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Chapter 1

Introduction

T cells play a major role in our everyday lives in fighting pathogens and
preventing anomalous cells from proliferating and becoming carcinogenic.
If we understand T lymphocytes better mathematically or biologically, we
will take a step closer to curing or even preventing illnesses like cancer.
The main focus of this thesis is the analysis of real data on T cells’ move-
ment. Such living cells were placed into a micro-well and were recorded
by a spinning disk confocal laser microscope. The raw images would then
be processed with a program called DeepKymoTracker with the result of
numerical data of interest. The results of the data analysis, which con-
sists of examining data statistics and data from simple model simulations,
clarify some key aspects of the type of motility the cells might have.

Chapter 2 contains a literature review across various scientific fields
that contribute to the study of T-cells. The first part specifically addresses
what T-cells are, their locations within the human body, and their major
roles. Studying T-cells in vivo is challenging due to numerous constraints,
such as observing the cells or tracking their movement without interfering
with an organism’s life. The aging of humans would also modify the inter-
nal dynamical and biological systems, complicating our complete under-
standing of biology. These and other factors have led researchers to take
several steps back, particularly by analysing specimens in vitro. When
a detailed specimen analysis is desired, the need to isolate and observe
single cells arises. The second part of the revire is dedicated to a brief dis-
cussion of fluorescent microscopy, the technology that enables us to see
living single cells through artificial lenses. A significant amount of biolog-
ical information can be generated by capturing different videos of the cells
in a suitable environment. However, for this thesis, an additional step is
required: the extraction of numerical data for a more rigorous analysis. To
achieve this, various approaches are possible. One such approach is Deep

1



2 Introduction

Learning Analysis, which is one of the latest trends for handling large
quantities of data and can produce results very efficiently. This makes
it the third and final topic reviewed in the chapter.

Chapter 3 is the literature review of the mathematical biology field.
The concept of Lévy flight and walks are introduced and the different
paradigms are listed and implemented in experiments in various forager’s
dynamics on searching food. Cells’s motility can be categorized as a par-
ticular case of such dynamics.

Chapter 4 summarises the materials used in the experiments and the
origins of the cells and equipment. Additionally, it provides detailed in-
formation on how the cells are maintained and nourished.

Chapter 5 discusses the program developed by Khelina Fedorchuk,
who recently completed her postdoctoral fellowship at Swinburne Uni-
versity of Technology. The program, named DeepKymoTracker, processes
videos captured by the microscope to output tracked cells moving inside
micro-wells and provides the desired numerical data for statistical anal-
ysis. Further details about its functionality are provided, including addi-
tional information on video processing and the T cells’ labelling logic. The
chapter ends with a brief examination of the program’s limitations and
missing features, identified during the DeepKymoTracker’s testing phase,
which was conducted thoroughly by myself.

Chapter 6 presents all the mathematical concepts implemented for the
analysis of cells’ motility, such as position, angle, speed, MSD, and auto-
correlation function.

Chapter 7 shows the results found by implementing the mathemati-
cal concepts of Chapter 6 through modelling via the software Matlab ver.
2023a. Interesting results are found by analysing even the simplest statis-
tics such as the position, which shows that T-cells prefer to split close to
the wall.

Chapter 8 discusses some simple models. The first part recreates the
walks with the real data in a two-dimensional lattice to provide their statis-
tics even with the approximation of direction, while the second part ex-
plores possible models that may reproduce the subdiffusive behaviour of
some real cell.
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Chapter 9 summarises the work done in this experience with some
ideas of how some steps throughout the Thesis can be optimized.
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Chapter 2

Literature Review: Part 1

In this chapter, a brief introduction and overview of the three important
paradigms (Cell Biology, Fluorescent Science and Data Science) are pre-
sented. At first glance, they seem to be disconnected from one another,
but each of them is an essential piece of the puzzle that makes the study
of lymphocytes possible, especially from a mathematical biology perspec-
tive.

2.1 T-cell: A Biological Overview

It is impossible to analyse the T-cells without knowing what they are,
which is why this subsection contains the basics of T cells in a nutshell.
T cells, or T lymphocytes, are a subclass of white cells that have a major
role in the adaptive immune response of the human body; whether there
is an external pathogen such as virus-infected cells or an internal one such
as cancer cells, T cells will try and neutralise them. The term "adaptive"
indicates the capability of the system to get used to new pathogens and
new types of antigens.

There are different types of T cells and the process of their matura-
tion and differentiation is part of hematopoiesis, which is described as fol-
lows [40]. It all starts in the bone marrow where hematopoietic stem cells
(HSC) migrate to the thymus where they mature into either myeloid or
lymphoid cells [17]. Only the latter (also known as the common lymphoid
progenitor, CLP) can differentiate into T, B or NK cells [17]. Such T cell
progenitors express neither CD4 nor CD8 co-receptor and are commonly
known as double-negative (DN) thymocytes (CD4−CD8− TCR−). To be-
come proper T cells, DN thymocytes need to go through multiple stages of
subdivisions and selections (positive and negative selections [42]) which
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6 Literature Review: Part 1

occur in different locations within the thymus and are mediated by spe-
cific types of chemokines receptors. Each mature T cell will then contain
a unique T-cell receptor (TCR) enabling the immune system to recognize
a large variety of different pathogens. The selected thymocytes for pro-
liferation have the properties of low affinity to "self" antigens and useful
TCR expression. In addition, only 2% of thymocytes pass the selection
process and become immunocompetent single-positive T cells, which are
CD4+ (CD4+CD8−TCR+) or CD8+ (CD4−CD8+TCR+). Such cells will be
then released from the thymus into the peripheral tissues, waiting to be
activated. A summary of the differentiation are illustrated in the figure
(2.1).

Figure 2.1: Schematic illustration of the hematopoiesis process (image from Ref.
[29])

A further sub-classification can be considered based on T cells’ func-
tion:

• Helper CD4+ T cell or simply Helper T cells activate B cells and cy-
totoxic T cells. The activation of B cells induced the production of
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antibodies and macrophages to eliminate microbes, while the acti-
vated cytotoxic T cells kill infected target cells [3];

• Cytotoxic T lymphocytes or simply CD8+ T cells are specialized in
lysing infected or cancerous cells [5];

• Memory T cells are usually produced after the neutralization of an
acute infection. When an infection occurs, T cells are primed and the
expansion phase begins when they acquire the capacity to eliminate
the pathogen(s). After that, the contraction phase starts and only
the 5-10% of cells survived and differentiated into different types of
memory T cells [41];

• regulatory CD4+ T cells are essential for the maintenance of self-
tolerance and immune homeostasis, and the suppression of autore-
active T cells that evaded the negative selection [27];

• Innate-like T cells or unconventional T cells are the class of cells
that have a fast immune response and recognise lipids, unlike the
ones such as CD4 T helper cells or CD8 cytotoxic T cells which fit
the conventional paradigm 1. This category includes Natural killer
T cells (NKT cells), Mucosal associated invariant T cells (MAIT) and
Gamma delta T cells (γδ T cells) [16];

By staying in the peripheral tissues, T cells would be quiescent for
years, until they are activated by "professional" antigen-presenting cells,
which are usually dendritic cells. This generally occurs in secondary lym-
phoid tissue such as the lymph nodes [38]. The cycle of T cells will be
activated, triggered by signals from TCR, leading to the phase of expan-
sion. Such phase consists of a rapid state of repetitive mitosis division and
would dispose of specific pathogens. After successfully neutralising the
pathogens, the contraction phase starts and the 95% of the T-cells (called
effector cells) die, while the remaining ones become memory T cells, which
become dormant and store information for a possible second exposure of
the threat.

1"Conventional" here is used to indicate the behaviour of T cells distinguishing be-
tween self and non-self-entities due to the interaction of the TCR and the Major Histo-
compatibility Complex (MHC). Unconventional T cells bypass this step and elicit faster
immune responses.
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2.2 Fluorescence microscopy

Even with the biological knowledge of cells, it is yet not feasible to study
their movements. Instruments have to be used to visualise and record
with a proper frequency of shots. This subsection contains the basics of
fluorescence microscopy, a fundamental instrument capable of investigat-
ing human microorganisms through its lens.

The goal of fluorescence microscopy is to provide data at the single-
cell level. In the beginning, fluorescence labelling was based on antibody-
conjugated fluorophones for immunohistochemistry [7]. A significant de-
velopment happened in this field when Green Fluorescent Protein (GFP)
was found three decades ago, leading to revolutionary non-invasive imag-
ing techniques. GFP can be used to monitor gene expression and protein
localisation in living organisms [6]. Different GFP-based variants have
been studied and the implementation of small organic fluorescent dyes,
nanocrystals, and autofluorescent proteins has deepened the understand-
ing of T cells’ movement [15].

The basics of any fluorescence-based technique involve illuminating
the specimen with specific excitation wavelengths and analysing the light
emitted from the specimen. Fluorescence microscopy is based on the so-
called Stokes-shift principle [34], which enables spectral separation and
distinguishes emitted fluorescence from the excitation light source. More
advanced methods of standard fluorescence microscopy have been devel-
oped such as:

• Confocal scanning laser microscopy, which gives non-invasive mea-
surements of fluorescent molecules within cells, with the added ben-
efit of depth selectivity. Invented by M. Minsky in 1957, the concept
was refined with the principle of Nipgow-Petran Disk and the pho-
toelectric effect [8]: a laser beam is focused into a focal volume and
scans a specimen to reconstruct a fluorescence image, the fluores-
cence accumulated in the focal volume is confocal with a pinhole
and passes through the pinhole aperture, then the photons from the
emission strike a detector (like a photomultiplier tube), and produce
photoelectrons. The location of the specific area is set and synchro-
nised by a computer that also translates the signals into a 2D grey
image. Sequential optical slices are necessary to reconstruct a 3D flu-
orescence of the specimen.

• Differential Interference Contrast Microscopy, which uses refrac-
tive index gradients to enhance the contrast of imaged specimens.
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Also known as Nomarski microscopy, it transmits polarised light
through a prism (Nomarski-modified Wollaston prism) that splits
the light into two orthogonally polarized rays. After a phase shift
and constructive interferences, the two rays converge with enchance
bright tones and dark shades [26].

• SP5 Multispectral Confocal Microscopy, or in particular, the Leica
TCS SP5 was utilized by Dr. Kim Pham to scan multiple sections
in high resolution and to record protein localization in motile and
dividing T cells. It operates by exciting a piezoelectric crystal with
a signal composed of multiple specific frequencies, allowing for the
simultaneous diffraction of several wavelengths [37].

• Spinning disk confocal laser microscopy, which utilises a rotating
perforated disk to scan a specimen simultaneously with thousands
of tiny points of light, giving a more time-efficient variant for the
confocal microscopy. The spinning disk confocal laser microscope is
based on the Nipkow disk and photoelectron effect, with two high-
speed spinning disks that interact with focused laser beams and ex-
cite fluorescent labels in the specimen. High signal-to-noise images
can be obtained at a fast rate of 1000 frames per second [2].

In the experiment that will be analysed further in the discussion of this
thesis, a spinning disk confocal laser microscope was used to image T cells
during its movement (and division).

2.3 Convolutional Neural Network

After the acquisition of images, there is a necessity to process and extract
numerical data, depending on the nature of the experiment. In particular,
two tasks have to be attained: segmentation and tracking of each singular
cell. The former represents the task of finding the pixels that characterised
a cell in a given picture, while the latter requires the proper labelling of
the cells in the logical time-sequential of their history of life. Numerous
are Software that can manage and give the desired results such as ImageJ
[1], Imaris [14] or TACTICS [40] which are all based on the standard mod-
ule for Segmentation and Tracking. Another approach can be used to track
cells and its theory is based on Convolutional Neural Networks. This is the
work of Khelina Fedorchuk (PhD, [13]) based on the software TACTICS.
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Since the subject itself is quite specific, it is worth spending some lines
on the branch it belongs to Machine Learning.

According to Ref. [28], Machine Learning can be defined as compu-
tational methods using experience to improve performance or to make
accurate predictions. It consists of designing efficient and accurate pre-
diction algorithms and has a very broad area of practical applications like
document classification, language processing or computer vision. The
main idea orbits around finding the best suitable parameters for a func-
tion (given by an algorithm) by minimizing a so-called loss function. The
main steps are explained as follows[28].

