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Abstract

Understanding multi-physics phenomena is crucial for accurately modeling and
predicting the behavior of complex systems in engineering. Sometimes, accounting
for the coupling across the various scales of the system is also important. In this
work, these needs have driven extensive exploration into multi-physics and multiscale
modeling with the software COMSOL Multiphysics, especially focusing on the
homogenization technique. It is a method used to predict macroscopic properties of
heterogeneous materials by analyzing a representative volume element (RVE) that
reflects microscale variations. A multiscale approach in a multi-physics domain is
then applied to lithium-ion battery pack. Nowadays, lithium-ion batteries (LIBs) are
the most widespread energy storage system, covering a large field of applications.
In the automotive and working vehicle industry, lithium-ion batteries are a strategic
component affecting the design, the cost and the performance of the vehicle. The
electrochemical processes which allow the battery to deliver or store electrical energy
involve the interaction of lithium ions with the electrode microstructure causing its
mechanical deformation, proportional to the concentration of lithium ions in the
host material. The electrode microstructure strain results in mechanical degradation,
reducing the overall battery’s performance, and causes the macroscopic battery
deformation. In this thesis, the macroscopic battery deformation originating from
the electrode particles strain is analysed with a two-step homogenization process
considering the coupling between mechanical, chemical and electrical behaviour.
First, the composite electrode (made of active material particles, voids and conductive
agents) is modelled with a representative volume element. Secondly, the battery is
modelled homogenizing the contribution of the hundreds of composite electrode
layers. The output of the model is then validated with experimental measurements
quantifying the macroscopic battery deformation during operation. The second
contribution of this work focuses on the impact of individual battery deformation
on the entire battery pack. Furthermore, the constraint given by the battery pack
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causes the change of the electrical performance of the battery itself, because of the
compression of the microstructure of the electrodes. Then, different design solutions
of the battery pack are investigated to optimize the battery performance and lifespan,
while keeping a safe battery pack deformation.
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Introduction

The aim of this thesis is the development of a multi-scale model to introduce battery
modules in structural analysis accounting both for the internal electrochemical
process and the external mechanical constraints during their operating conditions.
The objective is to perform a detailed analysis without the need of modelling the
whole internal structure of the module in the macroscale level. It can be done
following the chemically induced deformations through scales and treating the
battery as an homogeneous material despite its inhomogeneous structure in the lower
scales. Therefore, the model is based on multi-scale approach and homogenization.

In the first chapter an introduction to lithium-ion batteries (LIBs) is presented: it
is described their working principle, their main constituents and the corresponding
used materials and their types of structure. A paragraph has been dedicated to safety
issues that may occur.

In the second chapter the focus is on numerical simulations. Physical phenomena
are usually described by sets of partial differential equations (PDEs) that can’t be
always solved easily in an analytical way. Due to the complexity of the analyzed
geometry, non constant properties or multi-scale and multiphysics coupling, engi-
neering problems need numerical ways to perform the sets of PDEs. The main focus
is on finite element method (FEM) and examples of its applications.

In the third chapter are presented the types of LIBs modelling mainly focusing
on the physics-based models. It is presented the Doyle-Fuller-Newman (DFN)
electrochemical model and the contribution given by the mechanical coupling.

In the forth chapter the development of the homogenization-based multi-scale
model is shown.

In the fifth chapter the developed model is applied to an LFP battery to be vali-
dated through experimental measurements previously performed. Additionally, after
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the battery homogenization, the structural analysis of a battery module consisting of
18 LFP batteries is studied.

In the sixth chapter a conclusive summary of the model and its result is conducted.



Chapter 1

State of the art

1.1 Introduction

The ecological transition marks a pivotal moment in our relationship with energy,
resources, and the environment. As the world grapples with the escalating impacts of
climate change, the need to shift from conventional, polluting energy sources to more
sustainable alternatives has never been more urgent. This transition is not just about
reducing carbon emissions; it is about fundamentally rethinking how we produce,
store, and use energy in a way that harmonizes with the planet’s natural systems.
Achieving this balance requires innovation that goes beyond merely generating
energy. It requires advanced materials and systems capable of supporting a new era
of sustainable energy use, systems that can store energy effectively, enable greater
adoption of renewables, and reduce the overall environmental footprint of energy
consumption. This transformation is at the heart of the ecological transition, a shift
toward a future where humanity’s energy needs are met without compromising the
health of the planet or future generations.

Lithium-ion batteries (LIBs) have revolutionized modern technology, powering
everything from smartphones and laptops to electric vehicles and renewable energy
systems. They are the preferred energy storage solution due to their high energy den-
sity, duration, and relatively lightweight design [1]. The development of lithium-ion
batteries began in the 1970s when scientists sought to create a rechargeable battery
with higher energy density than existing technologies. The first commercially viable
lithium-ion battery was introduced by Sony in 1991, marking a significant milestone
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in energy storage. Since then, advancements in materials and manufacturing pro-
cesses have continually improved their performance, safety, and cost-effectiveness
[2].

One of the main contributions of battery technology is seen in the transporta-
tion sector, where electric vehicles (EVs) replace traditional internal combustion
engines, significantly cutting greenhouse gas emissions and reducing the reliance
on fossil fuels [3, 4]. The availability of materials like lithium, cobalt, and nickel is
crucial for the sustainability and growth of lithium-ion batteries and for the impact
on decarbonization [5]. Optimizing battery design improves efficiency, extends
lifespan, and reduces reliance on scarce materials, enhancing overall performance
and sustainability.

In the recent years, the attention on the mechanical behaviour of LIBs during
their operating conditions has increased. In fact, the electrochemical phenomena
are strictly coupled with the mechanical ones and, moreover, during the battery’s
operating conditions, a swelling/shrinking is induced to the system. From a modelling
point of view, different multi-physics models have been proposed to entirely describe
the LIBs behaviour [6, 7, 8]. From an experimental perspective, various tests have
been conducted to measure the battery volume change induced by the electrochemical
process using different methods: laser sensors [6, 9], load cells [10, 11], optic fibers
(both embedded and external) [12, 13, 14], strain gauges [15, 16], internal pressure
sensors [17, 18] and piezoelectric sensors [19].

One of the engineering challenge of the last years is the investigation of the
structural behaviour of the batteries during their operating conditions as a part of a
larger system. It is an interesting task for the mechanical optimization of the battery
pack keeping it in safe conditions; the challenge is given by the complex multi-
scale structure of the battery which can be overcome through multi-scale numerical
model based on homogenization approach [20, 21]. The purpose of this work is to
investigate and develop an homogenization-based multi-scale model.

1.2 Working principle and structure

LIBs operate on the principle of the movement of lithium ions between two elec-
trodes, typically a graphite anode and a metal oxide cathode, through an electrolyte.
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When the battery discharges, lithium ions flow from the anode to the cathode, releas-
ing energy. During charging, this process is reversed, allowing the battery to store
energy as shown in Figure 1.1. This mechanism allows for high efficiency and low
self-discharge rates, making lithium-ion batteries highly reliable.

The energy flux is possible thanks to RED-OX reactions making the electrons e−

flow between the electrodes through an electric circuit, introducing a semipermeable
membrane that separate anode and cathode. The semi-permeability of the membrane
allows the Li+ ions flow through the separator thanks to the presence of an electrolyte.

Fig. 1.1 Working principle of lithium-ion battery

1.2.1 Anode

The materials used for the anode are carefully chosen to optimize specific perfor-
mance characteristics, such as the ability to store lithium ions, energy density, and
the anode’s longevity. The most common anode constitutive materials are:

• Graphite (C6)

• Silicon (Si)

• Lithium Titanate (LTO)

The crystal structure of these lithiated (after the lithium ions insertion) materials is
shown in Figure 1.2.
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Fig. 1.2 Crystal structure of lithiated anode materials [22]

Graphite is the most widely used anode material in lithium-ion batteries due to
its balance of performance, cost-effectiveness, and stability. It is a layered allotrope
of carbon, where each layer consists of hexagonally arranged carbon atoms. These
layers are held together by weak van der Waals forces, allowing lithium ions to easily
intercalate between them during charging and deintercalate during discharging. The
key characteristics that make graphite ideal as a negative electrode material in LIBs
include:

• Intercalation Ability: Graphite allows lithium ions to insert and remove them-
selves reversibly between its layers, enabling repeated charge and discharge
cycles.

• Stable Structure: The layered structure is highly stable, allowing durability.

• Low Operating Potential: Graphite operates at a low potential (around 0.1-0.2
V vs. Li/Li+ in its higher specific capacity range as shown in Figure 1.3),
close to that of lithium metal, enabling high energy densities.
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• Abundance and Low Cost: Graphite is widely available and relatively inexpen-
sive compared to alternative anode materials like silicon or lithium titanate.

Despite its advantages, graphite anodes have several limitations:

• The specific capacity of graphite (330-430 mAh/g) is much lower than silicon
one (4200 mAh/g) [22]. This limits the overall energy density of lithium-ion
batteries using graphite anodes, particularly for high-performance applications
like electric vehicles.

• During fast charging or at low temperatures, lithium ions may not intercalate
into the graphite layers efficiently. Instead, they can plate onto the surface of
the anode as metallic lithium, which can lead to dendrite formation. Dendrites
can pierce the separator, causing internal short circuits and potentially leading
to battery failure or even fire hazards.

• A Solid Electrolyte Interphase (SEI) forms on the surface of the graphite anode
during the first few charge cycles. This SEI layer is crucial for stabilizing the
anode-electrolyte interface and preventing further reactions with the electrolyte,
but it consumes lithium ions in the process, reducing the battery’s initial
capacity. Over time, the SEI can degrade or grow thicker, which can lead to
increased impedance and reduced battery performance.

• Graphite anodes perform well under moderate charge/discharge rates, but
under high-rate conditions their performance can degrade. This is due to the
limited diffusion rate of lithium ions within the graphite structure, leading to
lower power output and efficiency.

There are two primary types of graphite used in LIBs anodes: natural and
synthetic. The former is mined from natural sources and processed into a fine powder
suitable for battery applications, the latter is produced through high-temperature
treatment of carbon precursors (such as petroleum coke). The synthetic graphite
present higher production costs, purity and stability due to the manufacturing process.

On the other side, silicon has a much higher theoretical capacity than graphite,
being able to store more lithium ions and to form silicon-lithium alloys (Li15Si4)
during charging. However, silicon expands up to 300-400% when it alloys with
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lithium during charging, leading to structural degradation, cracking, and loss of
capacity over time [22, 23]. Lithium titanate is another alternative material for
anodes, where lithium is stored in the titanium oxide spinel structure. It present
improved safety characteristics compared to graphite because of higher operating
voltage, reducing the risk of lithium plating, but it present lower energy density.

Researchers are experimenting with advanced carbon-based materials, including
carbon nanotubes (CNTs), graphene, amorphous carbon and graphite-silicon. These
materials have promising characteristics for high conductivity, fast charging, and
high energy density [23].

Fig. 1.3 Potential vs Specific Capacity of anode materials [22]

1.2.2 Cathode

As positive electrode, the cathode stores lithium ions during discharge and releases
them during charging. Various materials are used as cathodes, each with distinct
properties that impact the battery’s energy density, cycle life, thermal stability, and
cost. The performance and properties of LIBs are highly dependent on the cathode
and different materials provide various trade-offs between the desired battery’s
properties. The most common types of cathode materials used in LIBs are described
in the following list [22].
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• Lithium Cobalt Oxide (LiCoO2) - LCO

LCO has a layered structure, with cobalt acting as the active material that
facilitates the movement of lithium ions. It provides one of the highest energy
densities among common cathode materials, making it ideal for small elec-
tronics like smartphones and laptops. LCO suffers from relatively low cycle
life, especially under high charge and discharge rates. Cobalt-based cathodes
can pose thermal runaway risks, making them more prone to overheating and
combustion. Cobalt is expensive and has supply chain issues due to ethical
and environmental concerns associated with mining.

• Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) - NMC

NMC is a layered material, with nickel, manganese, and cobalt acting in
synergy to balance the performance. NMC cathodes offer a good balance
between energy density, power, and lifespan. They are widely used in electric
vehicles (EVs) due to their versatility. Additionally, it provides higher energy
density than LFP (LiFePO4) and LMO (LiMn2O4) while offering better safety
than LCO. Higher nickel content improves energy density, but it can also
reduce stability, requiring thermal management systems to ensure safety. Like
LCO, NMC uses cobalt, which has cost and supply chain challenges.

• Lithium Iron Phosphate (LiFePO4) - LFP

LFP has an olivine structure, which is more stable than the layered structures
of LCO and NMC. LFP is one of the safest cathode materials, with excellent
thermal stability and resistance to thermal runaway. This makes it ideal for
large-scale energy storage and electric buses. Iron and phosphate are abundant
and inexpensive, making LFP a cost-effective option. LFP has a lower energy
density than NMC and LCO, making it less ideal for applications where space
and weight are critical, such as smartphones and EVs. The lower nominal
voltage (3.2 V vs. 3.7 V for LCO) further reduces its energy density.

• Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) - NCA

NCA is similar to NMC but uses aluminum as a stabilizing element instead
of manganese. It offers some of the highest energy densities of any cathode
material, making it suitable for high-performance applications like electric
vehicles. NCA is less thermally stable than LFP, which means it requires more
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sophisticated battery management systems to prevent overheating. Like the
other cobalt-based cathode, it is characterized by high costs.

• Lithium Manganese Oxide (LiMn2O4) - LMO

LMO has a spinel structure, which allows for fast lithium-ion diffusion and
high power output, making it suitable for applications requiring fast charging
and discharging, such as power tools and hybrid electric vehicles. Manganese
is inexpensive, and LMO is relatively safe and thermally stable compared to
LCO. However, LMO has a lower energy density than LCO, NMC, and NCA,
limiting its use in energy-dense applications like long-range EVs. Additionally,
tends to have a shorter cycle life due to capacity fading over time.

The lattice structure of some of the lithiated cathode materials is shown in
Figure 1.4.

Fig. 1.4 Crystal structure of lithiated cathode materials [22]
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Fig. 1.5 Potential vs Specific Capacity of anode materials [22]

1.2.3 Electrolyte

The electrolyte’s primary function in a lithium-ion battery is to transport lithium
ions between the anode and the cathode through the process of ionic conduction,
while preventing the movement of electrons between them. This separation of ions
and electrons ensures that the electrochemical reactions at the electrodes occur
correctly, facilitating charge storage and release. The electrolyte assists this ion
transport without reacting with the electrodes or compromising the battery’s safety
and performance. There are three primary types of electrolytes used in LIBs: liquid
electrolytes, solid electrolytes, and gel-based electrolytes. Each of these has distinct
properties that affect the battery’s performance, safety, and application range.

Liquid electrolytes are the most common type used in commercial lithium-ion
batteries. They consist of a lithium salt dissolved in an organic solvent. Common
salts include lithium hexafluorophosphate (LiPF6), lithium bis(fluorosulfonyl)imide
(LiFSI), and lithium tetrafluoroborate (LiBF4). LiPF6 is the most widely used due
to its good balance between ionic conductivity and stability. The commonly used
organic solvents are ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl
carbonate (DEC), and propylene carbonate (PC) whose structure is reported in Figure
1.6. They are characterized by low viscosity, high dielectric constants, and a wide
electrochemical stability window [24].
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Fig. 1.6 Chemical structure of carbonate [24]

Solid-state electrolytes are a newer class of materials that can conduct lithium
ions through a solid medium, offering several advantages over liquid electrolytes, es-
pecially in terms of safety and stability. In fact, organic solvents in liquid electrolytes
are flammable, posing a risk of fire, particularly in high-temperature or overcharge
conditions. Additionally, liquid electrolytes can degrade over time, especially at high
voltages or in the presence of moisture, which can generate harmful byproducts like
hydrofluoric acid (HF). However, solid electrolytes offer lower ionic conductivity,
they should face challenges with the electrode-electrolyte interface and the manu-
facturing processes are currently more expensive than the liquid electrolyte ones
[24].

Gel electrolytes are a hybrid solution between liquid and solid electrolytes. They
consist of a liquid electrolyte immobilized within a polymer matrix, offering a
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compromise between the high ionic conductivity of liquid electrolytes and the safety
of solid-state ones [24].

1.2.4 Separator

The separator in a lithium-ion battery is a key component that physically divides
the electrodes while allowing lithium ions to flow between them through the elec-
trolyte. The separator is typically a thin, porous membrane made from materials
like polyethylene (PE) or polypropylene (PP), designed to prevent direct contact
between the electrodes - which would cause short circuit - while permitting ionic
conductivity. A high-performance separator is crucial for battery safety, durability,
and performance.

The separator must have sufficient porosity to allow the liquid electrolyte to
fill the pores and enable free movement of lithium ions between the electrodes.
Typical porosity ranges from 30% to 60%. The separator should also be thin enough
to minimize resistance to ionic transport while maintaining mechanical strength.
Additionally, it must be chemically inert and stable in contact with the electrolyte
and electrodes and must withstand high temperatures without degrading.

The most common materials used for separators in LIBs are polyolefins (polyethy-
lene and polypropylene), which are chosen for their cost-effectiveness, mechanical
properties, and ability to shut down the battery at high temperatures through a ther-
mal shutdown mechanism: when the temperature rises above a certain point (e.g.,
around 130°C for PP and 150°C for PE), the separator will melt, closing its pores
and blocking ionic movement. This interrupts the battery’s operation, preventing
further heat generation and lowering the risk of thermal runaway. To improve the
thermal stability of polyolefin separators, some separators are coated with a thin
layer of ceramic materials like aluminum oxide (Al2O3) or silicon dioxide (SiO2)
[25].

Evolving toward solid-state batteries, which replace liquid electrolytes with
solid electrolytes, separators may play a reduced role. However, in the transition to
solid-state batteries, hybrid separators that are compatible with both solid and liquid
electrolytes are being explored.
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1.2.5 Current Collectors

Current collectors facilitate the flow of electrons between the external circuit and
the active materials of the anode and cathode. They do not participate in the electro-
chemical reaction but play a crucial role in conducting electricity. The main current
collectors used in LIBs are typically metal foils, with copper (Cu) used for the anode
and aluminum (Al) for the cathode.

Copper is used because of its excellent electrical conductivity and resistance
to corrosion. It can handle the lower potentials of the anode without reacting or
degrading. Aluminum is chosen for the cathode because of its low density, good
conductivity, and electrochemical stability at the higher potentials found at the
cathode. It cannot be used for the anode due to its tendency to alloy with lithium at
low potentials, which would degrade its performance.

1.2.6 Configurations

Three main types of geometrical configurations of lithium-ion batteries can be
distinguished and their naming reflects their shapes and packaging style: cylindrical,
prismatic and pouch as shown in Figure 1.7.

Fig. 1.7 Lithium-ion batteries configurations [26]
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Cylindrical cells are among the oldest and most widely used battery formats.
They are commonly used in laptops, power tools, electric vehicles and other portable
electronics. The cylindrical shape provides excellent structural integrity and is resis-
tant to swelling and damage. Their round design allows for good heat dissipation,
which is important for maintaining battery health and preventing overheating. How-
ever, they present low space efficiency, leading to lower energy density due to their
shape.

Prismatic cells have a rectangular, box-like design. They are typically encased in
a hard metal housing, which gives them a solid structure but makes them slightly
bulkier compared to other formats. Prismatic cells make better use of available
space within devices because of their flat, rectangular shape, which allows them to
be packed closely together. Their form factor allows for a higher energy density
compared to cylindrical cells in a given volume. Prismatic cells are widely used in
automotive applications (electric vehicles), consumer electronics, and large-scale
energy storage systems (such as grid storage).

Pouch cells use a flexible, laminated, and sealed aluminum plastic film rather than
a rigid metal casing. This flexible packaging allows for a slim, flat profile and greater
adaptability to the shape of the device they are powering. They are commonly found
in mobile phones, tablets, laptops, drones, and some electric vehicles (e.g., BMW
i3). The lack of a rigid case allows pouch cell to achieve high energy density and a
lighter design. On the other side, they are prone to swelling over time, especially
when overcharged or under heavy use and they are vulnerable to physical damage.

1.3 Safety issues and degradation

Lithium-ion batteries, despite their widespread use and efficiency, present several
safety challenges that must be carefully managed to prevent dangerous outcomes.
The damage of lithium-ion battery is mainly connected induced by three sources:
mechanical, electrical and thermal (Figure 1.8).
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Fig. 1.8 Sources of LIBs damage [27]

Mechanical abuse, consisting in vibration or crush and penetration due to colli-
sions, could induce damage in batteries which leads to capacity and power fade or
more severe consequence as short circuit. In fact, collision can cause the internal
structure collapse making positive and negative electrode in touch causing internal
short circuit.

Electrical abuse mainly happens as a result of external short circuit and over-
charging. An external short circuit happens when the battery’s positive and negative
terminals are directly connected by a conductive material outside the battery, creating
a low-resistance path. When this happens, the battery discharges rapidly, generating
a large current. The immediate effect is intense heat generation, which can damage
the battery’s internal components and potentially lead to thermal runaway, a situation
where the heat produced triggers further reactions, escalating to a fire or explosion.
To prevent such outcomes, many batteries include safety systems that detect the
excessive current flow and disconnect the circuit before the situation worsens. Over-
charging, on the other hand, happens when the battery is charged beyond its designed
voltage limits. Lithium-ion batteries have a narrow voltage range in which they
operate safely, typically with an upper limit of around 4.2V per cell. Exceeding this
limit can cause the battery to degrade in several ways. One of the main problems
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is lithium plating, where metallic lithium forms on the anode instead of properly
intercalating into the material. This not only reduces the battery’s efficiency and
capacity but also poses a significant risk of internal short circuits due to dendrite
formation. Additionally, overcharging can cause the electrolyte inside the battery
to decompose, leading to gas formation, swelling, and increased internal pressure,
which can lead to the battery venting or even bursting.

One of the most critical issues is thermal runaway, a situation where excessive
heat accumulates within the battery, often due to the mechanical and electrical abuse
mentioned before. This process can escalate rapidly, triggering a chain reaction that
leads to cell rupture, fires, or even explosions. The most dangerous source of thermal
abuse are the internal short circuits. Generally the danger of the internal short circuit
can be divided in three levels as shown in Figure 1.9.

Fig. 1.9 Levels of internal short ciruit danger [27]

Mechanical and electrochemical problems, such as solid electrolyte interphase
(SEI) layer degradation and lithium plating, also play a significant role in battery
performance and safety.

The SEI layer, a thin film that forms on the anode during initial cycling, is
crucial for battery stability. This layer acts as a protective barrier, preventing further
reactions between the electrolyte and the anode. However, the SEI is not static: it
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can degrade, crack, or reform during cycling, especially under extreme conditions
like high charging rates or low temperatures. When the SEI layer breaks down, it
exposes fresh anode material to the electrolyte, leading to unwanted reactions and
electrolyte depletion. This can cause a loss of battery capacity, increased internal
resistance, and, in some cases, gas formation inside the cell, leading to swelling and
increased risk of thermal runaway.

Lithium plating is another serious issue, typically occurring when a battery
is charged too quickly or at low temperatures. Under these conditions, lithium
ions do not intercalate smoothly into the anode material (usually graphite), and
instead, metallic lithium begins to deposit on the anode surface. This metallic lithium
forms dendrites—needle-like structures that grow during repeated cycling. If these
dendrites grow long enough, they can pierce through the separator between the anode
and cathode, causing an internal short circuit. This not only reduces the battery’s
capacity and efficiency but can also lead to dangerous events such as overheating,
fires, or explosions.



