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Abstract  

The impact of climate change on agriculture represents a crucial challenge for food and water security 

in the coming decades. In this context, seasonal forecasts are an essential tool for adaptation in the 

agricultural sector, offering valuable information for medium-term decision-making. This study, 

therefore, aims to analyse the uncertainty and to assess the consistency of seasonal forecasts of 

meteorological variables such as maximum temperature, minimum temperature, and precipitation in 

the Po River Basin, with a particular focus on the Pianura Padana area, where the agricultural 

production is concentrated. Moreover, the seasonal forecasts of irrigation requirements of maize in 

the area of interest will be estimated to assess the propagation of uncertainty to dependent variables. 

Medium-term climate forecasts rely on slow, complex changes in Earth's components. Climate 

models, initialized with data on the system's state, predict climate evolution over weeks or months. 

"Ensemble Members" represent possible evolutions, indicating the probability of different future 

scenarios.  

In this thesis, products from 2018 to 2022 from the ECMWF forecast centre (SEAS5 system) and 

those generated by two multi-model ensembles (MME and MMES) only in 2022 will be examined. 

The goal is to assess the variability of the Ensemble Members over time and space by comparing 

different initialization times (including those from March to June), various lead times (from March 

to September), and the differences associated with the spatial grid cells at a 1°x1° horizontal 

resolution. Subsequently, the errors generated by ECMWF, MME, and MMES forecasts for the entire 

Po Basin area will be analysed, comparing them with data from the ERA-5 climate reanalysis dataset 

at a 0.25°x0.25° resolution. A more detailed analysis will also be conducted on two grid cells in the 

Cuneo province, comparing ECMWF data both with ERA-5 data and with data downloaded from 

ARPA Piemonte, in order to highlight differences between forecasts in grid cells at elevations below 

400m and those at elevations above 400m. Finally, using a model for estimating irrigation 

requirements, these needs can be calculated based on both observed and forecasted data, then 

compared to assess their quality. 

The results show that during the summer period, forecasts for precipitation and temperature have 

narrower ranges of variability compared to the spring period, with a corresponding lower error range. 

This pattern is particularly evident for temperatures, much less so for precipitation. In general, the 

errors associated with precipitation are significantly higher than those related to temperatures. 

Specifically, errors related to ten-day cumulative precipitation show magnitudes similar to the 

forecasts themselves, while the average errors over three intervals within a month can be very small. 



  

Moreover, minimum temperatures appeared to have larger errors than maximum temperatures, 

despite having narrower confidence intervals. However, through the estimation of bias using hindcast 

data and the subsequent bias correction of real-time data, it emerged that minimum temperatures 

showed a significant increase in accuracy, with very low error values. 

From the detailed analysis of the two grid cells, it was observed that the ECMWF products are more 

accurate when compared to ERA5 products than to the observed data from ARPA Piemonte. 

Comparing the single ECMWF model with the two multi-model ensembles, it was found that the 

multi-model ensemble with the largest number of members exhibited both lower errors and a greater 

degree of uniformity among the ensemble members for temperature, while no significant differences 

were found among the three models for precipitation. 

Lastly, preliminary results on irrigation requirements highlight how the accuracy of meteorological 

forecasts can significantly impact the dependent variable, thus consequently affecting the planning 

and management of water resources in the study area, in particular for achieving a more resilient 

agriculture. 
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1. INTRODUCTION 

1.1 Climate Change and Agriculture  

The impact of climate change on agriculture represents a crucial challenge for food and water security 

in the coming decades. According to the Synthesis Report of the latest Climate Change Assessment 

Report[1] , between 2011 and 2020, the average surface temperature of the Earth increased by 1.1°C 

compared to the end of the 19th century, marking an unprecedented rate of warming in the past two 

thousand years. 

The Mediterranean is a climate change hotspot, where rising temperatures are expected to affect water 

availability, food security, and ecosystem health [2]. These changes could lead to significant 

reductions and, in some cases, failures in the quantity and quality of crops, with potential 

consequences for agricultural production and the economy at both regional and global levels [3]. 

 

An analysis of long-term climate scenarios projected for Italian territory [4] by the CMCC research 

center (for the worst-case scenario RCP8.5) forecasts a 5°C increase in average temperatures by 2100 

compared to the beginning of the century, along with a decrease in annual rainfall and rainy days, and 

an increase in high-intensity events. This will result in more drought periods and a higher risk of 

extreme events. Risk is defined as the interaction between hazard, exposure to damage, and the 

vulnerability of the affected elements, including adaptation capacity and sensitivity. 

While southern regions show lower resilience levels, even northern regions are no longer immune or 

better prepared to face these risks. These risks involve water resources and are higher during the 

summer months. As a result, Italy has been classified by the Organisation for Economic Co-operation 

and Development (OCSE) as a country experiencing medium-high water stress. Agriculture is one of 

the sectors most vulnerable to the impacts of climate change in the country compared to other 

European regions. Although climate adaptation is an inherent characteristic of the primary sector, the 

scope, uncertainty, and rapidity of ongoing and expected climate changes make it necessary to 

enhance its adaptive capacity. This is essential not only to mitigate impacts but also to seize 

opportunities presented by new climate conditions. Currently, there are no available national 

indicators to assess the effects of climate change on agriculture [5]. 

 

Crops respond to the projected rise in average temperatures by altering the length of the growing 

season, advancing phenological stages, and potentially shifting cultivation areas toward higher 
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latitudes and altitudes, where more favourable growing conditions may be found. In the future, Italy 

is expected to see a decline in the productivity of spring-summer crops, especially if not irrigated. 

Additionally, a shift in the seasonal peak of rainfall will result in the arrival of nutrients at times when 

high or low temperatures may limit phytoplankton organisms, leading to a further reduction in 

primary productivity [6]. 

 

In Pianura Padana, climate change has had a significant impact, reducing water reserves in the Po 

basin and drastically altering precipitation and temperature patterns. This has affected the 

hydrological cycle and the availability of water for agricultural irrigation. For example, the 2018 

summer heatwave showed a substantial deviation in rainfall compared to the 1981-2010 period, 

causing severe crop damage [7], an issue echoed during the 2022 drought emergency, which saw low 

precipitation and above-average temperatures, severely impacting agricultural production [8]. In the 

Piedmont region, using a baseline reference period (2000-2015) and a reporting period (2016-2019), 

it has been estimated that 1.82 million hectares of land have been degraded. Degradation refers to the 

reduction in the soil's capacity to be biologically productive. Specifically, changes in three sub-

indicators are assessed: land cover and its changes over time, soil productivity, and organic carbon 

content. This phenomenon is closely linked to the impacts of climate change [5]. 

 

The most significant economic losses occur in the country's infrastructure and networks due to the 

worsening of landslides and in agriculture and tourism, both during the summer and winter seasons. 

Climate change will require significant investments in the future, offering Italy an opportunity to 

focus on sustainable development, recognized by the European Green Deal as the only growth model 

for the future. Adaptation represents both a necessity and an opportunity to respond to the effects of 

climate change. 

 

1.2 Objective of the thesis 

With a view to contributing in the short term to the implementation of adaptation strategies, this thesis 

aims to address this issue by analysing the uncertainty and assessing the consistency of seasonal 

forecasts of climate variables such as temperature and precipitation in the Po River basin, with 

particular focus on the Pianura Padana area, where the main agricultural production areas are 

concentrated. In the second part of the thesis, seasonal forecasts of the irrigation requirements for 

maize crops in the area of interest will be estimated. 
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To evaluate the quality of seasonal forecasts, it is necessary to compare the predicted data with 

observed data. However, to date, no observational data exist regarding irrigation requirements; 

therefore, it is necessary to study the quality of the meteorological variables used to assess irrigation 

needs accordingly. Specifically, the accuracy and uncertainty of the minimum temperature, maximum 

temperature, and precipitation variables from the ECMWF seasonal forecast center and two multi-

model ensembles will be analysed against ERA-5 data for the entire study area. Additionally, a more 

detailed analysis will be conducted on two grid cells in the territory of the province of Cuneo, 

comparing ECMWF data with both ERA-5 data and data downloaded from ARPA Piemonte, in order 

to highlight differences between forecasts in cells at altitudes below 400m and those at altitudes above 

400m. Subsequently, the observed and predicted irrigation requirements will be estimated in order to 

assess the propagation of error. 
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2. STUDY AREA 
Figure 1 shows the map of the area analysed, which was created with Qgis by reprojecting 

the various layers on the WGS84/UTM reference system zone 32N EPSG 32632. In 

particular, the delimitation of the Po basin, the province of Cuneo and the Digital 

Elevation Model (DEM) of the area of interest are represented. The latter is used to 

distinguish the area with altitudes lower than 400m from the mountainous areas with 

altitudes higher than 400m. The area with an altitude of less than 400m, included in the 

polygon of the Po River basin, will be extracted later to roughly identify the Pianura 

Padana. 

 

 
Figure 1. Study area 

The Pianura Padana is an alluvial plain bordered by the Italian Alps and Prealps to the 

north and west, the Northern Apennines to the south, and the Upper Adriatic to the east, 

covering parts of the regions of Piedmont, Lombardy, Emilia-Romagna, Veneto, and 

Friuli-Venezia Giulia [9]. 

This area is the centre of major agricultural activities and can be further divided into the 

Upper Plain, Lower Plain, and Springs, each characterized by different features. 
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The Upper Plain includes altitudes between 200 and 400 meters, with coarse, highly 

permeable, and dry soil, resulting in less developed agriculture. The Lower Plain lies 

below 100 meters, with soil composed mainly of clays and sands, making it more fertile 

and suitable for intensive farming. 

In the area between the Upper and Lower Plains, the more permeable soils meet the 

impermeable ones, leading to the phenomenon known as the resurgent springs. In more 

detail, water from the Upper Plain infiltrates until it encounters an impermeable layer, 

then flows until it can resurface from the water table, creating these natural springs[9].  

 

 
Figure 2. Pianura Padana characterization[10] 
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2.1 Climatic characterization of the study area  

Before focusing on the climate of the area of interest, it is important to explore the general 

climatic framework at the national level. Italy, in fact, exhibits significant climatic 

variability due to several factors, including [11]: 

• Its latitude span from 36°N to 47°N, which results in different solar angles 

received. This causes temperature differences across the territory, given other 

equal conditions; 

• The presence of mountain ranges such as the Alps and the Apennines. These 

elevations influence the climate in various ways, including temperature variation, 

the amount of precipitation, and especially their interaction with prevailing winds, 

impacting the air currents over the peninsula. For instance, the Alps protect the 

Pianura Padana and the Veneto Plain from cold northern currents, while the 

Apennines limit the influence of moist western air to the Tyrrhenian side; 

• The presence of the Mediterranean Sea, which exerts a strong moderating effect 

on the national climate, especially in coastal areas, and interacts with the air 

masses crossing it, encouraging the development of low-pressure systems. 

To categorise the Italian climate, it was chosen to use Köppen and Geiger’s 1936 

classification. This is based on both temperature and precipitation on an annual and 

monthly time scale in order to generate six main groups: A (tropical), B (arid), C 

(temperate), D (cold), and E (polar). A second letter describes the climate based on 

seasonal precipitation, while a third letter indicates the level of warmth [12]. 

Italy falls within the temperate zone of the Northern Hemisphere. In particular, northern 

Italy exhibits a humid temperate climate with hot summers (Cfa), while the centre-south 

is dominated by a Mediterranean climate with dry summers (Csa). 

A detailed representation is shown in Figure 3: 
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Figure 3. Classification of the Italian climate according to Köppen-Geiger 

Furthermore, it is possible to distinguish climatic regions in accordance with the 

morphology of the territory. Thus, the morphological subdivision of Italy proposed by 

Guzzetti and Reinchenbach into 8 major topographic provinces is shown: 1. Alpine 

Mountain System, 2. North Italian Plain, 3. Alpine-Apennine Transition Zone, 4. 

Apennine Mountain System, 5. Tyrrhenian Borderland, 6. Adriatic Borderland, 7. Sicily, 

8. Sardinia[13] (figure 4). 
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Figure 4. Morphological subdivision of Italy proposed by Guzzetti and 

Reinchenbach[14] 

After this overview, it can be asserted that the landscape distinguishing the Po Basin is 

morphologically complex, characterized by the Alpine arc to the west and north, and by 

the Pianura Padana. This results in significant climatic and consequently hydrological 

variability, influencing seasonal processes. 

The climate of the Alpine region is determined by its altitude, being classified as cold 

temperate and transitioning to nival (snow-dominated) above 2,700-2,800 meters. The 

Alps and Prealps are subject to substantial precipitation, reaching up to 3,000 mm per 

year in areas most exposed to cold polar currents and warm currents from Africa. 

The climate of the Pianura Padana on the other hand, is marked by strong seasonal 

variation, with summer temperatures often exceeding 30°C and winter temperatures 

frequently falling below freezing. Precipitation is relatively modest, ranging between 600 

and 800 mm per year, with a higher incidence in autumn and spring. Summer is also 

marked by frequent thunderstorms. 

According to the Köppen and Geiger classification, the climate in this area can be 

classified into: 

 

• Nival altitude climate (EFH): Found at the highest peaks of the Alps, covered by 

perpetual snow, generally at altitudes above 3,500 meters; 
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• Cold tundra altitude climate (ETH): Present in the Alpine arc at altitudes above 

2,000-2,200 meters a.s.l. and on some Apennine peaks. This climate is 

characterized by very cold night and winter temperatures and mostly summer 

precipitation. The landscape gradually shifts from high-altitude grasslands to 

glaciers; 

• Cold temperate altitude climate (DfH): Found in the Alpine arc below 2,000-2,200 

meters a.s.l., including mid-altitude valleys. This climate is characterized by long, 

harsh winters (with an average temperature in the coldest month below -3°C) and 

slightly dry conditions, with predominantly summer precipitation; 

• Temperate climate with hot summer (Cfa): The maximum altitude generally 

reaches 400 meters in upper Piedmont. This area experiences two peaks of 

precipitation, one in spring and one in autumn, and two periods of minimal 

precipitation, one in winter (usually in January) and one in summer (July or 

August). Summer tends to be wetter than winter in areas north of the Po, while in 

the sub-Apennine lands and in the province of Cuneo, the difference evens out; 

• Temperate climate with mild summer (Cfb): This climate is typical of the hills 

and plateaus of Piedmont above approximately 400 meters a.s.l. in the north and 

500 meters a.s.l. in the south, the Ligurian and Tuscan-Emilian Apennines, and 

the lower Alpine and Prealpine slopes, excluding the more internal ones; 

• Cool temperate climate (Cfc): This climate is typical of high-altitude Prealpine 

and Apennine areas. Precipitation can be substantial, especially during 

intermediate seasons, but also abundant during the summer. 

 

2.2 Agriculture of the area  

According to ISTAT data, the Pianura Padana is one of the most productive agricultural 

regions in Italy, with a wide variety of crops, including cereals, potatoes, sugar beets, and 

fodder, as well as fruit trees, contributing about 40% of Italy’s agricultural GDP. In 

particular, the province of Cuneo is a significant example of this productivity. 

In the second part of the thesis, as previously mentioned, we will focus on estimating the 

irrigation requirements for maize cultivation in this area. Maize, originally from tropical 

regions, requires temperatures of at least 12°C for sowing and is at risk of irreversible 

damage below 5°C. Temperatures above 33°C cause stress to the plant, especially under 

water-scarce conditions. Maize needs abundant water, with regular rainfall or artificial 
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irrigation, which is why its cultivation is concentrated in areas with a moderate climate 

and sufficient water resources, such as the Pianura Padana. Here, the eastern part has 

benefited from summer rainfall, while in the central and western areas, irrigation has 

always been essential. Therefore, maize cultivation is limited in hilly areas, reduced in 

central Italy, and almost absent in southern Italy [15]. 

In the following figure, the distribution of maize cultivation in the north-Italy is 

illustrated. The data was downloaded from the Crop Calendar Dataset provided by the 

Center of Sustainability and the Global Environment at a spatial resolution of 5’ in 

NetCDF format. The data corresponds to the year 2000, updated to 2010[16]. 