• Sorting of data, which starts with a collection of labelled data avail-
able and randomly partitions the data into three subsets called train-
ing, validation and test sample;

• Feature selection, which associates relevant features to the data (also
called examples);

• Training phase, which uses the selected features to train the learning
algorithm A by tuning the parameters Θ with the training sample;

• Validation phase, which selects the best parameters Θ0 by using the
validation sample;

• Testing phase, which evaluates the performance of the algorithm by
using the test sample in the loss function;

Figure 2.2: Main passages of the learning stages from [28]

Different learning scenarios depend on the type of available data, the
order or the methods they are received. The main scenarios are as follows
[28]:

• Supervised learning utilises labelled data to train algorithms where
labelled data and the outcome are already known;
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• Unsupervised learning utilises unlabelled data to train algorithms
where the outcome is not clear;

• Semi-supervised learning utilises both labelled and unlabelled data
to train algorithms where the outcome is not clear;

• Online learning involves multiple rounds where the training and
testing phases are intermixed;

• Reinforcement learning also has the training and testing phases in-
termixed. To collect data, an interaction with the environment is
necessary and an immediate reward is received. However, this is
a short-term system, while in long-term no reward is provided by
the environment so "the exploration versus exploitation dilemma 3"
might emerge;

A branch of machine learning is the deep neural network [13]. The
term "deep" refers to the multiple hidden layers present to learn very elab-
orate features hierarchically. A deep neural network utilizes the first data
as input at the lowest layer and uses them to learn simple features in the
first hidden layers, then proceeds to transfer such information to the next
layer, leading to a more challenging feature of data based on the informa-
tion of the previous layer and so on. The layers consist of artificial neu-
rons. Although deep neural network, or more generally deep learning has
a great advantage of extracting features without human intervention due
to the involvement of "black boxes" [4], it is challenging to train [18] and
sometimes hard to interpret too.

A more specific deep neural network is the convolutional neural net-
works or CNNs. The primary distinction between CNNs and conven-
tional feed-forward deep neural networks is their use of learnable filters,
which were previously hand-engineered in traditional computer vision
before the advent of deep learning. The structure of CNNs, like that of
ordinary neural networks, is inspired by biological processes, specifically
the architecture of the animal visual cortex. It was discovered that indi-
vidual neurons in the visual cortex respond only to activation in specific
regions of the visual field, known as receptive fields. In CNNs, convolu-
tional learnable filters and the resulting feature maps function as artificial
counterparts to the visual cortex: small convolutional filters slide across
the input image, covering it region by region, and the computed numer-
ical values (convolutions) for each region are stored as a feature map. To

3There is the choice between exploring more and collecting more data or exploiting
the information already collected.
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summarise, the benefit of using convolutional neural networks is the pos-
sibility of acquiring features of image data without human intervention
employing learning filters. Furthermore, convolutional neural networks
have three essential aspects: local connectivity, parameter sharing and
translational invariance.

• Local connectivity refers to the possibility that two neurons of two
different layers may not be connected;

• Parameter sharing refers to the fact that all neurons within a feature
map use the same set of weights, which are learned by the filter as-
sociated with that feature map. Each neuron in the current feature
map is connected to the corresponding neuron in the previous fea-
ture map using this identical small set of weights;

• Translational invariance means that the features of objects detected
by filters in an image will be recognised regardless of the objects’
positions within the image.

The combination of the first two can greatly reduce the number of pa-
rameters in neural networks, while the last one is essential for the object
movements or similarities in objects. In the architecture of a CNN, there is
also the inclusion of activation layers and pooling layers which optimise
the input of neurons, reduce the size of feature maps, speed up the com-
putational analysis and make possible features more robust.

In the program that Khelina developed, she utilised both 2D and 3D
max pooling activations, which are used to reduce the size of feature maps.
In particular, for the segmentation, a 2D trained convolutional neural net-
work is used, while on the other hand, for the tracking, a series of 3D
convolutional neural networks is implemented.



Chapter 3

Literature Review 2

The study of cells’ movement may also be interpreted as a category of ef-
ficient research for resources, which is why this chapter is dedicated to
the literature review of foragers’ efficient research for resource modelling.
The main source of this part came from Ref. [23]. Then, it follows some
review of other papers attempting to understand cells’ motility based on
experimental observations (Ref [21]. It is relevant to specify that the state
of understanding is still not fully resolved with multiple papers produced
yearly (Ref. [39]). Furthermore, the hypotheses themselves are very chal-
lenging to verify, and identifying “the best” hypothesis among them is
another open matter. Such arduousness comes from a lack of data, mathe-
matical difficulties and other complex factors.

3.1 Lévy flight: a mathematical introspective

Movement Ecology is the discipline studying the foraging strategies of
biological organisms. The central question experts in this field are trying to
answer is: how does one search efficiently for resources without knowing
the position beforehand? In 1906, Karl Pearson (Ref. [33]) proposed to
model the movements of biological organisms by a simple random walk.
Such a statement implies that the movement lengths of the individual are
distributed exponentially according to a Gaussian distribution. However,
the distribution failed to explain the frequent long movement lengths that
occur when resources are not found close by. As a consequence, another
distribution has to be considered. A suitable candidate is a class called
Lévy (α-stable) distributions ρα. Let ln be the n-th movement length then

ρα ∼ |ln|−1−α |ln ≫ 1|, 0 < α < 2 (3.1)

13



14 Literature Review 2

Such distributions are good candidates since the distributions’ tail decay
slower than the exponential one, replicating the biological phenomenon
that the resources are detected sparsely. A list of properties of Lévy the
distribution follows:

• Lévy distribution is in the class of the heavy-tailed distribution;

• the moments of a Lévy distribution do not exist.

〈
li
n

〉
=

∫ +∞

−∞
li
nρ(ln)dln = ∞ (3.2)

where
〈
li
n
〉

is the i-th moment of the distribution. Such results im-
ply that the standard central limit theorem does not apply. Gne-
denko and Kolmogorov proved mathematically that Lévy distribu-
tions obey a generalized central limit theorem (Ref. [36]);

• as a consequence of the previous point, these distributions are sta-
ble, which means that a linear combination of two random variables
sampled independently from the same distribution reproduces the
very same distribution, up to some scale factors;

• Lévy stable distribution is scale-invariant, which means the distribu-
tions remain unchanged under a rescaling;

In the limit-case that the resources are available everywhere, the Gaussian
distribution is a better choice than Lévy, since the forager has no reason to
waste energy for long-distance travelling.

3.2 Lévy Flight Hypothesis

Historically, the first group to pioneer into such matter were Viswanathan
et al. In their article published in 1996 (Ref. [43]), they traced and studied
a flock of albatrosses. They found that the plot of the number of flight time
intervals of certain lengths of 5 albatrosses during 19 foraging bouts could
be described as a power law of t with exponent µ = 2. The hypothesis,
called Lévy Flight Hypothesis (LFH), was then formulated. It states that
Lévy motion provides an optimal search strategy for sparse, randomly
distributed, immobile, re-visitable targets in unbounded domains. Since
the moments of a Lévy distribution are infinite, the concept of the Lévy
walk was introduced to overcome the problem of validating the theory
through experimental data. The differences between them are as follows:
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• The Lévy walk formulation provides that the random walk jumps
are drawn randomly from the Lévy distribution, but as a penalty for
long jumps, the walker spends a time tn proportional to the length
of the jump to complete it

tn = vln (3.3)

where |v| is chosen constant and it defines the speed of the Lévy
walker. In contrast to the Brownian motion where the mean square
displacement

〈
x2〉 grows linearly in time, for Lévy walks it grows

faster than linear 〈
x2
〉
∼ tγ as t → +∞ (3.4)

where γ > 1. Generally, when γ ̸= 1, the phenomenon is classified
as anomalous diffusion (Ref. [36]). The entire spectrum of anoma-
lous diffusion is observed in a range of natural processes and various
aspects of human activities;

• The Lévy flight formulation provides that a walker makes a jump of
length |ln| during an integer time sped of duration ∆n = 1. Thus, a
Lévy flyer can jump instantaneously over arbitrarily long distances
with arbitrarily large velocities, without a penalty;

In experimental literature, the distinction between Lévy walks and Lévy
flights is often overlooked when analysing step length frequency distribu-
tions. A step length x per unit time is defined as a jump length ln, so fitting
truncated power law ∼ x−µ to these distributions corresponds to using a
cut-down form of the jump length distribution with exponent µ = 1 + α,
which tests for truncated Lévy flights. This truncation solves the issue of
infinite moments in random walks from Lévy flights. However, this ap-
proach does not test the Lévy Flight Hypothesis (LFH), which is derived
from Lévy walks. Furthermore, the validation of the Lévy walks hypoth-
esis requires a completely different data analysis method, which falls be-
yond the scope of the literature review, since the thesis will be focusing
neither on the Lévy flight nor the Lévy walks.

There are two different types of LFHs:

• Lévy Search Hypothesis (LSH) is formulated to obtain a Lévy flight
as the optimal search dynamics. It has the following characteristics:

1. The type forager chosen is a cruise forager, which senses targets
whenever it is moving;
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2. for a cruise forager, a jump is terminated when it hits a target
(this defines a truncated Lévy walk) ;

3. the specification of whether a forager eliminates the resource or
not determine if the search is a destructive or non-destructive
type;

4. defines the density of the sources;

5. defines if the sources are moving or immobile;

Furthermore, the optimal has to be specified mathematically, for in-
stance, it can minimise the searching time for finding the resources.

• Lévy environment Hypothesis (LEH), which suggests that Lévy flight
emerge from the interaction between a forager and a source. Such
source is considered to have a distribution;

The major difference between the LSH and LEH is that the former, unlike
the latter, states that under certain conditions, a forager performs Lévy
flights regardless of the food source distribution. In the section 3.3, the
concept of the Lévy Flight Paradigm (LFP) will be introduced and it will
unify the LSH and the LEH by focusing on power laws in foraging dy-
namics without considering the specific validity conditions of these hy-
potheses. Unlike the LSH and LEH, the LFP often lacks clarity regarding
the mathematical, physical, and biological origins of the power laws it
identifies. However, it offers a broader perspective by encouraging the
examination of power laws in animal movement data, beyond just testing
for exponential distributions. It widened the scope by emphasizing that
one should also check for power laws in animal movement data.

3.3 The Lévy Flight Paradigm

The ideas that Viswanathan’s paper (Ref. [43]) started never stopped in
the field of ecology, even though the results of the power lawin the origi-
nal paper were later found to be incoherent by Edwards (Ref. [10]), due to
an incorrect interpretation of the time acquired. With a proper correction
of the data and the implementation of a truncated power law, the Lévy
flights’ behaviour disappeared, or to be more specific, only a couple of
albatrosses seem to preserve a Levy Flight behaviour. With a more pro-
found study, for instance, the work of Levernier et al. (Ref. [25]), the Lévy
walks with power law exponent µ = 2 is optimal in one dimension. In any
higher dimension, the optimization by Lévy walks was at best marginal, in
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the sense that the existence of any maximum in the search efficiency sensi-
ble depends on the choice of parameters controlling the foraging motion.
Regardless of this result, the rigorous test of the LFH is very challenging,
especially mathematically, which is why a loosen modus operandi (i.e. ig-
noring the mathematical assumption) has been considered. The concept is
called Lévy flight Paradigm, consisting of looking for power laws in the
probability distributions of step lengths of foraging animals ignoring any
conditions of validity of LSH or LEH.

Figure 3.1: Top: Data of the diving depths of a blue shark acquired throughout
half a year. The read lines split the data into different sections (a-e), where the
shark dives deep or the diving depth is more constrained. These sections match
the shark being off-shelf or on the shelf, respectively. Bottom: double-logarithmic
plots of the move sped length frequency as a function of the step length, which is
the vertical distance moved by the shark per unit time, with the notation (f-j) cor-
responding to the primary data shown in section (a-e). Clack circles correspond
to data, red lines to fits with truncated power laws of exponent µ and blue lines
to exponential fits. Figure from Ref. [19]

An instance of such application is found in the work of Humphries et al.
[19]) on the diving depths of free-ranging marine predators. It was dis-
covered that in the case of the blue shark, the distributions of the depth
length are very well approximated by a combination of exponential dis-
tribution and a power-law distribution. When the predators were close to
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shallow water, due to a strong dependence on the environment, an expo-
nential distribution was found to be suitable to fit the data. On the other
hand, when the shark was in the open ocean, its movement lengths were
very well approximated by a truncated power law. Thus, this suggests
that the best candidate to describe the data can be a superposition of the
two different distributions. Such a combination of 2 types of motion is
called bimodal motion; it consists of two distinct phases of motion mixed
randomly. Fig. 3.1 represents graphically all the avobe considerations.