Chapter 2

Numerical Methods

Complex engineering and mathematical problems often involve geometries, mate-
rial properties, or boundary conditions that make reaching exact solutions through
traditional analytical methods difficult or impossible. For instance, problems in-
volving stress analysis in irregularly shaped structures, fluid flow around objects or
heat distribution in materials with varying properties cannot be solved with simple
formulas. These problems are typically governed by partial differential equations
(PDEs), which describe how physical quantities change over space and time.

Analytical solutions to PDEs are often limited to idealized conditions with
simplified assumptions, like uniform materials or symmetrical shapes. However,
real-world problems rarely conform to these ideal situations. This is where numerical
methods, like the Finite Element Method (FEM), Finite Difference Method (FDM) or
Finite Volume Method (FVM), become essential: they allow engineers and scientists
to find approximate solutions for these complex problems solving PDEs in a different
way.

2.1 Multiphysics

In physics and engineering, each physical phenomenon is governed by its own set of
partial differential equations, for instance:

• Structural Mechanics is represented by the equations of elasticity which de-
scribe how solid materials deform under stress and, vice versa, how they are
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stressed under deformations. This set of PDEs consists in three equilibrium
equations and six compatibility equations linked by material constitutive laws.

• Heat Transfer is described by the heat equation, a PDE that explains how tem-
perature evolves over time within a material. It accounts for conduction, con-
vection and radiation, capturing how heat flows from high to low-temperature
areas.

• Chemical Reactions are represented by the reaction-diffusion equations de-
scribing how chemical concentrations change over time and space. These
PDEs are used to model processes like diffusion in a fluid, where chemicals
spread out, and reaction kinetics, where substances transform into different
products.

• Electromagnetics is governed by Maxwell’s equations. They describe how
electric and magnetic fields propagate and interact with materials. These are
crucial for designing devices like antennas, sensors, and electrical circuits.

• Fluid Dynamics is governed by The Navier-Stokes equations that describe
fluid flow, including velocity, pressure, and turbulence. These set of equations
account for how fluids behave under different forces and conditions, such as
airflow over an aircraft wing.

Each of these PDEs represents a single physical domain, but real-world problems
often involve multiple interacting physical phenomena. For example, in a battery,
there is need to understand heat generation (heat transfer), chemical reactions and
electrical conduction (electrochemistry), mechanical deformation and damage (struc-
tural mechanics) simultaneously. This is known as multiphysics analysis.

Coupling different physics is often challenging because the equations are inter-
dependent and may operate on different scales. Solving these coupled equations
requires sophisticated numerical techniques and computational power, as tradi-
tional analytical methods usually can’t handle the complexity of these interactions.
This makes multiphysics simulation environments essential in fields like aerospace,
electronics, and energy systems, where accurate modeling of coupled phenomena
is crucial for design and optimization. Although, attention is needed during the
discretization phase because the proper elements needed for a certain physical phe-
nomena could be inconsistent or not enough for others.
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2.2 Finite Element Method

The Finite Element Method (FEM) consists in finding a numerical solution in integral
form on a finite domain from a physical-mathematical problem described by PDEs.
The general approach consists in:

1. Finding an integral functional on a finite domain from the differential problem.

2. Discretizing the continuous domain introducing approximation functions.

3. Obtaining a matrix problem substituting the approximation functions in the
functional expression.

Therefore, two crucial aspects of the finite element methode are:

• Describing the set of PDEs with the proper integral functional.

• Introducing the proper geometrical and mathematical discretization.

– Geometrical to break down the infinite degrees of freedom continuous
domain into a finite element domain.

– Mathematical to describe the single element with the corresponding
approximation function.

The discretization will introduce elements and nodes. The elements are the
discrete parts of the problem’s continuous domain and they interconnected at nodes
that is where the matrix problem is solved. The other points inside the element
will follow the nodes behaviour through the approximation functions that should
interpolate the solution variable at the nodes of the element [28]. In this section, FEM
approach is applied to structural mechanics, heat transfer and chemical reactions
that are the main LIBs physical domains. Figure 2.1 describe a typical numerical
simulation workflow.
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Fig. 2.1 Typical finite element method workflow

2.2.1 Structural Mechanics

The Finite Element Method is widely used in structural mechanics for analyzing
and solving problems involving the behavior of structures under various loads and
conditions. One of the FEM approach to structural mechanics is exploiting the virtual
work principle as following presented.

Analyzing an infinitesimal cube of material -under a coherent generic stress
state (as shown in Figure 2.2) - the equilibrium equation along the j-th direction is
described by Equation 2.1.

Fig. 2.2 Virtual work principle - Stress
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3

∑
i=1

∂σi j

∂xi
+φ j = 0 (2.1)

Assuming a coherent virtual displacement field (as shown in Figure 2.3), the
virtual work of the infinitesimal cube is a scalar obtained multiplying the infinitesimal
force (dF = σdA) by the corresponding virtual displacement and summing all the
contributions. The infinitesimal virtual work for the i-th (dWi) direction is expressed
by the Equation 2.2:

Fig. 2.3 Virtual work principle - Virtual displacement

dWi =
3

∑
k=1

[−σikδukdAi +(σik +
∂σik

∂xi
dxi)(δuk +

∂ (δuk)

∂xi
dxi)dAi] (2.2)

Summing the contribution in the three directions and ignoring the higher order
infinitesimal terms, the internal virtual work can be expressed as following:

dWint =
3

∑
i=1

3

∑
k=1

(
∂σik

∂xi
δuk +σik

∂ (δuk)

∂xi
)dV (2.3)

The virtual work equation can be rearranged using the equilibrium and compati-
bility equations inside the two terms.
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• The i-th summation of the first term is the equilibrium equation along the k-th
direction. Substituting the Equation 2.1 inside this term, the following scalar
product is obtained:

3

∑
i=1

3

∑
k=1

∂σik

∂xi
δuk =−

3

∑
k=1

φkδuk =−{u}T{φ} (2.4)

• Due to linearity of the partial derivative and the small virtual displacement:

∂

∂xi
(δuk) = δ

∂uk

∂xi
(2.5)

Compatibility equations can be applied in Equations 2.5, so that:

∂ui

∂xi
= εi ,

∂u j

∂xi
+

∂ui

∂x j
= γi j (2.6)

Due to reciprocity of shear strain and summing all the above considerations,
the second term of Equation 2.3 can be rearranged obtaining another scalar
product:

3

∑
i=1

3

∑
k=1

σik
∂ (δuk)

∂xi
=

3

∑
i=1

3

∑
k=1

σikδ
∂uk

∂xi
= {ε}T{σ} (2.7)

Therefore, substituting the Equations 2.4 and 2.7 inside the infinitesimal internal
virtual work expression:

dWint = ({ε}T{σ}−{u}T{φ})dV (2.8)

To obtain the entire internal virtual work, Equation 2.8 should be integrated in
the corresponding domain.

Wint =
∫

V
{ε}T{σ}dV −

∫
V
{u}T{φ}dV (2.9)

The internal virtual work should be balanced by the external one coming from
the external forces acting on the infinitesimal cube boundaries as shown in Figure
2.4.



2.2 Finite Element Method 25

Fig. 2.4 Virtual work principle - External forces

Wext =
3

∑
k=1

∫
A

tkδukdA =
∫

A
{δu}T{t}dA (2.10)

Equaling the Equations 2.9 and 2.10, a unique equation, representing an energy
balance, is obtained. This expression contains the three equilibrium and the six
compatibility equations in a matrix problem.

∫
V
{ε}T{σ}dV −

∫
V
{u}T{φ}dV =

∫
A
{δu}T{t}dA (2.11)

The structural mechanics set of PDEs is completely represented by the integral
functional obtained with the virtual work principle thanks to the stiffness matrix
that links stress and strain. In structural mechanics, the solution variable is the
displacement {u}. The approximation functions that link the solution variable inside
the domain and the computed solution in the nodes {s} are called shape functions
[n] (Equation 2.12).

{u}= [n]{s} (2.12)

Due to compatibility equations, a partial derivative matrix [∂ ] can be introduced
to compute the strain vector from displacement. Through the stiffness matrix, also
the stress vector can be obtained from the strain one and consequently through
displacement.

{ε}= [∂ ]{u}= [∂ ][n]{s}= [b]{s} (2.13)
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{σ}= [E]{ε}= [E][b]{s} (2.14)

Due to the approximation of the solution variable inside the element domain,
the equilibrium equation won’t be satisfied at each point: a residual force should be
introduced in Equation 2.1.

3

∑
i=1

∂σi j

∂xi
+φ j = ρ j (2.15)

Additionally, the surface load {t} is split in known and unknown loads, {t0} and
{t∗} respectively. Accounting for these relationships, the matrix problem obtained
from the virtual work principle is:

{δ s}T
∫

A
[n]T{t∗}dA−{δ s}T

∫
V
[n]T{ρ}dV+

+{δ s}T
∫

V
[n]T{t0}dA+{δ s}T

∫
V
[n]T{φ}dV =

= {δ s}T
∫

V
[b]T [E][b]dV{s}

(2.16)

The energy balance of the virtual work principle becomes an equilibrium equation
because it doesn’t depend on virtual displacement {δ s}. Therefore, Equation 2.16
can be written as:

{ f}+{ fe}t0 +{ fe}φ = [k]{s} (2.17)

• { f}=
∫

A[n]
T{t∗}dA−

∫
V [n]

T{ρ}dV are the nodal loads,

• { fe}t0 =
∫

V [n]
T{t0}dA are the surface loads,

• { fe}φ =
∫

V [n]
T{φ}dV are the body forces,

• [k] =
∫

V [b]
T [E][b]dV is the stiffness matrix.

Computing the virtual work equation in dynamic conditions, two additional terms
are involved: a damping work and an inertial one, whose forces are proportional to
velocity and acceleration respectively.
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[m]{s̈}+[c]{ṡ}+[k]{s}= { f}+{ fe}t0 +{ fe}φ (2.18)

• [m] =
∫

V ρ[n]T [n]dV is the mass matrix and ρ is the density,

• [c] =
∫

V cs[n]T [n]dV is the damping matrix and cs is the damping coefficient.

The dynamic transient analysis can be performed through modal superposition
or direct integration method.

2.2.2 Heat Transfer and Chemical Reactions

Heat transfer is the process of energy moving from one system to another due to
a temperature difference. The heat equation is a mathematical representation of
heat transfer, describing how temperature changes over time and space in a given
material due to conduction. The heat equation, also called Fourier’s equation, has
the following form:

ρcp
∂T
∂ t

−∇ · (λ∇T ) = f (2.19)

where ρ is the density, cp is the specific heat, λ is the thermal conductivity and
f is the forcing term.
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Fig. 2.5 Example of thermal analysis

A chemical reaction is a process where reactants are transformed into products
through the breaking and forming of chemical bonds. Chemical reactions can
be linked to Fick’s laws, especially when diffusion plays a crucial role. These
two equations describe how particles or molecules spread from regions of high
concentration to low concentration over time. The combination of the first and the
second Fick’s laws leads to the following expression:

∂c
∂ t

−∇ · (D∇c) = φ (2.20)

where D is the diffusivity and φ is a source term.

Equations 2.19 and 2.20 have the same differential form [29]: a common pro-
cedure, with a generic solution variable u, can be found to obtain the same matrix
problem; the proper coefficients will then be substituted in their corresponding equa-
tion. In this case, the matrix problem is obtained through a variational method that is
explained below in a simple condition and then generalized.
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A generic 1D phenomenon is described by the following differential problem:

− d
dx(µ

du
dx ) = f in (0,L)

u(x = 0) = u(x = L) = 0
(2.21)

The variational formulation of the differential problem is obtained through the
following steps.

1. Multiply the differential formulation times a test function v that should belong
to the vector space V :

v ∈V : {v ∈C0([0,L]),v ∈C1([xi,xi+1] ∈ [0,L]),v(0) = v(L) = 0}

2. Integrate the obtained formulation in the problem domain:

∫ L

0
− d

dx
(µ

du
dx

) · vdx =
∫ L

0
f · vdx ∀v ∈V (2.22)

3. Rearrange the above expression integrating by part the left side.

∫ L

0
µ

du
dx

· dv
dx

dx =
∫ L

0
f · vdx+(µ

du
dx

· v
∣∣
L −µ

du
dx

· v
∣∣
0) ∀v ∈V (2.23)

The differential formulation expressed as Equation 2.21, which is generally a
vector equation, is now expressed as a scalar integral equation which is the variational
formulation. It is the same result reached in structural mechanics with virtual work
principle moving from a force equilibrium to an energy balance.