 

 

Figure 5. Distribution of maize crops in Pianura Padana 

 

According to the ISTAT report on agricultural crops in 2021, between 2010 and 2020 the 

cultivated area of maize in Italy decreased from 26.7 % to 20.1 % for a total of 603,000 

hectares, remaining however the second most cultivated cereal in Italy after durum 

wheat[17]. 
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In particular, using the dataset of the 7° Censimento dell’agricoltura by ISTAT [18], it 

was possible to determine, for each province, the area of agricultural land used for maize 

cultivation within the study area. The results are summarized in the following table. 

The total area designated for maize cultivation within the green polygon was estimated to 

be approximately 438,183 hectares. 

 

Table 1. Area of agricultural land used for maize cultivation 

 

  

Province Hectars Province Hectars Province Hectars Province Hectars

Alessandria 21,075.00 Bergamo 11,840.00 Bologna 8,787.00 Verona 26,670.00

Asti 8,128.00 Brescia 44,103.00 Ferrara 26,734.00 Vicenza 15,606.00

Biella 1,635.00 Como 2,094.00
Forlì-

Cesena
887.00 Padova 31,986.00

Cuneo 44,903.00 Cremona 35,527.00 Modena 6,899.00 Treviso 20,952.00

Novara 8,962.00 Lecco 999.00 Parma 4,908.00 Venezia 31,091.00

Torino 52,419.00 Lodi 16,902.00 Piacenza 12,393.00 Rovigo 30,895.00

Verbano-
Cusio-
Ossola

129.00 Mantova 38,020.00 Ravenna 5,232.00 Belluno 1,523.00

Vercelli 10,467.00 Milano 16,128.00
Reggio 

nell'Emilia
5,724.00

Monza-
Brianza

2,346.00 Rimini 263.00

Pavia 19,696.00

Sondrio 908.00

Varese 1,293.00

Tot 147,718.00 Tot 189,856.00 Tot 71,827.00 Tot 158,723.00

Veneto

Region

LombardyPiedmont Emilia-Romagna
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3. INPUT DATA  
As previously mentioned in the thesis objective (chapter 1.2); in order to calculate 

seasonal forecasts of irrigation requirements and their quality, it is necessary to start with 

the variables of precipitation, maximum temperature, and minimum temperature. 

In this chapter, the concept of seasonal forecasting, the existing models and those used 

for the current study, and the input data used to compare and evaluate the quality of the 

forecast data will be analysed. 

3.1 Seasonal forecast introduction  

Seasonal forecasts, which provide a medium-term view of climatic variations, are an 

essential tool for adaptation in the agricultural sector, offering valuable information for 

medium-term decisions such as sowing planning, selection of the most suitable crop 

varieties, fertilisation scheduling and irrigation management [19], achieving significant 

economic savings as a result of targeted actions taken with the help of seasonal forecasts 

[20].  

They are based on predictable changes in the slowly evolving and interacting components 

of the planet, providing a medium-term view of climate variations over weeks or months 

in the Earth system. 

For example, ocean surface temperatures (SST) tend to vary gradually over weeks or 

months. Since the ocean influences the overlying atmosphere, changes in its properties, 

such as temperature, can alter atmospheric conditions both locally and remotely. These 

changes from ‘normal’ atmospheric conditions are the basis for medium to long-term 

forecasts, such as seasonal forecasts  [21]. However, to fully grasp the complex and non-

linear dynamics that govern these interactions, it is necessary to rely on advanced climate 

models. 

 

Indeed, climate models are an essential tool for predicting climate evolution over longer 

periods, overcoming the limitations of traditional weather forecasting, which is less 

effective on extended time scales.  

Even though the most intense interactions between ocean surface temperatures (SST) and 

seasonal atmospheric climate occur mainly in the tropics, seasonal forecasts are still very 

useful for indicating likely climate conditions in Europe.[22] 
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Due to the chaotic nature of the atmosphere, which generates large uncertainties, and the 

complex and non-linear interactions between the various elements, these models are used 

to provide more accurate predictions in the medium-long term. They begin with data that 

capture the system's initial state at the forecast’s starting point and are subsequently 

employed to simulate its progression over time by a distribution of results [23]. The 

models, in fact, are composed of ‘Ensemble Members’, which individually are complete 

descriptions of the evolution of climate variables over time, but which collectively, 

indicate the probability of a series of future weather scenarios [24].  

These models integrate a wide range of components of the Earth system, including the 

various layers of the atmosphere, ocean, sea ice and land surface. The uncertainties 

associated with these models can be distinguished mainly into two categories: 

• Uncertainties related to the approximate knowledge of initial conditions: these 

uncertainties are often handled through the use of several ensemble members, 

each starting from slightly different initial conditions than the current ‘recorded’ 

state; 

• Uncertainties associated with model selection and its relative approximations: 

these arise from the inherent limitations in faithfully representing the complexity 

of the Earth system. 

 

These sources of uncertainty reflect the complexity of the Earth system and affect the 

accuracy of the models' seasonal forecasts. 

In the context of these seasonal forecasts, it is important to familiarize with some specific 

technical terms used in the drafting of the paper, such as: 

• Ensemble Member: as previously mentioned, it is a single prediction simulation 

within a group of predictions made by a model. In figure 6, there is an example of 

ensemble members. The ensemble correspond to the total distribution of results 

defining the probability of a given event; 
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Figure 6.  Example of ensemble Members 

• Starting time: initial point from which the climate prediction model starts. This is 

the time reference point for the initialisation of the model and determines the start 

of the forecast period; 

• Lead time: time interval between the moment a forecast is issued and the period 

to which the forecast refers. When we speak of lead time 0, we therefore refer to 

the month in which the forecast is initialised. When we speak of lead time 1, we 

refer to the next month after initialisation and so on (example: if the month from 

which the forecast starts is March, lead time=2 corresponds to the month of May); 

• Forecast Range: time interval for which a forecast is provided. In other words, it 

represents the period covered by the forecast itself. 
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Figure 7. Key words in the context of seasonal forecasts 

 

During the drafting of the paper, we will frequently compare both the results of forecasts 

initialized in a given month on different lead times and forecasts made with a single target 

forecast month but initialised in different months, in order to identify the best skills in the 

various cases, if any. 

3.1.1 Available models  

In 2006, the World Meteorological Organisation (WMO) launched an initiative that is an 

essential pillar of the WMO Global Data Processing and Forecasting System (GDPFS). 

Specifically, the WMO Global Producing Centres for Long-Range Forecasts (GPCs-

LRF), responsible for the production of global seasonal forecasts, and WMO Standard 

Verification System for Long-Range Forecasts (SVSLRF), a set of standard verification 

measures, were designated[25].  

There are officially 14 global production centres for long-term forecasting (GPC-LRF) 

identified by the WMO. Some of the most important are listed below: 

1. ECMWF (European Centre for Medium-Range Weather Forecasts) – Europe; 

2. JMA (Japan Meteorological Agency) – Japan; 

3. UKMO (UK Met Office) - United kingdom; 

4. Météo-France – France; 

5. CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici) – Italy; 

6. DWD (Deutscher Wetterdienst)- Germany. 
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Each production centre issues forecasts at a certain frequency, spatial and temporal 

resolution, with a different time horizon among centres and different variables available. 

In addition, the different models also have different ways of creating Ensemble Members, 

which will be analysed in more detail in the following sections. 

A convenient way to quantify the effect of the approximations from the individual models 

is to combine the results obtained, developed, initialised and run independently to create 

a multi-model system. 

As pointed out in the research “Temperature and precipitation seasonal forecasts over the 

Mediterranean region: added value compared to simple forecasting methods”[26], during 

the summer period, precipitation and temperature forecasts obtained by averaging 

different models show a significant correlation with observations, outperforming many 

forecasts made by individual systems, thus being more accurate and reliable. In particular, 

temperature forecasts prove more accurate and consistent than precipitation forecasts. 

However, verification methods must be implemented in order to assess the quality of 

seasonal forecasts as a function of the area and period considered. 

3.1.2 Hindcasts and Real time forecast  

Seasonal forecasts, as previously mentioned, start from the current observed state of the 

system, which has then evolved over several months through model integration. These 

initial observations, however, are imprecise and therefore contain errors that grow during 

model integration, reaching magnitudes comparable to those of the predictable signals. 

These errors can be categorised into: 

• casual: which are taken into account through the use of ensemble members; 

• systematic: which, if determined, could allow these to be corrected in the 

predictions themselves. 

Systematic errors can be determined by comparing retrospective forecasts (hindcasts) 

with observations. Hindcasts are performed on past events using historical data, which 

are used to set initial conditions to be realistic. During the simulation, historical data up 

to the point of interest are used to calibrate and validate the model. Finally, systematic 

differences between model and observation are identified as biases in order to assess the 

model's accuracy by pointing out discrepancies between simulation and observed data 

that can then be removed in order to improve the model's real time prediction results. This 

is then done through bias correction of future predictions[27]. 
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Each forecast system that is part of the Copernicus Climate Change Service (C3S) system 

is characterised by a hincast period and relative ensemble size and a real time forecast 

period and relative ensemble size as shown in the table. In addition, several techniques 

are used to sample the uncertainty of the initial conditions, and thus to construct the 

ensemble members: 

- ‘burst’: the initial conditions of all ensemble members refer to the same start date but 

with slightly perturbed states; 

- ‘lagged’: the initial conditions of ensemble members refer to different start dates with 

sufficiently small perturbations [27]. 

Table 2. Seasonal forecasting centres and characteristics of each 

 

 

Hindcast 
period

Hindcast 
ensemble 

size

Hindcast 
initial 

condition

Real time 
forecast 
period

Real time 
forecast 

ensemble 
size

Forecast 
initial 

condition

ECMWF 1981-2016 25 
members 1st of month 2017-2024 51 

members 1st of month

Deutscher 
Wetterdienst 

(DWD)
1993-2019 30 

members 1st of month Nov 2018-
2024

50 
members 1st of month

The Met 
Office 

(UKMO)
1993-2016

7 
members/ 
start date

1st, 9th, 
17th, 25th of 

month
2017-2024

4 
members/ 

day

each day of 
month

Centro Euro-
Mediterraneo 

sui 
Cambiamenti 

Climatici 
(CMCC)

1993-2016 40 
members 1st of month Nov 2018-

2024
50 

members 1st of month

last and 
penultimate 
Thursday of 

previous 
month, 1st 
of month

Météo-France 
(MF) 1993-2018 12 

members

last and 
penultimate 
Thursday of 

previous 
month,1st of 

month

2017-2024 25 
members
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3.2 Prediction models used for the study  
For the final paper, the C3S dataset provided by Copernicus Climate Change Service will 

be used. This is a multi-system forecasting service that collects, processes and combines 

daily data produced by forecast centres from various European countries at a spatial 

resolution of 1 degree by 1 degree on individual levels. The entities involved are The Met 

Office(UKMO), European Center Medium Weather Forecast(ECMWF), Euro-

Mediterranean Centre on Climate Change (CMCC), Deutscher Wetterdienst (DWD), 

Météo-France(MF), NCEP, the Japan Meteorological Agency (JMA) and Environment 

and Climate Change Canada (ECCC)[28].  

More specifically, the real-time products from 2018 to 2022 of the ECMWF forecast 

centre SEAS5 system and those constructed by two multi-model MME ensembles on 

2022 alone will be examined in order to compare the uncertainties associated with the 

three. 

Various initialisation times, including those from March to June, will be examined in 

order to analyse the predictive capabilities of the meteorological variables at a maximum 

lead time of seven months. These variables will then be used to reconstruct crop 

evapotranspiration and to estimate the irrigation requirements from May to September, 

which is the growing season for maize crops in the Pianura Padana. The analysis will be 

based on daily forecasts of maximum and minimum temperature and cumulative 

precipitation at daily, ten-day and monthly intervals. The results will then be compared 

and evaluated with observational data to highlight associated uncertainties. It is expected 

that accuracy and reliability will increase with time series monitoring, as indicated in the 

study “Seasonal climate forecast can inform the European agricultural sector well in 

advance of harvesting”. This study, which examines wheat cultivation in different 

European regions, also shows a progressive loss of memory as the number of forecast 

months increases and a greater predictive capacity as the spatial resolution increases [19].   

The products obtained will then be evaluated with the ERA5 reanalysis and ARPA 

Piemonte observation products for two specific grid cells at a resolution of 0.25°x0.25°. 

The reference period studied will be from 2018 to 2022, thus considering very different 

years in terms of temperature and precipitation and therefore impacts on agriculture. 

3.2.1 ECMWF SEAS5- How ensemble members are constructed  
The thesis work will therefore focus in abundance on the evaluation of the variables 

predicted by the fifth forecast system (SEAS5) launched by the single ECMWF centre in 
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2017 to produce real-time forecasts. For this reason, it is important to fully understand 

how the ensemble members of this model are constructed.  

Seasonal forecasts are constructed through the use of numerical models that combine 

hydrodynamic equations, which describe the evolution of the planet's main components 

(atmosphere and ocean), taking into account a wide range of parameterizations[29].  

SEAS5 implemented some updates to the previous ‘system 4’, which covered the period 

from 2011 to 2017. In particular, it is worth emphasising the importance of the initial 

conditions that need consistency in order to avoid forecast invalidity. As demonstrated by 

Andrej Ceglar's study [30], seasonal climate forecast initialised with realistic land-surface 

achieves better skill than climatological land-surface initialization. The fundamental issue 

with using realistic conditions is the different horizontal resolution between reanalysis 

data and real-time data. This issue was significant in System 4, but was resolved in System 

5 through the offline recalculation of the initial conditions of the land surface, at the 

required resolution and with modified forcing factors[31].  

In addition, the initial atmospheric conditions for the construction of the 25 ensemble 

members of the retrospective forecasts (1981-2016) come from the ERA-Interim dataset, 

while for the 51 members of the real-time forecast (2017 onwards) from ECMWF 

operational analyses, through the combination of perturbations of the SST and 

atmospheric initial conditions and the activation of stochastic physics. 

SEAS5 includes prognostic ozone and requires initial ozone conditions. However, the 

ERA-Interim ozone data are not entirely reliable because they are affected by changes in 

satellite instruments over time, causing errors in stratospheric temperatures. For this 

reason, instead of using the "problematic" data, SEAS5 uses a seasonal climatology (a 

seasonally variable average ozone profile) derived from a specific model that is "forced" 

with ERA-Interim data. This avoids introducing initial errors while maintaining a realistic 

ozone evolution during the forecast. 

Ensemble member 0 is initialized with unperturbed atmospheric initial conditions. The 

initial conditions for all other ensemble members have perturbations applied to certain 

fields (including upper-air fields and a limited set of soil moisture, soil temperature, snow, 

sea ice temperature, and surface temperature) to account for the uncertainty in the initial 

atmospheric state due to observation system limitations. Small initial errors can lead to 

significant later errors due to the chaotic nature of the system; therefore, it is necessary to 
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consider a set of ensemble members. Perturbations are applied to both the atmospheric 

initial conditions and a limited set of land surface variables, such as soil moisture and 

snow temperature. This methodology ensures that the ensemble explores a realistic range 

of possible future evolutions, improving the robustness of the forecasts. 

Since the perturbations applied to the real-time forecast were not available for previous 

years in the hindcast period, the 2015 perturbations were retroactively applied to all years 

of historical re-forecasts (hindcasts) to preserve consistency[29].  

This ensures that the entire re-forecast dataset is consistent, allowing for more reliable 

comparisons between current and historical forecasts. 

 

Finally, it is important to highlight the significance of hindcast data. Seasonal forecast 

models themselves contain errors, also known as "biases," which can vary depending on 

the region, lead time of the forecast, or area of interest. In this context, hindcast data are 

an excellent tool for estimating biases, which are then expected to have the same 

magnitude in real-time forecasts. As demonstrated in the article "Skill decreases in real-

time seasonal climate prediction due to decadal variability," real-time forecasts may 

exhibit lower predictive skill compared to hindcast-based forecasts. This could be due to 

the difficulty in adequately representing the decadal variability of ocean-atmosphere 

teleconnections [32]. Although this thesis will not include a direct comparison between 

the predictive capabilities of the two types of forecasts, it is reasonable to assume that the 

real-time data analysed may have gaps or limitations. 

 

3.2.2 Multi-Model Ensembles 
For a better interpretation and evaluation of the seasonal forecasts, it was decided to also 

consider blended forecast systems. This analysis will be carried out only for the year 

2022, as no other years of forecasts shared by all four forecasting centers are available on 

Climate Data Store for the 2018-2022 period [28]. 