3.4 Beyong the Lévy Flight Hypothesis: Forag-
ing bumblebees

The LFH from Section 3.2 illustrates the problem of identifying a suit-
able mathematical model for biologically relevant search strategies. Subse-
quently, such a hypothesis was then softened to generally look for power
laws in the probability distribution of step lengths for foraging animals
and it was formulated as the LFP (Section 3.3). By diluting the LFP hy-
pothesis even more, one can find an even loosen formulation: foraging
dynamics of biological organisms can be understood by analysing proba-
bility distributions. An instance of such modus operandi was explored by
Thomas Ings and Lars Chittka in their report on the laboratory experi-
ment regarding bumblebee dynamics with a predation threat (Ref. [20],
[24]). The experiment was set up as follows: bumblebees flew in a cubic
arena of ≈75 cm side length by foraging on a 4×4vertical grid of artificial
yellow flowers on one wall. On the landing platform of each flower, nectar
was given to the bumblebees and replenished after consumption.

Artificial spiders were introduced to analyse the possible different for-
aging behaviours of the bumblebees under the threat of predation. The
3D flight trajectories of 30 bumblebees, tested sequentially and individu-
ally, were tracked by two high-frame-rate cameras. Several scenarios were
staged during the experiment, but only three of them are relevant to our
analysis:

1. spider-free foraging;

2. foraging under predation risk;

3. a memory test one day later;

In scenario one, the bumblebees harvest nectar from artificial flowers
freely. In preparation for the other two scenarios, spider models were
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Figure 3.2: bumblebees experiment set-up. On the left (a) is an image of possible
trajectories the bumblebees may trace in the confined space. The yellow squares
are artificial flowers to collect nectar. (b) is the close-up to show the real artificial
flower and (c) is the picture of the plastic spiders to simulate a predation threat.
Picture from [23]

placed randomly among the artificial flowers. The plastic threats would
hold the bumblebee momentarily to simulate a predation attempt. Sce-
nario two is the recording of bumblebees where the spider models were
left inactive in the arena, these are the same bumblebees that have already
experienced the threats when activated spider models were placed in the
same flowers. Scenario three is the copycat of scenario two one day later,
testing the possible long influence of previous experience with predation
risk on the bumblebees’ flight dynamics. This experiment can test neither
the LSH nor the LEH, as the flight arena is too small: the bumblebees al-
ways sense the walls and may adjust their flight behaviour accordingly. As
discussed earlier, the less stringent guiding principle derived from the LFP
further suggests that the key to understanding foraging dynamics may lie
primarily in the probability distributions of flight step lengths. The best
fit seems to be a bimodal motion when analysing the single velocity dis-
tribution in each stage: one distribution fits the data well near the flowers
while another distribution is more suitable when bumblebees are far from
the food source. However, the comparison of the velocity distribution of
the 3 different stages of single bumblebees seems to be the same, qualita-
tively and quantitatively. To properly analyse the changes in bumblebees’
flights due to changes in environmental conditions, another statistic was
implemented, called the velocity autocorrelation function, as one may in-
fer from our diluted LFP principle. The definition of this statistic is given
in Eq. 6.28. By plotting the autocorrelation function for the velocity along
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the y-axis of the three scenarios (as one may see in Fig. 3.3), there is a sig-
nificant memory1 decay of the function into negative values for the blue
and green dotted lines, representing scenarios two and three. Such de-
scription matches coherently with the biological behaviour of the bumble-
bees. According to the data, whenever they go close to a flower they have
previously experienced a capture, they try to avoid it even after a day.
In contrast, the red dotted line, which represents the statistic of scenario
one, exhibits a more gradual memory decay before going into negative
values. Thi is an expected result since the bumblebees should be careless
in scenario one where no predation risks were present. To reproduce the-
oretically such changes, the model chosen was a Lanvegin equation, also
known as Newton’s Law of stochastic physics. The equation is as follows:

dvy(t)
dt

= −ηvy(t)−
dU(y(t))

dy
− ξ(t) (3.5)

where the term in the LHS of Eq. 3.5 is the acceleration along y, while in
the RHS of Eq. 3.5 there are the friction, a potential and a stochastic term,
respectively. The friction term considers the damping of the surround-
ing fluid, the potential term mimics the interaction between bumblebees
and spiders, and the stochastic term includes any random behaviour of
the bumblebees. The results can be seen in the Fig 3.3. The green dotted
line is the simulation of the Langevin equation when the potential term is
considered, while the red dotted one only has the friction and stochastic
term. The predictions given by the autocorrelation function fit the biolog-
ical phenomena: the animal tends to fly back when it knows a possible
threat is nearby.

These results demonstrate that velocity correlations can provide es-
sential insights into foraging and search dynamics, particularly through
the emergence of complex correlation decay driven by interactions be-
tween the forager and predators. While this experiment could not test
the Lévy Stable Hypothesis (LSH) due to unmet mathematical assump-
tions, the findings conceptually align with the Lévy Environment Hypoth-
esis (LEH). The interaction between the forager and its environment was
theoretically modelled by a repulsive force activated in the presence of
predators, qualitatively reproducing the experimental outcomes. Along
with the spatially intermittent dynamics observed when approaching food

1When a system is memoryless as, in the case of random walk, the expected decay is
instantaneous, meaning that the value of the autocorrelation function on lag 1 is close to
0, while for another complex system the memory has different types of decays, where the
value at lag 1 can range from -1 to 1.
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Figure 3.3: Plot of the autocorrelation functions: on the left, the plot of the real
data, the red dotted line represents scenario 1, the blue dotted line represents
scenario 2 and the green dotted line represents scenario 3. On the right, the plot
of the simulated Langevin equation, the green dotted line is the results of Eq. 3.5,
while the red one is the simulation of Eq. 3.5 without the potential term. Figure
from [23]

sources, these results highlight a complex spatio-temporal adaptation of
bumblebees to food availability and predator presence, contrasting sharply
with the scale-free dynamics predicted by the Lévy Flight Hypothesis (LFH).

3.5 Diluting Lévy Flight Paradigm in T cells motil-
ity

In this section, a brief review of further significant papers is given, to show
that the search for proper probability distributions to suit foraging dynam-
ics is in the same spirit of the study of T-cell motility.

3.5.1 Anomalous diffusion: fractional Klein-Kramers model

In the work of Dieterich et al. (Ref. [9]), authors studied the cell movement
of mutated epithelial cells (transformed Madin-Darby canine kidney), in
particular 2 types: wild-type (NHE+) and NHE-deficient (NHE−) cells. A
comparison between two models has been implemented: the Brownian
motion and the fractional Klein-Krames model. The FKK model satisfied
the fractional Flein-Kramer equation without external forces:

∂P
∂t

= −∂ [vP]
∂x

+
∂1−α

∂t1−α
γα

[
∂ [vP]

∂v
+

KBT
M

∂2P
∂x2

]
(3.6)

where P is the probability distribution in position x, velocity v and time
t. γα denotes the damping term, kB is the Boltzmann constant, T is the
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Figure 3.4: Plots of the autocorrelation function. The dotted points are the real
data, the green lines are data obtained from the Brownian motion, and the blue
and red lines are from the Fractional Klein-Krames model. Figure from [9]

temperature, M is the mass of the particle, and α defines the order of the
fractional time derivative. The Brownian motion satisfied Eq. 3.6 in the
limit case of pure diffusion.

The various statistical analyses studied in the paper, such as means
square displacement, probability distribution over times, kurtosis, and ve-
locity autocorrelation function, suggest that anomalous diffusion is suit-
able to describe cell motility in the long run, while classical diffusion fits
the data better in the short term. This is another instance of bimodal mo-
tion.

Physical constraints may induce non-linear diffusion

The dynamics equation of the FKK model was introduced in Dieterich’s
research, but many other papers would also consider similar approaches.
In the anomalous diffusion, the MSD (definition given in 6.20) does not
follow a linear dependence on time, so fractional diffusion equations were
designed. However, there are instances of anomalous diffusions even from
a standard diffusion equation with particular border conditions (Ref. [31]).
Similar to our case of study, where the cell is confined to a squared domain
(details in Chapter 4).
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3.5.2 The Speed-Persistence coupling model

Jerison and Quake (Ref. [21]), have studied the T-cell behaviours in vivo
through a selective plane illumination microscope, where they could ob-
serve native populations of T cells in the live larval zebrafish. One of their
primary goals was to find if there is "a statistically consistent behavioural
program carried out by these cells" (Jerison and Quake, [21]). A complete
standard analysis of the statistics has been proposed, with a clear conclu-
sion that a simple Lévy flight could not predict cell motility in its entirety.

Figure 3.5: Image (a) is the frame of the zebrafish’s tail in larvae form. The white
dots are the T cells inside the animal. Image (b) is the same image of the ze-
brafish’s tail, but in another channel to show the physical constraints of cell move-
ment. Images (c), (d) and (e) are plots of statistics. Specifically, (c) is the plot of
distributional MSD over time in a double logarithmic form, (d) is the plot of the
speed over its frequency in a double logarithmic form and (e) is the plot of the
frequency of displacement deviation over the d. deviation. Figure from [21]

Even though it seems that the cell has heterogeneous behaviours, like
in the case of albatrosses in Section 3.3, the study has brought to model
cells’ movement as a specific type of Langevin equation, called the persis-
tent Ornstein-Uhlenbeck process, given by

dvi

dt
= − 1

P
vi +

S√
P

ξ (3.7)

where vi is the i-th component of the velocity v, S is the speed and P is
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the percistence time, or the average time before a cell turns. Jerison and
Quake observed that cells when navigating with high speed, tend to have
low-angle turns, while low speeds are positively correlated to large-angle
turns. As a result, Eq. 3.7 becomes as follows:

dvi

dt
= − 1

S
α + β

vi +
S√

S
α + β

ξ (3.8)

where α and β are constant with unites of time. With only a free parame-
ter, the latter equation is called the Speed-Persistence coupling model. In
their analysis, such an approach seems to describe the effective diffusive
behaviour of the cells’ trajectories and their scaling at longer times. How-
ever, it may not capture all the details of the microscopic dynamics. The
study also did not explicitly consider the complex geometry of the area the
living cells are (the tail of zebrafish), which may be an important influence
on cells’ motility.

T-cells, although not as complex as insects or birds, do show a clear
biological "behaviour" that is similar: as animals search for food, T-cells
search for antigens, by taking inspiration from the Bumblebees experi-
ment, which was set up in a close domain, and considering the loosen for-
mulation of LFH (searching for distribution), the thesis will lean towards
verifying if there are some power laws in the probability distributions of
step lengths. Furthermore, even if it is not meant for a confined space, an
attempt to interpret the MSD with respect to the time will be presented. In
addition, by considering the observations made in 3.5.1, one may expect
that the majority of the MSD that will be found in our experimental data is
going to be sub-diffusive due to the spatial confinement, that is if the cells’
lives are long enough to reach the border.



Chapter 4

Experimental Set-up

This chapter is dedicated to discussing the preparation of the experiments,
in particular, it will specify where the T-cells come from, where they are
placed, how the chosen microscope is set up and how long a single exper-
iment takes (the majority of specifics came from Ref. [32] and [40]).

4.1 Animals preparation

Mice were maintained in a pathogen-free environment with food and wa-
ter readily available. All procedures involving mice were performed fol-
lowing the National Health and Medical Research Council animal ethics
guidelines, approved by the Peter MacCallum Cancer Centre Experimen-
tation Ethics Committee. C57BL/6 and uGFP/OT-1 C57BL/6 mice, which
transgenically express both the OT-1 T cell receptor and Green Fluorescent
Protein (GFP) at the age of 6 to 30 weeks were utilised. C57BL/6 mice
were obtained from Animal Resources Centre (Perth, Australia), while
uGFP/OT-1 C57BL/6 mice were generated by breeding OT-1 transgenic
mice (acquired from Walter and Eliza Hall Institute, Parkville, Australia)
with uGFP mice (acquired from The Jackson Laboratory, Maine, USA).

