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Chapter 1

Introduction

This chapter will explain: the central nervous system, the electroencephalogram
(EEG), and the current understanding of consciousness along with its associated
disorders.

1.1 The central nervous system

The contents of this section are based on [19].

1.1.1 General introduction to the central nervous system

The Central Nervous System (CNS) represents a complex framework with seven
main components: the spinal cord, medulla oblongata, pons, cerebellum, mid-
brain, diencephalon, and cerebrum. The spinal cord is the lowest part of the CNS
and can be split into four regions: cervical, thoracic, lumbar, and sacral (Figure
1). It handles sensory information coming from the skin, joints, and muscles in
the limbs and trunk, and it controls the movements of these areas.

As we progress rostrally, the spinal cord transitions into the brain stem, which en-
compasses the medulla oblongata, pons, and midbrain. It is of crucial importance
in:

e processing sensory data from the skin and muscles of the head,;

e controlling the motor functions of head musculature;



 facilitating the transmission of information between the spinal cord and the
higher brain regions;

e regulating arousal and consciousness through its involvement with the retic-
ular formation.

The brain stem is home to various clusters of cell bodies, known as cranial nerve
nuclei. These nuclei serve various functions:

e receiving input from the skin and muscles of the head;
« controlling motor functions of the face, neck, and eyes;

e processing information from three distinct senses: hearing, balance, and
taste.
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Figure 1.1: Division in seven parts of the central nervous system [19]



Directly rostral to the spinal cord, the medulla oblongata boasts several centers
responsible for overseeing critical autonomic functions like digestion, respiration,
and heart rate regulation, while, situated in front of the medulla, the pons acts as a
bridge for conveying motor signals from the cerebral hemispheres to the cerebellum.

The cerebellum, located behind the pons, forms connections with the brain stem
via major fiber tracts known as peduncles. This region is instrumental in modu-
lating the force and range of movement and plays a pivotal role in learning and
executing motor skills.

Moving further rostrally, the midbrain, found anterior to the pons, governs a wide
array of sensory and motor functions, including eye movement and the coordina-
tion of visual and auditory reflexes.

The diencephalon, situated rostral to the midbrain, encompasses two distinct struc-
tures: the thalamus and the hypothalamus. The thalamus is the hub for most of
the sensory information relayed to the cerebral cortex from various parts of the
central nervous system, while the hypothalamus assumes responsibility for regu-
lating autonomic, endocrine, and visceral functions.

The cerebrum consists of two cerebral hemispheres, each of whom comprises a
highly convoluted outer layer known as the cerebral cortex, along with three deeper
structures: the basal ganglia, the hippocampus, and the amygdaloid nuclei. The
cerebral cortex is further partitioned into four separate lobes: frontal, parietal,
occipital, and temporal, as elucidated in Figure 2.
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Figure 1.2: The four lobes of the cerebral cortex [19]



Within this context, the basal ganglia play a pivotal role in governing motor per-
formance, the hippocampus is closely associated with certain aspects of memory
storage, and the amygdaloid nuclei coordinate autonomic and endocrine responses
during emotional states.

The brain can be broadly divided into three main regions: the hindbrain (compris-
ing the medulla oblongata, pons, and cerebellum), the midbrain, and the forebrain
(comprising the diencephalon and cerebrum).

The cells that primarily compose the CNS can be categorized into two groups:
neurons and glial cells.



1.1.2 The neurons
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Figure 1.3: The structure of a neuron [19]



Neurons, commonly referred to as nerve cells, form the basic units of the CNS,
with the human brain containing around one hundred billion neurons classified
into at several different types.

Neurons share a standard structural framework, encompassing four distinct re-
gions: cell body, dendrites, axon, and presynaptic terminals, as depicted in Figure
3. Each of these regions plays a unique role in signal generation and the facilitation
of communication between neurons.

The cell body, or soma, serves as the neuron’s metabolic center, housing the nu-
cleus with the cell’s genetic material and the endoplasmic reticulum that synthe-
sizes proteins, typically giving rise to multiple short dendrites and a single axon
of significant length.

Dendrites structurally resemble the branches of a tree and serve as the primary
apparatus for receiving incoming signals from neighboring neurons, while the axon
extends a considerable distance from the cell body, acting as a conduit for trans-
mitting signals to other neurons. An axon can convey electrical signals across
distances spanning from 0.1 millimeters to 2 meters.

These electrical signals, referred to as action potentials, originate at a specialized
trigger region near the axon’s origin, known as the initial segment. These impulses
propagate down the axon with remarkable consistency and speed, regenerating at
regular intervals along it, covering distances ranging from 1 to 100 meters per sec-
ond, and traveling through the axon at a near-constant amplitude of 100 millivolts,
owing to its all-or-nothing nature.

Action potentials serve as the fundamental signals that enable the brain to receive,
process, and transmit information. These signals maintain a highly stereotyped
nature throughout the nervous system, regardless of the diverse array of environ-
mental stimuli that trigger them, such as light, mechanical contact, odorants, and
pressure waves. The brain, in turn, interprets patterns of incoming electrical sig-
nals and their pathways, ultimately giving rise to our sensory experiences of sight,
touch, smell, and sound.

To enhance the conduction speed of action potentials, larger axons are enveloped
in an insulating sheath composed of a lipid substance called myelin, and that is
periodically interrupted by uninsulated regions known as nodes of Ranvier, where
the action potential undergoes regeneration. As the axon approaches its terminus,
it divides into fine branches that establish connections with other neurons at spe-



cialized communication points referred to as synapses.

Amongst the neurons, the one transmitting a signal assumes the role of the presy-
naptic cell, while the recipient one that of the postsynaptic cell. Signals are trans-
mitted by the presynaptic cell from distinct, enlarged regions at the ends of its
axonal branches, denoted as presynaptic terminals or nerve terminals. These two
cells are separated by a narrow gap known as the synaptic cleft, and while most
presynaptic terminals end on the dendrites of the postsynaptic neuron, they may
also terminate on the cell body or, less commonly, at the beginning or end of the
axon of the receiving cell (refer to Figure 3).

Sensory neurons, motor neurons, and interneurons are the three primary groups
into whom the nerve cells may be classified.

Sensory neurons, often referred to as afferent neurons, transmit information, im-
portant for both perception and motor coordination, from the peripheral sensors
of the body to the nervous system. It is worth noting that the term ”sensory”
should be specifically applied to afferent inputs leading to perception, while the
term "afferent” encompasses all data originating from the periphery, regardless of
its relation to sensation.

Motor neurons (aka efferent neurons) transmit commands from the brain or spinal
cord to muscles and glands, carrying efferent information. Interneurons can be
categorized into relay and local interneurons. The former have long axons and
send signals over long distances, linking different brain regions, whereas the latter
have shorter axons and connect with nearby neurons within local circuits.

Furthermore, each of these primary functional classifications can be subdivided
further. In the case of sensory system interneurons, their categorization can be
based on the type of sensory stimuli they respond to, and these initial classifica-
tions can be further refined based on factors like location, density, and size.

1.1.3 The glial cells

Glial cells vastly outnumber the neurons within the vertebrate central nervous
system, with estimates suggesting there are 2 to 10 times more glial cells than
neurons. Although historically named after the Greek word for “glue,” these cells
do not primarily serve as binding agents for nerve cells, instead, they envelop
the cell bodies, axons, and dendrites of neurons, playing crucial supporting roles.
Glial cells differ in both form and function from neurons, as they lack dendrites



and axons and do not share the same membrane properties, rendering them non-
electrically excitable and not directly involved in electrical signaling, the primary
domain of nerve cells.

The vertebrate nervous system contains various types of glial cells that exhibit sig-
nificant diversity in morphology, similar to the diversity observed in neurons, and
because of this, they can generally be divided into two main categories: microglia
and macroglia. Microglia act as immune system cells, becoming active in response
to injuries, infections, or degenerative diseases, and are involved in antigen pre-
sentation and phagocytosis.

Macroglia, which constitute around 80% of all cells in the human brain, encompass
three primary types: oligodendrocytes, Schwann cells, and astrocytes. Oligoden-
drocytes and Schwann cells, both relatively small with few processes, play a key
role in insulating axons by wrapping their membranous processes around axons
in a spiral, forming the myelin sheath. Oligodendrocytes are located in the cen-
tral nervous system and envelop one to 30 axonal segments (known as internodes)
depending on axon diameter, whereas Schwann cells are found in the peripheral
nervous system and envelop a single segment of one axon. Myelinating axons by
both oligodendrocytes and Schwann cells enhance signal conduction and organize
voltage-sensitive ion channels within distinct axonal regions known as nodes of
Ranvier.

Astrocytes, the third major type of glial cells, are named for their irregular, star-
shaped cell bodies and numerous processes; there are two main types of astrocytes,
protoplasmic and fibrous, with protoplasmic astrocytes predominantly found in the
gray matter, each serving distinct roles. They have processes that end in sheet-like
appendages, enveloping nerve cell bodies and synapses. In contrast, fibrous astro-
cytes are typically located in the white matter, possessing fine, elongated processes
containing tightly packed intermediate filaments.

Both types of astrocytes exhibit end-feet that make contact with and surround cap-
illaries and arterioles throughout the brain. Protoplasmic astrocytes play a crucial
role in enveloping nerve cell bodies and synapses with their sheet-like processes,
while the end-feet of fibrous astrocytes contact axons at the nodes of Ranvier.

The precise functions of astrocytes remain enigmatic, but there are several estab-
lished roles:

e Separate cells, insulating neuronal groups, and synaptic connections.

e Regulate K* concentration in the extracellular space between neurons.
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e Uptake excess K* to maintain efficient signaling between neurons.

e Perform housekeeping tasks, including the uptake of neurotransmitters from
synaptic zones after release.

e Support neighboring neurons by releasing growth factors.

1.1.4 The brain

The central nervous system exhibits bilateral symmetry and consists of two princi-
pal components: the spinal cord and the brain, with the brain being a remarkably
intricate organ that houses seven major regions, as depicted in Figures 1 and 4.
Modern advancements in radiographic imaging techniques have allowed for the
observation of these structures in real-time within living individuals, a significant
breakthrough that has revolutionized our understanding of the brain.

These innovative brain imaging techniques have become invaluable tools for assess-
ing the metabolic activity of specific brain regions during the execution of specific
tasks under controlled conditions, furnishing direct evidence regarding the connec-
tion between various types of behavior and specific brain regions.

11
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Figure 1.4: Position of major structures of the brain in relation to external land-
marks [19]

Researchers taking a cellular connectionist approach to the study of the brain have
made significant strides in pinpointing the neural processes underpinning our cog-
nitive abilities. These processes are predominantly located in the cerebral cortex,
the highly convoluted gray matter enveloping the two cerebral hemispheres. Each
hemisphere’s cortical surface is divided into frontal, parietal, occipital, and tem-
poral lobes, named after the cranial bones covering them, as depicted in Figure 2.

The characteristic deep folds on the cortex, known as gyri, and the recesses between
them, referred to as sulci or fissures, are evolutionary adaptations to accommo-
date a greater number of nerve cells within a confined space. Several prominent
gyri and sulci bear specific names, such as the central sulcus, which demarcates
the precentral gyrus, responsible for motor function, from the postcentral gyrus,
dedicated to sensory functions, as depicted in Figure 5. Each lobe of the cerebral
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cortex has its own specific functions:

e The frontal lobe is mainly involved in short-term memory, planning future
actions, and controlling motor functions.

e The parietal lobe plays a key role in somatic sensation, body image forma-
tion, and its relation to the external world.

e The occipital lobe is in charge of handling visual information.

e The temporal lobe, including its deep structures such as the hippocampus
and amygdaloid nuclei, plays a role in hearing, learning, memory, and emo-
tional processing.

IvViotor cortex .
(Precentral gyrus) Somatic sensory
cortex (Postcentral

gyrus)

Central sulcus

Parietal lobe

Frontal lobe
Occipital

lobe
Temporal lobe

Lateral sulcus /

Figure 1.5: The four lobes of the cerebral cortex [19]

The cerebral cortex is organized in two hemispheres that are apparently similar,
but not completely symmetrical in structure or function. Each of those primarily
manages sensory and motor functions for the opposite side of the body, making it
so that sensory input from the left side of the body crosses to the right side of the
nervous system before reaching the cerebral cortex, while the motor regions in the
right hemisphere govern movements on the left side of the body.
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1.2 The electroencephalogram

The contents of this section are based on [6], [33] and [2].

1.2.1 History of the EEG

The history of epilepsy is extremely ancient, encompassing various cultures such
as Mesopotamia, Akkadian, and ancient Babylonians around 2000 BCE (Before
Common Era), as well as the Greeks in the 5th to 4th century BCE. Over the
centuries, an array of therapeutic approaches emerged to address epilepsy, cate-
gorizing them into four primary methods: conventional, peripheral, trepanation,
and religious procedures.

