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Summary

Identifying surface minerals remotely is crucial for natural resource management.
Remote sensing enables efficient mapping of mineral distributions, benefiting the
mining and energy sectors by reducing the costs and difficulties of on-the-ground
exploration.

Mineral detection through hyperspectral sensors offers a powerful tool for char-
acterizing ore deposits. However, challenges arise when minerals exhibit featureless
spectral responses in certain sensor wavelength ranges or when overlapping spectral
features complicate distinction.

To address these challenges, this study repurposes the ECOSTRESS sensor,
originally developed to monitor Earth’s surface temperature, for detecting and
characterizing ore and host minerals of phosphate mines, essential for industrial
applications.

In this study, the NDVI was used to characterize vegetation patterns in the
Youssouffia region over five months in 2023. ECOSTRESS and EMIT images were
acquired after selecting the appropriate preprocessing level. For ECOSTRESS,
swath data was converted to GeoTIFF using a Python script, followed by band
stacking, clipping, and conversion from emissivity to reflectance. Mineral spectral
features were extracted in hyperspectral analysis and compared against spectral
libraries.

While EMIT shows promise in hyperspectral analysis, it faces limitations when
studying minerals with overlapping or featureless spectra in certain wavelengths
(e.g., SWIR). ECOSTRESS data was used for spectral analysis, yielding valuable
results in distinguishing key minerals such as quartz and apatite, which are integral
to phosphate mining.

Although both EMIT and ECOSTRESS have technical shortcomings, reexamin-
ing the methodology with other sensors and satellites could enhance the reliability
of this study. Ground truth verification and field studies would strengthen the
results and provide a foundation for future applications, including AI training in
mineral exploration.
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Introduction

Since the beginning of the protectorate period in 1912, Morocco has been
attempting to develop its economy on a modern basis. As the country is richly
endowed with various natural resources, it was logical to promote mining initially.
The urban middle class showed little interest in these issues and was thus reluctant
to invest. The state had to step in everywhere. It advanced exploration in all parts
of the country and founded companies that took over the exploitation of the most
valuable deposits.[1]

1.1 General Situation
Mining has not lost its paramount importance to this day. In recent years, the
country has consistently produced significant quantities of iron, manganese, lead,
zinc, cobalt, copper, and antimony ores, anthracite and barite, and even some
oil and gold. The mining sector provided employment opportunities for 41,000
individuals, supporting a significant portion of the workforce and contributing to
the economic stability of the region.[2]
The entire phosphate industry is favored by the following fortunate circumstances:

Morocco was the top global exporter of phosphate rock, phosphoric acid, and
phosphate fertilizers; it was the second-largest producer of phosphate rock, following
China, contributing approximately 15.6% of the world’s phosphate rock production
in 2019. Together, Morocco and Western Sahara possessed 50 billion metric tons of
phosphate rock reserves, amounting to about 70% of the world’s total reserves.[2]

Unlike metallic ores, they are conveniently located on the so-called Phosphate
Plateau before the Atlas, only 100 to 150 km from the Atlantic coast.

The exploitation of the unfolded, practically horizontal deposits poses no special
problems and can even be partly carried out in open-pit mining.

In 2018, the mineral sector was the government’s primary source of foreign
exchange, with the phosphate rock mining and phosphate-based products industry
remaining a key export sector, contributing roughly 19% to the country’s total
export value.[2]

1.2 The Phosphate Deposits
The phosphate deposits discovered so far are extensive, stretching almost contin-
uously along the northern edge of the High Atlas from southwest to northeast,
with the most significant concentrations located on the Phosphate Plateau around
Khouribga-Oued-Zem. [3] Additionally, there are scattered deposits in the Mid-
dle and High Atlas regions, extending south of Marrakech all the way to the
Ouarzazate area. Presently, mining activities are mainly concentrated on two key
deposits: Ouled-Abdoun near Khouribga-Oued-Zem and Gantour near Youssoufia,
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previously known as Louis-Gentil. These two sites are the primary focus of Mo-
rocco’s phosphate mining industry due to their substantial reserves and strategic
importance.

Figure 1.1: Simplified geological map of Morocco illustrating the distribution of
phosphate accumulations in the different structural domains of Morocco[3]

Moroccan phosphates were formed 60 to 70 million years ago (Eocene) in a
shallow, warm marine environment. They likely resulted from chemical precipitation
as deep, phosphorus-rich waters rose to the surface. The cooler, phosphorus-laden
waters mixed with the warmer shelf waters, causing phosphorus and calcium to
precipitate. This episodic process explains the rhythmic layers in the deposits,
known as the abiolithic theory.

1.3 The Mines of Youssouffia
In 1930, the foundation of Youssoufia was laid following the discovery of a phosphate
deposit in the Gantour plateau by the French geologist Lois Gentil. The city
originally bore the name of Gentil until 1960 when it was renamed Youssoufia by
King Mohamed V, commemorating his visit on that date. The exploitation and
development of these phosphate deposits, along with the increasing demand for
labor, have significantly contributed to the city’s economic growth and accelerated
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its urbanization.
In 2021, the OCP Group extracted 24.5 million tons of dry, merchant-grade

(DMG) phosphate rock across its mining sites. This included 17.8 million tons from
Khouribga, 5 million tons from Gantour, and 1.8 million tons from Phosboucraâ.
The increased extraction volumes at Khouribga (12.1 million tons) and Gantour
(1.5 million tons) contributed to 37% of phosphate rock shipments, with Khouribga
accounting for 40% and Gantour for 23% of these shipments.

1.4 Transportation and Shipment
The rail connection, managed by Morocco’s leading export earner, the state-owned
Office Cherifien des Phosphates (OCP), links the phosphate mines in Youssoufia
with the chemical plants in Safi.[4]

1.5 Production and Export
Production and export have not always developed uniformly since the opening
of the Khouribga mines in 1921. In 1930, 2,000,000 tons were produced for the
first time. The economic crisis of the 1930s and World War II interrupted the
upward trend.[1] From 1945 onwards, the activities of the O.C.P. steadily unfolded,
barely influenced by the economic uncertainty following the end of the protectorate.
Today, Morocco ranks third among the producing countries and is by far the leading
exporter.[4][4] Most of the tonnage goes to Europe (85%), but it is the countries
of South America, Africa, and Asia whose capacity the O.C.P. keeps in mind
when expanding its facilities, as phosphates are still three-quarters of the starting
material for fertilizer production. However, their diverse industrial usability also
suggests an increase in consumption in industrialized countries.

1.6 Mineralogy
The mineralogical and geochemical composition of Moroccan phosphates is charac-
terized by the presence of francolite as the main phosphate mineral, along with
associated gangue minerals. The article also mentions the potential of igneous
phosphates in Morocco, particularly in alkaline and carbonatite complexes. These
complexes have high P2O5 contents and the presence of strategic elements like rare
earth elements.

The compositions of sedimentary rocks in Morocco, specifically the sedimentary
phosphates, are as follows:

4



Introduction

• The main phosphate mineral is carbonate fluorapatite (CFA), formerly known
as francolite.

• Other phosphate minerals that may be present include dahllite (carbonate
hydroxyapatite).

• Gangue minerals commonly associated with phosphate rocks in Morocco
include calcite, dolomite, quartz, gypsum, and clay minerals such as smectite,
illite, palygorskite, sepiolite, and kaolinite.

• Accessory minerals that can be found in Moroccan phosphates include glau-
conite, sulfides (mainly pyrite), iron oxides (e.g., hematite and goethite), and
feldspar.

Moroccan sedimentary phosphates also contain minor and trace elements, includ-
ing uranium (U), strontium (Sr), cadmium (Cd), and rare earth elements (REE).
The concentrations of these elements can vary depending on the specific phosphate
deposit.

The main gangue (cheap and useless) minerals found in Moroccan sedimentary
phosphates are:

1. Calcite: This mineral is commonly associated with phosphate rocks and is
often found as a non-phosphatic phase in the sedimentary deposits.

2. Dolomite: Another common gangue mineral found in Moroccan phosphates,
dolomite is a calcium magnesium carbonate mineral that can occur alongside
the phosphate minerals.

3. Quartz: Quartz is a common mineral found in many types of rocks, includ-
ing phosphate rocks. It is often present as a non-phosphatic phase in the
sedimentary deposits.

4. Gypsum: Gypsum is occasionally found as a gangue mineral in Moroccan
phosphates. It is a hydrated calcium sulfate mineral.

5. Clay minerals: Various clay minerals, such as smectite, illite, palygorskite,
sepiolite, and kaolinite, can be present as gangue minerals in Moroccan
sedimentary phosphates. These clay minerals are often associated with the
fine-grained matrix of the phosphate rocks[3].
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2.1 Environmental imapcts of dust on nature
As regulations on emissions, air quality, and pollution become more stringent, and
as public awareness and sensitivity to the environmental impact of industries grow,
dust generation in many heavy industries, such as mining, has come under increased
scrutiny. [5]

Over the past few decades, there has been growing awareness and concern
about the environmental effects of human activities, particularly in industries like
mining. The mining industry’s reputation has suffered, partly due to a history
of environmental harm and a few well-known failures of metal mining tailings
dams. As mining operations expand and affect larger areas, public concern about
the industry’s ability to manage and reduce its environmental impact has only
intensified.

In response, many governments have introduced stricter legislative and regulatory
requirements for the mining industry to protect ecosystems, ensure a safe and
secure environment, and safeguard the well-being of people living near mine sites.

Phosphate mining activities are known to disrupt land, leading to increased
concentrations of dissolved and suspended toxic metals and radioactive elements
in the environment. These pollutants can significantly affect water quality, air
pollution, and public health. The key environmental impacts of mining include
soil erosion and the runoff of mine waste into surface waters, contamination from
tailings impoundments and heap leaching, the formation of acid mine drainage,
and the release of harmful contaminants through dewatering of acid mine water.[6]

Dust is a common issue across all types of mining, but in phosphate mining, the
most significant air quality concerns stem from fluoride emissions and the release
of radon gas.[6]

Regarding Phosphate, the environmental impacts of phosphate mining include
the following:

1. Water contamination: The extraction and processes involved in increasing
the phosphate concentration can lead to large quantities of powder, which can be
transported by water and contaminate water bodies.[7, 8, 9] This can negatively
impact aquatic ecosystems and the availability of clean water for human consump-
tion. [10] In addition, acid mine drainage occurs after rainfall, resulting in the
contamination of groundwater.[11]

2. Soil contamination: Phosphate mining can lead to soil contamination,
especially when mine tailings are disposed of in unprotected areas, often near urban
centers. These tailings can accumulate harmful trace metals like uranium (U),
cadmium (Cd), chromium (Cr), molybdenum (Mo), vanadium (V), and thallium
(Tl), which may exceed safe levels for soil. This poses a serious threat to both the
environment and human health.[12]

3. Air pollution: Dust and emissions from mining operations, such as blasting,
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crushing, and ore transport, can contribute to air pollution, affecting air quality and
potentially causing respiratory problems for nearby communities. Dominant winds
transport toxic dust and sulfur emissions from the mine wastes to nearby villages,
polluting homes, cattle, and farmland. [13] Dust from solid phosphate waste can be
deposited in the atmosphere, posing a threat to human health and the environment.
Additionally, Saharan wind currents can contribute to the displacement of Saharan
dust mixed with mine dust, further enhancing anthropogenic air pollution.[14]

4. Soil degradation: Phosphate mine wastes, such as waste rock and tailings,
cover large areas and are subject to wind and water erosion, leading to soil degrada-
tion. Also, they contain small nutrient quantities and are contaminated by metals
and fluoride, which can prevent good plant growth.[9, 15]

5. Landscape degradation: The piles of phosphate waste rock and tailing
ponds spoil the landscape. [16, 17, 18]

6. Fauna and flora impact: Phosphate extraction can have negative effects
on regional ecosystems, including the fauna and flora[19]. Land resources can be
destroyed, leading to the loss of habitat for various species. Air and water pollution
can also impact the health and survival of plants and animals in the area[19].

7. Health risks: Pollution from phosphate mining presents serious environ-
mental and health risks to communities living near the mines.[20] The presence of
potentially toxic metals (PTMs) in phosphate rocks, products, and waste materials
can be harmful, posing health dangers to both adults and children.

2.2 Minerals Spectral Features in SWIR and TIR
Among the various spectral regions used for mineral analysis, the Short-Wave In-
frared (SWIR) and Thermal Infrared (TIR) regions provide invaluable insights into
mineral composition and characteristics. The SWIR region, spanning wavelengths
from approximately 1,000 to 2,500 nanometers, is renowned for its ability to identify
a wide range of minerals based on their distinct absorption features. These features
are particularly useful in detecting hydroxyl-bearing minerals, carbonates, and
sulfates, which exhibit characteristic absorption bands due to molecular vibrations
and overtones.[21] Conversely, the TIR region, which covers wavelengths from
around 8,000 to 12,000 nanometers, offers a different set of diagnostic capabilities.
TIR spectral data are critical for analyzing the fundamental vibrations of molecules
within minerals, providing valuable insights into their molecular structure and
composition. The ability to distinguish and interpret these spectral features is
essential for mineral exploration, environmental monitoring, and geological research.
By leveraging SWIR and TIR data, researchers can gain deeper insights into
mineralogical compositions, hydration states, and surface properties, which are
crucial for a variety of applications including resource management, environmental
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assessments, and planetary exploration. This chapter explores the spectral features
of minerals in the SWIR and TIR regions, focusing on their unique signatures and
the methodologies employed for their analysis. The mineralogical and geochemical

Figure 2.1: Typical minerals of different wavelengths

profile of Moroccan phosphate deposits is dominated by carbonate fluorapatite
(CFA), also referred to as francolite, which is the primary phosphate mineral. These
phosphates are often found alongside various gangue minerals, such as calcite,
dolomite, quartz, gypsum, and a range of clay minerals, including smectite, illite,
palygorskite, sepiolite, and kaolinite. Additionally, minor accessory minerals like
glauconite, pyrite, hematite, goethite, and feldspar can be found. Moroccan phos-
phates also contain trace amounts of elements like uranium (U), strontium (Sr),
cadmium (Cd), and rare earth elements (REE), with their concentrations varying
across different deposits[3].