4.2 Cell culture

• Dendritic cells: Cells from the bone marrow were isolated from the
hind limbs of C57BL/6 mice and cultured in enriched RPMI medium
1640 containing GM-CSF (10 ng/ml, Peprotech Inc, Rocky Hill, USA).
Cells were cultured for 2 days, the media was replenished and cells
were cultured for a further 4 days at 37 °C in 5% CO2 to gener-
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ate dendritic cells (CD11c+/CD86lo/MHCIIlo) for use as antigen-
presenting cells;

• Naïve CD8+ T lymphocytes were isolated from uGFPO/OT-1 C57B-
L6 mouse splenocytes by negative selection using the CD8+ T cell
isolation kits, as per manufacturer’s instructions (EasySep STEM-
CELL Technologies). The cells were placed in 14mL polystyrene
round-bottom tubes to properly fit into the magnetic carousel. For
1x108 splenocytes, the cells were incubated with Normal Rat Serum
(50µL/ mL) and antibody cocktail (50 µL/mL) for 10 minutes and re-
suspended in magnetic beads (125 µL/mL) for 5 minutes. The cells
were then resuspended in HANKS buffer up to a total volume of
2.5mL. The tube was placed into the magnetic carousel for 2.5 min-
utes then inverted, pouring off the desired CD8+ T lymphocytes;

Dendritic cells (DCs) and CD8+ T cells were cultured in RPMI medium
1640 enriched with foetal-calf serum (10%v/v), glutamine (1mM, GIBCO-
BRL), sodium pyruvate (1nM, GIBCO-BRL), non-essential amino acids (100
nM, GIBCO-BRL), penicillin/streptomycin (100 ng/mL), and minimal es-
sential medium alpha modifications (SAFC Biosciences, Sigma Aldrich).

4.3 T-Cells in microwells

T-cells were placed in microfabricated microwells for cellular studies in
vitro. The cell microwells were made of PDMS with dimensions of 125×
125×45 µm and with well-defined vertical sidewalls and a transparent
base. Cell microwells were placed into a well of an 8-well chamber slide
(LAB-TEK II, NUNC) sterilized with 100% EtOH and UV light, and rinsed
with media prior to use. The gibbon ape leukaemia cell line, MLA-144,
eGFP were cultured at 37°C, 10% CO2 in Dulbecco’s Minimal Essential
Medium (SECF) supplemented with 10% (v/v) fetal calf serum, L-glutami-
ne (1mM) and 100ng/mL penicillin/streptomycin.

4.4 Microscopy of choice

Time-lapse images were obtained with an IX71 inverted microscope (Olym-
pus, Tokyo, Japan) equipped with a Nipkow disk-type confocal unit (Yoko-
gawa CSU22, Tokyo, Japan) and EM-CCD Andor camera (Model: iXon
EM +885, Belfast, Northern Ireland). Images were acquired in both DIC
and green channels using a 20x air objective 0.45NA, which corresponded
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to a pixel size of 0.33 µm × 0.33 µm. The working distance was 6.6-7.8
mm. Exposure time was 600 ms for green and 100 ms for DIC. Multiple
stage positions were captured (controlled by MetaMorph software version
7.7.11.0 ) with a sampling rate of 30 seconds for 1-24 hrs and were saved
as 8-bit 2-D arrays (380 × 380 pixels).

Figure 4.1: Schematic representation of Yokogawa spinning disk confocal laser
configuration, image from Ref. [40]

Once everything was ready, a single CD8+ T cell would be activated
by a dendritic cell and placed in each well at a fixed time in the morning.
Due to the activation, the cell would roam around inside the well and
start mitosis. The microscope would take a picture every 30 seconds for
several hours. After that, the daughter cells would be collected and the
micro-well washed before placing such cells again in the well in a random
position and restarting the data collecting process again. The environment
is isolated and sterilised. A stream of humid gas is released from a corner
of the chamber to guarantee oxygen and carbon dioxide supplies to the
cells.
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Chapter 5

Cells Tracking and Data
Acquisition

This chapter describes the program used to track cells and extract numer-
ical data after the frames of micro-wells have been acquired from the mi-
croscope. Eleven independent videos were processed by the program and
Excel files were generated for numerical analysis.

5.1 Video Labeling

The acquisition of the video was done more than a decade ago and the
history of the original cells is not clear. In addition, the off-springs lineage
between videos is not available1 due to the multiple changes of the files’
names. The label for the current thesis is based on the last known change:
Video01, Video02, Video03, Video04, Video05, Video06, Video07, Video11,
Video16 and Video41. Each of them contains frames of the cells in the
Fluorescent, Bright field and Red channels. For this Thesis, only the Fluo-
rescent and Bright field channels are relevant, while the rest are used for a
more biology-centric study. Each video contains information on 4 micro-
wells, and each of them contains at least one cell when the microscopy was
recorded. To label every single well, the cardinal points are used and each
well is identified with NW (North-West), NE (North East), SW (South-
West) and SE (South East). For instance, Video01.SE refers to the well on
the bottom-right in Video 01.

1After a discussion of how important it is to retrace the history of the cells, Sarah
Russell, one of the team leaders of our group at Swinburne University of Technology,
kindly offered her help to reconstruct the whole lineage. However, the reconstruction is
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Figure 5.1: Instance of 2 channels of the micro-well: Fluorescent channel on the
left and Bright field one on the right. Both of them represent the picture of the
same time frame. The blobs in the wells are the T cells.

5.2 DeepKymoTracker

The program used for tracking the cells is called DeepKymoTracker 2,
written by Khelina Fedorchuk. It was developed in Python™ ver. 3.6.13,
and contains the applied concept of convolutional neural network. Five
main steps characterise Khelina’s work when I used it:

Figure 5.2: DeepKymoTracker Starting Interface

still underway and beyond the scope of this thesis
2More detailed information can be found in Khelina’s Github/repository:

https://github.com/khelina/T-cell-lineages-tracking

https://github.com/khelina/T-cell-lineages-tracking
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• Step 1 File adjustment: The first step is the adjustment of the file
format obtained from the microscope and conversion into a suitable
format for cell-tracking;

• Step 2 Cut one well: this is the step where the frame-cutting of a
single well is done. Both fluorescent and bright field channels are
cut and stored in a specific file, ready to be used in the Step 3;

• Step 3 Track and Segment T cells: this is the main focus of the pro-
gram. As soon as the file from Step 2 is added, the user can start
and let the program track the cells in the well. As the cells are rec-
ognized in each time frame, a contour is made around it and a label
of them is superimposed; Each frame is developed and displayed
to the user, with the possibility of manual correction. The analysis
of the cell is done by using the fluorescent channel, while the draw-
ing of the contour is made in the bright field one. While the frames
with segmentations are produced, a paired image of tree lineage is
developed at the same time. At the end of the process (which can not
be paused unless for correcting wrong labelling or segmentation), a
movie of contoured cells paired with the lineage tree of the cells can
be generated;

Figure 5.3: DeepKymoTracker’s Step 3 starting interface, image from [12]

• Step 4 Correct Segmentation3: This is a further step to correct possi-
ble wrong segmentations which may occur in Step 3. Even though
the possibility of correcting the segmentation is already implemented
in the Step 3, the Step 4’s feature is more robust and user-friendly: it



32 Cells Tracking and Data Acquisition

Figure 5.4: Video03.NE frame 1805. On the left panel, there are 4 contoured and
labelled cells in the well. On the right panel, the cells’ tree lineage is displayed.

provides the option to manually draw the cell’s contour and enables
the user to do the correction later.

• Step 5 Excels files extraction: the last passage is the production of
numerical data from the contoured cells. Specifically, the features
obtained are the coordinates of the centroid, the area, the perimeter,
the circularity of the cells;

It is worth noting that the program can generate much more than what
has been listed previously. For example, the complete program in Step
3 can also produce various plots showing changes in area and perimeter
over time. However, due to time and computer storage constraints4, Khe-
lina made personalized adjustments to the code for a faster generation of
data, leaving the unnecessary features behind. To give a general idea, gen-
erating plots for the Excel file could take anywhere from 5 to 20 hours for
a single micro-well video.

More details on T-cells’ data

The well, 125×125 µm2, is displaced as a 380×380 pixels resolution image.
The centroid of the cell is calculated as the weighted average of the pixels:

xc =
∑i∈P wixi

∑i∈P wi
(5.1)

3I was the first "beta tester" of Khelina’s work, and some trial and error were involved.
Due to time constraints during my stay in Australia, not all steps were thoroughly tested
and adjusted for optimal performance. However, since this step was added by Khelina
during my testing, I can proudly claim that I contributed to its improvement.

4and to keep procedure within workable times.



Cells Tracking and Data Acquisition 33

where wi are the weighs, P is the set of pixels that defines a single cell, xc
= (x,y) are the coordinates of the cell’s centroid and xi is the position of
the i-th pixel. The weights are considered all the same equal to 1, ωi = 1
∀i. Area and perimeter are found with the same pixel-contour logic while
circularity can be derived with the following formula:

Circularity = 4π
Area

Perimeter2 (5.2)

Boolean digits are used to label the cells in the following way: at the
beginning of a new video, a single cell is placed in each micro-well. Such a
cell has the label of 1. When mitosis occurs, the two daughter cells would
receive the label from the previous cell with an additional boolean number
that would distinguish them. The figure (5.5) gives a representation of a
generational tree starting from cell 1 until the fourth generation:

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

Figure 5.5: A tree that represents the mitosis of T cells and the labels which are
given to the daughter cells up to the fourth generation

Whenever it is necessary to refer to a specific cell, the following com-
plete labelling will be used:

(Video + number of video) . (cardinal points) . (Cell + cell boolean
number)
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For instance, if it is important to look at cell 100 in the top left corner well
on video 04, the label is Video04.NW.Cell100.

Limitations and Complications

There are a few aspects of the DeepKymoTracker that impact directly on
the numerical analysis of cells’ movement.

• The only statistics that directly reflects a progression of cells’ motion
is centroids, while information about the movement of cells in their
entirety is unavailable;

• The density of the cell might be different across its body, which makes
the formula 5.1 an approximation of the true cell’s centroid;

• The segmentation, when cells are attached (which is guaranteed af-
ter mitosis), is an approximation of a proper segmentation. This is
mainly due to the impossibility of the program to spot and draw
overlapping contours, and its inability to process true 3D images;

Figure 5.6: Video03.NE, Cell11 and Cell10 in the frame 405 are displayed. Cell10
should also have a tail that overlaps with Cell11, but due to the limits of Deep-
KymoTracker, it is not registered for Cell10, causing a further error for Cell10’s
centroid

• In Step 2 of the program, the frame-cutting logic did not consider
possible, spurious, camera movements5. As a result, a post-process
correction is needed after the extraction of the Excels file at the end
of Step 4 to correct for inaccurate positions due to such movements
(See Matlab file for the specifics changes);

5In the latest version of DeepKymoTracker, an extra feature was implemented by Khe-



Cells Tracking and Data Acquisition 35

Figure 5.7: Left image: Video03.NE.Cell1 frame 1. Right image:
Video03.NE.Cell10 and Video03.NE.Cell11 frame 486. Camera shifting is evident
from the left image to the right image, especially in the top left corner

lina to correct the camera’s movement. Unfortunately, due to the timing and tool con-
straints, that option was not available when data was collected for this work.
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Chapter 6

Mathematical Concepts

This chapter collects all the mathematical tools that will be essential for the
study proposed next. In particular, this part includes the Cell-tracking def-
inition, the Random Walk, the diffusion equations and the auto-correlation
function,

An important matter is addressed: when a physical measurement is
with a tilde, it refers to its value with respect of micrometres and seconds,
while the tilde-less version has the unit of measure with respect to frames
and time steps.

t[time steps] t̃[sec] x[pixels] x̃[µm]

The conversion from one measurement to another has the following rules:

1 pixels =
380
125

µm 1 time step = 30 sec

6.1 Cell - track

Definition. A 2-dimensional cell track is a finite n-sequence

T := [ (x(1), t̃(1)), . . . , (x(k), t̃(k)), . . . , (x(n), t̃(n)) ] (6.1)

where x(k) ∈ R2 is the k-th position and t̃(k) ∈ R is the k-th time in second.
The value in parentheses is the time in time steps.

For population-based cell track analysis, it is common to align a set of
tracks to the same starting point.
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Definition. For a cell track T, the track that results from subtracting the
first element from all elements in the sequence i.e.

T0 :=[ ([0, 0], 0), (x(2)− x(1), t̃(2)− t̃(1)), . . . ,
(x(k)− x(1), t̃(k)− t̃(1)), . . . , (x(n)− x(1), t̃(n)− t̃(1)) ] (6.2)

is called zero-aligned cell track set, or zero-aligned version of T.

