applications, SLBESSs usually operate
at low/middle DOD, leading the battery to less aging and extending the second life
service. Moreover, the energy access issues in remote areas, where the grid is not
economically viable, need to be solved, especially for communities in developing
countries. Renewable energy generation technologies, coupled with repurposed
lithium-ion batteries as ESSs, are a really appealing solution to provide reliable
electricity to inhabitants in such remote and isolated minigrids [6].

The last field of the stationary application can be defined as backup power. In
power plants, fault and temporary maintenance will inevitably lead to the interruption
of power generation. In addition, the black-start of a power plant requires some
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initial power input to start the plant after a sudden outage. Thus, the backup energy
sources are used to provide energy during these moments. The battery power
requirements are certainly high but the usage is occasionally (10-20 annual cycles
with a duration between 15 and 60 minutes [84]). SLBESSs are the ideal choice for
lower energy storage cost, fast response, and power capacity. Furthermore they can
be used to help end-users respond to the emergency of power supply interruption,
quickly providing backup power. Besides that, the battery storage system can be
used in telecommunications and data centres as the uninterruptible power supply
(UPS) [19].

Table 11: Mobile second-life applications [93].

Category Application

Commercial EVs Short-range EVs
Hybrid trucks

Forklifts
Pallet trucks

Industrial vehicles Tractors
Sweepers

Telescopic handlers

E-bikes
Micro-mobility E-scooters

Electric wheelchairs

Starting
Automotive Lighting

lead-acid replacement Ignition
Electric devices

Lightweight vehicles Golf carts
Three-wheel vehicles

Marine applications
Hybrid propulsion

Load-levelling
Peak shaving

Rail transport

Trams power supply
Trams backup system
Trains power supply
Trains backup system

FC-based Energy buffer for H2FCtransportation

Table 12: Stationary second-life applications [93].

Category Application

Construction sites
Mobile power Major events

supplies Outdoor camping
EV Charging stations

Lead-acid Communication backup power
replacement UPS

EV charges On-grid buffer storage
Off-grid buffer storage

Special grids Micro-grids
Smart grids

Load following
Residential ESS RES connection

Backup power

Peak shaving
Commercial ESS Load following

Backup power

Industrial ESS

Load levelling
Peak shaving

Transmission stabilization
Spinning reserve

Power smoothing
Volt/Var assistance

Renewable ESS Firming
Power quality

Frequency control
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2.9 Existing literature

In the preceding sections of this comprehensive literature review, all facets related to
the interdisciplinary nature of this thesis have been explored, encompassing battery
modeling, thermal modeling, and the second life of automotive battery packs. An
effective literature review must address not only the theoretical underpinnings of
the project, as done in the earlier sections, but also critically evaluate the existing
accredited literature. This is essential to gauge the utility, novelty, and contribution
of the new study to the research field.

Table 13 serves this purpose by categorizing all the elements discussed in this
thesis. Several papers have been meticulously reviewed, indicating whether each
aspect is addressed in the respective studies.

The analysis reveals a comprehensive collection of papers tackling similar chal-
lenges as this thesis. However, none of these papers encompass all the fields involved
in this work. Most focus solely on one area—battery modeling, thermal modeling,
or second life applications. Some address two fields, combining battery and thermal
modeling or thermal modeling and second life applications. Consequently, it
becomes evident that the literature lacks a study that integrates all these fields.
This thesis, therefore, represents a breakthrough and innovative study, uniquely
addressing these challenges in a single project. This comprehensive approach
makes the thesis particularly valuable from an engineering perspective, as it covers
the entire process of repurposing a battery pack—from battery modeling through
thermal modeling to the evaluation and assessment of second life applications.

56



Ta
bl

e
13

:L
ite

ra
tu

re
an

al
ys

is

A
ut

ho
r

R
ef

er
en

ce
C

el
l

C
el

lm
od

el
Th

er
m

al
3D

Th
er

m
al

Th
er

m
al

C
oo

lin
g

Se
co

nd
us

ag
e

A
pp

lic
at

io
n

m
od

el
in

g
te

st
m

od
el

m
od

el
lin

g
sim

ul
at

io
n

te
st

an
al

ys
is

de
fin

iti
on

as
se

ss
m

en
t

Yu
an

et
al

.
[1

30
]

D
FN

/E
CM

✓
✓

×
×

✓
×

×
×

H
e

et
al

.
[3

9]
D

FN
✓

✓
×

×
✓

×
×

×
Ira

ol
a

et
al

.
[6

8]
EC

M
✓

✓
×

×
✓

×
×

×
H

os
se

in
za

de
h

et
al

.
[4

0]
SP

M
✓

✓
×

×
✓

×
×

×
W

u
et

al
.

[1
23

]
D

FN
✓

✓
×

×
✓

×
×

×
X

u
et

al
.

[1
24

]
SP

M
✓

✓
×

×
✓

×
×

×
D

ar
co

vi
ch

et
al

.
[2

6]
SP

M
✓

✓
✓

✓
✓

✓
×

×
Jia

ng
et

al
.

[7
2]

SP
M

✓
✓

×
✓

✓
✓

×
×

Ba
hi

ra
ei

et
al

.
[8

]
D

FN
✓

✓
✓

✓
✓

✓
×

×
M

ur
as

hk
o

et
al

.
[9

8]
EC

M
✓

✓
×

✓
✓

✓
×

×
A

kb
ar

za
de

h
et

al
.

[3
]

×
×

✓
✓

✓
✓

×
×

×
K

le
in

er
et

al
.

[7
6]

×
×

✓
✓

✓
✓

✓
×

×
Yo

us
se

fe
ta

l.
[1

28
]

×
×

✓
×

✓
✓

✓
×

×
Ta

ng
et

al
.

[1
17

]
×

×
✓

✓
✓

✓
✓

×
×

Sm
ith

et
al

.
[1

14
]

×
×

✓
✓

✓
✓

✓
×

×
Zh

u
et

al
.

[1
32

]
×

×
✓

✓
✓

✓
✓

×
×

G
uo

et
al

.
[3

6]
×

×
×

✓
✓

✓
✓

×
✓

Th
om

ps
on

et
al

.
[1

19
]

×
×

×
×

×
✓

✓
✓

✓
W

hi
te

et
al

.
[1

22
]

×
×

×
×

×
✓

×
✓

✓
A

bd
el

et
al

.
[1

]
×

×
×

×
×

✓
✓

✓
✓

H
ar

am
et

al
.

[3
7]

×
×

×
×

×
×

×
✓

✓
K

am
at

h
et

al
.

[7
3]

×
×

×
×

×
×

×
✓

✓
M

ar
tin

ez
et

al
.

[8
8]

×
×

×
×

×
×

×
✓

✓
M

ic
he

lin
ie

ta
l.

[9
3]

×
×

×
×

×
×

×
✓

✓
G

oh
la

et
al

.
[3

4]
×

×
×

×
×

×
×

✓
✓

M
on

te
se

ta
l.

[9
6]

×
×

×
×

×
×

×
✓

✓

Th
es

is
SP

M
e

✓
✓

✓
✓

✓
✓

✓
✓

Ba
tte

ry
m

od
el

in
g

fie
ld

.
Ba

tte
ry

m
od

el
in

g
+

Th
er

m
al

m
od

el
in

g
fie

ld
s.

Th
er

m
al

M
od

el
in

g
fie

ld
s.

Th
er

m
al

m
od

el
in

g
+

Se
co

nd
lif

e
fie

ld
s.

Se
co

nd
lif

e
fie

ld
.

57



3 Methodology

This section concerning the methodology will strictly follow the flow chart previously
presented in Figure 9.

3.1 Electrochemical model

First step is development of the cell electrochemical model. The implementation
of a complete SPMe would require enormous amount of time and effort. For this
reason it is decided to use the software PyBaMM (Python Battery Mathematical
Modelling). PyBaMM is an open-source battery modeling software developed in
Python, designed to implement several physics-based models and capable of running
efficient simulations of battery performances, correlated with fast data visualization
tools [47]. Furthermore the software offers modular framework ( by separating
models, discretisation, and solver) and ultimate flexibility to the end user, providing
a unified interface through which to incorporate new models, alternative spatial
discretisations, or new time-stepping algorithms. PyBaMM’s architecture is based
around two core components.

(a) Tree data structure. (b) Pipeline approach.

Figure 34: PyBaMM architecture [115].

The first is the expression tree (Figure 34a), which encodes mathematical
equations symbolically. Each expression tree consists of a set of symbol which
represents either a variable, parameter, mathematical operation, matrix, or vector.
The expression trees in each model are organised within Python dictionaries
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representing the governing equations, boundary equations, and initial conditions of
the model.

The second core component is the pipeline process (Figure 34b) that, constructed
in Python using PyBaMM classes, allows the users to have a full control over the
entire process, with the possibility of inserting specific components at any stage.
The approach is constituted by 5 steps:

1. Define a battery model and geometry using PyBaMM’s syntax. This generates
a collection of expression trees representing the model.

2. Parse the expression trees for the battery model and geometry, replacing any
parameters with their provided numerical values.

3. the geometry and discretise the model on this mesh with user-defined spatial
methods.

4. Solve the model using a time-stepping algorithm.

5. Post-processes the solution. Built-in post processing utilities provided access to
any user-defined output variables at any solution time and state. Additionally,
PyBaMM includes a number of visualizations utilities which allow for easy
plotting and comparison of any of the model variables [115].

The effectiveness of this software has been demonstrated by Schmidt et al.[111],
Chen et al. [23], Gaehring et al. [33] and in many other studies.

PyBaMM offers a complete SPMe, based on equations presented in section
2.7.7 coupled with boundary conditions, initial conditions and terminal voltage
formulation from Marquis et al [86], partially reported below.

Governing equations

Ck

∂c0s,k
∂t

= − 1

r2k

∂

∂rk

(
r2k
∂c0s,k
∂rk

)
, k ∈ {n, p} , (21)

Ceϵkγe
∂c1e,k
∂t

= −γe
∂N 1

e,k

∂x
+


iapp
Ln

, k = n,

0, k = s, k ∈ {n, s, p} ,

− iapp
Lp

, k = p,

(22)
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N 1
e,k = −ϵbkDe(1)

∂c1e,k
∂x

+



xt+iapp
γeLn

, k = n,

t+iapp
γe

, k = s, k ∈ {n, s, p} .

(1− x)t+iapp
γeLp

, k = p,

(23)

Boundary conditions

∂c0s,k
∂rk

∣∣∣∣∣
rk=0

= 0, −akγk
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∂rk

∣∣∣∣∣
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=


iapp
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, k = n,
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, k = p,
k ∈ {n, p} , (24)

N 1
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x=0

= 0, N1
e,p
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x=1

= 0, (25)

c1e,n
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, N1
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x=Ln

= N 1
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c1e,s

∣∣∣
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∣∣∣
x=1−Lp

, N1
e,s

∣∣∣
x=1−Lp

= N 1
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. (27)

Initial conditions

c0s,k(rk, 0) = ck,0, k ∈ {n, p} , (28)

c1e,k(x, 0) = 0, k ∈ {n, s, p} . (29)

Terminal voltage

V = U eq + ηr + ηc +∆ΦElec +∆ΦSolid, (30)

where
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(
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∣∣∣
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)
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(
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)
, (31)
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(
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)
− 2 sinh−1

(
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j0,nLn

)
(32)
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ηc = 2Ce(1− t+)(c−1
e,p − c−1

e,n), (33)
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ϵbs
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)
(36)

3.1.1 SPMe Generation

As expressed in section 2.7.2, the implementation of a complete SPMe requires 30
parameters: 9 for each electrode, 11 for the electrolyte and the battery temperature.
Furthermore, in order to count on a model capable of performing simulations with
different boundary conditions, PyBaMM requires numerous additional parameters.
Fortunately, the software makes available several data sets, extrapolated from
accredited literature, that can be used as starting point for an electrochemical model
build up.

Therefore, after SPMe creation, parameter set of the graphite/NMC532 pouch
cell of Mohtat et al. [95] is chosen, since it presents the same chemistry of the
HONDA CLARITY’s cell. The resultant model is capable of simulating any type of
cycle, as visible in the example presented in Figures 35 and 36. In despite of that, the
implemented SPMe does not represent yet, except for the chemistry, characteristics
and behaviour of the HONDA CLARITY’s cell.

Figure 35: PyBaMM code for SPMe creation, data set population and example of a simulation set-up.
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Figure 36: Result of the simulation example.

PyBaMM allows to replace singular parameters of the data set with values
belonging to the cell for which is intended to build a faithful model. Obviously, this
is not an easy task, especially for this thesis, in which the information about cell is
really limited. The data-set update is realized into three steps:

1. Update of the parameters available from data-sheets.

2. Update of the parameters obtained by means of direct measurements done
during a teardown procedure.

3. Update of the parameters decisive in matching cell experimental tests, by means
of an optimization algorithm.

The first step just requires the update of information contained in the data sheets
(reported in Table 2). Figure 37 shows the code for the updating procedure: each
parameter of the data set, identified by a specific name and unite of measurement, is
updated with the new value referred to the battery of interest.
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Figure 37: Data set update with cell specifications.

Since the implementation of second and third steps require detailed explanation,
they are discussed in two dedicated paragraphs.

3.1.2 Cell teardown and geometrical parameters measurement

The second step of data set update focuses on all those geometrical macroscopic
parameters the value can be measured empirically. Obviously this is not an
immediate operation, but it is required prior the cell teardown, conducted in safe and
standardize conditions. The procedure was held at Accullon Energy™’s laboratory,
Columbus, OH. The objective was to measure the following geometrical parameters
of the cell:

• Positive electrode thickness.

• Negative electrode thickness.

• Separator thickness.

• Positive electrode height / length.

• Negative electrode height / length.

• Positive electrode width.

• Negative electrode width.

In addition, it was possible to evaluate the electrodes arrangement within the case,
unknown before the teardown.