Sedimentary phosphate rocks from Morocco, specifically those containing gangue
minerals, are frequently associated with calcite and dolomite, both of which
appear as non-phosphatic phases within the sedimentary layers. Quartz is another
common non-phosphate mineral that occurs in these rocks. Occasionally, gypsum
is also found as part of the gangue mineralogy. The presence of clay minerals such
as smectite, illite, palygorskite, sepiolite, and kaolinite contributes to the
fine-grained matrix of the phosphate deposits [3].
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2.2.1 Apatite
Apatite, the most common phosphate mineral, shows distinct absorption features at
9160 nm and 9620 nm due to the asymmetric stretching of PO4 .Clavier [22] discuss
TIR vibrational modes for other phosphates, while Adler [23] notes that PO3−

4 can
be replaced by AsO3−

4 and VO3−
4 , with major absorption features shifting to longer

wavelengths as these substitutions occur.
In the Short-Wave Infrared (SWIR) range, fluorapatite generally has a flat

spectrum [24]. However, the sample shows significant absorption bands at 2318 nm
and 2499 nm, indicative of ferroan dolomite, and subtle absorption features around

∼

1200 nm, likely due to REE3+[25].

Figure 2.2: spectral signature of fluorapatite

Major infrared active features of carbonates lie in the thermal region around
6500 nm, 11 300 nm and 14 000 nm, with the latter two features being most
useful for differentiating mineral species. A scatter diagram of the wavelength of
the 14 000 nm feature vs that of the 11 300 nm feature, powerfully differentiates
carbonates.
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2.2.2 Quartz
Quartz lacks distinctive features in the visible to shortwave infrared wavelength
range, as observed in WorldView-3 data and other airborne hyperspectral data
used for mineral mapping at Rodalquilar [26, 27]. However, quartz exhibits clear
diagnostic emission features in the thermal infrared region of the electromagnetic
spectrum. Specifically, the emission spectrum of quartz shows prominent emissivity
features between 8.2 m and 9.2 m, with a peak near 8.63 m [28].

Certain anisotropic minerals, like quartz, talc, and apatite, show a unique "M-
shaped" feature in their reflectance spectra, where the primary reststrahlen bands
split into two regions. For quartz, Spitzer and Kleinmann [29] explained this as a
weak resonance lying close to a stronger one at longer wavelengths, creating this
pattern. The weak resonance occurs at 8598 nm and the strong one at 9328 nm.
Cudahy [30] used the depth of this feature to estimate quartz abundance in drill
core spectra. This feature, called Resonance Strength Contrast (RSC), is also seen
in other anisotropic minerals.

Figure 2.3: Relative reflectance of powdered quartz[24]

2.2.3 Illite
The illite reference spectrum shows a distinct absorption feature at 2.2 µm, dis-
tinguishing it from kaolinite in WorldView-3 multispectral imagery. Additionally,
illite exhibits absorption features around 1410 nm, 1910 nm, and 2210 nm, which,
while similar to those of illite-smectite and smectite, vary in intensity. The spectral
distinction of illite can be determined by comparing the ratio of the minima of
the H2O absorption feature to the AlOH absorption feature. [31] In contrast, the
goethite spectrum is characterized by a sharp drop in reflectance from 0.7 µm to
shorter wavelengths and an absorption feature near 0.9 µm [24].
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Figure 2.4: Reflectance spectra of phlogopite, biotite, pyrophyllite, muscovite,
epidote, and illite

2.2.4 Calcite
The distinctive absorption characteristics of calcite are marked by strong vibrational
absorption bands centered at 2.34 m (Zaini 2009).

However, the specific positions of these absorption bands in the thermal infrared
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(TIR) exhibit notable variability depending on grain size fractions, typically ranging
between 11.45–11.75 m and 14.00–13.92 m for pure calcite [32].

In the study of carbonate minerals’ absorption features in the SWIR band,
calcite shows significant variations in the precise position of its absorption bands
as reported by various researchers. Huang and Kerr[33] observed that calcite
has an absorption band centered at 3.92 µm. Hunt and Salisbury [34, 28] found
calcite’s absorption band at 2.35 µm. Gaffey [35]reported that calcite’s absorption
is centered around 2.33-2.34 µm, while Van der Meer [36] concluded that the
absorption band is at 2.3465 µm. In the TIR region, Huang and Kerr [33] indicated
a strong absorption band for calcite at 11.40 µm. Clark [24] suggested that the
position of the absorption band can slightly shift due to different compositions of
calcite. Reig et al.[37] used FTIR spectroscopy to determine specific absorption
features of calcite at 875 cm1 (11.43 µm) and 712 cm1 (14.04 µm).

Figure 2.5: Calcite Spectral Signature

2.2.5 Dolomite
Dolomite exhibits key vibrational absorption features across various spectral regions.
In the SWIR region, pure dolomite shows prominent absorption bands at 2.32138
m and 2.51485 m, while its diagnostic bands in the TIR region are found between
11.42–11.67 m and 13.65–13.44 m [32]. Multiple studies highlight variation in
dolomite’s absorption features. Early research by Huang and Kerr [33] identified a

13



Literature Review

band at 3.95 m, while Hunt and Salisbury [34, 28] reported a 2.33 m band, and
[36] observed a band at 3.3039 m. Recent work by Huang et al. [7] confirmed a
strong absorption band at 11.35 m in the TIR region. Clark [24] emphasized that
dolomite’s absorption band positions may shift due to compositional differences.
Using FTIR spectroscopy, Reig et al. [37] pinpointed absorption features at 881
cm1 (11.35 m) and 730 cm1 (13.70 m).

The reflectance spectra of calcite-dolomite mixtures in the SWIR and TIR
regions are influenced by the calcite-to-dolomite ratio, with absorption bands in
the SWIR shifting from 2.32-2.34 m and 2.51-2.54 m as the mixture transitions
from pure dolomite to pure calcite[32]. Further studies also report dolomite’s
SWIR absorption features. Gaffey [35] found a band at 2.31-2.32 m, and Clark [24]
reiterated that compositional variations affect these bands’ precise positions.

Figure 2.6: Spectral Signature of Dolomite

2.2.6 Gypsum
Gypsum exhibits distinct spectral absorption features in the VNIR and SWIR
regions, primarily due to water molecules in its crystals. Key features include a
minimum around 1.2 m, caused by H–O–H bending and the first overtone of O–H
stretching, with additional absorption bands between 1.38 and 1.61 m linked to
the first overtone of O–H stretch. Absorption near 1.75 m results from H–O–H
bending, O–H stretching fundamentals, and low-frequency vibrational modes of
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the crystal water. Another significant minimum occurs near 1.91 m, reflecting the
combined effects of O–H stretching and H–O–H bending, while absorption around
2.21 m integrates O–H stretching and the first overtone of water [34, 38, 39].

Identifying gypsum using spectral absorption features can be challenging due
to overlapping signals from soil components and atmospheric interference. Key
absorption features for gypsum are found around 1.5 m, 1.75 m, and 2.2 m [34,
28]. However, the 1.5 m feature is often obscured by atmospheric water vapor,
and the 2.2 m feature can be confused with clay minerals, complicating its use
in remote sensing. The 1.75 m feature remains the most reliable for detecting
gypsum, though interference from vegetation, plant residues, and pollutants like
hydrocarbons—particularly those absorbing near 1.75 m—can complicate gypsum
mapping[40, 24].

In the context of laboratory studies, USGS spectra highlight these gypsum
absorption features, particularly in the water-vapor-affected regions. The 1.2 m
feature results from a combination of H–O–H bending and O–H stretching, while
the range between 1.38 and 1.61 m is dominated by the first overtone of O–H
stretch[41, 34] . At 1.75 m, gypsum exhibits a strong signal from the combined
effects of H–O–H bending and O–H stretching, along with vibrational modes of
the crystal water. Around 1.91 m, the absorption is caused by O–H stretching and
H–O–H bends, and at 2.21 m, it arises from the combination of O–H stretching
and water overtone effects [38].

While these absorption features help in identifying gypsum, spectral discrimina-
tion is difficult when mixed with other materials like clay, starch, and hydrocarbons.
Particularly, dry plant materials and industrial pollutants can overlap with gypsum’s
spectral range, limiting its detectability in remote sensing [42, 24].

Figure 2.7: USGS laboratory spectra of gypsum, highlighting the key absorption
wavelengths of the mineral as well as the regions affected by water vapor absorption.
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2.2.7 Sepiolite
The third surface crust type (sample P68, Figure 2c) is primarily composed of
calcite (CaCO3) at 45%, mixed with 16% sepiolite (MgSiO(OH)·6HO). The
associated field spectrum reveals a strong absorption feature around 2340 µm,
which is characteristic of both calcite and sepiolite [43]. Sepiolite’s absorption
features in the infrared spectrum, particularly near 2340 µm, are attributed to
the vibrational modes of its silicate structure and hydroxyl groups[34, 28] . In
the VNIR-SWIR range, sepiolite exhibits key absorption features near 1.38, 1.42,
1.91, 2.18, and 2.31 µm due to the presence of aluminum and magnesium [44].
Specifically, sepiolite is identified by a distinct doublet at 1388 and 1415 nm, caused
by OH vibrations, a 1910 nm band from water vibrations, and a 2311 nm band
from Mg-OH vibrations [45]. These features are essential for distinguishing sepiolite
in spectral analyses.

Figure 2.8: Spectral Signature of Sepiolite
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2.2.8 Kaolinite
The spectral analysis of kaolinite reveals prominent absorption features at approxi-
mately 1400, 1900, 2200, and 2300 nm. Notably, the kaolinite reference spectrum
displays a broad absorption band around 2200 nm, attributed to the characteristic
Al-OH doublet absorption feature near 2170–2200 nm ([24]). The absorption re-
gions from 1400 to 2450 nm are linked to the first harmonic of inner-surface (OH)
stretching vibrations, as well as the combination of outer-surface (OH) stretching
overtones and Al-OH bending modes ([46, 47]).

Figure 2.9: Spectral Signature of Kaolinite
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To further illustrate the spectral characteristics discussed above, the key ab-
sorption features of the minerals analyzed in the Short-Wave Infrared (SWIR) and
Thermal Infrared (TIR) regions are summarized in the following table. This table
provides a concise comparison of the diagnostic wavelengths associated with each
mineral, highlighting their distinctive spectral signatures. The table serves as a
reference for understanding how specific absorption bands aid in the identification
and differentiation of various minerals, thus reinforcing the importance of SWIR
and TIR data in remote sensing applications.

Mineral Wavelength (nm) Type of feature Phenomenon Citation
Apatite 8400 —- Christiansen Frequency (Laukamp et al., 2021)

9160 Trough Reststrahlen (M Shaped)
9600 Peak

Quartz 8630 Trough Strong absorption band (Clark, 1999a)
Calcite 2340 Trough Strong absorption band (Zaini, 2009)

11450-11750, 14000-13920
Dolomite 2321-2514 Trough Strong absorption band (Zaini, 2009; McCormick et al., 2021)

11420-11670, 13650-13440
Gypsum 1500 Trough Strong absorption band (Khan et al., 2020)

1750
2200

Sepiolite 2340 Trough Strong absorption band (Milewski, Chabrillat, and Behling, 2017)

The table of spectral features provides a detailed overview of the key absorption
wavelengths associated with various minerals. Complementing this summary, the
linear diagram visually depicts the specific wavelengths where these absorption
features occur, allowing for a clear comparison between different minerals. This
diagram highlights not only the wavelengths where features are expected but
also illustrates how certain minerals exhibit features at similar wavelengths or
have closely spaced absorption bands. This dual representation enhances our
understanding of mineral differentiation and the potential for overlapping spectral
signatures in remote sensing analyses.
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Figure 2.10: Mineral Distribution based on their features Along the Electromag-
netic Spectrum
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Sensor and Satellite Specifications
In this study, three different satellite sensors, including EMIT, ECOSTRESS, and
Landsat 9, are utilized to monitor and analyze the Earth’s surface characteris-
tics. Each of these sensors has unique capabilities in terms of spectral range,
spatial resolution, and applications, which provide comprehensive insights into
mineral composition, plant water use, and land cover changes. The following table
summarizes key features of these instruments.
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Feature EMIT (Earth Surface
Mineral Dust Source

Investigation)

ECOSTRESS
(ECOsystem

Spaceborne Thermal
Radiometer

Experiment on Space
Station)

Landsat 9

Primary
Objective

Determine mineral
composition of dust

aerosols

Measure plant water
use by monitoring

temperature

Land cover/land use
change, natural

resource management
Launch Date 2022 Jul-18 Sep-27, 2021

Platform International Space
Station (ISS)

International Space
Station (ISS)

Sun-synchronous orbit

Number of
Bands

285 5 11

Spectral Range Visible to shortwave
infrared (400-2500

nm)

Thermal infrared
(8000-12000 nm)

Visible to thermal
infrared (443-1373 nm,

10600-12510 nm)
Spectral

Resolution
∼7.5 nm - -

Spatial
Resolution

60 meters 70 meters 30 meters (visible,
NIR, SWIR); 100
meters (thermal)

Temporal
Resolution

Varies (dependent on
ISS orbit)

Varies (dependent on
ISS orbit)

16 days

Applications Climate modeling,
dust source

identification, air
quality

Agriculture, water
management, heat

stress, volcanic
activity

Land cover mapping,
agriculture, forestry,

water resources

Principal
Investigator

Robert Green, NASA
Jet Propulsion

Laboratory

Simon Hook, NASA
Jet Propulsion

Laboratory

Jeff Masek, NASA
Goddard Space Flight

Center

Table 3.1: A comparison of mission goals and specifications of EMIT and
ECOSTRESS sensors and LANDSAT 9[48, 49, 50]

3.1 Normalized Difference Vegetation Index
Numerous vegetation indices derived from remote sensing have been developed
and utilized based on the idea that specific mathematical combinations of spectral
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bands captured from remote sensing can provide insights into various aspects
of vegetation, such as its structure, health, photosynthetic activity, leaf density,
distribution, water content, mineral deficiencies, and signs of stress or parasitic
infestation[7].