The modern era of electroencephalography (EEG) has its origins in medieval times,
with early pioneers like Gilbert, Galileo, and Willis exploring the electrical prop-
erties of various substances. In 1672, Otto von Guericke developed the first elec-
trostatic apparatus capable of generating static electricity. However, EEG as a
distinct field truly began in 1875 when Richard Caton recorded electrical impulses
from the brains of monkeys and rabbits using a galvanometer, marking the start
of electrical brain activity recordings. It further advanced in 1890 thanks to Ernst
von Fleischl-Marxow, who demonstrated an important connection between ner-
vous system activity and muscle movements.

Concurrently, Beck’s investigations in the same era identified consistent electri-
cal activity in the brains of dogs and rabbits. The groundwork laid by Hermann
von Helmholtz, a German physician and physicist, for the precise measurement of
nerve conduction velocity is noteworthy.

In 1901, Dutch physiologist Wilhelm Einthoven introduced the first string gal-
vanometer, a pivotal milestone in modern electrocardiography. Subsequently, the
development of various forms of galvanometers followed, including Gustav Wiede-
mann’s six-coil galvanometer and the Helmholtz tangent galvanometer. The year
1910 witnessed Berger’s pioneering utilization of a string galvanometer for EEG
recordings, further propelling the field’s advancement.

From this juncture, the field of EEG rapidly progressed and began to be applied

extensively in clinical and experimental epilepsy studies as well as broader neuro-
logical research.
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1.2.2 Introduction to EEG

The Electroencephalogram (EEG) is a crucial technique used to record the electri-
cal activity generated by the human brain. Its remarkable sensitivity to temporal
changes makes it an essential tool for assessing the dynamic functioning of the
brain. In the realm of clinical diagnosis, EEG plays a pivotal role, especially in
the identification of patients with suspected seizures, epilepsy, or unusual neuro-
logical episodes. In epilepsy, their recordings typically show characteristic changes
during seizures and often include interictal epileptiform discharges (IEDs), such
as spikes (lasting < 70 usec), spike-and-wave patterns, or sharp-wave discharges
(lasting 70—200 usec) between seizures.

Beyond epilepsy, EEG finds applications across a spectrum of clinical scenarios.
An example is the role that it plays in monitoring the depth of anesthesia dur-
ing surgical procedures. Its sensitivity to rapid changes in neural activity proves
instrumental in the early detection of potential complications such as ischemia or
infarction. In both clinical and research settings, EEG waveforms can be averaged,
yielding evoked potentials (EPs) and event-related potentials (ERPs), thereby en-
abling the analysis of neural activity in response to specific stimuli.

EEG signals are primarily believed to originate from the cortical pyramidal neu-
rons situated in the cerebral cortex. These neurons are oriented perpendicular
to the brain’s surface, and the EEG records the summation of postsynaptic po-
tentials, both excitatory and inhibitory, emanating from synchronized neuronal
groups.

However, it’s essential to note that traditional scalp or cortical surface EEG record-
ings cannot capture the transient local field potential changes resulting from neu-
ronal action potentials. Furthermore, electrical activity from extracranial sources
or the environment can often obscure cerebral activity in EEG recordings. Thus,
the data acquired in EEG must pass through several biological and anatomical
filters as they traverse the brain, cerebrospinal fluid (CSF), meninges, skull, and
skin before they can be detected at the recording site. It is important to note that
electrical activities from scalp muscles, eyes, tongue, and even the heart can gen-
erate substantial voltage potentials, which can sometimes overshadow and obscure
cerebral activity, and temporary disruptions of the recording electrodes, known as
"electrode pop” artifacts, can degrade EEG quality or even mimic brain rhythms
and seizures. These electrical artifacts present a common challenge in EEG inter-
pretation but can be recognized by software or experienced observers thanks to
the distinctive features that many of them have.
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In its standard format, EEG is presented with voltage on the ordinate axis and
time on the abscissa axis, providing a nearly real-time representation of ongoing
brain activity (see Figure 6). During the digital recording and review process,
adjustments to various aspects of the EEG display can be made for better data
visualization and clarity. These adjustments include altering the sensitivity, also
known as ”gain,” which is generally measured in microvolts per millimeter, to
modify the amplitude of the waveforms. The time scale displayed, even referred
to as "paper speed,” can be adjusted to either shorter intervals for the rapid iden-
tification of brief EEG events such as epileptiform spikes or longer intervals for
analyzing slowly evolving rhythmic discharges. The application of digital filters
to reduce artifacts is to be approached with caution, as these filters may inadver-
tently distort EEG waveforms of interest.
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Figure 1.6: Normal EEG with typical montage. [6]

EEG functions based on the principle of differential amplification. It measures volt-
age differences between different electrode points, allowing distinguishable EEG
waveforms to be generated. Conventionally, when the active exploring electrode
(referred to as G1, or ”Grid 1”) is more negative than the reference electrode (G2),
the EEG potential vector points upward above the horizontal meridian, resulting
in an upward wave. Conversely, when the reference electrode has a more negative
charge, the EEG potential vector shifts downward, falling below the horizontal
meridian. Figure 7 illustrates other polarity possibilities.
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Figure 1.7: Polarity conventions and localization in EEG. [6]

A systematic approach to EEG analysis entails consideration of five key compo-
nents: calibration, orientation and nomenclature, montages, frequency bands, and
clinical context.

Before interpreting the EEG, it is essential to ensure proper calibration of the
study by introducing a known voltage into the system to verify uniform amplifi-
cation across all channels, as any irregularities in amplification at this stage could
significantly affect subsequent EEG interpretation. To further confirm the ac-
curacy of the cerebral signal, biocalibration is performed, which usually involves
having the patient open and close their eyes.

Understanding EEG nomenclature is paramount before commencing interpreta-
tion. In 1958, the International Federation for Electroencephalography and Clini-
cal Neurophysiology introduced a standardized electrode placement system known
as the 10-20 electrode positioning system (Refer to Figure 11 for the standard
International 10-20 electrode site placement strategy). This system established a
consistent method for the physical placement and identification of electrodes on
the scalp. The cranium is divided into proportional segments based on key skull
landmarks (nasion, preauricular points, inion) to ensure comprehensive coverage
of all cerebral regions. The 10-20 system refers to the percentage-based distances
between the ears and the nose, which are used to determine the placement of elec-
trode positions.
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Figure 1.8: The International 10-20 electrode placements. [6]

Electrode positions are identified based on adjacent cerebral areas: F for frontal,
C for central, T for temporal, P for posterior, and O for occipital regions. These
letters are accompanied by odd numbers on the left side of the head and even num-
bers on the right side, with left and right defined conventionally from the subject’s
perspective, “z” denotes midline locations from front to back, and “A” designates
auricular sites on the mastoid processes. Each electrode is situated in proximity to
specific cerebral centers, reflecting various cognitive functions. For example, F7 is
positioned near regions responsible for rational thought, Fz is close to intentional
and motivational centers, and F8 is in proximity to sources of emotional impulses.
The cortex surrounding locations C3, C4, and Cz is involved in sensory and mo-
tor functions. P3, P4, and Pz areas contribute to perceptual and differentiation
activities, while emotional processing centers are found near T3 and T4. Certain
memory functions are associated with T5 and T6, and the primary visual areas
are situated beneath points O1 and O2.

Calibration verification is essential to ensure uniform amplification across all chan-
nels.

18



1.2.3 EEG Recording System

The EEG recording system encompasses several components that work together
to capture, process, and interpret electrical brain activity. They include electrodes
equipped with conductive material, amplifiers with filters, an A/D converter, and
a recording device.

Electrodes come in various types, each with distinct characteristics. The main
electrode categories encompass disposable (gel-less and pre-gelled), reusable disc
electrodes (gold, silver, stainless steel, or tin), headbands, electrode caps, saline-
based electrodes, and needle electrodes. Each type serves particular purposes and
necessitates specific skin preparation and conductive mediums to ensure optimal
contact.

Amplifiers are designed to selectively amplify the physiological signal, filter out un-
wanted noise and interference, and safeguard both patients and electronic equip-
ment from voltage and current surges. Crucial requirements for a biopotential
amplifier include not influencing the monitored physiological process, avoiding
distortion of the measured signal, maximizing the separation of signal and inter-
ference, protecting the patient from electric shock hazards, and safeguarding the
amplifier from damage caused by high input voltages, such as those occurring dur-
ing defibrillation or electrosurgery.

The input signal to the amplifier encompasses five components: the desired biopo-
tential, undesired biopotentials, power line interference (50/60 Hz and its har-
monics), interference signals from the tissue/electrode interface, and noise. Well-
designed amplifiers can reject a substantial portion of these signal interferences.
The desired biopotential is manifested as a differential signal between the two in-
put terminals of the differential amplifier. The amplifier’s gain represents the ratio
of the output signal to the input signal, and this gain should be chosen to ensure
optimal signal quality and an adequate voltage level for further processing.

For clinical applications, a shielded room to minimize urban electrical background
noise is generally not required, but it may be employed for research purposes seek-
ing maximal information. In such research cases, amplifiers powered by batteries
and an optical cable connecting to a PC located outside the shielded area are typ-
ically used. Electrical/optical and optical/electrical converters are also required in
such setups. To eliminate line noise, low-pass filters with a cutoff below 50/60 Hz
are commonly used.

When digital recording devices are employed, analog signals from each channel are
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repeatedly sampled at fixed time intervals (sampling interval), and converted into
digital data by an A/D converter. The converter is then connected to a computer
system, where each sample is stored in memory. The resolution of the A/D con-
verter is determined by dividing the converter’s voltage range by 2 raised to the
power of the number of bits, with a minimum of 12 bits typically used (providing
4,096 value levels). It should have the ability to resolve 0.5 pV. It is required
for the sampling rate to be at least twice the highest frequency component of in-
terest. Analog filters are incorporated into the amplification unit to reduce low
frequencies originating from bioelectric potentials. A high-pass filter with a cutoff
frequency typically between 0.1-0.7 Hz is used to eliminate these low frequencies
and ensure the signal is band-limited. This is critical to prevent signal distortion
due to aliasing, which can occur if frequencies above the Nyquist limit are not
excluded before digitization.

The choice of a digital recording device is contingent on the intended purpose of
the EEG study. Digital systems provide the flexibility to display EEG waveforms
simultaneously in various time bases, from 30 s/page to 2 mm/s, facilitating an
accurate interpretation of events, such as ictal behaviors. In most digital EEG sys-
tems, the continuous analog signal is directly filtered before digitization to prevent
aliasing and stored as a digitized signal. The advantages of digital EEG record-
ing encompass the ability to readily review raw EEG data, apply digital filters,
perform spectral analysis, and utilize quantitative EEG (qEEG) techniques. The
use of digital systems also allows further storage and data compression, enabling
easier long-term storage and retrieval.
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1.3 Cognitive Function and Consciousness

The contents of this section are based on [19], [1], [14], [24] and [29].

1.3.1 Understanding Consciousness

To gain insights into the biological processes governing cognition, it is imperative
to transcend individual neurons and delve into the intricacies of information pro-
cessing within neural networks. This endeavor mandates not only the application
of techniques and methodologies from cellular and systems neuroscience but also
the incorporation of cognitive psychology insights.

The anterior section of the parietal lobe creates important mental maps of the
body’s surface and the space around it based on our experiences. The examina-
tion of alterations within the posterior parietal association cortex demonstrates
the pivotal role of selective attention in integrating internal body representation
with the perception of external spatial surroundings. This integration extends to
encompass the representation of the body concerning real, imagined, or remem-
bered visual space, with self-awareness embedded within this unified representa-
tion. Russian neuropsychologist A. R. Luria suggested that portions of the parietal
lobe constitute the most distinctly human aspect of cortical organization.

It is crucial to acknowledge that multiple forms of consciousness exist, each charac-
terized by distinctive neural representations. For instance, Edelman and Damasio
differentiate between primary (core) consciousness and higher-order (extended)
consciousness. Primary consciousness entails an awareness of objects in the world
and the capacity to generate mental images. This form of consciousness is not
exclusive to humans but is also shared by nonhuman primates and potentially
other vertebrate animals. In contrast, higher-order consciousness encompasses an
awareness of being conscious, representing a uniquely human trait. This form of
consciousness facilitates the conceptualization of past and future events, enabling
individuals to contemplate the consequences of their actions and emotions.

In their pursuit of a comprehensive reductionist approach to the study of con-
sciousness, Crick and Koch built upon Sigmund Freud’s perspective, which posits
that a significant portion of mental functions remains unconscious, including a
substantial portion of thinking. Our consciousness primarily concerns the sensory
representations of mental activities.
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Conventionally, consciousness is construed as a state of self-awareness. Eminent
philosophers of the mind, such as John Searle and Thomas Nagel, have outlined
three fundamental aspects of self-awareness: subjectivity, unity, and intentionality.