Accounting for the Dirichlet boundary conditions, the continuous variational
formulation is expressed as following:Find u ∈V :∫ L

0 µ
du
dx ·

dv
dxdx =

∫ L
0 f · vdx ∀v ∈V

(2.24)

As already did in structural mechanics, meshing the domain and introducing
elements, nodes and the approximation functions, the computation moves from the
continuous formulation to the discrete one. It is sufficient that the Equation 2.24 is
valid in a subspace Vh of V :
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Find uh ∈Vh :∫ L
0 µ

duh
dx · dvh

dx dx =
∫ L

0 f · vdx ∀vh ∈Vh ⊂V
(2.25)

Being a finite vector space, Vh has its own basis: each vector vh can be written as
a linear combination of the vector basis ϕ1, . . . ,ϕi, . . . ,ϕn:

vh =
n

∑
i=1

viϕi (2.26)

Consequently, it is not necessary that the Equation 2.25 is valid for all vh but it is
sufficient that it is true for the element of the basis. For this reason and writing uh as
a linear combination of the basis vectors:

n

∑
i=1

(ui

∫ L

0
µ

dϕi

dx
dϕ j

dx
dx) =

∫ L

0
f ϕ jdx ∀ j = 1, ...,n (2.27)

Therefore, the j-th equation and the whole matrix problem can be expressed as
shown in Equation 2.28.

[a j1 · · · a ji · · · a jn]



u1
...

ui
...

un


= f j =⇒ [A]{u}= { f} (2.28)

This matrix form is analogous to Equation 2.17 and, consequently, the matrix [A]
is called "FEM stiffness matrix" whose generic element depends on the approxima-
tion functions as [k]. In this 1D case:

a ji =
∫ L

0
µ

dϕi

dx
dϕ j

dx
dx (2.29)

but it can be extended to non-1D differential problems substituting the derivative
of the basis vectors with their gradient because ϕ1D(x)→ ϕ3D(x,y,z).

If the differential problem is time dependent, a "FEM mass matrix" [B] should
be introduced - as already done with the stifness one - moving from the differential
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formulation to the variational one. This time, it is directly done with the Fick’s law
in a generic 3D domain Ω. The variational formulation of Equation 2.20 is expressed
in Equation 2.30.

Find ch ∈Vh :∫
Ω

∂ch
∂ t vhdΩ+

∫
Ω

D∇ch ·∇vhdΩ =
∫

Ω
φvhdΩ ∀vh ∈Vh

(2.30)

It is sufficient that the Equation 2.30 is valid for the element of basis of the test
functions subspace Vh and writing ch as a linear combination of the vector basis
ϕ j(x,y,z):

∫
Ω

n

∑
i=1

(ċi(t)ϕi)ϕ jdΩ+
∫

Ω

D
n

∑
i=1

(ci(t)∇ϕi) ·∇ϕ jdΩ =
∫

Ω

φϕ jdΩ ∀ j = 1, ...,n

(2.31)

Due to linearity of summation and integral and considering that ci(t) and ċi(t) are
just time dependent because the space dependency is linked to the shape functions:

n

∑
i=1

ċi(t)
∫

Ω

ϕiϕ jdΩ+
n

∑
i=1

ci(t)
∫

Ω

D∇ϕi ·∇ϕ jdΩ =
∫

Ω

φϕ jdΩ ∀ j = 1, ...,n (2.32)

Therefore, the j-th equation can be written in the following matrix form:

[b j1 · · · b ji · · · b jn]



ċ1(t)
...

ċi(t)
...

ċn(t)


+[a j1 · · · a ji · · · a jn]



c1(t)
...

ci(t)
...

cn(t)


= b j (2.33)

whose elements are reported in Equation 2.34.
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b ji =
∫

Ω

ϕiϕ jdΩ , a ji =
∫

Ω

D∇ϕi ·∇ϕ jdΩ , f j =
∫

Ω

φϕ jdΩ (2.34)

The complete matrix form is obtained combining the n equations:

[B]{ċ}+[A]{c}= { f} (2.35)

2.3 Homogenization

In accurately modeling and understanding complex engineering and scientific prob-
lems it can be crucial accounting for the coupling of the physical phenomena across
the different scales of the system. Systems often exhibit behavior that spans multiple
spatial scales, meaning that small-scale phenomena can significantly influence large-
scale behavior and vice versa. For example, in material science, the microscopic
structure of a material (like grain boundaries in metals or the arrangement of fibers
in a composite) can affect its macroscopic properties, such as strength, ductility, and
thermal conductivity. In the context of multiphysics problems, coupling across scales
ensures that interactions at different levels are properly accounted for.

The technique used to achieve macroscopic properties of a material from the
microscopic behaviour of its constituents is called Homogenization. It is useful to
extract homogeneous parameter of a material or a system from its heterogeneous
repetitive or representative structure at a lower scale. It is very effective in reducing
the simulation time of complex multi-scale analysis because it makes not necessary
the detailed complex geometry of the whole system.

The homogenization method can be divided into two main groups: analytical and
numerical. In both of them there is the need of extracting a Representative Volume
Element (RVE) of the system in order to achieve homogenized properties accounting
for the heterogeneity of the system in its lower scales.
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2.3.1 Analytical homogenization

The homogenization analytical methods are also called "rule of mixture". The
macroscopic homogenized properties are evaluated from the microscopic constituents
properties weighted by their volume fraction in the Representative Volume Element
(RVE).

The simplest analytical method is the Volume Average model: the generic
effective macroscopic property X is the weighted average of the constituents corre-
sponding property Xi and the weights are the volume fractions v f ,i. With n isotropic
constituents:

X =
n

∑
i=1

v f ,iXi (2.36)

This model fits very well with isotropic materials. Although, when dealing with
composite and more complex materials, direction-dependent properties are very
common. In this case, ad hoc model can be developed. For instance, the Voigt-Reuss
model [30, 31] fits very well with continuous orthotropic fibers embedded in an
isotropic matrix. It is based on equilibrium and compatibility equations when a
unidirectional fiber RVE (Figure 2.6) is under certain loading conditions along its
material principal axis: 1 (parallel to the fibers), 2 (in-plane orthogonal to the fibers)
and 3 (out-of-plane orthogonal to the fibers). This is true under the assumption of
the "slab" model RVE: the volume fraction is equal to the surface and the width
fractions. In general, the Voigt-Reuss model results with n constituents are:

E11 =
n

∑
i=1

v f ,iEi,11 (2.37)

E j j =
n

∑
i=1

(
v f ,i

Ei, j j
)−1 (2.38)

G jk =
n

∑
i=1

(
v f ,i

Gi, jk
)−1 (2.39)

ν jk =
n

∑
i=1

v f ,iνi, jk (2.40)



34 Numerical Methods

As already said, this simple model works very well with unidirectional fibers and
in particular with just two constituents (the matrix and one fiber material oriented in
the local 1-direction). Although, due to the slab RVE hypothesis, Voigt-Reuss model
often needs corrections: other analytical model, more complex and complete, have
been developed to be more accurate during the homogenization. Some of those are
Halpin-Tsai, Halpin-Tsi-Nielsen and Hashin-Rosen models [32].

Fig. 2.6 Example of unidirectional fiber RVE

2.3.2 Numerical homogenization

With the increasing complexity at the microscale, analytical methods can be very
complex or they can lead to inaccurate results. Another way to perform homogenized
properties at the macroscale is numerically. One of the numerical approach is the
finite element homogenization: it briefly consists in extracting material properties
applying the finite element method - with the proper load cases and boundary
conditions - to a Representative Volume Element (RVE) or a Repeating Unit Cell
(RUC) of the system. The difference between the two stands in the boundary
conditions because the latter is characterized by periodicity and the former is just a
representative volume.
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The objective is to obtain the stiffness matrix numerically. This is possible
imposing an averaged strain and evaluating the corresponding induced stress as
shown in Figure 2.7. In the most general case - a 3D anisotropic homogenization -
six load cases are needed: three normal strains and three shear strains decoupled:


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Fig. 2.7 Homogenization load cases

For each load case, the six corresponding stress can be averaged inside the
representative volume element to obtain a single homogenized value for each vector
component (Equation 2.41). Finally, the elements of the homogenized stiffness
matrix can be computed as the ratio between the averaged stress and the imposed
strain as shown in Equation 2.42.
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

σavg,11(εavg,i j)

σavg,22(εavg,i j)

σavg,33(εavg,i j)

σavg,12(εavg,i j)

σavg,23(εavg,i j)

σavg,31(εavg,i j)


∀i, j ∈ {1,2,3} (2.41)

Di j =
σi(ε j)

ε j
∀i, j ∈ {1, . . . ,6} (2.42)

It can also be done imposing the stress, measuring the strain and computing the
homogenized compliance matrix resulting in Equation 2.44. Also a free expansion
can be imposed to evaluate the thermal expansion or the hygroscopic swelling
coefficients.



σavg,11

σavg,22

σavg,33

σavg,12

σavg,23

σavg,31


= Davg



εavg,11

εavg,22

εavg,33

εavg,12

εavg,23

εavg,31


(2.43)



εavg,11

εavg,22

εavg,33

εavg,12

εavg,23

εavg,31


= Savg



σavg,11

σavg,22

σavg,33

σavg,12

σavg,23

σavg,31


(2.44)

Being a representative or a repeating volume, there should be Boundary Pairs
to be specified: in a three-dimensional simulation, the three pairs will identify the
reference frame. It is necessary to make the software know the directions of the load
cases.
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The boundary conditions are different if the analyzed volume is a RVE (ho-
mogenous properties) or a RUC (periodic properties). The corresponding boundary
conditions are the following:

• Imposing a RVE average strain, the displacement u is consequently imposed
depending on the points position r

u = εavgr (2.45)

• Imposing a RVE average stress, the traction T is consequently imposed de-
pending on the points position

T = σavgn (2.46)

• Imposing a RUC average strain or stress, the displacement field - in both cases
- has a periodic expression

udst = usrc + εavg(rdst − rsrc) (2.47)

where dst stands for destination and src stands for source.



Chapter 3

Modelling of Lithium-Ion Batteries

3.1 Introduction to lithium-ion batteries modelling

Lithium-ion battery modelling has emerged as a critical field of study to understand,
predict, and optimize the behavior of batteries under various operational conditions.
As lithium-ion batteries power an increasing number of technologies, ranging from
electric vehicles to grid-scale energy storage systems, accurate and efficient models
are essential for improving battery performance, safety, and longevity.

The primary objective of lithium-ion battery modeling is to capture the complex
electrochemical, thermal, and mechanical processes that occur within the battery.
These processes are highly interconnected and vary over different time scales, mak-
ing the development of accurate models a challenging task. Through modeling,
researchers and engineers aim to simulate battery behavior under different operating
scenarios without the need for exhaustive physical testing, reducing both time and
cost in battery development.

Models also allow the exploration of degradation mechanisms, thermal runaway
risks, and capacity fade, all of which are crucial to improving the safety and durability
of lithium-ion batteries. Furthermore, with the increasing focus on fast-charging
and high-power applications, advanced models are required to account for the
nonlinearities and dynamic behavior of the battery during extreme conditions.
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3.1.1 Scope and Relevance

The importance of battery modeling lies in its ability to support several key areas of
battery research and application.

• Design Optimization: By simulating the effects of material properties, geome-
tries, and operating conditions, models can inform the design of batteries with
enhanced energy density, power output, and thermal management. This signif-
icantly reduces the time and cost associated with experimental prototyping.

• Battery Management Systems (BMS): Accurate models are essential for the
development of advanced BMS that can monitor, control, and optimize battery
operation in real-time. The ability to predict state-of-charge (SOC), state-of-
health (SOH), and temperature allows for better control over charge/discharge
cycles, improving both performance and safety.

