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Abstract
Cardiovascular disease poses a significant health risk and remains one of the leading
causes of death worldwide. The 12-lead electrocardiogram is a comprehensive and
widely accessible diagnostic tool for identifying cardiac abnormalities. Early and
accurate diagnosis allows for timely treatment and intervention, helping to pre-
vent severe complications. It is therefore crucial to have automated classification
tools capable of recognizing these cardiac alterations, streamlining clinical practice,
which is currently very time-consuming. This thesis contributes to this context by
building on a solution developed by a team ranked third in the PhysioNet/Comput-
ing in Cardiology Challenge 2020, which aimed to classify 27 cardiac arrhythmias
using a new scoring metric. This metric awards partial credit for misdiagnoses
that result in similar outcomes or treatments as the correct diagnosis, according
to cardiologists. Starting from the original model, a squeeze-and-excite ResNet en-
semble using the same signal from eight truncated leads of varying lengths, several
preprocessing steps were applied to improve performance. Furthermore, clinical
expertise was incorporated through collaboration with a cardiologist from a hos-
pital in Turin. One of the most promising modifications, integrated into the final
solution, was the addition of features that describe the patient’s condition, such as
gender and age, indicating that more patient-specific information leads to better
outcomes and more tailored treatment approaches. After multiple refinements, the
final model consists of two phases: the first is a binary model that discriminates
between healthy and altered classes, achieving an accuracy of 88% and a macro
F1 score of 93%. The second phase distinguishes 19 classes by grouping certain
arrhythmias and integrating clinical knowledge. The results are promising, with
overall performance improvements on both the validation set and hidden test set.
The integration of clinical data has proven to be crucial, highlighting the impor-
tance of close collaboration with field experts to refine the model and ensure its
clinical applicability in real-world settings.
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Chapter 1

Background

1.1 Thesis objective
The primary objective of this thesis is to develop and refine a model capable of
accurately classifying 27 different cardiac arrhythmias based on electrocardiogram
signals, building on a solution originally ranked third in the PhysioNet/Comput-
ing in Cardiology Challenge 2020. This model aims to improve the efficiency of
arrhythmia classification through deep learning techniques while ensuring clini-
cal relevance by incorporating expert knowledge from cardiologists. The entire
project was developed through collaboration with the company SynbrAIn, which
provided specific and essential equipment for carrying out this work, contributing
to the development and validation of the model. The ultimate goal is to create
a system that not only performs well in terms of accuracy and robustness but
also integrates patient-specific data, such as age and gender, to tailor predictions
more effectively. By collaborating closely with cardiologists and integrating clini-
cal insights, the thesis strives to develop a tool that can be directly applicable in
clinical practice, ultimately aiding in the timely and accurate diagnosis of cardiac
arrhythmias.

1.2 Thesis organisation
The thesis is organized as follows. In Chapter 2, an introduction is provided to
the anatomy and physiology of the heart, the tools used to record its electrical
activity, and the solutions implemented so far, with a particular focus on the Phy-
sioNet/Computing in Cardiology Challenge 2020. Chapter 3 describes the datasets
used for this Challenge (Section 3.2), the instrumentation used thanks to the col-
laboration with the company (Section 3.1), and the workflow implemented, with
particular attention to the pre-processing steps (Section 3.3) and the model used
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for the classification task (Section 3.4). Chapter 4 presents the results obtained,
while Chapter 5 provides an analysis of the results, with particular attention to
the limitations encountered during this project.
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Chapter 2

Introduction

2.1 Heart and Cardiac Arrhythmias: an Overview
2.1.1 Anatomy and Physiology of the Heart

Figure 2.1. Position of the heart.

The heart, a hollow muscular organ located in the mediastinum, shown in Fig.
2.1, has a conical shape and dimensions similar to those of a fist, with the apex
pointing downwards and to the left. This vital organ is divided into two distinct
sections: the left section, through which oxygenated blood circulates, and the right
section, where venous blood rich in carbon dioxide flows. Each section comprises
two cavities: an upper one, called the atrium, and a lower one, known as the
ventricle. The atria communicate with the underlying ventricles through the atri-
oventricular orifice, equipped with a cardiac valve that regulates blood flow; the
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Introduction

tricuspid valve is located on the right, while the bicuspid or mitral valve is situated
on the left. The cardiac valves play a crucial role in preventing the backflow of
blood into the atria during the systolic phase, which is the ventricular contraction.
Tha anatomy of the heart is shown in Fig. 2.2.

The heart is structurally divided into two halves: the interatrial septum divides
the atrial portion, while the interventricular septum separates the ventricles. The
entire organ is enveloped by a protective membrane called the pericardium, and its
wall is composed of three distinct layers: the epicardium, the outer layer; the my-
ocardium, the intermediate and thickest layer, responsible for cardiac contraction;
and the endocardium, the innermost layer that lines the heart cavities. [33]

In the context of blood flow, the right atrium receives deoxygenated blood from
the superior and inferior vena cava, which transport it from peripheral tissues.
From here, the blood passes to the right ventricle, from which the pulmonary artery
originates, responsible for carrying it to the lungs for reoxygenation. Conversely,
the left atrium receives oxygenated blood through four pulmonary veins, and from
the left ventricle, the aorta originates, distributing oxygenated blood throughout
the body. Being a constantly active muscle, the heart requires an abundant supply

Figure 2.2. Anatomy of the heart and description of the blood flow.

of oxygen and nutrients, which is guaranteed by the coronary system. This system
consists of a network of vessels that branch off from the aorta and cover the heart,
ensuring the necessary supply to all the cells of the cardiac tissue. The left and right
coronary arteries branch into an extensive network of increasingly smaller arteries,
reaching the capillaries, which ensure the capillary nutrition of the myocardium.
The functioning of the heart is marked by a cardiac cycle, a complex process that
repeats rhythmically, ensuring the proper circulation of blood throughout the body.
The cardiac cycle, shown in Fig. 2.3 is divided into two main phases: diastole and
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systole, which respectively represent the periods of relaxation and contraction of
the heart chambers. [26]

During diastole, the ventricles relax, allowing blood to flow from the atria to
the ventricles through the atrioventricular orifices, whose valves (tricuspid on the
right and mitral on the left) are open. In this phase, the pressure in the ventricles
is lower than that in the atria, favoring ventricular filling. At the same time, the
semilunar valves (aortic and pulmonary) remain closed, preventing the backflow
of blood from the aorta and pulmonary artery into the ventricles.

With the completion of ventricular filling, the cycle enters the systolic phase.
During ventricular systole, the ventricles contract in response to electrical impulses
generated by the sinoatrial node and propagated through the heart’s conduction
system. Ventricular contraction causes an increase in pressure within the ven-
tricles, which leads to the closure of the atrioventricular valves, preventing the
backflow of blood into the atria. Simultaneously, the rising ventricular pressure
exceeds that in the arteries, causing the semilunar valves to open and allowing
the expulsion of blood into the main arterial vessels: the aorta and the pulmonary
artery. Once the blood has been ejected, the ventricles begin to relax, and the

Figure 2.3. Graphical description of the cardiac cycle.

pressure within them rapidly decreases. This leads to the closure of the semilunar
valves, preventing the backflow of blood into the ventricles, and marks the begin-
ning of a new diastolic phase, during which the heart prepares to receive venous
and oxygenated blood from the atria once again. The cardiac cycle, therefore,
is a continuous and coordinated process, whose efficiency is ensured by the pre-
cise interaction between myocardial contractions, pressure variations in the heart
chambers, and the synchronous functioning of the valves. This cycle ensures that

13



Introduction

blood is constantly pumped through the pulmonary and systemic circuits, guaran-
teeing tissue oxygenation and the maintenance of homeostasis. The heart, through
its muscular structure and the complex organization of its cavities, cyclically per-
forms a series of phases that constitute the cardiac cycle, ensuring the continuous
circulation of blood. This process is tightly regulated by an intrinsic electrical
conduction system that coordinates the contractions of the heart chambers, thus
generating the heartbeat. The heartbeat begins in the sinoatrial (SA) node, lo-
cated in the right atrium, which acts as the natural pacemaker of the heart. The
SA node generates spontaneous electrical impulses that propagate through the
atrial walls, causing the atria to contract and blood to pass into the ventricles. Af-
ter reaching the atrioventricular (AV) node, the impulse undergoes a brief delay,
allowing the ventricles to complete their filling before contracting. Subsequently,
the electrical impulse rapidly spreads through the bundle of His and the Purkinje
fibers, causing the synchronized contraction of the ventricles and the expulsion of
blood into the arteries. This delicate balance of contractions is recorded by the
electrocardiogram, which captures the electrical activity of the heart, providing
a visual representation of the waves corresponding to the different phases of the
cardiac cycle. The electrocardiogram (ECG), therefore, becomes an essential tool
for evaluating cardiac function and diagnosing any abnormalities in the rhythm or
conduction of the heartbeat.

2.1.2 Electrocardiogram
The electrical activity of heart cells generates a flow of currents within the heart,
which manifests as potential variations on the skin’s surface, as shown in Fig. 2.4.
The variation of the potential difference can be measured using specific devices,
and their variation thruogh time constitutes the electrocardiogram. Practically,
the ECG consists of 12 temporal traces representing as many potential differences,
detected between various points on the body surface using electrodes placed on the
body. Essentially, the ECG is the projection in 12 directions in three-dimensional
space of the cardiac vector, resulting from the moments of the electric dipoles
generated in the heart during the wavefront progression. Each of the 12 ECG leads
represents the magnitude of the cardiac vector, and thus the electrical activity, in
the corresponding direction at each moment in time. The 12 directions are selected
to divide the space to express the activity in the right-left, superior-inferior, and
anterior-posterior orientations of the body.

The ECG is a pseudo-periodic signal, whose amplitude generally ranges in the
order of millivolts. Its morphology typically consists of five peaks, positive or neg-
ative in the presence of anomalies, which are called waves. These waves represent
deviations of the signal from the baseline and are denoted by the letters P, Q, R,
S, and T. The P wave corresponds to the depolarization of the atria, while the
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Figure 2.4. Correlation between an ECG and the electrical events in the heart.
In each phase of the cycle, the regions of depolarization (in purple) and repolar-
ization (in orange) are highlighted.

QRS complex represents the depolarization of the ventricles, occurring at the level
of the septum, apex, and base. The T wave, finally, reflects the repolarization of
the ventricles. In the ECG, a specific wave for atrial repolarization is not visible,
as it is masked by the simultaneous ventricular depolarization. Additionally, the
ECG contains segments representing periods where no potential differences are
recorded, while the intervals between the waves indicate the times taken for con-
duction, depolarization, or periods with no electrical activity. For example, the
PR interval represents the time required for the potential to propagate from the
atria to the ventricles.

The basic arrangement of electrodes for recording the ECG involves creating
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a triangle, whose vertices are ideally located near the roots of the upper limbs
and the pubic region. However, for convenience, the electrodes are usually placed
on the wrists and the left leg. This triangle is commonly known as Einthoven’s
Triangle and it is shown in Fig. 2.5.

Figure 2.5. Bipolar leads and unipolar leads. Einthoven’s triangle.

The standard ECG leads are twelve and are divided into three main categories:
bipolar leads, augmented unipolar leads of Goldberger, and precordial unipolar
leads of Wilson. Regarding the bipolar leads, or main leads, some conventions
must be adopted: lead I represents the potential difference between the left wrist
and the right wrist; lead II reflects the potential difference between the left ankle
and the right wrist; finally, lead III is given by the difference between the potential
of the left ankle and that of the left wrist. These leads are measured on the frontal
plane and are linearly dependent on each other, following Kirchhoff’s law, where I
+ III = II. However, these leads are not sufficient to adequately record all possible
variations of the cardiac vector, making it necessary to adopt additional leads,
such as the augmented leads of Goldberger, to improve the evaluation of cardiac
events.

The unipolar leads of Goldberger, measured on the frontal plane, are obtained
along the bisectors of Einthoven’s triangle and reflect the potential difference be-
tween the explored limb and the average potentials of the other two unexplored
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limbs. The term augmented refers to the need to amplify the signal to make it
comparable with the other leads. The resulting leads are lead aVL, aVR, and aVF.

aV F = LL − 1
2(RA + LA) (2.1)

aV R = RA − 1
2(LA + LL) (2.2)

aV L = LA − 1
2(RA + LL) (2.3)

where RA is the potential in the right arm, LA is the potential in the left arm,
and LL is the potential in the left leg.

These six leads can be derived using four electrodes, three exploring and one
reference, placed at a certain distance from the heart. However, since these elec-
trodes are placed far from the heart, they do not allow precise analysis of anomalies
localized in specific areas of the heart muscle. For this reason, it is necessary to
have electrodes closer to the heart, placed on the chest. The leads thus obtained,
called precordial leads, are obtained by considering the potential difference be-
tween a reference electrode, placed on the sternum in the fourth intercostal space,
and six other points appropriately located in the intercostal space. The position
is shown in Fig. 2.6. These leads are linearly independent of each other and are
identified as leads V1, V2, V3, V4, V5, and V6. [19]

Figure 2.6. Position of the electrodes for precordial leads.

The ECG presents normal values that indicate the regular functioning of the
heart. Among the most characteristic parameters, we find the heart rate, which
under normal conditions ranges between 60 and 100 beats per minute, the PR
interval, which should be between 120 and 200 milliseconds, and the QRS complex,
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whose duration varies between 80 and 100 milliseconds. If these values deviate from
the normal ranges, they could indicate the presence of heart diseases or rhythm
abnormalities, making the ECG an essential tool for the diagnosis and monitoring
of heart conditions.

2.1.3 Cardiac Arrhythmias Types and ECGs Implications

Figure 2.7. ECG showing a normal sinus rhythm: regular P waves, narrow QRS
complexes, well-defined T waves, and consistent wave shapes.

The term arrhythmia refers to any alteration in the frequency or rhythm of
the heartbeat. Cardiac arrhythmias represent a varied set of disorders resulting
from changes in the generation or conduction of electrical impulses in the heart.
These impulses can travel at speeds higher or lower than normal, or cause an ir-
regular heartbeat. Under normal conditions, the heart follows a regular rhythm,
controlled by an internal electrical system that coordinates the contractions of the
atria and ventricles. This mechanism is regulated by the sinoatrial node, which
acts as the heart’s natural pacemaker by generating electrical impulses that prop-
agate through specific conduction pathways. When the heart functions correctly,
the electrocardiogram, as shown in Fig. 2.7, displays a normal sinus rhythm, char-
acterized by regular P waves, followed by QRS complexes and a stable ST segment.
This tracing reflects an orderly and synchronized electrical conduction through the
heart.