As is possible to observe from Figure 38, the cell was slightly "puffed" due to its
extraction from the module, with the consequent depressurization and delamination
of the electrodes (as previously predicted in section 2.8.3).
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Figure 38: Disassembled cell.

The equipment was composed of:

* Circular saw drill.

* Insulated screwdriver

* Insulated pliers.

* Digital micrometer (resolution 1 µm).

* Ruler (resolution 1 mm).

* Tape measure (resolution sixteenth of an inch).

* Voltmeter.

* Measurement cables.

* Cell holder.

* PC.

* Battery cycle testers.

* PPE (Personal Protection Equipment):

– Insulating rubber gloves.
– Welding face shield.
– Flame resistant coat.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 39: Extraction equipment

The procedure was composed of the following steps:

1. The cell was discharged using the battery cycle tester until 2.5V , the lowest
nominal cell voltage corresponding to SOC=0%.

2. The cell was punctured on one of its corners using the circular saw drill. In
this way it has been possible to draw the excess of electrolyte (almost 20 mL)
not absorbed by the electrodes.

(a) Excess electrolyte removal (20 mL). (b) Puncture in cell case.

Figure 40: Cell case puncture and draw of the electrolyte not absorbed by electrodes.

3. The cell was fixed on the holder to allow a safe and precise case cut. By means

65



of the saw drill, the cut was performed along the whole edge in correspondence
of the cell terminals (Figure 41a). Successively the screwdriver was used to
separate the cell "lid" from the case (Figure 41b). As can be seen from Figure
41c, during electrodes extraction from the metal case, there was an emission of
sparks. This phenomena was clearly due to the fact that, even if the cell had
been discharged up to 0% of SOC, a residual voltage was still present between
positive and negative electrode. As a consequence, the attempt to extract the
electrodes from the case caused short circuits and sparks emission. In Figure
41d is evident the wound arrangement of the electrodes and aluminum / copper
foil used as current collectors, respectively for positive and negative electrode.

(a) Case cut. (b) Cell lid opening.

(c) Sparks emission. (d) Electrodes arrangement.

Figure 41: Electrodes extraction.

4. In order to make the proper measurement, it was necessary to remove every
element that was not part of electrodes or separator (Figures 42a and 42b).

5. Using the voltmeter it was possible to measure the actual voltage of the cell.
The measured value was equal to 2.667 V (Figure 42c), even if the discharge
had been done until 2.5 V (corresponding to the condition SOC=0%). This
behaviour is appropriate since the cell underwent relaxation. Using the battery
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cycle tester, a current was drawn from the cell in order to discharge it completely
and allow safe operations. The resultant capacity (obtained multiplying the
drawn current by the time to reach 0 V) was equal to 3 Ah. It is a decent amount
of energy corresponding to more then 10% of the nominal capacity (equal to 27
Ah), that, however, cannot be used since the process would cause irreversible
cycle life reduction, capacity fade and obviously damage of the cell.

(a) Battery tabs cut. (b) Removed components. (c) Voltage measurement.

Figure 42: Stripped electrodes/separator and voltage measurement.

6. Once the cell was completely discharged, it was possible, by means of the
digital micrometer, to measure the thicknesses of the electrodes (Figures 43a
and 43b), of the separator (Figure 43c) and of the current collectors (Figures
43d and 43e). The corresponding measures are presented in Table 14.

(a) Positive electrode. (b) Negative electrode. (c) Separator. (d) Aluminum foil. (e) Copper foil.

Figure 43: Thickness measurements.

7. The width of the electrodes (Figures 44a and 44b ) was measured using a
simple ruler. The corresponding measures are presented in Table 14.
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(a) Positive electrode. (b) Negative electrode.

Figure 44: Width measurements.

8. After those measurements, the electrodes were unrolled and separated, as
visible Figure 45a. The electrodes were then spread out on the floor (Figure
45b), in order to measure their length by means of a tape measure (Figures 45c
and 45d). The corresponding measures are presented in Table 14.

(a) Electrodes unrolling. (b) Electrodes spreading.

(c) Negative electrode. (d) Positive electrode.

Figure 45: Electrodes unrolling, spreading and electrodes length measurement.
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Table 14: Measured geometrical parameters of the cell

Element measured Unit Value
Positive electrode thickness µm 142 - 146
Negative electrode thickness µm 133 - 139

Separator thickness µm 20 - 22
Aluminum current collector µm 20 -21

Copper current collector µm 18 -19
Positive electrode width mm 117
Negative electrode width mm 121

Separator width mm 127
Positive electrode length ” (m) 218 (5.537)
Negative electrode length ” (m) 226 (5.74)

Note: With caption "Positive/Negative electrode thickness" is meant the measure obtained with digital
micrometer when the objective was to measure the electrode thickness. However the thickness necessary for
the employed model is not the measured one. Actually the measure includes two layer of active material and
one layer of foil thickness. Therefore, in order to obtain the real thickness of the active layers of the model
(Figure 30), it is necessary to subtract the foil thickness from the electrode thickness values and then divide
the result by two, as the foils are double-size coated. In particular the resulting values are 62 [µm] for positive
and 58 [µm] for negative (using averaged thickness values).

With all the measurements obtained during battery teardown contained in Table
14, it is possible to update the parameter set of the electrochemical model. Figure 46
shows the code to do that, as previously done for the first step.

Figure 46: Data set update with measured parameters.

3.1.3 Parameters optimization based on cell tests

Unfortunately, most of the key parameters necessary for the implementation of a
representative electrochemical model are not provided in battery datasheets and
cannot be directly evaluated without specific micro-scale measurement tools, which
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are not available in this case. Consequently, the only way to obtain an accurate
model is through the identification and optimization of those parameters that most
significantly affect the model’s response and behavior. As imaginable, this procedure
requires experimental data (charge/discharge cycles) obtained from tests conducted
on the cell, in order to determine which model parameters have the greatest impact
and to effectively optimize them. This is undoubtedly the most challenging part of
this thesis work, as it requires the simultaneous tuning of several parameters across
different test data, with considerable uncertainty about how much each parameter
might affect the response and behavior of the SPMe.

The initial step involves testing the cells. However, as previously mentioned,
resources for cell characterization were very limited. To address this, literature with
a wealth of experimental tests was relied upon to glean essential insights on properly
characterizing a cell with minimal tests. Notably, the studies by Broatch et al. [16]
and Sangwan et al. [109] provided valuable guidance on effective cell testing to
build a representative model, whether electrochemical or equivalent circuit-based.

The tests, like the cell teardown, were conducted at Accullon Energy™’s
laboratory, on a cell still inserted in the battery module. This choice was done to
not alter the mechanical properties and avoid the "puffing" of the cell, as observed
during the teardown procedure, ensuring the record of meaningful data. Two distinct
testing procedures were employed:

1. CC-CV Charge/CC Discharge Cycles: This test involves alternating charging
and discharging cycles. The cell is charged with a constant current (CC)
until it reaches the maximum voltage specified in the datasheet. This phase
ensures a uniform and controlled charge, preventing overheating and overvoltage
conditions. Once the cell reaches the predetermined voltage, the charging
method switches to constant voltage (CV). The voltage is maintained constant,
and the current gradually decreases until it drops to a very low value, ensuring
the cell is fully charged as it allows for a complete reaction of active materials.
This is followed by a CC (Constant Current) discharge: the cell is discharged
at a constant current until it reaches its cutoff voltage (the cell’s minimum safe
voltage provided in the datasheet).
This test is straightforward in evaluating the cell’s charge and discharge
capacity, crucial for understanding the energy storage capability, which is
highly dependent on current intensity. It also provides valuable insights into
the Coulombic efficiency of the cell.
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Due to the aforementioned limited resources, the cell was not tested across all
its C-rates. Instead, considering the future field applications of this cell, the
tests were limited to middle C-rates. Specifically, all cycles were characterized
by common CC-CV charging phase, with CC performed at 0.3C until 4.2V,
followed by CV until reaching 1.4A. After a 30-minute rest period, the cell was
discharged from 100% to 0% SOC with CC discharge ranging from 0.1C to
1.5C, to explore the entire capacity spectrum. All the cycles were performed at
room temperature (25°C).

2. GITT (Galvanostatic Intermittent Titration Technique): In this test, the
cell is subjected to a series of current pulses (either charge or discharge) of a
defined duration. Between each pulse, the cell is allowed to rest, during which
no current is applied, enabling the cell to reach equilibrium.
This test is particularly effective for evaluating various aspects, including
diffusion and kinetic dynamics. It also provides important information on
the cell’s behavior under different temperature conditions by assessing the
equilibrium potential, which is related to the thermodynamics of the cell
reactions.
Specifically, the GITT performed in the laboratory consisted of 80 discharge
pulses, each at 1.5C for 31 seconds, followed by 5 minutes of rest. These tests
were conducted at room temperature and at 45°C. Due to limited resources, the
latter test is the only one performed in a high-temperature environment, serving
as the sole reference for the cell’s behavior dependency on temperature.

After testing the cell, it is necessary to identify the parameters that most
significantly affect the model behaviour. Initially, specific studies focusing on
parameter sensitivity analysis are accurately reviewed. Weihan Li et al. [80] present
a comprehensive sensitivity analysis of the parameters mostly impacting on the
electrochemical model response of a NMC lithium-ion cell. The results, shown in
Figure 47, allow for the creation of a preliminary set of candidate parameters for the
optimization process.
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Figure 47: Ranking of the normalized parameter sensitivity for terminal voltage [80].

It is crucial to determine whether these results are also key factors for the model
central to this study. Consequently, charging and discharging experiments are
simulated in PyBaMM, during which a broad set of parameters (including those
selected by Weihan et al.) are individually varied over a wide range of values.
Clearly, all the geometrical parameters measured and previously used to update the
model are not modified. It is evident which parameters require optimization due to
their significant impact on the model response and which could remain unchanged.
Parameters with minimal or no impact retained their initial values from the data
set of Mohtat et al., thereby saving computational time by focusing only on the key
values.

The key model parameters for which is require optimization are:

• Electrodes active volume fraction.

• Electrodes porosity.

• Electrodes particle radius.

• Electrodes diffusion coefficient.

• Electrodes maximum ion concentration.

• Initial electrolyte concentration.
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At this point, the next step is the optimization of the parameters. PyBOP,
an innovative open-source package for the parameterization and optimization of
battery models, with a particular focus on classes built around PyBaMM models
and structures, can effectively serve this purpose.

PyBOP presents different optimization algorithms that operate on the same
principle: starting from an initial guess of the value of one or more model parameters,
the algorithm explores the values within a determined interval to minimize the
objective function calculated as the difference between simulated and experimental
data. Choosing an optimization algorithm capable of providing the best results is
crucial. Consequently, a preliminary optimization process is performed with each
algorithm to evaluate their performance in optimizing the parameter values for the
intended model, using the available experimental curve as a reference.

For this preliminary optimization, a discharge curve performed at 0.1C is chosen
as reference experimental data. The parameters optimized in the process are the
electrodes’ active volume fraction, with the objective function evaluated as voltage
difference between experimental and simulated data.

The results are presented in Figures 48 and 49. As shown, the "SCiPyMinimize"
method provides the best result in matching the experimental data, minimizing
the voltage difference between experimental and simulated data and demonstrating
effective convergence of the results to optimal values. Consequently, it is chosen as
the optimization method for tuning the model parameters.

Beyond choosing the best optimization algorithm, there remains an open point
that requires investigation. The "ingredients" for a correct optimization procedure
are good experimental data, an initial guess of the values, and the range within
which to vary the parameter values. The experimental data are available, as well as
the initial guess values from the starting literature data set. For the last point, that
instead is missing, the study by Weihan et al. [80] is again used as a reference, since
it collects the range of values for the parameters intended to optimize. The results,
presented in Table 15, are used as a reference for the optimization algorithm.
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(a) AdamW Method. (b) iRprop- Method.

(c) CMA-ES Method. (d) PSO Method.

(e) Nelder-Mead Method. (f) SciPyMinimize Method.

Figure 48: Results of preliminary optimization.
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(a) AdamW method. (b) iRprop- method.

(c) CMA-ES Method. (d) PSO Method.

(e) Nelder-Mead Method. (f) SciPyMinimize Method.

Figure 49: Objective function cost landscape of preliminary optimization.
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Table 15: Range of optimization for the parameter values [80].

Parameter Unit Description Boundaries
ϵ+s - Cathode active material volume fraction 0.35 - 0.5
ϵ−s - Anode active material volume fraction 0.4 - 0.7
ϕ+
s - Cathode porosity 0.3 - 0.5

ϕ−
s - Anode porosity 0.3 - 0.8

R+
p µm Cathode particle radius 1 - 11

R−
p µm Anode particle radius 1 - 11

D+
s m2s−1 Cathode solid diffusion coefficient 1 · 10−14 - 1 · 10−13

D−
s m2s−1 Anode solid diffusion coefficient 1 · 10−14 - 1 · 10−13

c+s,max molm−3 Cathode maximum ion concentration 2.8 · 104 - 5.2 · 104
c−s,max molm−3 Anode maximum ion concentration 2 · 104 - 3.3 · 104
c+e,0 molm−3 Initial electrolyte concentration 1 · 104 - 1.2 · 104

The optimization process, while seemingly straightforward, is more complex
than simply providing experimental data, parameters to optimize, and their initial
guesses and ranges. First of all, not all parameters can be optimized simultaneously,
as doing so can significantly prolong the process. Optimizing more than three or four
parameters at once can cause the algorithm to run for hours without guaranteeing an
optimal result. Therefore, a step-by-step approach is necessary, carefully selecting
which parameters to optimize together, the sequence of optimization, and the
specific experimental data used for each step. Furthermore, even as the optimization
process progresses and the data set is updated with optimized parameters, there
is no assurance that the model’s fidelity will improve; in some cases, it may even
degrade.