Subjectivity, within the context of self-awareness, presents a significant philosophi-
cal and scientific challenge. It suggests that every individual possesses an awareness
of self that serves as the epicenter of their experiences. Our experiences, encom-
passing thoughts, moods, sensations, triumphs, disappointments, joys, and pains,
are directly lived and carry a profound sense of reality, eclipsing the experiences
of others. The fundamental subjectivity of conscious experience raises questions
regarding the possibility of objectively discerning characteristics of consciousness
that transcend individual experience.

The unity of self-awareness refers to the idea that, at any given moment, our per-
ception forms a single, coherent experience in which all sensory inputs merge into
one unified perception.

Self-awareness exhibits intentionality, signifying that conscious experience links
successive moments with a sense of directed purpose. In the past, these attributes
of consciousness led some philosophers to embrace dualism, positing that the body
and the mind are distinct substances, with the body being physical and the mind
existing in a nonphysical, spiritual realm. However, most contemporary philoso-
phers of mind concur that consciousness emerges from the physical properties of
the brain.

The discourse on consciousness is characterized by two predominant camps. The
first, represented prominently by Daniel Dennett, asserts that consciousness is an
outcome of the computational activity in the brain’s association areas, rather than
being a discrete brain operation. The second camp, encompassing thinkers like
Francis Crick, Christof Koch, John Searle, Thomas Nagel, Antonio Damasio, and
Gerald Edelman, contends that consciousness constitutes a distinct phenomenon.
For a complete understanding of how our experiences are constructed, addressing
the issues of subjectivity, unity, and intentionality is paramount.

Consciousness exhibits unique properties not found in other mental functions, ren-
dering a biological explanation a profoundly challenging endeavor. Philosopher
Colin McGinn goes so far as to argue that consciousness remains beyond empirical
study due to inherent limitations in human intelligence, comparing it to how mon-
keys cannot comprehend quantum theory. Conversely, Searle and Nagel maintain
that consciousness is analyzable, but its complexity and subjectivity impede our
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ability to explain it. It stands apart from any other brain function and eludes
current scientific inquiry methods.

Among the three facets of consciousness, subjectivity proves the most empirically
challenging to dissect. As of now, we lack a comprehensive understanding of how
the firing of specific neurons leads to conscious perception. According to Searle,
we even lack an adequate theoretical model explaining how objectively observable
phenomena in someone else’s brain can produce a subjectively experienced sensa-
tion, such as pain. Given its inherently subjective nature, consciousness remains
elusive to contemporary scientific practices.

Nagel contends that the reductionist approach of current science cannot tackle
consciousness without a substantial change in methodology, one that incorporates
defining the elements of subjective experience. These elements are likely to be
fundamental constituents of brain function, akin to atoms and molecules in the
realm of matter. Nagel suggests that reductions from one object to another aren’t
problematic since we can theoretically comprehend how the properties of a partic-
ular type of matter arise from its constituent molecules. What we lack are rules
for extrapolating subjective experiences from the physicochemical properties of
interconnected nerve cells.

Nagel argues that our limited insight into the elements of subjective experience
should not hinder our quest to establish rules that connect conscious phenomena
to cellular processes in the brain. He posits that the necessary knowledge for a
more fundamental form of analytical reduction, transitioning from something sub-
jective (experience) to something objective (the physical), can only be acquired
through accumulating cell-biological data. According to Nagel, only after we've
formulated a theory of the mind that supports this novel and profound reduction
will we fully comprehend the constraints of current reductionism. Discovering the
elementary components of subjective consciousness, according to Nagel, may ne-
cessitate a biological revolution and likely a complete transformation of scientific
thought.

1.3.2 Disorders of Consciousness

Consciousness, at its core, represents the awareness of self and the surrounding
environment. To exhibit conscious behavior, individuals must maintain adequate
wakefulness and cognitive awareness of sensory, cognitive, and emotional experi-
ences.
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Severe acquired brain injuries (ABIs) result from catastrophic events that disrupt
the brain’s mechanisms controlling wakefulness (brainstem) and awareness (cor-
tex). The most severe cases lead to persistent disorders of consciousness (DoC),
including the vegetative state (VS) and the minimally conscious state (MCS). The
vegetative state is also known as post-coma unawareness or unresponsive wakeful-
ness syndrome (UWS). (Table 1)

DoC  Definition
Coma A state of being completely unconscious. The person is not awake, and the eyes remain constantly closed.
Also, there is no behavior suggesting the person is aware of self or surroundings.
Vegetative State, or VS A state of being awake, with eyes open, and of not showing signs of behavior suggesting the person is aware of
Unresponsive Wakefulness self or surroundings.
Syndrome, or UWS

Post-coma Unawareness, or PC-U
Persistent Vegetative State, or PYS A VS or UWS that lasts for more than a month,

Minimally Conscious State, A state in which the person has definite signs of behavior showing awareness of self or surroundings

or MCS Often, these behaviors may not be obvious or may not happen regularly.

Emergence from MCS, A state where the person can communicate in a way that can be understood. Or the person can recognize and
or EMCS use familiar objects.

* To show communication, the person can answer yes or no to questions. The answers may be said aloud,
written down, or shown with movements. Examples of these movements are head nodding or shaking,
or thumbs pointing up or down. The answers must be correct and consistent when repeated.

= For object use, the person can show that he or she knows how to use at least two different everyday objects,
such as a cup or a comb.

Recovery of Consciousness Achange in behavior that clearly shows the person is recovering awareness of self or surroundings. Recovery of
consciousness happens when the health status of someone in a coma or VS/UWS improves to MCS.

Figure 1.9: Terms Related to DoC [1]

Accurate diagnosis of DoC is crucial, especially during the early stages of recovery
post-injury, to ensure appropriate care. Individuals experiencing DoC for 28 days
or more require specialized, ongoing healthcare, as outcomes vary significantly.
Some individuals remain permanently unconscious, many require assistance with
daily tasks due to severe disability, some regain independence to varying degrees,
and a few may even return to work.

DoC can result from severe brain injury, which can be categorized as traumatic or
non-traumatic:

Traumatic brain injury (TBI) results from physical impacts, such as falls, car ac-
cidents, and head injuries sustained during sports.

Non-traumatic brain injury occurs when medical conditions affect critical bodily

systems, potentially limiting oxygen supply to the brain. Such conditions include
respiratory issues, heart attacks, strokes, and brain hemorrhages.
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Accurate diagnosis of DoC can be challenging but is vital, especially in the early
stages following a brain injury. Comprehensive clinical assessments, including
evaluations such as EMG, EEG, evoked potentials, and PCl scores, can aid in this
process.

Several characteristics of DoC provide insight into potential recovery outcomes,
supported by moderate evidence:

Individuals in a minimally conscious state (MCS) typically have a more promising
outlook for recovery compared to those in a vegetative state (VS). Additionally, pa-
tients with TBI generally show better recovery prospects than those with non-TBI.

A longer duration in a DoC is associated with a reduced likelihood of recovery
compared to more recent brain injury cases.

For DoC stemming from any cause, there is limited evidence for the following find-
ings:

A greater chance of recovery one year after a brain injury when diagnosed with
MCS compared to VS/UWS.

An increased risk of worsening disability over time when VS/UWS persists for
more than a year.

In cases of severe brain injury from trauma, most individuals will regain conscious-
ness but with severe disability, necessitating ongoing care and assistance with basic
activities.

1.3.3 Brain Death

Historically, the prevailing notion of death centered on the cessation of cardiores-
piratory function. This view, rooted in the belief that the loss of respiration and
circulation precedes the decline in brain function, was widely accepted.

In the 1950s, advancements in life support techniques, including cardiopulmonary
resuscitation (CPR) and positive pressure ventilation (PPV), challenged the tradi-
tional definition of death, casting doubt on the interdependence of bodily functions.
The concept of brain death, also known as death by neurologic criteria (BD/DNC),
emerged when neurologists began to propose that neurological function held equal,
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if not greater, significance than cardiorespiratory function in defining death.

The Harvard Brain Death Criteria, established in 1968, was the first clinical def-
inition of brain death and included both clinical and EEG criteria. The Uniform
Determination of Death Act, introduced in 1980, provided the legal foundation
for neurological determination of death in the United States. Adult guidelines
were later established in 1995 and revised in 2010 by the American Academy of
Neurology (AAN). The American Academy of Pediatrics released guidelines for
determining brain death in children in 1987, which were updated in 2011.

To comprehend the essence of brain death, it is necessary to explore its evolution
and the associated controversies. Debates often revolve around terminology, such
as "whole brain death” or ”brainstem death.” To promote understanding, experts
widely recommend using the term BD/DNC.

Advocates of neurologic criteria for diagnosing brain death argue that the human
body transcends its individual parts, asserting that death equates to the loss of
the entire person. The brain, as the principal architect of the body and controller
of vital functions, is attributed with a higher concept of personhood.

Opponents of BD/DNC have historically raised objections, asserting that brain
death primarily serves to facilitate organ donation and can be inconsistent with
perceived signs of life in some cases. Skeptics have questioned the diagnosis of brain
death in the presence of persistent neurological function or undamaged brain re-
gions.

Currently, there are multiple interpretations of BD/DNC:

e Whole brain death posits that severe damage must affect all key brain
structures (hemispheres, diencephalon, brainstem, and cerebellum). This
interpretation is supported by the United States and most other countries
with national brain death standards and typically does not mandate the loss
of neuroendocrine function.

e Brainstem death is recognized in the United Kingdom and several other
countries. From this standpoint, the death of the brainstem alone is con-
sidered equivalent to human death, as the brainstem contains the centers
responsible for consciousness and essential cardiac and respiratory functions.

e Higher brain formulation suggests that the destruction of the higher brain,
including the cortex and bilateral hemispheres, suffices for diagnosing BD/DNC,
given their critical role in cognition. However, this formulation contradicts
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traditional BD/DNC criteria, as individuals with a loss of higher brain func-
tion can still breathe.

Clinically, distinguishing between ”“whole brain” and ”brainstem” interpretations
of death may seem inconsequential. In most cases of severe brain injury, whether
due to various causes, irreversible brainstem damage follows a primarily supraten-
torial lesion.

Brain death can occur when the influx of blood or oxygen to the brain is inter-
rupted. Amongst the possible causes, are: cardiac arrest, heart attack, stroke,
blood clots, severe head injuries, brain hemorrhages, infections like encephalitis,
brain tumors, respiratory issues, or other medical conditions.

Diagnosing brain death primarily depends on clinical assessment. If a thorough

clinical examination, which includes two evaluations of brainstem reflexes and a
single apnea test, definitively confirms brain death, further testing is not required.
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Chapter 2

State of art

The following chapter will go into more detail about the study of coma, dealing in
particular with the methods associated with the recording of the electroencephalo-
graphic signal and its analysis, to obtain indicators capable of predicting whether
or not the patient will return to a state of conscience.

2.1 Why this field of study?

In addition to purely knowledge-oriented purposes, this area of study proves to be
of great importance to healthcare costs.

According to a 2020 German study [35] based on data collected between 2015 and
2017 in Germany, the average duration of LOS (length of stay) of patients in a
coma due to TBI (traumatic brain injury) was approximately 8 days and increased
along with the extent of the trauma suffered.

The average cost at the hospital level was €11,918, of which 66% was due to ad-
mission, 13% to surgery, 7% to radiology, 5% to other laboratory tests and the
remaining 9% to other hospital expenses. In the study, it was observed that the
increase in the average cost was significantly contributed by a minority of patients
suffering from serious and very serious TBIs, the same minority having the highest
mortality within 6 months (66.7% for very serious and very serious TBIs). 57.7%
for severe TBI). Considering the limited number of resources available to hospital
facilities and the need to optimize them, researchers began to ask themselves how
they could try to predict which patients could achieve a positive outcome. Among
the possible methodologies taken into consideration in order to achieve this objec-
tive, one that has given encouraging results is the analysis of EEG signals.
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2.2 Scales to evaluate awarness [20]

In order to efficiently evaluate the patient’s status, numerous assessment scales
have been created. They were created based on some main features such as: inter-
rater reliability, ease of use, predictive value, and reproducibility. Four scales will
be introduced below: Glasgow Coma Scale (GCS), Reaction Level Scale (RLS85),
Full Outline of UnResponsiveness (FOUR) score, and Cerebral Performance Cat-
egory (CPC) score.

The GCS is the most recognized and widely accepted coma rating scale, used for
rapid pre-hospital assessment, evaluation of disease severity, prediction of mor-
bidity and mortality prognosis, and management of comatose patients, and it has
been incorporated into various trauma assessment systems. It has limitations in
its usefulness for children younger than 3 years of age and before language acqui-
sition. To overcome this problem a pediatric GCS has been developed, but its
reliability has not yet been sufficiently proven. Another important limitation of
the GCS is the unreliability of the score associated with patients with fixed and
dilated pupils (they are evaluated as more serious than they are). The GCS is
based on three components: eye-opening, verbal response, and motor response,
with each component being assigned a score of up to 4-5 based on the observed
response, and the values are then summed.