6.2 Speed

The speed of a cell with respect to T0 with length n is defined as follows:

V0 :=
[

0,
√

V0
x (1)2 + V0

y (1)2,
√

V0
x (2)2 + V0

y (2)2, . . . ,√
V0

x (k)2 + V0
y (k)2, . . . ,

√
V0

x (n − 1)2 + V0
y (n − 1)2

]
= [ 0, V0(1), V0(2), . . . , V0(k), . . . , V0(n − 1) ] (6.3)

where V0
x and V0

y are defined as follows, with x(k) = (x(k), y(k)):

V0
x :=

[
0,

x(2)− x(1)
2 − 1

, . . . ,
x(k)− x(k − 1)

k − (k − 1)
, . . . ,

x(n)− x(n − 1)
n − (n − 1)

]
= [ 0, x(2)− x(1), . . . , x(k)− x(k − 1), . . . , x(n)− x(n − 1) ]

= [ 0, V0
x (1), . . . , V0

x (k), . . . , V0
x (n − 1) ] (6.4)

V0
y :=

[
0,

y(2)− y(1)
2 − 1

, . . . ,
y(k)− y(k − 1)

k − (k − 1)
, . . . ,

y(n)− y(n − 1)
n − (n − 1)

]
= [ 0, y(2)− y(1), . . . , y(k)− y(k − 1), . . . , y(n)− y(n − 1) ]

= [ 0, V0
y (1), . . . , V0

y (k), . . . , V0
y (n − 1) ] (6.5)

6.3 Angle

The direction of cells’ displacement along the x and y-axis has been anal-
ysed because it aids the characterization of cells’ motility regimes. For
each zero-aligned cell track set T0 of length n, a set of angles of length n
with respect to T0 is calculated in the following way:
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θ0 := [0, f (Vx(1), Vy(1)), f ((Vx(2), Vy(2)), . . . ,

f ((Vx(k), Vy(k)), . . . , f ((Vx(n − 1), Vy(n − 1))
]

=
[

0, θ0(1), θ0(2), . . . , θ0(k), . . . , θ0(n − 1)
]

(6.6)

where f : R2 → [0, 2π) and f (Vx, Vy) ∈ [0, 2π)

f (x, y) :=



0 if Vx ≥ 0 ∧ Vy = 0

arctan
(

Vx
Vy

)
if Vx > 0 ∧ Vy > 0

π
2 if Vx = 0 ∧ Vy > 0

arctan
(

Vx
Vy

)
+ π if Vx < 0 ∧ Vy > 0

π if Vx < 0 ∧ Vy = 0

arctan
(

Vx
Vy

)
+ π if Vx < 0 ∧ Vy < 0

3π
2 if Vx = 0 ∧ Vy < 0

arctan
(

Vx
Vy

)
+ 2π if Vx > 0 ∧ Vy < 0

(6.7)

For a lighter notation, as in the sequences of V0 and θ0, the apex 0 is im-
plied but not specified since the zero-align cell track set will always be
considered for the calculus of the statistics and measurements.

6.4 Random Walk

A random walk is a path derived from a sequence of random steps on
some mathematical space. In our case, which is biology-based, the walk-
ers can be the cells and the walk is on a 2D square lattice. The space is
divided into squares and at each time every single cell can move onto the
next possible "tile", a neighbour of the current square the cell is in. For the
sake of simplicity, no cell division is present in the movies we consider. In
our case, the mass is referred to the number of the cells.

Let ci,j(t) be the concentration of cell in the (i,j)-tile at time t. According
to figure 6.1, the concentration in the square (i,j) at time t + τ is the sum of
three contributions: the concentration in the square (i,j) at time t, the posi-
tive inflow of cells from the neighbours "tiles" and the negative outflow of
cells from the square (i,j) to the neighbours "tiles". Mathematically:
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Figure 6.1: Random Walk in a square lattice: the purple lines are the step length a
cell can take in a unit of time. A possible jump from one tile to another is modelled
to happen from one tile’s centre to another. The red arrows represent the outflow
probability and the green ones represent the inflow probability.

ci,j(t + τ) = ci,j(t) +
(

p(i+1→i)ci+1,j(t) + p(i−1→i)ci−1,j(t) + p(j+1→j)ci,j+1(t)

+p(j−1→j)ci,j−1(t)
)
−

(
p(i→i+1)ci,j(t) + p(i→i−1)ci,j(t)

+p(j→j+1)ci,j(t) + p(j→j−1)ci,j−1(t)
)

(6.8)

By taking the first term of the RHS of the equation 6.8 to the LHS, we get
the variation of cell in the (i,j)-tile in a τ time as the displacement of cells’
flows

ci,j(t + τ)− ci,j(t) = inflow of cells − outflow of cells (6.9)

Which respects the conservation of mass. Now, it can be shown that one
may get from the equation 6.8 a macro-equation such as the classical dif-
fusion equation, by substituting as follows:

pi→î =
Dτ

∆x2 pj→ ĵ =
Dτ

∆y2 (6.10)

If eq. 6.10 is implemented into eq. 6.8 the following is obtained:
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ci,j(t + τ)− ci,j(t)
τ

= D
(

ci+1,j(t)− 2ci,j(t) + ci−1,j(t)
∆x2

+
c1,j+1(t)− 2ci,j(t) + ci,j−1(t)

∆y2

)
(6.11)

As τ, ∆x2, ∆y2 → 0 and c ∈ C2

∂c
∂t

= D
(

∂2c
∂x2 +

∂2c
∂y2

)
= D∆c (6.12)

Where ∆(.) :=
(

∂2(.)
∂x2 + ∂2(.)

∂y2

)
is the 2D Laplace operator. Eq. 6.12 is the

classic diffusion equation. Alternatively, one may obtain the same result
by starting from 6.8, setting all the probability as p and c∈ C2, and us-
ing the Taylor expansion as the jump from one tile to the neighbour is
infinitesimal (∆x and ∆y → 0):

ci+1,j ≈ ci,j +
∂ci,j

∂x
∆x +

∂2ci,j

∂x2
∆x2

2

ci−1,j ≈ ci,j −
∂ci,j

∂x
∆x +

∂2ci,j

∂x2
∆x2

2

ci,j+1 ≈ ci,j +
∂ci,j

∂y
∆y +

∂2ci,j

∂y2
∆y2

2

ci,j−1 ≈ ci,j −
∂ci,j

∂x
∆y +

∂2ci,j

∂y2
∆y2

2

Einstein obtained the same formula in his paper on the theory of dif-
fusion [11] by studying the phenomena previously reported by Robert
Brown in 1828 of small granules in still water. If a cell is released at the
origin at time t = 0 in an unbounded space, the solution of the diffusion
equation is the normalized Gaussian PDF:

c(x, t) =
1

4πDt
e−

∥x∥2
4Dt (6.13)

Einstein remarks that this solution is that of the fortuitous error, which
was to be expected. By knowing the expression of c(x,t) 6.13 we can obtain
the mean value and the covariance matrix (µ and Σ) of x, with an impor-
tant reminder:
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1
4πDt

e−
∥x∥2

2
4Dt =

1√
4πDt

e−
x2

4Dt
1√

4πDt
e−

y2
4Dt = c(x, t)c(y, t) (6.14)

where c(x,t) is the concentration of cells only along the x-axis at time t and
c(y,t) is the concentration of cells only along the y-axis at time t.

µ := (< x >,< y >) (6.15)

Σ :=
(
< x2 >, 0
0,< y2 >

)
(6.16)

Where

< x >= E[x] :=
∫ +∞

−∞

∫ +∞

−∞
xc(x, t)dxdy =

∫ +∞

−∞
xc(x, t)dx

=
∫ +∞

0
xc(x, t)dx −

∫ +∞

0
xc(x, t)dx = 0

< y >= E[y] :=
∫ +∞

−∞

∫ +∞

−∞
yc(x, t)dxdy =

∫ +∞

−∞
yc(y, t)dx =

=
∫ +∞

0
yc(y, t)dx −

∫ +∞

0
yc(y, t)dx = 0

< x2 >= E[x2] :=
∫ +∞

−∞

∫ +∞

−∞
x2c(x, t)dxdy

(∗)
= 2Dt (6.17)

< y2 >= E[y2] :=
∫ +∞

−∞

∫ +∞

−∞
y2c(x, t)dxdy

(∗)
= 2Dt (6.18)

(∗) =
∫ +∞

−∞
x2c(x, t)dx =

∫ +∞

−∞
xxc(x, t)dx

6.13
= −x

2
4Dtc(x, t) + 2Dt

∫ +∞

−∞
c(x, t)dx 6.13

= 2Dt

(6.19)

The distributional mean square displacement (MSD) is defined in the
following way:
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< δ2(t) >:= E[∥x(t)− x(0)∥2] = E[(x(t)− x(0))2 + (y(t)− y(0))2]
(6.20)

In a standard diffusion process, the MSD is linearly dependent over t:

< δ2(t) >
(∗∗)
= 4Dt (6.21)

(∗∗) =
∫ +∞

−∞

∫ +∞

−∞
(x2 + y2)

1
4πDt

e−
x2+y2

4Dt dxdy

=
∫ +∞

−∞

∫ +∞

−∞
x2 1

4πDt
e−

x2+y2
4Dt dxdy +

∫ +∞

−∞

∫ +∞

−∞
y2 1

4πDt
e−

x2+y2
4Dt dxdy

= 2
∫ +∞

−∞

∫ +∞

−∞
x2 1

4πDt
e−

x2+y2
4Dt dxdy

= 2
∫ +∞

−∞
x2 1√

4πDt
e−

x2
4Dt dx

∫ +∞

−∞

1√
4πDt

e−
y2

4Dt dy

= 2 · 2Dt = 4Dt (6.22)

Observation: It is direct to extend 6.21 to a n-dimension case and the for-
mula would be

< δ2(t) >= 2nDt (6.23)

Around 9 years after Einstein’s paper, Ivar Nordlund came up with the
idea of studying mercury droplets [30] by performing the analysis of every
single trajectory. The mathematical tool was the time-averaged MSD:

δ2(∆) =
1

t − ∆

∫ t−∆

0
∥x(t′ − ∆)− x(t′)∥2dt′ (6.24)

where ∆ is called the lag time, the width of the window slid along the cell
track with typically ∆ ≪ t for good statistics. In the classical 2D random
walk

δ2(∆) = 4Dt (6.25)

which is the same as eq. 6.21, implying the property of ergodicity: ensem-
ble averages and long-time averages are equivalent in the limit of long
measurement times. However, this is not true for our phenomena (as we
will see).
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Estimators of distributional MSD and time-averaged MSD

The MSD(t) can be estimated through D2(t)

D̂2(t) =
∥x1(t)∥2 + · · ·+ ∥xn(t)∥2

n
(6.26)

where x1(t), ..., xn(t) are the positions of n zero-aligned cell tracks at some
fixed time t.

The MSD∗(t) can be estimated through D̂∗(τ = mtint)

D̂∗(∆ = mtint) =
1

N − m

N−m

∑
s=1

∥x(m + s)− x(s)∥2 (6.27)

where N is the total number of timesteps and tint.

6.4.1 Generalization of Random Walk

It is interesting to note that with different hypotheses of probability pk→k̃,
k ∈ i, j, one may obtain different variations of the diffusion equation: for
example from anisotropic diffusion equations to anisotropic convection-
diffusion equations. A further generalisation can be implemented by con-
sidering rectangle or hexagonal tiles instead of square tiles or considering
a step length that is different from one. The following is implemented for
the second part of Chapter 8.
In the case of the square 2D lattice, the direction probability is given by
(lattice Fig. 6.1):

pEast =
n(]− π

4 , π
4 ])

n(]0, 2π])
pNorth =

n(]π
4 , 3π

4 ])

n(]0, 2π])

pWest =
n(]3π

4 , 5π
4 ])

n(]0, 2π])
pSouth =

n(]5π
4 , 7π

4 ])

n(]0, 2π])

In the case of the hexagon 2D lattice, the direction probability is given by
(lattice Fig. 6.2):

pEast =
n(]− π

6 , π
6 ])

n(]0, 2π])
pNorth-East =

n(]π
6 , 3π

6 ])

n(]0, 2π])
pNorth-West =

n(]3π
6 , 5π

6 ])

n(]0, 2π])

pWest =
n(]5π

6 , 7π
6 ])

n(]0, 2π])
pSouth-West =

n(]7π
6 , 9π

6 ])

n(]0, 2π])
pSourth-East =

n(]9π
6 , 11π

6 ])

n(]0, 2π])
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Figure 6.2: Random Walk in a hexagon lattice: the purple lines are the step length
a cell can take in a unit of time. A possible jump from one tile to another is
modelled to happen from one tile’s centre to another. The red arrows represent
the outflow probability and the green ones represent the inflow probability.

Where n(]a, b]) is the function that counts the number of angles from a to
b of the vector θ∗.
The step length taken at each time is a "bootstrap" of the corresponding V∗

distribution. For instance, if the Cell1 of interest is video04.SE.Cell1 for
the simulation, a random pick from the pool of V04SE1 with respect to the
vector of angles θ04SE1, is considered.