More specifically, the two multi-model ensembles are defined as follows: 

• Multi-Model Ensemble (MME): This includes all available Ensemble Members 

from the forecasting centres Météo-France (MF), the European Centre for 

Medium-Range Weather Forecasts (ECMWF), the Euro-Mediterranean Centre on 



3. INPUT DATA 
 
  

 
21 

Climate Change (CMCC), and The Deutscher Wetterdienst (DWD), for a total of 

202 members; 

• Multi-Model Ensemble Small (MMES): This includes only ten members from 

each forecasting centre (MF, ECMWF, CMCC, DWD), randomly selected from 

all available members for each centre, for a total of 40 available members. 

The following table provides the technical details of each forecasting centre considered, 

such as the forecasting system and the number of ensemble members taken from each to 

build the two multi-ensembles. 

Table 3. Forecasting centres considered for the construction of MME and MMES 

 

 

The chosen forecasting centres exhibit technical differences in model construction, 

including forecast initial conditions, time range forecasts, and the original resolution of 

the models. 

Prediction 
System Institution

Ensemble 
size for 
MME

Ensemble 
size for 
MMES

MME 202 
members

MMES 40 
members

DWD GCFS 2.1 Deutscher 
Wetterdienst 50 members 10 

members

ECMWF SEAS5 51 members 10 
members

CMCC SPS3.5 50 members 10 
members

Centro Euro-
Mediterraneo 

sui 
Cmabiamenti 

Climatici

European 
Centre for 
Medium 
Range 

Weather 
Forecasts

MF System8 Météo-France 51 members 10 
members
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As previously explained, there are different techniques for generating forecast members, 

such as the 'burst' and 'lagged' methods. The ECMWF, DWD, and CMCC members use 

the 'burst' approach, meaning they are all initialized on the same date (specifically, the 

first of each month) with slightly perturbed initial conditions to account for observational 

uncertainty. MF, on the other hand, follows a 'lagged' approach, where members are 

initialized on different dates but with more similar starting conditions. Specifically, 25 

members are initialized on the second-to-last Thursday of the month before the forecast 

begins, another 25 on the last Thursday of that month, and one member on the first day 

of the forecast month. 

Regarding the time range, ECMWF covers a forecast period of up to 215 days, MF covers 

seven calendar months, while DWD and CMCC cover six calendar months. Therefore, 

since the forecast period analysed in this thesis spans from March to September (7 

calendar months), for the forecast with a March initialization month, only the period from 

March to August will be analysed for the two Multi-Model Ensembles, as forecasts from 

DWD and CMCC are not available. 

Finally, the original resolution of the individual models varies, with some even having 

better resolution than that of the C3S Climate Change Service. Nonetheless, Copernicus 

Climate Data Store provides the data at the same spatial resolution of 1°x1° to ensure 

comparability and data uniformity. 

3.3 Reanalysis and Observation data  
To assess the forecast error, it is essential to compare forecast data with reanalysis and/or 

observation data. 

For this thesis, the decision was made to compare ECMWF, MME, and MMES data for 

the entire Pianura Padana with the ERA-5 climate reanalysis dataset developed by the 

European Centre for Medium-Range Weather Forecasts (ECMWF). For a more detailed 

analysis of two cells in the Cuneo area, ECMWF data will be compared both with ERA-

5 data and with data downloaded from ARPA Piemonte. 

This choice was made because obtaining observation data for the entire studied area might 

have been challenging. By proceeding this way, the aim is to ensure temporal consistency, 

as ERA-5 data are available daily for the entire considered period and area.  
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3.3.1 ERA-5 data 

Specifically, ERA-5 data were downloaded from Climate Data Store at single levels, with 

an hourly temporal resolution and a spatial resolution of 0.25°x0.25°, in NetCDF format. 

The variables considered were maximum and minimum temperatures and cumulative 

precipitation, for the period from March to September for the years 2018 to 2022. To 

ensure a comparison between forecast data and ERA-5 data, the hourly maximum and 

minimum temperature data were averaged daily, while daily cumulative precipitation was 

extracted from the total cumulative precipitation, and subsequently, the ten-day or 

monthly totals were calculated depending on the type of analysis conducted. 

Furthermore, given the resolution differences between forecasts and reanalysis data (1° 

vs 0.25° ), a downscaling process was performed by replication and averaging at the 

edges. Specifically, to preserve valuable information from the higher-resolution data, 

seasonal forecast data from various models at 1°x1° resolution were converted to 

0.25°x0.25° resolution, reflecting the original values from the 1° cell onto the higher-

resolution cell. At the borders between two or four 1° cells, due to the lack of exact 

correspondence between 0.25° grid cells and a single value, the average of the adjacent 

cells was calculated, as shown in the example in Figure 8. 

 

Figure 8. Downscaling for replication from 1° resolution grid to 0.25° resolution grid 

 

It should be noted, however, that this operation has resulted in the analysis losing the 

yellow band that is not shared between the highest resolution grid (red grid) and the lowest 

resolution grid (grey grid) as shown in the figure 9. This operation did not significantly 

compromise the study, as we are more interested in the lowland areas, where most of the 
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crops are concentrated. The yellow band, in fact, mainly concerns areas with altitudes 

greater than 400m. 

 

Figure 9. 0.1°x0.1° resolution grid vs 0.25°x0.25° resolution grid 
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3.3.2 ARPA Piemonte data 

As previously mentioned, for two grid cells with a resolution of 0.25°x0.25° in the 

territory of the province of Cuneo, a more accurate analysis of the quality of the forecast 

data was desired. For this reason, for the cells at latitude 44.5°N and longitude 7.25°E 

(cell 1) and latitude 44.75°N and longitude 7.75°E (cell 2) respectively, the forecast data 

of the ECMWF centre were compared with both the ERA5 reanalysis data and the average 

observation data of four meteorological stations belonging to the two cells (two for each 

cell) equipped with rain gauge and thermometer.  

 

 

Figure 10. Considered cells for a punctual analysis 

These cells were chosen to compare the forecasting behaviour in a predominantly 

mountainous area with that in a lowland area.  

The meteorological stations considered for cell 1, i.e. in the area at altitudes greater than 

400m, are those of: 

• Brossasco: longitude=7.36°E, latitude=44.56°N, altitude=580m; 

• San Damiano Macra: longitude=7.25°E, latitude=44.48°N, altitude=1095m. 

For cell 2, on the other hand, at altitudes lower than 400m, data recorded by the 

meteorological stations of: 

• Bra: longitude=7.85°E, latitude=44.69°N, altitude=290m; 
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• Marene: longitude=7.73°E, latitude=44.66°N, altitude=310m.   

Subsequently, the average altitude of the two cells was found using the Qgis tool ‘Raster 

Layer Statistics’ and then compared with the average altitude of the two corresponding 

stations: 

• Altitude𝐶𝑒𝑙𝑙1=1290.37m > Average altitude of the two weather stations = 837.5m; 

• Altitude𝐶𝑒𝑙𝑙2=268.59m < Average altitude of the two weather stations = 300m. 

In the case of cell number 1, the difference is much greater than 100m. Therefore, it was 

appropriate to consider the linear relationship between altitude and temperature to ‘adjust’ 

the temperatures recorded by the two stations.  In the end, the following procedure was 

used to obtain a single temperature observation value:  

𝑇1𝑜𝑏𝑠 = 𝑇𝐵𝑟𝑜𝑠𝑠𝑎𝑠𝑐𝑜 − 𝑏 ∗ (𝑧𝑐𝑒𝑙𝑙𝑎 − 𝑧𝐵𝑟𝑜𝑠𝑠𝑎𝑠𝑐𝑜) 

𝑇2𝑜𝑏𝑠 = 𝑇𝑆𝑎𝑛𝐷𝑎𝑚𝑖𝑎𝑛𝑜𝑀𝑎𝑐𝑟𝑎 − 𝑏 ∗ (𝑧𝑐𝑒𝑙𝑙𝑎 − 𝑧𝑆𝑎𝑛𝐷𝑎𝑚𝑖𝑎𝑛𝑜𝑀𝑎𝑐𝑟𝑎) 

𝑇𝑜𝑏𝑠 =
(𝑇1𝑜𝑏𝑠 + 𝑇2𝑜𝑏𝑠)

2
 

where b=6.5°C/km, corresponding to the temperature gradient used to compare values at 

different altitudes in the troposphere [33]. 

This was done for the maximum, minimum and mean temperatures of cell 1.  

For cell 2, on the other hand, given a difference between the average altitude of the cell 

and the average of the altitudes of the two stations of less than 100m, the average of the 

values of the variables recorded by the stations was taken directly as: 

𝑇𝑜𝑏𝑠_𝑐𝑒𝑙𝑙𝑎2 =
(𝑇𝐵𝑟𝑎 + 𝑇Marene)

2
 

Finally, precipitation in both cells was found as the average of the precipitation values 

recorded by the two rain gauges for each cell. 

𝑃𝑜𝑏𝑠_𝑐𝑒𝑙𝑙𝑎1 =
(𝑃𝐵𝑟𝑜𝑠𝑠𝑎𝑠𝑐𝑜 + 𝑃𝑆𝑎𝑛𝐷𝑎𝑚𝑖𝑎𝑛𝑜Macra)

2
 

𝑃𝑜𝑏𝑠_𝑐𝑒𝑙𝑙𝑎2 =
(𝑃𝐵𝑟𝑎 + 𝑃Marene)

2
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4. DATA ANALYSIS  
As previously described, forecasting models provide predictions through the use of 

ensemble members. In this chapter, we will analyse the data provided by the single 

ECMWF model for the years 2018 to 2022, as well as the forecasts composed from the 

union of the MME and MMES for the year 2022. The aim is to highlight the variability, 

any trends and/or anomalies present in the models and to identify differences between 

single and multi-model ensembles. 

Specifically, the analysis will cover both temporal and spatial aspects, seeking significant 

spatial differences at specific lead times and starting months, as well as temporal trends 

by considering the spatial average over time of the temperature and precipitation 

variables. In this chapter, for the spatial resolution analysis, we will use the original 

resolution of the data downloaded from Climate Data Store (1° x 1°), for a total of 18 

cells considered.  
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4.1ECMWF analysis   

 4.1.1 Temperature 

• Ensemble members representation 

To graphically visualize the 51 ensemble members of the ECMWF model and analyse 

their variability and trends, the average of the 18 cells considered in this study was 

calculated. This reduced the matrix from four dimensions (longitude, latitude, ensemble 

members and time) to two dimensions (ensemble members and time). Subsequently, the 

average of all ensemble members was calculated, considering all starting months for each 

year from 2018 to 2022. In the following figures, all ensemble members of the maximum 

and minimum temperature variables have been represented, with starting months of 

March, April, May, and June, and target forecasts extending to September, along with the 

respective ensemble means for the years 2018, 2019, 2020, 2021, and 2022. 

 

 

Figure 11. Ensemble members representation and their average considering  four 

months of initialisation and five years for Maximum temperature 
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Figure 12. Ensemble members representation and their average considering four 

months of initialisation and five years for Minimum temperature 

These graphs are of fundamental importance, as they provide valuable information. It is 

evident that at each starting month, the ensemble members exhibit considerable 

agreement, showing a highly variable average behaviour across the first days. However, 

in certain cases, such as with maximum temperatures in various years with an 

initialization month of April, anomalies are observed, characterized by strongly ascending 

or descending trends in the early days of the forecast. This, as previously discussed in 

Section 3.2.1, may be attributed to the method of constructing the ensemble members, 

which could introduce initial errors. 

For each forecast, even after 10-15 days, the ensemble members provide highly variable 

information, but eventually converge to a more linear average trend. It is evident that the 

averages of forecasts initialized in March, April, May, and June for the months of July, 

August, and September are very similar, with a stable and increasing trend in July and a 

decreasing trend in August and September, showing no significant fluctuations. This 

behaviour is due to the loss of memory of the initial conditions in the forecasting models 

as the lead time increases. 

This phenomenon is also noticeable when comparing different years. Comparing the same 

starting month over the years, the forecast values appear to be distinct throughout the lead 
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time equal to zero with forecasted temperatures increasing over the years. Conversely, 

from lead time equal to 1, particularly in July, August and September, the forecasts seem 

to converge and become very similar. Therefore, to compare different years, forecasts 

with a lead time of 0 will be used, as this period highlights the greatest differences 

between years. To compare different lead times, a single representative year (2018) will 

be referenced. 

Initial analysis suggests that forecasts are more accurate at the beginning of the forecast 

period. However, this will be examined in more detail in the chapter comparing with 

reanalysis data. 

Finally, it is noted that maximum and minimum temperatures exhibit similar behaviour. 

Specifically, if maximum temperatures increase or decrease, minimum temperatures 

follow the same trend. This is particularly evident in the early days of the forecast, where 

predictions show more detailed behaviour. Therefore, in subsequent temperature data 

analyses, focus will be mainly on maximum temperatures, keeping in mind that minimum 

temperatures show a symmetric behaviour. 

• Comparison with same starting month and different lead times 

In this paragraph, we aim to examine in detail the behaviour of ensemble members as lead 

time increases. To this purpose, the monthly average for each member was calculated, 

thus obtaining 51 representative values for each forecast month to statistically study the 

data distribution. 

Specifically, the data distribution for the year 2018 was analysed, with the initialization 

month being June, for two distinct lead times (zero and two). In Figure 13, the monthly 

averages of each ensemble from June to September are plotted (Figure 13.a), along with 

the empirical distribution functions (EDFs) of forecasts initiated in June with lead time 0 

and lead time 2 (Figure 13.b). 
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Figure 13. Monthly mean of the Ensemble Members and EDFs for lead times 0 and 2 

with starting month: June 

In accordance with the previous paragraph, it is observed that the distribution with lead 

time 2 has a wider range of values, with maximum temperatures ranging from 20 to 29 

°C. The EDF of AB shows a steeper slope compared to the curve of CD, which instead 

has longer tails, indicating greater data dispersion. However, analysing August (CD), it is 

noted that the curve still shows a steeper slope in a more central range. In other words, it 

can be concluded that the 10th and 90th percentiles are still far from the maximum and 

minimum extremes of the covered value range. 

Nonetheless, from Figure 13.a, it emerges that this behaviour is not generalizable a priori 

for lead times greater than zero. In July, for example, the data are distributed more 

homogeneously, and the EDF would therefore have a much less steep slope. In this regard, 

in the next paragraph, the confidence intervals of the forecasts will be analysed. 

Continuing the analysis of the AB and CD curves, the histograms of the data distributions 

provided by the forecasts were compared with theoretical distributions (Figure 14) to 

identify the one that best fits and summarizes the characteristics with few parameters 

(mean, variance, etc.). For the analysis, the normal, log-normal, and Gumbel distributions 

were compared using the Quantile-Quantile plot and the probability density function. 
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Figure 14. Statistical analysis: QQ plot comparing the theoretical distribution with the 

real data, with histograms showing the empirical distribution of the data against the 

expected distribution for lead times 0 and 2 

 

Visually, it is immediately noticeable that in both cases, the best distributions are the 

normal and log-normal ones. For the CD case, the data are well aligned along the diagonal 

straight line only in the central part, while showing more pronounced deviations at the 

beginning and end of the distribution, indicating possible outliers. In the case of AB, 

however, the data fairly accurately follow the theoretical normal and log-normal 

distributions. For practical purposes, considering that the two curves do not significantly 

differ from each other, the normal distribution is chosen as the theoretical representative 

of the data. Thus, it is concluded that the data, both with lead time 0 and with lead time 

greater than 0, exhibit symmetric behaviour, so their mean well represents the centre of 

the distribution. Additionally, a fundamental parameter of the data set is the standard 

deviation, which provides important information about the data dispersion relative to the 

mean. 

With this premise, in the figure 15, we wanted to compare a single forecast month (July), 

varying the starting months (March, April, May, June) using only the normal distributions. 
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Figure 15. Comparison of normal distributions for the July forecast, using four different 

initialization months 

Table 4 - Standard deviation of July forecast comparing different starting months 

 

 

From the figure 15 and the table 4, it is evident that the lowest standard deviation is 

associated with the forecast for July with the starting month of April, while the highest 

standard deviation pertains to the starting months of May and June. It seems, therefore, 

that the confidence interval tends to narrow with lead times greater than 3, i.e., with 

forecasts made three months in advance. Conversely, forecasts made one or two months 

in advance show higher variability.  