In the presence of arrhythmias, this balance can be compromised. Arrhythmias
can manifest as tachycardias, which is an acceleration of the heartbeat exceeding
100 beats per minute, or as bradycardias, where the heartbeat slows down below
60 beats per minute due to a decrease in the discharge rate of the sinus node.
Bradycardias can result from dysfunction of the sinoatrial node or conduction
blocks. In the ECG, bradycardia presents with a heart rate lower than normal but
with a regular rhythm and well-defined P waves. [34]

A particularly significant rhythm anomaly is atrial fibrillation, one of the most
common and potentially serious arrhythmias, with significant implications for car-
diac health and patients’ quality of life. In this condition, the atria activate in a
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chaotic and disorganized manner, resulting in the absence of distinct P waves in
the ECG. These waves are replaced by irregular fibrillatory waves, accompanied by
an equally irregular and variable ventricular rhythm, as evidenced by non-uniform
RR intervals. These signs are crucial for distinguishing atrial fibrillation from
other forms of arrhythmia, such as atrial flutter, which manifests with rapid and
regular P waves, creating a characteristic sawtooth pattern in the ECG. [30]

Other cardiac anomalies include ectopic beats such as premature ventricular
contractions (PVC) and premature atrial contractions (PAC). PVC are premature
contractions originating from the ventricles and appear in the ECG as wide and
deformed QRS complexes, followed by a compensatory pause. PAC, on the other
hand, are premature contractions originating from the atria and appear in the
ECG as premature P waves, often followed by a compensatory interval.

Among the anomalies detectable on the ECG are also deviations of the heart’s
electrical axis from normal values. Right axis deviation occurs when the axis is
shifted to the right, while left axis deviation occurs when the axis is shifted to the
left. These deviations can be associated with various clinical conditions, such as
bundle branch blocks. A bundle branch block occurs when there is an interruption
in the conduction of the electrical impulse through one of the branches of the
ventricular conduction system, which can be a right or left bundle branch block.
In right bundle branch block, the ECG shows widened QRS complexes and a
specific pattern called rabbit ears in the precordial leads. In left bundle branch
block, the QRS complexes are also widened, with a typical notched pattern in the
lateral leads. These blocks can indicate underlying heart diseases and affect overall
cardiac function. Some example of cardiac anomalies are shown in Fig. 2.8. [13]

The shape of the waves and the duration of the intervals in the ECG can also
provide valuable indications of cardiac anomalies. For example, the T wave repre-
sents ventricular repolarization and, if inverted, can indicate myocardial ischemia
or other conditions. A prolonged PR interval, which reflects the time required for
the impulse to conduct from the atria to the ventricles, can suggest an atrioventric-
ular block. This slowdown in conduction can result from various factors affecting
the passage of the electrical potential from one heart chamber to another.

In conclusion, alterations in the electrocardiographic signal are fundamental
for the diagnosis of arrhythmias, which are closely interconnected. The ECG is a
crucial diagnostic tool for identifying and managing cardiac arrhythmias, allowing
not only the detection of rhythm alterations but also obtaining essential details on
anomalies in the heart’s electrical conduction. The ability to monitor and evaluate
these anomalies is essential for ensuring effective management of arrhythmias and
improving patients’ quality of life.
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Figure 2.8. Examples of arrhythmias and their shapes in the ECG. A. Normal
sinus rhythm. B. Atrial fibrillation. C. Left bundle branch block. D. Right
bundle branch block. E. Premature atrial contraction. F. Premature ventricular
contraction. G. Ectopic beats. H. Myocardial Infarction. I. Sinus Bradycardia.
J. Supraventricular Tachycardia. K. Atrial flutter. L. Ventricular fibrillation.
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2.2 Importance of diagnosing cardiac arrhyth-
mias and development of automatic process-
ing algorithms

Manual interpretation of ECGs is a time-consuming process that requires highly
qualified personnel to achieve an accurate diagnosis. The problem becomes more
pronounced in places where there is a shortage of medical experts and clinical
equipment, especially in developing countries. This motivates the need for a
reliable, automatic, and low-cost system for monitoring and diagnosis. In fact,
automation in the detection and classification of cardiac anomalies can support
doctors in diagnosing an increasing number of recorded ECGs. However, successes
in this field have been limited. Over the past decade, the rapid development of
machine learning techniques has included an increasing number of 12-lead ECG
classifiers in the form of both time sequences and two-dimensional images. Many
of these algorithms are capable of correctly identifying cardiac anomalies, but most
have been trained, tested, or developed on single, small, or relatively homogeneous
datasets. Additionally, many methods focus on identifying a limited number of
cardiac arrhythmias, which do not represent the complexity and difficulty of in-
terpreting ECGs.

2.2.1 State of the art
Arrhythmia classification can be divided into two main categories. The first con-
cerns morphological arrhythmias, which form due to an irregularity in a single
heartbeat, while the second includes rhythmic arrhythmias, generated by a series
of irregular heartbeats. To deal with both macro-categories of arrythmias this
problem, various databases have been made available online, some characterized
by labels for each individual beat, such as the MIT-BIH Arrhythmia Database,
and others containing ECG traces labeled in their entirety. The main stages in-
volved in arrhythmia classification include data pre-processing, feature extraction,
feature dimension reduction or optimization (if applicable), classification, and, if
necessary, a post-processing phase. [17]

ECG signal pre-processing includes various steps such as filtering to remove
baseline and powerline interference, noise reduction using band-pass filters, arti-
fact removal, amplitude normalization to ensure uniformity, R-peak detection to
identify ventricular depolarization, segmentation to isolate individual beats, qual-
ity control to manage artifacts, resampling to obtain a uniform sampling frequency,
interpolation to handle missing data, and heart rate normalization for compara-
tive analysis. These steps ensure that ECG data are clean and standardized, thus
facilitating the diagnosis and monitoring of cardiac issues. [7]
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Regarding feature extraction, numerous solutions have been proposed that in-
tegrate clinical knowledge with automatic classification tools to improve perfor-
mance. The extracted features often belong to three different domains: temporal,
with measures of heart rate variability; frequency domain, with statistical measures
such as skewness and entropy; and finally, nonlinear features. These characteristics
are subsequently input into classification models or sometimes concatenated with
the results of convolution operations to add information not extracted by neural
networks. It can thus be stated that these machine learning-related features play a
crucial role in the analysis and classification of ECG data for arrhythmia detection
and disease diagnosis, supporting signal interpretation. [11]

In the context of automatic ECG trace classification, early approaches were
based on machine learning techniques, such as rule-based classification methods
and clustering algorithms. The advent of artificial intelligence (AI) and advanced
computational techniques has significantly revolutionized diagnostics in health-
care. With technological progress, artificial neural networks and deep learning al-
gorithms have gained increasing importance. AI-based methods, which integrate
neural networks, Bayesian networks, fuzzy logic systems, and machine learning
models such as linear or logistic regression, decision trees, k-nearest neighbors,
random forests, and support vector machines, have proven capable of accurately
predicting cardiovascular outcomes in patients. However, these traditional meth-
ods often require extensive feature engineering and may struggle with highly com-
plex or unstructured data, limiting their ability to generalize. In contrast, deep
learning approaches, which automatically learn significant features from ECG data,
continuously improve classification capabilities, reducing the need for human in-
tervention and addressing some of the limitations of previous models.

Among the most relevant deep learning models are convolutional neural net-
works (CNN) and recurrent neural networks (RNN). Some examples of CNN-based
models include a model consisting of 16 convolution blocks with residual connec-
tions proposed to detect 12 kinds of heart arrhythmias from the original single lead
II ECG input, which achieves an F1 average score of 0.837, better than the average
of cardiologists (0.780) [20], or a deep learning model of 10 layers proposed for the
diagnosis of 10 types of myocardial infarction based on 12 lead ECG signals with 2-s
of signals as input, and attain a diagnostic accuracy of 98.97%. [2] More recently,
a proposed model combines a transformer with a convolutional neural network
and a denoising autoencoder for inter-patient ECG arrhythmia classification. The
transformer is used to capture long-range dependencies in ECG data, improving
the model’s ability to understand complex temporal sequences. The CNN is inte-
grated to extract local features from ECG signals, enhancing the model’s ability
to identify specific arrhythmia patterns. The denoising autoencoder is employed
to reduce noise in ECG data, improving signal quality and, consequently, classi-
fication accuracy. The model is designed to address the challenges of arrhythmia
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classification in inter-patient contexts, where individual variations can make ac-
curate identification of cardiac anomalies difficult. [48] Another recent solution
that has shown particular interest is the one proposed by [28]. In this work, the
authors present an automated multi-label cardiac arrhythmia classification net-
work using CNN, which can detect and classify 45 cardiac arrhythmia classes,
surpassing many previous models in terms of the number of classes handled and
the quality of predictions. The model incorporates both the residual structure
and channel attention mechanism. Thus, two key schemes have been developed to
improve classification performance: the Global Channel Attention Block and the
Short Residual Block. The Global Channel Attention Block incorporates dilated
convolutions to preserve overall features. It focuses on the important character-
istics of each arrhythmia class from the original electrocardiogram data during
the training process. The Short Residual Block employs a residual structure to
enhance classification accuracy. The network’s performance is evaluated using a
large-scale 12-lead electrocardiogram database for arrhythmia study on PhysioNet,
specifically Shaoxing People’s Hospital and Ningbo First Hospital, and the 2018
China Physiological Signal Challenge (CPSC) dataset. The proposed classifica-
tion network performs well in all average evaluation metrics on the Ningbo and
Shaoxing dataset, but did not perform well in all evaluation metrics when tested
on the CPSC 2018 dataset. This again highlights how the proposed solutions are
highly specific to a single dataset and similarly struggle to generalize to new ones.

Regarding models based on recurrent neural networks, they have achieved
promising results in classifying heart rhythms. A recent example of this type of
classifier is a model based on self-attention Long Short-Term Memory Fully Con-
volutional Network (LSTM-FCN) for arrhythmia classification and uncertainty
assessment. ArrhyMon is designed to detect and classify six different types of ar-
rhythmias, in addition to normal ECG patterns. This model integrates fully con-
volutional network layers and a self-attention-based LSTM architecture to capture
and exploit both global and local features embedded in ECG sequences. Addi-
tionally, ArrhyMon incorporates an uncertainty model based on a deep ensemble
that generates a confidence measure for each classification result. The model is
evaluated using three publicly available datasets (MIT-BIH, PhysioNet Cardiol-
ogy Challenge 2017 and 2020/2021), demonstrating state-of-the-art classification
performance with an average accuracy of 99.63%. The confidence measures shown
by the model closely correlated with subjective diagnoses made by physicians. [39]

Another relevant aspect is that artificial intelligence can also be applied to
ECG signals from wearable devices, enabling real-time analysis and interpretation
of cardiovascular health. Thanks to these intelligent wearable devices, equipped
with sophisticated algorithms, users can proactively manage their heart health by
constantly monitoring and interpreting ECG data.
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Among the currently available solutions of particular interest is the one pro-
posed in [23], which uses a smartphone application to analyze a photographic image
of a 12-lead ECG, offering an automated interpretation that can subsequently be
validated by cardiologists. The application is based on an AI-powered system com-
posed of six deep neural networks, trained on standard 12-lead ECGs to detect 20
essential diagnostic patterns, divided into six categories: rhythm, acute coronary
syndrome, conduction abnormalities, ectopia, cardiac chamber enlargement, and
cardiac axis. The system, trained on over 900000 ECGs from publicly available
datasets (such as PTB-XL or CPSC), has demonstrated superior diagnostic perfor-
mance compared to traditional approaches in 13 of the 20 evaluated patterns, and
was not inferior for the remaining ones. However, among the issues encountered
is the quality of the captured image, particularly the difficulty in focusing on the
ECG trace from which the classification is performed, an issue that will require
future studies and modifications. [22]

Despite this, these solutions are particularly interesting as they allow, with high
accuracy, albeit lower than the one of the doctors, the recognition of numerous car-
diac arrhythmias. They also promote a more proactive approach to health man-
agement, marking the beginning of a new era of preventive and patient-centered
clinical care. However, some critical issues remain, such as managing limited com-
putational resources and the need to comply with strict data security and privacy
standards in the medical field, which require a delicate balance. This complex and
constantly evolving landscape highlights both the challenges and opportunities of-
fered by automatic arrhythmia classification, with the aim of making healthcare
increasingly personalized and centered on patient needs.

The integration of advanced AI technologies and deep learning algorithms has
significantly improved the ability to classify ECG signals, surpassing the limita-
tions of traditional methods and opening new perspectives for the early diagnosis
of arrhythmias and cardiac diseases. However, several open challenges remain and
require further research. One of the main difficulties lies in the quality of the
available data, often affected by artifacts or residual noise, despite advanced pre-
processing techniques. The presence of these disturbances can negatively impact
classification accuracy, particularly when it comes to detecting rare arrhythmias,
which are frequently underrepresented in the databases used for training. The
scarcity of data related to these conditions leads to unbalanced models that are
difficult to generalize. Moreover, even though deep learning models have achieved
impressive results, their often black-box nature makes it challenging to understand
the decisions made. This is a particularly relevant issue in the clinical field, where
trust in AI models depends on their interpretability.
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2.2.2 PhysioNet Computing in Cardiology challenge 2020
The PhysioNet/Computing in Cardiology Challenge 2020 offer the opportunity to
address issues related to automation in the detection and classification of cardiac
anomalies by providing data from a wide range of sources with a broad set of
cardiac anomalies. [3] The PhysioNet Challenge is an initiative that invited par-
ticipants from academia, industry, and other sectors to solve clinically important
issues that have significant clinical implications. As in previous years, the Chal-
lenge has an unofficial phase and an official phase that took place over several
months. PhysioNet co-organizes the Challenge annually in collaboration with the
Computing in Cardiology conference. The goal of the PhysioNet Challenge 2020
is to identify clinical diagnoses from 12-lead ECG recordings.

Participants are asked to design and implement a working open-source algo-
rithm that, based solely on the provided clinical data, can automatically identify
any of the 27 cardiac anomalies present in a 12-lead ECG recording. The winners
of the Challenge are the teams whose algorithm achieved the highest score for the
recordings in the hidden test set. A new scoring function is developed to evaluate
the participants’ algorithms, assigning partial credit to incorrect diagnoses that
lead to treatments or outcomes similar to the true diagnosis, as some incorrect
diagnoses are more harmful than others and should be evaluated accordingly.

Database Total patients Recordings in Training Set Recordings in Validation Set Recordings in Test Set Total Recordings
CPSC 9458 10330 1463 1463 13256

INCART 32 74 0 0 74
PTB 19175 22353 0 0 22353

Georgia 15742 10344 5167 5167 20678
Undiscolsed Unknown 0 0 10000 10000

Table 2.1. Numbers of patients and recordings in the training, validation, and
test databases for the Challenge.