Consequently, the process of optimization can be defined as an iterative multi-
stage algorithm with conditional verification and rollback. In particular:

1. Block-wise iterative optimization: the data set of 10 parameters is divided into
blocks of one or two parameters at time. In each stage, one block is optimized
by means of SciPyMinimize.

2. Quality verification: after optimizing each block of parameters, it is verified
whether the overall system quality has improved according to the voltage
difference between simulation and experimental data.

3. Conditional rollback: if the quality has not improved, it is performed a rollback,
i.e., it is repeated the optimization (this time an empirical process consisting
of varying the optimized parameters in a small range) for the previous blocks,
trying to achieve an improvement.
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4. Repetition: The optimization process is repeated for the subsequent blocks,
always with the possibility of going back if the quality does not meet the desired
criteria.

This approach combines sequential optimization with control and correction
mechanisms, ensuring that each step forward in the optimization process does not
compromise the overall system quality.

Delving deeper into the optimization process, the initial focus is on parameters
related to capacity, such as the volume fraction of electrodes, porosity, and initial
concentration in the electrolyte. These parameters are primarily optimized using CC-
CV charge/discharge curves, which provide a straightforward approach compared
to GITT. Following this, the particle radius and maximum concentrations of the
electrodes are optimized. This step references both CC-CV charge/discharge curves
and GITT to ensure a comprehensive fit. Lastly, transport parameters, including the
diffusivity, are optimized with particular emphasis on GITT, due to its sensitivity in
detecting transport-related properties.

Figure 50 shows the code for updating the model data set with final optimized
parameters values.

Figure 50: Data set update with optimized parameters.

3.2 Heat production within the cell

After developing an accurate cell model that effectively represents the cell’s behavior
during charging, discharging, and resting, it becomes essential to evaluate the heat
generated under these conditions. PyBaMM offers several thermal sub-models. At
present, it includes an isothermal and a lumped thermal model, both of which can
be used with any cell geometry, as well as a 1D thermal model which accounts for
the through-cell variation in temperature in a pouch cell, and “1+1D” and “2+1D”
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pouch cell models which assumed the temperature is uniform through the thickness
of the pouch, but accounts for variations in temperature in the remaining dimensions.

Since the cell is be modelled as unique heat power source, it is chosen to use the
lumped model, that solves the differential equation for the average temperature. In
particular, the sub-model equations, taken from the study of Timms et al. [120], are
reported below:

ρeff
∂T

∂t
= Q− hA

V
(T − T∞) (37)

where ρeff is effective volumetric heat capacity, T is the temperature, t is time, Q is
the averaged heat source term, h is the heat transfer coefficient, A is the surface area
(available for cooling), V is the cell volume, and T∞ is the ambient temperature.
An initial temperature T0 must be prescribed.

The effective volumetric heat capacity is computed as:

ρeff =

∑
k ρkcp,kLk∑

k Lk
(38)

where ρk is the density, ck,p is the specific heat, and Lk is the thickness of each
component. The subscript k ∈ {cn, n, s, p, cp} is used to refer to the components
negative current collector, negative electrode, separator, positive electrode, and
positive current collector.

The heat source term is evaluated following what expressed in section 2.2 by
Bernardi et al. [12] and accounting for Ohmic heating QOhm,k due to resistance in
the solid and electrolyte, irreverisble heatingQrxn,k due to electrochemical reactions,
and reversible heating Qrev,k due to entropic changes in the the electrode :

Q = QOhm,k +Qrxn,k +Qrev,k (39)

with

QOhm,k = −ik∆ϕk, Qrxn,k = akjkηk, Qrev,k = akjkTk
∂U

∂T

∣∣
T=T∞

. (40)

Here ik is the current, ϕk the potential, ak the surface area to volume ratio, jk the
interfacial current density, ηk the overpotential, and U the open-circuit potential.
The averaged heat source term Q is computed by taking the volume-average of Q.

The relevant parameters to specify the cooling conditions are:

78



1. “Total heat transfer coefficient [Wm−2K−1]”

2. “Cell cooling surface area [m2]”

3. “Cell volume [m3]”

which correspond directly to the parameters h, A and V in the governing equation.

Figure 51: PyBaMM code for SPMe with lumped thermal sub-model creation, data set population and example
of a simulation set-up.
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Figure 52: Result of the simulation example.

Figure 52 shows the output of the thermal sub-model for an illustrative example
(set up in Figure 51). Beyond voltage and current, the model elaborates, for the
given cooling condition expressed by heat transfer coefficient and cooling surface,
the resultant temperature evolution and volume-average total heating. This last
output is crucial for the implementation of the complete model, since it allows the
modelling of the cell as unique absolute power source. However not all the cell
volume produces heat, consequently it is necessary to evaluate the volume fraction
of the cell effectively involved in the production. This passage will be explained in
detail in the model validation, section 4.2.

With a model of this type, capable of applying cooling conditions to calculate
cell temperature, implementing a CAD model followed by thermal simulation in
specialized software may seem redundant. However, the presented sub-model
can only function correctly for a single cell with uniform cooling. Evaluating
temperature distribution and heat dissipation in a more complex system, such as the
module central to this project, is impractical with this approach. Therefore, it is
evident that creating a CAD model of the module itself is necessary. This CAD
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model can then be subjected to thermal simulations to assess the module’s response
to varying heat production and cooling conditions under different scenarios.

3.3 CAD Development

The reproduction of the battery module is carried out in the Onshape® environment,
an open-source software that allows ease CAD implementation and offers high
compatibility with the software intended for thermal simulations. The entire module
design, particularly the cell and its components, is developed with a focus on
feasibility and ability to implement it in thermal simulation environment.

The cell, depicted in Figure 53, is modeled based on the dimensions provided
in Table 2 and measurements obtained during the teardown procedure, as reported
in Table 14. As evident, if compared to Figure 7a, the cell has undergone several
simplifications: a highly detailed CAD model would result in an excessive number
of meshes, leading to significantly increased computational time for thermal
simulations.

A highly effective, CAD modeling approach was employed by Kleiner et al.
[76], yielding successful results in the final thermal simulation. This study adopts
a similar methodology while also incorporating the electrolyte, which was not
included in Kleiner’s research. The specific modeling choices are as follows:

• Electrodes and separator are modeled as a single "jelly roll" body, which serves
as the sole heat power source in the thermal simulation.

• Both positive and negative current collectors/tabs are modeled as bodies
attached to the jelly roll, simulating the real configuration within the cell.
This ensures direct contact between the elements, facilitating efficient heat
conduction.

• The remaining space within the case, not occupied by the jelly roll and current
collectors, is filled with a volume of electrolyte equivalent to the quantity
extracted during the teardown, amounting to 20 mL.
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Figure 53: CAD Model of the cell.

The complete battery module, illustrated in Figure 54, is designed based on
dimensions empirically derived from the actual module. The CAD model of the
cell strikes a balance between fidelity and computational efficiency for thermal
simulations. The module is developed with the following considerations:

• The module’s core consists of 12 cells.

• Lateral supports and frontal plates serve as the structural components. These
components are closely modeled after the real ones, with some non-thermal-
relevant details simplified.
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(a) Exploded view.

(b) Module size.

Figure 54: CAD Model of the module.

• Depending on the second-life scenario and heat generation, the module may
require different cooling systems. Among the presented alternatives in section
2.3, both natural/forced convection and indirect liquid cooling represent viable
solutions due to their ease of design and simulation. In contrast, direct liquid
and PCM cooling would be effort-intensive to design and overly complex for
second-life scenarios. Additionally, the performance of the second system is
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significantly inferior compared to indirect cooling, that has the drawback of
energy requirement for the refrigerant pump; however, this is a minor issue for
typical second-life applications.
When discussing the implementation of the selected systems in thermal simula-
tions, air cooling can be simulated directly within the simulation environment,
even with forced convection, without the need for additional components.
Liquid cooling, on the other hand, requires a different approach. The module
used in this study lacks the water jacket originally employed for vehicle cooling.
Moreover, the previous water cooling system was optimized for the vehicle’s
specific requirements and available spaces. Therefore, a new serpentine cooling
plate is designed for this module (Figure 55). The effectiveness of this design
has been validated by Jaffal et al. [70], Sun et al. [116], and numerous other
studies, highlighting its simplicity, effective cooling capabilities, and reduced
pressure drops.

(a) Plate size.

(b) Plate matching with module bottom.

Figure 55: Serpentine cooling plate.

In Table 16 are summarized material and thermal properties of each component
of the module, crucial for thermal simulation.
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Table 16: Material and properties of module and cell components.

Component Material ρ Cp λ[
kg
m3

] [
J

kgK

] [
W
mK

]
Case Aluminum 2700 900 238

Wet jelly roll [76] Graphite/NMC/ 2043 1371 in-plane 33
Polyethylene cross-plane 0.7

Electrolyte LiPF6 in EC/EMC/DEC 1250 1850 —
Pos. current coll. Aluminum 2700 900 238
Neg. current coll. Copper 8700 385 400

Pos. tab Aluminum 2700 900 238
Neg. tab Copper 8700 385 400

Lateral support Aluminum 2700 900 238
Frontal plate Aluminum 2700 900 238
Cooling plate Aluminum 2700 900 238

3.4 Thermal simulation

After evaluating the heat produced by the cells and developing the CAD model of
the battery module, all necessary elements are in place to advance to the thermal
simulation phase. For this purpose, SimScale [56], a cloud-based simulation
platform, is selected. This software seamlessly integrates everything required for
an end-to-end engineering thermodynamic simulation workflow. Various types of
thermodynamic analysis are offered by SimScale. For this study, the "Conjugate
Heat Transfer (IBM)" analysis [57] is chosen due to its robustness in simulating
flow and heat transfer in complex CAD assemblies.

This method solves the same physics as Conjugate Heat Transfer v2.0 but
immerses the CAD parts in a Cartesian background grid using the Immersed
Boundary Method (IBM). This approach avoids the need to precisely resolve all
parts during meshing (body-fitted), making it resilient to irrelevant details that do
not significantly impact the overall thermal behavior. Common applications of
this analysis type include the simulation of heat exchangers, cooling of electronic
equipment, and general-purpose cooling and heating systems.

SimScale provides a user-friendly step-by-step procedure to set up a conjugate
heat transfer (IBM) simulation within the platform. The procedure is described in
the following points:
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1. Import and edit the geometry in CAD mode. When performing a Conjugate
Heat Transfer (IBM) analysis, CAD simplification is unnecessary because the
simulation is resolved in a Cartesian background, avoiding the need to precisely
resolve all parts during meshing. Consequently, since the CAD model does not
inherently contain the fluid volume, the only task required in this step is the
creation of internal flow volumes. This involves creating two different volumes
(shown in Figure 56): the first volume fills the interior of the case’s cell with
the electrolyte, while the second volume (implemented only in simulations
with liquid cooling) fills the serpentine of the cooling plate with coolant (blend
of water and glycol).

(a) Electrolyte within cell’s case. (b) Coolant within the serpentine cooling plate.

Figure 56: Module’s internal flow volumes.

2. Global setting. The software enables different features that can be chosen
based on application necessities, as shown in 57. In this study, "External flow",
"Compressible", "Radiation", "Relative Humidity", and "Joule Heating" are
not toggled because their contribution is negligible or not of interest. For the
option "Turbulence model", it is selected the k-omega SST solver [58], an
in-house version of the widely accepted industry standard turbulence models.
For "Time dependency", "Transient" is chosen. This choice is made because
it is important to observe not only the convergence of the results but also the
step-by-step temperature evolution, particularly in the validation phase.
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Figure 57: Simulation global settings.

3. Model. In this section, the direction and magnitude of gravity are defined. For
thermal analysis, it is essential to consider gravity because buoyancy affects the
temperature distribution within a fluid. Therefore, a gravitational acceleration
of −9.81m/s2 is applied along the z-axis in each simulation, as shown in Figure

58.

Figure 58: Model gravity.

4. Materials. It is crucial to assign specific materials to each element of
the geometry to ensure the simulation functions correctly. The software
distinguishes between "Fluids" and "Solids" categories. "Fluids" encompass
the internal flow volumes, including the water-glycol mixture circulating
through the cooling plate and the electrolyte, whose properties are detailed
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in Table 16. "Solids" refers to all other elements, with their corresponding
material properties outlined in Table 16 as well.

5. Initial Conditions. This section requires specifying the initial parameters
for the simulation, including "(P) Modified gauge pressure, "(U) Velocity",
"(T) Temperature", "(k) Turbulent kinetic energy" and "(ω) Specific dissipation
rate". For this simulation, only the temperature needs adjustment and is be set
appropriately based on the application. In particular, this feature enables also
the setting up of different values assigned to the diverse module subdomains, a
very useful option in case the initial temperature of the module components
are different.

6. Boundary conditions. Boundary conditions are essential for closing the
problem at hand by defining the system’s interaction with its environment.
In this study, two specific boundary conditions are of interest. The first is
the "Wall" boundary condition, shown in Figure 59a, which is employed
to simulate natural convection scenarios in both validation and second-life
application simulations. This condition is applied to all faces exposed to
air. The "Heat transfer coefficient" is adjusted based on the convection level:
values around 10 W/Km2 indicate normal convection, lower values suggest
limited convection (as applied in the thermal test on the module), and higher
values signify increased air agitation, potentially indicating forced convection
(as might occur in the second-life application simulation). The external air
temperature can also be adjusted according to the specific situation.
The second boundary condition of interest is the "Velocity inlet/outlet", shown
in Figure 59b. This condition can be used to characterize the coolant flow
within the serpentine, specifying both the flow rate and the temperature of the
coolant.