To further analyse this behaviour, in the next paragraph, the confidence intervals of 

forecasts with different starting months and forecast months will be examined in more 

detail. 

Starting month Standard deviation(°C)
March 1.41
April 1.17

Institution May 1.54
June 1.5
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• Comparison with different starting months and different lead times 

Confidence intervals (CIs) are fundamental tools in statistics, used to estimate the range 

within which a population parameter is likely to lie, based on a sample of data.[34] 

In the present case, the goal is to calculate the 90% confidence interval (from the 5th to 

the 95th percentile) for the predicted data, within which the observed value is expected to 

fall. 

In Figure 16 and 17, four initialization months are represented with forecasts from one to 

seven months for March, from one to six months for April, and up to four months for June 

for both maximum temperature and minimum temperature.  

 

Figure 16. Monthly average of ensemble members, along with the ensemble mean, 

including a 90% confidence interval for maximum temperatures 
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Figure 17. Monthly average of ensemble members, along with the ensemble mean, 

including a 90% confidence interval for minimum temperatures 

The narrowest confidence intervals in all four cases for each variable are generally 

associated with a lead time of zero. Subsequently, these intervals tend to widen from lead 

time 1, then narrow again from lead time 3 onwards. 

As can be seen when comparing the two variables, minimum temperatures tend to show 

narrower confidence intervals compared to maximum temperatures with the ensemble 

members much closer to each other and therefore more consistent. 

In Figures 19 and 20, the analysis focuses on the forecast period from June to September 

through the representation of boxplots, means, and standard deviations. Boxplots are 

useful tools for visualizing data distribution, representing the central 50% of the data 

within the coloured rectangle, with the central red line indicating the median and the 

"whiskers" indicating dispersion. These plots provide 50% confidence intervals, 

including additional information such as the median and the presence of any outliers. 
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Figure 18.  Representation of boxplots, monthly means, and their respective standard 

deviations, comparing four different initialization months and four forecast months for 

maximum temperature 

 

Figure 19. Representation of boxplots, monthly means, and their respective standard 

deviations, comparing four different initialization months and four forecast months for 

minimum temperature 

 

From the analysis of the standard deviation, it is observed that the forecast from March 

for June (lead time 3) shows a higher standard deviation compared to the forecasts from 

July onwards, indicating a narrowing of the interval. Forecasts for July and August with 

the initialization month of June show a dispersion about one degree higher than that for 

June itself, confirming that the months with the highest standard deviation correspond to 

lead times 1 and 2.  

Moreover, the narrower confidence intervals for minimum temperatures correspond to 

much lower standard deviation values compared to maximum temperatures. This 
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indicates less variability among the ensemble members, but it does not necessarily mean 

they are more accurate. This aspect will be analysed in Chapter 5, where the forecast 

errors will be evaluated. 

In conclusion, the variation of the confidence intervals with lead time highlights greater 

variability in short-term forecasts (lead times 1 and 2), while longer lead time forecasts 

show less dispersion, indicating greater reliability over the considered period. 

 

• Comparison among different years 

This paragraph will focus on the behaviour of forecasts over the five years analysed, using 

a lead time of zero for each initialization month. During this time frame, as discussed 

previously, the values across the years show significant variation. 

Considering four starting months (March, April, May, June) and their respective lead 

times of zero (e.g., forecast for March with initialization month March, forecast for April 

with initialization month April), the differences in both monthly mean values and standard 

deviation of the ensemble members were evaluated. These two parameters, as 

demonstrated earlier, are sufficiently representative of the data distributions for the 

various months. 

 

Figure 20. Representation of monthly means and their respective standard deviations, 

comparing four different initialization months with lead time 0 from 2018 to 2022 
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From figure 20, which displays the mean and the standard deviation values of the 

ensemble members averaged monthly, it can be observed that the mean and dispersion of 

the predicted maximum temperature tend to increase over the years, with higher values 

in 2022. A high standard deviation signifies greater dispersion of the data, while a low 

standard deviation indicates that the data are closer to the mean. In this context, the mean 

is a good representative of the data overall.  

In conclusion, the graphs reveal that the ensemble members in 2022 displayed 

significantly greater variability compared to the previous four years. This increase in 

variability can be attributed to several factors. First, climate change has made the climate 

more unpredictable. As global temperatures rise, we are witnessing a rise in extreme 

events like heatwaves, droughts, and intense rainfall. These phenomena contribute to 

greater uncertainty in seasonal forecasts and, consequently, affect the standard deviation. 

Moreover, climate models depend heavily on historical data to make predictions. 

However, with the ongoing changes in the climate, the current conditions often diverge 

significantly from past data. This discrepancy reduces the accuracy of these models, 

leading to increased uncertainty and variability in the forecasts they produce. 

More detailed analyses for the year 2022 will be presented in the subsequent paragraphs, 

comparing different models and examining forecasts for specific spatial grid cells. 
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• Spatial representation 

As a final temperature analysis, in the following figures, the spatial distribution of 

maximum and minimum temperatures is represented. Because the downloaded variables 

are depicted as four-dimensional matrices, in this case, the mean was calculated both for 

the 51 ensemble members and the daily data, in order to determine the monthly average 

value for all members. This resulted in temperature matrices with dimensions of 3x6 

(latitude x longitude). June was chosen as the starting month for the forecast, with a lead 

time of 1 month. In other words, the forecast period for July was extracted from the data 

matrix. To better visualize the area of interest, the shapefile of the Po basin and the 

boundary of the region with altitudes below 400 m were included. The latter 

representation is an approximate reconstruction, obtained using the "polygons" tool in 

QGIS, with the aid of the previously shown Digital Elevation Model. Three years (2018, 

2020, 2022) were compared to provide an indication of the differences in space among 

the forecasts for the years considered, thus deepening the results found in the previous 

paragraph. 

 

 
Figure 21.  Spatial distribution of the monthly mean Maximum temperature with a 

starting month of June and a forecast month of July 
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Figure 22. Spatial distribution of the monthly mean Minimum temperature with a 

starting month of June and a forecast month of July 

A significant difference in temperatures between the cells in the northwest and those in 

the plain area is immediately noticeable. For both maximum and minimum temperatures, 

there is a discrepancy of about 10°C. 

Specifically, it is noteworthy that the cells at latitude 44 and longitude from 7 to 10 show 

little difference between maximum and minimum temperatures. This could be related to 

the thermo-regulatory effect of the sea, which, with its great thermal capacity, changes its 

temperature more slowly than the land, resulting in an exchange of heat with the latter. In 

other words, during the day the sea, being colder, absorbs heat, while at night it releases 

it, thus smoothing out the high temperature variations that would occur on land. 

Conversely, in the cells at latitude 45 and longitude 11 and 12, the temperatures remain 

high despite the apparent end of the Pianura Padana in that area, because there is still a 

plain area (the Venetian Plain). 

It is also observed that, over the three years, there has been an increase in the forecasted 

temperatures in the central cells. For maximum temperatures, an increase from 27°C to 

over 30°C has been noted, while for minimum temperatures, an increase from 17°C to 

18/19°C has been recorded. 

Regarding the spatial distribution of the data dispersion, the following figure analyses the 

standard deviation of the different maximum temperature cells. 
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Figure 23. Spatial distribution of the monthly mean standard deviation of maximum 

temperature, with a starting month of June and a forecast month of July 

It can be observed that the increase in standard deviation over the years, as discussed in 

the previous paragraph, is mainly attributable to the greater dispersion in the central and 

northwestern regions. In the cells at latitude 44°, there is an increase, although the values 

remain relatively low. This phenomenon is likely due to the thermoregulatory effect of 

the sea on the surrounding areas, which helps to reduce temperature variability. 
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4.1.2 Precipitation 

• Comparison between temperature and precipitation 

To provide an initial indication of the different variability between temperatures and 

monthly cumulative precipitation, it was decided to plot both variables, spatially 

averaged, on the same graph using two distinct y-axes. This choice allows for a visual 

comparison of the two-time series, highlighting the differences in their respective 

variability behaviours. The use of two separate y-axes is essential to maintain the 

appropriate scale for each variable, given that the units of measurement and magnitudes 

of variations can differ significantly. This approach facilitates data interpretation and 

offers a clearer understanding of the climatic dynamics under examination. 

 

Figure 24. Comparison of the ensemble members' distribution of monthly cumulative 

precipitation and average maximum temperatures, with a starting month of June 

From Figure 24, it is observed that higher temperatures correspond to lower precipitation, 

especially in the months of July and August, during which we therefore expect higher 

irrigation requirements. Regarding data variability, there is a significantly greater 

dispersion in precipitation compared to temperatures. Consequently, it was decided to 

further analyse this aspect using the coefficient of variance (CV). The coefficient of 

variation is a useful tool for comparing the standard deviations of two variables with very 

different scales, such as temperature and precipitation in our case. This allows for the 

comparison of relative variability with respect to their respective means, regardless of 

their units of measurement. A higher CV indicates greater relative variability. The CV is 

expressed as: 



4. DATA ANALYSIS 
 
  

 
43 

𝐶𝑉 =
𝜎

𝜇
 

Where σ represents the standard deviation and μ the mean. The following table compares 

σ, μ, and CV for the forecasts of maximum temperature and cumulative precipitation in 

June and August, with initialization in June.  

Table 5. Precipitation and Max temperature CV 

  

 As can be seen from the results in Table 5, the coefficient of variation (CV) values for 

monthly cumulative precipitation are about an order of magnitude higher than the CV 

values for temperatures. This suggests that precipitation data is more dispersed around 

the mean compared to temperature data. Additionally, high CV values can indicate a 

certain degree of forecast uncertainty. 

Given this higher variability, the next paragraphs will analyse the behaviour of the 

ensemble members with both ten-day cumulative data (for a detailed analysis of short-

term variability) and monthly cumulative data (for a more general and stable view of 

long-term trends and to facilitate the application of statistical models). 

• Representation of the ensemble members 

As was done for temperature, the following graphs will show the behaviour of the 51 

ensemble members over time. Specifically, the distribution for the year 2018 has been 

analysed, with the assumption and subsequent demonstration that the ensemble members 

behave similarly in other years as well. Given that the initial downloaded data were 

cumulative over the whole time, daily relative precipitation was first calculated and then 

re-accumulated into ten-day intervals. Spatial averaging was then performed along 

latitude and longitude. 

 

Cumulative 
precipitation

Max 
Temperature

Parameters Lead time 0 Lead time 2 Parameters Lead time 0 Lead time 2

  (mm) 35.53 26.39    (°C) 0.97 1.53
  (mm) 136.95 77.28    (°C) 21.65 24.6

CV(-) 0.25 0.34 CV(-) 0.04 0.06
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Figure 25. Monthly cumulative precipitation of ensemble members, along with the 

ensemble mean, including a 90% confidence interval  

It is immediately evident that the ensemble members for precipitation show greater 

consistency and lower variability in the first interval considered, indicating that the 

forecasts from different members are very similar at the beginning. It could suggest higher 

probability in the accuracy of these initial estimates. However, starting from the second 

time interval, there is a noticeable trend towards greater dispersion among the ensemble 

members. This increasing variability, on the other hand, 

 reflects a rise in uncertainty. This behaviour may be attributed to various factors, 

including the intrinsic complexity of meteorological phenomena that increases over time, 

making accurate forecasts more challenging. This phenomenon highlights the importance 

of considering both the initial consistency of ensemble members and their subsequent 

dispersion for a comprehensive assessment of weather forecasts. Moreover, this 

dispersion across different time intervals results in a smoother average trend, as extreme 

fluctuations of individual members tend to offset each other. 

Additionally, attention is drawn to the differences in variability between the spring and 

summer months. Generally, the confidence intervals from April to May are wider, 

indicating much more variable forecasts. The variability in precipitation patterns is 
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largely influenced by the transitions between winter and summer climates, characterized 

by cold fronts and extreme events which complicate predictions, resulting in wider 

uncertainty intervals. In contrast, summer months tend to be more stable due to consistent 

factors like solar heating and high-pressure systems, which allow for more accurate 

precipitation forecasts with narrower confidence intervals[35] . 

In order to compare different years, it was decided to plot only the averages of 

precipitation for different starting months (March, April, May, June). This approach 

allowed for an understanding of whether there were significant differences in the various 

lead times across the years or if the results were relatively consistent. 

 

Figure 26. Ensemble members average representation for four months of initialization 

and five years for 10 days interval cumulative precipitation 

It was found that the overall trend of the averages is very similar across years, with more 

pronounced differences particularly in the first and second-time intervals. However, the 

greater discrepancies in the initial intervals suggest that initial conditions can vary 

significantly from year to year, affecting short-term forecasts. These initial variations, 

however, tend to diminish in subsequent periods, resulting in a less significant impact 

over the long term. 
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• Comparison with same starting month and different lead times 

In detail, regarding the behaviour of ten-day cumulative precipitation, we aim to depict 

the empirical distribution function (EDF) for three different ten-day intervals starting in 

June: the first, second, and fourth intervals. This approach allows for the analysis of how 

precipitation is distributed within each time interval and for comparing the variability 

among these periods. Depicting the EDF for these specific intervals helps to better 

understand the short-term dynamics of precipitation and how they evolve over time, 

highlighting the influence of initial conditions. Additionally, this analysis can reveal how 

precipitation changes throughout the month and beyond, providing valuable insights for 

improving weather forecasts and managing water resources. By comparing these 

intervals, it is possible to observe whether precipitation trends remain consistent or vary 

significantly, offering a more comprehensive picture of the behaviour of cumulative 

precipitation in the early intervals of the forecast. 

 

Figure 27. Distribution of cumulative precipitation at 10-day intervals for ensemble 

members and EDFs, with lead intervals of 0, 1, and 3, initialized in June 

By examining the provided graphs, we can draw several conclusions about the behaviour 

of ten-day cumulative precipitation and their empirical distribution. Each vertical line on 

the right graph represents the EDF for specific ten-day intervals from the left graph: 

• AB (Blue): First ten-day interval 

• CD (Orange): Second ten-day interval 

• EF (Yellow): Fourth ten-day interval 
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The greater consistency in the first interval (narrower and closer lines) suggests that initial 

precipitation conditions are more predictable and less variable, while the increasing 

dispersion in subsequent intervals reflects growing uncertainty over time. 

Having demonstrated that variability between different intervals is most noticeable at lead 

time 0, while later months show more consistent interval averages, it was decided to 

analyse monthly cumulative data distributions. This choice was made because larger 

intervals can reduce noise and make the data more suitable for certain statistical models. 

Given that the data are limited or highly variable, aggregating over longer periods can 

improve the robustness of the analysis. Therefore, the aim is to find theoretical 

distributions that best approximate the available data. In this case, the analysis will focus 

on forecasts with an April starting month to evaluate predictions both in spring (lead times 

0-AB and 2-CD) and in summer (lead time 3-EF) (figure 28). 

 

Figure 28. Distribution of monthly cumulative precipitation for ensemble members and 

EDFs, with lead times of 0, 2 and 3, initialized in June 
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Figure 29. Statistical analysis: QQ plot comparing the theoretical distribution with the 

real data, with histograms showing the empirical distribution of the data against the 

expected distribution for lead times 0, 2 and 3 

From the analysed graphs, it is evident that the most variable distribution is that of the 

first forecast month. This increased variability is due to two main factors: 

• Differences in Dispersion Across Intervals: The second and third ten-day intervals 

show significantly wider dispersion compared to the first interval of the month.  

• Seasonal Influence: The first forecast month falls in spring, a season characterized 

by high uncertainty in weather predictions. Seasonal transitions between winter 

and spring introduce greater variability in precipitation, contributing to a broader 

and less predictable distribution. 

For longer lead times, it is observed that the distribution that best describes the monthly 

cumulative precipitation is the normal distribution. This can be explained by the Central 

Limit Theorem (CLT), which states that “the means of a random sample of size, n, from 

a population with mean, μ, and variance, σ², distribute normally with mean, μ, and 

variance, σ²/n”[36].  

In summary, using monthly cumulative data rather than ten-day intervals offers 

significant advantages for representing precipitation distributions. Monthly cumulative 
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data tend to follow a normal distribution, as predicted by the CLT, which allows for clearer 

representation through mean and standard deviation parameters. However, it is important 

to consider that monthly cumulative data may obscure finer variations within the month, 

reducing the ability to analyse specific short-term variability. Therefore, while the normal 

distribution can provide a good approximation for monthly cumulates, it is essential to be 

aware of potential differences and finer variability that may exist within the monthly 

periods. 