Data from five different sources are used, totaling 66,361 recordings, and it is
possible for each patient to have one or more ECGs. Two sources are split to form
training, validation, and test sets; two sources are included only as training data;
and one source is included only as test data. The split is shown in the Tab 2.1.
The training data and clinical diagnoses of the ECGs are made public, while the
validation and test data are kept hidden. The training, validation, and test data
are matched as closely as possible for age, sex, and diagnosis. The completely
hidden dataset is never published, allowing for the evaluation of common machine
learning issues such as overfitting. The test set as a whole includes data from the
same sources as some training sets, as well as an entirely new set recorded from an
institution geographically distinct from the training. Therefore, while there may
be a small number of ECGs from patients present in both the training and test
data, there is at least one test database where the likelihood of patients from the
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training database being represented in the test data is extremely low.
Each 12-lead ECG recording is acquired in a hospital or clinical setting. The

data acquisition specifications depend on the source of the databases, which are
assembled worldwide and therefore vary. The quality of the labels depends on
clinical or research practices and includes automatically generated labels, reviewed
by a single cardiologist, and judged by multiple cardiologists.

Figure 2.9. Diagnoses, Systematized Nomenclature of Medicine (SNOMED)
codes and abbreviations in the posted training databases for the 27 diagnoses
that were scored for the Challenge.

The training data contain 111 diagnoses or classes. Of these 111 diagnoses,
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27 are used, shown in the Fig. 2.9, to evaluate the participants’ algorithms be-
cause they are relatively common, of clinical interest, and more easily recognizable
from ECG recordings. All data are provided in MATLAB and WFDB (Waveform
Database) compatible formats. Each ECG recording has a MATLAB v4 binary
file for the ECG signal data and an associated WFDB header text file describing
the recording and patient attributes, including the diagnosis or diagnoses, i.e., the
labels for the recording, making it a multi-label problem. For each 12-lead ECG
recording, and not for each single lead, the algorithm must identify a set of one or
more classes and a probability score of membership or confidence for each class.

For evaluation, each team’s training code is run on the training data and then
the trained code of each team is run on the hidden validation and test sets by the
organizers, executed sequentially on the recordings to use them as realistically as
possible. It is possible to submit code implementations in MATLAB or Python,
while other languages, including Julia and R, were supported but received little
interest from participants during the unofficial phase. Participants containeriz
their code in Docker and submitted it to GitHub or Gitlab repositories. Virtual
machines on Google Cloud are used for the runs, imposing a maximum time limit
of 72 hours for training on the training set, and 24 hours for running the trained
classifiers on the test set.

In total, the Challenge has 1395 algorithm submissions from 217 teams from
academia and industry, while the total number of successful entries was 707, with
397 successful entries during the unofficial phase of the Challenge and 310 suc-
cessful entries during the official phase. During the official phase, each entry is
evaluated on the validation set. The final score and ranking are based on the test
set. A total of 70 teams successfully run their code on the test data.

The highest scores are observed in the hidden CPSC datasets shown in Fig.
2.10, which contain a larger number of recordings in the training set compared to
the other three hidden datasets. A drop in scores of about 50% is observed for
the undisclosed hidden set, for which no recordings are included in the training or
validation.
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Figure 2.10. Scores of the final 70 algorithms that were able to completely eval-
uated on the validation set, the hidden CPSC set, the hidden Georgia (G12EC)
set, the hidden undisclosed set, and the test set. The points indicate the score
of each individual algorithm on each dataset, with the higher points showing al-
gorithms with the highest scores on each dataset. The ranks on the test set are
further indicated by color, with red indicating the best ranked algorithms and
blue indicating the worst ranked algorithm on the test set. Source: [3]
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Chapter 3

Materials and Methods

3.1 Instrumentation and working environment

During the course of the project, several software and hardware tools provided by
company SynbrAIn were employed. In particular, on the software side, Docker was
used, a container-based application virtualization technology, accessible via SSH
connection once created. As for the hardware, graphics processing units (GPUs)
hosted on a server provided by SynbrAIn were used.

Docker is an open-source platform designed to simplify the development, distri-
bution, and management cycle of applications through containerization. The main
functionality of Docker is to allow developers to package applications along with
their dependencies in environments isolated from the operating system, known as
containers. Containers are less resource-intensive compared to virtual machines,
which are the other commonly adopted solution for isolating software components.
This approach ensures consistency in the execution of applications across different
development, testing, and production environments, thus simplifying the processes
of creating, managing, and scaling microservices. [8]

In the context of this thesis, a Docker container was used to access Jupyter
Notebook, providing a graphical interface of the server accessible via an Secure
Shell(SSH) tunnel connected to the local computer. Jupyter Notebook is an
open-source tool that allows the creation and sharing of documents containing
executable code, equations, visualizations, and narrative text. Thanks to the iso-
lation of containers, there was no need to worry about conflicting dependencies or
libraries. To create a container, it is first necessary to define an image, which rep-
resents the base virtual environment of which the containers are specific instances.
The instructions for defining an image are contained within a Dockerfile, which
specifies the base image, the application source code, the dependencies listed in
the requirements.txt file, and the configurations necessary for running the service.
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In particular, the Dockerfile used had the following structure:
Listing 3.1. Dockerfile.

FROM python : 3 . 9 . 1 2
WORKDIR /data

# Copy requi rements f i l e and i n s t a l l dependenc ies
COPY requi rements . txt .
RUN pip i n s t a l l −r requ i rements . txt
RUN pip i n s t a l l jupyte r

# Set non−i n t e r a c t i v e mode f o r Debian
ENV DEBIAN_FRONTEND=n on i n t e r a c t i v e

# Expose the Jupyter Notebook port
EXPOSE 8888

# Set the entry po int f o r running Jupyter Notebook
ENTRYPOINT [ " sh " , "−c " , " jupyte r notebook −−al low−root
−−no−browser −−ip = 0 . 0 . 0 . 0 " ]
The Dockerfile used in this thesis is designed to configure a Docker image with
Python, PyTorch, Jupyter Notebook, and some additional libraries, creating an
optimized environment for running Python applications, with a particular focus
on deep learning applications using PyTorch. The container configuration includes
exposing port 8888 to allow remote access to Jupyter Notebook.

After uploading the Dockerfile to the server in the desired directory, simply
access the server, navigate to the directory containing the Dockerfile, and execute
the following commands to create the image:

Listing 3.2. Creation of container and connection creation.
# DOCKER IMAGE CREATION
docker bu i ld −t NAME . # (NAME: Image name s e l e c t e d )

# CONTAINER CREATION
docker run − t i −−gpus a l l −p xxxx :8888 −−shm−s i z e =16g
−−u l im i t memlock=−1 −d −v /yyyy : / data −e
JUPYTER_TOKEN="docker " −−u l im i t s tack =6710886 zzzz
# ( xxxx : port s e l e c t e d from docker ps command ; /yyyy :
path to the p r o j e c t ; zzzz : name o f the conta ine r )

## CONNECTION CREATION
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Open a new termina l :
−ssh −N −f −L l o c a l h o s t : xxxx : l o c a l h o s t : xxxx −p423 username@IP
( xxxx : port s e l e c t e d from docker ps command ;
423 : port used ; username : user id ; )

Open browser :
− l o c a l h o s t : xxxx ( xxxx : port s e l e c t e d from docker ps command)

Once these commands have been executed and the container has been created
and the connection through the SSH tunnel has been established, you can open
a browser and access http://localhost:xxxx/ to view Jupyter Notebook, thus ob-
taining a graphical interface of the server. It is important to note that through
these instructions, it is possible to generate the Dockerfile image by assigning a
predefined token, activating any GPUs present on the server, and creating the
necessary volumes to access the server’s data. The server used for the project is
equipped with two NVIDIA graphics processing units: a GeForce RTX 3090 and a
GeForce RTX 2080 Ti. The GeForce RTX 3090 has 24 GB (24576 MiB) of memory,
while the GeForce RTX 2080 Ti has 11 GB (11264 MiB) of memory. The greater
memory of the GeForce RTX 3090 offers several significant advantages. Firstly,
it allows for the handling of larger datasets directly on the GPU, reducing the
need for frequent transfers between the central processing unit (CPU) and GPU,
which can slow down the processing. Additionally, it enables the training of more
complex machine learning models and deep neural networks, which require more
memory to store weights and activations during training. Finally, a GPU with
more memory can handle more processes simultaneously, improving the overall
efficiency and productivity of the system.

To monitor the memory usage of the GPUs, the command nvidia-smi is used.
This command provides detailed information about the NVIDIA GPUs installed
in the system, including the total available memory, the currently used memory,
and the processes that are using the GPU memory. Thanks to nvidia-smi, it is
possible to obtain a complete overview of the GPU resources in use and optimize
the system’s performance according to the specific needs of the project.

3.2 Dataset

3.2.1 Training set
The dataset used is provided by the organizers of the Cardiology Challenge 2020 [3]
and consists of various sources from around the world. In particular, the available
databases are:
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• CPSC Database and CPSC-Extra Database: Derived from the China
Physiological Signal Challenge 2018. These data, from 9458 different patients,
include ECG recordings of varying durations between 6 and 60 seconds, sam-
pled at 500 Hz. The CPSC consists of 6877 recordings, with an average
duration of 15.9 seconds; while the CPSC-Extra consists of 3453 recordings,
with an average duration of 15.9 seconds, for a total of 10330 recordings. [32]

• St Petersburg INCART Database: This database consists of 75 anno-
tated recordings extracted from 32 Holter records. Each record is 30 minutes
long, each sampled at 257 Hz.

• Physikalisch Technische Bundesanstalt (PTB): Includes two public
databases: the PTB Diagnostic ECG Database and PTB-XL. The former
contains 516 recordings sampled at 1000 Hz with an average duration of 110.8
seconds, while the PTB-XL includes 21,837 clinical ECGs of 10 seconds, sam-
pled at 500 Hz with an average duration of 10 seconds. [46]

• Georgia 12-lead ECG Challenge (G12EC) Database: Represents a
unique demographic of the southeastern United States and contains 10,344
ECGs of 10 seconds, sampled at 500 Hz.

The combined datasets account for a total of 43101 recordings in the training data,
the specifications of which are shown in Tab 3.1. All data are provided in WFDB

Dataset Number of recordings Mean Duration (seconds) Mean Age (years) Sex (Male/Female)
CPSC 6877 15.9 60.2 54%/46%

CPSC-Extra 3453 15.9 63.7 53%/46%
INCART 72 1800.0 56.0 54%/46%

PTB 516 110.8 56.3 73%/27%
PTB-XL 21837 10.0 59.8 52%/48%
Georgia 10344 10.0 60.5 54%/46%

Table 3.1. Number of recordings, mean duration of recordings, mean age of
patients in recordings, sex of patients in recordings, and sample frequency of
recordings for each dataset.

format, with MATLAB v4 binary files for ECG signals and WFDB header text
files that describe the signal metadata, including essential information such as the
number of samples, sampling frequency, channel names, units of measurement,
and calibration parameters, including the diagnosis. An example of a header file
is provided in Fig. 3.1. The WFDB format is a set of standards for reading
and storing physiological signal data and their annotations. [1] These files can
store signals from one or more channels, interlaced in a single file for multichannel
recordings. In total, the labels associated with the entire dataset amount to 111.
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A0001 12 500 7500
A0001.mat 16x1+24 1000.0(0)/mV 16 0 28 -1716 0 I
A0001.mat 16x1+24 1000.0(0)/mV 16 0 7 2029 0 II
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -21 3745 0 III
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -17 3680 0 aVR
A0001.mat 16x1+24 1000.0(0)/mV 16 0 24 -2664 0 aVL
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -7 -1499 0 aVF
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -290 390 0 V1
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -204 157 0 V2
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -96 -2555 0 V3
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -112 49 0 V4
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -596 -321 0 V5
A0001.mat 16x1+24 1000.0(0)/mV 16 0 -16 -3112 0 V6
# Age: 74
# Sex: Male
# Dx: 59118001
# Rx: Unknown
# Hx: Unknown
# Sx: Unknown

Figure 3.1. Example of a WFDB header file for a 12-lead ECG recording
from CPSC database. The first line specifies the record name, the number of
leads, the sampling frequency, and the number of samples. The subsequent
lines describe the details of each signal, including the file name, sample for-
mat, sampling frequency, and gain. The comment lines provide additional
information about the patient and the diagnosis.

For this reason, all signals whose class was not among the 27 expected described in
Fig. 2.9 were excluded. Furthermore, the INCART data was excluded since it has
only 74 30-minute records with a sampling frequency of 257 Hz and is significantly
different from other datasets. From these data, the training and validation datasets
were created. This division was maintained as proposed by the group to identify
the model to work on in order to maintain a final comparison on the metrics
obtained as described in Section 3.5. After excluding the recordings belonging to
the INCART database and those whose labels were not among the 27 expected,
the total number of recordings is 37716, which are subsequently randomly divided
into 80 % as the training set, amounting to 30172 recordings, and 20 % as the
validation set, amounting to 7544 recordings. [52]
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Figure 3.2. Abnormalities distribution in the test set.

3.2.2 Additional test set
To further validate the model’s generalizability, an external dataset from the Phys-
ioNet/Computing in Cardiology Challenge 2021 was applied as external validation:
the Ningbo dataset. [41] This dataset is a large database of 12-lead electrocardio-
grams created for studies on arrhythmia and other cardiovascular conditions. This
database was developed under the auspices of Chapman University, Shaoxing Peo-
ple’s Hospital (Shaoxing Hospital Zhejiang University School of Medicine), and
Ningbo First Hospital. The dataset contains 45,152 ECGs from 34,905 patients,
with a sampling frequency of 500 Hz and a length of 10 seconds. All signals
are provided in .mat format, and each is associated with a .header file contain-
ing metadata and technical characteristics. The ECGs include various common
rhythms and other cardiovascular conditions, all labeled by expert professionals.
The initial labels contain almost all 27 labels expected by the challenge, except
for atrial fibrillation and ventricular premature beats. Specifically, there are 7,615
elements labeled with atrial flutter; however, after visualization, several of these
do not present the characteristic ’sawtooth’ pattern, indicating a possible phase
of inaccurate labeling. The dataset presents a diverse demographic distribution:
the average age of patients is 57.7 years, with 43 % women, 56 % men, and 1 %
of patients without specified gender. This demographic diversity ensures that the
dataset represents a wide range of patients, thus improving the robustness and
generalizability of models developed using these data. Among all records, 6500

34



Materials and Methods

with labels in 25 types of ECG anomalies were randomly selected to form an ex-
ternal validation set, ensuring that the number of elements for each class was at
least equal to the minimum value among all expected classes. In this case, the
initial distribution counted only 7 elements labeled with bradycardia; for this rea-
son, there are at least 7 elements for each of the 25 classes, while the others were
randomly extracted until reaching the 6500 selected elements. The extraction of
these elements led to a new average age value of 58.0 years, while the gender dis-
tribution was 56.4 % male and 43.6 % female, with a distribution shown in Fig.
3.2.