The way leaves are structured, specifically for photosynthesis, influences how
plants interact with sunlight. Inside the leaves, two main processes take place:
absorption and scattering of light. Plant pigments like chlorophyll and carotenoids,
along with water, absorb certain wavelengths of light. Scattering happens due to
the complex internal structure of leaves, which consists of air spaces and irregularly
shaped, water-filled cells. This scattering is caused by the differences in the
refractive index between the air and water-filled cells, as well as internal reflections
from the irregular cell shapes. Green leaves absorb light strongly in the blue and
red regions of the spectrum but less in the green region, which is why they appear
green. Beyond the visible spectrum, from 700 nm to over 1300 nm, there is no
absorption, leading to higher reflectance levels from green vegetation. This lack of
absorption is due to the strong absorption of light by liquid water in this range.[51]
The normalized difference vegetation index (NDVI) is calculated by taking the
difference between the near-infrared (NIR) and red (R) bands and then dividing
that difference by the sum of the two bands [52]:

NDVI = RNIR − RR

RNIR + RR
(3.1)

In the NDVI calculation, NIR represents the reflectance in the near-infrared
band, while RED denotes the reflectance in the visible red band. The NDVI
algorithm leverages the fact that healthy green vegetation reflects more NIR light
and less visible light, whereas sparse or less green vegetation reflects more visible
light and less NIR. By combining these reflectance properties into a ratio, NDVI
serves as an index of photosynthetic activity. The values range from -1 to +1,
with positive values indicating vegetated areas. Higher NDVI values correspond to
greater chlorophyll content. NDVI is widely used to analyze and interpret various
phenological metrics, which describe the timing of plant life-cycle events and their
responses to seasonal and annual climate variations.

The duration of photosynthetic activity, as identified by NDVI, can be used to
determine the length of the growing season. The peak NDVI value corresponds to
the period of maximum photosynthesis. Seasonally integrated NDVI reflects the
overall photosynthetic activity throughout the growing season, while changes in
NDVI can indicate the rate at which photosynthesis is increasing or decreasing.
These metrics are influenced by various vegetation characteristics, with one of the
most significant being the leaf area index (LAI), which measures the leaf area per
unit of ground area [53].
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3.1.1 Characterizing the Vegetation using NDVI
The absolute value of the NDVI is a valuable resource for quickly detecting problem
areas within a farm or field. This simple index ranges from negative one to positive
one, providing a clear snapshot of crop health irrespective of the plant species. By
analyzing the NDVI, farmers can efficiently identify regions experiencing stress or
suboptimal growth conditions.
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3.1.2 NDVI Stack Photo Interpretation using the ‘Build
Layer Stack’ Tool

Stacking NDVI layers combines multiple NDVI images taken at different times into
a single multi-temporal file, where each layer represents NDVI values for specific
time periods, such as monthly data over a year. This technique enhances our
understanding of vegetation health and facilitates several important applications.

Temporal Analysis allows us to observe trends in vegetation health by tracking
NDVI changes over time, revealing seasonal growth patterns. Change Detection
helps identify shifts in vegetation cover and health, indicating phenomena like
deforestation or land use changes. Anomaly Detection enables the identification
of disturbances, such as natural disasters or human activities, by spotting sudden
NDVI value changes.

Examining NDVI across months reveals Seasonal Patterns in growth, useful
for agricultural planning and understanding climate impacts. Finally, the insights
from stacked NDVI layers serve as valuable Decision Support tools across sectors
like agriculture and environmental management, informing practices such as crop
scheduling and forest conservation.

3.1.3 Vegetation Charachterization Procedure
The steps of characterization of flora in the area are as follows:

• Image Acquisition: Landsat images were acquired for five nonconsecutive
months in 2023 to capture seasonal variations in the study area.

• NDVI Generation: NDVI (Normalized Difference Vegetation Index) images
were generated for each selected month to assess vegetation health.

• Layer Stacking: The five NDVI images were combined using a layer stacking
technique to enable the visualization of temporal changes or the comparison
of features through false color composition.

• False Color Composition: The resulting composite images were classified by
assigning red, green, and blue colors to represent different false color classes.

• Interpretation: Vegetation types were interpreted by analyzing the NDVI
values corresponding to each false color class, providing insights into the
distribution and health of vegetation.

• Comparative Analysis: A comparative analysis was performed with relevant
literature to validate the findings and enhance the understanding of the
vegetation in the region.
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Vegetation
Index

Formula Details Citation

Simple Ratio RNIR
RR

Measures green
vegetation cover,

depends on
sensor

Person
1972

Normalized
Difference

Vegetation Index

RNIR−RR
RNIR+RR

Widely used for
green vegetation

cover

Rouse et
al. 1974;
Tucker
1979

Enhanced
Vegetation Index

2.5 × (RNIR−RRED)
RNIR+6RRED−7RBLUE+1 Enhances

sensitivity to
dense

vegetation,
reduces

atmospheric
effects

Huete et al.
2002

Perpendicular
Vegetation Index

RNIR−aRRED−b√
1+a2 Measures

distance from
soil line in

spectral space

Richardson
and

Wiegand
1977

Soil Adjusted
Vegetation Index

(RNIR−RRED)
RNIR+RRED+L

× (1 + L) Minimizes soil
brightness in

areas with low
vegetation cover

Huete 1988

Modified Soil
Adjusted

Vegetation Index

2RNIR+1−
√

(2RNIR+1)2−8(RNIR−RR)
2 Reduces soil

brightness in
sparse

vegetation areas

Qi et al.
1994

Transformed
Soil Adjusted

Vegetation Index

aRNIR−bRRED−b
RRED+a

√
RNIR−b+0.8(1+a2) Reduces soil

background
effects, useful in

sparse
vegetation

Baret and
Guyot
1991

Soil and
Atmospherically

Resistant
Vegetation Index

RNIR−
√

RRED−L(RBLUE−RRED)
RNIR+

√
RRED−L(RBLUE−RRED)+L

Minimizes
effects of soil

and atmospheric
conditions

Kaufman
and Tanre

1992

Table 3.2: Vegetation indices and their formulas[54, 52, 51, 55, 56, 57, 58, 59, 60]

26



Methodology

NDVI INTERPRETATION
<0 Water

0.0 - 0.1 Bare soil/Urban area
0.1 - 0.2 Almost absent canopy cover
0.2 - 0.3 Very low canopy cover
0.3 - 0.4 Low canopy cover, low vigour or very low canopy cover, high vigour
0.4 - 0.5 Mid-low canopy cover, low vigour or low canopy cover, high vigour
0.5 - 0.6 Average canopy cover, low vigour or mid-low canopy cover, high vigour
0.6 - 0.7 Mid-high canopy cover, low vigour or average canopy cover, high vigour
0.7 - 0.8 High canopy cover, high vigour
0.8 - 0.9 Very high canopy cover, very high vigour
0.9 - 1.0 Total canopy cover, very high vigour

Table 3.3: NDVI value interpretation

• Vegetation Characterization: The specific vegetation types present in the study
area were characterized, offering a comprehensive overview of the ecological
landscape.

Figure 3.1: The procedure for characterization of the vegetation in the area based
on Layerstacked NDVI images during a year
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3.2 Mineral Characterization
In the field of mineral characterization, accurate and efficient data processing is
essential for extracting meaningful information from remote sensing imagery. This
process involves preparing images acquired from advanced satellite and airborne
sensors, ensuring they are suitable for detailed analysis. Proper image preparation
enhances the results’ reliability and facilitates the comparison of spectral signatures
with known mineral databases. The following sections outline the specific steps
taken in preparing ECOSTRESS and EMIT images, setting the stage for the
subsequent hyperspectral analysis.

To be able to study the spectrum of the ore and gangue minerals in the Youssoufia
region, data from different spectrometers such as Perkin, Beckman and IGCP 264
are considered. To study the spectrum of ore and gangue minerals in the Youssoufia
region, data from various spectrometers, including Perkin, Beckman, and IGCP
264, are utilized. These spectrometers provide a comprehensive understanding
of the mineral compositions by covering different parts of the electromagnetic
spectrum. The short-wave infrared (SWIR) range, typically spanning from 0.9
to 2.5 micrometers (µm), is crucial for this analysis. However, this range is
incompatible with the Nicolet spectrometer library, which is designed for mineral
and rock sample spectra ranging from 2.5 to 15 µm. The Nicolet spectrometer’s
range makes it particularly useful for applications like ECOSTRESS, which require
data within this specific spectral range. ECOSTRESS (Ecosystem Spaceborne
Thermal Radiometer Experiment on Space Station) relies on accurate thermal
infrared measurements, which align well with Nicolet’s capabilities.

Understanding Bad Bands

Bad bands refer to specific spectral bands within a remote sensing dataset that
are corrupted or contain insufficient information for analysis. These bands can be
caused by various factors such as sensor anomalies, atmospheric interference, or
data processing errors. While the term "bad bands" can be applied to any sensor
type, it’s particularly relevant to hyperspectral sensors due to their large number
of bands. Emissive sensors, which measure emitted energy rather than reflected
sunlight, are also susceptible to bad bands.

Band 128-142 (1320 nm - 1439 nm)

This wavelength range is notably impacted by strong absorption features caused
by water vapor and carbon dioxide in the atmosphere. The presence of these gases
results in considerable attenuation of the signal from the Earth’s surface, leading to
unreliable data in this range. Consequently, this spectral interval is often excluded
from analysis to maintain data integrity.
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Figure 3.2: Atmospheric gas absorption by wavelength across the EMIT spectral
interval. Certain spectral bands are missing due to atmospheric interference.
Specifically, the intervals from band 127-143 (1320 nm - 1439 nm) and band 188-
213 (1766 nm - 1967 nm) are affected by significant atmospheric absorption.[61]

Band 188-213 (1766 nm - 1967 nm)

Similarly, this range is subject to significant absorption by atmospheric water vapor
and molecular overtones. The attenuation caused by these gases renders the data
from this range less useful for accurate surface measurements. As a result, this
interval is frequently omitted or corrected to account for atmospheric interference.

3.2.1 Image Preparation
To effectively analyze mineral characteristics, the images from ECOSTRESS and
EMIT must undergo a series of preparation steps. These steps ensure that the
data is accurately preprocessed and formatted, enabling reliable comparisons and
interpretations in the subsequent analysis. Below are the detailed procedures for
preparing the ECOSTRESS and EMIT images.

ECOSTRESS Image Preparation

1. Choose the level of preprocessing: all the images acquired for this work are of
level 2 of preprocessing, which denotes that they already include—radiometric
calibration, geometric correction, atmospheric correction, cloud masking, and
land surface temperature retrieval.

2. Download the image of the driest month of the year based on NDVI analysis
from the Earth Data Search portal of NASA[49].

3. Conversion of the ECOSTRESS Swath data to GeoTIFF: The script from
NASA’s GitHub repository[62] is used to transform ECOSTRESS swath data
from HDF5 format into GeoTIFF, which is suitable for GIS and remote sensing
applications. It georeferences the data based on user-specified projections,
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resamples it onto a grid, and facilitates batch processing for multiple files.
The script also manages metadata such as scale factors and fill values and
provides options for selecting data layers and projections, making it crucial
for effective and precise geospatial data handling.

4. Stack the emissivity bands into one image.

5. Clip the image to the area of interest (AOI).

6. Fix the header file by adding FWHM and wavelength information.

7. To convert the emissivity bands from ECOSTRESS data into reflectance
bands, we use the relationship between emissivity and reflectance. According
to Kirchhoff’s law of thermal radiation:

R = 1 − ε

Where:

• R is the reflectance,
• ε is the emissivity.

This equation indicates that reflectance is equal to 1 minus emissivity. Since
ECOSTRESS data is acquired in emissivity format, we can convert it to
reflectance by applying this formula. This conversion makes the data compa-
rable to spectral libraries, which are typically based on reflectance values for
mineral identification.

EMIT Image Preparation

1. Choose the level of preprocessing: all the images acquired for this work are
of level 2A, in which surface reflectance is extracted by screening clouds and
correcting for atmospheric effects.

2. Download the NDVI image of the driest month of the year, with the analysis
focusing on vegetation patterns in the Youssouffia region. To enhance the
accuracy of mineral detection, a night image was used, reducing the impact of
temperature on the emissivity data. By discarding the temperature component
and retaining only the emissivity part, the analysis ensures a clearer focus on
the spectral characteristics of the minerals, crucial for distinguishing ore and
host minerals in phosphate mining.
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Figure 3.3: The steps of preparing data of ECOSTRESS to be processed in ENVI

3. Reproject in ENVI: This step converts EMIT’s Geographic Lookup Table
(GLT) to a standard Geographic Lat/Lon WGS-84 projection.

4. Clip the image to the area of interest (AOI).
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3.2.2 Hyperspectral Analysis Procedure
The hyperspectral analysis procedure is a systematic approach to identifying and
characterizing minerals using remote sensing data. This process involves multiple
steps, from literature review and feature identification to advanced data processing
techniques. Each step plays a crucial role in ensuring accurate mineral identification,
facilitating comparisons with spectral libraries, and ultimately enhancing the
reliability of the findings.

1. Literature Review and Mineral Identification: Researching and identifying
existing minerals in the study area.

2. Feature Identification: Study the literature to determine important spectral
features of the minerals found in the area.

3. Create a diagram for mineral identification based on their features along the
electromagnetic spectrum to depict possible interferences and similarities in
the detection of minerals.

4. Library Sample Selection: Choose mineral samples from ENVI’s spectral
library. It should be noted that the range of the spectrometer chosen from
the library (Nicolet, Beckman, etc.) should match the characteristics of the
observation device (ECOSTRESS or EMIT) and also cover the features of
interest.

5. Spectral Library Resampling: Resample the ENVI spectral library to modify
it so that its spectral data matches the spectral resolution or wavelength
sampling intervals of the study’s sensor.

6. Checking for Bad Bands: Some specific wavelengths or parts of the spectrum
may not be reliable or may contain significant noise. Therefore, they should be
discarded to avoid distorting the results. Typical factors leading to bad bands
include atmospheric absorption (such as water vapor absorptions around 1.4 µm
and 1.9 µm in the SWIR range), sensor limitations, saturation (high reflections
of clouds or snow), and thermal noise (due to temperature fluctuations in the
sensor or environment).

7. Formulating Spectral Features: Develop mathematical formulas to emphasize
the specific spectral features or signatures of the minerals being studied.

8. Reference Band Math Table: Create a table that records the band math
operations (like simple band ratios or ratios that consider heads and shoulders
of a feature) performed on the spectral library samples, establishing a reference
range for each mineral.
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9. Band Math on Image Data: Apply the same band math formulas to the
actual image data from the acquisition device to extract relevant spectral
information.