• Degradation Analysis: Modeling provides insight into aging mechanisms such
as capacity fade and impedance rise. By predicting how batteries degrade over
time under different cycling conditions, models can be used to extend battery
life and develop more robust operational strategies.

• Thermal Management: Thermal effects have a significant impact on battery
performance and safety, particularly in high-power applications. Models that
accurately predict heat generation and dissipation help in the design of effective
cooling strategies, reducing the risk of overheating and thermal runaway.

• Fast Charging: As demand for fast-charging solutions grows, models are used
to analyze and mitigate the impact of high charge rates on battery life and
safety. Through simulation, optimal charging protocols can be designed to
minimize degradation while still meeting performance requirements.

3.1.2 Types of Model

There are several approaches to modeling lithium-ion batteries, each differing in
complexity, computational cost, and the specific phenomena they aim to capture.
The three most common categories are equivalent circuit models (ECMs), empirical
models, and physics-based models.
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• Equivalent Circuit Models (ECM): ECMs are widely used due to their sim-
plicity and computational efficiency. They represent the battery as a network
of electrical components, such as resistors and capacitors, that mimic the
dynamic behavior of the battery. While ECMs can provide good approxima-
tions of battery voltage response and are effective for battery management
systems (BMS), they fall short in capturing internal physical and chemical
phenomena, making them less accurate for predicting long-term degradation
and performances under different case scenarios [33].

• Empirical Models: Empirical models use data-driven approaches to predict
battery behavior. These models rely on large datasets obtained from experi-
ments to derive mathematical relationships between inputs (e.g., temperature,
current, and state of charge) and outputs (e.g., voltage, capacity, and lifetime).
Although they can offer high accuracy over specific conditions, empirical
models lack the possibility to generalize to new operating regimes or cell
chemistries and may require frequent recalibration based on continuous data
collection.

• Physics-Based Models (Electrochemical Models): The most detailed and ac-
curate form of battery modeling comes from physics-based approaches, which
are derived from fundamental electrochemical, thermodynamic and mechani-
cal principles. These models, such as the Doyle-Fuller-Newman (DFN) model
[34, 35], explicitly simulate the internal dynamics of lithium-ion transport,
intercalation reactions, and thermal effects inside the cell. Physics-based mod-
els provide deep insights into the operation and degradation mechanisms of
the battery but often come with high computational cost and complexity. For
this reason, they are commonly used in research and optimization rather than
real-time applications.

The electrochemical processes which allow the battery to store and release elec-
trical energy involve the interaction of lithium ions with the electrode microstructure
causing its mechanical deformation. Therefore, analyze both the electrochemical
and the mechanical model and then their interplay role inside the battery is crucial
for the safe-optimization of the system.

In this work, aiming to capture the multiphysics aspect of the battery system, one
of the most common physics-based model is presented in the following paragraphs.
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Unlike simplified models, which focus primarily on electrical characteristics, a
physics-based approach enables a detailed simulation of the complex interactions
between electrochemical, thermal, and mechanical phenomena within the battery. By
incorporating fundamental equations governing ion transport, electrode reactions, and
elasticity equations, the electrochemical and mechanical models and their interplay
- shown in the next paragraphs - could provide a comprehensive understanding
of the battery’s performance, degradation, and behavior under various operational
conditions. Such an approach is essential for accurately predicting battery dynamics
and optimizing its design and management strategies.

3.2 Doyle-Fuller-Newman model

At the core of a lithium-ion battery’s function is its electrochemical model, which
describes how energy is stored and released through the movement of lithium ions.
The diffusion of lithium-ions and its consequences should be analyzed at two different
scale and then study their coupling. In this section, the DFN model is deeply
investigated.

3.2.1 Particle scale

Due to lithium ions migration between the two electrodes, there should be a moment
in which the surface of the active material particle and its core are characterized by
two different amount of concentration. The lithium ions concentration field can be
described by the Fick’s laws.

The first Fick’s law describes the diffusion processes highlighting that a generic
particles flux J is proportional to the particles concentration gradient ∇c flowing
from high-concentration areas to low-concentration ones. The proportionality is
given by the diffusion coefficient (or diffusivity) D. In a 1D problem, the equation is
the following:

J =−D
∂c
∂x

(3.1)



42 Modelling of Lithium-Ion Batteries

The second Fick’s law is the application of the mass conservation to the diffusive
processes. At the particle level, it is described by the Equation 2.20 without the
source term because there is no internal generation of lithium ions: the variation of
the analyzed species concentration in time is balanced by the net ions flux inside the
analyzed system as shown in Equation 3.2. In a 1D diffusive problem, it is simplified
in Equation 3.3.

∂c
∂ t

= ∇ · (D∇c) (3.2)

∂c
∂ t

= D
∂ 2c
∂x2 (3.3)

Applying this model to active material particles and making the assumption of
isotropic spherical geometry, the second Fick’s law can be expressed in spherical
coordinates:

∂cs(z,r, t)
∂ t

=
Ds

r2
∂

∂ r
(r2 ∂cs(z,r, t)

∂ r
) (3.4)

The concentration in the solid phase cs depends on time, on the radial coordinate
r of the active material particle - due to the mentioned concentration gradient - and
on the z coordinate of the electrodes due to non homogeneous distribution of lithium
ions. In fact, during the operating conditions, the "in-charge" electrode presents
higher concentration close to the separator and vice versa because those are the
areas with the less-constrained ions. The same behaviour is seen at the particle level
because the core lithium ions are more constrained (Figure 3.1) then the ones on the
surface. This model is also called pseudo-two-dimensional (P2D) model because it
is applied in a mono-dimensional domain but with a second dimension distribution -
represented by the particle radius - at each point. A complete schematization of the
P2D model is following presented in Figure 3.2
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Fig. 3.1 Particle concentration field during (a) delithiation and (b) lithiation

3.2.2 Electrode scale

There is another crucial mass balance equation to be considered in the model. In this
case, it is applied to the salt concentration in the electrolyte, denoted as cl , at the
electrode scale.

εl
∂cl(z, t)

∂ t
=

∂

∂ z
(εlDH

l
∂cl(z, t)

∂ z
)+as(1− t+)JLi(z, t) (3.5)

The difference from Equation 3.3 stands in the presence of an additional sink/source
term due to lithium insertion/deinsertion in/from the active material particles. This
term contains the lithium ions flux JLi, the particles active surface area per unit
electrode volume as and the tranference number t+ which is a measure of the fraction
of the total ionic current in an electrolyte that is carried by lithium ions. Additionally,
εl is the electrode porosity which is very close to its liquid phase fraction and DH

l is
the homogenized diffusivity of the electrolyte.

The two mass balance equations can be considered the chemical part of the
electrochemical model. They describe the diffusion processes and how a species
concentration can vary inside a domain. Instead, the electrical side in mainly de-
scribed by two current conservation equations, both at solid and electrolyte phases.
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They introduce two crucial parameters representing the active material (solid) and
the electrolyte (liquid) potentials, Φs and Φl respectively.

κ
H
s

∂ 2Φs

∂ z2 = asi(z, t) (3.6)

∂

∂ z
[κH

l (
∂Φl

∂ z
− 2RT

F
(1+

∂ ln( f )
∂ ln(cl)

)(1− t+)
∂ ln(cl)

∂ z
)] =−asi(z, t) (3.7)

The right-sides of the Equations 3.6 and 3.7 are obviously the same but with
opposite sign. The term i(z, t) is the current density between the solid and the
electrolyte interface. Knowing that the Faraday constant F is representative of the
charge inside an electrons mole (F = 96485 C/mol) and that stoichiometrically,
in the lithium RED-OX, the molar ratio between Li+ and e− is 1:1, i(z, t) can be
expressed as:

i(z, t) = FJLi,k(z, t) (3.8)

On the other side, κH
s and κH

l are the homogenized electrical conductivity of
the solid phase and the electrolyte respectively. The homogenized conductivities
and electrolyte diffusivity of the composite electrodes and separator can be evalu-
ated accounting for porosity ε and tortuosity τ inside the corresponding domains.
Equations 3.9 and 3.10 highlight these dependencies.

κ
H =

ε

τ
κ (3.9)

DH =
ε

τ
D (3.10)

Tortuosity and porosity are usually related by the Bruggeman relation, which
leads to the corresponding corrections [36].

κ
H
s = κsε

brugg
l (3.11)

κ
H
l = κlε

brugg
l (3.12)
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DH
l = Dlε

brugg
l (3.13)

The coefficient brugg is obtained fitting the corresponding property trend and it
usually is 1.5 or 4.5.

3.2.3 Electrochemical coupling across scales

The general lithium intercalation or deintercalation reaction in the electrode can be
written as:

Li−Θ ⇌ Li++ e−+Θ (3.14)

where Θ represents the intercalation site in the electrode solid, and Li − Θ

represents the lithium in the electrode solid.

The Reaction 3.14 can proceed in both direction, forward and backward rep-
resenting an anodic and a cathodic reaction respectively. The rate at which the
forward and backward reactions occur depends on the overpotential (η), which is
the difference between the electrode potential and the equilibrium one.

η(z, t) = Φs(z, t)−Φl(z, t)−Ere f (3.15)

Precisely, the rate of the electrochemical reaction depends exponentially on
the overpotential due to the Boltzmann factor, which reflects the probability that
molecules have enough energy to overcome the activation threshold. The anodic and
cathodic current densities are therefore expressed as:

ia(z, t) = i0(z, t) · exp(
αaFη(z, t)

RgT
) (3.16)

ic(z, t) = i0(z, t) · exp(
−αcFη(z, t)

RgT
) (3.17)

where αa and αc are the anodic and cathodic charge transfer coefficients, two
parameters indicating how much the overpotential contributes to driving the anodic
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or cathodic reaction respectively. In fact, αiFη(z, t) is the equivalent anodic or
cathodic activation energy. The charge transfer coefficients are usually connected by
the following relation:

αa +αc = 1 (3.18)

so that αa = α and αc = 1−α or vice versa.

The net current density at the electrode i(z, t) is the difference between the anodic
current density and the cathodic one, resulting in the Butler-Volmer equation:

i(z, t) = i0(z, t)(exp(
αFη(z, t)

RT
− exp(

−(1−α)Fη(z, t)
RT

)) (3.19)

Additionally, i0(z, t) is the equilibrium current density, for η = 0. In a generic
RED-OX, it can be expressed as:

i0 = nFk(cαc
redcαa

ox ) (3.20)

where n is the number of the electrons involved in the reaction, k is the reaction
rate, cred and cox are the concentration of the reducted and oxidized species at
the electrode surface. The Equation 3.20 applied to the Reaction 3.14, where the
reduced/oxidized species is the lithium and n = 1, result in:

i0(z, t) = Fk(cs,sur f (z, t))1−α(cs,max − cs,sur f (z, t))αcα
l (z, t) (3.21)

because the reduced lithium is the one in the electrode solid, represented by
the backward reaction (cathodic) and the oxidized one is present in the electrolyte
represented by the forward reaction (anodic). (cs,max − cs,sur f (z, t))α is a driving
force term because there is a limit of lithium concentration inside the active particle
material: when cs,sur f = cs,max there is no concentration gradient that makes the
anodic reaction proceed. The exchange current density is higher when the gradient
inside the particles is higher. Usually the charge transfer coefficients are the same:
αa = αc = α = 0.5.

i0(z, t) = Fk[cs,sur f (z, t)cl(z, t)(cs,max − cs,sur f (z, t)]0.5 (3.22)
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Fig. 3.2 P2D model - Concentration field at particle and electrode levels [20]

3.3 Mechanical model

The mechanical behavior of lithium-ion batteries is a critical aspect that significantly
influences their performance, safety, and lifespan. While electrochemical processes
are central to battery operation, the mechanical stresses and strains that occur during
these processes are equally important. As lithium ions intercalate and deintercalate
from the electrode materials, the electrodes undergo volumetric changes, leading
to mechanical deformation. This can cause various issues, such as cracking and
capacity fade, which degrade the battery’s overall performance.