6.5 Speed autocorrelation function

The autocorrelation function of cells’ speed can have the following ex-
pression

vAC(t0) =
E[(V(t + t0)− E[V(t + t0)])(V(t)− E[V(t)])]√

(Var(V(t + t0))Var(V(t)))

=
Cov(V(t + t0), V(t))

Var(V(t))
(6.28)

Estimator of the speed auto-correlation coefficient

The estimator of the autocorrelation coefficient is obtained as follows:
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ˆvAC(l) =
∑n−l

i=1 (Vi − µ̂V)(Vl+i − µ̂V)

∑n
i=1(Vi − µ̂V)2 (6.29)

where l is the time lag, the discretized time between t − t0, and µ̂V is the
sample average of V.



Chapter 7

Numerical results

This chapter contains all the numerical analysis and results from the statis-
tics defined in Chapter 6. A few complications are considered, due to the
limited data available and quality of information. Further details are in
the section 7.1. All the calculations and data extraction from the Excel files
provided by the DeepKymoTracker are processed in the software Matlab
2023a whose specifics are found in the Appendix.

7.1 Complications

The experiment and the data acquisition of the T-cells were not meant to
be studied for the specific goal of this thesis. The design of the experi-
ment had other motives, much more biological-based and to answer oth-
ers equally, if not more important and intriguing questions like:

• which is the generation that decided to manifest a certain gene [44]
in its off-springs;

• is it possible to design a precise cell-tracker program that can per-
fectly capture cell division and the cell’s shape right after the mitosis
[13] [40];

7.2 Observations of the Video

In the visual analysis of the videos, some biological behaviours have been
analysed and mentioned in this section. A more detailed explanation is
given in the next sections with more mathematical-based reasoning.

47



48 Numerical results

• It seems that every single cell in the well has two main phases: the
first is the "wandering" phase and the second is the "division" phase.
In the former, the cell focuses more on exploring the surrounding
environment, while in the latter, the cell would slow down, acquire
a round shape and become slower before the proper splitting into
two daughter cells;

• The mitosis seems to occur in the proximity of the wall, which makes
one wonder if the T-cell would naturally search for a firm place to
split itself, or if the remaining time is enough for it to wander close
to the wall;

• If the previous point has a validity of some sort, which is the natural
behaviour of T-lymphocytes to desire a firm place to split, then by
observing some cells, a new hypothesis may arise: T-cells may have
failed attempts of mitosis. This hypothesis is driven by the fact that
sometimes, the cell would close to the wall and assume the typical
round shape for mitosis;

• From time to time, some cells happened to have a part of them stuck
in a single point of the ECM. The nature of such phenomena is un-
known, but it does interfere actively in the cells’ movement, so in the
numerical analysis of position and speed such case has to be taken
into consideration;

Unfortunately, the data available during the data acquisition in my stay
at the Swinburne University of Technology were not sufficient, since they
were limited in numbers and Khelina’s program had not been fully tested,
as mentioned in Chapter 5. Even though the responsible for the experi-
ment was meticulous with his routine, that did not prevent the fluctua-
tional average lifetime of the T-cells. In some cases, the lifetime of Cell1
is over a thousand frames, other times it is under five hundred. The first
case is labelled as "good data" while the second is labelled as "bad" data,
If the number of frames is under two hundred then it is considered "very
bad" data. Furthermore, the entire history of such cells is unavailable,
even with thousands of frames per single Cell1, due to the unknown tree
lineage between the cells in different videos. Lastly, no rigorous action
was considered when a new experiment was started, resulting in an in-
complete record of the entire cells’ life by the microscope. Filtering the
incomplete data was attempted, resulting in even fewer data to study.

Before we dive into the first statistics, it is crucial to mention the two
main influences1 of Cell1’s movement during its entire life-span: the wall
of the wells and the internal biological changes.
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• Walls: The influence of the T-cells’ activity by the wall is somewhat
known. In every video available, the cell seems to have some "aware-
ness" of such physical constrain, since the collision of any cells to-
ward the obstacles never occurred and the possibility of attraction
is present. However, the walls certainly limit the movement of the
living cells.

• Biological parameters: Biological parameters refer to the different
internal component of the cells that changes during the cells’ lives.
Internal forces and internal movement of cells are not detectable in
this study and may still influence the statistics considered. An in-
stance of it can be seen in mitosis; part of this very complex intercel-
lular process is the rearrangement of cytoskeletons in the cytoplasm
of the cell [35]. The density of the cell may vary and the cells’ cen-
troid should not be calculated as in 5.1. Another instance of biolog-
ical parameter change is the manual separation of cells in a well by
the experimentalist. This may cause an active response of the cells to
change their superficial and internal state, resulting in a variation in
its motility from the one it could have without human intervention.

7.3 Position

With its simplicity, the cell’s centroids in the wells could give some very
informative results. By plotting all the positions of the available Cell1’s
centroids, it is possible to see the uneven spread of positions, with a con-
siderate preference for staying close to the wall. This may be caused by the
attraction of cells toward the wall for its stiffness. Another equally viable
hypothesis is that the wall is an obstacle for the cells, unable to proceed
further. In addition, since the cells would not collapse onto the wall, they
seem to be aware of the physical constraints.

The starting position of Cell1s is evenly spread all over the well due to
the manual separation, which could bring more complex initial conditions.
On the other hand, the ending point of every Cell1 seems to be close to the
wall (figure 7.2), leading to an additional possibility that they may prefer
to stay close to the wall for the incoming mitosis. Note that the videos stop
when Cell1 divides.

1These are the only 2 main factors for Cell1; if the other cells are present in the well,
then a third major influence has to be considered which is the presence of multiple cells,
not considered here.
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Figure 7.1: Histograms of positions along the x and y-axis. On the abscissa, there
are the classes of positions in the well. On the ordinate, there are the counts of
each class of position.

Figure 7.2: All recorder positions are plotted in blue, the red dots are the starting
point of the cells, while the green ones are the ending positions

By analysing the positions of each single cell as a path, different types
of motions seem to be present. There is the type of path that makes the cell
wander across all the well, even when they might need all their life span to
do it (figure 7.3, Video01.NW.Cell1) or they might only need a fraction of
their life (figure 7.3, Video11.SW.Cell1). In contrast, there are cases where
the cells’ movement is not widespread and remains in a particular part of
the well, close to the wall (Video03.SW.Cell1), suggesting once again the
attraction of cells towards the wall. Another particular feature that can
be observed in Video01.SE.Cell1 is the persistency of motion towards a
direction for a considerate amount of frames.
Whether the roaming is across all over the well or in a very concentrated
area close to the well, they all do not resemble a typical 2D random walk.
The random walk doesn’t have a particular direction of choice, while the
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Figure 7.3: Plots of 4 Cell1s’ paths. On the top left Video01.NW (frames 1761),
on the top right Video01.SE (frames 713), on the bottom left Video03.SW (frame
1121), on the bottom right Video11.SW (frames 594)

Cell1 seems to have a preference of direction from time to time.

7.3.1 Special case: Anchored cell

Among the different cells’ behaviour, a curious phenomenon happened in
some cases, precisely in the following video

• Video01.NE.Cell1

• Video02.NE.Cell1

• Video04.NE.Cell1

• Video04.SE.Cell1

The name given to this behaviour is "cell anchoring": for some unknown
reason, the wandering cell in the well could nail itself in a specific point
and get stuck for a while. The resulting shape of the cell is similar to a
pointy island, while it tries to move around, it cannot properly escape due
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to a fixed point. Eventually, the living cell would manage to free itself. As
one may notice, most of the cases happened in the same well, the SE one,
and the same point, leading to the possible explanation: that the extracel-
lular matrix in that zone may have been different, causing the cell to be
stuck for a while. This phenomenon is yet to be understood due to the
lack of data. In the last video,Video04.SE.Cell1, the "anchoring" occurs
with the nailed point located on the wall. This is a singular yet fundamen-
tal instance in which the anchoring in the wall is captured. However, it is
impossible to give a general explanation as to why that may arise..

Figure 7.4: Video01.NE.Cell14 different frames. Attempt to show the anchoring.
Top left frame 101; top right frame 122; bottom left frame 210; bottom right frame
227

7.4 Angles

As the acquisition of cells’ centroids is done, the evaluation2 for the angles
is immediate through the formula 6.6 in the Chapter 6.

By plotting all the angles over the frequency of every data, one can no-
tice a uniform distribution, with a slight preference for going to the right,
see figure 7.5.

2Even though the formula to get the angles involves the speed, the latter has a simple
formula as the displacement of positions. By putting such a definition into the angles’,
one can get the direct dependence of the angle with respect to the position.
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Figure 7.5: Histogram of all directions of Cell1

However, the previous result does not reflect on the single Cell1’s prefer-
ence of directions. There are cases in the "good" sample, which has over a
thousand frames, where the angles are on average uniformly distributed,
and there are other cases, like in Video02.SW.Cell1 where the cell prefer to
go along the main directions (top, bottom, left and right). In the "bad" data,
most of the plot has a preferential direction, while there are some cases of
even distribution. These observations, from both data types, consolidate
the hypothesis that the cell’s motility is not a simple random walk, other-
wise the distribution of angles should be generally evenly distributed. In
the cases of referral directions, the cell is located close to the wall with a
physical constraint, limiting its range of motility (See Fig. 7.2, top left).

7.5 Speed

The next statistic of interest is the speed of the cells. By looking at the plot
of all speeds in a histogram, a clearly shaped graph appears
leading to the consideration of two candidates to fit such graph: the gamma
distribution and the log-normal distribution. However, neither the former
nor the latter case seem to fit the re-scaled data by using the mean (µ = 20)
and variance (σ2 = 144) values estimated from the speed distribution.ù
(Fig. 7.8). The log-normal is also often present in biological processes
that are asymmetric and we were somewhat surprised by its absence in
this case. According to Section 3.3, another possible candidate can be a
bimodal motion, where the superposition of two distributions occurs. A
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Figure 7.6: Four plots of angles: on the top left Video02.NW.Cell1, on the top
right Video02.NE.Cell1, on the bottom left Video06.SE.Cell1 and on the bottom
right Video07.SW.Cell1. Interval length indicates the length of each interval. In
this case, since the interval length is 10, there are 36 intervals in the [0 360] degree
graph

non-rigorous modus operandi has been considered to find such two dis-
tributions, which was trying to find the suitable parameters that would fit
the real data. For the slow speed, a normal distribution seems to be fine
while for the heavy tail, an attempt to find the power law has been tried as
one may see in Fig. 7.9. Even though the parameters were not estimated
but somewhat guessed, the graph still showed a promising result that T-
cell may present a type of power law distribution, according to the Lévy
Flight Paradigm.

In the case of the histograms of the single Cell1, all the distribution’s
shape does seem to resemble 7.7. There are some singular instances of
speed exceeding over 30 f rames

timestep (see figure 7.7), bringing the hypothesis
that cell may have a heterogeneous nature: every single cell is different
from the others in term of motility. Such a statement is verified by at-
tempting to calculate the average speed of Cell1s and plotting the resulting
numbers over their life’s span (figure 7.10).
By looking at the "good" sample there seems to be a correlation between
average speed and the life of cells. The resulting hypothesis of cell hetero-



Numerical results 55

Figure 7.7: Histogram of all speed in one plot

Figure 7.8: Comparison of the real data of all speeds in one plot (blue asterisks)
with the corresponding gamma distribution on the left (green line) and lognormal
distribution on the right (red line). Neither works well

geneity may be invalid since all the data have similar distribution shapes.
Furthermore, the longer cells can live, the more it is likely to pick a faster
speed from the pool. On the other hand, the "bad" sample gives a differ-
ent scenario: similar lengths of recorded cell life have different average
speeds. Two important considerations follow:

• Human intervention may interfere with cell’s mobility and cells do
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Figure 7.9: Speed distribution of all cells in one plot (blue asterisks). The red
dotted line is part of a normal distribution, the green, other red and magenta
dotted lines are power-laws.

remember sudden changes. As a consequence, they might change
their motility (in the Section 7.5.1, such hypothesis will be discussed);

• After the activation of T-cells, the expansion phase began. The T-
cells are induced to divide and eliminate the present pathogens in a
certain area. For the immune system to be efficient, after the first di-
vision, the lymphocytes have a shorter life-span to guarantee a more
prolific division [22] and it should be faster to reach the pathogen or
the antigen;

The latter observation, which has a biological foundation, consolidates the
heterogeneous hypothesis, and it is also reinforced by the presence of non-
proper Cell1 in the Cell1’s pool: the lineage of the videos is still unknown
and since the re-usage of T-cells from another batch of proliferated cell in
a well is more convenient than starting to induce a generation 1 T-Cell1,
the non-proper Cell1 is likely the majority of the data and the very few
ancestors are in the mix. This makes it impossible for us to validate our
ideas.
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Figure 7.10: Plot of average speed over Cell1s’ life-span. When looking at the
"good" data (green dots), there seems to be a correlation between average speed
and Cell’s life (blue dashed line). The "bad" data (red dots), does not present the
same linear relations.