7. Power Source. Among all the "Advanced Concepts" available for this type
of analysis, this study requires a heat power source. Specifically, the jelly
roll of each cell is selected as an "Absolute Power Source" (as also employed
by Kleiner et al. [76]). This implies that each element generates the heat
power specified under "Power Source Value", as shown in Figure 60. This
parameter can accept a CSV file input detailing the heat produced over time.
Consequently, this parameter serves as the interface between the thermal model
and the thermal simulation, as the heat estimated by the sub-thermal model in
PyBaMM is used as input for the thermal simulation.
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(a) Walls boundary condition. (b) Coolant boundary condition.

Figure 59: Simulation boundary conditions.

Figure 60: Power sources selection.

8. Numeric and Simulation control. "Numerical" settings play an important
role in the simulation configuration. They define how to solve the equations by
applying proper discretization schemes and solvers to the equations. They help
enhance the stability and robustness of the simulation. Although all numerical
settings are made available for users to have full control over, the sofware
advises to keep them default unless necessary. Consequently, since there are
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not specific requirements for the simulation, the setting are kept untouched.
The "Simulation Control" settings define the general controls over the simula-
tion. In these settings the number of iterations, simulation interval, time-step
size, and several other variables are set. The time-step independence will not be
investigated in the simulations, due to reduced time and available computational
hours.

9. Result control. The "Result Control" section enables users to specify additional
outputs for simulation results. This section manages the details of result outputs,
including write frequency, storage location, and statistical parameters of the
data. For these simulations, the primary output of interest is the temperature
evolution. Consequently, it is monitored throughout the simulation duration
by means of the "Area Average" function, which calculates the average of the
scalar result variable over an assigned face. This approximates the temperature
evolution of each face of the cell to an unique value. This is a quite reasonable
approximation, since the interest of this research is to evaluate the overall
thermal performance of the cell/module, not in the temperature gradient of
the individual components. Therefore, these metrics are used to validate the
model and assess the performance of the battery pack in second-life application
simulations.

10. Mesh. Meshing is the process of discretization of the simulation domain.
That means a large domain is split up into multiple smaller domains and
solve equations for them. The Immersed Boundary simulations are based
on Cartesian meshes. These do not resolve every part separately as in a
body-fitted meshing approach but refine the cartesian grid towards geometrical
and topological details and immerse the geometry into it. The above-discussed
meshing approach has some strong advantages:

• Very flexible mesh sizing from very coarse to very fine for all levels of
CAD complexity.

• Automatic defeaturing of small geometrical details.
• Perfect hexahedral mesh.

Among the three different available methods to define the mesh size, it is
chosen the automatic setting that allows to quickly set up mesh by choosing
a level of fineness. The range goes from 0 Coarse to 10 fine, with a high
number resulting in a finer mesh. The chosen values is 2, as shown in Figure
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61 and selected in the application "Cooling of an Electronic Sink" [59], used
as reference example.

Figure 61: Mesh settings.

3.5 Models coupling

In a previous section, it is explained that the heat produced by a cell, and consequently
its internal resistance, depends on SOC, C-rate, and temperature. While the first two
parameters are stand alone in the heat production evaluation of the electrochemical
model, temperature is not. The relationship between temperature and heat produced
highlights a crucial aspect: the interdependence between the electrochemical and
thermal models. The thermal model requires the heat produced by the cell as an
input, yet this value is determined by the electrochemical sub-model that considers
the cell temperature. This temperature, however, is a result of the thermal model’s
simulation and is heavily influenced by the specific cooling conditions, which vary
depending on the application. Given this, it is essential to integrate the two models
to ensure they function effectively together, thereby providing the faithful possible
outcome.

In section 3.2, the functionality of the thermal sub-model of PyBaMM is
described, emphasizing its capability to operate as a standalone thermal model
that evaluates temperature only at the cell level across various but uniform cooling
scenarios. This is achieved through the parameter "Total heat transfer coefficient",
which simulates different cooling intensities. While this parameter has limited
usage potential, it can serve as a link between the two models, enabling coupling.
Assigning values close to infinity in fact, it allows the cell to instantly adopt the
ambient temperature. Unlike the cell temperature, which is calculated by the
sub-model, this parameter can be provided as an input.

This establishes the coupling between the electrochemical and thermal models:
given a specific duty cycle and starting from an initial temperature, the PyBaMM
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Figure 62: Coupling between electrochemical and thermal models.

model computes the cell’s heat production. This heat production is then used
as input for the thermal model/simulation, which, given the boundary conditions
characteristic of the scenario (validation or second life application), evaluates the cell
temperature continuously throughout the simulation. The resulting cell temperature
is fed back into the electrochemical model as the ambient temperature. Due to the
near-infinite heat transfer coefficient, this is also be the cell’s temperature. The
model then recalculates the heat produced for the same duty cycle, now with updated
cell temperature values. The new evaluated heat is again provided as input to the
thermal model, creating a feedback loop between the two models.

The iteration loop is stopped when the temperature evolution difference between
one thermal simulation and the successive is below a tenth of a percentage point.

3.6 Module thermal test

The coupled electrochemical/thermal model delineated thus far necessitates thermal
experimental data for optimization and validation. These experiments must be
conducted at the module level to ensure the data aligns with the CAD model and
thermal simulations.

As with the teardown and cell cycles, this test was conducted at Accullon
Energy™’s laboratory in Columbus, OH.
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The premise of this experimental test is straightforward: the module undergoes a
complete discharge cycle from 100% to nearly 0% SOC at 30A. Beyond the voltage
record of the individual cells, that is added as further validation of the battery model
together with dedicated experiment previously conducted, the primary objective of
this test is to monitor heat generation during the discharge cycle and the resultant
temperature evolution of the cells.

The test is conducted with the module at two distinct initial temperatures:
24°C and high temperature (ranging from 44°C to 48°C depending to the module
components), which, as discussed in the subsequent section, represents the reference
temperatures for second-life applications.

The experiment set-up is shown in Figure 63. The module is placed in an
adiabatic styrofoam chamber maintained at 23°C for both tests. This chamber is
employed to ensure the module remains in a controlled environment with a nearly
constant temperature and limited heat exchange.

Sixteen thermistors are utilized to monitor the temperature evolution of the
cells/module with a resolution of 1 °C. The record is done not only during the
discharge from 100% to 0% SOC of the module, but also in the rest/cooling period.
This latter record will be fundamental to choose the proper heat transfer coefficient
within the adiabatic chamber, allowing also the successive estimation of the cell
volume fraction producing heat.

Table 17 details thermistor’s placement on the module, partially shown in Figure
64. The focus is primarily on the cell located in the middle of the module, which is
subject to the least heat exchange.
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Figure 63: Module within adiabatic styrofoam chamber.

Consequently, seven thermistors are placed: three on the top of this cell (one
for each terminal and one corresponding to the vent), one on each side along the
module length, and two at the bottom to verify temperature uniformity in that area.
This higher number of thermistors is used both for redundancy and to evaluate
temperature differences in various areas of the same cell. As imaginable, it is
not feasible to place thermistors on the other side of the cell due to their stacked
configuration.

Additionally, two thermistors are placed at the bottom of the cell in contact with
the front plate (theoretically subject to more heat exchange) and two at the bottom
of the cell positioned between the aforementioned cells. These measurements
facilitates a comparison of the temperature evolution of cells exposed to different
heat transfer coefficients.

The remaining thermistors are placed on the module terminals (despite not being
modeled in the CAD and thus not implemented in the thermal simulation) and in
the styrofoam chamber.
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Table 17: Thermistors position.

Thermistor Position Thermistor Position
1 Cell 6 Bottom 9 Cell 6 Vent
2 Cell 6 Bottom 10 Cell 6 Side (Neg. Term.)
3 Cell 9 Bottom 11 Module Pos. Term.
4 Cell 9 Bottom 12 Module Neg. Term.
5 Cell 12 Bottom 13 Cell 6 Side (Pos. Term.)
6 Cell 12 Bottom 14 Chamber Top
7 Cell 6 Pos. Term. 15 Chamber Bottom
8 Cell 6 Neg. Term. 16 Ambient Temperature

Note: The cell numbering corresponds to their positions within the module. Cell number 6 is located at the
centre of the module, cell number 12 is adjacent to the frontal plate, and cell number 9 is situated in between.

The experimental test enables a comprehensive validation of the coupled elec-
trochemical/thermal model. With this final element, the modeling related to the
cell/module is complete. Consequently, the next step is the evaluation of the most
suitable second-life scenarios for the battery, followed by corresponding simulations
and application assessments.
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(a) Top view.

(b) Bottom view.

(c) Side view.

Figure 64: Thermistors set-up on the module.
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3.7 Second life applications

As discussed in section 2.8.5, SLBs are viable for a wide range of applications.
However, it would be impractical to investigate performance and thermal suitability
of the HONDA CLARITY module in every potential second-life scenario. Michelini
et al. [93] reviewed the majority of available opportunities for lithium-ion batteries
post-first life usage, selecting eight promising applications. These were chosen based
on their relevance in the scientific literature and feedback from expert interviews.
The applications were then graded on a scale from zero to eight based on charging
and discharging rates, required capacity, temperature range, and degree of mobility,
with higher marks assigned to applications that better preserve the battery’s life
during its second usage.

While this study provides valuable insights, it does not solely determine the
selection of second-life applications for testing the module. Indeed, the target of this
part is to select applications that ensure battery longevity and good performance, but
also to demonstrate that, with proper design, appropriate boundary conditions, and
effective cooling strategies, the module can perform excellently in various scenarios,
including the most challenging ones.

Consequently, the chosen applications are:

• Renewable solar firming: rated 7, for renewable energy storage purposes.

• ESSs for domestic PV: rated 7, for residential energy storage purposes.

• Electric forklifts: rated 5, for industrial purposes. Despite its lower grade com-
pared to other applications, it is included to test the module in a more demanding
scenario, due to the mobility feature and higher discharge requirements.

Each application will undergo a thorough analysis of its operational characteristics,
utilizing a representative duty cycle selected from established literature. This step
will be crucial for gaining insights into the actual performance demands placed on
the battery. Understanding these demands will enable the determination of number
and configuration of modules required for the new battery pack. Additionally,
estimations of the maximum discharge rate, capacity, and volume and weight
requirements, where applicable, will be made.

Furthermore, the boundary conditions of each application will be examined, with
particular attention to the operating temperature and potential cooling strategies.
These strategies will be guided by the forecast heat production under the selected
duty cycles. This comprehensive analysis, followed by the design of the battery
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pack and its cooling system, will be essential for meeting the requirements of each
application while respecting the thermal characteristics of the battery.

3.7.1 Renewable solar firming

Functioning
The goal of renewable solar firming is to maintain a stable power output by
compensating for fluctuations in renewable energy generation. This mechanism is
realized by ESSs by discharging power during periods of insufficient renewable
generation and absorbing power when generation surpasses a certain threshold.
The threshold is usually determined based on the forecasted nominal renewable
power generation for the given period. This process typically spans multiple hours
to ensure a steady power supply. Thus, the ESS addresses the forecast uncertainty
in actual renewable generation during this time frame.

A critical distinction between PV firming and PV smoothing is the duration over
which the ESS operates. PV smoothing aims to limit the ramp rate of power output
and mitigate negative impacts on the grid caused by the variability of PV power
output. This involves applying ESS power over short intervals, ranging from one
second to one minute. In contrast, PV firming focuses on stabilizing power output
over longer durations, ranging from 15 minutes to several hours. The objective
of PV firming is to create a composite power output that more closely resembles
a consistent block of energy with desired upward slopes, magnitudes, downward
slopes, and total duration, as specified by the grid operator [112].

Figure 65: PV plant with its ESSs [44].
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Reference duty cycle
The duty cycle for this application is a charge / discharge profile that represents
the demands placed on the ESS in order to firm PV power output. The cycle was
realized by Schoenwald et Ellison [112] to accurately measure and express the
performance of ESS in solar firming application. The data used for such study were
taken from the Public Service Company of New Mexico’s Prosperity Electricity
Storage Project ("PNM Prosperity") [38]. PNM Prosperity consisted of 500 kW/350
kWh batteries, integrated with a 500 kW solar photovoltaic resource. The resultant
duty cycle, presented in Figure 66 represents a challenging and yet realistic signal.
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Figure 66: Duty cycle signal for renewables solar firming application [112].

Operating conditions

The plant’s capacity requirements are equal to 350 kWh. Therefore, the ESS would
necessitate 294 HONDA CLARITY’s modules. Each cell will have a maximum
power request of 142W, with a maximum discharge rate of 0.4C. The architecture
of the "PNM Prosperity" operates at 1000V, leading to an ESS configuration of 21
modules in series and 14 modules in parallel (21S14P).

Given that large photovoltaic installations are typically located in very sunny and
hot environments, it is reasonable to expect the same conditions for the ESS used
for firming. For this application, a surrounding temperature of 45°C is assumed.
Considering the discharge rates, which do not exceed 0.4C, both natural and forced
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air cooling could serve as effective and safe cooling strategies.
For this application there are no requirements regarding weight and volume.

3.7.2 ESS for PV domestic application

Functioning
ESSs are essential in residential PV production systems, significantly enhancing
energy flexibility, efficiency, and reliability. SLBs can be employed in this scenario
for peak shaving, by storing excess energy generated during high production hours
for use during low production or high demand periods, and load shifting, by storing
energy during off-peak hours when electricity rates are lower and discharging it
during peak hours. This maximizes self-consumption of renewable energy, reducing
carbon footprint of the energy production sector and increasing household energy
autonomy. Additionally, ESSs can easily provide a backup power supply during
grid outages, ensuring the operation of critical appliances and systems, thereby
enhancing energy security.

Figure 67: PV and ESS in a residential application [55].

Reference duty cycle
The high flexibility and wide range of operating conditions of an ESS makes
challenging the identification of an unique, representative and unambiguous duty
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cycle. For this reason, it is decided to test the battery module in a challenging
operating scenario: a day in which the autonomous PV production system, coupled
with the ESS, provides most of the energy required by all the domestic devices.