3.3.1 Atomic scale

The active materials are responsible for hosting the lithium ions during the charge
and discharge processes, acting as storage mediums for lithium ions that move
between the electrodes. Therefore, the lattice structure is crucial for the evaluation
of the mechanical consequences induced from the electrochemical process: during
lithiation - and consequenly during the lithium ions hosting - the lattice structure
goes under deformation and/or arrangement variation.

The partial molar volume Ω is defined as the volume change induced to the
hosting material by the addition of one mole of solute. In general, the partial molar
volume can be defined as the variation of volume due to solute insertion V m with
respect to the corresponding moles of solute n. Considering that the molar volume
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can be expressed as function of the initial molar volume V m
0 and the deformation of

the crystal lattice structure εc
v :

Ω =
∂V m

∂n
=V m

0
∂εc

v
∂n

(3.23)

Therefore, measuring the volumetric strain of the crystal lattice structure from
XRD analysis, the partial molar volume can be computed.

It is not obvious that it is a constant coefficient. In fact - as already said -
during lithiation, the lattice structure can vary its atomic arrangement and change
its response to deformation. It can be generally said that the partial molar volume
is function of the lithium ions concentration in the hosting material. In particular,
defining cs,max as the maximum amount of lithium ions concentration, a state of
lithiation sol can be defined as the ratio between the actual concentration and the
maximum one in both the electrodes:

x =
can

s
can

s,max
y =

ccat
s

ccat
s,max

(3.24)

0 ≤ x,y ≤ 1

where x is the anode state of lithiation (e.g LixC6 for graphite) and y is the cathode
one (e.g LiyFePO4 for LFP and LiyCoO2 for LCO). The partial molar volume is
dependent on the state of lithiation x and y.

As shown in Figure 3.3b, LFP is characterized by a constant partial molar volume
and consequently linear strain [37]. More interesting is the graphite behaviour that
undergoes atomic structure variation due to lithiation and exhibits a step behaviour
of Ωgraph(x) (Figure 3.3a). The dependency is not only on the state of lithiation but
also on current rates.
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Fig. 3.3 Partial molar volume and lithiation strain of (a) graphite and (b) LFP

In the lithiation window of graphite can be identified five main crystal stages
characterized by their own lattice parameters: the in-plane spacing between carbon
atoms dcc and the carbon layer spacing dl [38]. The layered structure of graphite
is described in Paragraph 1.2.1 and shown in Figure 1.2a. The five stages and their
comparison during lithiation/delithiation are schematized in Figure 3.4: the solid
lines are the carbon planes and the dashed ones are the lithium ions inserted.

It can be notices that during lithiation of graphite - therefore during the battery
charge - the IIL stage is skipped. The presence of the IIL stage is not only dependent
on the current direction but also on temperature and discharging rate, that is the reason
of the C-rate dependency of the graphite partial molar volume during discharging
[39]. In particular, stage IIL of graphite appears at low discharge rates.

Fig. 3.4 Graphite stages during lithiation and delithiation [38]
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3.3.2 Particle scale

Due to the symmetry of the system - assuming spherical particles - the principal refer-
ence frame of the single particle is represented by a radial and two hoop coordinates.
Therefore, the structural mechanics set of PDEs can be expressed as following:

• Compatibility equations

εr =
du
dr

(3.25)

εc =
u
r

(3.26)

• Equilibrium equation
dσr

dr
+

2
r
(σr −σc) = 0 (3.27)

• Constitutive laws
ε

mec
r =

1
E
(σr −2νσc) (3.28)

ε
mec
c =

1
E
((1−ν)σc −νσr) (3.29)

Lithium intercalation and deintercalation induce swelling and shrinking in the
particle of the active material. Due to spherical geometry hypothesis, this deformation
is isotropic and assumed to be elastic. The particle swelling/shrinking due to lithium
intercalation/deintercalation can be modeled as a thermal or hygroscopic volumetric
deformation. In this case, the volumetric strain is proportional to the difference
between the actual lithium ion concentration and the initial state one through the
partial molar volume.

ε
ch
v = Ω(cs − cs,0) (3.30)

As shown in the previous paragraph, the partial molar volume can depend on the
state of lithiation and - consequently - on the lithium ions concentrations. Therefore,
the differential form of the chemical volumetric strain is necessary (Equation 3.31).
However, for the following computations, a constant partial molar volume is assumed.

dε
ch
v = Ω(cs)dcs (3.31)
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Due to the isotropic effect of the chemical deformation, the volumetric strain
described in Equations 3.30 contributes both to the radial and the two hoop strain in
the same way: the corresponding swelling/shrinking linear coefficient is a third of the
partial molar volume. The radial and hoop strain, considering both the mechanical
and chemical contribute, can therefore be written as:

εr =
1
E
(σr −2νσc)+

Ω

3
c̃ (3.32)

εc =
1
E
((1−ν)σc −νσr)+

Ω

3
c̃ (3.33)

where c̃ represent the difference in concentration that drive the chemical strain.

To compute the particle deformation u(r), this set of equations can be managed
as following [6]:

1. substitute the compatibility equations (3.25 and 3.26) in the corresponding
constitutive laws (3.32 and 3.33);

2. compute σr and σc from the previous equations;

3. obtain a single second order differential equation substituting σr, σc and dσr
dr

in the equilibium equation (3.27);

4. integrate two times to obtain u(r).

u(r) =
Ω

3(1−ν)
[(1+ν)

1
r2

∫ r

0
c̃(r)r2dr+2(1−2ν)

r
r3

p

∫ rp

0
c̃(r)r2dr] (3.34)

The displacement of each point of the particle depends on the lithium concentra-
tion field inside the domain. This field derives from the diffusive problem described
in Paragraph 3.2.1 highlighting one of the multyphisics aspects of the system. Addi-
tionally, the stress inside the particle affects the diffusive problem itself modifying
the Fick’s laws:

JLi =−D(
∂cs

∂ r
− Ωcs

RT
∂σh

∂ r
) (3.35)
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∂cs

∂ t
= Ds[

∂ 2cs

∂ r2 +
2
r

∂cs

∂ r
− Ω

RT
∂cs

∂ r
∂σh

∂ r
− Ωcs

RT
(
∂ 2σh

∂ r2 +
2
r

∂σh

∂ r
)] (3.36)

The term σh is the hydrostatic stress and, mathematically, it is the average of the
three principal stress:

σh =
σ1 +σ2 +σ3

3
=

σr +2σc

3
(3.37)

Once computed u(r), the expression of the radial stress, the hoop stress and,
consequently, the hydrostatic stress can be obtained:

σr(r) =
2ΩE

3(1−ν)
(

1
r3

p

∫ rp

0
c̃(r)r2dr− 1

r3

∫ r

0
c̃(r)r2dr) (3.38)

σc(r) =
ΩE

3(1−ν)
(

2
r3

p

∫ rp

0
c̃(r)r2dr+

1
r3

∫ r

0
c̃(r)r2dr− c̃(r)) (3.39)

σh(r) =
2ΩE

9(1−ν)
(

3
r3

p

∫ rp

0
c̃(r)r2dr− c̃(r)) (3.40)

Fig. 3.5 Particle stress fields during (a) delithiation and (b) lithiation [40]
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Equation 3.40 highlight the dependence of the hydrostatic stress from the lithium
ions concentration. Therefore, Equation 3.35 can be simplified applying the chain
rule ∂σh

∂ r = ∂σh
∂cs

∂cs
∂ r finding an equivalent diffusivity depending on the lithium ions

concentration itself due to the stress state of the particle.

J =−D(1+
2Ω2Ecs

9RT (1−ν)
)
∂cs

∂ r
=−Deq(cs)

∂cs

∂ r
(3.41)

Once the concentration field is known, the surface displacement can be computed
replacing r = rp to Equation 3.34.

u(r = rp) =
Ω

r2
p

∫ rp

0
c̃(r)r2dr =

Ωrp

3
(cs,avg − cs,0) (3.42)

where cs,avg is the instantaneous mean concentration in the particle evaluated as:

cs,avg =
3
r3

p

∫ rp

0
csr2dr (3.43)

The volumetric strain of the particle is analytically computed in the Equation
3.44 as the ratio between the variation in volume and the initial volume of the particle
itself.

ε
p
v =

∆V p

V p
0

=
4
3π((rp +u(rp))

3 − r3
p)

4
3πr3

p
=

3r2
pu(rp)+3rpu2(rp)+u3(rp)

r3
p

(3.44)

Due to small deformations, u(rp)→ 0 and ε
p
v ≈ 3u(rp)

rp
.

3.3.3 Electrode scale

At the scale of the electrode, active material is one of the component of the composite
structure, then it is important to understand the effect of the deformation of its
particles on the electrode layer. Two primary effects can be expected: deformation
of the overall electrode layer and a decrease in its porosity. Considering these two
aspects, the electrode volume change ∆V e can be expressed as the np active material
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particles volume change corrected by the volumetric expansion parameter g which
accounts for the porosity variation. This result is shown in Equation 3.45 [41].

∆V e = gnp
∆V p (3.45)

Dividing both sides of the above equation by the initial particle volume V p
0 and

considering that the np particles constitute the solid fraction ζ of the active layer
(npV p

0 = ζV e
0 ), the electrode volumetric strain can be related to the particle one as

presented in Equation 3.46.

ε
e
v (cs) = gζ ε

p
v (cs) (3.46)

For a free expansion deformation, this relation is analytically powerful because g
can be assumed equal to 1: this hypothesis is due to the absence of an external pres-
sure that can significantly change the porosity of the electrode. It can be necessary
to evaluate the external boundary conditions numerically.

Electrochemically, the stress state in the active material particles also influences
the overpotential of the electrodes: in the coupled problem, the Equation 3.15 is
modified accounting for the hydrostatic stress and the surface contact resistance Rc:

η(z, t) = Φs(z, t)−Φl(z, t)−Ere f −
Ωσh(z, t)

F
−Rci(z, t) (3.47)

Fig. 3.6 Scheme of multi-scale and multi-physics coupling [42]



Chapter 4

Electrochemical-Mechanical
Multiscale Battery Model

In this thesis, a comprehensive multi-scale model is developed to investigate the
mechanical behavior of a battery module using COMSOL Multiphysics. The model
is designed to perform structural analysis of a battery module accounting both for
the mechanical consequences given by the internal electrochemical process and
the external mechanical constraints during its operating conditions. The objective
is to treat the batteries as homogeneous without the need of modelling the whole
internal structure to perform cheaper simulations in terms of computational cost. The
structural analysis performed in this work is focused on the battery module swelling
during charging and the effect given by the spacing between the batteries. The model
can be extended to all types of lithium-ion battery but an example of application is
performed on a LFP/graphite battery module.

The use of COMSOL Multiphysics provides a versatile and powerful platform
for coupling the various physical phenomena, ensuring a detailed and accurate
representation of the battery’s mechanical response under real-world conditions.

Using the Battery Design Module of COMSOL Multiphysics, the concentration
of lithium ions within the electrode is computed through the physics-based electro-
chemical DFN model presented in the previous section. The concentration in the
solid phase is the input of the mechanical model which consists on the analysis of
the evolution of the deformation across the scales of the system. Due to the nano-
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structured active materials and the amount of layers inside the battery, a two-step
homogenization approach is followed.

4.1 Battery homogenization

The battery’s intricate internal architecture - composed of several layers and nano-
structured materials - present a unique challenge in numerical simulation: the direct
modelling of every detail becomes impractical and computationally expensive. This
challenge can be overcome by treating the active layers and the whole battery as
homogenized materials. Once homogenized, the batteries or the entire battery module
can be involved in more complex structural analysis.

The homogenization of periodic structures can be achieved efficiently through
the Cell Periodicity in the Structural Mechanics Module of COMSOL Multiphysics.
This function allows to simulate the mechanical behavior of periodic structures by
modeling a representative volume rather than the entire structure. This significantly
reduces computational complexity and time, especially for large, repeating systems
like lattice structures or composites. In this work, the Cell Periodicity has been used
to homogenize the active materials and the whole battery mechanical properties. In
both cases it’s about a Representative Volume Element and not a Repeating Unit Cell
(see Paragraph 2.3).