10. Range Comparison: Compare the results obtained from the reference band
math table with the band math applied to the image.

(a) If there is no overlap between the two, it indicates that the minerals in
the image differ from those in the spectral library.

(b) If there is an overlap between the ranges of band math reference tables
and the image band math values, they are highlighted using a raster
color slice, and a shapefile of possible distributions of the study mineral
is created.

Note:

The following steps for verifying the hyperspectral analysis results were not
conducted in this study. Although ground truthing, field validation, and
comparison with existing geological maps are critical for ensuring the accuracy
and reliability of hyperspectral analysis, due to limitations in time, resources,
or sample availability, these steps were not implemented.

11. Verifying the Results: To ensure the accuracy and reliability of hyperspectral
analysis, the following steps can be taken:

(a) Ground Truthing: Collect and analyze physical samples from the study
area using techniques such as X-ray diffraction (XRD) or scanning elec-
tron microscopy (SEM). The mineral composition obtained can then be
compared with the distribution identified in the hyperspectral analysis
for consistency.

(b) Field Validation: If physical samples are unavailable, conduct field obser-
vations using a portable spectrometer to measure the spectral reflectance
of minerals directly. These measurements should align with the spectral
features detected through remote sensing.

(c) Comparison with Existing Geological Maps: Compare the mineral distri-
bution results with established geological or mineralogical maps of the
area to determine if the detected mineral patterns are consistent with
known geological formations.
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Figure 3.4: The steps adapted to perform spectral analysis for minerals and
charachterization of the area of interest based on the mineral features
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Results and Discussion
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4.1 Vegetation Charachterization

4.1.1 Vegetation’s Seasonal Changes: A Simple 5 Months
Comparison

A color-sliced raster image illustrating NDVI values for five months of 2023 in
Youssoufia reveals several key environmental and ecological trends. The Normalized
Difference Vegetation Index (NDVI) is a critical metric for assessing vegetation
health and density, and the image provides a clear visual representation of how these
factors vary across different times of the year in Youssoufia. One of the primary
observations from the image is the minimal surface water coverage throughout
the region, which aligns with the area’s typical arid or semi-arid hydrological
regime. This scarcity of surface water is a significant factor influencing the overall
vegetation patterns and ecosystem dynamics in the area. The vegetation cover in
Youssoufia peaks in March, as indicated by the NDVI values, though it is primarily
dominated by low-canopy species. This suggests that the region may experience a
brief period of increased plant growth during the late winter to early spring, likely
due to seasonal rains that temporarily boost soil moisture levels. However, the
predominance of low-canopy vegetation points to a landscape that supports more
drought-resistant or hardy species, which are adapted to the generally dry conditions
and limited water availability. The timing of this peak also reflects the broader
climatic patterns of the region, where the cooler and wetter months contribute to a
short-lived but noticeable increase in vegetation. Conversely, the image shows that
September exhibits the lowest vegetation density of the five months observed. This
decline in vegetation cover could be attributed to the onset of the dry season, where
higher temperatures and reduced rainfall likely lead to increased evapotranspiration
and soil moisture deficits. As a result, many plants may enter a dormant state or
experience stress, leading to reduced NDVI values. This pattern underscores the
seasonal variability in vegetation health and the challenges that the region’s flora
face in maintaining growth during periods of environmental stress. Notably, the
image also highlights small portions of the study area that support high-canopy
vegetation, particularly during November, March, and May. These areas of denser,
taller vegetation may indicate the presence of microenvironments where conditions
are more favorable for growth, such as areas with slightly higher moisture retention
or less human disturbance. The presence of high-canopy vegetation during these
months suggests that, while the region is predominantly low-canopy, there are
pockets of more robust plant life that could play a critical role in local biodiversity
and ecosystem stability. Overall, the NDVI analysis provides valuable insights
into the seasonal and spatial dynamics of vegetation in Youssoufia, revealing the
complex interplay between climate, hydrology, and plant life in this region.
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Figure 4.1: Vegetation’s Seasonal Changes: NDVI analysis for Youssoufia in 2023
shows peak vegetation in March and lowest density in September. High-canopy
areas are visible in November, March, and May.

4.1.2 Vegetation’s Seasonal Changes: Characterizing the
flora based on the seasonal change

The Youssoufia Mine study involved the preparation of NDVI (Normalized Differ-
ence Vegetation Index) images for each of five specific months, enabling a detailed
analysis of vegetation health or type over time. NDVI is a crucial remote sensing
index used to assess vegetation by measuring the difference between near-infrared
(which vegetation strongly reflects) and red light (which vegetation absorbs). For
this study, Grey style NDVI images were first generated for March, May, July,
September, and November of 2023. These NDVI images were then combined using
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the "build layer stack" tool, a process that aligns the data layers into a single
multi-band image. The reordering of the months in this layer stack allowed for the
creation of a new NDVI composite specifically tailored for analyzing the Area of
Interest (AOI) at the Youssoufia Mine.

In the newly created NDVI stack, the bands were organized in a chronological
sequence to reflect the progression of the months: March was assigned to band 1,
May to band 2, July to band 3, September to band 4, and November to band 5.
This configuration is particularly useful for temporal analysis because it retains the
chronological order, making it easier to observe and compare changes in vegetation
across different times of the year. By using this stacking method, researchers can
track seasonal variations and trends in vegetation health, which are often influenced
by factors such as climate, mining activities, and other environmental changes.

The choice of months for this study was strategic, capturing the transitions
between different seasons—spring, summer, and autumn. These seasonal changes
are significant in regions like Youssoufia, where vegetation may respond differently to
climatic conditions throughout the year. For example, March and May images might
highlight the initial growth phases in spring, while July could show peak summer
conditions. September and November images would then reveal the transition
into autumn, capturing the potential decline in vegetation as temperatures drop
and rainfall patterns change. This detailed temporal information is crucial for
understanding the broader environmental impacts on the mine’s surrounding areas.

Ultimately, this approach provides a powerful tool for environmental monitoring
and management. By analyzing the NDVI data across multiple months, stakeholders
can identify areas of vegetation stress, recovery, or decline within the Youssoufia
Mine AOI. Such insights can inform better land management practices, including
the planning of rehabilitation efforts, the assessment of mining impacts, and the
development of strategies to mitigate adverse environmental effects. The use of
NDVI stacking thus represents a valuable method for sustaining the ecological
balance in mining regions, ensuring that economic activities are balanced with
environmental conservation.

False Color Composite

Using false colors to interpret the Temporal NDVI, March, July and November are
assigned to RGB as the first sequence of months to be analyzed.

To determine the types of vegetation in an area using NDVI color composites,
we analyze the variations in the color patterns over multiple temporal data sets.
Each color in the composite represents vegetation activity for specific months, with
different hues indicating growth, decline, or stability of vegetation. NDVI values
reflect vegetation health, where high values suggest dense, healthy vegetation, while
low values indicate sparse or stressed vegetation. For instance, black or grey areas
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Figure 4.2: Enter CapNDVI of three months of November, March and July
after being stacked in 3 layers and assigned to colors of blue, red and green
respectively.tion

typically correspond to urban or barren lands with minimal vegetation change,
while red, green, or blue shades indicate seasonal variations in plant growth.

The NDVI color composite helps identify the most active growth periods for
different vegetation types. For example, vegetation showing a red hue may peak in
March, indicating winter cereals or legumes, while green might signify peak growth
in May, suggesting crops like barley or wheat. By interpreting these temporal
patterns, we can infer the presence of various crops, shrubs, or managed green
spaces.

Grey Tones (March-May-July)

In multi-temporal color composites, grey tones (ranging from black to white)
indicate areas that have remained unchanged over time, reflecting stability. Key
observations include:

• Dark Urban Areas: These regions show consistently low NDVI values,
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indicating minimal vegetation across the months.

• Water Bodies: Dark areas like rivers also exhibit low NDVI due to a lack of
significant vegetation.

• White Areas: High and stable NDVI values across all acquisition dates
suggest healthy vegetation, often attributed to:

– Irrigated Crops: Such as citrus, olive, or date palms that maintain
greenness year-round.

– Perennial Vegetation: Mediterranean shrubs like rosemary and argan
trees that thrive in arid conditions.

– Managed Green Spaces: Parks and lawns with consistent irrigation,
contributing to year-round greenery.

– Evergreen Forests: Eucalyptus or pine plantations help maintain stable
NDVI values.

Red (March)

Red indicates areas with a peak in NDVI during March, suggesting the presence of
winter cereals or legumes. These plants typically grow in cooler months and are
harvested in spring, leading to lower NDVI values afterward.

Green (July)

Green represents areas where NDVI values increase in July. This pattern is
indicative of crops that are most active in summer, such as:

• Cereal Crops: Barley and wheat, often sown in autumn and harvested in
late spring or early summer.

• Vegetation: Grasses and shrubs that thrive in warmer conditions.

Blue (November)

Blue reflects NDVI values prevalent in November, indicating seasonal crops and
vegetation that remain active as the growing season transitions. Typical crops
include:

Cereal Crops: Wheat and barley, which may still show some greenness in late
fall.
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Cyan (July and November)

Cyan is prominent in July and November, indicating healthy vegetation and seasonal
crops such as:

• Cereal Crops: Showing growth during the latter part of the growing season.

• Natural Grasslands and Mediterranean Shrubs: These might flourish as
temperatures stabilize.

Yellow (March and July)

Yellow indicates NDVI values that peak in both March and July. This suggests
crops such as:

Barley, wheat, and possibly rape, which bloom in spring and show a decline
by summer.

Magenta (March and November)

Magenta is evident in March and November, indicating vegetation types that
complete their life cycle early in spring. Possible plants include:

Esparto Grass and Saltbush, which thrive in semi-arid conditions and can
exhibit growth patterns tied to seasonal changes.

The short list of vegetation groups are completely in accordance with botanical
researches in the area such as Zine et al. [63] provided detailed information on
plant species, taxonomic families, life forms, and life spans found in phosphate
mining sites in Morocco as well as Chakkour et al [64] that explores the dominance
of therophytes, high phyto-diversity, and native arable plant species in traditional
agroecosystems of the Rif Mountains in Morocco.
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Color Seasons Probable Flora
Black Consistent (Mar-May-Jul) Urban areas, deserted land, water bodies
White Consistent (Mar-May-Jul) Irrigated crops, perennial shrubs, managed

green spaces, evergreen forests, alfalfa
Blue March Wheat, barley

Green May Barley, wheat, lentils
Red July Winter cereals, legumes, native grasses,

shrubs
Cyan March and May Seasonal crops, grasslands, shrubs

Yellow May and July Winter cereals, legumes
Magenta March and July Esparto grass, saltbush, Mediterranean cy-

press

Table 4.1: Summary of Vegetation Types in Youssouffia Based on NDVI Color
Composite (March-May-July 2023)
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4.2 Mineral Characterization
In the field of mineral characterization, accurate and efficient data processing is
essential for extracting meaningful information from remote sensing imagery. This
process involves preparing images acquired from advanced satellite and airborne
sensors, ensuring they are suitable for detailed analysis. Proper image preparation
not only enhances the reliability of the results but also facilitates the comparison of
spectral signatures with known mineral databases. The following sections outline
the specific steps taken in the preparation of ECOSTRESS and EMIT images,
setting the stage for the subsequent hyperspectral analysis.

Spectral resampling is a technique used to adapt the spectral resolution of
data obtained from one sensor to match that of another sensor. This process is
crucial in remote sensing and spectroscopy, where data from different instruments
need to be compared or combined. For instance, when integrating data from a
high-resolution spectrometer with data from a satellite sensor, spectral resampling
adjusts the wavelengths and spectral response functions to ensure consistency. The
process often involves interpolation or convolution methods to align the spectral
characteristics accurately. Effective spectral resampling enhances the reliability
of data analysis and ensures that comparisons or integrations of datasets are
meaningful and accurate[65].
The need for spectral resampling arises due to the diverse spectral sensitivities
of different sensors, which can affect the interpretation of the data. Without
resampling, discrepancies in spectral resolution can lead to errors in identifying
and quantifying substances or features in the observed scenes. By aligning the
spectral profiles, researchers can mitigate these issues, leading to more robust
and interpretable results. This technique is essential in fields like environmental
monitoring, where precise spectral information is critical for identifying vegetation
health, water quality, or soil properties[66].

The image clearly demonstrates that after resampling the spectrometer data
(specifically from a Nicolet spectrometer) to match the ECOSTRESS spectral
resolution, significant characteristic features of the spectra are lost. The original
spectra, rich with detailed features, are essentially reduced to a simplified version
that captures only broad trends. This loss of detailed spectral information is a
substantial limitation when using ECOSTRESS for mineral detection.

4.2.1 EMIT Spectral Analysis
Apatite Band math

By inspection of sample apatites from ASTER library three features are observed
at 1989nm, 2152nm and 2308 nm.
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Apatite features: Wavelength 1989.15 (nm)

Figure 4.3: first observed feature in the SWIR range, at wavelength of 1989 nm
which is band 217 of EMIT, right after the missing bands due to atmospheric
disruption which indeed leads to missing bands.

This wavelength is equivalent to band 217 of EMIT, therefore the band math to
be applied on the library samples and the image is:

Feature Wavelengths from Resampled Spectra in nm 1967 1989 2197 Band Math
Equivalent bands B214 B217 B224 B214+b224/b217

Reflectance value for Apatite Fine Grain 81.61310 82.89370 82.52930 0.50501
Reflectance value for Apatite Medium Grain 67.89270 69.97860 68.80500 0.51192
Reflectance value for Apatite Coarse Grain 76.76800 79.14400 78.72010 0.50900

Table 4.2: Before proceeding with the "band math" on the ROI, it is necessary
to compute band math for the spectra at hand which are acquired from ASTER
library embedded in ENVI, in other to obtain a specific range to be used later
when performing “Raster Color Slice”.

After applying the band math in the table above the folowing image grey-style
image is created:
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Figure 4.4: EMIT image after applying the shoulder band math at wavelength
1989nm

The results of shoulder band math after applying raster color slice. The red
color is the range of 2.07 to 2.146 which corresponds respectively to medium grain
apatite and coarse grain apatite. Again, the yellow color corresponds to the range
between 2.02 and 2.07 in which according to table are fine and medium sized grains.