RLS85 is a scale that, albeit more difficult to learn, has proven utility and benefits
but it is used almost exclusively in Scandinavia. The RLS85 is used to evaluate the
clinical course of patients in coma and is considered a reliable tool for assessing its
severity. Its limitations are the lack of information relating to reliability and low
popularity. Similarly to the GCS it is based on the same three components (eye
opening, verbal response, and motor response), which are assigned scores from 1
to 5 where the level of consciousness measured increases with the numerical value
assigned.

FOUR is a coma rating scale that is gradually becoming more widely used. It
is particularly useful for patients with fluctuating consciousness, as it captures
changes in their neurological status over time. It is designed to evaluate the depth
and duration of coma, as well as the presence of brainstem reflexes and breath-
ing patterns. It is considered a complete and reliable tool for the evaluation of
patients with altered levels of consciousness. Compared to other rating scales it
is considered easier to learn to use. Four components are assessed in the FOUR
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scales: ocular response, motor response, brainstem reflex, and respiration. Each
component is associated with a score from 1 to 4 where a higher score implies a
higher level of consciousness.

The Cerebral Performance Category (CPC) score is a commonly used scale for as-
sessing neurological outcomes following cardiac arrest, ranging from recovery from
a coma to brain death, evaluating both functional status and quality of life, with
a final outcome scored from 1 to 5, where 1 indicates good brain performance and
5 indicates brain death. [3]

In addition to assessing consciousness, evaluating the long-term outcome of the
patient is crucial. The Glasgow Outcome Scale (GOS) is the scale used for this
purpose in the patients whose EEG data are analyzed in this thesis. The GOS
categorizes patients into five levels based on their functional recovery, ranging from
death to good recovery. Assessing the degree of disability or independence a pa-
tient achieves after the acute phase is important, as it provides valuable insights
into long-term prognosis and quality of life.

2.3 Data acquisition tempistics

Having already discussed the importance of the electroencephalographic signal, it
is important to know when these data are extracted. Since the ultimate goal of
this type of study is to find a way to predict a patient’s eventual awakening from
a coma, the signal of interest is normally taken from when the patient is admitted
until the first few days (normally within 24 hours from admission, but in some
studies it can reach up to 72 hours). Obviously, to verify whether a predictive
method is reliable it requires validation. To this end, the outcome of the patients
whose signal was taken is recorded in the form of a value belonging to a scale
such as the GCS. Recording is carried out in the majority of studies viewed 3 or
6 months after hospitalization.
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2.4 Outcome prediction methodologies

Various studies have been carried out to try to predict the patient’s outcome,
among these some have used the EEG signal acquired in the absence of external
stimuli, others have been based on the auditory evoked potential (or other evoked
potentials) and still others have made use of neural networks.

Employing neural networks for prediction without needing preselected features is
both the simplest and the most problematic method. On one hand, this approach
often produces promising outcomes because neural networks can learn patterns
directly from the raw data. The network can discern patterns that facilitate accu-
rate predictions by examining an extensive collection of acquired signals and cor-
responding patient outcomes. However, a significant drawback of this technique is
its “black box” characteristic: although the network can make reliable predictions,
it offers little insight into the processes it uses to arrive at those predictions, which
complicates efforts to understand and analyze the underlying predictive mecha-
nisms.

Prediction via auditory discrimination occurs by observing this particular type
of evoked potential. Several studies have been able to ascertain that subjects in
whom there is an improvement in the ability to distinguish sounds during the early
stages of coma are more likely to have positive outcomes (intended as awakening or
survival) within 3 months. In particular, it has been noted that the deterioration
of this ability is common in patients who do not survive.

In predictions based on EEG (without EPRs), different patterns or indicators are
taken into account which, based on studies, have been classified as favorable or
unfavorable. For example, continuous pattern, diffusely slowed (a continuous pat-
tern with a dominant frequency strictly less than 8 Hz), or normal (a continuous
pattern with a dominant frequency greater than or equal to 8 Hz) are considered
favorable patterns, while isoelectric, low-voltage, or burst-suppression with identi-
cal bursts (bursts that are identical to each other and have interburst intervals of
at least one second occurring either without activity or with low-voltage activity
present) as unfavorable patterns.
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2.5 Examples of studies on prediction based on
various methods

This section reports seven examples of studies focused on the use of EPR to pre-
dict the outcome of a patient in a coma.

2.5.1 First Example [22]

This study aims to use raw EEG data to train and validate a convolutional neural
network (CNN)-based classifier for predicting neurological outcomes in patients
with postanoxic encephalopathy after cardiac arrest, particularly focusing on as-
sessments made 12 hours after cardiac arrest. The different classes are based on
the Cerebral Performance Category (CPC) scale.

The EEG signals for this study were recorded using 21 channels at a frequency of
256 Hz, from 12-24 hours post-cardiac arrest to 5 days thereafter. The patients’
outcomes were assessed 6 months later using the CPC, with scores of 1-2 classified
as ‘'good’ and scores of 3-5 classified as ‘poor’.

The EEG signals were filtered within a 0.5-35 Hz frequency range, down-sampled
to 64 Hz, and re-referenced using a longitudinal bipolar montage. Training and
validation of the CNN utilized 5-minute segments of clean EEG data recorded at
12 and 24 hours post-cardiac arrest. These segments were split into 10-second,
non-overlapping intervals, creating 30 fragments per time point for each patient.
Data from 80% of the patients were employed for training the network, while the
remaining 20% were reserved for validation. The outcome probability for each
patient at a given time was derived from the average probability of the 30 snippets
within the 5-minute segment. The network was built using Python with Keras and
Theano, and ran on a CUDA-enabled NVIDIA GPU (GTX-1080) on a CentOS 7
system. The Adam optimizer was used for stochastic optimization with parame-
ters: learning rate of 0.00002, 81 = 0.91, 82 = 0.999, and € = ¥ 10-8. Categorical
cross-entropy was used as the loss function, and the final output was a binary clas-
sification of “good’ or ’poor’, reported in terms of sensitivity and specificity.

The CNN training process took around 50 minutes to complete and the predictions
were more accurate at 12 hours post-cardiac arrest compared to 24 hours, with an
AUC of 0.89 versus 0.76 in the validation set. In the validation, effectuated with
an independent dataset, the model achieved a sensitivity of 58% and a specificity
of 100% for predicting poor outcomes at 12 hours post-cardiac arrest, while, for
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predicting good neurological outcomes, the sensitivity was 58% with a specificity
of 97%.

2.5.2 Second Example [34]

This study aims to present a general method for decoding stimulus categories on a
single-trial basis, with the objective of reducing prior assumptions. In particular,
the proposed method, through a data-driven approach, manages to estimate the
onset and duration of the effect of interest, allowing to optimize the use of the
measured voltage. The scalp voltage topography of the electroencephalographic
signal appears to contain information pertaining to the stimuli perceptible at the
single-trial level and usable for decoding. A topographic clustering model, the
Gaussian Mixture Model (GMM), is applied to separate the stimulus categories
and classify which condition their sets of single-trials belong to. This multivariable
decoding method enables the identification of crucial voltage patterns and their
associated timings that differentiate the functional characteristics between the two
experimental conditions.

The topography consists of a series of voltage values recorded from the elec-
trodes at each moment in time. Subsequently, each topography is normalized using
its instantaneous Global Field Power (GFP), ensuring that the classification al-
gorithm relies solely on the topography’s shape. A GMM probability distribution
is then used to reduce the numerous topographies into a few but more meaning-
ful template maps. In order to estimate the GMM distribution, an expectation-
maximation procedure is used which, by iterating the estimates of the model pa-
rameters (such as priors, means and covariance matrices), maximizes the prob-
ability and decreases the functional error. The covariance matrices used in this
algorithm are initially obtained by considering the topographies of the clusters
estimated by a k-means clustering algorithm. Due to the small size of the training
set in this study, the covariance matrices were limited to being exclusively diag-
onal. The GMM model is applied to each condition separately, thus resulting in
one model for each condition. The number of Gaussians was assumed as a priori
hypothesis. Each Gaussian is linked to a specific topography from the original
dataset using the GMM model.

Since the misclassification error and the posterior probability are inversely pro-
portional, the latter is calculated to minimize the former. Furthermore, posterior
probabilities, rearranged according to their original temporal order, are used to
study stimulus-related information. It follows that in the various trials there is a
time series of posterior probabilities for each template map.
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The posterior probabilities of the model and dataset are calculated for both
conditions, in order to identify discriminative time periods between them. It is
used the Bayers Factors (BF) to identify when the model best explains that condi-
tion. They can be calculated at each latency and for each trial, allowing to assign
a specific observation to the template map of one of the models.

The number of Gaussians of the two models is decided by taking into ac-
count the average performance of the classification along the ten divisions in the
cross-validation procedure. The performance of classification in cross-validation is
calculated by manipulating the threshold of the discrimination function and eval-
uating the area underwritten by the ROC curve. Having two conditions and ten
splits gives twenty areas under the curve (AUC) values. This procedure is not
carried out for single trials but is carried out for trials or sub-set trials.

2.5.3 Third Example [18]

This study aims to improve the ability to predict the outcome of post-cardiopulmonary
resuscitation coma by increasing the accuracy of EEG assessments. To achieve so,
this research investigates the combined use of background EEG patterns and EEG
reactivity (EEG-R) to improve predictive sensitivity and specificity.

The study involved 160 comatose patients post-CPR who were between 18 and
80 years old, in a coma for at least 24 hours post-CPR with a GCS score< 8,
and undergoing assessment during normothermia; but who were not: using central
nervous system inhibitors, terminally ill, or in a state of peripheral neuropathy.
EEG was performed through the standard electrode placements, using a 32-channel
digital system, with recordings lasting at least 30 minutes. The acquired signals
were interpreted by two certified physicians, with discrepancies resolved by senior
EEG experts. Follow-up was conducted 3 months post-coma via phone interview,
using the Glasgow Outcome Scale (GOS) to classify outcomes as awakening (GOS
3-5) or non-awakening (GOS 1-2).

Statistical analyses were performed using SPSS version 21.0. Continuous variables
were analyzed using t-tests or Mann-Whitney U tests, while categorical variables
were assessed with chi-squared tests. Consistency of EEG interpretation was mea-
sured using the Kappa test, and receiver operating characteristic (ROC) curves
were used to determine the best cut-off values for predicting recovery. Amongst
the studied metrics were present specificity, sensitivity, positive predictive value
(PPV), and negative predictive value (NPV).
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62 (38.75%) of the 160 patients awakened within 3 months. The awakening group
had a significantly higher median GCS score compared to the non-awakening
group (P=0.000), and the ROC analysis showed an area under the curve of 0.708
(P=0.000) for GCS, with an optimal cut-off value of 3.5 for predicting awakening.

EEG patterns classified as slow wave or continuous patterns (category |) were more
prevalent in the awakening group, with the slow wave pattern (category I) appear-
ing in 61.3% of the awakening group compared to 19.4% in the non-awakening
group. Significant differences were observed in the proportions of category la and
Ib patterns between the two groups (P=0.000 and P=0.076, respectively). Inter-
rater reliability for EEG interpretation was high (Kappa=0.864, P=0.000).

Among the EEG patterns, the slow wave pattern was the most accurate in predict-
ing awakening, achieving 73.1% accuracy, 61.3% sensitivity, and 80.6% specificity.
The sensitivity was higher for the slow wave pattern compared to the la and Ib
patterns and was superior to GCS in specificity. EEG assessments performed at
different time points showed that the slow wave pattern within 8-14 days post-
coma provided the highest accuracy (100% sensitivity and specificity).

Those results suggest that EEG grading, especially within the time period of 8-14
days, offers valuable prognostic information and should be considered in clinical
decision-making.

2.5.4 Fourth Example [28]

This study aims to evaluate the prognostic significance of single EEG patterns in
postanoxic comatose patients, defined according to the ACNS terminology, and
to analyze how their predictive value changes during the first 12-72 hours after
cardiac arrest (CA). The 211 patients whose signals have been used in this study
were treated with mild endovascular therapeutic hypothermia (TH), with their
core temperature maintained at 32-34°C for 24 hours. This study excluded the
patients whose TH was interrupted, who didn’t show an EEG within 72 from CA,
whose CA had non-cardiac origin, who presented intra-operative CA, who suffered
from other severe neurological injuries, and ones who had severe extra-neurological
pathology with a life expectancy under six months.

The acquisition of the EEG recordings started as soon as possible after the patients
were admitted to ICU, and were classified based on the time that intercurred be-
tween the CA and the signal acquisition, falling under four possible time-frames:
12 hours, 24 hours, 48 hours, and 72 hours.
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EEGs were classified either based on ACNS terminology, focusing on continuity,
voltage, and reactivity, or taking into account burst suppression with identical
bursts at 12 and 24 hours. Recordings with ictal or periodic epileptiform activity
were categorized separately.

An interviewer blind to the EEG finding assessed, using the Glasgow Outcome
Scale (GOS), the neurological outcomes 6 months after cardiac arrest, categoriz-
ing as "good” (GOS 3-5) or “poor” (GOS 1-2).