3.3 Data analysis
The preliminary data analysis examined the two available subsets (training and
validation) with the aim of analyzing their distributions in terms of available co-
variates, signal lengths, and associated anomalies. In particular, the first analysis
focused on the distribution of the gender variable in terms of percentage and the
distribution of age divided into groups encompassing different age values. The
results are shown in Fig. 3.3 and Fig. 3.4.

Figure 3.3. Demographic Analysis: age and gender distribution in training set.
(A) Distribution of age groups in the training set, with age groups ’1-12’ ’13-18’,
’19-40’, ’41-65, ’66-92’, and ’Over 92’. (B) Distribution of gender in the training
set, with categories ’Male’ and ’Female’ represented as percentages.

As shown in the graphs, these two subsets are characterized by a modest number
of elements with an age over 92 years. The analysis revealed that the PTB-XL
dataset, one of the largest considering the entire dataset, contains a significant
number of signals associated with an age of 300 years. The article explains that
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Figure 3.4. Demographic Analysis: age and gender distribution in validation set.
(A) Distribution of age groups in the training set, with age groups ’1-12’ ’13-18’,
’19-40’, ’41-65, ’66-92’, and ’Over 92’. (B) Distribution of gender in the training
set, with categories ’Male’ and ’Female’ represented as percentages.

for patients with ECGs recorded at 90 years or older, the age is set to 300 years to
comply with the standards of the Health Insurance Portability and Accountability
Act (HIPAA). [46] For this reason, after representing the top 200 highest age values

Figure 3.5. Graphical representation of the 200 highest age values.

in this dataset using bar charts in Fig. 3.5, it was decided to replace the value
300 with the first valid value greater than 90. This way, a reasonable age value
is set, avoiding the exclusion of these elements from the dataset while respecting
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the guidelines of the dataset creators. The analysis revealed that the first value
greater than 90 within the dataset is 92. The decision was also made because, if
the actual age were 98 years, replacing this value with 92 would still represent an
acceptable and representative alteration of the signal. Finally, to get an idea of the
representativeness of the individual classes in the entire dataset, bar charts were
used to represent the classes and their total count in the validation and training
sets, as shown in Fig. 3.6 and Fig. 3.7. As can be seen from the graph, the classes

Figure 3.6. Abnormalities distribution in the training set.

have different sizes, further highlighting how the dataset itself is skewed towards
the normal class, a factor to consider during the development of the classification
model.

3.3.1 Pre-processing
The preprocessing phase initially involves the exclusion of all signals that are not
associated with one of the 27 labels considered for the challenge. Subsequently,
the sampling frequency of all training data consistent was set to 500 Hz to make
all the samples consistent, and thus the PTB dataset was mainly downsampled.

Starting from the 12-lead electrocardiographic signal, shown in Fig. 3.8, a
series of preprocessing operations are performed before being passed as input to
the model.

The signals from leads III, aVR, aVL, and aVF are excluded from the model
input, which brings the number of used leads to 8. This is because these four leads
are linearly dependent on the others and can be calculated based on Einthoven’s
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Figure 3.7. Abnormalities distribution in the validation set.

Figure 3.8. Example of a 12-lead electrocardiographic signal from the PTB-XL
database of an 82-year-old woman, labeled with the classes Sinus rhythm, 1st
degree AV block, Left anterior fascicular block, and Left axis deviation.

Law [29] and Goldberger’s equations [5].
For the initial model considered, especially the single Squeeze and Excitation

Residual Network (SE-ResNet), all input signals were fixed at 30 s in length. This
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was done by truncating the part exceeding the first 30 s for longer signals and
padding shorter signals with zeros. For the other ensemble model, to reduce the
effect of padding on shorter signals, the input length was set to 10 s with the
same preprocessing method. The idea of using two different lengths arises from
the observation that some alterations in an ECG signal can occur throughout the
signal duration, such as alterations affecting the heart rhythm and thus having a
repeated shape, while others are related to a single beat. For example, arrhythmias
like atrial fibrillation can manifest continuously and affect the entire 30 s segment,
making an irregular repeated pattern evident.[18] Conversely, anomalies like an ab-
normal QRS complex can be isolated to a single beat and not frequently repeated.
[47] Therefore, using different signal lengths allows capturing both long-term and
short-term characteristics of the ECG signal, thus improving the model’s ability
to detect a variety of heart conditions. Once the leads to be used are identified,
a biorthogonal wavelet transformation (bior2.6) is applied to reduce the noise in
ECG signals. The numbers of vanishing moments for the decomposition and recon-
struction filters were 2 and 6, respectively. The level of refinement was set to be 8,
where the high-frequency coefficients in level 1, level 2, and level 8 were set to zero.
Although the article [52] does not provide specific reasons for the choice of these
parameters, it is likely that they were chosen empirically. Often, parameters like
the number of vanishing moments and the level of refinement are chosen based on
the specific characteristics of the ECG signals being analyzed. Researchers might
experiment with different settings to find the optimal configuration that minimizes
noise and preserves important signal features. [40]

The biorthogonal wavelet transformation is particularly useful for denoising
ECG signals due to its ability to maintain good signal reconstruction quality while
effectively eliminating noise. The biorthogonal wavelet allows for signal decompo-
sition into components that capture both local and global characteristics, making
it ideal for analyzing non-stationary signals like ECGs. Using the biorthogonal
wavelet has several advantages. Firstly, it allows for a multi-resolution represen-
tation of the signal, meaning that the signal can be analyzed at different scales or
levels of detail.

This is crucial for ECG signals, where significant events can occur at various
frequencies and durations. At the end of the operations, the signals will be as
shown in Fig. 3.9.

3.4 Experimental procedures
The workflow began with the identification and reproduction of one of the models
proposed by the top five groups ranked in the PhysioNet Computing in Cardiology
Challenge 2020. Subsequently, modifications were made using the initial model as
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Figure 3.9. Example of a 8-lead electrocardiographic signal from the PTB-
XL database of an 82-year-old woman obtained after steps of pre processing,
labeled with the classes Sinus rhythm, 1st degree AV block, Left anterior
fascicular block, and Left axis deviation.

a reference to improve performance and increase generalizability to new data. For
each modification made to the model, a structured workflow was followed, which
includes the following phases: integration of the modification into the original
model, training of the new model, performance evaluation, comparison with the
baseline, and retention of the modification only if the performance was improved
compared to the previous model. Otherwise, the previous model was kept. This
iterative approach ensured that each change made effectively contributed to the
overall performance improvement. The workflow is shown in Fig. 3.10.

Figure 3.10. Example of workflow followed to integrate modifications to the model.
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3.4.1 Choice of the model to improve
The first phase of the thesis work focused on analyzing the solutions proposed
by the groups ranked in the top five positions at the Cardiology Challenge 2020
[53, 35, 21, 37, 51]. In addition to comparing the results obtained on the hidden
test set and hidden validation set, the analysis focused on identifying the pipelines
proposed by the different groups that had good performance on their own training
set and validation set. Despite the non-uniform data division, the choice was made
with the primary goal of obtaining a model capable of performing well on the
training data, but at the same time not showing a significant loss of performance
in the validation set, as this would indicate poor generalizability of the proposed
model. The results were then compared, and subsequently, the model to be used
and modified for the subsequent training was identified.

3.4.2 Training setup
All models were trained with a batch size of 16 for 21 epochs (except for the repro-
duction of the first ensemble model), while the parameters were optimized with the
Adam optimizer. During training, the learning rate was set to 0.001 and reduced
by a factor of 10 at the 13th epoch. The loss function used in all training sessions
was created by the group and is called multi-label SignLoss. This function com-
bines elements of Binary Cross Entropy Loss (BCE Loss) with additional penalties
based on the difference between the model’s predictions and the true labels. It
defines as follow:

Sign(p) =
(y2 − 2py + p2) if |y − p| < 0.5

1 if |y − p| ≥ 0.5
(3.1)

Loss =
27Ø

i=1
Sign(pi) · BinaryCrossEntropyLoss(pi, yi) (3.2)

where y denotes the ground truth and p denotes the model’s estimated probability
for y = 1.
The difference, which indicates how much the predictions deviate from the true
labels, is compared to a threshold value of 0.5. If this is greater, the applied loss
function is the standard BCE, which penalizes the model for each error in the
predicted probabilities. If it is less than or equal to 0.5, the loss function combines
BCE Loss with a quadratic penalty, which accounts for the quadratic distance
between the predicted probabilities and the true labels. Finally, the function sums
all these penalties for each element of the batch and calculates the average over the
entire batch. In this way, the SignLoss function not only measures the accuracy
of the model’s predictions but also applies additional penalties to further improve

41



Materials and Methods

precision. This is done, as highlighted by the authors, to address the problem of
class imbalance. [52]

3.4.3 Classification model baseline
The proposed model aims to address this problem by combining the structure of
a residual network (ResNet) with Squeeze and Excitation (SE) modules, which
allow the model to capture the relative importance of each lead from multi-lead
ECG signals. Specifically, the structure used is ResNet-34, a variant of the ResNet
family with a depth of 34 layers for processing one-dimensional signals, such as
time series. The model takes one-dimensional signals as input and processes them
with a series of convolutional layers, batch normalization, and ReLU activation
functions, followed by pooling operations to reduce the spatial dimensions of the
data.

The structure consists of four main levels, each containing a specific number
of blocks (SEBasicBlock) for a total of sixteen, and as the level increases, the
number of convolutional filters increases to capture increasingly complex features
of the input sequence. The SE layers work by compressing the signal information
into a compact representation for each channel, called the squeeze phase, followed
by an excitation phase where the information generated in the previous phase is
used to capture dependencies between channels, and thus produce a weight for
each of them, applied in the feature maps of the previous levels to recalibrate the
importance of each channel of the original input, multiplying each channel by its
corresponding weight. [24]
At the end of these operations, there is an adaptive pooling operation to reduce the
signal dimensionality to a compact representation, which is then passed through
a fully connected layer that transforms these features into a prediction for each
class. Fig. 3.11 shows the architecture of this model in the case in which signals
of 15000 samples are considered as input.

The use of adaptive pooling allows the model to handle signals of variable length
by adapting them to a specific size regardless of the original input size, which is
particularly useful in scenarios where input sizes may vary, without resizing to
a fixed size and maintaining relevant information. This aspect is particularly
important because the final proposed model is an ensemble of two models that
handle input signals of different temporal lengths: the first takes input signals of
30 seconds (Model A), while the second, to reduce the effect of padding on shorter
signals, handles input sequences of 10 seconds (Model B).
The ensemble phase considers the predictions generated by the two models, to
which a sigmoid function is applied to generate probabilities. These probabilities
of the signal belonging to individual classes are combined using a weight of 0.5
for each model, which implies that both predictions contribute equally to the final
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Figure 3.11. Architecture of the SE-ResNet model.

prediction. The final predictions are assigned to the signals if the probability value
for a specific class exceeds the threshold value set at 0.36, obtained by the group on
the validation set by varying different threshold values in steps of 0.01. The choice
to merge the two outputs was therefore used to improve generalizability, while
the use of two different lengths allows for greater information when the signal is
longer than 10 seconds and is truncated to ensure the correct input to model B.
Additionally, it provides a multiple view of the same data to the model.
Following the ensemble phase of the two models, two rules are applied to correct
potential errors due to incorrect model behavior. Due to low performance by the
models on the bradycardia class because of low representativeness, a rule-based
model is applied in cascade to the ensemble for the recognition of the alteration;
since this is a characteristic variation of the heart rhythm, the implementation
of the Pan and Tompkins algorithm [44] allows for the identification of R peaks
considering lead I and subsequently identifying the RR intervals to evaluate their
duration and compare them with fixed values. Specifically, the model identifies if
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the duration of the RR intervals is between 1 second and 1.6 seconds, then the
specific interval can be defined as bradycardic. Consequently, if at least half of
the identified intervals in the total analyzed intervals have a duration within that
range, and if there are at least 6 RR intervals analyzed, then the model determines
that the signal belongs to the bradycardia class. The purpose of this rule-based
model is to validate or reject the prediction generated by the network. Therefore,
it is called at the end of the ensemble phase, and if the output is true, then the
bradycardia class is validated or added; otherwise, the network’s prediction is set
to 0 if it was initially set to 1 for the bradycardia class.
To avoid signals without a class, a check is implemented to verify the belonging
of each signal to at least one of the classes. If this is not true, then the prediction
is set to 1 for the normal class, as it is the most represented class. This is done
to avoid invalidating the inference phase and the absence of predictions for the
signals.
Fig. 3.12 represents the design of the entire proposed model.

Figure 3.12. Design of the proposed model.

Starting from the codes made available by the group, an attempt was made
to reproduce the proposed model. Regarding the training phase, a fine-tuning of
model A was carried out using shorter input signals by considering the model B
previous described. Model A was trained for a total of 18 epochs, and subsequently,
starting from the weight vectors of the best epoch of model A, fine-tuning of model
B was carried out for a total of 3 epochs, as stated in the article published by the
group. [52] The fine-tuning phase aimed to exploit the knowledge already learned
by the model during the initial training and readapt it to the new dataset with a
shorter length.

The weight vectors of model A were made available and were therefore used
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directly to complete the training phase. Additionally, the first model was validated
by clinicians after performing inference for the CPSC dataset, and it was not
possible to reproduce the model in its entirety. To further verify the reproducibility
of the model, the previous model was decomposed into two separate branches,
thus considering two separate and independent models. For this reason, to verify
the declared metrics with those obtained, inference was performed with the weight
vectors of the best epoch declared in the group’s training code and made available.
The workflow, therefore, only included the complete reproduction of model B,
keeping the hyperparameters set by the group for the training phase unchanged,
in order to verify the results obtained and compare them with those declared
in the papers published by the group during the submission phase. Model B
receives 10-second long 8-lead signals as input. Two successive training sessions
were conducted to ensure reproducibility.