Hou et al. [41] collected important data in this field. Figure 68 shows PV
generation data of a single residence during a sunny summer day. Thanks to a smart
home energy management method, it is possible to optimize scheduling plan of
domestic appliances. Figure 69 shows that domestic appliances complete their tasks
in the corresponding operation time slots, and non-interruptible appliances also
guarantee the operation continuity. Most appliances operate when the PV output is
high. In addition, PV generation is used to meet the consumption of appliances, and
then to provide charging energy for ESS. With this method of optimization, it is
provided not only a reasonable and economical work plan for domestic appliances,
but also maximized RES and ESS utilization. The resultant duty cycle of the ESS is
reported in Figure 70.

Figure 68: PV generation in summer [41].
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Figure 69: Scheduling plan for domestic appliances [41].
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Figure 70: Hypothetical charging and discharging power of ESS under optimal scheduling.

Operating conditions
The required capacity of a domestic ESS is primarily determined by the maximum
installed power of the photovoltaic system. It would be worthless to have an excess
energy storage capacity if the PV system’s power is insufficient to charge it fully. In
this case, the installed power is 8.5 kW. For dimensioning the ESS, the ECS2900-H4
model from FOX ESS [49], a leading ESS manufacturer, is selected. With an
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appropriate number and configuration, the HONDA CLARITY’s modules align well
with this model and meet all application requirements. Specifically, the necessary
architecture comprises ten modules arranged in a 5S2P configuration. This setup
results in a total capacity of 12 kWh with a maximum discharge rate of 0.3C.

ESSs can be installed either outdoors or indoors. However, in most cases, in
order to protect it from adverse weather conditions, it is typically placed indoors.
Therefore, for this application, a constant ambient temperature of 25°C, akin with
a domestic environment during summer, is be assumed. Additionally, given the
maximum discharge rate of 0.3C and the forecast low heat production, natural
convection should be sufficient to ensure proper thermal management and safe
operating conditions.

Since this is a stationary application, weight is not a significant consideration.
Generally, volume is not a primary concern either, but since the installation is
indoors, it is roughly considered in this study. The ECS2900-H4 model occupies a
volume of 0.13 m3. In comparison, using 10 modules of the HONDA CLARITY,
with size shown in Figure 54, the total occupied volume would be less than half of
that, amounting to 0.06 m3.

3.7.3 Electric forklift

Functioning
Electric forklifts have become essential machinery in modern industrial operations,
valued for their efficiency, versatility, and environmental benefits. Powered by
advanced battery systems, these forklifts offer a clean and quiet alternative to
traditional internal combustion engine models. Their superior energy efficiency
is evident through enhanced energy conversion rates and the ability to recover
energy during braking phases, which would otherwise be wasted in conventional
forklifts. Electric models are particularly well-suited for indoor environments such
as warehouses, manufacturing plants, and distribution centers due to their lack of
pollutant emissions and reduced noise levels.

Advancements in battery technology have significantly increased the diffusion of
electric forklift, by means of extended operational hours, enabled rapid charging,
and improved overall performance. These developments make electric forklifts a
reliable and sustainable choice, even in demanding applications such as material
handling and logistics, where they previously faced challenges.
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Figure 71: Electric forklift [62].

Reference duty cycle
Vadlamudi et al. [121] synthesized a duty cycle for an electric forklift with a driving
motor of 10 kW and lifting motor of 12 kW. The duty cycle, reported in Figure 72,
represents a classical operation of a forklift, characterized by the motors activation,
load approach, lift, transport and release, followed by a new movement towards
another load.
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Figure 72: Total power drawn from storage system during an hypothetical forklift’s duty cycle [121].
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Operating conditions
The required capacity for the battery pack of an electric forklift is determined by the
power demands of the driving and lifting motors. Therefore, the Toyota TRAIGO48
1.5t [61], which matches the performance of the forklift used in the duty cycle,
is chosen as a reference for dimensioning. This model uses a 48V architecture,
analogous to the HONDA CLARITY module, and requires a capacity of 440Ah.
Consequently, the battery pack configuration will be 1S16P, resulting in a total
capacity of 19.2 kWh with a maximum discharge rate of 1C.

Small-sized electric forklifts, like those considered in this application, typically
operate indoors where the temperature is around 25°C. The battery pack is usually
housed in a bay under the operator’s seat, where air convection may be insufficient to
provide proper cooling. Given the maximum discharge rate of 1C and the anticipated
higher heat production compared to previous applications, a liquid cooling system
be employed. To test under challenging conditions, bottom cooling is the sole
method used, simulating an adiabatic environment within the battery enclosure.

Unlike the previous stationary applications, this mobile application imposes
constraints on both weight and volume. The TRAIGO48 is again the reference for
these requirements. The available volume in the battery bay is 0.15 m 3. Sixteen
modules of the HONDA CLARITY, accounting for their size and the space needed
for the cooling system and cabling, occupies 0.12 m 3. Therefore this requirement is
completely fulfilled. The weight of the battery pack is crucial for maintaining a low
center of gravity, ensuring safe lifting and movement of loads. Therefore, there is a
minimum weight requirement for the pack but no maximum. In the Toyota forklift
model, the pack weighs 700 kg, whereas the pack with HONDA CLARITY modules
weighs only 200 kg. Thus, additional ballast should be collocated in the remaining
volume of the battery bay, in order to fulfill the minimum weight requirements.

Table 18 summarizes the characteristics of the designed battery pack in the
different second life applications.
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Table 18: Battery pack characteristics in second life applications.

Application Firming RES Forklift
Configuration 21S14P 5S2P 1S16P

Operating Voltage [V] 1008 240 48
Energy [kWh] 352.8 12 19.2

Maximum C-rate [C] 0.4 0.3 1
Weight requirements No No Yes
Volume requirements No Yes Yes

Cooling type Air Air Liquid
Operating temperature [°C] 45 25 25

CO2 Saving [29] [t] 37.4 1.2 2
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4 Results

4.1 Electrochemical model

In this section are presented all the results concerning cell experimental tests, SPMe
behaviour and its capability in matching the data pre and post the optimization
algorithm.

4.1.1 Experimental data

This section presents the results of the experimental tests conducted on the cell,
following the procedure outlined in section 3.1.3. The data from the cycler are
analyzed using BTSDA Neware post-processing software, which displays not only
the current employed during the cycle and the corresponding cell voltage response,
but also the discharge energy and capacity.

Figures 73a and 73b illustrate the CC-CV charge and CC discharge cycles. In
this test, the current is varied from 0.1C to 1.5C while maintaining a constant
temperature of 25 °C.

In addition to the voltage response, which remains within the limits specified in
the datasheet for each cycle type, the plots provide valuable information about the
actual capacity of the cell. Despite slight variations depending on current intensity,
both discharge capacity and energy values align with the datasheet specifications,
confirming the cell’s performance. Specifically, the cell demonstrates approximately
27Ah of capacity and 103Wh of energy.

Figures 73c and 73d display the GITT curves. This test consists of 80 discharge
pulses at 40A, each followed by a 5-minute rest period. Although less straight-
forward to interpret than the previous test, this protocol provides insights into the
cell’s characteristics by probing the entire state of charge range at two different
temperatures: 25°C and 45°C. The graphs reveal higher resistance at high and low
SOC values, which decreases at intermediate levels. Additionally, as expected,
the cell exhibits lower overall resistance and improved efficiency at the higher
temperature of 45°C.
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(a) CC-CV Cycles between 2.88A and 20A at 25°C. (b) Single pulse discharge at 40A and 25°C.

(c) GITT with 80 pulses at 40A and 25°C. (d) GITT with 80 pulses at 40A and 45°C.

Figure 73: Results of experimental tests on the cell.

4.1.2 Pre-optimization model results

This section illustrates the response of the SPMe in matching the experimental
data prior to updating the model with optimized parameters. Consequently, the
results presented in Figure 74 reflect the model’s fidelity using only the initial part
of the data set updating procedure. This includes parameters derived from the
datasheet and geometrical measurements obtained during the teardown, while all
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other parameter values remain as in the original data set from Mohtat.

(a) CC-CV Cycle between 2.88A and 20A at 25°C. (b) Single pulse discharge at 40A and 25°C.

(c) GITT with 80 pulses at 40A and 25°C. (d) GITT with 80 pulses at 40A and 45°C.

Figure 74: Model match of experimental data before optimization.

The overall results reveal the need for model improvement, regarding both the
capacity and kinetic parameters. The model is not capable of following properly
the CC-CV cycles, shown in Figure 74a, since it diverges from the experimental
data after three discharge/charge cycles. The reason can be attributed to the
overestimation of cell capacity, well evident in Figure 74b. This is confirmed also in
the reproduction of the GITT tests in Figures 74c and 74d, where, after a satisfying
match in the first part, the model is not able to follow the behaviour of the curves,
due to evident different capacity and dynamic.

Despite these flaws, the model demonstrates positive aspects, such as the good
shape of the curves that closely resemble the experimental data. Additionally,
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the simulations conducted at higher temperatures already indicate lower overall
resistance. These two points highlight the potential of the model, even at this
incomplete stage.

4.1.3 Post-optimization model results

This section illustrates the capability of the SPMe in matching the experimental data
after the optimization and update of the key parameters outlined in section 3.1.3.

For a more detailed analysis of the model response in fitting the CC-CV Charge
/ CC Discharge cycles, the experimental discharge curves are extrapolated and
singularly analyzed in increased current intensity in Figure 75.

(a) Discharge at 2.8A and 25°C. (b) Discharge at 9.33A and 25°C.

(c) Discharge at 20A and 25°C. (d) Discharge at 40A and 25°C.

Figure 75: Model match of experimental discharge curves after optimization.

It is well evident from the graphs the model predicts cell behaviour and capacity
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with high accuracy across all different current intensities. This marks a significant
improvement over the incomplete model presented in the previous section.

Despite that, the model encounters minor challenges in predicting the cell
dynamics, especially within the voltage range of 3.75V to 3V. Although the overall
shape of the curves is comparable to the experimental data, there is a slight
overestimation of voltage within this window.

This discrepancy becomes more pronounced with increasing current intensity,
reaching a voltage error of nearly 20mV at 40A discharge. Additionally, for C-
rates higher than 0.6C, the model starts undergoing minor fluctuations also at the
beginning of the cycle. Several factors could contribute to this behavior, including
ohmic polarization, concentration polarization, electrochemical kinetics, and mass
transfer. These phenomena exhibit highly nonlinear characteristics at elevated
current intensities, which may not be adequately captured by the SPMe.

Nonetheless, this does not pose a significant limitation, as the model is intended
to represent the cell in second-life scenarios, where current intensities rarely exceed
1.5C. Therefore, the model’s accuracy should suffice to ensure proper safety in
voltage evaluation and, consequently, in heat production estimation.

Figure 76: Model match of experimental CC-CV charge/CC discharge curves after optimization.

Figure 76 demonstrates the alignment of the optimized model with the complete
test of CC-CV charge and CC discharge cycles. Compared to the unoptimized
model, this updated curve shows significant improvement. This plot is particularly
relevant as it illustrates the model’s capability to accurately replicate the cell’s
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behavior over an extended period, unlike some models that only perform well with
short experimental data. The optimized model successfully matches the cell’s
performance over more than 11 hours, underscoring its reliability across a variety
of conditions.

Up to this point of the analysis SPMe results, all the matching of the model
regarded experimental test and simulation conducted at ambient temperature. As
expressed several time in this thesis in fact, due to limited test resources, only one
experimental test involved a temperature different from the standard conditions.
The GITT curve are consequently the only one in which is possible to appreciate
the accuracy of the model with different temperature of the cell.

Figure 77: Model match of GITT at 40A and 25°C.

Figure 78: Model match of GITT at 40A and 45°C.
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Examining Figures 77 and 78, it is possible to evaluate the model’s fidelity in
replicating the two GITT curves resulting from 80 pulses, each 31 seconds long,
with 5 minutes of rest, at 40A and at temperatures of 25°C and 45°C. These curves
present a particular challenge due to their high dynamism and extended duration,
but also for the difficulty in optimizing the behaviour for all the test duration. This
implies that the model response is a compromise of accuracy between the first, the
middle and the last part of the cycles.

The most notable improvement post-optimization is the model’s enhanced ability
to follow the trajectory of the experimental data, whereas previously, the simulation
diverged significantly from the experimental results.

The overall accuracy of the model is evident across a wide SOC range for both
simulations, with a percentage between 0.5% and 1.5%. However, a drastic and
sudden error increase (especially in the test at room temperature) is observed in
the final stages of the test simulations, when the remaining SOC is approximately
around 5 %. This drastic decrease in modeling accuracy could be attributed to
unmodeled non-linear characteristics. Such phenomena would need to be analyzed
in detail by means of dedicated and deep experimental tests. Clearly with the
available resources it was not possible to further and better investigate this aspect.

Nonetheless, the overall level of accuracy of the model aligns with the thesis’s
objective, ensuring good accuracy for the majority and most experienced SOC
ranges in both the simulations.

Regarding the model’s sensitivity to temperature variations, further insights can
be drawn. Firstly, the model effectively captures the resistance differences due to
temperature changes. It shows a decrease in resistance at 45°C compared to 25°C.
Additionally, the model demonstrates better accuracy in matching experimental data
at the higher temperature. At room temperature, the average model error ranges
between 1% and 1.5% for most of the test (reaching around 6% at the test’s end). At
45°C, the error is significantly lower, ranging between 0.5% and 1% and reaching
4% only at the end of the simulation. This notable improvement indicates the
model’s capability to provide more detailed results in scenarios characterized by
high temperatures due to increased heat production or limited cooling.