To effectuate the statistical analysis, for each time-frame of every EEG pattern
were calculated the following statistical indicators: sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV).

Through this study was observed that continuous and nearly continuous patterns
were only present in patients with good outcomes at 12 hours; by 24 hours, burst-
suppression and isoelectric patterns were not observed in patients with good out-
comes, and at 48 and 72 hours, only continuous, nearly continuous, and epilepti-
form discharges were seen in patients with good outcomes.

For poor outcomes, burst-suppression with highly epileptiform discharges and iso-
electric patterns were observed at 12 hours; at 24 and 48 hours a variety of patterns,
including burst-suppression and isoelectric, were linked to poor outcomes, and at
72 hours, suppression and isoelectric patterns signaled poor outcomes.

This study confirmed that specific EEG patterns can predict outcomes with high
accuracy at different time points post-CA, bringing the example that continuous
and nearly continuous patterns at 12 hours reliably predict good outcomes, while
isoelectric and burst-suppression patterns predict poor outcomes from 24 hours
onwards.

2.5.5 Fifth Example [10]

This study explores the potential of using high-density electroencephalography
(EEG) to predict metabolic activity, diagnose states of consciousness, and forecast
patient outcomes.

The patients taken into account in this study were either diagnosed with disorders
of consciousness or they had emerged from such conditions and were compared
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with a control group of healthy individuals.

Patients underwent assessments using: the Coma Recovery Scale-Revised when
they did the PET and EEG evaluations (the diagnosis was based on the re-
sults from multiple CRS-R evaluations); the Glasgow Outcome Scale-Extended
12 months later (to determine patient outcomes). PET scans were analyzed to
diagnose either complete hypometabolism or partial preservation of brain activity,
which informed the diagnosis of PET-negative or PET-positive states.

High-density EEG signals were acquired during fluorodeoxyglucose (FDG) uptake
using a 256-sensor electrode net and a sampling rate of 250 Hz or 500 Hz. Were
analyzed data from 89 patients with disorders of consciousness. Among them,
11 patients emerged from a minimally conscious state (MCS), four had locked-in
syndrome, and there were 26 control subjects.

The data were preprocessed to achieve artifact removal and decomposed into spec-
tral components using the FieldTrip toolbox. After the preprocessing was calcu-
lated: power estimates (for delta, theta, and alpha frequency bands) and connec-
tivity between EEG channels (using the debiased weighted phase lag index ). The
connectivity data was used to construct symmetrical matrices, which were then
analyzed to calculate various network metrics such as participation coefficient,
clustering coefficient, modular span, characteristic path length, and modularity.

The connectivity matrices were thresholded to retain significant connections and
binarized for network analysis. Key topological characteristics of the networks
were calculated across different scales, capturing both local and global properties
of brain connectivity. Metrics were computed for each frequency band, resulting
in a comprehensive set of 21 metrics per patient.

The study found that specific EEG network metrics correlated strongly with be-
havioral assessments and PET diagnoses and that these metrics also demonstrated
prognostic value, accurately predicting long-term patient outcomes. This kind of
assessment managed to identify patients misdiagnosed by clinical consensus, high-
lighting the potential of EEG metrics to complement traditional diagnostic meth-
ods and reduce misdiagnosis rates.

2.5.6 Sixth Example [32]

The study aims to assess the prognostic value of EEG features (of temporal, fre-
guency, and spatial domains) collected with a limited frontoparietal montage for
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comatose patients.

This retrospective study involved 81 comatose patients with acquired brain injuries
(ABI) admitted to the ICU who satisfy the following criteria:

e GCS score of 7 or lower with specific subscale scores (E=1, V<2, M<4).

e EEG recordings using a frontoparietal montage (channels F3, F4, P3, P4)
taken within four weeks of ICU admission and lasting at least 30 minutes.

e EEG monitoring starting at least 24 hours after the cessation of sedatives.
e Availability of 60-day Glasgow Outcome Scale (GOS) scores.
e No diagnosis of brain death before or during EEG monitoring.

¢ No return to consciousness during EEG monitoring.

The GOS scores split patients into two outcome-based classes: favorable outcome
(GOS = 3) and unfavorable outcome (GOS < 2).

Continuous EEG recordings were acquired through a limited frontoparietal mon-
tage focused on four electrodes (F3, F4, P3, P4, and Cz as the reference), using
a multi-lead device with a sampling rate of 250 Hz. The extracted features from
these recordings comprised: the burst suppression ratio (BSR) in the time domain;
the root mean square (RMS) in the time domain; the power ratio of 8 to a rhythm
(8/a) in the frequency domain; and the phase-lag index (PLI) between F3 and P4
in the spatial domain.

The patients’ data were analyzed using partial correlation to eliminate redundant
factors and multiple correspondence analysis to explore group discrimination, while
logistic regression was employed to develop EEG feature-based predictors.

For the overall patient group, increased BSR, reduced RMS, higher 8/a ratio, and
lower PLI (F3, P4) were significantly associated with unfavorable outcomes, show-
ing high area under the curve (AUC) values. Amongst the ones who suffered from
strokes, notable features were BSR, RMS, J/total, /6, and PLI (F3, P4), while,
amongst the TBI patients, only PLI (F3, P4) showed significance. The combined
use of BSR and PLI (F3, P4) yielded the highest predictive accuracy.
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The study managed to demonstrate that EEG features from a limited frontopari-
etal montage are valuable for predicting outcomes in comatose patients, highlight-
ing the value that PLI (F3, P4) could bring.

2.5.7 Seventh Example [36]

This study aims to improve the diagnostic ability in cases of prolonged disorders of
consciousness (pDOC) by analyzing the patient’s brain connectivity using quan-
titative electroencephalography (qEEG), through the research of EEG markers
capable of differentiating between pDOC patients and healthy controls.

Inclusion criteria required participants to have been unconscious for over 28 days,
undergone multiple CRS-R assessments by professional doctors, had more than
12 hours of video EEG monitoring, completed a head MRI, maintained relatively
intact intracranial structures without skull defects, and provided comprehensive
clinical data, while exclusion criteria involved poor data quality due to significant
artifacts, use of sedatives or anesthetics during data collection, and unstable vital
signs. Nine healthy individuals were included as a control group.

Collected patient data included age, sex, primary disease, brain injury regions, and
admission CRS-R scores. MRI scans were performed using a SIEMENS SKYRA
3T scanner, capturing 3D-T1-MPRAGE sequences with specific parameters (TR
= 2000ms, TE = 3.0ms, slice thickness = 1mm, flip angle = 9°, slice gap = 50%,
and resolution matrix = 256 x 256).

The EEG recordings were acquired with a sampling rate of 500 Hz using 21
Ag/AgCl electrodes positioned according to the international 10-20 system, while
the participants remained relaxed with eyes closed during recording. The record-
ings were preprocessed by band-pass filtering (0.5-45 Hz) and using independent
component analysis (ICA) to remove the artifacts.

The EEG power spectrum was analyzed using specialized data analysis tools. The
DTABR ratio, defined as %943was computed to evaluate the balance between slow
and fast brain activities. Pearson’s correlation coefficient was used to assess linear
dependencies between EEG channels. Granger causality analysis was employed
to evaluate directional interactions between brain regions, while phase transfer
entropy (PTE) quantified information flow between EEG channels. Due to the
non-normal data distribution, non-parametric tests were used to conduct statisti-
cal comparisons of EEG connectivity metrics between the pDOC group and the
control group. To evaluate how effective the EEG connectivity measures were in
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diagnostic were constructed the receiver operating characteristic (ROC) curves.

The study’s results revealed that patients with prolonged disorders of conscious-
ness (pDOC) showed significantly higher delta band power and lower alpha and
beta band power compared to healthy controls, alongside an elevated DTABR
ratio, indicating a shift towards slower brain activities. Pearson’s correlation coef-
ficients indicated higher connectivity in the delta, theta, and alpha bands within
the pDOC group. Furthermore, Granger causality analysis identified reduced di-
rectional connectivity between hemispheres, and phase transfer entropy (PTE)
values were lower across all frequency bands, suggesting decreased information
flow.
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Chapter 3

Methods

3.1 Dataset

The dataset includes EEG signals from thirteen patients who entered a coma fol-
lowing a traumatic brain injury (TBI). The signals were supplied already low-pass
filtered at 30 Hz and resampled at 64 Hz.

Because of the important damage suffered by the patients often compromising the
integrity of the cranium itself, the EEG signals were acquired taking into account
4 channels, corresponding to electrodes FP1, FP2, T3, and T4.

The thirteen patients belong to three different “classes”. The classes are based on
the patient’s outcome measured through the Glasgow Outcome Scale.

The three classes correspond respectively to: GOS 1 (no awakening from coma and
eventual death); GOS 3 (the patient awakens from coma, but suffers from severe
disability with permanent need for assistance); GOS 5 ( the patient awakens from
coma, fully recovers or suffer from minor disability with resumption of normal life).

3.2 Preprocessing

The first step carried out in the signals preprocessing is high-pass filtering of the
signals at 0.5 Hz using a fifth-order butter filter. This filter application has the
task of alleviating low-frequency noise. The cut-off frequency was chosen so as to
preserve all the bands of interest in the EEG signal.

The successive step to the high-pass filtering was the removal of the artifacts due
to the detachment of the electrodes. This process was carried out through visual
removal assisted by a function that flags a sequence of spikes of an amplitude not
congruent with brain activity. The removal of the flagged part of the signal was
carried out in all four channels so that the time intervals represented are always
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the same regardless of the channel of the same patient.

Assuming that the assumption of stationarity of the comatose patient in a time
span of 5 seconds is valid, it was decided to divide the signals into epochs of 5
seconds.

To increase the dataset’s numerosity, a data segmentation technique was imple-
mented, dividing the original dataset into 20 separate datasets. In 19 out of the
20 datasets, each represented 50 minutes of the EEG trace, split into 600 epochs,
while Dataset 7 contained only 40 minutes of data.

Datasets 1 through 7 included signals from all 13 patients. However, in Datasets
8 and 9, no signal from the 11th patient was included due to the shorter length of
their EEG trace. In Dataset 10, signals from both the 1st and 11th patients were
excluded for the same reason. The 2nd patient’s signal was additionally excluded
in Datasets 11 through 14, the 9th patient’s in Datasets 15 through 17, and the
12th patient’s in Datasets 18 through 20. The segmentation process was halted
after 20 datasets to avoid creating datasets with only one patient in a class.

3.3 Indicators Extraction

A total of 17 indicators were calculated: 12 of connectivity and 5 of non-connectivity.
Their descriptions that will be reported in this section are based on [5], [12], [27],
and [8]

The indicators of connectivity are:

e Spectral Coherence: it measures the degree of consistency or coupling
between two signals across different frequency bands in the spectrum. Spec-
tral coherence can range from 0 to 1, where higher values indicate stronger
coupling or greater consistency between signals in the considered frequency
bands. Spectral coherence is used to evaluate functional connectivity or syn-
chronization between different brain regions, which can be related to cogni-
tive, behavioral, or pathological processes. It helps in identifying how brain
regions communicate with each other over various frequencies.

Colf) = 1SN
S s, )

y

where Sy/(f ) is the cross-spectral density between signals x and y, and Sx(f )
and Sy(f) are the power spectral densities of x and y, respectively.
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e Phase Coherence: It measures the temporal consistency of the relative
phases between two signals. Phase coherence can range from 0 to 1, with
higher values indicating greater consistency or synchronization of relative
phases between signals. Phase coherence is used to evaluate temporal syn-
chronization or communication between different brain regions, which can
be related to information processing and neural integration processes. It is
essential for understanding the timing relationships in neural oscillations.

(el exN-by )|
vAf) = ey e o)

where ¢«(f) and ¢,(f) represents the phases of signals x and y at frequency

7.

e Amplitude Coherence: it assesses how well the relative amplitudes be-
tween two signals match or remain consistent. Amplitude coherence can
range from 0 to 1, with higher values indicating greater consistency or syn-
chronization of relative amplitudes between signals. Amplitude coherence is
used to evaluate the coupling or synchronization of activity intensities be-
tween different brain regions, which may be related to information processing
or pathological phenomena. This measure is particularly useful in detecting
amplitude-based synchronization.

>
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Amplitude Coherence = ~

where Ax(t) and Ay(t) are the amplitudes of signals x and y at time t.

» Partial Directed Coherence (PDC): it is a measure of partial directional
connectivity between two signals, taking into account the influences of other
signals in the system. PDC values range from 0 to 1, with higher values
indicating greater directionality or flow of information from one signal to
another. PDC provides information about the direction of information flow
between different brain regions, indicating which regions influence others in
a dynamic system. It helps in understanding causal relationships in multi-
variate data. Ai(F)

PDCij(f) = efs=——
i(f) by
k=1 |Aik(f)|

where Aj(f) is the element of the Fourier transform of the model coefficients
matrix.
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e Mutual Information (MI): it quantifies the joint entropy between two
signals, indicating the amount of information shared between them, with
values ranging from 0 to og where higher values denote a greater degree
of shared information or correlation between the signals. Ml measures the
correlation or dependence between different brain regions, reflecting neural
processes related to cognitive or pathological states, and quantifies how much
information about one signal can be inferred from another.