3.4.4 Modification of the baseline model
After a careful comparative analysis between the model used and the models clas-
sified in the first and second positions in the challenge respectively [35, 51], some
differences emerged, including signal normalization, concatenation of covariates
(such as gender and age), the use of 12 leads or the use of a single lead, and the
inclusion of some temporal features characterizing the signals. The study exam-
ined these modifications sequentially and compared the results obtained with those
obtained with the reproduction of model B. The first operation integrated into the
signal preprocessing was normalization using the min-max scaling technique:

x′ = x − min(x)
max(x) − min(x) (3.3)

where x is the original value and x′ is the normalized value.
The purpose of data normalization was to reduce variability among the data, mak-
ing them comparable on a common scale, and it was carried out by considering
each lead individually and their respective maximum and minimum reference sig-
nal values.
Similarly, training was carried out considering all 12 leads, without excluding any
of them. This choice was made with the aim of increasing the extractable infor-
mation and providing a more accurate and complete view of the heart’s electrical
activity, so that some alterations that are not very visible and poorly represented
with a smaller number of leads become more evident. This could result in a loss of
information and the possibility of generating incorrect diagnoses. Infact, the infor-
mation contained in 12-lead ECG signals differs depending on the lead considered
in terms of intensity and amplitude values.
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In parallel with the training considering the 12 leads, some clinical reports
[9, 25] have shown that lead II of the electrocardiographic signal is the most used in
hospitals for a quick and accurate diagnosis. For this reason, in addition to using
12 leads, it was decided to carry out training considering exclusively this lead,
with the idea of verifying whether some alterations would become more evident.
These training sessions, varying the number of leads used as input, were carried
out with the aim of finding the best configuration to provide the model with the
most information and ensure a more refined classification. At the same time, they
aimed to highlight substantial differences in the model’s recognition of individual
alterations, as some of these concern a single heartbeat, and therefore it is possible
that a single lead allows the model to be more selective.

3.4.5 Addition of features to the baseline model
In addition to the modifications related to the derivations considered as input
signals, the covariates gender and age, obtained from the respective header files
and appropriately encoded, were added to improve performance. This was done
because some ECG signal alterations are more evident at certain ages and there are
significant differences between genders. For example, the risk of developing certain
arrhythmias, such as atrial fibrillation, increases with age. Additionally, it is known
that some electrocardiographic characteristics, such as the QT interval, can vary
between men and women, with women generally having a longer QT interval. [3]
These physiological differences can influence the interpretation of ECG signals and
the accuracy of the diagnosis. Therefore, including the covariates of gender and
age allows for the creation of more precise and personalized models, improving the
ability to detect and analyze rhythm alterations in both pathological contexts and
subjects with normal rhythm.

The addition was done in steps: initially, three variables related to the presence
or absence of gender in the header file were added, and subsequently, age was inte-
grated with appropriate encoding, thus creating a vector of 5 variables to evaluate
the presence or absence of this variable. Regarding the gender variable, it was
encoded using the one-hot encoding technique. In this approach, the categorical
variable is transformed into a binary vector, where each category is represented by
a single active position in the vector. Specifically, gender was encoded by creating
a three-element vector:

• The first element of the vector is set to 1 if the gender is female.

• The second element of the vector is set to 1 if the gender is male.

• The third element of the vector is set to 1 if the gender is absent or unspecified.
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This representation allows machine learning models to treat gender as a numer-
ical variable without implying any order or hierarchy among the categories, thus
preserving the integrity of the categorical information. Following the creation of
the binary vector for gender, two elements were added to integrate the age infor-
mation using encoding techniques that enhance the model’s ability to interpret
this information. Specifically, age was encoded in two distinct ways to evaluate
performance differences.

In the first approach, age is normalized relative to the maximum value as de-
scribed in Section 3.3. This normalization transforms age into a continuous vari-
able ranging from 0 to 1, preserving the relative scale and facilitating integration
with the model’s other numerical features.
In the second approach, age is divided into predefined groups to represent specific
age ranges, each represented by a distinct numerical code. In this case, the age
ranges could include categories such as children (1-12 years), adolescents (13-18
years), young adults (19-40 years), adults (41-65 years), and seniors (66 years and
older). This encoding allows reflecting differences between specific age groups,
which may have distinct impacts on ECG signal characteristics. [38, 6]
In cases where age is missing or invalid (e.g., if it is negative or zero), the second
element of the vector is set to 1 to indicate the error or absence of data, while
the first element remains 0. This handling of missing data is applied in both en-
coding approaches. The additional features thus obtained are concatenated with
the main features extracted by the model before performing the classification task.
This integration enriches the available information, improving the model’s ability
to detect and analyze the correlations between the covariates and the ECG signal
alterations that might not be fully captured by the convolutional layers, as the
header file is not provided as direct input. For the processing of this five-element
vector, two different components were designed as described in Fig. 3.13.

A. In the first case, the additional features are passed through a first linear
layer that increases their dimensionality to 64, followed by a ReLU activation
function, and then reduced to 16 dimensions by a second linear layer, also
followed by a ReLU activation function.

B. In the second case, the additional features are passed through a single linear
layer that transforms them into a 10-dimensional vector.

Two different processing units were tested to extract additional information from
these covariates with two different final dimensions to understand how these af-
fect the model’s performance. The main difference between the two additional
layers lies in the depth and complexity of the transformations of the additional
features. The final choice will therefore depend on the results obtained during
the validation phase, taking into account the complexity of the additional features
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and computational efficiency. The design choices for the linear and ReLU layers,
as well as the output dimensions, were inspired by the approaches used by other
groups working on similar problems and participating in the PhysioNet Challenge
in 2020 and 2021. By reviewing their methodologies, strategies that have been
effective in processing similar types of features were adopted. This comparative
analysis guided the decisions, although it did not follow a strict scientific criterion.

Figure 3.13. Description of the two additional layers that process the co-
variates. A. Layer that generates 16 additional features. B. Layer that
generates 10 additional features.

In addition to the covariates obtainable from the header files of individual 12-
lead ECG signals, an experiment was conducted by concatenating seven features
derived from the temporal and nonlinear domains to the output features from the
model.

After performing the preprocessing described in Subsection 3.3.1 lead II of each
signal is isolated, as it is most commonly used in clinical settings. On this lead,
operations are performed using specific processing tools to assess Heart Rate Vari-
ability (HRV). [43] HRV is considered a measure of neurocardiac function that
reflects heart-brain interactions and the dynamics of the autonomic nervous sys-
tem. It is, therefore, an index of the heart’s ability to respond to physiological
and psychological variations within the organism and the functional status of the
sympathetic and parasympathetic systems.

The main feature extracted is the R peaks, which characterize an electrocar-
diographic signal. From these peaks, RR intervals are calculated by subtracting
consecutive R peaks identified earlier. Once the intervals are extracted, their mean
value in seconds is calculated by dividing the number of samples by the sampling
frequency, and the standard deviation is also calculated as a measure of variability.

Mean RR =
qN

i=1 RRi

N
(3.4)

Standard Deviation =
óqN

i=1(RRi − Mean RR)2

N
(3.5)
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where RRi represents an interval in samples, and N is the total number of intervals
identified on each individual signal.

From the RR intervals, nonlinear characteristics are also extracted. In this case,
nonlinearity is discussed because the relationship between the variables cannot
be plotted as a straight line. These metrics allow for the quantification of the
unpredictability of a time series of intervals. For example, a random series of RR
intervals, a normal series, and a totally periodic series can have the same standard
deviation value, but their underlying organization could be completely different.

Figure 3.14. Example of Poincaré plot.

Using the RR intervals, the Poincaré plot is derived, where each RR interval is
represented as a function of its previous interval. [36] This is a scatter plot that
allows for the quantification of short-term and long-term variability by measuring
the lengths of the two axes.

From the Fig. 3.14, the values of SD1, represented by the short axis, which
measures short-term HRV in milliseconds, and the values of SD2, represented by
the long axis of the ellipse, which measures long-term HRV in milliseconds, are
extracted. From these values, for each signal, the SD1/SD2 ratio is calculated,
which measures the unpredictability of the time series of RR intervals.
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SD1 = 1√
2

× SD∆ (3.6)

SD2 =
ñ

2 × SD2
RR − SD12 (3.7)

SD∆ =

öõõô 1
N − 1

N−1Ø
i=1

(RRi+1 − RRi)2 (3.8)

where N is the total number of RR intervals and SDRR is the standard deviation
of RR intervals. The values of SD1 and SD2 are also used to calculate the Cardiac
Sympathetic Index (CSI) and the Cardiac Vagal Index (CVI), where both represent
the balance between sympathetic and parasympathetic tone.
Specifically, the first parameter is defined as:

CSI = 4 × SD1
4 × SD2 (3.9)

While the second is defined as:

CVI = log10(4 × SD1 × 4 × SD2) (3.10)

These indices provide information on the autonomic regulation of the heart and
highlight the differences between individual alterations in the ECG signal, allowing
for the distinction between various cardiac conditions and the identification of
specific patterns of irregularity in heart rate variability. [14] In this case, for each
signal, a vector of 7 elements is generated and added to the 5 elements generated
through the encoding of gender and age. These are directly concatenated to the
features extracted from the model. In this case as well, training was performed to
evaluate the performances.

3.4.6 Dataset reorganization
From the preliminary analysis of the available datasets described in the Section 3.3,
a significant imbalance emerged, with a high representation of signals labeled as
normal sinus rhythm, SNOMED code 426783006. To try to mitigate this problem,
which could negatively affect the performance of a potential model, an analysis
was conducted on the signals labeled with this class. In particular, boxplots were
created to represent some features extracted from the signals for each databases,
including power, heart rate, energy, standard deviation and mean value of RR
intervals, number of beats, and Shannon entropy. [49] The extraction of these
features was carried out starting from lead II and after applying the pre-processing
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Figure 3.15. Boxplot of the energy feature for signals labeled as normal sinus
rhythm. The black circles represent the outliers for each database.

described in the Subsection 3.3.1 to homogenize the dataset, using specific tools
for processing electrocardiographic signals.

Starting from the created boxplots, outliers were analyzed for each feature. In
particular, the quantities of these outliers were identified, and subsequently, train-
ing was carried out by identifying the feature with the highest number of outliers
and removing the specific signals associated with it. Specifically, the outliers of the
energy feature were removed as shown in Fig. 3.15, for a total of 1568 signals. This
operation resulted in training set and validation set sizes of 28913 and 7235, re-
spectively. The decision to exclude certain signals was made to try to homogenize
the distribution, in relation to a specific parameter, for the most represented class
in this dataset. Following this exclusion of some signals, a new training was carried
out while keeping the modifications described in the previous sections unchanged,
which achieved the best performances. In parallel, while keeping the model with
the best performance unchanged, all outliers of all features related to the boxplots
of the normal sinus rhythm class were removed. The aim was to eliminate all
possible sources of noise belonging to signals of the same class but very dissimilar
to each other in terms of representation and extracted features. As a result, the
new sizes for the training set are 19836, while for the validation set they are 4986.

To further reduce the size of the most represented class, an additional attempt,
different from the previous ones described before, was made to identify and select
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only the signals associated with that specific class, but with the unique label of
normal sinus rhythm. The reason for this choice lies in the fact that some of the
signals with the normal sinus rhythm class were simultaneously associated with
other classes representing certain alterations. For this reason, an effort was made
to have the normal sinus rhythm label expressed uniquely. An example of the
selection process is shown in Fig. 3.16.

This operation also led to a reduction in the sizes of the two datasets used, re-
ducing the training set to 20836 elements and the validation set to 5211 elements.
Again, a new training was carried out with these new specifications, keeping un-
changed the characteristics that allowed achieving the best metrics.

Figure 3.16. Example of pipeline before starting the train session.

3.4.7 Model decomposition
The issue of different numerosity for each classes in training sets necessitated the
decomposition of the main model into more specific sub-models for certain classes
that were grouped together in the global model. In particular, a sub-model was
created to distinguish between bradycardia and sinus bradycardia, two very similar
alterations but characterized by different shapes, which negatively affected the
performance of the global model. A similar operation was carried out by grouping
the classes T wave abnormal, T wave inverse, and Prolonged QT interval.
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In this case, an additional step was introduced to improve the model’s speci-
ficity and discriminate between similar classes. Starting from a classifier that
discriminates a reduced number of classes, where some of them are grouped, if the
output class belongs to those grouped, a second, more specific classifier is called.
The architecture of the models added in cascade was kept identical to that of the
general model, with the only difference being that the number of classes to be
discriminated was reduced. The adoption of sub-models for an excessive number
of groupings would have resulted in a significant increase in computational costs.

The attempt aimed to capture the characteristics of simpler models, with a
smaller number of signals and elements in the training datasets. The workflow
followed in the case of the sub-model that discriminates between bradycardia and
sinus bradycardia is described in Fig. 3.17.

Figure 3.17. Example of pipeline by considering the submodel to discriminate
bradycardia class and sinus bradycardia class.

The insertion of a large number of sub-models in cascade, capable of discrim-
inating a reduced number of classes, would have led to a significant increase in
computational resources.

Therefore, the problem of high class imbalance and the large presence of el-
ements labeled as normal sinus rhythm was addressed by developing a classifier
that distinguished only between two classes, with the possibility of assigning both
simultaneously. The model architecture was kept similar to that described in the
previous steps, but it was changed from a 27-class classifier to a 2-class classifier.
Specifically, the two identified classes are healthy ECG and altered ECG. In this
context, a relabeling operation was carried out in which all signals belonging to
the normal sinus rhythm class were assigned to class 0, while all other classes were
grouped into class 1. If both classes were present, the signals were labeled with
both classes 0 and 1. This approach introduced an additional phase to differenti-
ate between two classes with similar frequencies, thus reducing the imbalance that
had appeared in previous models.

To assign the classes, different threshold values of 0.5, 0.55, 0.6, and 0.7 were
tested, with the aim of identifying the optimal value by evaluating the performance
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of each individual value. Subsequently, after class assignment through threshold-
ing, a post-processing operation was carried out. In this context, if the probabilities
of belonging to both classes were below the chosen threshold, an attempt was made
to assign directly the class. Both solutions were tested: one in which the explicitly
set class was the healthy one and the other in which the assigned class was the
altered one. The metrics obtained from each of the two solutions were compared
to identify which post-processing improved the model’s accuracy the most. The
lack of class assignment is managed through a check on a vector whose sum must
be greater than or equal to 1 for the signal to have an associated label. An ex-
ample workflow is shown in the Fig. 3.18, where, at the end of the thresholding
operations, no class is assigned to the signal; therefore, the post-processing phase
and the manual assignment of the healthy class are carried out.

Figure 3.18. Example of pipeline for the binary classifier in which the post
processing is to set the absent class to the healthy one.