After the validation of SPMe, the next step is the discussion of the results obtained
in the thermal tests conducted on the module. In this way, both the coupled models
will be validated, ensuring an effective simulation of the module in the chosen
second life scenarios.
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4.2 Coupled electrochemical-thermal model

In this section are illustrated the outcomes of the experiments and simulations
concerning the coupled electrochemical-thermal model. This includes the results
of the thermal experiments conducted on the battery module, followed by the
comparison with the simulation results, outcome of PyBaMM thermal sub-model
and thermal simulations in SimScale.

4.2.1 Thermal experimental results

This section presents the results of experimental tests conducted on the module, as
outlined in section 3.6. The temperature evolution data is recorded by thermistors
with resolution of 1°C and plotted against time. Additionally, also the voltage
profiles of the module cells during the discharge phase are recorded and plotted.

In order to allow a clearer visualization of the results, three plots are created for
each simulation:

• The first graph presents the data from all thermistors installed on cell 6, located
centrally within the module. This cell is subjected to minimal heat exchange,
which potentially leads to the highest temperature rise.

• The second graph illustrates the temperature evolution at the bottom of three
distinct cells. This plot facilitates an effective comparison of the temperature
dynamics among cells positioned at various locations within the module, each
experiencing different heat exchange conditions.

• The third graph displays the thermistor records monitoring the chamber,
encompassing the ambient temperature as well as the temperatures at the top
and bottom of the styrene box containing the battery module.

The first experiment offers simpler analysis and simulation compared to the
second. All the module components and even the walls of the adiabatic chamber,
start from an initial temperature of 24°C. The air inside the chamber has initial
temperature equal to 23°C. Due to this simplicity, the plots can be divided into two
distinct areas: from the beginning to approximately 3200 seconds, the temperature
evolution is due to module discharge at a current of 30A. Successively, the decrease
of the temperature is due to a rest period in which, the module undergoes a cooling
period for the remaining 6800 seconds.

These records are essential for validating and refining the coupled model. The
cooling phase enables the estimation of the module’s heat transfer coefficient within
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the styrene box, which is critical for the SimScale simulation. With this data, the
discharge phase can be used to determine the value of the cell volume fraction
responsible for heat generation, unknown during the creation of the PyBaMM
thermal sub-model.

Now it is possible to analyze more in detail the experimental results shown in the
first three graphs.

Figure 79 shows the records of thermistors placed on cell 6. The initial notable
observation is that the thermistors placed at the cell bottom exhibit uniform
temperature trends. This indicates a consistent temperature distribution, thus only
one curve is displayed in the graph to simplify interpretation.

Despite starting at the same initial temperature, it quickly becomes apparent
which cell areas are most susceptible to rapid temperature increases. The positive
terminal and the bottom of the cell show the most significant temperature rise,
reaching 33°C by the end of the discharge cycle. These are identified as the most
critical areas. They are followed by the negative terminal and cell vent, which
exhibit a more moderate increase, peaking at 32°C. The battery sides experience the
least heating and exhibit the best heat dissipation, yet still reach 32°C by the end of
the discharge cycle.
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Figure 79: Thermistors measurements on Cell 6 with initial temperature 24°C.

During the cooling phase, the temperature decrease appears fairly uniform across
all areas, even considering the different initial temperatures. To ensure safety, the
cooling curve of the cell bottom, which experiences the least cooling and the steepest
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temperature rise, is used as the reference for evaluating the heat transfer coefficient
within the adiabatic chamber. This coefficient is then applied to all surfaces exposed
to the air within the module.

Although identifying distinct heat transfer coefficients for each cell area would
have enhanced the precision of the thermal simulation, it would have also significantly
increased computational demands. Using the lowest heat transfer coefficient ensures
a slight overestimation of temperature rise, favoring safety.

Similarly, through tuning in matching the cell’s bottom temperature trend, the
cell volume fraction generating heat is determined. This parameter, required in the
PyaMM thermal sub-model, facilitates the calculation of the absolute heat power
produced by the cell. Consequently, the jelly roll is modeled as a single absolute
heat power source in the SimScale simulation.

Figure 80 shows the temperature evolution at the bottom of cell 6, cell 9 and
cell 12. Similar to cell 6, the thermistors placed at the bottom of the other two
cells also exhibit uniform temperature trends, indicating a consistent temperature
distribution across all cells. Therefore, only one curve per cell is displayed in the
graph to facilitate interpretation.
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Figure 80: Thermistors measurements at cells bottom with initial temperature 24°C.

During the initial phase of the record, cells 6 and 9 show similar temperature
increases, both reaching 33°C simultaneously. In contrast, cell 12 exhibits a lower
temperature rise, reaching only 32°C. This highlights a critical aspect: during the
heat production phase, cells surrounded by other cells on both sides experience less
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efficient heat transfer and consequently higher temperature increases. Conversely,
cells at the module’s edges, such as cell 12, are subjected to higher heat transfer
phenomena. These edge cells are only bordered on one side by another heat source,
while the opposite side is adjacent to a passive element that delays but does not
obstruct the cooling process.

In the rest phase, the difference between cells 6 and 9 becomes more pronounced.
After the discharge cycle ends, cell 9 cools down faster than cell 6, which takes
significantly longer to decrease by 1°C. This indicates that when cells are no longer
generating heat, their position within the module becomes crucial for effective
cooling. This conclusion further supports the decision to use the heat transfer
coefficient of cell 6’s bottom, as its lower efficiency favors safety.

Figure 81 displays the thermal behavior within the adiabatic chamber, showing
ambient conditions as well as the temperature trend at the top and bottom of the box.

The most relevant aspect of this plot is the trend of the ambient condition,
which can be given as input value in the boundary condition section of the
simulation. Despite a significant rise in the module components’ thermal state, the
ambient conditions remain constant at the initial value of 23°C, with only sporadic
fluctuations.

The graph also illustrates the temperature behavior at the top and bottom of the
styrene box, starting from 24°C. Notwithstanding these elements are not present in
the mode, the record of their thermal evolution provides useful information. The
bottom reaches 29°C, while the top hits 27°C by the end of the discharge cycle.
This increase is, as expected, less pronounced than that experienced by the different
areas of the cell. Notably, once the maximum thermal state is reached after at the
end of the discharge, the box walls’ temperature does not decrease as it does for
the cells, indicating a simultaneous absorption and release of heat that maintains a
steady thermal condition.
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Figure 81: Thermistors measurements within adiabatic chamber.

The second experiment involves more complex data analysis and interpretation,
characterized by three distinct phases. Due to pre-heating, each component,
including the styrene box, starts at different temperatures ranging from 44°C to
48°C, this will be make more challenging to set proper initial conditions within the
thermal simulation. The first phase, lasting approximately 3000 seconds, is a resting
period during which the components’ thermal states decrease by a few degrees.
This is followed by the discharge of the module from 100% to 0% of SOC at 30A,
lasting about 3200 seconds, similar to the previous experiment. The final phase
is another resting period, analogous to the previous experiment and lasting 6000
seconds, during which all elements within the adiabatic chamber cool down.

These records are crucial as they provide a means to validate the findings from
the previous experimental test. Specifically, the heat transfer coefficient of the
module and the volume fraction of the cell for heat production estimation can be
corroborated using these additional experimental results. This is because the heat
transfer coefficient is dependent solely on the convection conditions within the box,
which remain unchanged. Consequently, the higher heat exchange is driven by a
higher temperature gradient between components and ambient air. Similarly, the
volume fraction of the cell responsible for heat production should remain consistent
with the previous experiment.

Figure 82 shows the records of thermistors placed on cell 6 during this second
experimental test. Despite the different initial conditions, this second test exhibits
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the same characteristics as the first. The thermistors at the cell bottom again show
uniform trends, indicating a consistent thermal distribution. The areas experiencing
the most heating and the least heat exchange are confirmed to be the positive terminal
and the bottom of the cell, reaching 49°C. They are followed by the cell vent and
negative terminal, which reach 47°C and 46°C, respectively. The sides of the cell
demonstrate the least heating and the most efficient heat exchange, reaching only
44°C and 45°C by the end of the discharge process. In any case, a less marked
temperature increase is well evident for all the cell areas. This is surely due to the
more effective heat exchange process, child of wider temperature difference between
the cell components and the ambient temperature.

The cooling phase also shows similarities to the previous test: the thermal
decrease appears fairly uniform across all areas, even considering different initial
conditions. The temperature decrease is steeper compared to the first test, not due
to a different heat transfer coefficient, but because of a larger temperature gradient
between the cell parts and the ambient environment, the trend of which is depicted
in the third graph.
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Figure 82: Thermistors measurements on Cell 6 with high initial temperature.

As mentioned earlier, the curve of the bottom of the cell, which experiences the
highest heating and the least heat exchange, is used as a reference to confirm the heat
transfer coefficient and the volume fraction of the cell producing heat, evaluated
based on the first experimental data.

Figure 83 shows the thermal evolution at the bottom of cell 6, cell 9, and cell 12
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during the second thermal test. Uniform thermal behavior is recorded at the bottom
of cell 9 and cell 12 as well, leading to the plot of only one record.

Consistent with the measurements taken on cell 6 components, this data corrob-
orates the findings from the lower temperature test. Cells 6 and 9 exhibit similar
thermal increases, both reaching 49°C, while cell 12 experiences a lower increase,
peaking at 46°C. This further confirms that cells surrounded by two other heat
sources undergo similar heating and heat exchange processes, unlike cells at the
module’s edge, such as cell 12, which are subject to higher heat dissipation towards
the frontal plate.

The cooling process, on the other hand, shows a steep and similar temperature
decrease for all cells, likely due to effective heat exchange processes driven by the
significant temperature difference between the cells and the ambient environment.
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Figure 83: Thermistors measurements at cells bottom with high initial temperature .

Figure 84 shows the thermal evolution within the styrene box during the second
thermal test. The ambient thermal profile differs slightly from the previous test.
Although the temperature remains at 23°C for most of the time, there are more
fluctuations towards 24°C, likely due to the higher initial temperatures of the module.

The thermal behavior at the top and bottom of the chamber does not show the
drastic increase observed in the previous test, probably because the temperature
rise of the module components is only a few degrees. However, during the cooling
phase, the temperature decrease is more pronounced, likely due to the higher initial
temperatures, resulting in more efficient heat exchange processes driven by a larger
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temperature gradient.
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Figure 84: Thermistors measurements within adiabatic chamber.

Figure 85 displays the voltage profiles of some module’s cells during the 30A
discharge, in the two different thermal conditions.

(a) Cells discharge at 30A and initial temperature 24°C. (b) Cells discharge at 30A and high temperature.

Figure 85: Cells voltage record during thermal tests.

Despite the different temperatures, there is no significant variation in the voltage
trends, both in terms of curve shape and discharge duration, attributable to different
capacities. However, these results are valuable for two primary reasons: they
contribute to this thesis and provide insights into the battery module’s operation.
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Firstly, these discharge curves offer additional data to validate the electrochemical
model under an additional C-rate at two different temperatures. Secondly, they
enable the evaluation of cell discharge behavior within a battery module. While
the cells discharge uniformly for most of the cycle, some cells reach 2.5V, whereas
others attain 2.8V/2.9V by the end of cycle. The discharge difference between the
cells differs for few seconds but it demonstrates that even though the cells within a
battery module appear identical, their capacities may slightly vary due to differences
in construction quality, aging, and temperature effects.

4.2.2 Model validation

The analysis of the results conducted in the previous section facilitates the estab-
lishment of the accurate simulation setup necessary for faithfully replicating the
test conditions. This setup strictly adheres to the guidelines outlined in section 3.4.
However, certain parameters require meticulous attention to ensure their alignment
with the test conditions. Specifically:

• Initial Conditions: the initial temperatures of the model components are
set in accordance with the initial conditions observed in the test results. For
the first simulation, the initial temperature for each element is set to 24°C.
In the second test, which is the result of a previous cooling period, different
initial thermal states are assigned to the model components, with temperatures
ranging from 42°C to 46°C.

• Boundary Conditions: this aspect involves two fundamental parameters: the
ambient temperature and the heat transfer coefficient. Simscale does not support
tabular values for ambient temperature as a function of time. Nevertheless, the
experimental data show minor fluctuations of just one degree, with the ambient
temperature remaining nearly constant at 23°C in both experiments. Thus, the
ambient temperature is set to 23°C for both validation simulations.
As discussed in the previous section, the heat transfer coefficient within the
styrene box was unknown during the experimental setup phase. Consequently,
the cool-down period following the discharge cycle was recorded to evaluate
this coefficient. Using the cooling trend of the cell bottom as a reference,
the heat transfer coefficient within the styrene chamber is determined to be
2W/(Km2) for both simulations after several cooling simulations, with initial
conditions set to the temperature values at the end of the discharge test.
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• Power Source: in the simulations, the jelly rolls are modeled as the sole
absolute heat power source, requiring the heat produced during the discharge
cycle as input. The heat production is evaluated using the PyBaMM thermal
sub-model, as explained in section 3.2. Before validating the experimental test,
the volume fraction of the cell producing heat needs to be evaluated. The model
provides a volume-averaged heat, which must be multiplied by a volume that,
due to model simplifications, cannot be the entire cell volume. Experimental
test results are used to adjust this parameter until the best match with data is
achieved, resulting in a cell fraction producing heat of approximately 50% of
the total cell volume. Thus, the jelly rolls are set as an absolute power source,
producing the estimated amount of heat as per the thermal sub-model, with the
assumption that each cell generates the same amount of heat.

• Results Control: The temperature "area average" is applied to all faces for
which experimental data are available for comparison, including the bottom of
cells 6, 9, and 12, terminals, vent, and module side.

Before proceeding with the validation, two important aspects must be still
highlighted.

Firstly, as explained in section 3.5, the coupling of thermal sub-model and thermal
simulation involves few iterations. The starting point is the thermal sub-model with
a temperature compatible with the experimental data, and the loop is repeated twice.
No appreciable differences are observed in the model results after these iterations,
so only the results from the last iteration are reported for readability.