Figure 4.5: Analysis of Shoulder Band Math Results Using Raster Color Slice
(Shown in Red)
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Apatite features: Wavelength 2152 (nm)

Figure 4.6: The 2nd observed feature of apatite in the SWIR range, at wavelength
of 2152 nm which is band 239 of EMIT

Feature Wavelengths from Resampled Spectra in nm 1989 2115 2152 2197 2308 Band Math

Equivalent bands b217 B234 B239 B245 B260 (b234+b245)/(b218+b239+b260)

Reflectance value for Apatite Fine Grain 82.43160 85.01580 84.47470 84.31690 81.43810 0.68185

Reflectance value for Apatite Medium Grain 77.93390 83.95010 82.48590 83.05320 76.60390 0.70458

Reflectance value for Apatite Coarse Grain 66.74900 76.07480 73.46280 75.09030 67.62870 0.72731

Table 4.3: Reference Table for Apatite feature at 2152nm

The analysis of the shoulder band mathematics reveals significant insights
after the application of raster color slicing techniques. The red color in the visual
representation highlights a specific reflectance range of 0.70458 to 0.72731, indicating
the presence of medium grain apatite and coarse grain apatite. This distinction is
crucial for identifying the varying characteristics of apatite minerals. In contrast,
the yellow color in the image corresponds to a reflectance range between 2.02 and
2.07, which, as outlined in the accompanying table, relates to fine and medium-
sized grains. This color-coding provides an intuitive visual guide to understanding
the mineral composition and can facilitate further analysis of apatite mineral
distributions.
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Figure 4.7: Reflectance Analysis of Apatite Grains Using Shoulder Band Math
and Raster Color Slicing (Shown in red)
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Figure 4.8: Comparison of the selected Apatite(feature at 2152nm) sample from
the spectral library of ENVI(in red) with spectral profiles obtained from various
points within the area of interest (in black) reveals weak similarities.
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Apatite features: Wavelength 2308 (nm)

Figure 4.9: The 3rd observed feature of apatite in the SWIR range, at wavelength
of 2308 nm which is band 260 of EMIT

Feature Wavelengths from Resampled Spectra in nm 2256 2308 2359 Band Math
Equivalent bands b253 b260 b267 (b253+b267)/b260

Reflectance value for Apatite Fine Grain 83.72200 81.43810 82.89370 2.04592
Reflectance value for Apatite Medium Grain 81.92240 76.60390 79.14400 2.10259
Reflectance value for Apatite Coarse Grain 73.57000 67.62870 62.97760 2.01908

Table 4.4: Reference Table for apatite at 2308 nm

The results of the shoulder band math, enhanced by raster color slicing, reveal
important insights into apatite grain sizes. In this analysis, the red color represents
a reflectance range from 2.01908 to 2.04592, which corresponds to coarse and fine
grain apatite. Meanwhile, the yellow color highlights a reflectance range of 2.04592
to 2.10259, indicating the presence of fine and medium-sized grains. This color
coding not only simplifies the identification of different apatite types but also
enhances our understanding of their distribution and characteristics.
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Figure 4.10: Reflectance Analysis of Apatite Grains Using Shoulder Band Math
centered at 2308 nm and Raster Color Slicing
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Figure 4.11: Comparison of the selected Apatite(feature at 2308nm) sample from
the spectral library of ENVI(in red) with spectral profiles obtained from various
points within the area of interest (in black) reveals weak similarities.
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Kaolinite Band Math

In kaolinite with high crystallinity, four bands are associated with the vibrational
O-H process. Absorption bands at 1345 nm, 1379 nm, and 1393 nm correspond to
inner-surface OH groups, while well-ordered kaolinite exhibits near-infrared bands
forming a doublet at 2180 nm and 2190 nm, resulting from stretching and bending
vibrations of OH groups. An additional absorption band at 2208 nm is linked to
combined modes of inner-surface hydroxyl groups. In disordered kaolinite, the OH
bands reflect disorder, with localized absorption bands at 1340 nm, 1395 nm, and
1409 nm tied to stretching processes (García-Vicente et al. 2021b).

Figure 4.12: The absorption band of Kaolinite centered at 2208 nm is associated
with the combined stretching and bending modes of inner-surface hydroxyl groups

Wavelength of Kaolinite from Perkin Spectral Library (nm) 2182 2204 2234 Feature Band Math
Equivalent EMIT band 243 246 250 (b243+b250)/b246
Perkin_Kaolinite fine a 47.40770 40.59170 57.13870 2.57556
Perkin_Kaolinite fine b 49.10990 42.01150 58.64030 2.56478

Table 4.5: Reference Table for Kaolinite at 2204 nm

Since the range of pixel values of the band math image [1.963218, 2.358985]
is out of the range of Perkin spectral library [2.57556, 2.56478] there is no color
association with Kaolinite in the image. This implies that the material represented
by the pixel values in the band math image is not Kaolinite, or at least, it does not
exhibit the spectral signature typically associated with Kaolinite according to the
Perkin spectral library. the same procedure of creating a raster color slice image is
repeated with samples from Beckman Library. in this 2nd attempt to delineate the
whereabouts of Kaolinite, another partitioning of the pixel values are considered
using values from Beckman spectra. This time, the Range computed band math
using spectra from Beckman [2.27985, 2.32859] has overlap with pixel value of the
image with a range of [1.963218, 2.358985]. This overlapping is shown with the red
color in the image.
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Wavelength of Kaolinite From Beckman Spectral Library (nm) 2182 2204 2322 Feature Band Math
Equivalent EMIT band 243 246 250 (b243+b250)/b246

Kaolinite fine a 61.04360 57.97010 71.11960 2.27985
Kaolinite fine b 56.49200 52.83520 66.53940 2.32859

Table 4.6: The Band Math values are again computed for the reflectance values
of spectra of Beckman Instrument to examine if there is a range overlapping with
the image of band Math.

Figure 4.13: This image shows the second attempt to delineate kaolinite distri-
bution, highlighting the overlap between the Beckman spectra range of [2.27985,
2.32859] and the pixel values [1.963218, 2.358985] in red.
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Figure 4.14: Comparison of the selected Kaolinite (feature at 2204nm) sample
from the spectral library of ENVI(in red) with spectral profiles obtained from
various points within the area of interest (in black) reveals similar patterns.
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Dolomite Band Math

Figure 4.15: Dolomite Feature Centered at 2308nm

Wavelength of Dolomite
From Beckman Spectral Library (nm) 2174 2308 2367 Band Math

Equivalent EMIT band 242 260 268 (b242+b268)/b260
Dolomite [Carbonate_fine_c05a] 75.41870 71.13740 74.68700 2.11008
Dolomite [Carbonate_fine_c05c] 84.81150 74.92560 82.27240 2.23000

Dolomite [Carbonate_Medium_c05a] 65.73660 54.25110 63.38830 2.38013
Dolomite [Carbonate_Medium_c05c] 78.44120 55.95440 72.72790 2.70165
Dolomite [Carbonate_Coarse_c05a] 53.84500 40.95990 58.71250 2.74799
Dolomite [Carbonate_Coarse_c05c] 67.75070 37.06550 51.27560 3.21124

Table 4.7: Six types of dolomites have been selected from the Beckman spectral
library embedded in ENVI to obtain a range of pixel values for band math. This
band math has been applied to highlight the characteristic features of the material.
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Figure 4.16: The red areas in the imagery specifically indicate the presence
of dolomite, suggesting a significant distribution of this mineral type within the
observed region.
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Figure 4.17: Comparison of the selected Dolomite (feature at 2308nm) sample
from the spectral library of ENVI(in red) with spectral profiles obtained from
various points within the area of interest (in black) reveals similar patterns.
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Gypsum Band Math

Figure 4.18: Gypsum Signature -Highlighting the feature between 1500nm and
1750 nm

Gypsum exhibits distinctive spectral features at wavelengths of 1500 nm and
1700 nm in the SWIR range. However, the 1.5 m feature is unsuitable for remote
sensing due to interference from atmospheric water vapor absorption. Additionally,
the 2.2 m doublet absorption can be confused with similar features found in clay
minerals, making spectral discrimination challenging, particularly when dealing
with low-quality spectral data. To simplify the analysis and improve accuracy,
both features are combined into a single band math calculation. The wavelength
of 1670 nm, which represents a peak between the 1500 nm and 1700 nm features,
is used as the reference point for this calculation. This approach helps to highlight
gypsum more effectively while minimizing the interference from other materials.

Gypsum Feature at 1670 nm

Wavelength of Gypsum From Beckman Spectral Library (nm) 1513 1670 1766 Band Math
Equivalent EMIT band 153 174 187 (b153+b187)/b174

Gypsum CaSO4.2H2O (Sulfate_None_fine_so02b) 76.6938 88.6744 77.3118 1.7368
Gypsum CaSO4.2H2O (Sulfate_None_medium_so02b) 57.7418 78.2063 59.0851 1.4938
Gypsum CaSO4.2H2O (Sulfate_None_coarse_so02b) 45.2332 71.8532 46.6342 1.2785

Table 4.8: Gypsum Refrence Table in SWIR with the feature centered at 1670nm

Based on the pixel value range, it can be inferred that this band math primarily
captures medium and fine-grained gypsum. The band math value of 1.2785, which
corresponds to coarse-grained gypsum, falls outside the pixel range.
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Figure 4.19: The raster color slice image and the histogram of the area of interest
which includes the two characteristic features at 1500nm and 1750 nm in a single
band math
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Figure 4.20: Comparison of the selected Gypsum (feature in range 1500-1750nm)
sample from the spectral library of ENVI(in red) with spectral profiles obtained
from various points within the area of interest (in black) reveals similar patterns.
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Gypsum Feature at 2200 nm

Figure 4.21: The absorption band of Gypsum centered at 2204 nm

This time, to perform the band math, two steps on the right side of the absorption
feature are used to increase the likelihood of accurately capturing gypsum in the
image. For the absorption feature at 2204 nm, the left shoulder wavelength is set
at 2056 nm, while the right shoulder wavelengths are set at 2241 nm and 2308
nm. This approach enhances the detection accuracy of gypsum by incorporating
additional reference points on both sides of the absorption feature, improving
spectral discrimination and reducing potential interference from other materials.

Wavelength of Gypsum From Beckman Spectral Library (nm) 2056 2204 2241 2308 Band Math
Equivalent EMIT band 226 246 251 260 (b226+b251+b260)/b246

Gypsum CaSO4.2H2O (Sulfate_None_fine_so02b) 71.6359 59.9576 61.9724 64.2127 3.2993
Gypsum CaSO4.2H2O (Sulfate_None_medium_so02b) 51.0849 36.6014 38.9851 41.7981 3.6028
Gypsum CaSO4.2H2O (Sulfate_None_coarse_so02b) 37.6907 23.7971 25.6420 28.0616 3.8406

Table 4.9: Gypsum exhibits another distinct feature at 2200 nm. To increase
accuracy, instead of choosing a single shoulder on the right, both steps on the right
side are selected for the band math.

After conducting band math centered at 2204 nm, the resulting image from the
raster color slice reveals a different location compared to the previous image, which
was generated using band math for two other features at 1500 nm and 1750 nm.
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Figure 4.22: After band math centered at 2204 nm, the raster color slice image
shows different locations compared to band math at 1500 nm and 1750 nm. Gypsum
is shown is White Here.
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Figure 4.23: Comparison of the selected Gypsum (feature at 2200nm) sample
from the spectral library of ENVI(in red) with spectral profiles obtained from
various points within the area of interest (in black) reveals similar patterns.
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Illite Band Math

Illite has distinct absorption features at approximately 1410 nm, 1910 nm, and 2210
nm. Although these features are similar to those of illite-smectite and smectite,
their intensities differ. The spectral distinction of illite can generally be determined
by examining the ratio of the minima of the H2O absorption feature to the minima
of the AlOH absorption feature.[31]

Figure 4.24: The absorption band of illite centered at 2211 nm

Wavelength of Illite From IGCP Spectral Library (nm) 2130 2211 2271 Band Math
Equivalent EMIT band 236 247 255 (b236+b255)/b247

Illite Smectite IS200 0.4901 0.3451 0.4429 2.7036
Illite IL101 0.6764 0.4748 0.6228 2.7363
Illite IL105 0.5117 0.4522 0.4848 2.2037

Table 4.10: Band Math calculation for Illite feature at 2211nm from IGCP
Spectral Library (nm)

The raster color-sliced image and the corresponding histogram of the band math
image for illite reveal its potential geographical distribution within the area of
interest. The analysis indicates that illite is primarily concentrated in the top-right
section of the region, highlighted in beige on the resulting image. This visualization
offers a clear spatial representation of illite’s presence, providing valuable insight
into its distribution patterns in the studied area.
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Figure 4.25: Raster color-sliced image and histogram of the band math for illite,
highlighting its distribution in the top-right area in beige
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Figure 4.26: Comparison of the selected Illite sample from the spectral library of
ENVI(in red) with spectral profiles obtained from various points within the area of
interest (in black) reveals similar patterns.

Calcite Band Math

Figure 4.27: Nine samples are selected from Beckman spectral library to study
their features.

The raster color-sliced image of the area of interest, along with its corresponding
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Wavelength of Calcite From Beckman Spectral Library (nm) 2189 2330 2396 Band Math
Equivalent EMIT band 244 263 272 (b244+b272)/b263

Calcite CaCO3 [Carbonate_None_Fine_c03a] 82.94660 73.27900 80.63380 2.23230
Calcite CaCO3 [Carbonate_None_Fine_c03d] 80.35050 74.35780 77.48320 2.12262
Calcite CaCO3 [Carbonate_None_Fine_c03e] 85.35920 71.49680 83.12180 2.35648

Calcite CaCO3 [Carbonate_None_Medium_c03a] 77.32710 57.78780 72.07860 2.58542
Calcite CaCO3 [Carbonate_None_Medium_c03d] 81.56280 68.74860 77.71590 2.31683
Calcite CaCO3 [Carbonate_None_Medium_c03e] 80.45720 54.89610 74.77140 2.82768

Calcite CaCO3 [Carbonate_None_Coarse_c03] 73.50750 45.16260 64.68160 3.05981
Calcite CaCO3 [Carbonate_None_Coarse_c03d] 79.76010 64.09680 74.34850 2.40431
Calcite CaCO3 [Carbonate_None_Coarse_c03e] 77.14080 39.68000 67.46520 3.64430

Table 4.11: The reference table for reflectance values of the samples at the calcite
feature wavelength, along with two other values as reference points, are chosen to
establish pixel value ranges for performing the raster color slice.

histogram, illustrates the distribution of various calcite types. Light purple repre-
sents fine calcites (c03a, c03d), while red highlights fine calcite c03e and medium
calcite c03d. The image shows minimal results according to this type of sample.
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Figure 4.28: Raster color-sliced image and histogram depicting the distribution
of fine and medium calcites,minimal results according to the selected samples.
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Figure 4.29: Comparison of the selected calcite sample from the spectral library
of ENVI (red color) with spectral profiles obtained from various points within the
area of interest (black color)reveals similar patterns.