Following this model, a second classifier capable of differentiating between the
remaining 26 classes, excluding all signals labeled as normal sinus rhythm, was
trained and added. This exclusion operation led to a new distribution of labels in
the training and validation sets, as described in Fig. 3.19, and resulted in a change
in their sizes: the training set consisted of 13529 elements, while the validation
set had 3341 elements. As shown in Fig. 3.19, the removal of signals belonging
to the normal class from the two datasets reduced the representativeness of some
classes. In particular, it can be observed that the prolonged PR interval class
(LPR, SNOMED code 164947007) has only 15 elements in the training set and
6 in the validation set, which significantly affects the final performance of the
model. For this reason, two parallel training sessions were conducted to evaluate
the performance and compare which approach offered the best results. In the first
case, the training was conducted without making any changes to the base model
used so, to be precise it was decided to maintain the threshold value for assigning
a class equal to 0.36. In the second case, a weight was assigned to the loss function
for each label in the entire dataset. The assigned weight was calculated based on
the logarithm of the inverse of the frequency of each individual class, as proposed
by the group in their code. In this way, the less represented classes, with a much
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Figure 3.19. Distribution of the abnormalities in the training set and validation
set after the exclusion of all elements in which the normal class was present.
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smaller number of elements, were assigned a greater weight, which influenced the
calculation of the loss function. The choice of the pipeline to follow was made by
comparing the metrics obtained from the two different training sessions.

The main model has been divided into two sub-models specialized in different
tasks, with the aim of addressing the problem of the high number of elements
classified as normal rhythm. Specifically, the input signals are initially processed by
a first model that classifies and distinguishes between normal rhythm and altered
rhythm. If the signal is classified by the first model as belonging to the second class,
it is subsequently sent to a second model, whose task is to distinguish between 26
different overall classes. The idea behind this approach was to organize the two
models in a cascade, thus generating a final prediction that takes into account the
succession of the models, thereby improving the specificity of the classification for
the less represented classes.

To further increase the accuracy of the classifier, the original idea proposed
by the group was integrated, which involves combining the outputs to generate a
prediction from two signals of different lengths. In this context, the two cascade
models were implemented through an ensemble of two sub-models, which handle
signals of lengths equal to 5000 and 15000 samples, respectively. The final pre-
diction for each signal, as well as for both models, is thus obtained by combining
the results of the two sub-models, to which an equal weight of 0.5 is assigned. To
determine the optimal configuration to use, an ensemble of the two sub-models
was performed using signals with 12 and 8 leads as input. The Fig. 3.20 shows
the final workflow in the specific case where the input signals are 8 leads. Fur-
thermore, all post-processing operations adopted in the previous models have been
kept unchanged.

3.4.8 Model variation
To compare the behavior of the baseline model with more recent models in the
literature, a new network was identified to be used with the same data, in order to
have a comparison and understand if the performance was in line with what was
being obtained. The network used is an ECGNet proposed by Jin et al. (2024) [27].
The peculiarity is that the model was designed to be interpretable and therefore,
in addition to identifying possible alterations, it is able to highlight the anoma-
lous regions on the ECGs, thus helping clinicians to quickly locate problematic
areas. The model was trained on a dataset created specifically for this network
and contains signals from different Chinese patients between January 2017 and
December 2021. It is designed to identify 6 alterations of the electrocardiographic
signal, including: normal sinus rhythm (NSR), atrial fibrillation (AF), sinus tachy-
cardia (ST), sinus bradycardia (SB), atrial premature contraction, and ventricular
premature contraction. Since the model was used for comparison, the number of
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Figure 3.20. Example of the final pipeline considering the two models
and their specific ensemble.

classes was modified, going from the original 6 classes to the 27 identified in the
Cardiology Challenge. This was necessary to understand if the baseline had results
in line with more specific and recent models.

The ECGNet is a network integrated into a telemedicine system to provide
an assisted solution even outside the hospital. For this reason, the input signal
considers only one lead, instead of the 8 previously considered, specifically lead II is
used as input. The model uses a combination of Convolutional Neural Networks,
Residual blocks, and Bidirectional Long-Short Term Memory (BiLSTM) layers
to automatically extract features from ECG signals. The Residual blocks are
responsible for extracting short-term dependence features, while the BiLSTM layer
extracts long-term dependence features. Subsequently, an Attention (ATT) layer
is used to enhance beneficial features and indicate the model’s focus on the input
features. Finally, a multi-label classifier processes the deep features to generate
the prediction results. At the end of the predictions, a post-processing module,
based on medical knowledge, is added. This module analyzes the outputs and
corrects some predictions by extracting characteristic and discriminatory features
of these cardiac arrhythmias, such as heart rate or the number of R peaks. The
architecture is shown in Fig. 3.21.
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Figure 3.21. Architecture of the original ECGNet.

However, since this model was designed to identify 6 different cardiac arrhyth-
mias, but the comparison is made on the 27 considered in the challenge, the
post-processing module was not integrated into the final model. Instead, only
the architecture was used to evaluate its performance. This model was therefore
trained considering two types of input signals: 8 leads, like the models described
so far, and a single lead to evaluate its performance while respecting the original
architecture. The choice to test this model on the data of the challenge was made
because, as stated by the authors, after a validation phase acquiring information
from three expert cardiologists, the results obtained highlighted that the proposed
diagnostic system has superior diagnostic performance over that of clinicians.

3.5 Training and evaluation of models
To evaluate the performance of a classification model in a multi-class and multi-
label context and to maintain the comparison with the obtained results, a new
scoring function proposed by the challenge organizers on the validation set was
considered. This was necessary to identify whether certain modifications to the
model improved the declared results. Additionally, this metric was evaluated on
the additional test set to have a global assessment of the model’s performance on
this dataset after making modifications.

The metrics will therefore be calculated on the validation set and test set at
the end of each training.

3.5.1 Challenge metric and performance evaluation
The new metric proposed by the organizers of the Cardiology Challenge 2020 aims
to better reflect clinical reality, a limitation encountered when using traditional
metrics such as the area under the curve (AUC). [3] It assigns partial credits to
incorrect diagnoses that actually result in outcomes or treatments similar to the
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real diagnoses, and similarly highlights how some incorrect diagnoses are more
harmful and should be treated accordingly. Additionally, it reflects the fact that it
is less harmful to confuse certain classes compared to others because the responses
can be similar or identical. For the challenge metric, it starts with the creation
of a modified confusion matrix A = [aij], where aij is the normalized number of
recordings in a database that were classified as belonging to class ci but actually
belong to class cj (where ci and cj may be the same class or different classes).
Given that each recording can have one or more labels associated with it, and the
classifier can generate multiple class memberships, then for a generic signal k, let
xk be the set of actual classes and yk be the set of predicted classes for that specific
recording. Defining:

aij =
nØ

k=1
aijk (3.11)

aijk =


1
|xk∪yk| , if ci ∈ xk and cj ∈ yk

0, otherwise
(3.12)

where n represents the total number of recordings and the quantity |xk ∪ yk| is
the number of distinct classes with a positive label and/or classifier output for
recording k.

To assign credits to the obtained predictions, a reward matrix W = [wij] is
defined, where wij, defined by cardiologists based on the similarity between ECG
signal alterations, are the reward for a positive classifier output for class ci with
a positive label cj. The reward matrix is shown in Fig. 3.22. The reward matrix
assigns the highest values along its diagonal, giving full credit for correct classifier
outputs, partial credit for incorrect classifier outputs, and no credit for labels and
classifier outputs not represented in the weight matrix.

The metric is thus defined as a weighted sum of the rewards from the reward
matrix and the number of recordings classified as belonging to the specific class
cij, representing a generalized version of accuracy:

sunnormalized =
mØ

i=1

mØ
j=1

wijaij (3.13)

where m represents the number of diagnoses considered.
To make the comparison easier, this score is normalized so that a classifier which

always outputs the real classes or class receives a score of 1, while a classifier which
always outputs the normal class receives a score of 0, defining it as an inactive
classifier:

snormalized = sunnormalized − sinactive

strue − sinactive
(3.14)
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Figure 3.22. Reward matrix W used for scoring diagnoses in the Challenge is
depicted with rows and columns labeled by the abbreviations for the diagnoses.
Off-diagonal entries with a value of 1 indicate similar diagnoses that are scored
equivalently to the same diagnosis.

where sinactive is the score for the inactive classifier and strue is the score for the
ground-truth classifier.

Since some of the 27 classes are considered similar during the evaluation and
calculation of metrics, the problem shifts from the expected 27 classes to 24. This
is represented in the Fig. 3.22, where some scores equal to 1 (same anomaly) are
also reported outside the main diagonal, indicating that these two alterations can
be considered the same diagnosis.

Specifically, the following pairs of classes are treated as equivalent:

• Right bundle branch block (RBBB, SNOMED code 59118001) and Complete
right bundle branch block (CRBBB, SNOMED code 713427006).

• Supraventricular premature beats (SPVB, SNOMED code 63593006) and Pre-
mature atrial contraction (PAC, SNOMED code 284470004).

• Ventricular premature beats (VPB, SNOMED code 17338001) and Premature
ventricular contractions (PVC, SNOMED code 427172004).
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Therefore, during the model evaluation, signals with one of the diagnoses con-
tained in these pairs will be relabeled with one of the two, thus making the task a
24-class classification. For each specific class and considering the binary classifier,
accuracy is evaluated as the ratio of the number of recordings for which all pre-
dicted labels match the true labels to the total number of recordings. This can be
expressed as:

Accuracy = Number of recordings with all correct labels
Total number of recordings

Furthermore, to compare results and behavior on individual alterations, the F1
score has been taken into consideration, defined as:

F1 Score = TP

TP + 1
2(FP + FN) (3.15)

where TP are the number of examples correctly classified as positive, FP are the
number of examples incorrectly classified as positive, and FN are the number of
examples incorrectly classified as negative.

And in particular, taking into account different classes, the macro averaged
F1 score has been calculated, that is computed using the arithmetic mean (un-
weighted mean) of all the per-class F1 scores. This method treats all classes equally
regardless of their support values. Defined as:

Macro F1 Score =
qm

i=1 F1 Scorei

m
(3.16)

3.6 Clinical feedback and model modifications
The importance of having a clinical opinion in this type of project is very significant
and allows for the inclusion of purely health-related information into a primarily
engineering vision. During the project, it was possible to have a discussion with
experts in the field, particularly with a cardiologist specializing in electrophysiolo-
gy/arrhythmology who performs activities in electrostimulation, electrophysiology,
and clinical arrhythmology and possesses extensive knowledge of the electrocar-
diographic signal and its alterations.

From this meeting, it emerged that some of these electrocardiographic signal
alterations affect a single beat and not the entire signal trace. For this reason,
the first modification that was integrated was to perform two model trainings
with shorter duration signals as input, so that evaluations could be made on in-
dividual alterations that are more evident in a single beat and for which it is
possible, through the isolation of the latter, to assess their presence and/or ab-
sence. Specifically, two trainings were conducted with input signals of 500 samples,
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corresponding to approximately 1 second of signal, and 1000 samples, correspond-
ing to 2 seconds of signal. These trainings were carried out while maintaining the
previous modifications and excluding the normal sinus rhythm class to exclusively
discriminate between individual alterations. The idea, once the performance of
these models was obtained, was to give greater weight when performing inference
if the metrics obtained on alterations recognizable through a single beat in the
clinical setting were higher than those considering input signals of 5000 samples.
Among the diagnoses recognizable through a single beat are: complete and incom-
plete bundle branch blocks, left and right axis deviations, inverted T wave, and
abnormal Q wave.

Furthermore, from the meeting, it emerged that some of the 27 classes were
similar to each other and that one of these was not very functional to maintain
recognition. Therefore, these similar classes were grouped, and the classes deemed
not important to recognize for a clinical task were excluded from the training.
Specifically, the total number of classes was reduced from 27 to 20, that are repre-
sented in the Tab 3.2. This was achieved by merging the classes bradycardia and
sinus bradycardia, abnormal T wave and inverted T wave, supraventricular pre-
mature beats and premature atrial contraction, ventricular premature beats and
premature ventricular contractions, left axis deviation and right axis deviation,
and prolonged PR interval and 1st degree atrioventricular block, and excluding
the nonspecific intraventricular conduction disorder class during the evaluation of
the metrics. In this case as well, the modifications were integrated during the
perfoming of inference when the metrics are evaluated.

Both modifications made to the model were carried out to integrate clinical
knowledge into the proposed model to perform a classification task that best re-
flects the hospital setting.
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Diagnosis
Atrial fibrillation
Atrial flutter
Bradycardia/Sinus bradycardia
Complete right bundle branch block/Right bundle branch block
Incomplete right bundle branch block
1st degree AV block/Prolonged PR interval
Left anterior fascicular block
Left axis deviation/Right axis deviation
Left bundle branch block
Low QRS voltages
Pacing rhythm
Premature atrial contraction/Ventricular premature
beats/Supraventricular premature beats
Premature ventricular contractions
Prolonged QT interval
Q wave abnormal
Sinus arrhythmia
Sinus rhythm
Sinus tachycardia
T wave abnormal/T wave inversion
Nonspecific intraventricular conduction disorder

Table 3.2. Diagnoses considered after the grouping suggested during the
meeting with the cardiologist.
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Results

Tab 4.1 shows the Challenge metric results for the top five groups in the Cardiology
Challenge, comparing performance on the training, hidden validation, and hidden
test datasets. The values highlighted in yellow represent promising results obtained
by the third group, maintaining performance in line with the other groups on the
hidden test set, which is why this solution was selected. It is important to note
that the chosen solution, consisting of an ensemble, was validated by clinicians
in the first phase, especially the model outputs were subjected to clinical review
by two cardiologists. This aspect has a considerable impact on the choice, as
the other solutions did not undergo clinical validation. Additionally, although the
other results appear less affected by overfitting, since the hidden test set was not
released, the path that showed the best results on their own training sets was
preferred.

Challenge metric
Group Training set Hidden Validation set Hidden Test set

1° group 0.675 0.587 0.533
2° group 0.684 0.672 0.520
3° group 0.885 0.682 0.514
4° group 0.724 0.640 0.485
5° group 0.629 0.609 0.437

Table 4.1. Challenge metrics for the five top ranked groups in the Cardiology
Challenge across training, validation, and test sets.

Tab 4.2 presents a comparison of the new score challenge metric values on the
validation set, obtained by attempting to replicate the results of the third-place
group using different weight vectors provided in their submission file. The results
show that Model B, using the bestw weight vector, produced the similar results,
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Model (weight vectors) Challenge Metric Validation Declared by the Group 3
Ensemble (current w+best_w) No information No information

Ensemble (best_w_15k8L + best_w) 0.628 0.663
Model A (current_w) 0.800 No information

Model A (best_w_15k8L) 0.190 0.674
Model B (best_w) 0.663/0.665 0.674

Table 4.2. Comparison of challenge metric values on validation by trying to
repeat the code with the different weight vectors provided by the third-ranked
group in their submission zip file.

highlighted in yellow, both in the code replication and in the results declared by
the group.

Tab 4.3 presents the Challenge metric results on the validation and test sets
after integrating additional variables (covariates) such as gender and age. Various
solutions are compared: G represents the division of age into groups, while N
indicates the normalization of age relative to the maximum. The numbers 2 and 3
indicate the type of variable processing: with number 2, the variables are processed
by a ReLU layer, generating 16 additional features, while with number 3, they are
processed by a linear layer, generating 10 features.