Secondly, regarding the visualization of results, the data are linearized to better
visualize the model’s accuracy in matching the experimental trends, without forget-
ting that the resolution still remains limited to 1°C. This operation ensures a certain
margin of error, consequently the simulation is considered a good approximation of
the experimental data if the temperature trend remains within this resolution range.

It is now possible to analyze the results of the first simulation by comparing them
with the experimental data from the test, conducted with a starting temperature of
24°C.

Figure 86 presents the outcomes of the electrochemical model and the thermal
sub-model implemented in PyBaMM. The plot in Figure 86a depicts the model’s
alignment with experimental voltage discharge data. The considerations discussed
in the previous section regarding the validation of the electrochemical model are
further corroborated here. For a current intensity of 30A, the model accurately
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matches the experimental data. The cell’s capacity is well represented, although
there are minor fluctuations that slightly deviate the model response from an optimal
match, particularly at the beginning and just before the voltage drop in the curve.
Nevertheless, the error is acceptable, with maximum values of 20 mV.

Graph in Figure 89b illustrates the outcome of the thermal sub-model, specifically
the absolute heat power produced by the cell during this discharge cycle. The heat
production exhibits a parabolic trend: starting from a value of 5 W, the generated
heat progressively decreases, reaching a minimum value of 1.5 W between 1500 and
2000 seconds. After this minimum, the heat production sharply increases, reaching
values seven times higher than the initial heat produced by the end of the discharge
cycle. Despite the significant increase in the last 10% of the cycle, the heat produced
by the cell remains within a narrow range of 1.5 W to 5 W for most of the cycle.

(a) Model match of the discharge curve at 30A. (b) Absolute heat power produced by the cell.

Figure 86: Outcomes of PyBaMM models for the simulated discharge at initial temperature 24°C.

In figure 87 simulation results are compared with the temperature records obtained
from thermistors placed on cell 6 during the discharge cycle at 30A. The simulated
thermal evolution exhibits a similar trend to the experimental data. The bottom
of the cell, used as a reference in this simulation, is confirmed to be the area with
the highest heating and the least heat exchange, maintaining a consistently higher
temperature than other cell parts.

In contrast, the simulation shows the positive terminal’s temperature evolution
closely aligned with that of the negative terminal and cell vent, creating a uniform
temperature region on the top of the cell. This discrepancy can be attributed to the
thermal model’s assumption that only the jelly roll acts as the heat power source
within the cell. Consequently, while the positive terminal actively contributes to
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heat production in the experiment, causing it to heat up, it is treated as a passive
component in the model, subject to heat transfer processes like the other parts.The
module side is confirmed to be the area subjected to the least heating and the highest
heat exchange processes.

Overall, the predicted temperature trend follows the parabolic shape of heat
production, with moderate heat production at the beginning, reduced heat production
in the middle part of the cycle, and significantly higher heat production towards the
end.

Comparing the simulation with the real data, the prediction is highly accurate
up to 2800 seconds, with an error margin swinging around 2%. There is a slight
temperature overestimation in the initial phase, followed by a slight underestimation
in the middle part of the simulation. After 2800 seconds, when the remaining SOC
is around 10%, the model’s overestimation progressively increases, reaching an
error of nearly 8%.

This trend was anticipated following the validation of the electrochemical model,
due to the reduced fidelity of the GITT in the final part of the discharge cycle.
Additionally, the steep increase in heat production observed in the last 5% of SOC
indicates unrealistic cell behavior, highlighting the challenges in cell modeling at
low SOC. This is due to highly non-linear characteristics, in particular particle size
distributions and non uniformity of the particles states (lithiation degree) within
that distributions, which are difficult to model accurately with limited resources.

Nonetheless, this overestimation favors safety by providing a conservative estimate
of the required cooling for potential second-life applications.
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Figure 87: Simulation match with thermistors measurements on cell 6, for the test with initial temperature
24°C.

Figure 88 compares the simulation results with the test data from thermistors
placed at the bottom of cells 6, 9, and 12. The simulation provides information
consistent with the analysis of the experimental data. The temperature evolution
of cells 6 and 9 is very similar, whereas cell 12 exhibits different behavior, being
subjected to less heating and more significant heat exchange processes. This
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demonstrates the model’s capability in evaluating the heat exchange characteristics
of different cells. Specifically, cells sandwiched between other heat power sources
show a similar thermal trend, while cells at the module’s extremes, in contact with a
passive element such as the frontal plate, experience more heat exchange.
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Figure 88: Simulation match with thermistors measurements on cells 6, 9 and 12, for the test with initial
temperature 24°C.

Regarding the model’s accuracy, the same considerations made for the previous
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graph apply here. Until the cells reach 10% of the remaining SOC, the percentage
error of the model’s predictions hovers around 2%. However, the model’s accuracy
progressively decreases towards the end of the discharge cycle, reaching errors
between 6% to 8% in the final moments. This percentage error reflects the decreased
accuracy of the electrochemical model and the heat overestimation of the thermal
sub-model.

Despite this, the crucial aspect is that the model provides a good prediction for
the majority of the discharge cycle. Even though the accuracy decreases in the last
part of the cycle, this only plays in favor of safety, as it overestimates the cooling
capacity necessary for the module.

It is now possible to analyze the results of the second simulation, which reproduced
the temperature evolution of the module during at discharge at 30A but with initial
temperature of the cells in the interval 44°c and 46°C.

In Figure 89 the outcomes of the electrochemical model and its thermal sub-model
are presented. As expected from the analysis of the experimental discharge curves
done in the previous section, which did not highlight substantial differences, the
simulated discharge curve also shows very low sensitivity to temperature changes.
Consequently, the accuracy of the model in matching the experimental data is
comparable to what was previously described. The cell capacity is well represented,
with minor fluctuations slightly deviating the model response from an optimal
match. The maximum error values of 20 mV occur just before the voltage drop
region.

(a) Model match of the discharge curve at 30A. (b) Absolute heat power produced by the cell.

Figure 89: Outcomes of PyBaMM models for the simulated discharge at high initial temperature.

This discussion also applies to the outcomes of the thermal sub-model, specifically
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the plot of the produced heat. The trend and overall value of the heat produced
during the cycle are comparable to the previous simulation. Although there is a
slight difference in the produced heat, it is almost imperceptible. This is likely due
to improved efficiency from enhanced chemical reactions at the higher temperature.

Continuing the discussion of the results, it is possible to analyze the simulation’s
match with the thermistor measurements on cell 6, shown in Figure 90. A notable
aspect is the more complex interpretation of these results compared to the simulation
at 24°C. In this case, different initial temperatures are set for the parts of cell 6,
making the comparison graph less straightforward. The differences in thermal
evolution could be due to varying levels of heating and heat exchange intensity
resulting from the different initial temperatures. Nonetheless, the model’s ability to
reproduce the experimental data is analyzed.

Each curve shows a good overall approximation of the thermal evolution of
different cell areas, with the bottom of the cell confirmed to be the most sensitive
area, subjected to high heating and lower heat exchange processes. Unlike the
previous case, the terminals and cell vent exhibit different initial temperatures,
resulting in a non-uniform temperature distribution at the top of the cell. The
module side, both in the simulation and experiment, demonstrates the least heating
and most effective heat exchange processes.

Regarding the model’s accuracy, the considerations made for the previous
simulation are also valid here. The model effectively reproduces the experimental
thermal evolution for most of the test, maintaining a percentage error around 2%
up to 2800 seconds, corresponding to about 10% of the remaining module state of
charge. As in the previous simulation, the accuracy progressively decreases as the
SOC drops, reaching a maximum error between 3% and 5% towards the end. Despite
similarities with the previous results, this simulation shows a less steep increase
in error percentage, possibly due to the better accuracy of the electrochemical
presented in section 4.1.3.
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Figure 90: Simulation match with thermistors measurements on cell 6, for the test with high initial temperature.

Discussing the simulation matching of the thermal evolution of cells 6, 9, and
12, the considerations made for the previous graph are also applicable here. Figure
91 shows a good prediction for all cell temperature evolutions, despite the less
straightforward reading due to different initial temperatures between cells 6, 9, and
12. Notably, as previously discussed, the trends for cells 6 and 9 are nearly identical.
This demonstrates the model’s capability to accurately recognize the heating and
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heat exchange processes for elements standing between two heat source, even under
different temperature conditions. As in the experiment, the behavior of cell 12
differs from the other, starting at a lower temperature and exhibiting a less steep
temperature increase due to the passive frontal plate on one side.
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Figure 91: Simulation match with thermistors measurements on cells 6, 9 and 12, for the test with high initial
temperature.

The model’s accuracy is consistent with the previous comparison and even
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improved. It accurately describes the thermal evolution of the cells, maintaining a
percentage error around 1% up to 2800 seconds. The model slightly overestimates
the temperature increase for most of the discharge cycle, followed by a slight
underestimation just before the 2800-second mark. After this point, coinciding with
the SOC drop, the accuracy progressively decreases, reaching errors between 4%
and 5% by the end of the simulation. This error margin aligns with the temperature
evolution prediction for cell 6, also demonstrating improved temperature evolution
predictions for cells 9 and 12 compared to the simulation results at the initial
temperature of 24°C. The reasons for this improvement are the same as previously
discussed.

In the preceding graphs, all potential comparisons between the simulated and
experimental data of the recorded temperature evolution have been thoroughly
analyzed. The coupled electrochemical-thermal model exhibits a satisfactory
prediction of the temperature evolution of the module for each of the recorded
areas by thermistors. This demonstrates not only an accurate prediction of heat
production in the cells during the discharge cycle but also a faithful representation
of the module in the simulation, even when simplified relative to the original.

The model ensures high reliability under both tested conditions, with an overall
error within two percentage points for the majority of the discharge cycles. However,
this comparison has also highlighted two primary weaknesses of the model. Firstly,
with the module simplified by considering the jelly roll as the sole heat source
within the cells, the heat production contribution from other components, mainly the
terminals, is not adequately represented. This could be problematic for applications
with high current intensity, leading to significant and uneven heating at the battery
terminals. Nevertheless, this is not an issue for the second-life applications selected
for this module, which will experience a maximum discharge rate comparable to
the tested conditions. In these tests, the alignment of the cell terminals with the
temperature evolution of the cell bottom was observed, indicating that the terminals
will be subjected to the same conditions as the cell bottom, the area with the highest
heating phenomena, which is well represented by the model.

The second aspect pertains to the heating overestimation by the coupled model
when the module drops below 10% of the remaining state of charge. The accuracy
progressively decreases, reaching an overestimation of 8% in the worst case. This
highlights the challenge of modeling the behavior of a cell approaching complete
discharge due to the above mentioned highly non-linear phenomena. Despite this,
the overestimation covers a narrow range of the actual module capacity, which, in
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some applications, may never be encountered. Even if such a range is reached, the
temperature rise estimation favors safety by overestimating the required cooling for
the module.

The outcomes of the previous validation process has demonstrated the incredible
value of the electrochemical-thermal coupled model. Well evident is its capability
of effectively reproducing diverse duty cycles, evaluating the voltage evolution, the
required discharge rates, levels of power, but, overall, the heat produced during
the cycles. With such information it is in fact possible to evaluate the temperature
evolution within the module, for given cooling conditions. This peculiarity makes
the model an effective and valuable tool in the preliminary thermal performance
evaluation. Consequently, is is possible to go forward, passing to the last part of
this study: the simulation of the chosen second life scenarios and the assessment of
the module thermal performance.

4.3 Second life assessment

In this final section, the outcomes of simulations designed to replicate the selected
second-life applications are analyzed. This involves reproducing the duty cycle
within both the coupled electrochemical-thermal model and its simulation, under
the specified boundary conditions. The presented results are derived from two
iterations conducted within the model’s loop to achieve the most accurate and
reliable outcome.

4.3.1 Renewable solar firming

In this section are presented the results of the solar firming duty cycle simulation.
Figure 92 presents the results of the PyBaMM model, illustrating voltage, current,

terminal power, and heat production of a representative module’s cell. Starting
from a SOC of 100%, the cell sustains energy delivery for the entire 10-hour
reference duty cycle, alternating between discharge (predominantly) and charge
(less frequently) phases, and concluding with minimal remaining energy.

As anticipated during the design phase, the cell experiences a maximum current
rate of 0.4C and a peak terminal power of 40W during multiple discharge cycles. In
contrast, the charging phases are less demanding, reaching a current rate of 0.3C
and terminal power around 30W.

These parameters indicate a well-dimensioned battery pack, capable of meeting
the application’s requirements without excessively stressing the cells, thereby
preserving their available capacity. Consequently, the corresponding heat production
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is lower compared to tested conditions with higher current intensities. The heat
generation remains around 1W for most of the cycle, rising to approximately 5W
towards the end of the duty cycle when the SOC is low and model heat production
prediction increases.

(a) Voltage (b) Current

(c) Power (d) Heat production

Figure 92: Solar firming duty cycle.

The duty cycle is subsequently simulated within the thermal model. The
boundary conditions are outlined in Table 18. The initial temperature of the pack is
approximately 45°C, replicating a hot, sunny day, and it is subjected to natural air
convection at 45°C, simulated with a heat transfer coefficient of 10W/Km2, applied
to all exposed surfaces.

Figure 93 depicts the temperature evolution of the jelly rolls throughout the entire
simulation. Unlike previous simulations, this analysis focuses on the temperature
changes within the jelly rolls, the core of heat production, making it critical to
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monitor their thermal behavior.
The first key observation is that, despite the challenging cooling conditions and

the cells’ heat production, the temperature remains within an optimal range, between
45°C and 47°C. Only towards the end of the cycle does the temperature slightly rise,
reaching 50°C. This increase is attributed to the higher heat production predicted by
the model in the final SOC phase. Despite the overestimation of heat production
and its increase, the module’s temperature stays within a safe and optimal range.