Sepiolite Band Math

Figure 4.30: Three samples of sepiolite are selected from Beckman spectral library
to study their features.

Regarding the literature and the spectral library of the Beckman, the only
feature for sepiolite that can be practically used for band math is 2308 nm. For
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highlighting this feature, reflectance values of different samples of sepiolite are read
for the wavelengths of 2241nm and 2330 nm to be used in a band math ratio.

Wavelength of Sepiolite From Beckman Spectral Library (nm) 2241 2308 2330 Band Math
Equivalent EMIT band 251 260 263 (b251+b263)/b260

Sepiolite Mg4Si6O15(oh)2.6H2O [Silicate_phyllosilicate_fine_ps05a] 58.8525 48.8567 50.5587 2.2394
Sepiolite Mg4Si6O15(oh)2.6H2O [Silicate_phyllosilicate_medium_ps05a] 55.6110 41.6671 44.0803 2.3926
Sepiolite Mg4Si6O15(oh)2.6H2O [Silicate_phyllosilicate_coarse_ps05a] 41.8437 28.6943 30.7626 2.5303

Table 4.12: The refrence table of reflectance values of the samples at the sepiolite
feature wavelength, along with two other values as reference points, are chosen to
establish pixel value ranges for performing the raster color slice.

The raster color slice of the area of interest, accompanied by a histogram,
highlights key spectral features associated with sepiolite distribution. Yellow spots,
marked with dotted lines, indicate regions with fine to medium grain sepiolite.
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Figure 4.31: Raster color slice of the area of interest with a histogram, showing
yellow spots encircled in dotted lines according to the selected sepiolite samples
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Figure 4.32: Comparison of the selected Sepiolite sample from the spectral library
of ENVI with spectral profiles obtained from various points within the area of
interest reveals similar patterns.
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4.2.2 ECOSTRESS Spectral Analysis
The Nicolet spectrometer provides high-resolution spectral data, which is crucial for
identifying specific minerals based on their unique spectral signatures and features.
However, when this data is resampled to the lower resolution of ECOSTRESS,
many of these unique features are no longer discernible. The resampled spectra
may only capture general trends, such as broad absorption features, rather than
the detailed characteristics necessary for accurate mineral identification.

Figure 4.33: A comparison of the spectra of Sepiolite and Dolomite, selected from
the Nicolet instrument data collection embedded in ENVI, was conducted before
and after resampling. The results clearly show that significant data, including key
characteristic features of the selected minerals, is lost during the resampling process

Accordingly, to address the limitations of the ECOSTRESS in terms of number
of bands that probably leads to losing information if used for the detection of
minerals, two band math approaches can be employed which are Using "Reference
Tables" and "Logical Constraints."
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4.2.3 ECOSTRESS Spectral Analysis-Reference Tables
When performing band math ratios, the goal is to identify and highlight a specific
absorption or reflection feature within the data. . Unlike broadband ratio images,
RBD images are highly specific, using spectral channels that define a single absorp-
tion feature. This method provides a local continuum correction[67], effectively
addressing radiometric offsets and atmospheric absorption. RBD images are pro-
duced by summing channels from both absorption band shoulders and dividing
them by the sum of channels from the absorption band minimum.[41] The shoulders
refer to the points on either side of the feature where the signal stabilizes or shows
consistent behavior. By applying this ratio, an image is generated where each pixel
is assigned a value that reflects the strength or presence of the identified feature.
The resulting image contains a range of pixel values that can be analyzed further.
This ratio-based approach serves to normalize the data, providing a consistent
basis for comparing pixels across the image. By normalizing, the comparison is
not merely based on raw reflection or absorption values but rather on how these
values relate to the expected behavior of the feature in question. The expected
values are determined using the reflection data (y-axis values) from the resampled
spectra, which have been adjusted to match the resolution of the imaging system.
This normalization is crucial for accurately interpreting the band math results,
especially when dealing with varying lighting conditions or other factors that could
affect the raw data.

Once the band math has been applied to the resampled spectra, the resulting
values can be compared to the pixel values in the band math image. If the calculated
band math values from the resampled spectra overlap with the pixel values in the
image, this alignment suggests that certain locations within the image may have a
higher concentration of the feature being studied. These locations would appear
more prominently, indicating areas where the feature is more abundant compared
to others. This process helps in isolating and analyzing specific features across
a geographic area or material sample. To better visualize the distribution and
concentration of the feature, a raster color slice tool can be employed. This tool
allows for the segmentation of the image into different color ranges based on the
calculated band math values. By determining the exact ranges that correspond to
different grain sizes or qualities of the feature, the tool can produce a clear and
detailed representation of how the feature varies across the image.
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Figure 4.34: The relative absorption band-depth concept involves summing the
digital numbers (DNs) of channels flanking an absorption band (on a per-pixel basis)
and dividing this by the sum of DNs from channels near the band minimum. The
upper diagram illustrates a hypothetical mineral reflectance spectrum, highlighting
the channels necessary to determine the depth of the absorption feature. The lower
diagram shows uncalibrated AIS data, where the radiometric curve is influenced by
atmospheric absorption and solar radiance. By calculating the relative absorption
band-depth, a local continuum correction is achieved, allowing mineral absorption
features to be identified without requiring additional normalization procedures.

ECOSTRESS: Sepiolite Spectral Analysis using Reflectance Reference
Tables

Range of pixel images [3.2454, 13.6050]is not consistent with the range that
is calculated for 4 out of 5 bands with a center at band 4 [1.3732, 1.9215] .
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Figure 4.35: After resampling the spectra of Sepiolite from the Nicolet instrument
to ECOSTRESS bands, four ECOSTRESS bands are consistently included in a
common observed pattern.

Bands Used in Band Math for
Sepiolite Detection b1 b2 b3 b4 b5 (b2+b3+b5)/b4

Sepiolite Mg4Si6O15(OH)2·6H2O
(silicate_phyllosilicate_fine_ps05a) 0.5256 1.3367 1.4074 2.9908 2.4771 1.9215

Sepiolite Mg4Si6O15(OH)2·6H2O (sili-
cate_phyllosilicate_medium_ps05a) 0.0992 0.4959 1.9724 2.7872 1.4210 1.4310

Sepiolite Mg4Si6O15(OH)2·6H2O
(silicate_phyllosilicate_coarse_ps05a) 0.2332 0.7773 2.7211 3.3226 0.8311 1.3732

Table 4.13: Resampled Spectra Band Math values for detecting Sepiolite using
ECOSTRESS bands1, 2, 3, 4, and 5, along with their reflectance values (y-axis)
and the calculated ratio (b1+b2+b3+b5)/b4 for selected samples

Therefore, no place on the image is associated with sepiolite using this band math
for ECOSTRESS.

76



Results and Discussion

ECOSTRESS: Dolomite Spectral Analysis using Reflectance Reference
Tables

Figure 4.36: After resampling the spectra of Dolomites from the Nicolet instrument
to ECOSTRESS bands, only 2 ECOSTRESS bands are consistently included in a
common observed pattern.

Resampled mineral from Nicolet instrument to ECOSTRESS b3 b4
Band Math Equation

b4/b3
Dolomite CaMg(CO3)2 [Carbonate-None-fine-c05a] 14.48540 25.28450 1.74552
Dolomite CaMg(CO3)2 [Carbonate-None-fine-c05c] 28.10250 39.66030 1.41127

Dolomite CaMg(CO3)2 [Carbonate-None-Medium-c05a] 6.06620 12.09570 1.99395
Dolomite CaMg(CO3)2 [Carbonate-None-Medium-c05c] 10.3948 18.31020 1.76148
Dolomite CaMg(CO3)2 [Carbonate-None-Coarse-c05a] 4.88760 5.96380 1.22019
Dolomite CaMg(CO3)2 [Carbonate-None-Coarse-c05c] 4.93150 6.97720 1.41482

Table 4.14: Dolomite Reflectance Reference Table: After resampling the spectra of
Dolomites from the Nicolet instrument to ECOSTRESS bands, only 2 ECOSTRESS
bands are consistently included in a common observed pattern.
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Figure 4.37: The raster color sliced image of the band math for Dolomites based
on ECOSTRESS data.
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ECOSTRESS: Apatite Spectral Analysis using Reflectance Reference
Tables

Figure 4.38: After resampling the spectra of Apatite from the Nicolet instrument
to ECOSTRESS bands, 4 ECOSTRESS bands are consistently included in a
common observed pattern.

Ecostress Bands for apatite with a repeating pattern 1 2 3 4 b3/(b1+b2+b4)
Apatite Ca5 (PO4)3F [Phosphate_None_Fine_p01a] 5.95000 11.82490 15.94810 10.64160 0.56123

Apatite Ca5 (PO4)3F [Phosphate_None_Medium_p01a] 1.88950 14.32820 31.83330 6.31710 1.41263
Apatite Ca5 (PO4)3F [Phosphate_None_Coarse_p01a] 1.12300 14.63460 35.04330 6.08050 1.60469

Table 4.15: Reflectance Reference Table for Apatite in TIR: Resampled Spectra
Band Math values for detecting Apatite using ECOSTRESS bands 1,2,3 and 4,
along with their reflectance values (y-axis) and the calculated ratio for selected
samples
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Figure 4.39: The raster color sliced image of the band math for apatite. Only
reflections of this sample: Apatite Ca5 (PO4)3F [Phosphate_None_Fine_p01a] is
within the range of “band math” which was calculated for resampled apatite that
is shown is yellow color.
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Figure 4.40: Comparison of the selected Apatite samples from the spectral library
of ENVI(in red) with spectral profiles obtained from various points within the area
of interest (in black) reveals similar patterns.
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ECOSTRESS: Quartz Spectral Analysis using Reflectance Reference
Tables

Figure 4.41: Quartz Samples in TIR: Fifteen Nicolet Samples of Quartz are
selected from ENVI spectral library to find common patterns as a base for quartz
detection

Ecostress Bands for Quartz with a repeating pattern 2 3 4 5 (b2+b4+b5)/b3
Quartz SiO2 [Silicate_Tectosilicate_Fine_ts01a] 21.34 22.6108 14.7769 7.1347 1.91287
Quartz SiO2 [Silicate_Tectosilicate_Fine_ts01b] 21.6569 22.8677 15.5071 7.3133 1.94498
Quartz SiO2 [Silicate_Tectosilicate_Fine_ts01c] 20.457 21.6588 14.5842 6.8036 1.93200
Quartz SiO2 [Silicate_Tectosilicate_Fine_ts01d] 21.0691 22.4413 15.2647 7.4193 1.94967
Quartz SiO2 [Silicate_Tectosilicate_Fine_ts01e] 13.274 15.2574 12.3056 5.9875 2.06897

Quartz SiO2 [Silicate_Tectosilicate_Medium_ts01a] 48.6534 48.8933 7.6164 3.8886 1.23040
Quartz SiO2 [Silicate_Tectosilicate_Medium_ts01b] 48.6534 48.8933 7.6164 3.8886 1.23040
Quartz SiO2 [Silicate_Tectosilicate_Medium_ts01c] 47.5152 47.9004 7.0805 3.562 1.21414
Quartz SiO2 [Silicate_Tectosilicate_Medium_ts01d] 48.9861 49.4889 7.0744 3.522 1.20396
Quartz SiO2 [Silicate_Tectosilicate_Medium_ts01e] 27.2281 32.4166 4.8793 2.3955 1.06436
Quartz SiO2 [Silicate_Tectosilicate_Coarse_ts01a] 56.3855 54.8271 7.7311 3.7478 1.23779
Quartz SiO2 [Silicate_Tectosilicate_Coarse_ts01b] 58.7481 57.3005 8.1538 3.9604 1.23668
Quartz SiO2 [Silicate_Tectosilicate_Coarse_ts01c] 54.4785 53.2001 7.2411 3.4982 1.22590
Quartz SiO2 [Silicate_Tectosilicate_Coarse_ts01d] 54.8067 53.6867 7.2464 3.4983 1.22100
Quartz SiO2 [Silicate_Tectosilicate_Coarse_ts01e] 29.7068 34.3352 5.1895 2.4318 1.08717

Table 4.16: Resampled Spectra Band Math values for detecting Quartz using
ECOSTRESS bands 2,3, 4 and 5 along with their reflectance values (y-axis) and
the calculated ratio for 15 particle sizes and types of quartz (fine, medium, coarse).
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Figure 4.42: The raster color-coded image of the band math for quartz displays
pixel values in the “red” range [1.91287, 2.06897], indicating possible quartz in the
area
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Figure 4.43: Comparison of the selected Quartz samples from the spectral library
of ENVI(in red) with spectral profiles obtained from various points within the area
of interest (in black) reveals similar patterns.

84



Results and Discussion

ECOSTRESS: Calcite Spectral Analysis using Reflectance Reference
Tables

In the analysis of calcite samples, nine samples were chosen from the ASTER
spectral library and the Nicolet spectrometer. Initially, it may be challenging to
discern any obvious patterns among the samples. However, upon closer examination,
a noticeable trend emerges: samples within the same category—specifically, the fine
a, coarse a, and medium a groups—exhibit similar spectral patterns. To facilitate
a more straightforward comparison, these samples are grouped into three distinct
categories based on their shared characteristics. This grouping approach simplifies
the analysis by highlighting the commonalities within each group, making it easier
to identify and compare the spectral properties of calcite across different sample
sets.

Figure 4.44: The resampled spectra for fine, medium, and coarse categories,
specifically c03a, reveal similar patterns.
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Figure 4.45: The resampled spectra for fine, medium, and coarse categories,
specifically c03d, reveal similar patterns.