• Comparison with different starting months and different lead times 

 

Figure 30.  Representation of boxplots, means of ensemble members, and their 

respective standard deviations, comparing four different initialization months and four 

forecast months for monthly cumulative precipitation 

In the graph, it is observed that the standard deviation of the forecasts does not follow a 

linear trend or a clear pattern when comparing different initialization months with the 

same target forecast month. In other words, there is no evident relationship between the 

month in which the forecasts are made and the variability of these forecasts for a given 

target month. However, a recurring feature can be noted: July and August exhibit lower 

standard deviations compared to other months. This suggests greater stability and 

predictability of weather conditions during these summer periods. In other words, 

forecasts for summer months tend to be less variable and therefore more reliable 

compared to those for other months, such as those in spring or fall, which may be 

influenced by seasonal transitions and more variable weather conditions. 
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• Comparison among different years 

To compare different years, it was decided to compare the forecasts of monthly 

accumulated precipitation with different starting months and a lead time of 0 in order to 

observe, where present, differences in the mean and standard deviation of the values 

provided by ECMWF. The choice of a lead time equal to zero, as for temperatures, was 

made because in this time period the greatest differences between the different years are 

observed. 

 

Figure 31. Representation of means of ensemble members and their respective standard 

deviations for monthly cumulative precipitation, comparing four different initialization 

months with lead time 0 from 2018 to 2022 

In the graph on the left, there is a downward trend in the forecasts of average cumulative 

precipitation over the years. This decrease in the forecasted precipitation, combined with 

the increasing temperature forecasts (discussed in section 4.1.1), implies a rise in 

irrigation needs. The increase in temperatures exacerbates evapotranspiration, requiring 

more irrigation to compensate for the reduced natural water availability. 

The graph on the right shows the standard deviations of precipitation forecasts with a lead 

time of 0 months for all initialization months. The standard deviations mostly range 

between 32 and 36 mm in most years. However, there are anomalies in 2019, where the 

standard deviations are either higher or lower than the overall average of other years. 

These "outlier" values suggest exceptional variability in precipitation forecasts for that 

year, indicating possible extreme meteorological events or greater uncertainties in climate 

predictions. 
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• Spatial representation 

Finally, this section will focus on spatial distribution. As with temperatures, we will 

represent the averages of the 51 ensemble members, but instead of using monthly 

averages, we will use the cumulative values for each month, averaged over the 51 

ensemble members. The analysis will be based on the initialization month of June with a 

lead time of 1 month (forecast for July) for three different years: 2018, 2020, and 2022. 

 

Figure 32. Spatial distribution of the mean of the Ensemble members for monthly 

cumulative precipitation with a starting month of June and a forecast month of July 

 

A significant difference is immediately noticeable between the cells at latitude 46 and 

those at latitudes 44 and 45. The values differ markedly, with cumulative precipitation 

reaching up to 180 mm in higher altitude areas and much lower values in the flatlands 

and cells including the sea. Focusing on the areas below 400 meters elevation (within the 

red polygon), the seasonal forecasting model shows a significant decrease in precipitation 

from 2018 to 2022. However, it should be noted that, as previous studies have indicated, 

precipitation values can be highly variable and sometimes unreliable. 
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Figure 33. Spatial distribution of the standard deviation of the Ensemble members for 

monthly cumulative precipitation with a starting month of June and a forecast month of 

July 

This graph illustrates that, although average cumulative precipitation appears to be higher 

in the cells at higher latitudes, the dispersion of the data also increases. Unlike 

temperature, where the standard deviation has shown an increasing trend over the years, 

no particular trend is observed in the precipitation data over time. 

Therefore, in the chapter comparing with reanalysis and observational data, a more 

detailed focus will be placed on two specific cells within the Cuneo area. 

 

4.2 MME-MMES-ECMWF comparison 

As various studies have demonstrated, multi-model ensembles generally offer higher 

skills compared to single models [37] [26]. Therefore, in this sub-chapter, the behaviours 

of the ensemble members in the three different cases (MME, MMES, ECMWF), 

described in more detail in Chapter 3.2.2, will be analysed and compared in order to 

evaluate the differences in terms of variability. The accuracy and reliability of the various 

models will be analysed in Chapter 5. 

As previously mentioned, the multi-ensembles also include forecasts from the single 

CMCC model, which have a maximum time horizon of 183 days. For this reason, a 

comparison between MME and MMES with ECMWF for the September forecasts 

initialized in March cannot be made.  
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More specifically, the mean values of the ensemble members and the standard deviation 

with various initialization months and lead times for the year 2022 alone will be 

compared, considering that the models have a different number of members (MME=202, 

MMES=40, ECMWF=51).  

4.2.1 Temperature 

• Comparison with different starting months and different lead times 

In the following graphs, box plots of the spatially averaged maximum temperatures will 

be depicted, with initialization months of March, April, May, and June and target forecasts 

from March to September. Additionally, the monthly means of the ensemble members 

with target forecasts from June to September and initialization months from March to 

June will be shown. Finally, the standard deviations will be compared. It is important to 

reiterate that for MME and MMES, the values found for September are not anomalies, 

but rather null values due to the absence of forecast data from the multi-ensembles in this 

case. 
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Figure 34. Representation of boxplots, means of ensemble members, and their 

respective standard deviations, comparing four different initialization months and four 

forecast months for monthly mean Maximum temperature assessing ECMWF, MME and 

MMES behaviours 

The presented graphs reveal several significant trends related to the analysed forecast 

models. The mean values of the maximum temperatures predicted by the single ECMWF 

model are systematically lower than those obtained from the multi-model ensembles 

MME (Multi-Model Ensemble) and MMES (Multi-Model Seasonal Ensemble), likely 

due to the combination of multiple models that can capture and explore a wider range of 

scenarios, including the extreme ones. Moreover, the standard deviation for the MME and 

MMES models is significantly higher than for the single model. This can be explained by 
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the fact that the ECMWF ensemble, despite having 51 members, is made up of a single 

model, which means that the internal variability among the members is limited to initial 

perturbations and variations in the model’s parameters. This tends to produce lower 

dispersion compared to the multi-model ensembles, where the members reflect not only 

initial perturbations but also structural differences between the various models.  

By the way, there is a general consistency in the forecasts across different target months 

and various models, with a pattern observed in relation to the initialization months. For 

example, for the target forecast month of June, an increasing trend in predicted 

temperatures is observed as the lead time decreases. This means that forecasts made in 

June tend to show higher temperatures compared to those made in March, regardless of 

the model used. 

Finally, the box plots show that as the lead time increases, there is greater symmetry in 

the box plots, particularly for the MME model. This might indicate greater stability in 

long-term forecasts. In the MME boxplot, there are also more outliers (red points) and a 

wider spread of maximum temperatures, reflecting that these ensembles sample a wider 

range of scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. DATA ANALYSIS 
 
  

 
56 

• Spatial representation 

After comparing the temporal trends of the models, we will move into a more detailed 

spatial analysis. In the following figures, the mean of the ensembles and the standard 

deviation among the various grid cells for the July forecasts with an initialization month 

of June will be compared. 

 

Figure 35. Spatial distribution of the mean of the Ensemble members for monthly mean 

Maximum Temperature with a starting month of June and a forecast month of July 

assessing ECMWF, MME and MMES behaviours 

 

Figure 36. Spatial distribution of the standard deviation of the Ensemble members for 

monthly mean Maximum Temperature with a starting month of June and a forecast 

month of July assessing ECMWF, MME and MMES behaviours 

From the analysis of the spatial distribution of temperatures, it emerges that the previously 

identified higher values are not uniformly distributed over the area of interest. In 

particular, the multi-model ensembles MME and MMES show higher temperatures 
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compared to the ECMWF model in the grid cells located at latitudes 46° and 44°. 

However, for the cells at latitude 45°, the situation is almost the opposite: for example, at 

longitude 8°, the ECMWF model predicts higher temperatures compared to the multi-

model ensembles. 

Regarding the standard deviation, the previously observed trend is confirmed: the MME 

and MMES models exhibit greater variability compared to the other model. Unlike the 

mean temperatures, this greater variability is uniformly distributed across all the grid 

cells. Additionally, all three models agree in showing higher standard deviations in the 

cells in the northwest, suggesting greater dispersion of forecasts in these areas. 
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4.2.2 Precipitation 

• Comparison with different starting months and different lead times 

Similarly to the temperatures, the same comparisons will be made for the monthly 

cumulative precipitation.  

 

Figure 37. Representation of boxplots, means of ensemble members, and their 

respective standard deviations, comparing four different initialization months and four 

forecast months for monthly cumulative precipitation assessing ECMWF, MME and 

MMES behaviours 

The three different models exhibit similar behaviour. In particular, the box plots show that 

the highest predicted precipitation occurs during the months of April and May, then 



4. DATA ANALYSIS 
 
  

 
59 

decreases during the summer months. Similarly, as discussed in Chapter 4.1.2 for the 

precipitation predicted by the multi-model ensembles, the spring months' box plots show 

the first and third quartiles farther apart, resulting in a wider interquartile range. It is noted 

that between the first and third quartile, 50% of the ensemble members are included; 

hence, the larger the range, the more dispersed the data. With regard to the standard 

deviation of the three models, in contrast to the temperatures, no significant differences 

are noted for the forecasts for the months of June to September 

However, it should be noted that despite the similar trend, the values can vary 

significantly between models. In general, the ECMWF predicts higher average 

cumulative precipitation compared to the other two models. This, combined with lower 

predicted temperature values, will result in lower water needs compared to the other two 

models. 

 

• Spatial representation 

Finally, the spatial distribution of the average monthly cumulative precipitation forecasts 

is analysed among the different multi-ensembles, starting from the initialization month of 

June with the target forecast for July. 

 

Figure 38. Spatial distribution of the mean of the Ensemble members for monthly 

cumulative precipitation with a starting month of June and a forecast month of July 

assessing ECMWF, MME and MMES behaviours 



4. DATA ANALYSIS 
 
  

 
60 

 

Figure 39. Spatial distribution of the standard deviation of the Ensemble members for 

monthly cumulative precipitation with a starting month of June and a forecast month of 

July assessing ECMWF, MME and MMES behaviours 

In this case as well, for the averages of the ensemble members, an inversely proportional 

behaviour to the temperatures is observed: lower predicted temperatures correspond to 

higher predicted precipitation. For instance, the ECMWF model predicts higher values of 

monthly cumulative precipitation, especially for cells at latitude 46. The standard 

deviations, on the other hand, show higher values in cells at latitude 46, consistent with 

the temperatures, indicating greater variability in those regions.  
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4.3 Estimation of irrigation requirements 
The aim of this section is to describe the methodology used to calculate the irrigation 

requirements of maize. 

The irrigation requirements have been obtained through a numerical model (AGRHYD) 

developed by a PhD student at the Polytechnic University of Turin based on FAO’s 56 

paper[38]. 

After calculation of Extra-terrestrial solar radiation on top of the atmosphere, the model 

continues with computation of the crop evapotranspiration 𝐸𝑇𝐶. The crop 

evapotranspiration 𝐸𝑇𝐶 is calculated as: 

𝐸𝑇𝐶 = 𝑘𝐶 ∗ 𝐸𝑇0; 

where 𝐸𝑇0 is the reference evapotranspiration and 𝑘𝐶 is the crop coefficient. 

𝐸𝑇0 is related to a reference surface (grass) with standardized features, such as a constant 

crop height of 0.12 m, a fixed surface resistance of 70 
𝑠

𝑚
 and an albedo of 0.23[38]. 𝐸𝑇0 is 

obtained via the Hargreaves equation. Droogers and Allen found that the Hargreaves 

equation performed quite well under data-limited conditions, with acceptable accuracy 

compared to the more complex Penman-Monteith method. In their study, they highlighted 

that the Hargreaves method is particularly useful when resources for collecting data on 

wind speed and humidity are scarce[39]. 

The Penman-Monteith equation, in fact, requires radiation, air temperature, air humidity 

and wind speed data [38]. The Hargreaves equation, on the other hand, depends only on 

the daily maximum temperature(𝑇𝑚𝑎𝑥), daily minimum temperature(𝑇𝑚𝑖𝑛), mean daily 

temperature(𝑇𝑚𝑒𝑎𝑛) and the extraterrestrial solar radiation (which is a function of latitude 

and the day of the year) [40]. 

The full equation is: 

𝐸𝑇0 = 𝑘ℎ ∗ (𝑇𝑚𝑒𝑎𝑛 + 17.8) ∗ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5 ∗ 𝑅𝑎; 

where 𝑘ℎ is the Hargreaves constant, equal to 0.0023, that was derived empirically by 

Hargreaves and Samani through calibration against more complex ET equations like 

Penman-Monteith. 
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The crop coefficient 𝑘𝑐, on the other hand, depends specifically on the crop characteristics 

and changes among the different growth stages. For the maize we can distinguish four 

main stages, characterized by different duration and 𝑘𝑐 

         Table 6. Maize Crop Coefficient 

 

     

Figure 40. Maize growing season 

The maize growing season in the area of study (Pianura Padana) is within May to early 

October thus we assume the growing season May 15-Sep 30, so that the mid-season will 

correspond to the summer hottest months and the late season and consequently the 

harvesting period in October.  

The process of calculating irrigation requirements starts with determining the rooting 

zone moisture (RM), which corresponds to the water content needed for the plant's 

evapotranspiration. This is calculated by taking the difference between the available water 

Growth stage Duration Kc

Initial stage 30 days 0.3

Crop 
development 40 days 0.3-1.2

Mid-season 50 days 1.2

Late season 30 days 1.2-0.5
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capacity of the soil (AWC), which is the potential value for each cell of the grid, and the 

soil moisture for each day(assumed or observed for the first day of season only), then 

multiplying that by the daily rooting depth(𝑑𝑟𝑜𝑜𝑡𝑠_𝑑𝑎𝑖𝑙𝑦), to account for the portion of soil 

the plant can access for water uptake each day. In particular, the AWC is the amount of 

water which the soil can retain and make available to plants while the soil moisture is the 

actual amount of water present in the soil early in the beginning of the day. The first day 

soil moisture is assumed as the mean of AWC in Pianura Padana using the Harmonized 

World Soil Database version 2 [41].   

𝑅𝑀 = (𝐴𝑊𝐶 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑜𝑖𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒) ∗ 𝑑𝑟𝑜𝑜𝑡𝑠_𝑑𝑎𝑖𝑙𝑦. 

Next, by subtracting the daily precipitation from the RM, we can determine the soil 

moisture state (SMS) and whether there is moisture deficit (negative values) and thus 

irrigation might be necessary. To this regard, the readily available water (RAW), which is 

the portion of AWC that the plant can use before experiencing stress, is set as the threshold 

beyond which (Moisture deficit >= RAW) irrigation is required to avoid water stress in 

the plant. We should note that this is a conservative point of viewtaking RAW as the 

threshold assuming that the plant should not enter in the stress state. 

 RAW is calculated by multiplying the AWC by the depletion factor (DF), a crop-specific 

value that indicates how much water can be depleted before the plant’s growth is affected 

(for maize ~0.5). 

𝑆𝑀𝑆 = 𝑅𝐷 − 𝑃𝑑𝑎𝑖𝑙𝑦; 

𝑅𝐴𝑊 = 𝐴𝑊𝐶 ∗ 𝐷𝐹. 

When the SMS exceeds the RAW but is less than the actual evapotranspiration (𝐸𝑇𝑎), the 

plant enters water stress, and the irrigation requirement is equal to the deficit minus the 

RAW (the threshold). If the deficit surpasses the 𝐸𝑇𝑎, the irrigation requirement equals 

the full evapotranspiration amount, since precipitation alone cannot meet the plant's water 

needs. This approach ensures that irrigation is applied only when necessary to prevent 

water stress and optimize plant growth. 

• If   0 < SMS-RAW < 𝐸𝑇𝑎 → Irrigation Requirements= SMS -RAW.  

• If SMS-RAW > 0  & SMS-RAW >  𝐸𝑇𝑎 → Irrigation Requirements=𝐸𝑇𝑎. 
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5. FORECAST ASSESSMENT: COMPARISON 

WITH REAL DATA 
Up to this point, we have focused on the "isolated" behaviour of the ensemble members 

and their variability over time and space for both temperature and precipitation variables. 