Due to the small percentage of filler and conductive agents fraction, only the
active material particles and the electrolyte have been considered as constituents of
the active layer RVE which is represented by a Body-Centered Cube (BCC) due to
particles arrangement (Figure 4.1). It is an isotropic RVE, then just a single normal
strain load case is sufficient to extract the material parameters. This characteristic is
easier to understand with the independent parameters of the compliance matrix [S] in
an isotropic case:
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

ε1

ε2

ε3

γ23

γ31

γ12


=



1
E − ν

E − ν

E 0 0 0
− ν

E
1
E − ν

E 0 0 0
− ν

E − ν

E
1
E 0 0 0

0 0 0 2(1+ν)
E 0 0

0 0 0 0 2(1+ν)
E 0

0 0 0 0 0 2(1+ν)
E





σ1

σ2

σ3

τ23

τ31

τ12


(4.1)

Thanks to the numerical homogenization approach - explained in Paragraph 2.3 -
just applying one normal load case, the first row of the stiffness or compliance matrix
can be obtained and consequently - in an isotropic case -the Young’s modulus and
the Poisson’s ratio thanks to S11 and S12 (or D11 and D12) .

Fig. 4.1 (a) Anode and (b) cathode RVEs

The homogenized active layers are then part of the battery RVE which is repre-
sented by the following stack of thin layers:

• Copper cathode current collector

• Homogenized cathode active layer

• Separator

• Homogenized anode active layer

• Aluminum anode current collector



58 Electrochemical-Mechanical Multiscale Battery Model

In this case, the resulting homogenized material results transversely isotropic
because the in-plane directions are equal and the out-of-plane direction is different
from them. This time, the independent parameters of the compliance matrix are five:
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(4.2)

in particular, the independent elastic parameters are the out-of plane Young’s
modulus E1, the in-plane Young’s modulus E2, the major Poisson’s ratio ν12 = ν13,
the in-plane Poisson’s ratio ν23 and the shear modulus G12 = G13. Due to the
symmetry of the compliance matrix, the minor Poisson’s ratio ν21 can be obtained
from the major one the the two Young’s modulus. Due to the in-plane isotropy, the
in-plane shear modulus G23 depends just on the the corresponding Young’s modulus
and Poisson’s ratio. It can be seen that - in this transversely isotropic case - the
elements S11, S12, S22, S23 and S55 (or D11, D12, D22, D23 and D55) are sufficient to
evaluate all the independent elastic parameters. The same thing can be seen with the
stiffness matrix and therefore, two normal strain load cases (one in-plane and one
out-of-plane) and one out-of-plane shear strain load case are sufficient to entirely
describe mechanically the RVE. A scheme of this two-homogenization procedure is
shown in Figure 4.2.

Fig. 4.2 Two-step homogenization
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The output of the Cell Periodicity is a new custom material with the computed
homogenized properties. For the LFP/graphite battery module the parameters re-
ported in Table 4.1 are used: l from literature, m measured from SEM images (Figure
5.2), c calculated.

Table 4.1 Parameters for the LFP/graphite battery homogenization.

Domain Property Symbol Value Unit

Cathode Active Layer

Particle Young’s Modulus Ecat
p 125 l[43] GPa

Particle Poisson’s ratio νcat
p 0.3 l[43] -

Particle radius rcat
p 0.03 m µm

Porosity εcat
p 0.608 c -

Thickness tcat
al 72 m µm

Anode Active Layer

Particle Young’s Modulus Ean
p 15 l[44] GPa

Particle Poisson’s ratio νan
p 0.3 l[44] -

Particle radius ran
p 10 m µm

Porosity εan
p 0.434 c -

Thickness tan
al 60 m µm

Cathode Current Collector
Young’s Modulus Ecat

cc 70 l GPa
Poisson’s ratio νcat

cc 0.3 l -
Thickness tcat

cc 12 m µm

Anode Current Collector
Young’s Modulus Ean

cc 110 l GPa
Poisson’s ratio νan

cc 0.3 l -
Thickness tan

cc 10 m µm

Separator
Young’s Modulus Esep 0.4 l[45] GPa

Poisson’s ratio νsep 0.01 l[45] -
Thickness tsep 33 m µm

4.2 Electrochemical model

In COMSOL Multiphysics there are several Physics Module with their constitutive
governing equations implemented. The Battery Design Module is a specialized
tool used for simulating and analyzing battery systems. It enables researchers
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and engineers to model the electrochemical, thermal and mechanical behaviors of
batteries across various scales, from microscopic electrode structures to full battery
packs. Supporting multiple battery chemistries like lithium-ion and lead-acid, the
module allows for detailed studies on performance, efficiency, and safety, facilitating
the design and optimization of advanced battery technologies.

In this work, the Battery Design Module has been applied to a 1D domain
composed by the two active layers and the separator (Figure 4.3) in order to obtain
the lithium ion concentration distribution across the electrodes thickness. The model
can be generalized to all types of lithium-ion batteries but in this specific case,
LFP/graphite batteries are analyzed. As shown in Figure 4.3, the origin of the
domain is the cathode current collector for z = 0 while the end is the anode current
collector for z = tcat

al + tsep + tan
al = L.

Fig. 4.3 Electrochemical model 1D domain

The implemented model is the DFN model, deeply described in Paragraph 3.2. In
the following sections, the needed properties and boundary conditions are presented.

4.2.1 Materials and Properties

As shown in the previous chapter, the parameters that allows the computation of
the DFN model are mainly related to the electrode composition and mechanical
properties - already reported on Table 4.1 - and electrical and diffusive properties
shown in Table 4.2 and in the next figures: l from literature, c calculated.
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Table 4.2 Electrochemical model parameters

Property Symbol Cathode Separator Anode Unit

Electrical properties
Solid-phase conductivity κs,k 6 l[46] - 100 l[47] S/m
Reaction rate ke,k 10−10 l[46] - 5·10−12 l[46] m2.5/mol0.5s
Contact resistance Rc,k 0.05 - 0.05 Ωm2

Diffusive properties
Solid-phase diffusivity Ds,k 5.5·10−19 l[48] - Figure 4.4 l[49] m2/s
Electrolyte diffusivity Dl,k 1.3·10−10 l[49] 1.3·10−10 l[49] 1.3·10−10 l[49] m2/s
Maximum Li-ion concentration ck

s,max 24035 c - 26190 c mol/m3

Fig. 4.4 Graphite diffusivity

The Open Circuit Potential (OCP) of the two electrodes are expressed in the
following equations and plotted in the corresponding figures.
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• Graphite [47]

ULixC6
re f = 0.124+1.5(−150x)+0.0155 · tanh(

x−0.205
0.029

)

−0.011 · tanh(
x−0.124

0.0226
)−0.102 · tanh(

x−0.194
0.142

)

+0.0347 · tanh(
x−0.286

0.083
)−0.0147 · tanh(

x−0.5
0.034

)

−0.0045 · tanh(
x−0.9
0.119

)−0.022 · tanh(
x−0.98
0.0164

)

−0.035 · tanh(
x−0.99

0.05
)

(4.3)

Fig. 4.5 Graphite OCP

• LFP [50]

ULFP
re f = 3.4245+2 · exp(−800y1.3)−17 · exp(−3.5/y14) (4.4)
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Fig. 4.6 LFP OCP

4.2.2 Boundary conditions

Figure 4.7 shows the used Battery Design Module model tree.

Fig. 4.7 Battery Design Module model tree
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The three domains are assigned - with the corresponding material properties -
to the proper geometry. For the two electrodes, the particle intercalation - based on
Fick’s law - and the porous reaction - based on Butler-Volmer equation - are properly
set. The No Flux boundary condition refers to lithium ions flux and its imposed
to electrode interface with their corresponding current collectors. The Insulation
boundary condition refers to electrical insulation which is not present in the analyzed
domain.

∂cl

∂ z

∣∣
z=0,z=L = 0 (4.5)

The electric ground is set to the anode current collector and the current density is
applied to the cathode one as the ratio between the charging/discharging current and
the crossed surface represented by the surface of the all layers. The crossed surface
considers all the 144 layers and each layer has a 150x70mm2 surface.

Φs
∣∣
z=L = 0 (4.6)

i(z, t)
∣∣
z=0 =

I
A

(4.7)

The two initial values correspond to the initial electric potentials (solid and
liquid) and electrolyte salt concentration. Due to the electric ground, the solid
electric potential is set to zero in the anode and separator while in the cathode is
set to the difference between the cathode equilibrium potential and the anode one
evaluated at their initial state of lithiation. The electrolyte potential is set to the anode
initial OCP while the initial electrolyte salt concentration is set to 1000 mol/m3.

4.2.3 Concentration in the solid phase

Once all the parameters and boundary conditions are set, the electrochemical analysis
can be computed. The electrodes domain has been divided into intervals to extract
the average lithium ions concentration - in time - within the electrode thickness as
schematized in Figure 4.8. The reported example is with the cathode but the same is
done with the anode with less points due to its length.



4.3 Multiscale model 65

Fig. 4.8 Extraction of lithium ions concentration within the electrode domain - Cathode

4.3 Multiscale model

Once computed the lithium ions concentration in the solid phase within the electrode
according to the current delivered by the battery for a certain amount of time, the
chemically induced deformations to the active material particles and the consequently
strains in the upper scales can be evaluated. A multi-scale model has been developed
to analyze this strain evolution and account for the mechanical behaviour induced by
the electrochemical process in structural simulation of the battery module.

As mentioned in the previous section, the particles swelling/shrinking can be
easily computed in an analytical form as function of the concentration in the solid
phase with the Equation 3.30. Even the electrode strain can be computed thanks to
the porosity and the particle strains. This is true if there is no external pressure that
significantly affects the porosity. In reality, a numerical way to evaluate the particle
and electrode strain is evaluated: the representative volume elements of the active
materials are composed by eight particles with the proper porosity; the particles are
subjected to an Hygroscopic Swelling which models the chemical volumetric strain
as shown in Figure 4.9. The implemented model is the Equation 3.30 but with two
coefficients rather then one. It is sufficient to impose βh = 1 and use the coherent
unit of measure.
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Fig. 4.9 Modeling of particles and electrodes strain

The swelling/shrinking is discretized in time iterating index which is multiplied
by the time step. The reference concentration is fixed to the corresponding initial
state of lithiation of the electrode because it correspond to cs,0. The deformation of
the RVE is extracted to compute the strain that should be imposed in the next scale.
However, in this case, the analytical computation of the active layers strain allows a
lower computational cost.

The electrodes strains are then coupled in a battery representative volume element
composed by the two current collectors, the separator and the two active layers. Due
to the small thickness of the electrodes with respect to their in-plane dimensions, a
plane strain condition can be assumed:

ε
e
in−plain = ε

e
x = ε

e
y = 0 ; ε

e
out−o f−plane = ε

e
z = ε

e
v (4.8)

Therefore, an equivalent thermal strain has been applied to the electrodes domain
to evaluate the overall battery strain. An example of equivalent thermal strain applied
to the cathode is shown in Figure 4.10. The strain is applied just on z direction.
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Fig. 4.10 Example of equivalent thermal strain applied to the electrode

To avoid rigid motion along x and y directions, the out-of-plane displacement
of the middle planes parallel to yz and xz respectively has been imposed null due
to symmetry. To avoid rigid motion along z direction, one of the two edges of the
representative elementary cell has the z-displacement constrained. The mentioned
boundary conditions are reported in Figure 4.11. Doing that, the battery strain can
be evaluated as the ratio between the z-displacement of the other edge and the initial
thickness of the elementary cell which is the sum of the thicknesses of its constituents
(Equations 4.9 and 4.10).