Figure 4.46: The resampled spectra for fine, medium, and coarse categories,
specifically c03e, reveal similar patterns.
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Calcite resamples of 1st category:
fine, medium, and coarse [c03a]

band 1 band 2 band 3 band 4 band 5 (b1+b3+b4/b2)

Calcite CaCO3 [Carbonate_none_fine_c03a] 22.70980 18.91300 30.83750 38.26220 Not Relevant 4.04273
Calcite CaCO3 [Carbonate_none_Medium_c03a] 7.62150 6.31110 12.59670 18.52060 Not Relevant 5.08283
Calcite CaCO3 [Carbonate_none_Coarse_c03a] 4.94450 3.97480 6.50150 10.44130 Not Relevant 4.42660

Calcite Samples from Nicolet band 1 band 2 band 3 band 4 band 5 (b1+b2+b4+b5)/b3
Calcite CaCO3 [Carbonate_none_fine_c03d] 27.73490 25.95310 20.39930 25.34080 26.40480 5.16849

Calcite CaCO3 [Carbonate_none_Medium_c03d] 15.43790 15.70820 13.55780 20.14070 21.38020 5.35979
Calcite CaCO3 [Carbonate_none_Coarse_c03d] 12.38330 11.22350 8.28210 11.67350 12.37320 5.75379

Calcite Samples from Nicolet band 1 band 2 band 3 band 4 band 5 b3/(b1+b2+b4)
Calcite CaCO3 [Carbonate_none_fine_c03e] 26.82070 35.26950 41.37080 40.34070 Not Relevant 0.40389

Calcite CaCO3 [Carbonate_none_Medium_c03e] 8.08120 13.07790 18.01480 17.82610 Not Relevant 0.46209
Calcite CaCO3 [Carbonate_none_Coarse_c03e] 5.79510 7.20020 9.35580 8.70560 Not Relevant 0.43112

Table 4.17: Resampled Calcites band math for quality ‘a’, ’d’ and ’e’ of different
particle sizes

It should be noted that the naming convention (a, d, e) indicates the purity
of the mineral sample. Therefore, it is possible that quality "d" or "e" Calcite
is not pure calcite; contamination by the presence of other minerals may occur.
Consequently, what is being observed may or may not accurately represent calcite.

1st category of calcite: fine, medium and coarse, c03a

Resampled quality ’a’ Quartz from Nicolet to ECOSTRESS has a range of
[4.04273, 5.08283], but the image values of band math fall within the range [0.380718,
1.672620]. This discrepancy indicates that the band math image values do not
align with the expected range for quality ’a’ Quartz, suggesting that this min-
eral type is not detected within the current image data. As a result, the specific
quality ’a’ Quartz may be absent or not distinguishable based on the resampled data.

2nd category of calcite: fine, medium and coarse, c03d
For the resampled Calcite of quality "d" from Nicolet to ECOSTRESS across differ-
ent particle sizes, the band math values fall within the range of [5.1689, 5.75379].
This specific range is fully contained within the broader image range of [1.90165,
13.52157], which indicates that the quality "d" Calcite can be accurately identified
and distinguished within the dataset. The alignment of these ranges suggests
that the spectral characteristics of quality "d" Calcite are preserved during the
resampling process, allowing for effective detection and mapping within the image.

To visualize and highlight this detection, a raster color slice is applied to the
image. By isolating the band math values corresponding to the range of quality "d"
Calcite, the areas where this mineral is present are clearly delineated. These regions
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are then colored in red, making it easy to identify the spatial distribution of quality
"d" Calcite within the area of interest. This method enhances the interpretability
of the data, providing a clear visual representation of where quality "d" Calcite is
located based on the resampled spectra.

Figure 4.47: Quality ’d’ Calcite is detected within the band math range [5.1689,
5.75379], fully contained in the image range [1.90165, 13.52157], and highlighted in
red after raster color slicing.

3rd category of calcite: fine, medium and coarse, c03e
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Figure 4.48: Quality ’e’ Calcite is detected within the band math range [0.40389,
0.46209], fully contained in the image range [0.09874, 0.69144], and highlighted in
shades of red after raster color slicing.
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ECOSTRESS: Gypsum Spectral Analysis using Reflectance Reference
Tables

Figure 4.49: Reflectance Reference Table for Gypsum in TIR: The resampled
and not resampled spectra for fine, medium, and coarse Gypsums showing similar
patterns.

Ecostress Bands for Gypsum from the Library of Nicolet 1 2 3 4 5 (b1+b3+b4+b5)/(b2)
Gypsum CaSO4.2H2O [Sulfate_None_Fine_so02b] 4.1851 27.7214 11.2029 4.7857 3.9826 0.87140

Gypsum CaSO4.2H2O [Sulfate_None_medium_so02b] 8.577 21.5779 8.562 3.1919 2.7086 1.06774
Gypsum CaSO4.2H2O [Sulfate_None_coarse_so02b] 10.3325 6.4878 4.3151 3.5655 2.5875 3.20611

Table 4.18: Resampled Spectra Band Math values for detecting Gypsums using
ECOSTRESS bands 1,2 and 3, along with their reflectance values (y-axis) and the
calculated ratio for different particle grain sizes (fine, medium, coarse).
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Figure 4.50: Raster color-sliced image of the band math with corresponding
histogram, highlighting the broad geographical dispersion of gypsum (White Color)
within the calculated spectral range
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Figure 4.51: Comparison of the selected Gypsum samples from the spectral
library of ENVI(in red) with spectral profiles obtained from various points within
the area of interest (in black) reveals similar patterns.
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ECOSTRESS: Illite Spectral Analysis using Reflectance Reference Tables

Figure 4.52: Reflectance Reference Table: The resampled spectra for fine and
packed Illite-Smectite showing similar patterns.

Figure 4.53: Reflectance Reference Table: The resampled spectra for fine and
packed Illite showing similar patterns.

The geographical distribution of illite/smectite in the Youssoufia region has been
analyzed, focusing on both fine and packed grain sizes. The band math values for
the resampled spectra, which range from [1.2391, 1.2466], fall within the broader
range of image pixel values, spanning [0.3301, 1.6768]. This specific range [1.2391,
1.2466] is associated with illite/smectite, particularly the fine-grained variety,
characterized by the chemical formula (K H3O)(AlMgFe)2(SiAl)4O10[(OH)2H2O]
[Silicate_Phyllosilicate_fine_Illsme1].

However, pixel values exceeding 1.2466 may indicate the presence of packed
illite/smectite. Since there is no clearly defined upper limit for these higher values,
it becomes challenging to accurately represent the packed grain size distribution
based solely on the initial data range. To address this, a +5% value adjustment is
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Ecostress Bands for Illite (Pattern) Band 1 Band 2 Band 3 Band 4 Band 5 (b2+b3)/(b1+b4)
Illite Fine 0.7345 1.9148 1.6702 4.0231 NR 0.4653
Illite Packed 2.0860 9.7788 8.8050 1.1477 NR 1.1921
Ecostress Bands for Illite/Smectite (Pattern) Band 1 Band 2 Band 3 Band 4 Band 5 (b2+b3)/(b1+b4+b5)
Illite/Smectite Fine 1.1235 2.5406 2.9003 1.7260 1.5416 1.2391
Illite/Smectite Packed 5.4458 12.6576 13.7922 8.5241 7.2476 1.2466

Table 4.19: Ecostress bands for Illite and Illite/Smectite with respective spectral
patterns and calculated ratios for different grain sizes.

Figure 4.54: The geographical distribution of Illite obtained after applying the
band math for it

applied to the packed grain size illite/smectite, providing a more plausible range to
illustrate its potential distribution.

This adjustment allows for a more comprehensive depiction of the geographical
distribution of illite/smectite in the region, considering both fine and packed grain
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sizes.

Figure 4.55: Raster color-sliced image and histogram showing the geographical
distribution of fine and packed grain size illite/smectite in the Youssoufia region.
The image highlights the adjusted pixel values to account for both fine and packed
varieties, using a +5% Stretch Value to better represent the probable distribution.

95



Results and Discussion

ECOSTRESS: Kaolinite Spectral Analysis using Reflectance Reference
Tables

Figure 4.56: After resampling the spectra of Kaolinite from the Nicolet instrument
to ECOSTRESS bands, 5 ECOSTRESS bands are consistently included in a
common observed pattern.

Ecostress Bands for Kaolinite (Pattern) Band 1 Band 2 Band 3 Band 4 Band 5 (b2+b3+b5)/(b1+b4) Pixel Value Range
Kaolinite Fine (ps01a) 0.7456 2.4246 2.4429 1.2924 2.7884 3.7566 0.7113
Kaolinite Fine (ps01b) 0.3059 1.1144 1.2594 0.7204 1.5450 3.8184 3.3942

Table 4.20: Reflectance Reference Table for Kaolinite in TIR: Resampled Spectra
Band Math values for detecting Kaolinite using ECOSTRESS bands 1,2,3,4 and 5
along with their reflectance values (y-axis) and the calculated ratio for fine particle
grain sizes

Finally, the grayscale image of the band math for kaolinite was analyzed. Since
there is no overlap between the range calculated for the resampled spectra and the
pixel values, no conclusions can be drawn regarding the locations of fine dolomite
within the area of interest.
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4.2.4 ECOSTRESS Spectral Analysis-Logical Constraints
Approach

I In this approach, after selecting and resampling a group of minerals, their common
spectral patterns are closely examined. These patterns are analyzed to identify
distinctive characteristics that can be used to differentiate the minerals from one
another. The goal is to formulate these spectral patterns using logical operations
such as "AND", "OR" and other similar operators. By applying these logical
operations, one can create a set of conditions that describe the presence or absence
of specific minerals based on their spectral signatures.

Once the logical conditions have been established, they are applied to the
study image through a process known as band math. Band math, in this context,
systematically checks each cell (or pixel) in the image against the logical conditions
derived from the resampled spectra. This cell-by-cell analysis allows for the
identification of the spectral patterns that correspond to the minerals being studied.
The conditions are meticulously evaluated for every pixel to determine whether the
spectral data at that location matches the expected patterns of the minerals.

This process results in the creation of a Boolean or binary image, where each
pixel is assigned a value of either 0 or 1 based on whether it satisfies the provided
logical conditions. A Boolean image is an image where each pixel can only have
one of two possible values, typically representing binary states like black and white
or 0 and 1. This type of image is often referred to as a binary image. In a Boolean
or binary image: • 1 or true might represent white or the presence of a feature. •
0 or false might represent black or the absence of a feature. These images are used
in various applications, such as edge detection, image segmentation, and pattern
recognition, where the presence or absence of specific features is important. In the
binary image, a pixel value of 0 indicates that the pixel does not meet the logical
conditions for the resampled spectra of the mineral being analyzed. In other words,
the spectral characteristics of that pixel do not match the expected patterns for
the mineral, suggesting that the mineral is not present at that location. Conversely,
a pixel value of 1 indicates that the pixel satisfies the logical conditions, meaning
that the spectral data aligns with the patterns of the mineral in question, and thus,
the mineral is likely present at that location.

This binary image provides a clear and straightforward way to visualize the
distribution of the mineral across the study area. By performing band math and
checking the conditions cell by cell, the approach ensures a precise identification of
the mineral’s presence, effectively mapping out areas where the mineral patterns
are detected. This systematic method reduces the likelihood of false positives or
negatives, offering a powerful tool for geologists and researchers to quickly and
accurately identify areas of interest for further exploration and analysis.
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Identifying Dolomite and Sepiolite by Developing logical constraints

To identify the presence of dolomite and sepiolite in satellite or spectral imagery,
a distinct reflection pattern is utilized. Specifically, both dolomite and sepiolite
exhibit higher reflection values in band 4 compared to band 3, which allows for their
differentiation from other minerals. The following steps outline the methodology
for using this feature:

Data Acquisition: Obtain the band values for the study area by analyzing
spectral imagery. This involves acquiring images that contain the necessary band
data, particularly band 3 and band 4, from a remote sensing instrument.

Ratio Calculation: Calculate the ratio of the reflection values by dividing the
amount of light reflected in band 4 by the amount reflected in band 3. Mathemati-
cally, this is represented as: Ratio=B4/B3

Ratio Evaluation: Check whether the calculated ratio is greater than 1. If the
ratio exceeds 1, the sample likely contains dolomite or sepiolite. This serves as the
key indicator for identifying these minerals.

Band Math Application: Based on the common feature of dolomite and sepiolite,
perform band math to enforce the logical condition: B4/B3>1 This equation filters
out areas where the reflection pattern aligns with the expected characteristics of
dolomite and sepiolite.

Raster Color Slice: Once the logical condition is applied, generate a raster image
to visualize the result. Pixels that meet the condition (i.e., ratio > 1) are assigned
a value of 1, while those that do not meet the condition are assigned a value of 0.
This results in a binary or Boolean image where the detected mineral patterns are
highlighted.

Since these patterns might be sparse, the image can appear predominantly
black (with 0 values). To improve visibility, apply a raster color slicing technique,
assigning distinct colors to highlight the pixels that meet the condition. This
method enhances the differentiation of the minerals, making it easier to identify
areas where dolomite or sepiolite is present.
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Figure 4.57: For both dolomite and sepiolite, the amount of reflection in band 4
is greater than the light reflected in band 3. This means that if we measure the
ratio of the reflection in band 4 to band 3, it will be greater than 1. Not to mention
that this condition, differentiates these two minerals from others in the selection.

Figure 4.58: Probable Sepiolite and Dolomite Distribution in the Area of Interest:
Raster Color Slice Tool Applied to Highlight Band Math Based on Common
Reflection Features
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Identifying Quartz by Developing logical constraints

As shown in Figure 4.41 ,To characterize the peak shape in the quartz spectra
across bands 2, 3, and 4, the variation in slope is represented through a simple
multiplicative condition:

(b3 − b2) × (b2 − b1) × (b4 − b3) > 0

For further refinement, additional constraints related to the specific values of the
bands are applied to this initial condition, enhancing the robustness of the results.

The logical condition for the quartz spectral pattern (Equation 3) is expressed
as:

(b3 − b2) × (b2 − b1) × (b4 − b3) > 0 and b3 > b1 and b1 > b2 and b2 > b4
(4.1)

Figure 4.59: Detection of quartz in the area of interest using band math and
logical conditions. Points satisfying the condition are highlighted in green.
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Identifying Apatite by Developing logical constraints

As illustrated in Figure 4.38, the detection of apatite is based on a specific logical
condition applied to the spectral bands. The condition is formulated as:

(b3 − b2) × (b2 − b1) × (b4 − b3) < 0 and
b3 > b2 and
b2 > b1 and
b2 > b4 and
b4 > b1

(4.2)

This condition highlights the characteristic pattern of apatite, capturing the
relationships between the band values to identify its spectral signature effectively.