MI(X, Y) =H(X)+H(Y) - H(X, Y)

where H(X) and H(Y ) represents the marginal entropies of the considered
vectors X and Y, and H(X, Y ) denotes their joint entropy.

e Phase Locking Value (PLV): it is a measure of the phase coherence be-
tween two signals in a given frequency range. PLV values range from 0 to
1, with higher values indicating greater coherence or synchronization of rela-
tive phases between signals. The PLV provides information on the temporal
synchronization of relative phases between signals, indicating the temporal
coherence of recorded brain activities. This measure is crucial for assessing
phase synchronization in oscillatory brain activities.

1 =
PLV =.7 " giten

n=1
where Ag, is the phase difference between the two signals at time n.

e Phase Lag Index (PLI): it is a measure of the asymmetric phase coher-
ence between two signals, evaluating the consistency of the phase differences
between the signals. PLI values range from 0 to 1, with higher values in-
dicating greater asymmetry in the distribution of phase differences between
signals. PLI provides information on the directionality of communication or
synchronization between brain regions, highlighting connections that show
consistent asymmetry in the relative phase.

LI = .+ T sign(sin(agn).
.N .

n=1
where A¢, is the phase difference between the two signals at time n.

e Phase Slope Index (PSI): it is a measure of high temporal resolution phase
coherence between two signals, evaluating the directionality of communica-
tion based on rapid changes in relative phase. PSI values range from O to
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1, with higher values indicating greater short-term phase coherence between
signals. PSI provides information about the directionality of communication
or synchronization between brain regions, focusing on rapid changes in the
relative phase between signals.
PSI = %
Af

where Ag represents the phase difference and Af defines the frequency dif-
ference.

Directed Transfer Function (DTF): it measures the direction of infor-
mation transfer between two signals, indicating the extent of information
flow across different frequencies. With values ranging from 0 to 1, higher
scores reflect stronger directionality and information transfer between sig-
nals in specific frequency bands. It highlights the frequency bands where
significant information flow occurs between brain regions.

Hi(f)

DTF(f) = s———
o1 [HadF)I?

where Hijj(f) represents the element of the transfer matrix derived from the
Power Spectral Density.

Phase Transfer Function (PTF): it is a measurement of the phase rela-
tionship between two signals, evaluating the phase difference between signals
at different frequencies. PTF values range from —oo to +oqg indicating the
relative phase difference between signals at different frequencies. PTF pro-
vides information on the phase relationship between two signals, highlighting
the relative phase difference in different frequency bands.

orp - Gilf)
Af
where ¢j(f ) represents the phase difference, and Af dfines the frequency

difference.

Power Correlation: it measures the statistical relationship or dependence
between the amplitudes of two signals by evaluating their power correlation.
Power Correlation values range from -1 to 1, where positive values indicate
positive correlation, negative values indicate negative correlation, and a value
of zero indicates no correlation. A positive correlation means that when the
amplitude of one signal increases, the amplitude of the other signal also tends

45



to increase, and vice versa. In contrast, a negative correlation means that
as the amplitude of one signal increases, the amplitude of the other signal
tends to decrease.

> cCorr(P, P;)
Power Correlation=__ %

N

where P;and P; are the power spectra of signals i and j, and N is the number
of signals.

e Granger Causality: it is a statistical method used to determine the causal
relationship between two signals by assessing whether one signal can predict
the future values of another signal. Granger Causality values range from 0
to 1, with higher values indicating greater evidence of causality from one
signal to another. Granger Causality provides information on the direction
and strength of causality between two signals, based on the predictive ability
of one signal over the other.

X causes Y if Var(Y |Ypast) > Var(Y |Ypast, Xpast)

where Var(Y |Ypast) is the variance of Y given its past values, and Var(Y | Ypast, Xpast)
is the variance of Y given its past values and the past values of X.

The indicators of non-connectivity are:

e Rhythm Power: it refers to the energy distribution of the EEG signal in
different frequency bands, such as delta, theta, alpha, beta, and gamma. The
power of the rhythms characterizes brain activity and identifies anomalies or
distinctive patterns associated with different conditions. The total spectrum
sums to 100% of the signal power, while the ratio between the power of each
band and the total spectrum provides the relative powers of the rhythms.

P _ zfeband P (f)
hythm — — 7,
rhythm P P(f)

where P(f) is the power at frequency f, and the band corresponds to the
specific rhythm frequency range.

e Median Frequency: The median frequency is the frequency at which half
of the signal’s spectral energy is below it and half above it. It provides an
estimate of the dominant or prevalent frequency in the EEG signal. This is
important for understanding the central frequency of recorded brain activity,
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which can vary based on mental state, age, physiological conditions, and
pathologies. It is calculated by identifying the frequency where the partial
cumulative power spectral density (PSD) equals half of its total cumulative.
j— 73
. -2 1
Median Frequency = fedian  SUch that P(f)="— P
f=0 f=0

(f)

where P(f) represents the power at frequency f, and fmax is the maximum
frequency.

Root Mean Square (RMS): it is a measure of overall signal strength,
calculated as the square root of the mean of the squares of the signal values.
It assesses the average amplitude of the EEG signal and is linked to various
aspects of brain activity, including neuronal activation and the intensity of
the brain’s response to external stimuli.

N

2
Xj

_1_‘
RMS = » —
NI

j=1
where x; represents the signal values and N denotes the number of samples.

Entropy: it is a measure of the complexity or uncertainty of a probability
distribution. In EEG signal analysis, entropy is derived from the probability
distribution of signal values. Higher entropy indicates greater randomness
and disorganization, while lower entropy (minimum 0) signifies more regular-
ity and predictability. It evaluates the complexity of brain activity, offering
insights into its dynamics and identifying unique patterns

-2
H(X) = - p(xi) log p(xi)

i=1
where p(xj) is the probability of the signal value xi.

Hurst Exponent: it quantifies the persistence or long-term memory of a
stochastic process. In the context of EEG signals, the Hurst exponent can
be used to evaluate the regularity or persistence of fluctuations in the signal
over time. The Hurst exponent can range from 0 to 1, where values closer
to 1 indicate greater persistence in the signal, and values closer to O indicate
greater randomness or random fluctuations in the signal. It is particularly
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useful in analyzing long-term EEG signals to evaluate the persistence of pat-
terns or trends over time. It is calculated using the rescaled range analysis.

H = log A5
log(n)

where R is the range of the cumulative deviations from the mean, S is the
standard deviation, and n is the number of data points.

3.4 Statistical Metrics

To analyze the extracted indicators, statistical metrics were initially calculated,
focusing on parameters such as mean, median, mode, percentiles, minimum and
maximum values, standard deviation, variance, skewness, and kurtosis. Following
the calculation, a visual inspection was performed, highlighting standard deviation,
variance, skewness, and kurtosis as the most significant metrics. Due to the strong
correlation between variance and standard deviation, only the standard deviation
was considered for further analysis. Consequently, the focus will be on standard
deviation, skewness, and kurtosis in subsequent evaluations.Their descriptions are
based on [21], [30].

e Standard Deviation: it quantifies the degree of variation or dispersion
within a set of values. It reflects how much individual data points differ
from the mean of the dataset. A low value of standard deviation means that
the data points tend to be close to the mean, whereas a high one indicates
that the data points are spread out.

—  (xi—p)?
where o is the standard deviation, N is the number of values, u is the mean

of the values, and x; is each individual value.

e Kurtosis: Kurtosis is a statistical measure that describes the shape of the
tails of a distribution compared to a normal distribution. If kurtosis is zero,
the tail shape is similar to a normal distribution; if it is greater than zero, the
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distribution has heavier or longer tails indicating the presence of outliers; if
less than zero, the distribution has lighter or shorter tails indicating a flatter
distribution.

= NN +1) Y oxizw * 3(N-1)
(N-1)(N-2)(N-3) o (N —2)(N - 3)

Kurtosis =

Skewness: it is a measure that indicates the asymmetry of the distribution
of values in a data set. A skewness greater than zero signifies a distribution
with a longer or fatter right tail and data concentrated on the left, while
a skewness less than zero indicates a longer or fatter left tail with data
concentrated on the right; when its value is zero it represents a symmetric
distribution.

= N N Xi—H 3
(N-1)N-2) o

Skewness =

3.5 Features Selection

The features taken into consideration in this study are the statistical metrics of the
indicators. Specifically, any indicator’s statistical metrics (except the one where
the metrics were not calculated like the Granger Causality) were associated with
as many features as the number of channels (except the coherence where have been
taken into account the 6 possible combinations). The first part of the feature selec-
tion was focused on the individuation of the most significant indicator-statistical
metric combination. This process was executed in two different ways: the non-
standard-functions-based (NSF-based) selection, and the standard-functions-based
(SF-based) selection.

e NSF-based feature selection was performed using custom functions that em-
ployed a traditional top-down approach, designed to work with groups of
features rather than individual ones.

e SF-based selection was carried out using pre-existing functions available in
Matlab.
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3.6 Classification

In order to verify the validity of the selected parameters it was decided to use them
in a classifier. The ones employed in this study are Fisher’s linear discriminant,
Decision tree, K-Nearest Neighbors (K-NN), and Support Vector Machine (SVM).
The following descriptions are based on [15] and [4].

Because the previously used dataset was not fit for the training of a model, it was
decided to use that data to make a new one.

After the removal of the electrode detachment artifacts, every signal was split into
many smaller signals with a length of 204’800 samples (50 minutes * 60 seconds
* sampling rate). Those signals were then split into epochs of 320 samples ( 5
seconds * sampling rate) and reassembled in 20 Datasets.

For every signal, wherever it was possible, were calculated: standard deviation,
variance, skewness, and kurtosis of each indicator; and they were memorized in a
struct of features, to assemble them when needed.

3.6.1 Fisher’s Linear Discriminant (FLD)

Fisher’s Linear Discriminant (FLD) is a classification technique that separates
classes by identifying a linear combination of features that maximizes class dis-
tinction. The procedure begins with calculating the mean and variance of each
feature within each class; and then continues computing two matrices: the within-
class scatter matrix Sw , which quantifies the spread of data points within each
class, and the between-class scatter matrix Sg, which is a measure of the variance
between the class means.

The objective of FLD is to find the optimal direction for projecting the data to
achieve the greatest separation between classes. This involves solving an optimiza-
tion problem to maximize the Fisher criterion, expressed as:

w’ Sgw

Hw) = w’S w

where w denotes the direction of projection. The Fisher criterion aims to max-
imize the separation between class means while minimizing the variance within
each class. To determine this optimal direction, the generalized eigenvalue prob-
lem is solved:

S, SswW = Aw
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The direction of the optimal projection is represented by the eigenvector associated
with the largest eigenvalue, and allows, by projecting the data onto it, to reduce
the dimensionality and enhance class separability. Classification is then performed
by applying a threshold to the projected data.

Pros:

+ Dimensionality Reduction: FLD effectively reduces dimensionality while
maintaining class separation by finding a linear projection that maximizes
class distinction.

 Computational Efficiency: It is computationally efficient, especially for
datasets with fewer features.

Cons:

e Assumption of Linearity: FLD relies on the assumption of linear sep-
arability and equal class covariances, which may not be valid for complex
datasets.

« Sensitivity to Outliers: It can be affected by outliers, which might distort
the estimated means and variances.

It was obtained by using the Matlab function fitcdiscr(data, labels, 'DiscrimType’,
‘pseudolinear’) from the Statistics and Machine Learning Toolbox.

3.6.2 Support Vector Machine (SVM)

Support Vector Machines (SVM) are classifiers used for various tasks, including
classification, regression, and outlier detection. The primary concept behind SVM
is to find the hyperplane that optimally separates the data into distinct classes.
For linear SVM, this hyperplane is determined by maximizing the margin, which
is the distance between the hyperplane and the closest data points from each class,
known as support vectors.

Mathematically, for a set of training data {(x; yi)}, where x; is the feature vector
and y; is the class label, SVM solves:

1
min = llwll?
w,b 2

subject to:
yilw'xi+b) =1 foralli
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In scenarios where data is not linearly separable, SVMs use kernel functions to
map the data into higher-dimensional spaces, where linear separation is feasible.
Some of the most used kernels are radial basis function (RBF), polynomial, and
sigmoid kernels.

Pros:

e High-Dimensional Suitability: SVM is effective in high-dimensional spaces
and handles cases where the number of features is large relative to the num-
ber of samples.

e Kernel Flexibility: Kernels enable SVM to capture non-linear relation-
ships by transforming the data into higher-dimensional spaces.