Challenge Metric
Validation set Test set

Baseline (no modifications) 0.664 0.394
Gender 2 + Age (N) 0.673 0.414
Gender 2 + Age (G) 0.667 0.395
Gender 3 + Age (N) 0.675 0.399
Gender 3 + Age (G) 0.669 0.398

Table 4.3. Results of the challenge metric on the validation set after the con-
catenation of covariates to the output of the model. The letter G represents
the solution in which the age is subdivided into groups, while the letter N
represents the solution in which the age is normalized by the maximum. The
number 2 represents the solution in which the variables are elaborated by the
ReLU layer, resulting in 16 additional features generated, while the number
3 represents the solution in which the variables are elaborated by the Linear
layer, resulting in 10 additional features.

Fig. 4.1 and Fig. 4.2 show the trend of the Challenge metric on the validation
set and the test set, respectively, after implementing various modifications to the
baseline model, which already includes the covariates gender and age processed by
the linear layer.
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Figure 4.1. Comparison of values of challenge metric on the validation set after
different modifications. Each model starts from the model that has integrated
the covariates elaborated by the Linear layer.

Figure 4.2. Comparison of values of challenge metric on the test set after the
different modifications. Each model starts from the model that has integrated
the covariates elaborated by the Linear layer.

Tab 4.4 compares the Challenge metric results obtained by the new model
with integrated covariates against the ECGNet model on validation and test sets,
using both 8-lead and single-lead ECG. The results highlight that the model with
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Challenge Metric
Validation set Test set

8 Leads (Covariates model) 0.675 0.398
8 Leads (ECGNet) 0.502 0.357

1 Lead (Covariates model) 0.590 0.447
1 Lead (ECGNet) 0.482 0.419

Table 4.4. Comparison of results obtained by the new model considered
with the model in which the covariates are integrated and two different
inputs: 1 lead and 8 leads.

covariates achieves superior performance compared to ECGNet, both with 8 leads
and 1 lead. Tab 4.5 reports the Challenge metric values obtained after various
attempts to balance the dataset. Three solutions were experimented with: the
removal of outliers based on signal energy, the removal of outliers across all features,
and the classification of all elements plus elements where the single associated class
is normal sinus rhythm.

Challenge Metric
Validation set Test set

Covariates model 0.675 0.398
No outliers energy 0.666 0.377

No outlier of all features 0.618 0.404
Single class normal sinus rhythm 0.508 0.377

Table 4.5. Challenge metric values obtained after the different attempts
done to balance the dataset.

Tab 4.6 presents the results in terms of Accuracy and MacroF1 score for a
binary model using 12-lead ECG. Various configurations were tested: the use of
signals with a length of 5000 or 15000 samples, and two approaches for handling
the missing class: as altered (“A”) or as healthy (“S”). The results show that
the ensemble combination, which integrates models with different signal lengths,
leads to improved performance, with the configuration handling the missing class
as healthy (“S”) achieving the best F1 score results on both the validation and
test sets. Table 4.7 compares the Challenge metric values for two cascade models,
where the first stage is the binary model from Tab 4.6, using the configuration
with a 0.5 threshold and handling the missing class as healthy (“S”). The first
cascade model uses 12-lead ECG for both the binary model and the subsequent
26-class model, while the second cascade model replaces the 12 leads in the second
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stage with 8-lead ECG.

Validation Test
Accuracy F1 Accuracy F1

12 leads + 5000 samples + A 0.840 0.925 0.882 0.830
12 leads + 5000 samples + S 0.840 0.925 0.881 0.829

12 leads + 15000 samples + A 0.841 0.925 0.877 0.825
12 leads + 15000 samples + S 0.842 0.925 0.876 0.825

Ensemble + S 0.851 0.930 0.890 0.843
Ensemble + A 0.847 0.918 0.885 0.837

Table 4.6. Accuracy and MacroF1 score obtained considering the binary model
with 12 leads. ’A’ indicates handling the missing class as altered, while ’S’
indicates handling the missing class as healthy. The threshold to assign the
class is set to 0.5. The ensemble phase is the ensemble between the model
which input’s signals have a length of 5000 samples and the model in which
input’s signals have a length of 15000 samples.

Challenge Metric
Validation set Test set

Cascade model (12 leads + 12 leads) 0.613 0.432
Cascade model (12 leads + 8 leads) 0.617 0.450

Table 4.7. Challenge metric values comparing the two ensemble cascade mod-
els. The first model includes a binary model consisting of an ensemble with
12 leads of two different lengths (15000 samples and 5000 samples), followed
by a 26-class model considering the 12 leads and the ensemble of two different
lengths. The second model considers the 26-class model with 8 leads and the
ensemble of two different lengths.

The presented results reflect the implementation of clinical knowledge acquired
during a meeting with a cardiologist. Tab 4.8 reports the attempts to reduce the
length of the ECG signals expressed in samples (500 and 1000), using the initial
configuration with 5000 samples as a reference. Tab 4.9 shows the results obtained
by grouping some similar classes, as suggested by the cardiologist. The integration
of these modifications led to a notable improvement for both the covariates model
and the ensemble model.

Fig. 4.3 and Fig. 4.4 show the F1 score values for all pathologies on both
the validation and test sets, comparing the model that achieved the best perfor-
mance and the implemented solution that achieved consistent performance on the
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Challenge Metric
Validation set Test set

5000 samples 0.675 0.398
1000 samples 0.663 0.430
500 samples 0.616 0.414

Table 4.8. Comparison of challenge metric values using different sig-
nal lengths excluding the normal sinus rhythm class and considering the
model with 26 classes.

Challenge Metric
Validation set Test set

Covariates model 0.675 0.398
Covariates model + class grouped 0.692 0.471

Ensemble Model 0.617 0.450
Ensemble Model + class grouped 0.644 0.504

Table 4.9. Comparison of results by considering the ensemble model and the
best model with the integration of the covariates between the normal solution
with 27 classes and the other case in which the classes are grouped.

hidden test set. In some cases, the F1 score is 0 due to the absence of representa-
tive elements for that class. The two figures compare the results obtained before
and after integrating the clinical information provided by the cardiologist. It can
be observed how the grouping of some similar pathologies, suggested during the
meeting, influenced the F1 values, improving the model’s performance in several
cases.
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Figure 4.3. F1 score for each diagnoses in validation set. A. F1 score for di-
agnoses in validation set considering the model with only alterations and the
ensemble cascade model before grouping some pathologies following the meeting
with the specialist. B. F1 score for diagnoses in validation set considering the
model with only covariates and the ensemble cascade model after grouping some
alterations following the meeting with the specialist.
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Figure 4.4. F1 score for each diagnoses in test set. A. F1 score for diagnoses
in test set considering the model with only alterations and the ensemble cascade
model before grouping some pathologies following the meeting with the specialist.
B. F1 score for diagnoses in test set considering the model with only covariates
and the ensemble cascade model after grouping some alterations following the
meeting with the specialist.

71



Chapter 5

Discussion

Identification of the starting pipeline

The choice of the model to use as a baseline during the thesis project and its repro-
duction represented a crucial starting point for identifying the necessary steps to
improve the system’s performance. From the comparison of the results obtained
by the top five groups in the 2020 Cardiology Challenge [53, 35, 21, 37, 51], it
emerged that generalization ability was a common challenge for all proposed so-
lutions, with performance on the hidden test set around 50%, depending on the
metric used for the challenge, as shown in Tab 4.1. This motivated the decision
to evaluate the proposed models on all subsets of data used for evaluation, includ-
ing not only the hidden test set but also the results obtained on the training and
validation sets, despite the division of the latter being at the discretion of each
participating group.

The choice thus fell on the solution proposed by the third-ranked group [52],
as the declared metrics, particularly on the training and validation sets, appeared
promising and constituted a solid starting point. Additionally, from a technical
perspective, the solution was easily understandable. However, reproducing this
model encountered difficulties related to what was reported in the provided code.
To ensure exact reproducibility, the code uploaded on the Challenge page was
executed without any modifications, in order to compare the declared results with
those obtained after reproduction. Since the metrics declared by the group referred
exclusively to the validation set, all comparisons were made considering specifically
the validation set used for model training.

In the case of the final solution the provided code already included the weight
vectors to be used. As for model A, it was used for a relabel of the CPSC dataset,
subsequently validated by clinicians. Indeed each training started from the rela-
beled dataset, considering the new classes assigned to the signals for that specific
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database. However, reproducing the provided code did not yield the results de-
clared by the group in its paper. From the analysis of the Tab 4.2, it emerges
that the possible cause of this lack of reproducibility could be attributed to an
incorrect declaration of the weight vectors for the ensemble. Even in the simple
reproduction of the single model, without integrating the ensemble phase, a dis-
parity of about 0.1 was noted between the obtained result and the declared one,
thus substantially impacting subsequent modifications to the model.

To address the issue of non-reproducibility, the main model was decomposed
into sub-models, verifying each for code errors that might prevent full reproduction.
This process identified that the ensemble phase between two signals of different
lengths was missing, with only 10-second-long signals being input into the net-
work. However, the results from the two code executions were consistent with the
declared results, confirming the methodology’s correctness.

Modification of the starting pipeline
To improve classifier performance, several modifications were introduced, includ-
ing additional pre-processing steps and changes to the network architecture to
handle different input types. For instance, signals were normalized to scale data
between 0 and 1 while preserving important features like signal peaks. [16] These
modifications were evaluated using the challenge metric on the validation and test
sets to assess generalization.

Among the implemented modifications, the one that had a significant impact
on the model’s performance was the addition of covariates, such as gender and
age, as supplementary inputs. These variables were concatenated to the features
extracted by the model before generating the prediction and assigning the class.
This choice was motivated by the awareness that age affects the progression of
certain arrhythmias and was inspired by an article published by the group from
which the reference solution was taken. [52] In that article, it was highlighted that
the main difference compared to the solution ranked second in the Challenge was
precisely the inclusion of covariates in the model. [50]

To evaluate the effect of the depth of the additional layer architecture and the
processing mode of these variables, two types of flows were used to handle the
encoded covariates as shown in Tab 4.3, in which it is possible to understand
that the best perfomance are obtained by the solution that linearly combines the
features and normalizes age by the maximum value rather than dividing it into
groups. Regardless of the method used for processing, the addition of this infor-
mation highlighted how crucial the patient’s clinical history is for correct class
prediction. The clinical history represents an essential source of information that
allows contextualizing the data collected during instrumental analyses, offering a
more complete view of the patient’s health status. It includes details on medical
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history, chronic conditions, ongoing pharmacological treatments, and previous car-
diac events, which can significantly influence the presentation of arrhythmias. [45]
Such information provides a context in which to interpret physiological signals,
allowing the model to recognize patterns that could be associated with specific
clinical conditions, thus improving prediction accuracy.

From this consideration emerges the importance of having not only the signals
and associated classes but also variables that describe the patient’s social and
clinical condition. Currently, the only information available in the header files
concerned gender and age, but it would be useful to have other relevant information
that could affect the presence of electrocardiographic anomalies. For example, it
might be useful to generate variables indicating the presence or absence of risk
factors, such as smoking habits, weight, or height of the patient. [15]

These considerations are supported and were confirmed during a meeting with a
cardiologist, during which it became clear how parameters related to the patient’s
life can influence the presence of electrocardiographic anomalies. To improve the
model’s ability to correctly classify the 27 cardiac arrhythmias, the covariates ap-
propriately encoded within the features generated as output by the neural network
were kept constant. Starting from this basic configuration, various pre-processing
techniques were experimented with the aim of increasing the model’s performance.
However, none of these methodologies led to a significant improvement in perfor-
mance metrics, as highlighted in the previous section.

The ineffectiveness of these pre-processing strategies, shown in Fig. 4.1 and
Fig. 4.2 can be attributed to two main reasons. Firstly, the model architecture
configuration was optimized by the group from which the solution was derived
specifically for input signals acquired from 8 leads. Consequently, any variation
in the dimensions or shape of the input, even when accompanied by code modi-
fications to adapt the model, did not allow the architecture’s full potential to be
exploited. This structural rigidity implies that the 8-lead input, for which the
model was designed, constitutes the optimal format on which the architecture
can express its maximum capabilities. Secondly, the addition of pre-processing
techniques, such as normalization, although theoretically promising for improving
signal quality and reducing variability, did not facilitate the model’s training in ef-
fectively distinguishing the 27 classes. On the contrary, these techniques may have
further complicated the signal representation, introducing additional complexity
that the model was unable to adequately handle.

Therefore, the choice to maintain the 8-lead model, along with the application
of wavelet denoising as the only pre-processing technique, is confirmed as the most
balanced solution to preserve input quality and make the best use of the imple-
mented architecture. Attempts to modify the input or add further pre-processing
stages following wavelet denoising did not bring significant improvements in terms
of performance, suggesting that the current model configuration may already be
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close to a local optimization, where further interventions do not produce tangible
benefits.

The integration of temporal features with those generated by the neural network
and with the encoded covariates allowed for results comparable to those obtained
with the best model. However, the evaluation metrics could have been significantly
better if all the signals used had been adequately cleaned. In such a case, it would
have been possible to more precisely extract the parameters necessary for the
calculation of temporal features, as highlighted in the Fig. 5.1.

In particular, it was observed that on some signals, the tools used to identify the
RR peak indices did not achieve the expected results, making errors in identifying
some peaks and failing to locate clearly present peaks. This highlights the need to
review the methodologies employed for peak identification, despite using solutions
currently implemented even in modern devices for processing electrocardiographic
signals. It is important to emphasize that, despite the promising results obtained
with the addition of these features, the significant increase in computational costs
made their definitive implementation impractical. In fact, training the model
required considerable times, with durations reaching up to 24 hours. Therefore, in
light of the current limitations in terms of efficiency and computational resources,
the integration of these temporal features was not implemented in a stable manner.

Influence of dataset quality and analysis output with its
implications
In all the analyses conducted, the evaluation phase was followed by a careful
analysis and comparison between the model’s predictions and the actual classes.
This phase led to the emergence of two main critical issues. The first concerns
the high representativeness of the sinus rhythm class, which resulted in frequent
misclassification of signals that do not belong to this class but were still assigned to
it due to its numerical predominance in the dataset. The second issue that emerged
is the model’s difficulty in distinguishing between some classes that, although
considered different during labeling, are actually very similar in their manifestation
on the electrocardiographic trace.

For example, the classes inverted T wave and abnormal T wave often created
confusion in the classifier. After a more in-depth literature review and consultation
with cardiology experts, it emerged that the abnormal T wave class represents a
broader set of alterations that also include the inverted T wave, thus making it un-
derstandable the model’s difficulty in differentiating these two types of signals. [31]
This overlap between classes suggested the need to reconsider their definition or,
alternatively, to improve the quality of the dataset to minimize these ambiguities.