This simulation also confirms the trend observed in the experiments and validation.
The temperature evolution in cells 6 and 9 is quite similar, as they undergo the same
heating and cooling processes. Conversely, cell 12 exhibits more cooling and lower
temperatures, due to the presence of the frontal plate acting as a passive cooling
element.
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Figure 93: Jelly rolls temperature evolution in solar firming duty cycle.

Figure 94 does not provide significant insights for assessing this application
for the module. However, it is included to offer a graphical visualization of the
temperature distribution within the module at the end of the simulated duty cycle,
when the module experiences its highest temperatures.

The top and bottom views clearly show that the highest temperature is concentrated
in the middle of the module, gradually decreasing towards the edges. Despite this, the
temperature distribution is relatively uniform across the module, with a temperature
variation of only a few degrees between the different components.
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(a) Module top view

(b) Module bottom view

(c) Module isometric view

(d) Legend

Figure 94: Module temperature at the end of firming duty cycle.
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4.3.2 ESS for PV domestic application

This section presents the results of the domestic ESS duty cycle simulation. Figure
95 shows the results of the PyBaMM model, with the same outputs as the previous
simulation.

According to the specifications in Table 18 and starting from a SOC of 47% (to
better appreciate the performance of the ESS), the simulation shows the capability of
the ESS to ensure supply energy to the domestic environment for 13.5 hours, from 8
am to 9:30 pm. This indicates that, to cover the daily energy needs of the household,
both the ESS and the PV plant would need to be enlarged, increasing storage capacity
and recharging capability from the panels. Despite this, the result is satisfactory, as
the ESS and PV plant can ensure the house’s energy independence from the grid
during peak usage hours, leaving only the nighttime hours, characterized by low
electricity consumption, uncovered.

(a) Voltage (b) Current

(c) Power (d) Heat production

Figure 95: Domestic ESS duty cycle.
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The resultant current intensity aligns with the predictions made during the design
phase, with a maximum rate of 0.3C for both charging and discharging. Similarly,
the power reaches a maximum value of 30W. This condition results in reduced heat
production, around 0.5W for most of the day, with a peak of 1W when charging
begins. The final part of the cycle shows higher heat production corresponding to
the cell’s final discharge. Nonetheless, the heat power peaks at 5W at the end of the
simulation. This condition is clearly less demanding compared to the previous one,
indicating a very favorable temperature evolution in the thermal simulation.

Figure 96 illustrates the temperature evolution of the jelly rolls throughout the
entire simulation. The initial temperature of the pack simulates indoor summer
conditions, starting around 25°C. Cooling is achieved through natural convection of
the surrounding air at 25°C, simulated with a heat transfer coefficient of 10W/Km2,
applied to all exposed surfaces of the module.
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Figure 96: Jelly rolls temperature evolution in domestic ESS duty cycle.

The temperature evolution of the jelly rolls aligns with expectations from previous
analyses. Given that these conditions are less demanding than those applied for
solar firming, both in terms of current intensity and cooling (due to lower ambient
temperatures), the temperature evolution of the jelly rolls is optimal. It remains
between 25°C and 27°C for most of the cycle. Only at the end of the discharge phase,
corresponding to the increased heat production forecasted by the thermal sub-model,
does the temperature rise steeply, reaching almost 30°C. This temperature is perfectly
safe and even optimal for the module. The different behaviors between cell 6 and 9
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and cell 12 are also confirmed in this case.

(a) Module top view

(b) Module bottom view

(c) Module isometric view

(d) Legend

Figure 97: Module temperature at the end of domestic ESS duty cycle.
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Also in this case, the graphical temperature distribution within the module at the
end of the duty cycle is shown in Figure 97. The distribution is consistent with the
previous simulation, except for the temperature range, which is between 27°C and
30°C.

The cells in the middle are again shown to be subjected to the highest heating,
while the other components, acting as passive elements, experience less heating
and consequently a lower temperature increase. This visualization reinforces the
observation that the core cells bear the brunt of the thermal load, while peripheral
components maintain relatively cooler temperatures.

4.3.3 Electric forklift

This section presents the results of the electric forklift duty cycle simulation. Figures
98, 99, 100, and 101 display the results of the PyBaMM model. Due to the high
frequency of the duty cycle, lasting only 25 seconds, the plots of the complete duty
cycle are not easily readable. Therefore, a detailed view of the results from second
1000 to second 1025 is also included. Starting from a full SOC, the battery module,
with specifications outlined in Table 18, can ensure almost three continuous hours
of autonomy.

The resultant current and power intensity align with the forecasts made during the
design phase of the pack. The maximum C-rate is 1C, experienced in the last part of
the duty cycle, where the required maximum power of 80W leads to an increase in
current intensity to compensate for the voltage decrease due to the decreasing SOC.

(a) Complete (b) Detailed

Figure 98: Forklift voltage duty cycle.

The heat produced during the cycle is reasonably higher than in previous
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applications and more similar to the trends observed in the simulated tests. The heat
production values range between 0 and 4W, with a "hollow" in the middle of the
cycle. The estimated heat progressively increases, reaching a maximum of 14W at
the end of the simulation. However, it is important to note that these values are not
continuously emitted by the cells as in the previous simulations. Due to the high
frequency of the duty cycle, the heat production follows the detailed plot shown in
Figure 100b, with few peaks during the complete cycle. This makes the final part of
the cycle less challenging than it appears, as there are periods of relatively low heat
production.

(a) Complete (b) Detailed

Figure 99: Forklift current duty cycle.

Figure 102 illustrates the temperature evolution of the jelly rolls throughout the
entire simulation. Unlike the other simulations, this figure presents the temperature
evolution of jelly rolls in cells 1, 4, 8, and 12; the reason for that choice is explained
in the discussion on boundary conditions. The initial temperature of the cells
ranges between 32°C and 36°C. The cooling system, detailed in section 3.7.3, is a
serpentine cooling system with a constant coolant flow rate of 10g/s ( values taken
used by Choudhari et al. [25] and Zhang et al. [131] in similar applications).
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(a) Complete (b) Detailed

Figure 100: Forklift power duty cycle.

(a) Complete (b) Detailed

Figure 101: Forklift heat production duty cycle.

The coolant enters the system at a temperature of 25°C, assumed to match the
ambient temperature. This is the only cooling mechanism for the entire module,
simulating an adiabatic environment where convection is limited in effectiveness.
Consequently, cooling is provided solely from the cell bottom by a coolant flow that
first passes under cell 1 and then reaches cell 12. Consequently, monitoring these
specific cells aims to assess how the cooling efficiency varies for cells located at
different points along the serpentine.

The temperature evolution graph demonstrates that the cooling conditions are
sufficient to ensure not only proper cooling of the jelly rolls but also remarkable
cooling uniformity. Despite the characteristics of the system, the serpentine cooling
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method effectively cools all recorded cells uniformly. Additionally, even starting
from relatively higher temperatures, the jelly rolls are cooled down to temperatures
comparable to that of the coolant. This result showcases the system’s effectiveness
but warrants an important caveat. The coolant flow rate is derived from literature
and does not provide a precise assessment of the system’s actual potential, especially
considering that pressure drops are not accounted for in this study. Unfortunately,
due to the high computational cost of this simulation, it was not possible to further
investigate lower flow rates that might maintain the same cooling capacity while
potentially reducing pressure drops.

The final consideration pertains to the latter part of the simulation. Unlike
previous cases, this phase does not exhibit the expected temperature increase based
on the estimated heat production. This discrepancy can be explained by the nature
of the heat production peaks. Although the peak heat production is five times higher
than the values experienced during most of the cycle, these conditions occur only
briefly within each duty cycle. These peaks are sporadic rather than continuous,
meaning that between peaks, the cells not subjected to prolonged periods of intense
heating, have time to cool down and do not accumulate significant heat.
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Figure 102: Jelly rolls temperature evolution in forklift duty cycle.

In this final case, the graphical output presented in Figure 103 provides significant
insights into the temperature distribution within the module and the effectiveness of
the cooling system at the end of the reference duty cycle. Despite cooling being
provided only from the cell bottom, the temperature distribution within the module
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remains fairly uniform, with a temperature variation of only a few degrees. This
uniformity is observed both along the height of the cell case and across the length
of the module.

(a) Module top view

(b) Module bottom view

(c) Cell case view

(d) Legend

Figure 103: Module temperature at the end of forklift duty cycle.

The model allows for visualization of the heat flux from the top to the bottom
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of the cell, showing a progressive decrease in temperature as the distance to the
cooling plate decreases. A similar trend is observed for the temperature gradient
along the length of the module and the coolant temperature. Cells closer to the
coolant entrance receive slightly better cooling, while cells farther from the entrance
experience higher temperatures. Conversely, the coolant temperature, which starts
at 25°C, progressively increases as it moves through the module, due to cells cooling
along its path.

The outcome of these simulations is very clear: the battery module is valuable
in all the tested duty cycles. The modules configurations, designed to define new
battery packs, demonstrates their capability to extensively satisfy the needs of
the chosen second life applications, ensuring level of power and discharge rates
that widely safe guard the remaining capacity of the cells. The resultant thermal
performance of the module, outcome of the thermal simulations, demonstrates its
value in all the second life scenarios conditions, even if really challenging in cooling
as in the case of the solar firming and electric forklift.
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5 Conclusion

In this thesis, a critical and complex engineering challenge was addressed: the
precise evaluation of characteristics and the thermal performance of a repurposed
PHEV’s module for second-life applications, despite limited experimental resources.
An innovative and effective methodology was employed, utilizing a validated
coupled electrochemical-thermal model to determine the module’s suitability for
the intended second-life scenarios.

The SPMe was implemented using PyBaMM software, encompassing all the
fundamental PDEs of the model. A comprehensive set of 30 parameters was required
for the model’s complete resolution. Initially, these parameters were sourced from
accredited literature and subsequently refined through three steps: incorporating
parameters from the available datasheet, measuring geometric parameters, and
optimizing through an algorithm. The model was validated using two types of
experimental tests: CC-CV charge / CC discharge cycles with C-rates ranging from
0.1C to 1.5C at room temperature, and two GITTs curves at 40A, conducted at
25°C and 45°C. The model demonstrated high average accuracy in replicating the
experimental data, particularly at elevated temperatures, with overall error values
within a few percentage points. However, the accuracy in matching discharge curves
decreased as current intensity increased, leading to minor oscillations and errors up
to 20mV at 40A. Additionally, the model struggled to predict cell behavior in the
final stages of the GITT curves, resulting in errors up to 4% at 45°C and up to 6%
at 25°C. Despite these limitations, the model’s ability to reproduce cell behavior
was deemed sufficiently accurate for the purposes of this study.

The thermal model comprised several components. The module was replicated
in CAD software with some simplifications in cell design, where only the jelly roll,
as a single entity, acted as the heat source. Heat production was estimated using
a PyBaMM thermal sub-model. These elements facilitated the implementation
of thermal simulations within SimScale software, capable of simulating various
boundary conditions. The two models are interdependent since the heat produced
during a cycle, estimated by means of the thermal sub-model, depends on cell’s
temperature, which is the output of the thermal simulation that, in turn, requires heat
production as input. Consequently, at least two iterations of this loop were necessary
for each simulation to achieve convergence to appropriate results. The coupled model
was validated through two thermal tests: the module, enclosed in a polystyrene
adiabatic box, underwent a discharge cycle at 30A at two different temperatures:
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25°C and 46°C. The heating and cooling conditions experienced by the module
within the box were replicated in SimScale, allowing for a comparison with the
recorded temperature evolution during the tests. The coupled model exhibited good
accuracy in matching the temperature evolution, with percentage errors within 2%
for most of the tests. The only exception was in the final part of the cycle (the
last five state of charge points), where the model overestimated heat production
by up a maximum of 8%. This overestimation was not a significant issue for the
project’s objectives, as the final state of charge instants are not often encountered in
several applications and, more importantly, it favors safety by overrating the cooling
required to control temperature evolution.

The final phase of the project involved evaluating the module’s suitability for
second-life applications. The selected ones were solar firming, residential PV, and
electric forklift. Operating conditions, including pack configuration and cooling,
and a reference duty cycle were chosen for each application. These elements enabled
simulations to evaluate the designed pack’s performance in the new conditions.
The results were particularly encouraging, demonstrating the battery’s capability to
follow the chosen duty cycle with limited current intensity and sufficient capacity.
Most importantly, the pack exhibited exceptional thermal performance under all
simulated conditions, with poor heating and safe temperature evolution, thus
confirming its suitability for the selected second-life scenarios with a significant
margin.
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6 Possible future developments

The multidisciplinary and the inner characteristics of this thesis work open several
opportunities for future developments.

One possible path includes enhancing the electrochemical model to address its
significant limitations. Overall accuracy may be increased through more specific
experimental tests and further optimization efforts, which would help reducing
oscillations and errors, especially at higher current rates. Additionally, accuracy
during the final part of dynamic cycles could be improved by better modeling
the cell’s non-linear behavior, leading to a closer fit with experimental data and
improved heat estimation accuracy comparable to other cycle parts.

Another aspect involves the cell’s thermal behavior, which has only been analyzed
and tested at room and high temperatures. However, lithium-ion batteries are also
highly sensitive to low temperatures, which can cause significant aging phenomena
during both charging and discharging. Including modeling and management of
these conditions would make the model more comprehensive.

Furthermore, the model could be integrated with a basic aging prediction scheme.
This study only discussed external factors limiting aging, neglecting those related
to the battery’s normal operation. Predicting the aging trajectory of the battery for
each second-life scenario would be particularly useful in estimating service duration
and possibly overestimating the required battery capacity for a given duration target.

The last additional improvement could be a more accurate representation of the
cell as a heat source. In this study, the jelly roll was simplified as the sole heat source,
but in reality, other components, such as current collectors, also generate significant
heat. Consequently, evaluating and modeling these additional heat sources would
result in more accurate thermal simulations and temperature distributions within
the module.
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