7.5.1 Auto-correlation speed

In the plot of the graph of the auto-correlation speed coefficient of every
single cell, whether they are "good" data or not, there is a common denom-
inator: the decay from lag 0 to lag 1 is quite "rapid", leading to a necessity
of a much higher frequency of images acquisition, otherwise the system
could be misinterpreted as memoryless, which is high unlikely due to the
presence of some persistency of paths, as one can see in the figure 7.11.
note that the speed of decay of the autocorrelation function is related to
the persistence factor P in eq 3.8 and an "instantaneous" decay would im-
ply P = 0.

Furthermore, it seems like there is a type of non-exponential decay in the
log-log plot of the auto-correlation and time lag of the single cell very sim-
ilar to the result of using the fractional Klein-Kramer equation in Ref. [9].
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Figure 7.11: Plot of the auto-correlation coefficient of speed in the first 20 time
lags. An instance of a "good" sample on the left column (video01.NW.Cell1) and
an instance of "bad" data on the right column (video04.NW.Cell1).

Figure 7.12: Plot of auto-correlation function over time lags. On the left, we have
an instance of "good" data. On the right, there is an instance of "bad" data. Both
of them seem to have the same type of decay

7.6 Average life span of Cell1

Since information on the cell in the first generation’s life is not fully avail-
able, a different approach can be considered. With some successful tests of
Deepkymotracker, a few videos have been processed until the third gen-
eration, in particular:



Numerical results 59

• Video02.NE

• Video02.NW

• Video02.SE

• Video07.SW

With these considered, the average number of frames is 1163. Further-
more, due to the biological need to fight pathogens, it is logical to pro-
pose that the expectancy life of T-cells in the first generation is longer
than its offspring. However, since the complete picture of the cells lineage
is not available (for instance Video04.SW.Cell1 may be the Video01.SW.
Cell100’s offspring) and information of the first generation in each micro-
well is not available, the best approach is to set a lower thresh-hold of
Video01.SW.Cell1’s life as 1163 average frames and filter all the individual
Cell1’s frame with such number. As a result, the average first-generation
T-cell’s life is represented by the average of all the filtered Cell1’s frames.
The average number of frames for the first generation is estimated to be
1707. From now on, the term Cell1 refers to the true first generation found
by the filtering, while Cell1 refers to all the data collected and labelled as
the first generation.

7.7 Average-time mitosis

When analysing the videos of the cells in the well, their shape is very
round right before they split into two daughter cells. The unknown bi-
ological parameters during the cell’s division are phenotypical and seen
in the shape of the living cell, which is why there is an attempt to esti-
mate the average time of cells’ mitosis through the data of circularity. The
method to determine the length of mitosis’ duration is to count the num-
ber of circularities above a certain threshold Cthreshold with a finite number
of opportunities to be below and not interrupt the count. It Cthreshold is set
to be 0.85. The average mitosis time of every cell is in table 1. As a result,
the average time of mitosis based on circularity is the mean value of all
cells’ mitosis time which is 60.

7.8 MSD - Mean Square Displacement

According to Chapter 6, there are two ways to calculate the Mean Square
Displacement, one according to Einstein (Ref. [11]) and one according to
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Nordlund(Ref. [30]). For the sake of simplicity, the ⟨MSD⟩ will indicate
the distributional mean square displacement while the MSD will indicate
the single time-averaged mean squared displacement.

After the selection of Cell1 in section 7.6 and assuming that there is no
heterogeneity among cells, the distributional ⟨MSD⟩ is found by using the
formula 6.26. However, there are two major problems:

• the number of frames is different;

• the starting point of the cell is very likely not to be available due to
the procedure of restarting a new experiment;

As a consequence, the possible power-law of the ⟨MSD⟩ is calculated by
assuming that the starting point of their life is the starting point in the data
and the maximum time considered is the minimum of all the involved
Cell1’s life-span.

Figure 7.13: ⟨MSD⟩ of the chosen Cell1s with the eq. 6.26

The power-law obtained is γ = 0.72 which indicates a subdiffusive be-
haviour of the cells at the beginning, the formula used to calculate the
first region of MSD is 6.26. Unfortunately, the restriction of studying the
standard ⟨MSD⟩ has to be limited to such time steps, due to the different
cells’ life duration. As a result, the estimation of the mean square displace-
ment is quantitatively incorrect. By looking at the single MSD of each cell
according to Nordlund’s formula Eq. 6.24, another way to calculate any
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power-laws can be attempted without discarding any frames. After filter-
ing the very "bad" data, which have frames under two hundred, some of
the MSD does have a power-law above γ > 1, which may indicate that
some Cell1 are not activated by a dendritic cell, but are the offspring in-
volved in the expansion phase, requiring faster motility to eradicate the
pathogen. The data, unfortunately, is not completely clear.

According to the experiment, we expect more offspring of dendritic-
induced active Cell1s in the Cell1’s pool. However, until the cell’s lineage
is reconstructed, one may assume one hypothesis, regardless of the lin-
eage: there are two classes of cells, the "fast" class and the "slow" class.
The Cell1 are classified in such categories based on the power-law expo-
nent gamma: if it is less than 1 (γ<1) then it is considered slow and if it
is more than 1 (γ>1) then the cell is considered fast. Interestingly, this
classification does not lead to a correlation between the class of cells and
its average speed, for instance, a fast cell could not have a high average
speed. This may be counter-intuitive, but the average speed of a fast cell
can be low and some slower cells may have high average speed (with the
filtration of very "bad" data). This is because, along the MSD over t in the
log-log graph, there are some changes of convexity, modifying the slope
of the line obtained through linear regression of the whole MSD. If the
MSD tends to go "down" in the log-log plot after a change of convexity,
biologically this represents that the cell is going toward the directions of
the starting point on average. On the other hand, a local increase in MSD
represents the distancing of the cell from the starting point on average.
The speed impacts only on the local slope between changes of convexity.
A cell might have very high speeds when returning to its starting position,
for instance right before the mitosis process (See Fig. 7.14), which leads to
a very steep negative slope for the MSD (in the log-log form), contributing
to lower the gamma in the overall search of the power law.

The stagnation of the cell is guaranteed to happen at the end of its
lifespan when the splitting occurs. In the MSD, such phenomena can be
seen as a drop or increase of the MSD graph in the log-log plot in the last
frames. To appreciate the subdiffusive nature of the phenomena the fol-
lowing is proposed: after determining the time for the mitosis to happen
in Section 7.7, the new ⟨MSD⟩ of just the splitting phase will be calculated
with the new starting point of the cell to be the first time frame of mitosis,
the length of the MSD taken is the minimum of the mitosis times among
the first-generations Cell1. The gamma found is γ = 0.45, which hints at
the sub-diffusiveness nature of the mitosis phase as one may see in Fig.
7.15.
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Figure 7.14: An instance of an increasing slope during the mitosis on the top-left.
On the bottom-left, the corresponding path is illustrated. An instance of a drop of
slope during the mitosis on the top-right. On the bottom right, the corresponding
path is illustrated.

Before going to the next chapter, a sum-up of the results follows:

• The cells would "split" themselves very close to the wall;

• There are no preferential directions for the cells if they do not stay
too long close to the wall;

• The frequency of frame capturing needs to be higher to understand
the type of memory the cells’ path has;

• There are two main phases in the Cell1s’ life: a wandering and the
splitting phase. In the former case, the local power law of the MSD
(according to Nordlung) may be super- or sub-diffusive, hinting at
the classification of the cells into two major classes, the fast and slow
cells. On the other hand, during the mitosis, the resulting position-
shifted ⟨MSD⟩ is sub-diffusive;
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Figure 7.15: ⟨MSD⟩ of the mitosis phase. The initial point starts at the position
where the mitosis is calculated to start.

Such observations will be the key to simulating some simple models in the
next chapter to take a step further in understanding T-cell motility.
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Chapter 8

Modelling some behaviours seem
in experiments

This Chapter is divided into two main parts:

• The first part is the simulation of a variation of the random walk in a
rectangular and hexagonal 2D lattice, where the probability and the
step length are chosen from the real data and implemented in Eq.
6.81 according to Subsection 6.4.1;

• The second part is the simulation of the standard random walks in a
rectangular 2D lattice and the analysis of their statistics with a spe-
cific sampling and different conditions along the walls;

All the simulations were coded in the software Matlab 2023a and the specifics
are found in the Appendix.

8.1 Random Walk with real data

To verify if the simple models can be suitable candidates to describe the
real data, a first simulation of them in the form of a non-standard random
walk has been first implemented, the steps are the following:

1. A few suitable Cell1s has been selected, specifically we picked the
proper Cell1s from Section 7.6 and three Cell1 that has a super-diffusive
MSD;

1This is true for the rectangular lattice, while for the hexagonal one, the formula has
more terms since the neighbourhood is different, but the logic of the mass conservation
is the same.
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2. the vectors θ and V have been used to find the probability distribu-
tion of directions and step length of each case for a 2D rectangular
and hexagonal 2D lattice, according to Subsection 6.4.1. In the case
of the square 2D lattice, the direction probability is given by:

pEast =
n(]− π

4 , π
4 ])

n(]0, 2π])
pNorth =

n(]π
4 , 3π

4 ])

n(]0, 2π])

pWest =
n(]3π

4 , 5π
4 ])

n(]0, 2π])
pSouth =

n(]5π
4 , 7π

4 ])

n(]0, 2π])

Where n(]a, b]) is the function that counts the number of angles from
a to b of the vector θ∗.

The time of each simulation is based on the average lifespan of Cell1
estimated in Section7.6, which is 1707 for the proper Cell1 and 1163 for
the others. For each selected Cell1, a simulation of one hundred RWs has
been computed.
For each non-standard random walk, statistics like positions, speed and
MSD have been analysed and plotted. No physical restriction has been
implemented in the simulations since the wall’s influence component is
already present in the speed of real data.

Between the rectangular and hexagonal configurations, no particular
features were found to be different, besides the approximation of direc-
tions from four main directions to six.

The ⟨MSD⟩ is found for each Video through Eq. 6.26 when each cell
track is one of the hundred RWs. Most of the Video’s simulation has the
⟨MSD⟩ with a power law greater than one, γ < 1, while the rest has the γ
slightly under one. This was expected qualitatively in the case of the last
three Videos of fast cells, but it was not a result for the proper Cell1. The
major reason may be the limitation of freedom the cell has around the wall.
It would be impossible to perform a long step length toward the wall when
the cell cannot proceed beyond. This implies that the position and speed
may be correlated: whenever the cell is close to the wall it is more prob-
able to have a short step length. This leads to the fact that more realistic
simulation models must consider space constraints. Quantitatively, the γs
of ⟨MSD⟩s found in these simulations are always greater than the time-
averaged MSD found in Section 7.8. Another possible reason that may
have contributed to aumenting the γ is the approximation of the model
in a 2D regular lattice in combination with the wall restriction since each
Video has its history of directions, as we can see in Fig. 8.2 and in Fig. 8.1.
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Figure 8.1: 4 plots of the simulation in a 2D rectangular lattice of video03SE.Cell1
with a sampling = 25. video03SE.Cell1 is classified as a proper Cell1. Top-left:
plot of the path, the red dot is the starting point and the green dot is the ending
point. Top-right: speed distribution. Bottom-left: plot of the MSD over t in the
double logarithmic plot. Bottom-right: distribution of the angles from the real
data.

Lastly, the simulations may have revealed the possible true nature of the
cell motility, which should be super-diffusive in most cases, even for the
proper Cell1, with a quantitative difference from their offspring.

To see how the numerical results in the ⟨MSD⟩ during the mitosis time
may still be sub-diffusive, an adjustment has been implemented in the
simulation, which is the differentiation of two-speed distributions: the
first distribution for the wandering phase and the second distribution for
the splitting phase. To achieve that, the estimation of mitosis time has been
considered. The resulting ⟨MSD⟩ has a power law greater one, an incor-
rect prediction of what it was found in Section 7.8, for both types of cells,
proper Cell1s and fast cells. The possible reasoning is again the absence of
space constraint when mitosis occurs. In fact, according to Section 7.3, the
cell divides very close to the wall.