However, to better assess the consistency and uncertainties related to the forecast data, it 

is essential to compare the data from the forecasting centres used with 'real' data. 

Therefore, as explained in detail in Chapter 3.3, this study will use ERA5 data for 

comparison to evaluate the accuracy across the entire Po River basin. Additionally, for 

two specific cells in the Piedmont region, the analysis will also be supplemented with 

observed data from ARPA Piemonte meteorological stations. 

In the following paragraphs, reference will often be made to “errors”. In particular, we 

will distinguish: 

-error: the difference between predicted and observed values 

𝜀 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒; 

- absolute error: the difference in absolute value between predicted and observed values 

𝜀𝑎𝑏𝑠 = |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒|; 

- relative error: the difference in absolute value between predicted and observed values 

divided by the observed value 

𝜀𝑟𝑒𝑙 =
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒|

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒
. 
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5.1 ECMWF data vs ERA5 data  

5.1.1 Temperature  

• Ensemble members average and ERA5 data representation 

In the following graphs, the ensemble members' means have been compared with ERA5 

data (red line) for both maximum and minimum temperatures. This comparison was 

conducted for the initialization months of March, April, May, and June across the years 

2018 to 2022. Since both ECMWF and ERA5 data are latitude- and longitude-dependent 

matrices, the spatial mean of all considered grid cells was computed. 

 

Figure 41. Representation of ensemble member averages vs ERA5 considering four 

months of initialisation and five years for Maximum temperature 
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Figure 42. Representation of ensemble member averages vs ERA5 considering four 

months of initialisation and five years for Minimum temperature 

In general, the seasonal forecasts seem to capture the observed temperature trends well, 

especially during the summer months. There is a general consistency in the seasonal 

temperature patterns, with an increase towards summer (June-July) and a decrease 

towards autumn (September). However, the accuracy of the forecasts can vary 

significantly depending on the initialization month, lead time, and the year considered, 

with a range of error that may be more substantial or less wide.  

Discrepancies between the forecasts and observed data are also noticeable particularly 

during temperature peaks. These discrepancies might be due to anomalous climatic 

conditions or limitations in the forecasting models. Specifically, ECMWF data show 

strong coherence with ERA5 data, especially in the initial days of the forecast, with this 

coherence lasting up to approximately 10 days. As the forecast days increase, and thus 

the lead time, there is no consistent trend of increasing error margin as one might expect; 

instead, this varies depending on the initialization month. For instance, maximum 

temperature forecasts initialized in March 2021 with lead time 0 tend to have a larger 

error margin compared to those with lead time 2, initialized in the same month. 

Moreover, as noted in Chapter 4, forecasts from July onwards tend to converge towards 

similar ensemble member means across different initialization months. This results in a 
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similar forecast error, regardless of the initialization month and thus the forecast 

considered. 

Comparing the behaviour of maximum and minimum temperatures, there is a general 

underestimation of forecasts relative to the reanalysis data in both cases. The trend of both 

variables in ERA5 and ECMWF data is quite similar. However, it is noteworthy that 

despite the similar shape of the curves, the error recorded for minimum temperatures is 

slightly higher. Therefore, this aspect will be analysed more thoroughly in the following 

paragraphs. 

Finally, it is worth highlighting that, when comparing the years, the forecasts for 2022 

appear to be the least accurate. This year will be examined in greater detail in Chapter 

5.2, where the single ECMWF model and the multi-ensemble MME and MMES will be 

compared. 
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• Comparison with different starting months and different lead times 

In this section, the differences between maximum and minimum temperatures are 

examined in greater detail. To this end, the forecasts for the year 2018 have been chosen 

as a case study. The following graphs depict the 90% confidence intervals of the ensemble 

members, averaged monthly, which were analysed in Chapter 4. These confidence 

intervals are here compared with the monthly means of the ERA5 reanalysis data (red 

line). 

 

Figure 43. Monthly average of ensemble members, along with the ensemble mean, 

including a 90% confidence interval vs ERA5 data for maximum temperatures 

 

Figure 44. Monthly average of ensemble members, along with the ensemble mean, 

including a 90% confidence interval vs ERA5 data for minimum temperatures 
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In Chapter 4, it was highlighted that minimum temperatures showed narrower confidence 

intervals, hypothetically suggesting greater model certainty in estimating these 

temperatures. However, the graphs indicate that the reanalysis data rarely fall within these 

intervals, deviating from the ensemble members' means and, in many cases, not fitting 

within the 90% confidence intervals. 

Conversely, for maximum temperatures, ERA5 data consistently fall within the 

considered intervals. However, it is important to note that these data exhibit greater 

variability, which results in wider confidence intervals and, consequently, a higher 

likelihood that the ERA5 data will fall within the 90% confidence intervals. Additionally, 

it is noted that the highest forecast errors, for both maximum and minimum temperatures, 

appear to occur in April and May. 

To quantitatively assess the error, the following figures show histograms of normalized 

forecast errors initialized in four different months (from March to June) with reference to 

three different lead times (0, 2, 3). In this case, the errors are averaged monthly for all 51 

ensemble members, focusing on specific forecast months. The error is defined here as the 

difference between the monthly mean of each ensemble member and the monthly mean 

of ERA5. 

 

Figure 45. Histograms of ensemble member errors, comparing four months of 

initialisation with lead times of forecast 0, 2 and 3 of Maximum temperature 
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Figure 46. Histograms of ensemble member errors, comparing four months of 

initialisation with lead times of forecast 0, 2 and 3 of Minimum temperature 

The graphs show that minimum temperatures have a narrower error range compared to 

maximum temperatures, as can be seen, for example, in the histograms with an 

initialization month of May and lead time 0. This results in generally slightly higher 

probability density values. 

For both minimum and maximum temperatures at lead time 0, the histograms are fairly 

concentrated: most of the data falls around a central value, with few error values in the 

tails. Conversely, as lead time increases, the data becomes more dispersed. 

Overall, most histograms exhibit approximate symmetry, with a slight tendency toward 

negitive skewness (a longer tail on the left). Based on this observation, in figures 47 and 

48, the means of the ensemble members were calculated and then from these were 

subtracted the monthly mean value of ERA5. In this way, the monthly mean absolute 

errors were depicted for four different initialization months and four different target 

forecast months, in order to assess how much the monthly forecast errors generally 

deviate from zero (indicating a perfect forecast). 
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Figure 47.  Representation of monthly average absolute error comparing four different 

initialization months and four forecast months for Maximum temperature 

 

Figure 48. Representation of monthly average absolute error comparing four different 

initialization months and four forecast months for Minimum temperature 

As shown in the figures above, the results reflect the previously made observations. 

Minimum temperatures exhibit a higher systematic mean error of about 1 degree 

compared to maximum temperatures. 

The fact that minimum temperatures exhibit this behaviour, despite having narrower 

confidence intervals than maximum temperatures, might indicate that the forecasts for 

minimum temperatures are systematically biased or affected by a structural bias. The 

narrow confidence intervals suggest low variability in the forecasts, indicating greater 
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model confidence in estimating minimum temperatures. However, if the model has a 

systematic bias, this "confidence" might be misplaced, leading to larger errors when 

compared to reanalysis data. 

• Comparison among different years 

After analysing the behaviour of the sets of 51 members at specific time points, using the 

year 2018 as the reference year, this section will focus on the differences between the 

different years from 2018 to 2022, in order to extract possible error trends of the two 

variables.  

The data downloaded from the Climate Data Store, as previously described, are daily 

data. In the previous section we treated the monthly averages of each ensemble member, 

but, in order not to lose important information on the temporal resolution, in the following 

figures we will compare the day-by-day ensemble averages with the daily ERA5 data 

using scatter plots for the entire duration of the forecast. 

 

Figure 49. Scatter plot of ensemble members average vs ERA5 data considering four 

months of initialisation and five years for Maximum temperature 
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Figure 50. Scatter plot of ensemble members average vs ERA5 data considering four 

months of initialisation and five years for Minimum temperature 

The dashed line represents the perfect forecast, i.e., a hypothetical perfect match between 

ERA5 data and the predictions. As shown in the graphs, maximum temperatures seem to 

approximate this behaviour more closely over the years, with a nearly symmetrical 

distribution along the dashed line. However, there are some temperature peaks not 

captured by the seasonal forecasts, such as those corresponding to the April, May, and 

June 2019 forecasts and most of the data for 2022. 

Conversely, the forecasts for minimum temperatures generally tend to underestimate the 

values, as seen particularly in 2018, 2020, and 2022. 

In the above graphs, all days for each forecast initialized between March and June have 

been plotted without distinguishing specific lead times. As a result, the amount of data 

plotted for March is significantly greater than that for June (7 forecast months compared 

to 4). Therefore, in the following figures, the errors recorded by different forecasts with 

fixed lead times of 0 and 2 will be compared. The residuals are plotted against the seasonal 

forecast, with the y-axis representing the error and the x-axis representing the seasonal 

forecast in °C. 
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Figure 51. Residual plot of ensemble members average considering four months of 

initialisation and five years for Maximum temperature 

 

Figure 52. Residual plot of ensemble members average considering four months of 

initialisation and five years for Minimum temperature 

The errors in maximum temperature forecasts appear to vary widely, with an error range 

generally between -8°C and +6°C. The years 2020 and 2021, particularly for lead time 2, 

show errors more clustered around 0, indicating better forecasts. 
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Outliers are present in most years, especially for higher forecast values, suggesting 

occasional significant overestimations or underestimations. 

The errors in minimum temperature forecasts seem to be more evenly distributed around 

the means, although 2019 shows some deviations. Nevertheless, minimum temperatures 

often exhibit higher average absolute errors compared to maximum temperatures, as was 

already observed in the previous analysis for 2018. This behaviour is thus repeated over 

the years. 

Comparing lead time 2, the green and pink distributions are those that show lower errors 

for both maximum and minimum temperatures in almost all years. This means that 

forecasts of May and June with lead time 2 (for July and August) are the most accurate. 

It is worth noting that these summer months had already shown low variability among 

ensemble members, suggesting potentially higher forecast accuracy. This is thus 

confirmed by the error analysis. 

Conversely, for lead time 0, there do not seem to be any initialization months that 

consistently show lower errors. For example, if in 2018 the month of March shows higher 

maximum temperature errors compared to other months, in 2021 the same month shows 

no errors. 

 

• Bias correction 

In general, for both variables, it can be observed that in few cases the error is close to 

zero, but almost always it is at least greater than 1°C. For this reason, a bias correction 

was applied to the forecast data. For this operation, hindcast data from the ECMWF 

forecasting center from 1993 to 2016 were used and compared with ERA5 data from the 

same reference period. Through linear regression of the data, it was possible to determine 

the coefficients a and b and subsequently correct the real-time data from 2018 to 2022. 

𝑇𝐸𝑅𝐴5_ℎ𝑖𝑛𝑑𝑐𝑎𝑠𝑡𝑠 = 𝑎 ∗ 𝑇𝐸𝐶𝑀𝑊𝐹_ℎ𝑖𝑛𝑑𝑐𝑎𝑠𝑡𝑠 + 𝑏 

to determine the coefficients a and b, where a is the y-intercept and b is the slope of the 

line, hindcast data were used. Subsequently, using these coefficients, the corrected real-

time data were obtained through the equation: 

𝑇𝐸𝐶𝑀𝑊𝐹_𝑟𝑒𝑎𝑙𝑡𝑖𝑚𝑒 = 𝑎 ∗ 𝑇𝐸𝐶𝑀𝑊𝐹_ℎ𝑖𝑛𝑑𝑐𝑎𝑠𝑡𝑠 + 𝑏 
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Figure 53. Bias correction Maximum temperature 

 

Figure 54. Bias correction Minimum temperature 

The coefficients found for maximum and minimum temperatures are respectively: 

• 𝑇𝑚𝑎𝑥 : a=0.91, b=3; 

• 𝑇𝑚𝑖𝑛 : a=0.93, b=2.7. 

After applying bias correction, the errors for the two variables were re-evaluated with the 

following results: 
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Figure 55. Residual plot of ensemble members average considering four months of 

initialisation and five years for Maximum Bias-corrected temperature 

 

Figure 56. Residual plot of ensemble members average considering four months of 

initialisation and five years for Minimum Bias-corrected temperature 

After bias correction, it is immediately evident that the errors have decreased, with 

maximum absolute mean errors rarely exceeding 2°C. In particular, the mean errors for 
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minimum temperatures are nearly zero, confirming the greater accuracy of these 

forecasts, as indicated by the lower variability among ensemble members. 

There is also a significant improvement in the accuracy of maximum temperature 

forecasts. However, in some cases, there appears to be an overestimation of the forecasts, 

such as for the months from March to May with lead time 0. 

In general, moreover, a trend in the quality of the forecasts at different lead times can be 

appreciated after bias correction. If we look at the graph of minimum temperatures, for 

example in June 2019 with lead time 0, the error recorded is about 0.25°C, whereas the 

forecast on June from April (lead time 2) reaches about 1.8°C. This behaviour can be seen 

in several cases under consideration. This means that as the lead time increases, generally 

but not always, there is a loss in forecast accuracy. 

 

• Spatial representation and comparison 

Finally, the following representations analyse the spatial distribution of errors. In this 

analysis, the difference between the monthly mean value of the ensemble members for 

each forecast cell and the corresponding value from the reanalysis data was calculated.  

At this stage, only maximum temperature errors are reported, as minimum temperatures 

exhibit a similar spatial distribution but with generally lower and more accurate error 

values. 

 

Figure 57. Spatial distribution of the monthly mean Maximum Bias-corrected 

temperature of ECMWF forecast, of the monthly mean Maximum Bias-corrected 

temperature of ERA5 and of the error with a starting month of June and a forecast 

month of July 
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From the figures above, it is observed that there is a general underestimation of forecasts 

compared to reanalysis data at latitudes under 45°, while further south, the errors are 

almost always positive. In the plain region, where agricultural areas are concentrated, 

forecasts generally show errors close to zero.  

 

5.1.2 Precipitation  

• Ensemble members average and ERA5 data representation 

After a thorough analysis of temperature forecasts, we will now focus on evaluating the 

accuracy of precipitation forecasts. The following plots show the mean cumulative 

precipitation from ensemble members for ten-day intervals, compared with the ten-day 

cumulative precipitation from ERA5 data, for all years and initialization months. 

 

Figure 58. Representation of ensemble member averages vs ERA5 considering four 

months of initialisation and five years for 10 days interval cumulative precipitation 

 

Overall, it is observed that forecasts (colored lines) often deviate from the observed data 

(red line). The accuracy of the forecasts varies both across years and between different 

model runs. Some years show better alignment between forecasts and observations, while 
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others exhibit more pronounced discrepancies. For example, in 2018, the forecasts appear 

to align more closely with the observed data, except for a few outliers, such as the second 

interval in March. 

As with temperatures, at lead times greater than one month, forecasts tend to converge 

towards constant values, showing a form of stabilization. For July and August, for 

instance, forecasts change little between years, stabilizing around 20 mm, indicating a 

loss of memory of the actual system conditions and not accounting for more intense 

rainfall events, as shown in the July 2021 plot. However, for other years like 2018 and 

2020, forecasts for July and August appear to have lower errors compared to the spring 

months. This may be due to greater climatic stability during the summer period. 

  



5. FORECAST ASSESSMENT: COMPARISON WITH REAL DATA 
 
  

 
81 

• Comparison with different starting months and different lead times 

After briefly highlighting the differences between the ensemble members' means and 

ERA5 data, this paragraph will focus on the specific behaviour of the individual ensemble 

members. The 90% confidence interval has also been included to better illustrate the 

variability among ensemble members relative to the reanalysis data. The following 

example presents the ten-day cumulative forecasts for the year 2018, with different 

initialization months ranging from March to June. 

 

Figure 59. 10 days cumulative precipitation of ensemble members, along with the 

ensemble mean, including a 90% confidence interval vs ERA5 data 

In paragraph 4, we discussed the variability among ensemble members, noting that the 

first ten-day interval showed narrower variability compared to the second and subsequent 

intervals. Additionally, it was observed that spring months exhibited greater variability 

compared to summer months, which showed narrower confidence intervals. 

Theoretically, this behaviour should indicate better or worse forecast precision. However, 

the figure above shows that the variation in error appears to be almost random. 