In light of these observations, it was deemed necessary to focus particularly on
the quality of the starting dataset, in order to identify and mitigate any sources
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Figure 5.1. Examples of signals in which R-peak detection is compromised by
low signal quality. A. 10-second ECG trace from the PTB-XL database labeled as
normal sinus rhythm (SNOMED code 426783006). B. 10-second ECG trace from
the Georgia database labeled as 1st degree AV block (SNOMED code 270492004).

of noise that could negatively affect the model’s performance. A thorough review
of the labeled classes, along with the elimination of problematic or ambiguous sig-
nals, was considered crucial to improve the overall accuracy of the classification
system. In parallel with these considerations, the decision was made to train a new
model based on a completely different architecture from the one previously used.
This was done with the aim of verifying whether the performance of the initial
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model was in line with those of more recent and advanced models. Additionally,
it was sought to determine whether the limitations encountered in performance
were attributable to the computational constraints of the original architecture or
whether the main cause was to be found in the dataset used for training. This dual
strategy, improving the quality of the dataset and introducing an alternative archi-
tecture, allowed for a deeper exploration of the potential causes of the difficulties
encountered, offering a more comprehensive perspective to address the challenges
of classifying cardiac arrhythmias. The choice to implement ECGNet as the new
model is based on the inclusion of BiLSTM layers, known for their ability to handle
complex sequential data and capture long-term dependencies. [12] The analysis
of ECG signals, characterized by their temporal nature, requires models capable
of storing and processing information distributed over long temporal sequences,
in order to correctly identify variations in heart rhythm. LSTMs, thanks to their
unique architecture, are particularly suitable for this type of task, as they allow
relevant information to be maintained for extended periods, reducing the risk of
losing critical details. Additionally, LSTMs excel in recognizing complex patterns
within the data, such as those associated with different cardiac arrhythmias, thus
improving classification accuracy. The use of bidirectional LSTM layers allows for
a more comprehensive analysis of the signals, as it enables the model to consider
the temporal context both forward and backward, further enhancing the ability to
capture relevant features. The results obtained, as shown in the Tab 4.4, indicate
that the use of the ECGNet architecture, both in the case of input from a single
lead and using 8 leads, produced comparable, if not slightly inferior, performance
to the architecture used so far. These results suggest that the main problem en-
countered does not lie so much in the model itself, but rather in the intrinsic
limitations of the dataset used for training. In particular, the dataset proved to be
not sufficiently robust, characterized by suboptimal variability and an inadequate
number of samples to ensure effective learning and appropriate generalization.
This limits the model’s ability to accurately distinguish between the numerous
arrhythmia classes, negatively affecting overall performance. The comparison be-
tween the two different architectures highlighted the importance of intervening on
the dataset to improve the model’s classification performance. One of the first
issues addressed was class imbalance, characterized by a high number of signals
labeled as normal sinus rhythm. This imbalance led to an overrepresentation of
this class, with the consequence that many signals were erroneously classified as
belonging to normal sinus rhythm, even when they were not. To address this is-
sue, it was initially decided to work on this subset of signals, aiming to make the
dataset more homogeneous and representative of the different classes. The goal
was to create a distribution of signals for the sinus rhythm class that was as uni-
form and consistent as possible, eliminating signals that could introduce noise or
ambiguity in the classification. However, these attempts to clean and homogenize
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the subset of signals labeled as sinus rhythm did not produce the expected results.
In particular, the idea of removing signals that deviated from the distribution of a
specific feature was based on the assumption that a class with more homogeneous
signals would facilitate the model’s learning process, allowing it to better identify
the distinctive characteristics of each arrhythmia. The ultimate goal was to gen-
erate a distribution of signals related to the sinus rhythm class that was entirely
free of anomalies or significant variations, which could confuse the model.

If this approach had shown an improvement in performance, the same process
could have been extended to the other more numerous classes in the dataset, si-
multaneously addressing two issues: class imbalance and the presence of signals
labeled with the same class but significantly different from each other. This strat-
egy could have led to a reduction in intra-class variance and an improvement in
the model’s ability to discriminate between different arrhythmias. Unfortunately,
however, the results did not show an overall improvement in the model’s classifi-
cation performance or its ability to distinguish between classes, as shown in Tab
4.5. For this reason, this approach was not pursued further.

Another attempt to manage the size of the sinus rhythm class was to select
only the signals whose label was solely sinus rhythm, excluding those where the
normal class coexisted with other labels. The goal was to reduce the complexity
of the normal class, hoping to improve the model’s accuracy in this specific cate-
gory. However, training the model on this subset revealed a significant limitation:
the model learned to correctly classify signals with the sole label sinus rhythm but
lost the ability to correctly recognize signals where sinus rhythm was present along
with other labels. This issue led to a decrease in performance metrics for the mul-
tilabel classification task, highlighting that excessive simplification of the dataset,
while facilitating the classification of single labels, compromises the model’s abil-
ity to handle more complex and realistic tasks, such as correctly identifying label
combinations.

Introducing the final model and clinician influence: encour-
aging performance on datasets
Having identified the problem of imbalance and recognizing the difficulty of ad-
dressing it with a classifier capable of distinguishing between 27 classes, the idea
emerged to decompose the initial model into two distinct sub-models: the binary
model and the 26 classes model. The strategy of the binary model proved par-
ticularly promising, as the results obtained using 12-lead input signals showed an
accuracy of 85% and an F1 score of 93%, as shown in Tab 4.6. The latter, in
particular, is a significant metric, especially in a multi-label classification context,
despite the approach being binary. Additionally, this model can generate a third
class where both categories coexist, increasing reliability in distinguishing between
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healthy and altered heart rhythms, or in simultaneously detecting both conditions.
The accuracy of this binary model could, in some cases, ensure a level of confidence
comparable to that of a diagnosis made by an expert cardiologist. This aspect is
particularly relevant, as the project aims to achieve a level of reliability that re-
duces the need for manual review of labeled traces by clinicians, thus allowing for
efficient integration of deep learning models into the diagnostic process.

Subsequently, following this binary model, an 8-lead classifier was introduced
for differentiating the remaining 26 classes. At this stage, an interesting behavior
was noted: while the binary model’s performance was slightly superior with 12-
lead signals, the second model showed a slight improvement when 8-lead signals
were used as shown in Tab 4.7. The analysis of the outputs confirmed that the
first model significantly reduced misassignments to the sinus rhythm class, demon-
strating how the preliminary phase, focused on distinguishing between healthy and
altered, contributes to an overall improvement in accuracy.

Regarding the second model, it was observed that the particularly imbalanced
dataset significantly affects the final performance, despite the effectiveness of the
previous binary model. Therefore, it might be worth considering modifications to
the second model to improve differentiation between individual alterations. One
possible modification could be to work not with 26 distinct classes but rather
to identify macro-classes that group alterations based on their type and presen-
tation on the electrocardiographic trace. For example, an approach could be to
divide the alterations into five main macro-classes: rhythm, conduction abnormal-
ities, acute coronary syndromes, axis deviations, and chamber enlargements. [22]
Within these macro-classes, various pathologies characterized by similar alterations
could be grouped. Once the macro-classes are identified, specific sub-models could
be trained to distinguish a smaller number of alterations, thus improving over-
all classification accuracy. For example, in the rhythm category, alterations such
as bradycardia, tachycardia, and atrial fibrillation could be grouped, which share
substantial differences in rhythm and graphical representation of the electrocar-
diographic signal. This approach could lead to more accurate classification, as the
original 26-class task would be broken down into tasks with a smaller number of
labels, allowing the models to specialize more in a limited number of classes.

A crucial aspect that emerged during this project is the importance of having
a clean and balanced dataset, so that the model can learn as much information as
possible in an equitable manner for each class. In this way, the utility of the des-
ignated classifier could find greater resonance in the clinical field, as if the initial
steps already show excellent performance, the clinician’s work would be further
eased, allowing the first phase of alteration identification to be managed by an
automatic classification tool. The availability of a carefully labeled and balanced
dataset thus implies a necessary data cleaning phase, with the aim of making the
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training dataset homogeneous while maintaining the different diagnostic method-
ologies adopted by clinicians depending on the country of origin. This aspect is
particularly relevant, as some articles published by groups participating in the
Cardiology Challenge 2020 have highlighted how some of the 27 considered al-
terations present different diagnostic criteria depending on the country of origin.
For example, regarding left axis deviation (LAD), the presence of QRS complex
inversion in lead II is a requirement for diagnosis in UK manuals, but not in some
Chinese texts. [10] Despite the low representativeness of some classes, the decom-
position of the model into two parts ensures good accuracy in the first step. The
direct comparison with the model that achieved the best performance shows that
the results on the most represented individual labels are in line, with better per-
formance on the healthy class, especially in the hidden test set as shown in Fig.
4.4. The presented results in Fig. 4.3 and Fig. 4.4 are promising: although there
is a slight decrease in the F1 metric for almost all classes using the ensemble model
on the validation set, the performance on the test set is better. This highlights
a greater generalization capability of the model. Consequently, it can be stated
that the solution consisting of the ensemble and the cascade of two models, unlike
the simpler model, has demonstrated superior generalization capability on unseen
data. This is a crucial objective in the development of automatic classification
systems in the clinical field. The integration of clinical knowledge into the project
has had a significant and positive impact on the overall performance of the model,
demonstrating the importance of a multidisciplinary approach in the design of
complex classification systems. In particular, the choice to group certain classes
and exclude one resulted in a noticeable improvement in performance, as shown in
Tab 4.9. This strategy confirmed that the poor representativeness of some classes
negatively affects the performance of the cascade ensemble model. This finding
highlights how the accuracy of a classification model depends not only on the algo-
rithm used but also on the correct selection and aggregation of classes, processes
that require a deep understanding of the clinical application domain. Similarly,
the decision to reduce the duration of the signals to improve the recognition of
electrocardiographic alterations, characterized by repetitiveness along the entire
trace, did not produce the desired results in terms of performance, as shown in
Tab 4.8. The intent was to focus feature extraction on a single beat, with the aim
of identifying distinctive traits capable of discriminating between different classes.
This strategy, although based on the clinical logic that some anomalies manifest
repetitively and are therefore easily identifiable by clinicians observing a single P-S
complex, proved insufficient due to the random nature with which other anomalies
may appear in a single beat. The integration of clinical knowledge has proven
crucial for refining the model, increasing its sensitivity to the peculiarities of each
class and improving its discriminative ability. This result underscores the impor-
tance of the contribution of clinical experts in multi-label classification projects in
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the cardiology field, where the complexity of the task requires a deep understand-
ing of the specific characteristics of different pathologies. The inclusion of such
knowledge has facilitated the understanding of the distinctive peculiarities of the
classes, allowing informed decisions regarding their aggregation or exclusion from
the model, and demonstrating how an interdisciplinary collaborative approach can
lead to significant improvements in the performance of deep learning models.
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Chapter 6

Conclusion

In the course of this thesis, it has emerged that an automatic support capable
of recognizing and identifying alterations in the electrocardiographic signal can
constitute a valuable additional tool for clinicians. The usefulness of a classifica-
tion model lies in its ability to accelerate diagnoses and lighten the workload of
specialists, but it is equally important to emphasize that such solutions must offer
adequate performance to minimize mislabeling, effectively serving as an aid for
experts in the field.

The results obtained with the binary model proposed in this thesis are en-
couraging: the model demonstrated an accuracy of about 92% in recognizing the
presence of anomalies in an ECG trace, maintaining such high performance even
on new and unseen data, which highlights a good generalization ability. However,
although these results are promising, the results of the 27-class classification, al-
though in line with those obtained by the best participants in the 2020 Cardiology
Challenge, show an accuracy of about 50% on an unseen test set. This underscores
the complexity of the challenge in creating a model capable of distinguishing be-
tween very similar classes or evaluating signals belonging to the same class but
characterized by different parameters and features.

The successful completion of the classification task and, therefore, the effec-
tiveness of the developed model depend on several factors, including the choice of
model architecture, parameter selection, and the quality of the data used. Errors
in the labels assigned during the labeling phase or misclassified signals can neg-
atively affect the model’s performance. The main objective of this thesis was to
develop a classifier capable of distinguishing between 27 electrocardiographic al-
terations using databases from different sources, in order to ensure high accuracy
and good generalization ability.

In this context, it is crucial to have a clean and accurate training dataset that
takes into account the variability of sources and the different sizes of the data,
especially in multi-label and multi-source tasks. It is essential to avoid the deep
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learning model from learning specific characteristics of individual alterations from
larger datasets, as this could compromise the model’s ability to generalize to new
data. Additionally, differences in the reliability of training labels may not be
random but depend on the specific dataset.

A possible approach to address this issue is the creation of models capable of
accounting for differences between datasets, a methodology known as domain adap-
tation. This approach was proposed by the fifth-place participants [21] in the 2020
Cardiology Challenge and implemented through a technique called "Joint Learn-
ing and Unlearning". [4] The use of an adversarial multi-task approach, aimed
at simultaneously minimizing the accuracy in domain prediction and maximizing
task accuracy, has proven effective in MRI image segmentation problems [42], thus
suggesting the opportunity to explore the application of this methodology to ECG
data as well.

The combination of these elements, from the rigorous selection of training data
to the exploration of advanced learning techniques, represents a promising path to-
wards the development of increasingly accurate and generalizable models, capable
of effectively supporting clinicians in the diagnosis and treatment of electrocardio-
graphic anomalies.

In this perspective, it might be useful to consider creating a clean dataset,
possibly supervised by clinicians, that contains correctly labeled signals and is ho-
mogeneously representative of all alterations, in order to increase the performance
of the subsequent model. This would allow for a more precise solution to be cas-
caded to the binary model, while avoiding a substantial decrease in performance.
As emerged during this thesis, another crucial aspect concerns the need for close
interdisciplinary collaboration between engineers, data scientists, and clinicians.
This cooperation is essential not only to ensure the quality and reliability of the
dataset but also to ensure that the decisions made by the model are clinically rele-
vant and easily interpretable by healthcare professionals. Involving clinical experts
in the process of labeling and validating ECG signals could significantly improve
the quality of the training data and, consequently, the model’s performance.

Furthermore, it is important to consider how the developed model can be in-
tegrated into clinical decision support systems, capable not only of accurately
classifying electrocardiographic alterations but also of offering transparent and
understandable explanations of the predictions made. This would help to promote
the adoption of such technologies in the clinical field, improving doctors’ trust
in artificial intelligence solutions. Finally, validating the model in real clinical
environments is a crucial step to verify its effectiveness on unseen data from differ-
ent patient populations. This continuous validation process is essential to ensure
that the model not only maintains high levels of accuracy but also meets clinical
standards and the expectations of professionals in the field.
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