Cons:

e Computational Intensity: SVM can be computationally intensive, par-
ticularly with large datasets or complex kernels.

e Parameter Tuning Challenges: The performance of SVM is highly de-
pendent on the choice of kernel and parameter settings, which can be difficult
to optimize.

It was obtained by using the Matlab function fitcecoc(data, labels) from the Statis-
tics and Machine Learning Toolbox.

3.6.3 Decision Tree

Decision Trees are used for regression and classification tasks. They function by
splitting the data into subsets based on feature values, resulting in a tree-like struc-
ture of decisions. Each node represents a test on an attribute, each branch shows
the result of the test, and each leaf node signifies a final decision or predicted value.

The tree is constructed by selecting the attribute that best divides the data based
on criteria such as Information Gain, Gini Index, which are employed for classifi-
cation tasks, or Variance Reduction which is used for regression.

Pros:

e Ease of Interpretation: Decision Trees offer a clear, visual representation
of the decision-making process.
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¢ Non-Linearity: They can model complex, non-linear relationships without
requiring linear separability.

Cons:

e Overfitting Risk: Decision Trees are prone to overfitting, particularly if
they are too deep or not properly pruned.

e Instability: They can be unstable, as small changes in the data may lead
to different tree structures.

It was obtained by using the Matlab function fitctree(data, labels) from the Statis-
tics and Machine Learning Toolbox.

3.6.4 K-Nearest Neighbors (K-NN)

K-Nearest Neighbors (K-NN) is a straightforward, non-parametric method used
for classification and regression. The classification of a new instance is determined
by the majority vote of its k nearest neighbors in the feature space. The nearest
neighbors are identified using distance metrics such as Euclidean, Manhattan, or
Minkowski distance.

To classify a test instance x;, K-NN computes the distances to all training samples,
selects the k closest ones, and assigns the class label based on the majority vote
among these neighbors.

Pros:

e Simplicity: K-NN is easy to implement and does not require a training
phase beyond storing the training data.

e Adaptability: It adapts well to local data structures and can model com-
plex patterns effectively.

Cons:

e Computational Cost: The need to compute distances to all training ex-
amples makes K-NN computationally expensive for large datasets.

« Feature Scaling Sensitivity: K-NN’s performance is sensitive to feature
scaling, necessitating appropriate scaling of features.

It was obtained by using the Matlab function fitcknn(data, labels, 'NumNeigh-
bors’, 5) from the Statistics and Machine Learning Toolbox.
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3.7 Methods of Evaluation

To assess the performance of the obtained classifiers, various machine learning
metrics were employed. Their descriptions are based on [15], [11] and [17]. The
following is a comprehensive list of the approaches utilized:

e Loss: It measures the model’s average error across various evaluations, pro-
viding insight into its expected performance on new, unseen data. The loss
value depends on the specific loss function used and can range from 0 to
positive infinity, with lower values indicating better model performance.

e Confusion Matrix: It is a matrix, represented as a table, that outlines
a classification model’s performance by listing the counts of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN).
This matrix aids in evaluating the model’s effectiveness in classifying each
class and highlights areas of misclassification.

TP FP
FN TN

e Precision: It assesses the accuracy of the model in identifying positive
predictions by calculating the proportion of true positives among all positive
predictions made.

TP

TP + FP

Precision ranges from 0 to 1, where 1 indicates perfect precision (all positive

predictions are true positives) and 0 indicates no true positives among the

positive predictions.

Precision =

« Recall: It measures the model’s effectiveness in identifying all relevant pos-
itive instances, calculated as the ratio of true positives (TP) to the total
number of actual positive cases

TP

Recall= ——
TP + FN

Recall ranges from 0 to 1, with 1 indicating that all actual positives were cor-
rectly identified (perfect recall), and 0 indicating none of the actual positives
were identified.
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e F1-Score: It is the harmonic mean of Precision and Recall, combining these
metrics into a single measure particularly useful for evaluating imbalanced

datasets
Precision - Recall

F1-Score=2.
Precision + Recall

It ranges from 0 to 1, where 1 indicates perfect Precision and Recall, and 0
represents the worst performance, where either Precision or Recall is zero.

e Specificity: it measures the proportion of true negatives out of all ac-
tual negatives, and indicates how effectively the model identifies negative

instances.
TN

TN + FP

Specificity ranges from 0 to 1. A specificity of 1 means perfect identification
of negative instances (no false positives), while 0 means all negatives were
incorrectly classified as positives.

Specificity =

e Accuracy: Accuracy represents the ratio of correctly predicted instances
(both positive and negative) to the total number of instances.

TP +TN
TP +TN +FP +FN

Accuracy =

It ranges from 0 to 1, where 1 signifies perfect classification of all instances,
and 0 indicates complete misclassification.

» False Positive Rate (FPR): FPR measures the proportion of actual neg-
atives that were incorrectly classified as positives.
FP

FPR= ————
FP +TN

It ranges from 0 to 1, where 0 means no negative instances were misclassified
as positives (perfect specificity), and 1 means all negatives were misclassified.

« False Negative Rate (FNR): it quantifies the proportion of actual posi-
tives that were mistakenly classified as negatives.
FN

FNR= ————
FN + TP

It ranges from 0 to 1. A value of 0 indicates that all positive instances were
correctly identified (perfect recall), while 1 means none of the positives were
correctly identified.
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e Matthews Correlation Coefficient (MCC): MCC provides a balanced
measure of classification quality, taking into account all four categories of
the confusion matrix.

mMcc =

TP -TN - FP - FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC ranges from -1 to 1. A value of 1 indicates perfect prediction, 0 means
random predictions, and -1 indicates total disagreement between prediction
and actual labels.

« Balanced Accuracy: it is the average of Recall for each class, providing a
more reliable measure when classes are imbalanced.

TP . N
TP + FN TN + FP

Balanced Accuracy =2

It ranges from 0 to 1, with 1 indicating perfect classification of both positive
and negative classes, and 0 meaning all classes were misclassified.

e Global Accuracy: It calculates the proportion of accurate predictions rel-
ative to the total number of cases.

e Cohen’s Kappa: It gauges how well two raters or models agree with each
other, factoring in the probability of agreement happening by chance.

Po - Pe
1_Pe

Cohen’s Kappa =

with P, representing the observed concordance, and P. indicating the ex-
pected one by chance. Kappa ranges from -1 to 1, where 1 signifies perfect
agreement, 0 indicates agreement no better than chance, and negative values
imply worse-than-chance agreement.
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3.8 Cross-Validation

In this thesis, the Leave-One-Out Cross-Validation (LOOCV) technique was em-
ployed to validate the models developed. The approach involved using 19 datasets
to train the model and reserving one dataset for testing. This process was repeated
over 20 iterations, with a different dataset serving as the test set in each iteration.

LOOCV is a specific case of k-fold cross-validation, where k equals the total num-
ber of observations in the dataset. In this approach, the model undergoes training
n times, with n representing the number of data points. During each iteration, a
single observation is excluded from the training data and designated as the test
set, while the remaining n — 1 observations are used for training.

The procedure starts by selecting one data point to act as the validation set, with
the model trained on the rest of the data. After predicting this particular data
point, the resulting error is documented. This process is carried out for every data
point in the dataset, ensuring each one is used as a validation set exactly once.
The model’s overall performance is then assessed by averaging the errors recorded
across all iterations.

LOOCYV offers the advantage of using nearly all available data for training in each
iteration, which often results in a model that generalizes well. However, it can
be computationally demanding, especially with large datasets, as it requires n
training iterations. Additionally, the performance estimate’s variance can be high
because the training sets across iterations differ by only one data point. Nonethe-
less, LOOCYV is particularly beneficial in scenarios involving small datasets, where
every data point is crucial for model evaluation.
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Chapter 4

Results

This chapter presents the results obtained using three distinct approaches: a non-
standard-function-based (NSF-based) feature selection method and two standard-
function-based (SF-based) methods. The SF-based methods are further divided
into two categories: a tailored approach, where features are selected and optimized
for each specific iteration of the leave-one-out cross-validation, and a one-size-fits-
all approach, where the same set of features is used across all iterations.

To ensure clarity and brevity, the metrics will be presented for the average results
obtained across the 20 iterations.

Since the datasets were created through data segmentation of the original signals,
it is likely that the results will be more optimistic than they should be.

4.1 Results of the NSF-based method

The NSF-based feature selection was carried out using a combination of manually
written functions that employed a traditional top-down approach aimed at the
groups of features instead of the singular one. Once the groups of features were
identified, the Matlab function ‘relieff’ was applied to select the most significant
75%.

The best results were obtained by taking into consideration the following groups
of features related to the connectivity indicators: Standard deviation of the Phase
Locking Value, Standard deviation of the Spectral Coherence, Standard deviation
of the Phase Slope Index, Standard deviation of the Partial Directed Coherence,
Skewness of the Directed Transfer Function, Standard deviation of the Mutual In-
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formation, Indices of Granger Causality, Skewness of the Coherence in Amplitude,
Skewness of the Phase Locking Value, Kurtosis of the Phase Locking Value, Kur-
tosis of the Phase Lag Index, Skewness of the Partial Directed Coherence, Kurtosis
of the Directed Transfer Function.

The features correlated to non-connectivity indicators, that were used are: Stan-
dard deviation of the Root Mean Square, and Relative Power of Rhythms.

Ranking the four classifiers from best to worst, we have: k-NN, Decision Tree,
Fisher, and SVM. The k-NN classifier outperforms the others significantly, while
Fisher and Decision Tree yield similar results. The SVM classifier, however, per-
forms the worst by a considerable margin.
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4.1.1 NSF-B - Fisher

Table 4.1: Confusion Matrix of the NSF-based Fisher’s model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 46 5 5
GOS 3 10 57 4
GOS 5 3 1 86

Table 4.2: Machine learning metrics of the NSF-based Fisher’s model

GOS1 GOS3 GOSS5

Precision 0.7797 0.9048 0.9053
Recall 0.8214 0.8028 0.9556
F1 Score 0.8000 0.8507 0.9297
Specificity 0.9193 0.9589 0.9291
Accuracy 0.8940 0.9078 0.9401
FPR 0.0807 0.0411 0.0709
FNR 0.1786  0.1972 0.0444
MCC 0.7284 0.7874 0.8786

Balanced Accuracy 0.8703 0.8809 0.9423

Table 4.3: Machine learning global metrics of the NSF-based Fisher’s model

Loss Global Accuracy Cohen Kappa
Value 0.1290 0.8710 0.8088
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4.1.2 NSF-B - Support Vector Machine

Table 4.4: Confusion Matrix of the NSF-based SVM’s model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 23 25 8
GOS 3 13 47 11
GOS 5 1 2 87

Table 4.5: Machine learning metrics of the NSF-based SVM’s model

GOS1 GOS3 GOSS5

Precision 0.6216 0.6351 0.8208
Recall 0.4107 0.6620 0.9667
F1 Score 0.4946 0.6483 0.8878
Specificity 0.9130 0.8151 0.8504
Accuracy 0.7834 0.7650 0.8986
FPR 0.0870 0.1849 0.1496
FNR 0.5893 0.3380 0.0333
MCC 0.3767 0.4721 0.8053

Balanced Accuracy 0.6619 0.7385 0.9085

Table 4.6: Machine learning global metrics of the NSF-based SVM’s model

Loss Global Accuracy Cohen Kappa
Value 0.2765 0.7235 0.6004
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4.1.3 NSF-B - Decision Tree

Table 4.7: Confusion Matrix of the NSF-based Decision Tree’s model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 48 5 3
GOS 3 5 59 7
GOS 5 2 8 80

Table 4.8: Machine learning metrics of the NSF-based Decision Tree’s model

Class 1 Class 2 Class 3

Precision 0.8727 0.8194 0.8889
Recall 0.8571 0.8310 0.8889
F1 Score 0.8649 0.8252 0.8889
Specificity 0.9565 0.9110 0.9213
Accuracy 0.9309 0.8848 0.9078
FPR 0.0435 0.0890 0.0787
FNR 0.1429 0.1690 0.1111
MCC 0.8185 0.7393 0.8101

Balanced Accuracy 0.9068 0.8710 0.9051

Table 4.9: Machine learning global metrics of the NSF-based Decision Tree’s model

Loss Global Accuracy Cohen Kappa
Value 0.1382 0.8618 0.7946
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4.1.4 NSF-B - k-Nearest Neighbors

Table 4.10: Confusion Matrix of the NSF-based K-NN’s model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 47 4 5
GOS 3 0 68 3
GOS 5 3 2 85

Table 4.11: Machine learning metrics of the NSF-based K-NN’s model

GOS1 GOS3 GOSS5

Precision 0.9400 0.9189 0.9140
Recall 0.8393 0.9577 0.9444
F1 Score 0.8868 0.9379 0.9290
Specificity 0.9814 0.9589 0.9370
Accuracy 0.9447 0.9585 0.9401
FPR 0.0186 0.0411 0.0630
FNR 0.1607 0.0423 0.0556
MCC 0.8528 0.9072 0.8775

Balanced Accuracy 0.9103 0.9583 0.9407

Table 4.12: Machine learning global metrics of the NSF-based Decision Tree’s
model

Loss Global Accuracy Cohen Kappa
Value 0.0783 0.9217 0.8842
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4.2 Results of the SF-based one-size method

This approach used feature selection functions, such as ReliefF, to refine the
dataset. Starting with all 54 available feature groups, 7 were selected. These
selected features were then used to construct the feature matrices for each evalua-
tion’s training and testing sets. Of these 8 groups, 4 were of connectivity features
and 3 of non-connectivity.