Specifically, when comparing forecast months April and July with March as starting 

month, it is observed that despite April's confidence interval being much wider than that 

of July, the errors recorded in April’s intervals are comparable to those in July’s intervals. 
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A closer comparison of the first and second forecast intervals relative to the starting month 

shows that in March, there is consistency between variability and error (greater variability 

corresponds to higher average error). In contrast, in April, although the second forecast 

interval has wider variability, the average error is similar to that of the first interval. 

It can therefore be said that, unlike temperatures, precipitation does not show any 

significant relationship between variability and accuracy, neither as the lead time 

decreases (one-month forecasts by changing the month of initialisation seem to register 

more or less similar errors) nor when referring to summer/spring months (in some June 

and July intervals, the error is almost zero but in other intervals the error can be very high, 

not corresponding with the low variability). 

Finally, the histogram of normalized errors of ensemble members is presented for three 

ten-day intervals with different initialization months, where the total area under all bars 

is normalized to 1. "Lead interval 0" refers to the AB interval from the previous figure, 

"lead interval 2" to the CD interval, and "lead interval 3" to the EF interval. 

 

Figure 60. Histograms of ensemble member errors, comparing four months of 

initialisation with lead intervals of forecast 0, 2 and 3(AB, CD, EF) of 10 days interval 

cumulative precipitation 
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Key aspects are highlighted by the figure. Forecast intervals with “lead interval 0” show 

narrower error ranges compared to other intervals, with values relatively concentrated 

around specific values and a maximum absolute error of about 20 mm. From interval 2 

onwards, however, errors appear much more dispersed, with significantly higher error 

values. 

Finally, since the error is calculated as the difference between ERA5 values and the 

average value of each ensemble member, it is not possible to determine a priori whether 

there is a general overestimation or underestimation of forecasts for the considered 

intervals. To provide an initial quantitative assessment of the error for ten-day cumulative 

forecasts, the average errors and the absolute average errors for the three intervals from 

June to September are presented, comparing different starting months. 

 

Figure 61. Monthly average of ensemble members of three intervals in one month 

comparing four starting months and four forecast months 

In general, it can be concluded that, despite the high variability among ensemble 

members, the ten-day intervals have achieved a maximum average monthly error of 15 

mm compared to the actual data. In September, very low error values are observed; 

however, this does not imply that every interval has an ensemble member average that 

closely matches the ERA5 data. As shown in Figure 61, September shows the highest 

absolute errors. 

• Comparison among different years 

After thoroughly examining the variability of errors among ensemble members, the next 

step is to compare the ensemble means (ten-day cumulative forecasts) with ERA5 data 

across different years. The aim is to identify any similarities and differences between the 



5. FORECAST ASSESSMENT: COMPARISON WITH REAL DATA 
 
  

 
84 

years and quantify the errors. It should be noted that errors for all intervals corresponding 

to each initialization month will be depicted. Therefore, forecasts starting in March will 

cover 21 intervals (7 months), forecasts starting in April will cover 18 intervals (6 

months), and so forth. 

 

 

Figure 62. Residual plot of ensemble members average considering four months of 

initialisation and five years for 10 days interval cumulative precipitation 

In general, it is observed that across the years analysed for all considered forecasts, there 

is no clear tendency towards overestimation or underestimation. For the years 2018-2020, 

the forecasts exhibit positive and negative errors that are evenly distributed, whereas 2021 

is primarily characterized by overestimation and 2022 by underestimation of the 

forecasts. Additionally, when comparing different initialization months, no particular 

month shows significant advantages. Instead, the magnitude of the error is comparable to 

the forecast values themselves. Therefore, in the absence of evident systematic errors, 

unlike those observed for temperatures, it was deemed unnecessary to apply a bias 

correction. 

In conclusion, it can be stated that, on a monthly average, the error of ten-day cumulative 

precipitation forecasts is relatively low. However, the error for individual ten-day 

intervals can be quite high, leading to a generally poor quality of the forecasts. 
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• Spatial representation and comparison 

Finally, the spatial distribution of errors in ten-day cumulative precipitation forecasts is 

to be depicted. For this purpose, the error pattern is analysed for the month of July, with 

June 2020 as the initialization month. 

 

 

Figure 63. Spatial distribution of the monthly mean of three 10 days intervals 

cumulative precipitation of ECMWF forecast of the monthly mean of three 10 days 

intervals cumulative precipitation of ERA5 and of the error with a starting month of 

June and a forecast month of July 

In the analysed example, the higher errors tend to be more prevalent in areas with altitudes 

greater than 400 meters. This pattern, combined with the spatial distribution of 

temperature errors, suggests a potential improvement in the accuracy of estimates for 

irrigation needs. 
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5.2 MME-MMES-ECMWF data vs ERA5 data 

In this subsection, we will compare the errors produced by the single ECMWF model 

forecasts with those of the multi-model ensembles, MME and MMES, for the year 2022. 

As highlighted in Chapter 4.2, the MME multi-model showed the least variability among 

the ensemble members for both precipitation and temperature. Therefore, in theory, we 

can expect these models to have lower errors. 

5.2.1 Temperature  

To compare the three models, it was decided to evaluate their error at two different lead 

times (0 and 2) for all initialization months. The following figure shows all the daily errors 

for the respective forecast months, along with the average error across all days (dashed 

line).  

 

Figure 64. Residual plot of ensemble members average considering four months of 

initialisation at lead times 0 and 2 for Maximum temperature assessing ECMWF, MME 

and MMES behaviours 

As shown in the figure above, the three models appear to record very similar errors. 

For lead time 0, the error range covered by the three models is quite similar (ranging from 

a minimum of -6°C to a maximum of around 5°C). However, for lead time 2, the error 

distribution for the MME and MMES models appears to be shifted upward compared with 
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the error distribution for ECMWF, suggesting that on more days, the forecasts from the 

two multi-models tend to be more accurate. 

It is important to note, however, that the lowest average errors for both lead times are 

recorded by the ECMWF single-model, with differences compared to the multi-models 

ranging from a few tenths of a degree (as in March at lead time 0) to 2°C (as in May at 

lead time 2). Only in the case of June at lead time 2 are higher error values observed for 

the multi-models. 

For a more detailed comparison among the three models, considering both the high 

temporal resolution (daily) and all the ensemble members, a probability plot (P-P plot) 

has been used. This plot represents theoretical probability values against observed values. 

Specifically, the process for evaluating model calibration through the construction of a P-

P plot begins with calculating confidence intervals. For each day, ensemble members are 

sorted in ascending order, and a confidence interval is defined for each probability level 

using the appropriate percentiles of the ordered distribution. Subsequently, it is checked 

whether the daily observation falls within these confidence intervals, and this information 

is recorded over a period of 31 days. The observed probability is then calculated as the 

fraction of days on which the observation falls within the corresponding confidence 

interval. Finally, a P-P plot is constructed, where the x-axis represents the theoretical 

probability and the y-axis represents the observed probability. If the model is well-

calibrated, the points on the plot should align along the diagonal, indicating a good match 

between theoretical and observed probabilities. 

The shape of the resulting curve allows for determining whether the data follow an 

approximately uniform distribution (along the bisector) and for identifying the causes 

behind a less linear shape, as the slope of the curves increases in areas where more points 

accumulate.[42] 
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Figure 65. Probability-Probability Plot of ensemble members considering two months 

of initialisation at all possible lead times for Maximum temperature assessing ECMWF, 

MME and MMES behaviours 

From the figure above, for forecasts with a starting month of March, it is observed that 

the P-P plot curves for the single ECMWF model at lead times 0 and 1 are closer to the 

bisector compared to those of the multi-models. Conversely, at higher lead times, such as 

2 and 3, the curves for ECMWF show a greater overestimation of the proportion of days 

where the observation falls within the corresponding confidence interval compared to the 

curves of the multi-models. The multi-model curves, while still remaining below the 

bisector, exhibit a less pronounced deviation. 

Regarding forecasts with a starting month of June, the MME multi-model appears to have 

a good correspondence between theoretical and observed probabilities, particularly at 

lead times 0 and 3. This indicates that the model's ability to predict the probability of an 

observation falling within the confidence intervals is accurate and reflects the actual 

probabilities observed in the sample. 

5.2.2 Precipitation  

In the previous paragraphs, the error related to precipitation was assessed in terms of 10-

day cumulative totals, as a day-by-day evaluation would have resulted in excessively 
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large errors. In this paragraph, however, to exclusively evaluate any differences or 

similarities in accuracy among the models, the temporal resolution of the downloaded 

data, which is daily, will be utilized. 

 

Figure 66. Residual plot of ensemble members average considering four months of 

initialisation at lead times 0 and 2 for daily precipitation assessing ECMWF, MME and 

MMES behaviours 

As with temperatures, it is observed that the range of daily errors is quite similar across 

the models, except for a few outliers. Additionally, the errors seem to increase with higher 

daily precipitation forecasts. Specifically, a linear behaviour is noted when there is an 

overestimation in forecasts (positive error). Furthermore, although the error ranges vary 

widely, the monthly averages of these errors are comparable to the forecasts themselves. 

Similarly, for precipitation, the uniformity of the data was assessed using the P-P plot. 
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Figure 67. Probability-Probability Plot of ensemble members for two months of 

initialisation at all possible lead times for daily precipitation assessing ECMWF, MME 

and MMES behaviours 

From the figure above, a greater overall uniformity in the precipitation data compared to 

temperature data is evident. However, it is important to emphasize that this does not imply 

that the forecasts are accurate, as demonstrated by the recorded errors. 

When comparing the different models, a slightly better correspondence between the 

curves and the bisector is observed for the MME model, particularly for the starting month 

of March. Conversely, for forecasts starting in June, the predictions appear to be more 

uniform for the single ECMWF model. 

5.3 ECMWF data vs ERA5 data vs ARPA data on two specific 

grid cells 

Finally, a more detailed examination of the differences between two cells described in 

Chapter 3.3.2 will be conducted, comparing the single ECMWF model data with both 

ERA5 reanalysis data and observations from ARPA Piemonte meteorological stations. It 

is important to note that one cell is located in the "plain" area (latitude 44.75, longitude 

7.75, elevation 268.59 m), while the other is in the "mountain" area (latitude 44.5, 
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longitude 7.25, elevation 1290.37 m). As observed in the previous sections, cells at 

elevations above 400 m showed larger errors for both temperature and precipitation. 

Therefore, to compare the quality of the forecast data for these two cells, precipitation 

was chosen as the representative variable. The following figure illustrates the errors of 

monthly cumulative precipitation, averaging the ensemble members across different lead 

times and initialization months. 

 

Figure 68. Representation of monthly cumulative absolute error respect with ERA5 and 

observation data comparing four different initialization months and four forecast 

months for precipitation at latitude=44.5 and longitude=7.25 

 

Figure 69. Representation of monthly cumulative absolute error respect with ERA5 and 

observation data comparing four different initialization months and four forecast 

months for precipitation at latitude=44.75 and longitude=7.75 

In the figure showing the spatial distribution of errors across the Po River basin, the 

forecast reference was taken for July based on June 2018. These images aim to 
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demonstrate that, regardless of the lead time and initialization month, the cell at latitude 

44.5 and longitude 7.25 consistently shows much higher average errors compared to the 

cell at an elevation below 400 m, both when compared with ERA5 data and observational 

data, with errors that are nearly double. 

It can thus be concluded that the larger errors observed in the previously averaged spatial 

data are primarily due to the cells at higher elevations. This may be attributed to the rapid 

altitude changes within a single grid cell in mountainous areas, which can introduce 

significant errors. Additionally, the high complexity of atmospheric conditions in 

mountainous regions poses challenges for low-resolution models to represent accurately. 

It is worth noting that the ECMWF data used have a resolution of 1° and were adapted to 

a 0.25° grid, while retaining their original resolution. 

Comparing the errors with ERA5 and ARPA Piemonte data, it emerges that for both cells, 

the largest errors are associated with the comparison with ARPA Piemonte. For the plain 

cell, the difference is a few millimeters, except for forecasts in June, while in the mountain 

cell, the observations show more uniform errors compared to the ERA5 errors, which 

vary significantly depending on the forecast month. 

To further understand the distribution of ensemble members relative to reanalysis and 

observational data, P-P plots are also presented for both cells.  

 

Figure 70. Probability-Probability Plot of ensemble members respect with ERA5 and 

observation data for one month of initialisation at all possible lead times for daily 

precipitation at latitude=44.5 and longitude=7.25 



5. FORECAST ASSESSMENT: COMPARISON WITH REAL DATA 
 
  

 
93 

 

Figure 71. Probability-Probability Plot of ensemble members respect with ERA5 and 

observation data for one month of initialisation at all possible lead times for daily 

precipitation at latitude=44.75 and longitude=7.75 

It is immediately noticeable that the curves for the starting month of March across 

different lead times in the plain cell suggest a more rapid variation of observed probability 

compared to theoretical probability in this region. This indicates that the observed 

probability is systematically higher than the theoretical probability. 

Conversely, for the cell at an elevation greater than 400 meters, the ERA5 curves do not 

show consistent patterns of overestimation or underestimation of probability; rather, this 

varies with lead time. However, the curves for observational data consistently show 

observed probabilities that are systematically lower than the theoretical probabilities. 
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6. CROP MODEL RESULTS 
The hydrological model presented in Chapter 3.4 was applied to estimate the observed 

and forecasted irrigation requirements for maize in the Pianura Padana. As noted in 

Chapter 2.2, the area of interest for this crop is primarily located at elevations below 400 

meters. Therefore, in this phase of the analysis, the grid cells with a resolution of 0.25° x 

0.25° within the polygon representing the Pianura Padana will be extracted. 

Specifically, an evaluation of the seasonal irrigation demand forecasts for 2018 will be 

conducted using the ECMWF model, assuming that this year is representative of the 

previous five years analysed. Additionally, a comparison between the single ECMWF 

model and the two multi-model ensembles, MME and MMES, will be made for the year 

2022. It should be noted that the growing season for maize in the area of interest extends 

from May 15 to September 31 (139 days), and therefore, the results obtained refer to this 

period. 

To provide an idea of how irrigation demands are related to precipitation, Figure 72 

presents the daily precipitation and irrigation requirements derived from ERA5 data. 

 

Figure 72. Relationship between rainfall and irrigation requirements during the 

growing season 

In Figure 72, a clear inverse relationship between precipitation and the irrigation 

requirements estimated from ERA5 products emerges. Specifically, it is observed that an 

increase in daily precipitation is accompanied by a corresponding reduction in irrigation 

needs, and vice versa. This behaviour is indicative of a reactive water system, where the 
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availability of atmospheric water (precipitation) directly influences the amount of water 

required for irrigation. 

6.1 ECMWF data vs ERA5 data  

6.1.1 Irrigation Requirements 

• Ensemble members average and ERA5 data representation 

The results for the irrigation requirements are presented here for all ensemble members 

(thin grey lines), along with the respective forecast averages, differentiating between four 

different initialization months. The results obtained using ERA5 reanalysis data are also 

shown. It should be noted that, for the latter, a moving average was applied. Specifically, 

for each day, the average of the preceding ten days was calculated, except for the first few 

days where the moving average was calculated as the average of the available previous 

days (<10). This procedure aims to smooth out fluctuations resulting from high short-

term variability, making the comparison with seasonal forecasts more meaningful. 

All data are presented as the spatial average of the grid cells in the Pianura Padana. 

  

Figure 73. Representation of ensemble member vs ERA5 considering four months of 

initialisation and five years for Irrigation Requirements 

The ECMWF products, while exhibiting a consistent pattern with an increase in irrigation 

requirements during the summer months of July and August, followed by a decline toward 

September, show a slight overestimation during the crop development phase (up to July 

25). During this early phase, maize plants are still small and have a relatively shallow root 
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system. Consequently, the water demand from the plants is low, as the leaf area, 

responsible for transpiration, is still limited. Later, as the plants grow and develop more 

leaves, transpiration (and thus water demand) increases. The forecasts most closely 

aligned with reality are those initialized in June (black line), at lead time 0 

During the mid-season (July 25 - September 15), the ERA5 line shows a more pronounced 

and temporary peak compared to the forecasts, which tend to be more smoothed. The 

ECMWF model outputs, therefore, reveal a steadier and more linear trend in irrigation 

requirements, irrespective of peaks or fluctuations in precipitation. This lack of 

responsiveness indicates that the model does not effectively capture the sudden changes 

in water needs that follow significant precipitation events. However, the forecasts tend to 

become more accurate as the summer period approaches. 