Fig. 4.11 RVE Boundary Conditions

ε
batt
z =

∆tRV E

t0,RV E
(4.9)
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t0,RV E = tcat
cc + tcat

al + tsep + tan
al + tan

cc (4.10)

The computed battery strain is the input of the upper scales simulations. In
particular, two analysis have been performed in the model. The first is at the single
battery level to compare the numerical results with the experimental ones [51] to
validate the electrochemical model. The second is at the battery module level to
perform the structural analysis once homogenized. A workflow from the RVE strain
coupling to the application of battery strain is shown in Figure 4.12. The COMSOL
non-local couplings are used to achive multi-component and consequently multi-
scale analysis. In this case, the average operation has been used in the free surface of
the representative volume element to evaluate its displacement (w3 in the figure) and
consequently its strain. To apply this deformation in the upper scale, it is necessary
to introduce the coupling variable in the next component.

Fig. 4.12 Strain workflow with COMSOL non-local couplings

At the battery level, due to symmetry conditions, just an eighth of the battery
can be simulated or - as already did with the elementary cell - the out-of-plane
displacement of the symmetry planes can be constrained as shown in Figure 4.13 for
the xy plane. Each battery is coverd by a thin aluminum case.
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Fig. 4.13 Example of battery symmetry boundary condition

The thickness change is finally evaluated - due to symmetry - as two times the
displacement of the surface middle point.

The battery module geometry consists in a regular sequence of batteries inside a
case of the whole module. The geometrical parameters - apart from the single battery
ones - are the space between the batteries, the space between the batteries and the
case, the case material and thickness. The mechanical parameters of the aluminum
case and of the module case are reported in Table 4.3. The dimensions of the battery
module case are not reported because they depend on the variable gap. Also in this
case study, focusing just on the mechanical behaviour due to the electrochemical
operating conditions, an eighth of the system can be considered due to symmetry as
reported in Figure 4.14.

Fig. 4.14 Battery pack domain
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Table 4.3 Battery case and module case parameters

Domain Property Symbol Value Unit

Battery Case

Young’s Modulus Ebat
case 70 GPa

Poisson’s ratio νbat
case 0.3 -

Thickness tbat
case 0.8 mm

Width wbat
case 70 mm

Height hbat
case 27 mm

Length lbat
case 185 mm

Module Case
Young’s Modulus Emod

case 210 GPa
Poisson’s ratio νmod

case 0.3 -
Thickness tmod

case 1.2 mm

In the module there is no more symmetry in the single battery middle plane
because each battery displacement is influenced by the other. Therefore the contact
between the batteries is modelled with the penalty function: it is a method used in
computational simulations, to model interactions between two bodies that come into
contact. Penalty-based contact modeling imposes a "penalty" (or artificial stiffness)
when two surfaces come into contact or overlap. It creates a resistance force that
increases proportionally with the amount of penetration between the contacting
bodies.

Due to the prismatic regular shape of the batteries and their RVE, an hexahedral
mesh is used. To minimize the error, the size of the hexahedra is chosen regularizing
the ratio between their sides (Figure 4.15). The linear hexahedron is a 8-node element
whose shape function are linear as shown in Figure 4.16. Second order elements are
used in the model to avoid extra fine mesh. Additionally, with these regular shapes,
the serendipity second order hexahedron performs very well and it is a 20-node
element with respect to the second order Lagrange hexahedron which is a 27-node
element. Instead, each battery aluminum case can be meshed with shell elements due
to their small thickness. Even the module case can be meshed with shell elements
but the model aims to use also the case stiffness as design parameter: tougher plates
can be simulated.
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Fig. 4.15 Hexahedral mesh

Fig. 4.16 Linear hexahedron shape functions

Thanks to the Solid-Thin Structure Coupling, the two elements’ displacement
fields are connected. There are several options of connection but due to the geometry
and meshing choice, the Shared Boundaries feature is used (Figure 4.17): the shell
are constructed as the internal battery cover as it really is.
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Fig. 4.17 Solid-Shell coupling

Figure 4.18 summarize the implemented from the lithium ions concentration
across the electrode thickness to the macro-scale deformation.

Fig. 4.18 Multi-scale model workflow



Chapter 5

Results

In this chapter, the multiscale model is validated comparing the corresponding
numerical results with the experimental measurement conducted on LFP batteries.
The comparison involves the battery voltage and thickness change measured and
computed at different C-rates of charging and discharging.

Additionally, the designed model is applied to a battery module consisting of two
rows of 9 LFP batteries each. After the homogenization of the battery’s mechanical
properties, a structural analysis is performed to evaluate the gap between the batteries
- considered as design parameter - in the worst case scenario of reversible swelling.

5.1 Experiment

Three samples of prismatic LFP/graphite lithium-ion batteries have been tested -
using a dedicated setup - to assess their performance. The batteries are subjected to
various charge and discharge currents while voltage, temperature and deformation
are measured. Charge rates range span from C/20 to C/2, while discharge rates
range from C/20 to 3C, following manufacturer specifications avoiding high charge
C-rates. Each test is performed five times and consist in a full charge/discharge in the
SOC range 0%-100%. The thickness variation of the battery is measured with laser
sensors and all the tests are performed in a thermostatic chamber to set a constant
temperature at 20◦C. A scheme of the test setup is shown in Figure 5.1 [51].
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Fig. 5.1 Experimental measurement setup [51]

Additionally, images of the internal structure of the electrodes have been taken
with a scanning electron microscope (SEM). These are reported in Figure 5.2 [6] and
the geometrical properties are crucial for the design of the RVE and consequently
the homogenization and the multi-scale evaluation of the deformation.

Fig. 5.2 Internal structure of electrodes from SEM images [6]
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5.2 Multiscale model validation

The measured voltage and the computed one from the multi-scale model are com-
pared at different C-rates as shown in Figure 5.3.

Fig. 5.3 Voltage comparison between model results (solid line) and experimental measure-
ments (crosses) in (a) charge and (b) discharge

The comparison shows a good agreement confirming the validity of the electro-
chemical model whose output is the lithium ion concentration within the electrode
thickness which is the origin of the microscopic deformation and therefore, the input
of the multi-scale mechanical model. The behaviour of the mentioned concentration
in the solid phase is shown in Figure 5.4 during a C/20 charge/discharge rate as
example.

Fig. 5.4 Lithium ion concentration in the electrodes during (a) charge and (b) discharge
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According to what has been said in Paragraph 3.2.1, the lithiated-electrode has
higher concentration in the areas closer to the separator and vice versa for the
delithiated one. Once the concentration from the electrode thickness is extracted,
the two active layers are subjected to their corresponding deformations that are then
coupled in the elementary cell representative volume element as reported in Figures
5.5 and 5.6.

Fig. 5.5 Electrodes strain coupling during (a) charge and (b) discharge

Fig. 5.6 Example of RVE deformation during (a) charge and (b) discharge

At this point - evaluated the battery strain with the Equation 4.9 - the battery
thickness change in time can be computed and compared to the experimental one
thanks to the implemented non-local coupling. The results are plotted in Figure 5.7.
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Fig. 5.7 Thickness change comparison between model results (solid line) and experimental
measurements (crosses) in (a) charge and (b) discharge

The model is satisfactory as the comparison shows a good match of the numerical
results with the experimental measurements of the macroscopic deformation. Im-
plementing the graphite partial molar volume as function of the lithiation index and
the current rates - as described in Paragraph 3.3.1 - the dependency of the thickness
change on the C-rates in discharge is catched by the model (Figure 5.7b). The
responsible of this behaviour is the transition to stage IIL of graphite that appears at
low discharge rates affecting the structural deformation of the graphite crystalline
structure. In Figure 5.8 is presented the maximum reversible displacement reached
at the end of the charge and discharge. An half of the battery is figured to appreciate
the solution variable also in the bottom part of the battery.

Fig. 5.8 Thickness change at the end of the (a) charge and (b) discharge
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5.3 Battery module

The structural behaviour of a 60V battery module - consisting by 18 LFP/graphite
batteries - is studied to investigate how the strain of each battery affects the defor-
mation and the stress in the module. The case of the battery module is made of
structural steel plates, 1.2 mm thick. Two design solutions of the battery module are
studied varying the battery arrangements:

1. Batteries are packed with no gap between them.

2. A 0.5 mm gap is left between the batteries. Such gap could be smaller, at the
limit equal to an half of the reversible deformation computed or measured of
each single battery (almost 0.2 mm in this case study). Nevertheless, from a
constructive point of view, it would be difficult to leave such a small gap. For
this reason, 0.5 mm is chosen as a realistic and conservative scenario.

In the first design solution, the reversible deformation of the batteries during
charge and discharge causes severe deformation in the case of the battery module -
as reported in Figure 5.9a - and higher stress within each battery cell as reported in
Figure 5.10a and 5.11a. In the second design solution, the gap between the batteries
entirely accomodates the reversible swelling obtained during charge, mitigating the
stress within the cell and avoiding the deformation of the external casing of the
battery module.

Fig. 5.9 Displacement of the battery module in (a) solution 1 and (b) solution 2
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Fig. 5.10 Von Mises stress of the battery module in (a) solution 1 and (b) solution 2

Fig. 5.11 Stress in batteries’ thickness direction in (a) solution 1 and (b) solution 2

Figure 5.11 shows the stress in the z direction in three cross-sections - parallel
to the xz plane - inside the batteries. Design solution 1 (Figure 5.11a) results in
a more severe compressive stress within the batteries because of the constrained
expansion with respect to the design solution 2 (Figure 5.11b). Nevertheless, the
top and the bottom of the case of the batteries acts as a membrane stiffness and
constrains the expansion in the z direction of the battery internal, giving rise to high
and localized compressive stress. Just an eighth of the battery module is explicitly
simulated thanks to symmetry, so the bottom of the battery module is not shown
in the results. On the other hand, the case acts as a flexural stiffness on the large
surfaces of the batteries, giving a lower constraint, allowing the deformation of the
battery internal and consequently lowering the stress.
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The price to be paid for the design solution 2 is the increased size of the battery
module and the consequent decrease in its energy and power density. In fact, the
volume of the module pass from 6.9 dm3 in design solution 1 to 7.3 dm3 in the
design solution 2 with an increase of only 6% in volume, and therefore an equal
percentage reduction in energy and power density. From these considerations, it
turns out that it is beneficial to consider the reversible deformation of the batteries
during operation in the design of the battery module, as a modest increase in the
battery module volume allows to mitigate the structural issues given by the battery
deformation, causing stress in the battery itself and in the casing of the module.
Such gap is not beneficial only from the structural point of view, but it gives benefits
also to thermal management of the battery module, as it provides greater space for
cooling.



Chapter 6

Conclusions

After a deep investigation on the numerical approach for solving PDEs, on the ho-
mogenization theory and the multiphysics coupling on the Doyle-Fuller-Newman
model, an homogenization-based multiscale model is developed in COMSOL Multi-
physics to involve batteries and battery modules in structural analysis during their
operating conditions.

Through the lithium ions concentration within the electrode thickness, the induced
chemical deformation is followed from particle scale to the battery one thanks to the
developed multiscale model which is validated through experimental measurements
conducted on LFP/graphite prismatic LIB samples. The voltage and thickness change
are compared at different C-rates demonstrating a good fit of the model results to the
experimental measurements.

The mechanical consequences in terms of stress field can be evaluated through
a the two-step homogenization: the nano-structured active materials are homoge-
nized inside the layered battery representative volume element which is likewise
homogenized to compute the battery’s mechanical properties.

Combining the multiscale model and the homogenization-based approach allows
for a comprehensive study of the battery module, accounting for both the internal
electrochemical processes and the external boundary conditions. This integrated anal-
ysis is crucial for the optimization of battery packs, enabling more efficient design,
enhanced performance, and improved safety under various operating conditions.
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In this work, the model is applied to a 60V LFP/graphite battery module investigating
the influence of the gap between batteries during their operating conditions. A small
gap of 0.5 mm results is best compromise: it is sufficient to entirely accomodate the
reversible swelling, reduce internal battery stress and introduce space for cooling;
the price to be paid is a modest 6% increase in volume and consequently the same
decrease in energy and power density.
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