The groups of connectivity features were:

Standard Deviation of the Directed Transfer Function, Skewness of the Partial
Directed Coherence, Standard Deviation of the Phase Slope Index, Kurtosis of the
Spectral Coherence.

While the groups of non-connectivity features were:

Skewness of the Entropy, Skewness of the Frequency Median, Kurtosis of the Hurst
Exponent.

Ranking the four classifiers from best to worst, we have: k-NN, Fisher, Decision
Tree, and SVM. The k-NN classifier outperforms the others significantly, while
Fisher and Decision Tree yield similar results. The SVM classifier, however, per-
forms the worst by a considerable margin.

64



4.2.1 SF-B-0OS - Fisher

Table 4.13: Confusion Matrix of the SF-based one-size method Fisher model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 46 5 5
GOS 3 10 57 4
GOS 5 3 1 86

Table 4.14: Machine learning metrics of the SF-based one-size method Fisher
model

GOS1 GOS3 GOSS5

Precision 0.7797 0.9048 0.9053
Recall 0.8214 0.8028 0.9556
F1 Score 0.8000 0.8507 0.9297
Specificity 0.9193 0.9589 0.9291
Accuracy 0.8940 09078 0.9401
FPR 0.0807 0.0411 0.0709
FNR 0.1786 0.1972 0.0444
MCC 0.7284 0.7874 0.8786

Balanced Accuracy 0.8703 0.8809 0.9423

Table 4.15: Machine learning global metrics of the SF-based one-size method
Fisher model

Loss Global Accuracy Cohen Kappa
Value 0.1290 0.8710 0.8088
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4.2.2 SF-B-0OS - Support Vector Machine

Table 4.16: Confusion Matrix of the SF-based one-size method SVM model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 23 25 8
GOS 3 13 47 11
GOS 5 1 2 87

Table 4.17: Machine learning metrics of the SF-based one-size method SVM model

GOS1 GOS3 GOSS5

Precision 0.6216 0.6351 0.8208
Recall 0.4107 0.6620 0.9667
F1 Score 0.4946 0.6483 0.8878
Specificity 0.9130 0.8151 0.8504
Accuracy 0.7834 0.7650 0.8986
FPR 0.0870 0.1850 0.1496
FNR 0.5893 0.3380 0.0333
MCC 0.3767 0.4721 0.8053

Balanced Accuracy 0.6619 0.7385 0.9085

Table 4.18: Machine learning global metrics of the SF-based one-size method SVM
model

Loss Global Accuracy Cohen Kappa
Value 0.2765 0.7235 0.6004
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4.2.3 SF-B-0OS - Decision Tree

Table 4.19: Confusion Matrix of the SF-based one-size method Decision Tree model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 48 5 3
GOS 3 5 59 7
GOS 5 2 8 80

Table 4.20: Machine learning metrics of the SF-based one-size method Decision
Tree model

GOS1 GOS3 GOSS5

Precision 0.8727 0.8194 0.8889
Recall 0.8571 0.8310 0.8889
F1 Score 0.8649 0.8252  0.8889
Specificity 0.9565 0.9110 0.9213
Accuracy 0.9309 0.8848 0.9078
FPR 0.0435 0.0890 0.0787
FNR 0.1429 0.1690 0.1111
MCC 0.8185 0.7393 0.8101

Balanced Accuracy 0.9068 0.8710 0.9051

Table 4.21: Machine learning global metrics of the SF-based one-size method De-
cision Tree model

Loss Global Accuracy Cohen Kappa
Value 0.1382 0.8618 0.7946
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4.2.4 SF-B-0OS - k Nearest Neighbors

Table 4.22: Confusion Matrix of the SF-based one-size method K-NN’s model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 47 4 5
GOS 3 0 68 3
GOS 5 3 2 85

Table 4.23: Machine learning metrics of the SF-based one-size method K-NN’s
model

GOS1 GOS3 GOSS5

Precision 0.9400 0.9189 0.9140
Recall 0.8393 0.9577 0.9444
F1 Score 0.8868 0.9379 0.9290
Specificity 0.9814 0.9589 0.9370
Accuracy 0.9447 0.9585 0.9401
FPR 0.0186 0.0411 0.0630
FNR 0.1607 0.0423 0.0556
MCC 0.8528 0.9072 0.8775

Balanced Accuracy 0.9103 0.9583 0.9407

Table 4.24: Machine learning global metrics of the SF-based one-size method k-NN
model

Loss Global Accuracy Cohen Kappa
Value 0.0783 0.9217 0.8842
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4.3 Results of the SF-based tailored method

This approach employed feature selection functions, such as 'relieff’, to refine the
dataset. Beginning with all 54 available feature groups, a varying number of these
groups were selected for each evaluation, based on which configuration provided
the best results for each specific test. The chosen features were then used to con-
struct the feature matrices for the corresponding training and testing sets of each
evaluation. 16 feature groups appeared in 90% of the evaluations, and, of these
16, 13 were of connectivity and 3 of non-connectivity.

The groups of connectivity features were:

Directed Transfer Function Kurtosis, Directed Transfer Function Skewness, Granger
Causality, Mutual Information Standard Deviation, Partial Directed Coherence
Skewness, Partial Directed Coherence Standard Deviation, Phase Lag Index Stan-
dard Deviation, Amplitude Coherence Kurtosis, Amplitude Coherence Skewness,
Spectral Coherence Kurtosis, Spectral Coherence Skewness, Spectral Coherence
Standard Deviation.

The groups of non-connectivity features were:

Entropy Standard Deviation, Root Mean Square Standard Deviation, Relative
Power of the Rhythms.

Ranking the four classifiers from best to worst in terms of performance, we have k-
NN and Fisher tied for first place, followed by SVM, and then Decision Tree.
Although Fisher and k-NN classifiers perform equally well overall, Fisher is less
accurate in classifying GOS1, whereas k-NN struggles more with GOS3.

The Decision Tree’s results are significantly poorer, with more than twice the
number of misclassifications compared to SVM, which itself has three times the
misclassifications of the top two classifiers.
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4.3.1 SF-B-T - Fisher

Table 4.25: Confusion Matrix of the SF-based tailored method Fisher model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 54 2 0
GOS 3 0 71 0
GOS 5 1 0 89

Table 4.26: Machine learning metrics of the SF-based tailored method Fisher
model

GOS1 GOS3 GOSS5

Precision 0.9818 0.9726  1.0000
Recall 0.9643 1.0000 0.9889
F1 Score 0.9730 0.9861 0.9944
Specificity 0.9938 0.9863  1.0000
Accuracy 0.9862 0.9908 0.9954
FPR 0.0062 0.0137 0.0000
FNR 0.0357 0.0000 0.0111
MCC 0.9638 0.9794  0.9905

Balanced Accuracy 0.9790 0.9932 0.9944

Table 4.27: Machine learning global metrics of the SF-based tailored method Fisher
model

Loss Global Accuracy Cohen Kappa
Value 0.0138 0.9862 0.9795
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4.3.2 SF-B-T - Support Vector Machine

Table 4.28: Confusion Matrix of the SF-based tailored method SVM model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 53 1 2
GOS 3 2 65 4
GOS 5 0 1 89

Table 4.29: Machine learning metrics of the SF-based tailored method SVM model

GOS1 GOS3 GOSS5

Precision 0.9636 0.9701 0.9368
Recall 0.9464 09155 0.9889
F1 Score 0.9550 0.9420 0.9622
Specificity 0.9876  0.9863 0.9528
Accuracy 0.9769 0.9631 0.9677
FPR 0.0124 0.0137 0.0472
FNR 0.0536 0.0845 0.0111
MCC 0.9395 0.9159 0.9351

Balanced Accuracy 0.9670 0.9509 0.9708

Table 4.30: Machine learning global metrics of the SF-based tailored method SVM
model

Loss Global Accuracy Cohen Kappa
Value 0.0461 0.9539 0.9318
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4.3.3 SF-B-T - Decision Tree

Table 4.31: Confusion Matrix of the SF-based tailored method Decision Tree model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 51 2 3
GOS 3 1 63 7
GOS 5 5 7 78

Table 4.32: Machine learning metrics of the SF-based tailored method Decision
Tree model

GOS1 GOS3 GOSS5

Precision 0.8947 0.8750 0.8864
Recall 0.9107 0.8873 0.8667
F1 Score 0.9027 0.8811 0.8764
Specificity 0.9627 0.9384 0.9213
Accuracy 0.9493 0.9217 0.8986
FPR 0.0373 0.0616 0.0787
FNR 0.0893 0.1127 0.1333
MCC 0.8685 0.8227 0.7906

Balanced Accuracy 0.9367 0.9128 0.8940

Table 4.33: Machine learning global metrics of the SF-based tailored method De-
cision Tree model

Loss Global Accuracy Cohen Kappa
Value 0.1152 0.8848 0.8285
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4.3.4 SF-B-T - k Nearest Neighbors

Table 4.34: Confusion Matrix of the SF-based tailored method K-NN’s model

Prediction GOS 1 Prediction GOS 3 Prediction GOS 5

GOS 1 55 1 0
GOS 3 0 71 0
GOS 5 1 1 88

Table 4.35: Machine learning metrics of the SF-based tailored method K-NN’s
model

GOS1 GOS3 GOSS5

Precision 0.9821 0.9726  1.0000
Recall 0.9821 1.0000 0.9778
F1 Score 0.9821 0.9861 0.9888
Specificity 0.9938 0.9863  1.0000
Accuracy 0.9908 0.9908 0.9908
FPR 0.0062 0.0137 0.0000
FNR 0.0179 0.0000 0.0222
MCC 0.9759 0.9794 0.9811

Balanced Accuracy 0.98797 0.99315 0.98889

Table 4.36: Machine learning global metrics of the SF-based tailored method K-
NN model

Loss Global Accuracy Cohen Kappa
Value 0.0138 0.9862 0.9794
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4.4 Considerations

By observing the results of the three applied methods, the best results are given
by the SF-based tailored method, while the NSF-based method and the SF-based
one-size method gave the same overall performance.

In every method, the classifier that gave the best results was the k-NN, with Fisher
second, Decision Tree third, and SVM last.

Based on these results, it can be inferred that the best performances are achieved
by classifiers employing a geometric approach.

The connectivity indicators that were selected by multiple methods are:

« Skewness of the Partial Directed Coherence, which was selected in all three
methods;

« Standard deviation of the Spectral Coherence, Standard deviation of the Mu-
tual Information, Indices of Granger Causality, and Kurtosis of the Directed
Transfer Function, which were selected in the NSF-based and SF-based tai-
lored method;

e Kurtosis of the Spectral Coherence, which was selected in the two SF-based
methods.

The non-connectivity indicators that were selected by multiple methods are:

e Standard deviation of the Root Mean Square, and Relative Power of the
Rhythms, which were selected in the NSF-based and SF-based tailored method.

The selected connectivity indicators suggest that the directionality, causality, and
complexity of interactions between brain regions are critical for predicting out-
comes in coma patients, underscoring the importance of examining inter-regional
brain communication in coma studies.

74



Chapter 5

Conclusion

This thesis has examined the predictive capabilities of both connectivity and non-
connectivity indicators, with a primary focus on the former, in determining the
likelihood of recovery in coma patients. By classifying electroencephalography
(EEG) signals into specific Glasgow Outcome Scale (GOS) categories, the study
has shed light on the importance of brain connectivity in evaluating patient prog-
nosis.

The analysis demonstrated that certain indicators significantly contribute to the
accurate classification of patients’ recovery states. The application of machine
learning models to these indicators showed promising results, indicating that it is
possible to differentiate between various levels of consciousness and recovery out-
comes. However, this study was limited by the small sample size and the number
of EEG channels used, which may have impacted the robustness of the signal pre-
processing and the reliability of the classification results.

Given these constraints, the findings should be interpreted with caution. The
small number of patients, in particular, limits the generalizability of the results.
To strengthen the conclusions drawn in this thesis, future research should aim to
include a larger and more diverse patient population, with more extensive EEG
recordings. This would allow for a more comprehensive analysis of the connectivity
patterns and their relationship with recovery outcomes.

Moreover, the promising results of this study highlight the potential of brain con-
nectivity, particularly the directionality and causality between different regions,
as a biomarker for predicting coma outcomes. Future research should explore ad-
vanced machine learning techniques and more sophisticated connectivity measures
to improve predictive accuracy.
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