By looking at the speed distribution during mitosis in Fig. 8.5 and Fig
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Figure 8.2: 4 plots of the simulation in a 2D rectangular lattice of video02SE.Cell1
with a sampling = 25. video02SE.Cell1 is classified as a fast cell. Top-left: plot of
the path, the red dot is the starting point and the green dot is the ending point.
Top-right: speed distribution. Bottom-left: MSD over t in the double logarithmic
plot. Bottom-right: distribution of the angles from the real data.

8.4, most recorded speeds rarely exceed 10, which is expected since the
splitting is the main focus of the cell.

8.2 Random Walks - α models

In this section, we will discuss the random walk and verify if it is suitable
to describe the cells’ movement. The simulation of the random walk is
performed in a 2D square lattice.

To mimic the step length found in Section 7.5 with a unitary step-length
random walk in a 2D lattice, a sample parameter has been implemented
to decide the frequency of picking the elements from the cell track set T.
For example, after the simulation of RW, the cell track T̂ is produced and,
if the sampling frequency is k, the final Cell track T sequence would be
the sub-sequence of T̂ by taking the i-th elements as multiple of k. The
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Figure 8.3: Comparison of simulation between the two cells of video04SE.Cell1’s
directions. On the top are the plots of paths. In the middle is the MSD over t in
the double logarithmic plots. At the bottom are the speed distributions.

sampling frequency chosen was twenty-five (sampling = 25) since such a
parameter is also an upper limit to the maximum speed that can occur in
one step length. Furthermore, since the importance of space constraints in
the models according to Section 8.1, we performed two types of simula-
tions: unrestricted and restricted RW. Each unrestricted random walk has
no space constraints while the restricted one is simulated in a 380 × 380
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Figure 8.4: 4 plots of the simulation in a 2D hexagonal lattice of video03SE.Cell1
with a sampling = 25. video03SE.Cell1 is classified as a proper Cell1. Top-left:
plot of the path, the red dot is the starting point, the red circles are the position
of mitosis, and the green dot is the ending point. Top-right: speed distribution of
the wandering phase. Bottom-left: plot of the MSD over t in the double logarith-
mic, where the red circles represent the mitosis. Bottom-right: speed distribution
during the mitosis phase.

pixels2 square space.

8.2.1 Unrestricted model

Each random walk has a cell track, in the sense of the model, with a length
equal to 1707. A total of one hundred random walks have been simulated.
In Figure 8.6, the distribution of speed doesn’t show any speed close to
the upper limit, since the probability of occurring to a step length equal to
twenty-five is very low (in the case of 4 possible actions, the probability

would be p = 4 ∗
(

1
4

)25
=

(
1
4

)24
≈ 3.55 ∗ 10−15). The ⟨MSD⟩ is also

calculated and the power law with respect to the time is very close to one
γ = 1, as expected from the theory.
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Figure 8.5: Four plots of the simulation in a 2D hexagonal lattice of
video03SE.Cell1 with a sampling = 25. video02SE.Cell1 is classified as a fast cell.
Top-left: c. Top-right: speed distribution of the wandering phase. Bottom-left:
plot of the MSD over t in the double logarithmic, where the red circles represent
the mitosis. Bottom-right: speed distribution during the mitosis phase.

8.2.2 Restricted models

When simulating a two-dimensional random walk in a finite square, dif-
ferent ideas may come to mind to model the walker when it comes close
to the wall. In this thesis, three are the main concepts that will be used:

1. Equiprobability of actions;

2. Stillness on walls;

3. Moving on walls;

In the first case, when the cells are moving along the lattice, every action
has an equal probability of occurring:

In the second case, the "stillness" refers to the fact that the probability of
an action, if it is not feasible, would merge with the probability of staying
still. Such a model mimics the possibility of the biological behaviour of
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Figure 8.6: Simulation of a classic random walk with no physical constraint with
a sampling = 25. On the left: plot of the path, the red dot is the starting point and
the green dot is the ending point. On the right: speed distribution.

Figure 8.7: Types of movement for the restricted RW model

the cells, whenever it is close to the wall, analysing the physical obstacle
before moving.

The last case, the opposite of the second case, takes the probability of
unfeasible actions and equally distributes them to the two probabilities of
moving along the wall. Such a model mimics the cells’ awareness of the
physical obstacle and they are more likely to wander around it.

A parameter of stillness α is implemented in the last two models, which
controls the probability of staying still. That is why the last two are called
α-models. For the simulations, one hundred RWs have been analysed for
different values of α. The sampling frequency of choice is 25, the time
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Figure 8.8: Types of movement for the stillness model

Figure 8.9: Types of movement for the moving model

steps are set to be 1707 and the starting points of the random walks are
randomly chosen from the starting point of the real data (see the red dots
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in figure 7.2).

Figure 8.10: Simulation of an RW with the stillness model on the wall. On top:
two plots, the first is the path in the confined space, the red dot is the starting
point and the green dot is the ending point, and speed distribution. At the bot-
tom, ⟨MSD⟩ over t of eight different αs in the double logarithm plots.

As one may predict, the resulting gamma from these models can only
be less than one since the physical constraints limit the diffusion if the
time passed is long enough. As a consequence, these cannot be fit to
represent all the real data inside the wall, since some of them showed a
super-diffusive behaviour. Furthermore, these models don’t differ much
from one other, due to the short life-span set for each simulation, and the
walker visiting the wall very few times. As a result, the decreasing γs
seems to occur with an increasing α (See table 4). Nonetheless, the ⟨MSD⟩
found in Section 7.8 for the proper Cell1 has a subdiffusive nature and
can be reproduced qualitatively in the α for the "stillness" model and the
"moving" model.

To sum up, we conclude that the wall plays a major role in the simu-
lation since its presence would correlate with the position and the speed
of cells, while in Section 8.1 the information was already implicitly in the
speed distribution. Still, no walls have been placed in the model. Even
though the α models proposed are not suitable candidates to describe cell
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Figure 8.11: Simulation of an RW with the moving model on the wall. On top:
two plots, the first is the path in the confined space, the red dot is the starting
point and the green dot is the ending point, and speed distribution. At the bot-
tom, ⟨MSD⟩ over t of eight different αs in the double logarithm plots.

motility, some statistics are still relevant, hinting at the possibility that a
proper modification of such models may lead to the correct one. So far,
no single model seems to be able to reproduce all the different features we
observed on the experimental Data or motility.
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Chapter 9

Conclusion and future ideas

The thesis started with the types of literature review: the first was re-
lated to the necessary knowledge for data acquisition, while the second
was cell-motility-related. Different complications were encountered dur-
ing the work, including extended time to test the DeepKymoTracker pro-
gram. Mathematical tools necessary for the analysis of statistics were pre-
sented in one chapter and analysed in the next. Relevant results found as
follows:

• Cells split themselves close to walls;

• The speed distribution of all the cells combined seems to be the su-
perposition of two distributions, satisfying the diluted Levy Hypoth-
esis;

• No ergodicity was found, with high variability in MSDs;

• There are two classes of cells, depending on their γs. Those that
have a sub-diffusive behaviour (γ <1) are the proper Cell1s, while
the other class have a super-diffusive behaviour (γ >1) which are
the Cell1s’ offspring, but not enough data is available;

• The cells might all have a higher γ when the wall is non present;

• Subdiffusivity can be achieved with a simple RW in a confined space;

A few aspects might be addressed and optimized for studying cell
motility, in the future:

• In the experimental set-up, a larger well is needed to minimize the
wall’s effect on cells’ behaviour. Furthermore, the starting point of
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each cell should be the same. Also, there is the necessity of finding
a way to record the cells from the very first frame of their life while
being completely isolated, whether there is generation 1 or the off-
spring;

• In the acquisition of data, DeepKymoTracker should be upgraded
to be a more user-friendly program in terms of robustness and time
optimization. A new approach needs to be studied and implemented
in the program to correctly contour the overlapping cells;

• In the modelling, the persistency term could be implemented in the
α-models to generate a super-diffusive behaviour in the walker. Hav-
ing a walker from a Langevin equation like the one used by Jerison
and Quake in Ref. [21] is also a good idea;

Much more can be studied and developed from this type of data. Even
though I just scratched the surface of what type of motility T-cells have,
those analyses are fundamental for possible future work that will continue
after the Thesis, which will hopefully answer the question: what type of
motility does the T-cell have? At this stage, this question is too difficult.
Nevertheless, we now possess good insight into which models and which
quantities tell the right story.



Appendix

Matlab and Tables

All the analysis has been processed in the software in Matlab ver. 2023a.
All the codes that have been implemented can be found in the additional
materials linked to this Thesis. There are two main files, T-cell and RW.
In the former, there are all the codes regarding the analysis of the real
data and its statistics, while in the latter, there are all the codes for the
simulations of different random walks shown in chapter 8.
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position lifetime average speed γ of TAMSD mitosis time
01 NE 1895 6.27 0.74 74
01 NW 1761 6.52 -0.06 62
01 SE 713 6.13 0.31 94
01 SW 640 6.34 0.70 71
02 NE 472 8.04 -0.18 57
02 NW 526 4.60 0.87 58
02 SE 804 3.78 1.16 41
02 SW 782 3.43 1.21 126
03 NE 84 3.64 1.28 18
03 NW 62 2.98 1.17 61*
03 SE 1214 4.37 0.82 78
03 SW 1121 4.45 0.36 85
04 NE 798 5.36 0.47 82
04 NW 697 4.38 0.98 92
04 SE 898 4.13 1.20 54
04 SW 859 4.01 0.83 17
05 NE 991 6.20 0.26 33
05 NW 871 6.57 0.03 62
05 SE 531 3.51 -0.01 73
05 SW 537 3.99 0.49 49
06 NE 545 3.43 0.32 23
06 NW 535 3.91 0.99 59
06 SE 1472 3.94 0.25 81
06 SW 1204 4.08 0.23 80
07 NE 552 3.07 0.14 20
07 NW 482 2.20 0.68 119
07 SE 1331 5.48 0.16 70
07 SW 1126 4.55 0.39 65
11 NE 496 11.36 0.57 43
11 NW 585 11.41 0.54 31
11 SE 367 13.35 0.29 28
11 SW 597 14.63 0.47 26
12 NE 432 6.71 0.14 41
12 NW 389 11.07 0.14 34
12 SE 388 9.73 0.10 51
12 SW 597 8.19 0.13 60
16 NE 385 6.39 1.50 63
16 NW 3027 9.78 0.52 39
16 SE 382 7.78 1.16 46
16 SW 630 7.93 0.91 35
41 NE 179 3.92 1.64 126
41 NW 220 4.53 1.56 61
41 SE 1046 5.53 1.04 80
41 SW 1033 6.94 0.60 78

Table 1: Table summarising the results from the real data analysis. The asterisk
indicates that the mitosis times coincide with the whole recorded lifespan of the
cell. The blues are the "good" samples, the blues are the "good" samples.
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⟨MSD⟩ wandering ⟨MSD⟩ mitosis
01.NE.Cell1 01.Nw.Cell1

03.SE.Cell1 06.SE.Cell1 06.SW.Cell1 0.72 0.45
16.NW.Cell1 16.NW.Cell1

Table 2: Table summarising the distributional MSD for the wandering phase and
the MSD for the mitosis. The blues are the "good" samples.

Cell1 chosen for
simulations timespan # RWs γ ⟨MSD⟩ mitosis time γ mitosis
01.NE.Cell1 1707 100 0.96 74 1.10
01.Nw.Cell1 1707 100 1.00 62 1.07
03.SE.Cell1 1707 100 1.54 78 1.25
06.SE.Cell1 1707 100 1.07 81 1.05
06.SW.Cell1 1707 100 1.37 80 1.15
07.SE.Cell1 1707 100 1.09 70 1.11

16.NW.Cell1 1707 100 0.91 39 1.11
02.SE.Cell1 1163 100 1.54 41 1.25
04.SE.Cell1 1163 100 1.13 78 1.19
41.SE.Cell1 1163 100 1.22 80 1.13

Table 3: Table summarising the results of choosing the 10 real data for the simu-
lation for the first part of Chapter 8. Simulations of RW in a 2D hexagonal lattice,
sampling rate = 25. The blues are the "good" samples, the blues are the "good"
samples.

n° RW α = 0 α = 0.1 α = 0.2 α = 0.3
Classic RW 100 0.98

Restricted RW 100 0.97
Stillness wall 100 0.99 0.97 0.94 0.93
Moving wall 100 0.98 0.97 0.96 0.96

α = 0.4 α = 0.5 α = 0.6 α = 0.7

0.90 0.88 0.86 0.84
0.94 0.88 0.87 0.86

Table 4: Table summarising the value of γs for each set of parameter α. Simula-
tions of RW in a 2D square lattice, sampling rate = 25.
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