The loss of memory observed in weather forecasts at lead times greater than zero for 

independent atmospheric variables is also confirmed in the analysis of irrigation 

requirements. In particular, no single forecast stands out in terms of consistency compared 

to the others when comparing different initialization months.  

• Error comparison among different starting month and lead times 

After an initial overview of the ensemble members, the focus will now shift to quantifying 

the bias and the mean absolute error (MAE) for each ensemble at different lead times.  

 

Figure 74. Bias plot of ensemble members average considering four months of 

initialisation and five lead times for Irrigation Requirements 
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Figure 75. MAE plot of ensemble members average considering four months of 

initialisation and five lead times for Irrigation Requirements 

The bias plot highlights a slight tendency for the forecasts to overestimate irrigation 

requirements from June to August, with a relatively symmetric distribution of points for 

the months corresponding to the mid-season and errors generally contained within a ±3 

mm range, with a monthly average close to 0, except for July. The mean absolute error 

(MAE) plot reveals that the average monthly error is around 0.5 mm per day. In July, 

however, the forecasts show an overestimation of approximately 1.5 mm/d, which is 

relatively high when compared to the average forecasted value. This increase in error 

during the months of higher demand could be attributed to the model's difficulty in 

accurately capturing daily variability during periods of both positive and negative peaks 

in the irrigation season. 

Interestingly, the June forecasts with a lead time of 0 benefit from more accurate initial 

conditions, as June is the only month where the forecasts start within the “growing 

season.” This results in an improvement in forecast quality for that month and lower errors 

compared to other initialization months. 

May also shows relatively low average monthly errors, but this is mainly due to the fact 

that only 17 days of forecasts are considered. The growing season starts on May 15th, and 

from that date, the model focuses on a time window where irrigation demand is present 

but still low, as it corresponds to the early growth phase. 

Overall, the forecasts show a generally reasonable level of accuracy, with daily errors 

that, in some cases, are comparable to the predicted values. 
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To quantify the daily water flow required for irrigating the agricultural area dedicated to 

maize cultivation in Pianura Padana within the boundaries of the Po River Basin 

(previously estimated at approximately 438,138.00 ha), both the forecasted and observed 

data were multiplied by the area in question, thereby transitioning from 𝑚𝑚/𝑑 a 𝑚3/𝑑.  

 

Figure 76. Predicted and observed water flow rate, with respective error 

In the Po Basin, the water volumes required for crop irrigation are expressed in millions 

of cubic meters. It is observed that the error between the forecasted irrigation 

requirements and the actual measurements can reach significant values, up to 

approximately 3 million cubic meters per day. This error can represent a considerable 

discrepancy when comparing the estimated irrigation needs with the actual ones, 

especially during periods of higher demand, such as the summer months. Such differences 

can have a significant impact on water resource management, requiring careful planning 

to avoid shortages or water wastage. In comparison, the average flow rate of the Po River 

is 1.8 ∗ 108𝑚3/𝑑. This analysis highlights how irrigation demand represents a significant 

portion of the river's available flow. 

6.1.2 Irrigation Requirements vs Precipitation and Temperature 

In this section, an analysis will be conducted to examine how the errors produced by the 

forecasts of independent variables, such as temperature and precipitation, are related to 

the errors arising from the estimation of irrigation demand forecasts. 

• Comparison of rainfall and temperature errors with errors in irrigation 

requirements 

Firstly, scatter plots were created to depict the errors resulting from precipitation against 

those arising from irrigation demand on the left, and the errors from average temperatures 
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against those from irrigation demand on the right. In this case, April was used as the 

starting month, with forecast months being June, July, and August. The points represented 

refer to all the days of the forecast month, averaging across the ensemble members. 

Together with the scatter plot, also the linear fitting line are shown.  

 

Figure 77. P error vs IR error(left) and Tmean error vs IR error(right) 

To measure how well the data fit a linear regression model, the coefficient of 

determination 𝑅2 was calculated. This provides an indication of the correlation between 

the errors of precipitation and temperature forecasts and the errors in irrigation demand. 

The coefficient of determination is calculated as follows:  

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖)2
𝑛
𝑖=1

; 

where RSS is the Residual Sum of Squares, TSS is the Total Sum of Squares, 𝑦𝑖̂ are the 

errors arising from the estimated data for the irrigation demand, 𝑦𝑖 are the errors arising 

from the precipitation data or temperature and 𝑦𝑖 is the monthly average value of the 𝑦𝑖 

data.  

A value of  𝑅2 close to 1 indicates a strong correlation between the errors. 
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Table 7. Coefficient of determination 

 

From this example, it can be seen that on average there is a higher correlation in July, 

which tends to decrease in August, especially when comparing with temperatures. In the 

next section, the correlation will be analysed in more detail, taking into account all 

ensemble members and thus also the variability of the errors. 

• Correlation analysis between the errors relating to irrigation 

requirements and the independent variables  

In this section, we report the linear correlation coefficient (Pearson's coefficient), which 

was computed on MATLAB, exploiting the function corrcoef. The equation of the linear 

correlation coefficient is:  

 𝜌(𝐴, 𝐵) =
1

𝑁 − 1
∑(

𝐴𝑖 − 𝜇𝐴
𝜎𝐴

) (
𝐵𝑖 − 𝜇𝐵
𝜎𝐵

)

𝑛

𝑖=1

; 

Where 𝑁 is the total number of data under analysis in one month,  𝜇𝐴 and 𝜎𝐴 are the mean 

and standard deviation of A and 𝜇𝐵 and 𝜎𝐵 are the mean and standard deviation of B. A 

and B represent the values of the irrigation requirements and precipitation error in one 

case and of the irrigation requirements and mean temperature in the other case.  Since 

both variables consist of a set of members, the correlation coefficient was found for each 

member and then the error correlation boxplot was created to visualise how the correlation 

between the different members varies. 

IR error vs P error IR error vs T error

June 0.01 0.31

July 0.58 0.66

August 0.49 0.36

Starting month: April

Forecast month:     
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Figure 78. Boxplot of the error correlation between irrigation requirements and 

precipitation and temperature 

From Figure 75, it is evident that there is a negative correlation between the errors in 

irrigation demand and the errors related to precipitation, along with a positive correlation 

with the errors related to temperature. This is linked to the fact that in the numerical model 

used for calculating irrigation requirements, these are proportional to temperature (as it 

directly affects evapotranspiration) and inversely proportional to precipitation. 

Consequently, a positive error in precipitation (overestimation of rainfall) leads to a lower 

error in irrigation demand (underestimation of the demand), hence the error in 

precipitation is negatively correlated with the error in irrigation demand. 

In previous sections, it was noted that the lowest errors in irrigation demand were 

associated with May and June, while Chapter 5 revealed that the highest errors in both 

precipitation and temperature corresponded to the spring months. This is explained by 

correlation values with precipitation around -0.4 and correlation values with temperature 

of approximately 0.2, accompanied by strong variability. This suggests that errors in 

precipitation forecasts for May and June influence irrigation requirements, but in a less 

pronounced and more variable manner. This could be related to the fact that, although 

errors in temperature and precipitation forecasts are higher in spring, the overall impact 

of these errors on irrigation demand is more subdued because the crops are not yet in their 

peak growth phase or maximum water demand. Therefore, irrigation requirements are not 

significantly affected by spring errors. 



6. CROP MODEL RESULTS 
 
  

 
102 

Conversely, in July, there is a strong correlation and less variability of the coefficient with 

both precipitation and temperature errors, confirming what was observed through the 

coefficient of determination. This indicates that there is a strong negative correlation of 

irrigation demand errors with precipitation errors and a positive correlation with 

temperature errors. In August, however, the coefficient of determination was relatively 

low between irrigation demand errors and temperature errors. In this case, only the 

average of the ensemble members was evaluated; however, as seen in Figure 77, the 

median of the correlation coefficients remains very high but simultaneously shows 

significant variability. 

• Propagation among the errors 

In conclusion, the aim is to quantify how error propagation occurs when the independent 

variables are used to calculate irrigation requirements. To this end, the relative error of 

the three variables was compared, defined as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐸𝑟𝑟𝑜𝑟 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑟𝑟𝑜𝑟

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑟𝑟𝑜𝑟
. 

 

 

Figure 79. Error propagation from P and T errors to IRerror 

The image illustrates a representation of the relative error associated with the propagation 

of errors in daily average forecasts for precipitation (Pdaily), mean temperatures (Tmean), 

and irrigation requirements (IR) over time, categorized by forecast initialization months 

and forecast months. It is immediately apparent that the predictions for mean temperature 

are more accurate than those for precipitation, regardless of the month in which they are 

made. 
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From the results obtained, it appears that the error in irrigation demand (IR) forecasts is 

closely correlated with the errors in daily precipitation forecasts (Pdaily) and, to a lesser 

extent, with the mean temperature forecasts (Tmean). Specifically, the error in 

precipitation forecasts has the most significant impact on irrigation requirements (IR). 

This is evident from the fact that high errors in P for earlier forecasts correspond to 

significant errors in IR, even if to a lesser degree. 

This can be observed, for example, in the forecasts for June and September, which show 

very high errors for precipitation, while the errors for irrigation demand appear to have 

been smoothed. This smoothing may be attributed to the correlation with temperature, 

which, although weaker, still plays a crucial role. 

6.2 MME-MMES-ECMWF data vs ERA5 data 

6.2.1 Irrigation Requirements 

• Error comparison among different models 

Here, the mean absolute errors resulting from the outputs of the single ECMWF model 

and the two multi-model ensembles, MME and MMES, are reported, considering one 

initialization month and five different forecast months.  

 

Figure 80. MAE plot of ECMWF-MME-MMES ensemble members average considering 

one month of initialisation and five forecast months for Irrigation Requirements 
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In Figure 80, it is evident that the three models exhibit very similar and consistent errors. 

Generally, MME shows slightly higher errors compared to the other two models, except 

for the month of July, where ECMWF demonstrates a higher error of approximately 0.3 

mm. 

6.2.2 Irrigation Requirements vs Precipitation and Temperature 

• Correlation analysis between the errors relating to irrigation 

requirements and the independent variables  

 

 

Figure 81. Boxplot of the error correlation between irrigation requirements and 

precipitation and temperature 

From Figure 81, it is observed that the absolute values of the correlation coefficients are 

similar across the three models, with a slightly higher correlation in the case of the single 

ECMWF model. Thus, there are no significant improvements when using the two multi-

model ensembles; rather, there is greater variability in the correlation coefficients, with 
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many more outlier points observed in the case of MME. This increased variability is 

attributed to the larger number of ensemble members considered. 
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7.CONCLUSION 
The study aimed to provide a detailed analysis of seasonal forecasts related to key 

meteorological variables, such as maximum and minimum temperatures and 

precipitation, with the goal of estimating maize irrigation needs in Pianura Padana. The 

assessments involved forecasts provided by the ECMWF SEAS5 model and two multi-

model ensembles (MME and MMES) for the period 2018-2022, comparing these data 

with ERA-5 reanalysis and, in some case studies, with observational data from ARPA 

Piemonte. This comparison made it possible to verify the accuracy of the forecasts and 

gain a better understanding of the uncertainty associated with these estimates. 

The results showed that seasonal temperature forecasts are generally more reliable than 

those for precipitation. In particular, maximum temperature forecasts initially proved to 

be more accurate, with a smaller error compared to minimum temperature forecasts. 

However, after bias correction based on historical data, minimum temperatures showed a 

significant improvement, with lower errors than maximum temperatures, reflecting 

greater consistency due to their lower variability. In contrast, precipitation forecasts 

presented greater challenges, with a significantly higher average error and less uniform 

spatial and temporal variability. This unpredictability in precipitation is particularly 

relevant for irrigation, as it can complicate water resource management during critical 

periods, such as summer, when water demand is at its highest. However, it was found that 

plain areas showed smaller errors compared to mountainous areas, with greater reliability 

in forecasts for these regions. 

A key finding from the study is that forecast reliability is not strictly dependent on lead 

time. While longer lead times result in greater dispersion among ensemble members, the 

ensemble means tend to stabilize around similar values, regardless of the initialization 

month. Furthermore, there is not always a proportional correlation between increased 

variability and higher forecast errors. Rather, seasonality plays a crucial role in the quality 

of the forecasts, especially for temperature: those for the summer months, such as July 

and August, tend to be more reliable due to greater atmospheric stability, whereas in the 

spring months, errors are higher even with reduced lead times. 

Another important consideration concerns the spatial resolution of the forecasts. The 

ECMWF SEAS5 forecasts used have a spatial resolution of 1°x1°, while the ERA-5 
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reanalysis data have a finer resolution of 0.25°x0.25°. For the entire Po river basin, it was 

necessary to apply a replication downscaling process to bridge the gap between forecasts 

and observations. Although downscaling improved the apparent resolution of the 

forecasts, it was unable to add local climatic details related to topography or 

microclimatic variations. Low-resolution forecasts tend to "smooth out" local variations, 

while, for example, local meteorological observations provided by ARPA Piemonte, 

although more accurate, are limited to specific points with uneven coverage. Therefore, 

the analysis conducted on specific grid cells in the Cuneo province confirmed that 

ECMWF data are more accurate when compared to ERA-5 reanalysis rather than ARPA 

Piemonte's direct observations. To improve the quality of the forecasts, it would be 

necessary to increase the spatial resolution of the models by adopting dynamic or 

statistical downscaling techniques, which would allow for better integration of local 

topographical and climatic features. Additionally, a higher density of weather stations 

would help bridge the gap between model forecasts and real conditions on a local scale, 

particularly in areas characterized by high climatic variability. 

Another interesting aspect is the comparison between the single forecast model 

(ECMWF) and the multi-model ensembles (MME and MMES). The multi-model 

ensembles, which combine forecasts from multiple meteorological centres, generally 

proved to be more reliable for temperature forecasts, showing less variability and slightly 

lower forecast errors. However, for precipitation, no significant differences were found 

between single models and ensembles, highlighting the inherent difficulty in accurately 

predicting this variable, regardless of the modelling approach used. 

The final goal of this thesis was to estimate the irrigation needs of maize, both observed 

and predicted, based on the analysed variables. The study period extended from May 15 

to the end of September, dividing the plant's growth into four main stages: initial stage, 

crop development, mid-season, and late season. During the summer months (second and 

third stages), characterized by high temperatures and reduced precipitation, the irrigation 

demand increases significantly, leading to higher estimation errors. In contrast, in May 

and June, the water demand of the crop is still very low. 

It is interesting to note that the correlation coefficient between the errors of irrigation 

needs and precipitation, as well as between the errors of irrigation needs and temperatures, 

approaches zero in May and June, while it is much higher in July and August. 
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Furthermore, it is highlighted that the strongest correlation is found with precipitation. 

This is further confirmed by comparing the relative errors of the three variables: 

precipitation seems to have a greater impact on the estimation errors of irrigation needs, 

while temperatures tend to reduce and mitigate such errors. 

In conclusion, the thesis demonstrates that seasonal forecasts can serve as a useful tool 

for agriculture, particularly in planning water management in vulnerable areas like the 

Pianura Padana. However, there are also challenges that require further research, 

especially regarding the need to improve the predictive capacity of precipitation, a crucial 

variable for the sustainable management of water resources. Optimizing bias correction 

techniques, increasing spatial resolution, using multi-model ensembles, and employing 

probabilistic validation analyses appear to offer promising solutions to enhance the 

reliability of forecasts, reducing uncertainty and improving adaptive management in the 

face of climate change. 

Moreover, extending the period of analysis would allow for a more representative sample, 

capable of capturing climatic variations and long-term trends that could influence 

forecasts. It would also be interesting to expand the study to include other crops and 

gather feedback from farmers regarding the use of seasonal forecasts and their 

experiences. This could provide additional insights into water needs and vulnerability to 

extreme weather events, further improving forecasts and their applications in the 

agricultural context. 

Finally, the model for calculating irrigation needs requires various input information, 

which is challenging to gather at the local scale. Therefore, it would be advisable to 

deepen research on the most suitable parameters, for example, by optimizing the crop 

coefficient based on the specific characteristics of the area, moving beyond the current 

approach that relies solely on the type of crop and the time of year. Alternatively, using 

physical sensors to record actual irrigation needs could make the validation of forecasts 

more accurate. 
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