Figure 4.60: The image resulted from applying a logical constraint on the image
of the Youssoufia area to depict quartz (green) and apatite (red)
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Identifying Kaolinite by Developing logical constraints

According to resampled kaolinite for ECOSTRESS (image ??), the detection of
kaolinite is based on the following logical condition:

(B2 − B1) × (B3 − B2) × (B4 − B3) < 0 and B2 > B1 and B4 < B3

(B4 − B3) × (B5 − B4) < 0 and B4 < B5(4.3)

This condition captures kaolinite’s spectral pattern characteristic by analyzing
the bands’ relationships. Figure 4.61 displays the resulting image, where the points
satisfying these conditions through band math are visualized.

Figure 4.61: The resulting image of the conditions met in band math for Kaolinite
(green)

102



Results and Discussion

Identifying Gypsum by Developing logical constraints

The logical constraint for detecting the spectral pattern of gypsum is provided in
Equation 6 as follows:

(B2 − B1) × (B3 − B2) × (B4 − B3) < 0 and
B2 > B1 and
B4 < B3 and

(B4 − B3) × (B5 − B4) < 0

(4.4)

Figure 4.62: The image produced by applying a logical constraint to the Yous-
souffia area dataset in an attempt to detect gypsum yielded very poor results.

Identifying Illite by Developing logical constraints

The image obtained for illite shows an unexpectedly widespread distribution of this
mineral, which seems unlikely based on current geological understanding. Also,
Introducing conditions to binary image data, results in values falling between 0 and
1. This can occur due to mathematical operations, logical operations, thresholding
difficulties, noise, and data representation limitations. Consequently, maintaining
a strict binary output after applying conditions can be challenging and requires
careful consideration of the specific data and operations involved.

Based on the resampled spectra of illite 4.52, the logical condition for identifying
the spectral pattern of illite is defined as:

((B2 − B1) × (B3 − B2) × (B4 − B3) < 0) and ((B2 − B1) × (B3 − B2) > 0)
(4.5)
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This condition captures the necessary relationships between the spectral bands
to effectively distinguish the presence of illite.

Figure 4.63: The Binary/Boolean image obtained by applying the logical condition
for Illite in band math.

The image obtained for illite shows an unexpectedly widespread distribution of
this mineral, which seems unlikely based on current geological understanding. Also,
Introducing conditions to binary image data, results in values falling between 0 and
1. This can occur due to mathematical operations, logical operations, thresholding
difficulties, noise, and data representation limitations. Consequently, maintaining
a strict binary output after applying conditions can be challenging and requires
careful consideration of the specific data and operations involved.
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5.1 Comparative Maps

5.1.1 Carbonates: Dolomites and Calcite

Figure 5.1: Comparison of results of SWIR and TIR analysis for Dolomite
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SWIR (Shortwave Infrared)
• Absorption Bands: Dolomites exhibit characteristic absorption bands in

the SWIR region, particularly around 2320 nm. These bands are influenced
by the presence of carbonate ions and can help distinguish dolomite from
other carbonates like calcite, which has absorption bands around 2340 nm
[camargo2023].

• Chemical Composition: Variations in the chemical composition, such as
the substitution of Ca2 and Mg2 by Fe2, can affect the spectral signatures in
this region [camargo2023].
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The differences in calcite mapping results using SWIR (Short-Wave Infrared)
and TIR (Thermal Infrared) spectral analysis can be attributed to several factors:

1. Spectral Sensitivity: SWIR and TIR sensors detect different wavelengths,
which means they interact with calcite in distinct ways. SWIR is sensitive to
the vibrational overtones and combinations of molecular bonds, while TIR
detects the fundamental vibrations of the crystal lattice [zaini2012].

2. Grain Size and Mineral Mixtures: The grain size of calcite and the
presence of other minerals can affect the absorption features in both the SWIR
and TIR regions. For instance, finer grains might show different spectral
characteristics compared to coarser grains [zaini2012].

3. Surface Temperature and Emissivity: TIR data is influenced by surface
temperature and emissivity variations, which can cause discrepancies in the
detection of calcite compared to SWIR data, which is less affected by these
factors [ali2024].

4. Sensor Resolution: The spatial resolution of the sensors might differ, leading
to variations in the detail and accuracy of the mapping results [khan2020].

5. Different Spectrometers, Different Samples: Using samples and re-
samples from different spectral libraries can cause discrepancies in mineral
mapping results. This is due to variations in instrument calibration, spectral
resolution, and the conditions under which samples were measured. Addi-
tionally, interpolation and resampling methods can introduce discrepancies,
and different instruments might add unique noise patterns or artifacts. These
factors can affect the consistency and accuracy of spectral analysis.
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Figure 5.2: Comparison of results of SWIR and TIR analysis for Calcite
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5.1.2 Illite and Kaolinite (Clay minerals) and Gypsum (Sul-
fate mineral)

SWIR Absorption
All three minerals (illite, kaolinite, gypsum) exhibit strong absorption features
around 2200 nm in the SWIR region.

Geographic Location: EMIT mapping reveals these minerals in the upper
right corner of the region of interest, where band math identifies a common location
for all three.

5.1.3 Illite & Kaolinite:
• Both show sharp absorption features near 2.2 µm, due to Al-OH bonds.

• Kaolinite has more pronounced doublet features at this wavelength.

5.1.4 Gypsum:
• Displays a strong absorption at 2.1 µm (due to SO stretching).

• Additional weaker absorption between 2.25–2.4 µm, related to water and
sulfate interactions.

Thermal Infrared (ECOSTRESS)
Kaolinite, gypsum, and illite each have distinct absorption features in the thermal
infrared range. Kaolinite is identified by its absorption around 9.6 µm and 10.4 µm
due to Si-O stretching vibrations. Gypsum shows features near 8.6 µm and 11.1
µm, linked to sulfate ion vibrations. Illite has absorption features around 9.0 µm
and 10.0 µm, primarily from Al-OH and Si-O vibrations. These characteristics are
crucial for remote sensing and mineral exploration, enabling the identification and
mapping of these minerals [laukamp2021].

However, due to the limited number of bands in ECOSTRESS, many of these
features are lost during resampling. As a result, the analysis relies on resampled
patterns of the spectra. While there are some similarities between the results in
the SWIR and TIR regions, they may not be conclusive in the TIR range.
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Figure 5.3: Comparison of results of SWIR and TIR analysis for Illite
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Figure 5.4: Result of SWIR for Kaolinite hyperspectral analysis
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Figure 5.5: Comparison of results of SWIR and TIR spectral analysis for Gypsum
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5.1.5 Sepiolite Absorption Features
In the shortwave infrared (SWIR) range, sepiolite exhibits distinct absorption
features due to its hydroxyl (OH) groups and water content. The weak absorptions
at 1.4 µm and 1.9 µm are linked to the overtone and combination bands of water
and OH, while the absorption near 2340 nm is associated with Mg-OH vibrations.

In the thermal infrared (TIR) range, sepiolite’s unique fibrous structure and
composition give rise to absorption features around 9.4 µm and 10.6 µm, corre-
sponding to Si-O stretching and Mg-OH bending vibrations. However, due to the
limitations of the sensor, these features cannot be detected in the TIR range.

Figure 5.6: SWIR Analysis of Sepiolite
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5.1.6 Apatite (phosphate mineral)

Figure 5.7: Comparison of results of SWIR and TIR spectral analysis for Ap-
atiteaption
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SWIR Spectral Features of Apatite
Apatite exhibits absorption features around 1400 nm, 1900 nm, and 2200 nm.
These bands are primarily due to the presence of hydroxyl (OH) and phosphate
(PO) groups [ptacek2016]. While apatite does show distinct absorption features
in the SWIR region, these features are often not strong enough to be reliably
detected using remote sensing images. This limitation arises from the relatively
weak reflectance characteristics of apatite in the SWIR region, which can be
overshadowed by other minerals and surface materials. Additionally, the presence
of other minerals with similar spectral features can lead to false positives, making
it challenging to accurately identify apatite using remote sensing techniques.

Figure 5.8: The figure shows the TIR reflectance spectra for quartz, pyrophyllite,
talc, and apatite. The specific wavelengths corresponding to the respective Reso-
nance Strength Contrast (RSC) features are highlighted in nanometers, along with
the wavelength ranges for quartz’s primary and secondary reststrahlen bands (with
the secondary band represented by horizontal lines at the top of the figure). The
position of the Christiansen minimum in each spectrum is marked with a dotted
arrow.

The resampled spectra of apatite in ECOSTRESS can effectively capture its
distinct feature at 9160 nm, commonly known as a reststrahlen band. This feature,
characterized by an M-shaped curve, is a result of strong reflectance from the
crystal structure of apatite, particularly in the thermal infrared region. Since
ECOSTRESS has a band available near 9200 nm, it aligns well with this spectral
signature, allowing for efficient detection of apatite’s reststrahlen bands despite
the sensor’s limited spectral resolution. This makes ECOSTRESS suitable for
identifying apatite even with resampled data.
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5.1.7 Quartz (Silicate Mineral)

Figure 5.9: Distribution of Quartz (yellow) in the region of interest based on the
spectral analysis in the TIR range utilizing ECOSTRESS sensor. Since quartz is
featureless in SWIR, it cannot be detected in this range.

Similarly, for quartz, the resampled spectra in ECOSTRESS can capture its
key feature at 8625 nm, another reststrahlen band. Although quartz’s signature
is slightly offset from the available 8780 nm band in ECOSTRESS, the proximity
is close enough to still detect the characteristic M-shaped curve. This align-
ment allows ECOSTRESS to efficiently capture quartz’s thermal infrared feature,
despite the moderate spectral resolution. Together, these capabilities highlight
how ECOSTRESS can effectively identify both apatite and quartz through their
distinctive reststrahlen bands, even when dealing with resampled spectral data.
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Figure 5.10: Well Separated distribution of Quartz (yellow) and Apatite(green) in
the region of interest based on the spectral analysis in TIR range using ECOSTRESS
sensor
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5.2 Key Findings
ECOSTRESS was originally launched with the primary goal of measuring the
evapotranspiration of plants, providing insight into how ecosystems respond to water
availability and stress. However, in this study, its potential for detecting specific
minerals has been successfully examined. By leveraging the sensor’s thermal infrared
capabilities, ECOSTRESS can capture key spectral features related to mineral
composition, despite not being originally designed for this purpose. In this study,
2 methods of spectral analysis are examined. The first method focuses on using
spectral features from the literature to identify minerals, creating a distribution
diagram based on electromagnetic spectrum characteristics, and selecting samples
from ENVI’s spectral library. These samples are resampled to match the resolution
of the observation device (e.g., ECOSTRESS or EMIT) before applying band
math to highlight mineral signatures. Bad bands are discarded, and results are
compared with reference ranges for validation. The second method applies band
math to identify patterns in mineral distribution. However, it simplifies the data
into Boolean outputs without a reference table, which may limit accuracy and
validation, resulting in possible oversimplification and false positives or negatives.

booktabs graphicx array

Figure 5.11: Detection possibility of different methods used in detecting minerals

The NDVI analysis for Youssoufia in 2023 highlights key environmental trends,
showing minimal surface water and a predominance of low-canopy, drought-resistant
vegetation. Vegetation peaks in March due to seasonal rains, while September
shows the lowest density, reflecting the dry season’s impact. High-canopy vegetation
appears in microenvironments during November, March, and May, indicating areas
with better growth conditions.
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5.3 Limitations

5.3.1 Regarding Verification of the Results
The mineralogical and geological documentation for the area of interest is not
publicly available, which poses a challenge for directly verifying the results obtained
from remote sensing analysis. Without Geospatial Mineral Distribution maps or
detailed geological reports, it becomes difficult to compare the spectral findings with
established data. To ensure the accuracy of the results, ground truth validation is
essential. Ground truthing involves collecting field samples and conducting on-site
mineralogical analysis to cross-reference the remotely sensed data with physical
samples from the area. This step is critical to verify the presence and distribution
of the identified minerals and would strengthen the conclusions drawn from the
remote sensing data.

However, conducting ground truth validation falls outside the scope of this
research due to several limitations. First, logistical and resource constraints prevent
extensive fieldwork in the area of interest. Additionally, the focus of this study
is on evaluating the capability of remote sensing techniques, particularly using
ECOSTRESS data, to detect and map specific minerals. Given the emphasis on
methodological development and spectral analysis, incorporating on-site validation
would require a significant expansion of the project’s timeframe and resources.
As a result, while ground truthing is crucial for future studies, this research
remains focused on demonstrating the potential of remote sensing tools in mineral
exploration.

5.3.2 Regarding Sensors
The sensors used in this study, EMIT and ECOSTRESS, while relatively new and
advanced, have certain limitations in spectral and hyperspectral analysis. EMIT
(Earth Surface Mineral Dust Source Investigation) is a hyperspectral sensor designed
to detect and map surface minerals with high precision. However, like many remote
sensing instruments, it may face challenges in fully capturing subtle mineralogical
variations due to spectral resolution limitations, atmospheric interference, or the
inherent complexity of mineral signatures. Additionally, its coverage and data
acquisition capabilities may limit the temporal frequency or geographic extent of
observations, potentially leaving gaps in continuous monitoring of the region.

Similarly, ECOSTRESS (Ecosystem Spaceborne Thermal Radiometer Experi-
ment on Space Station), while effective in detecting thermal features and providing
useful data for mineral identification, is constrained by its spectral resolution,
particularly in the thermal infrared (TIR) range. The sensor’s limited number of
bands in key spectral regions can result in the loss of fine spectral details during
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resampling, which is crucial for distinguishing between similar minerals. Moreover,
both sensors are susceptible to generating false positives or negatives, where miner-
als might be incorrectly identified due to overlapping spectral signatures or noise
introduced during data acquisition and processing. These limitations highlight
the need for careful interpretation of the data and the potential need for ground
truth validation or supplementary data from other sources to mitigate the risk of
inaccuracies and improve the reliability of the results.
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